

 [image: B15559_MockupCover_Highres-01.png]

 Mastering Kubernetes

 Third Edition

 Level up your container orchestration skills with Kubernetes to build, run, secure, and observe large-scale distributed apps

 Gigi Sayfan

 [image:]

 BIRMINGHAM - MUMBAI

 Mastering Kubernetes

 Third Edition

 Copyright © 2020 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Producers: Ben Renow-Clarke, Aarthi Kumaraswamy

 Acquisition Editor – Peer Reviews: Suresh Jain

 Content Development Editor: Kate Blackham

 Technical Editor: Gaurav Gavas

 Project Editor: Carol Lewis

 Proofreader: Safis Editing

 Indexer: Pratik Shirodkar

 Presentation Designer: Sandip Tadge

 First published: May 2017

 Second edition: April 2018

 Third edition: June 2020

 Production reference: 1260620

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham B3 2PB, UK.

 ISBN 978-1-83921-125-6

 www.packt.com

 [image:]

 packt.com

 Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

 	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

 	Learn better with Skill Plans built especially for you

 	Get a free eBook or video every month

 	Fully searchable for easy access to vital information

 	Copy and paste, print, and bookmark content

 Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.Packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

 At www.Packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

 Gigi Sayfan has been developing software professionally for more than 20 years in domains as diverse as instant messaging, morphing, chip fabrication process control, embedded multimedia applications for game consoles, brain-inspired machine learning, custom browser development, web services for 3D distributed game platforms, IoT sensors, virtual reality, and genomics. He has written production code in many programming languages, such as Go, Python, C, C++, C#, Java, Delphi, JavaScript, and even Cobol and PowerBuilder for operating systems such as Windows (3.11 through 7), Linux, macOS, Lynx (embedded), and Sony PlayStation. His technical expertise includes databases, low-level networking, distributed systems, unorthodox user interfaces, DevOps, and the general software development life cycle.

 Gigi is also a longtime author who has published multiple books and hundreds of technical articles and blogs.

 About the reviewer

 Onur Yilmaz is a senior software engineer at a multinational enterprise software company. He is a Certified Kubernetes Administrator (CKA) and works on Kubernetes and cloud management systems. He is a keen supporter of cutting-edge technologies including Docker, Kubernetes, and cloud-native applications. He is the author of multiple books, including Introduction to DevOps with Kubernetes, Kubernetes Design Patterns and Extensions, Serverless Architectures with Kubernetes, and Cloud-Native Continuous Integration and Delivery. He has one master's and two bachelor's degrees in the engineering field.

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Download the example code files

 	Download the color images

 	Conventions used

 	Get in touch

 	Reviews

 	Understanding Kubernetes Architecture

 	What is Kubernetes?

 	What Kubernetes is not

 	Understanding container orchestration

 	Physical machines, virtual machines, and containers

 	The benefits of containers

 	Containers in the cloud

 	Cattle versus pets

 	Kubernetes concepts

 	Clusters

 	Nodes

 	The master

 	Pods

 	Labels

 	Annotations

 	Label selectors

 	Services

 	Volume

 	Replication controllers and replica sets

 	StatefulSet

 	Secrets

 	Names

 	Namespaces

 	Diving into Kubernetes architecture in depth

 	Distributed system design patterns

 	The sidecar pattern

 	The ambassador pattern

 	The adapter pattern

 	Multi-node patterns

 	The Kubernetes APIs

 	Resource categories

 	Kubernetes components

 	Master components

 	Node components

 	Kubernetes runtimes

 	The container runtime interface (CRI)

 	Docker

 	rkt

 	App container

 	CRI-O

 	Hyper containers

 	Frakti

 	Stackube

 	Continuous integration and deployment

 	What is a CI/CD pipeline?

 	Designing a CI/CD pipeline for Kubernetes

 	Summary

 	Creating Kubernetes Clusters

 	Overview

 	Creating a single-node cluster with Minikube

 	Meet kubectl

 	Quick introduction to Minikube

 	Getting ready

 	On Windows

 	On macOS

 	Creating the cluster

 	Troubleshooting

 	Checking out the cluster

 	Doing work

 	Examining the cluster with the dashboard

 	Creating a multi-node cluster with KinD

 	Quick introduction to KinD

 	Installing KinD

 	Creating the cluster with KinD

 	Doing work with KinD

 	Accessing Kubernetes services locally though a proxy

 	Creating a multi-node cluster with k3d

 	Quick introduction to k3s and k3d

 	Installing k3d

 	Creating the cluster with k3d

 	Comparing Minikube, KinD, and k3d

 	Creating clusters in the cloud (GCP, AWS, Azure)

 	The cloud-provider interface

 	GCP

 	AWS

 	Kubernetes on EC2

 	AWS EKS

 	Fargate

 	Azure

 	Other cloud providers

 	Once upon a time in China

 	IBM Kubernetes Service

 	Oracle Container Service

 	Creating a bare-metal cluster from scratch

 	Use cases for bare metal

 	When should you consider creating a bare-metal cluster?

 	Understanding the process

 	Using virtual private cloud infrastructure

 	Building your own cluster with Kubespray

 	Building your cluster with KRIB

 	Building your cluster with RKE

 	Bootkube

 	Summary

 	References

 	High Availability and Reliability

 	High availability concepts

 	Redundancy

 	Hot swapping

 	Leader election

 	Smart load balancing

 	Idempotency

 	Self-healing

 	High availability best practices

 	Creating highly available clusters

 	Making your nodes reliable

 	Protecting your cluster state

 	Clustering etcd

 	Verifying the etcd cluster

 	Protecting your data

 	Running redundant API servers

 	Running leader election with Kubernetes

 	Making your staging environment highly available

 	Testing high availability

 	High availability, scalability, and capacity planning

 	Installing the cluster autoscaler

 	Considering the vertical pod autoscaler

 	Live cluster updates

 	Rolling updates

 	Complex deployments

 	Blue-green deployments

 	Canary deployments

 	Managing data-contract changes

 	Migrating data

 	Deprecating APIs

 	Large cluster performance, cost, and design trade-offs

 	Availability requirements

 	Best effort

 	Maintenance windows

 	Quick recovery

 	Zero downtime

 	Site reliability engineering

 	Performance and data consistency

 	Summary

 	References

 	Securing Kubernetes

 	Understanding Kubernetes security challenges

 	Node challenges

 	Network challenges

 	Image challenges

 	Configuration and deployment challenges

 	Pod and container challenges

 	Organizational, cultural, and process challenges

 	Hardening Kubernetes

 	Understanding service accounts in Kubernetes

 	How does Kubernetes manage service accounts?

 	Accessing the API server

 	Authenticating users

 	Authorizing requests

 	Using admission control plugins

 	Securing pods

 	Using a private image repository

 	ImagePullSecrets

 	Specifying a security context

 	Protecting your cluster with AppArmor

 	Pod security policies

 	Authorizing pod security policies via RBAC

 	Managing network policies

 	Choosing a supported networking solution

 	Defining a network policy

 	Limiting egress to external networks

 	Cross-namespace policies

 	Using secrets

 	Storing secrets in Kubernetes

 	Configuring encryption at rest

 	Creating secrets

 	Decoding secrets

 	Using secrets in a container

 	Running a multi-user cluster

 	The case for a multi-user cluster

 	Using namespaces for safe multi-tenancy

 	Avoiding namespace pitfalls

 	Summary

 	References

 	Using Kubernetes Resources in Practice

 	Designing the Hue platform

 	Defining the scope of Hue

 	Smart reminders and notifications

 	Security, identity, and privacy

 	Hue components

 	Hue microservices

 	Planning workflows

 	Automatic workflows

 	Human workflows

 	Budget-aware workflows

 	Using Kubernetes to build the Hue platform

 	Using kubectl effectively

 	Understanding kubectl resource configuration files

 	ApiVersion

 	Kind

 	Metadata

 	Spec

 	Deploying long-running microservices in pods

 	Creating pods

 	Decorating pods with labels

 	Deploying long-running processes with deployments

 	Updating a deployment

 	Separating internal and external services

 	Deploying an internal service

 	Creating the Hue-reminders service

 	Exposing a service externally

 	Ingress

 	Advanced scheduling

 	Node selector

 	Taints and tolerations

 	Node affinity and anti-affinity

 	Pod affinity and anti-affinity

 	Using namespaces to limit access

 	Using kustomization for hierarchical cluster structures

 	Understanding the basics of kustomize

 	Configuring the directory structure

 	Applying kustomizations

 	Patching

 	Kustomizing the entire staging namespace

 	Launching jobs

 	Running jobs in parallel

 	Cleaning up completed jobs

 	Scheduling cron jobs

 	Mixing non-cluster components

 	Outside-the-cluster-network components

 	Inside-the-cluster-network components

 	Managing the Hue platform with Kubernetes

 	Using liveness probes to ensure your containers are alive

 	Using readiness probes to manage dependencies

 	Employing init containers for orderly pod bring-up

 	Pod readiness and readiness gates

 	Sharing with DaemonSet pods

 	Evolving the Hue platform with Kubernetes

 	Utilizing Hue in an enterprise

 	Advancing science with Hue

 	Educating the kids of the future with Hue

 	Summary

 	References

 	Managing Storage

 	Persistent volumes walkthrough

 	Volumes

 	Using emptyDir for intra-pod communication

 	Using HostPath for intra-node communication

 	Using local volumes for durable node storage

 	Provisioning persistent volumes

 	Provisioning persistent volumes externally

 	Creating persistent volumes

 	Capacity

 	Volume mode

 	Access modes

 	Reclaim policy

 	Storage class

 	Volume type

 	Mount options

 	Making persistent volume claims

 	Mounting claims as volumes

 	Raw block volumes

 	Storage classes

 	Default storage class

 	Demonstrating persistent volume storage end to end

 	Public cloud storage volume types – GCE, AWS, and Azure

 	Amazon EBS

 	Amazon EFS

 	GCE persistent disk

 	Azure data disk

 	Azure Files

 	GlusterFS and Ceph volumes in Kubernetes

 	Using GlusterFS

 	Creating endpoints

 	Adding a GlusterFS Kubernetes service

 	Creating pods

 	Using Ceph

 	Connecting to Ceph using RBD

 	Connecting to Ceph using CephFS

 	Flocker as a clustered container data volume manager

 	Integrating enterprise storage into Kubernetes

 	Rook – the new kid on the block

 	Projecting volumes

 	Using out-of-tree volume plugins with FlexVolume

 	The Container Storage Interface

 	Volume snapshotting and cloning

 	Volume snapshots

 	Volume cloning

 	Summary

 	Running Stateful Applications with Kubernetes

 	Stateful versus stateless applications in Kubernetes

 	Understanding the nature of distributed data-intensive apps

 	Why manage state in Kubernetes?

 	Why manage state outside of Kubernetes?

 	Shared environment variables versus DNS records for discovery

 	Accessing external data stores via DNS

 	Accessing external data stores via environment variables

 	Consuming a ConfigMap as an environment variable

 	Using a redundant in-memory state

 	Using DaemonSet for redundant persistent storage

 	Applying persistent volume claims

 	Utilizing StatefulSets

 	Running a Cassandra cluster in Kubernetes

 	Quick introduction to Cassandra

 	The Cassandra Docker image

 	Hooking up Kubernetes and Cassandra

 	Creating a Cassandra headless service

 	Using StatefulSets to create the Cassandra cluster

 	Summary

 	Deploying and Updating Applications

 	Horizontal pod autoscaling

 	Declaring an HPA

 	Custom metrics

 	Autoscaling with Kubectl

 	Performing rolling updates with autoscaling

 	Handling scarce resources with limits and quotas

 	Enabling resource quotas

 	Resource quota types

 	Compute resource quota

 	Storage resource quota

 	Object count quota

 	Quota scopes

 	Resource quotas and priority classes

 	Requests and limits

 	Working with quotas

 	Using namespace-specific context

 	Creating quotas

 	Using limit ranges for default compute quotas

 	Choosing and managing the cluster capacity

 	Choosing your node types

 	Choosing your storage solutions

 	Trading off cost and response time

 	Using multiple node configurations effectively

 	Benefiting from elastic cloud resources

 	Autoscaling instances

 	Mind your cloud quotas

 	Manage regions carefully

 	Considering container-native solutions

 	Pushing the envelope with Kubernetes

 	Improving the performance and scalability of Kubernetes

 	Caching reads in the API server

 	The pod lifecycle event generator

 	Serializing API objects with protocol buffers

 	etcd3

 	Other optimizations

 	Measuring the performance and scalability of Kubernetes

 	The Kubernetes SLOs

 	Measuring API responsiveness

 	Measuring end-to-end pod startup time

 	Testing Kubernetes at scale

 	Introducing the Kubemark tool

 	Setting up a Kubemark cluster

 	Comparing a Kubemark cluster to a real-world cluster

 	Summary

 	Packaging Applications

 	Understanding Helm

 	The motivation for Helm

 	The Helm 2 architecture

 	Helm 2 components

 	The Tiller server

 	The Helm client

 	Helm 3

 	Using Helm

 	Installing Helm

 	Installing the Helm client

 	Installing the Tiller server for Helm 2

 	Finding charts

 	Adding repositories

 	Installing packages

 	Checking the installation status

 	Customizing a chart

 	Additional installation options

 	Upgrading and rolling back a release

 	Deleting a release

 	Working with repositories

 	Managing charts with Helm

 	Taking advantage of starter packs

 	Creating your own charts

 	The Chart.yaml file

 	Versioning charts

 	The appVersion field

 	Deprecating charts

 	Chart metadata files

 	Managing chart dependencies

 	Managing dependencies with requirements.yaml

 	Utilizing special fields in requirements.yaml

 	Using templates and values

 	Writing template files

 	Testing and troubleshooting your charts

 	Embedding built-in objects

 	Feeding values from a file

 	Scope, dependencies, and values

 	Summary

 	Exploring Advanced Networking

 	Understanding the Kubernetes networking model

 	Intra-pod communication (container to container)

 	Inter-pod communication (pod to pod)

 	Pod-to-service communication

 	External access

 	Kubernetes networking versus Docker networking

 	Lookup and discovery

 	Self-registration

 	Services and endpoints

 	Loosely coupled connectivity with queues

 	Loosely coupled connectivity with data stores

 	Kubernetes ingress

 	Kubernetes network plugins

 	Basic Linux networking

 	IP addresses and ports

 	Network namespaces

 	Subnets, netmasks, and CIDRs

 	Virtual Ethernet devices

 	Bridges

 	Routing

 	Maximum transmission unit

 	Pod networking

 	Kubenet

 	Container networking interface

 	Kubernetes networking solutions

 	Bridging on bare metal clusters

 	Contiv

 	Open vSwitch

 	Nuage networks VCS

 	Flannel

 	Calico

 	Romana

 	Weave Net

 	Using network policies effectively

 	Understanding the Kubernetes network policy design

 	Network policies and CNI plugins

 	Configuring network policies

 	Implementing network policies

 	Load balancing options

 	External load balancer

 	Configuring an external load balancer

 	Finding the load balancer IP addresses

 	Preserving client IP addresses

 	Understanding even external load balancing

 	Service load balancing

 	Ingress

 	HAProxy

 	MetalLB

 	Keepalived VIP

 	Traefic

 	Writing your own CNI plugin

 	First look at the loopback plugin

 	Building on the CNI plugin skeleton

 	Reviewing the bridge plugin

 	Summary

 	Running Kubernetes on Multiple Clouds and Cluster Federation

 	The history of cluster federation on Kubernetes

 	Understanding cluster federation

 	Important use cases for cluster federation

 	Capacity overflow

 	Sensitive workloads

 	Avoiding vendor lock-in

 	Geo-distributing high availability

 	Learning the basics of Kubernetes federation

 	Defining basic concepts

 	Federation building blocks

 	Federation features

 	The KubeFed control plane

 	The federation API server

 	The federation controller manager

 	The hard parts

 	Federated unit of work

 	Location affinity

 	Cross-cluster scheduling

 	Federated data access

 	Federated auto-scaling

 	Managing a Kubernetes Cluster Federation

 	Installing kubefedctl

 	Creating clusters

 	Configuring the Host Cluster

 	Registering clusters with the federation

 	Working with federated API types

 	Federating resources

 	Federating an entire namespace

 	Checking the status of federated resources

 	Using overrides

 	Using placement to control federation

 	Debugging propagation failures

 	Employing higher-order behavior

 	Utilizing multi-cluster Ingress DNS

 	Utilizing multi-cluster Service DNS

 	Utilizing multi-cluster scheduling

 	Introducing the Gardener project

 	Understanding the terminology of Gardener

 	Understanding the conceptual model of Gardener

 	Diving into the Gardener architecture

 	Managing cluster state

 	Managing the control plane

 	Preparing the infrastructure

 	Using the Machine controller manager

 	Networking across clusters

 	Monitoring clusters

 	The gardenctl CLI

 	Extending Gardener

 	Gardener ring

 	Summary

 	Serverless Computing on Kubernetes

 	Understanding serverless computing

 	Running long-running services on "serverless" infrastructure

 	Running FaaS on "serverless" infrastructure

 	Serverless Kubernetes in the cloud

 	Don't forget the cluster autoscaler

 	Azure AKS and Azure Container Instances

 	AWS EKS and Fargate

 	Google Cloud Run

 	Knative

 	Knative Serving

 	The Knative Service object

 	The Knative Route object

 	The Knative Configuration object

 	The Knative Revision object

 	Knative Eventing

 	Getting familiar with Knative Eventing terminology

 	The architecture of Knative Eventing

 	Taking Knative for a ride

 	Installing Knative

 	Deploying a Knative service

 	Invoking a Knative service

 	Checking the scale-to-zero option in Knative

 	Kubernetes FaaS frameworks

 	Fission

 	Fission Workflows

 	Experimenting with Fission

 	Kubeless

 	Kubeless architecture

 	Playing with Kubeless

 	Using the Kubeless UI

 	Kubeless with the serverless framework

 	Knative and riff

 	Understanding riff runtimes

 	Installing riff with Helm 2

 	Summary

 	Monitoring Kubernetes Clusters

 	Understanding observability

 	Logging

 	Log format

 	Log storage

 	Log aggregation

 	Metrics

 	Distributed tracing

 	Application error reporting

 	Dashboards and visualization

 	Alerting

 	Logging with Kubernetes

 	Container logs

 	Kubernetes component logs

 	Centralized logging

 	Choosing a log collection strategy

 	Cluster-level central logging

 	Remote central logging

 	Dealing with sensitive log information

 	Using Fluentd for log collection

 	Collecting metrics with Kubernetes

 	Monitoring with the metrics server

 	Exploring your cluster with the Kubernetes dashboard

 	The rise of Prometheus

 	Installing Prometheus

 	Interacting with Prometheus

 	Incorporating kube-state-metrics

 	Utilizing the node exporter

 	Incorporating custom metrics

 	Alerting with Alertmanager

 	Visualizing your metrics with Grafana

 	Considering Loki

 	Distributed tracing with Jaeger

 	What is OpenTracing?

 	OpenTracing concepts

 	Introducing Jaeger

 	Jaeger architecture

 	Installing Jaeger

 	Troubleshooting problems

 	Taking advantage of staging environments

 	Detecting problems at the node level

 	Problem daemons

 	Dashboards versus alerts

 	Logs versus metrics versus error reports

 	Detecting performance and root cause with distributed tracing

 	Summary

 	Utilizing Service Meshes

 	What is a service mesh?

 	Control plane and data plane

 	Choosing a service mesh

 	Envoy

 	Linkerd 2

 	Kuma

 	AWS App Mesh

 	Maesh

 	Istio

 	Incorporating Istio into your Kubernetes cluster

 	Understanding the Istio architecture

 	Envoy

 	Pilot

 	Mixer

 	Citadel

 	Galley

 	Preparing a minikube cluster for Istio

 	Installing Istio

 	Installing Bookinfo

 	Traffic management

 	Security

 	Istio identity

 	Istio PKI

 	Istio authentication

 	Istio authorization

 	Policies

 	Monitoring and observability

 	Logs

 	Metrics

 	Distributed tracing

 	Visualizing your service mesh with Kiali

 	Summary

 	Extending Kubernetes

 	Working with the Kubernetes API

 	Understanding OpenAPI

 	Setting up a proxy

 	Exploring the Kubernetes API directly

 	Using Postman to explore the Kubernetes API

 	Filtering the output with HTTPie and jq

 	Creating a pod via the Kubernetes API

 	Accessing the Kubernetes API via the Python client

 	Dissecting the CoreV1API group

 	Listing objects

 	Creating objects

 	Watching objects

 	Invoking Kubectl programmatically

 	Using Python subprocesses to run Kubectl

 	Extending the Kubernetes API

 	Understanding Kubernetes extension points and patterns

 	Extending Kubernetes with plugins

 	Extending Kubernetes with the cloud controller manager

 	Extending Kubernetes with webhooks

 	Extending Kubernetes with controllers and operators

 	Extending Kubernetes scheduling

 	Extending Kubernetes with custom container runtimes

 	Introducing custom resources

 	Developing custom resource definitions

 	Integrating custom resources

 	Dealing with unknown fields

 	Finalizing custom resources

 	Adding custom printer columns

 	Understanding API server aggregation

 	Utilizing the service catalog

 	Writing Kubernetes plugins

 	Writing a custom scheduler

 	Understanding the design of the Kubernetes scheduler

 	Scheduling pods manually

 	Preparing our own scheduler

 	Assigning pods to the custom scheduler

 	Verifying that the pods were scheduled using the correct scheduler

 	Writing Kubectl plugins

 	Understanding Kubectl plugins

 	Managing Kubectl plugins with Krew

 	Creating your own Kubectl plugin

 	Kubectl plugin gotchas

 	Don't forget your shebangs!

 	Naming

 	Overriding existing Kubectl commands

 	Flat namespace for Krew plugins

 	Employing access control webhooks

 	Using an authentication webhook

 	Using an authorization webhook

 	Using an admission control webhook

 	Configuring a webhook admission controller on the fly

 	Providing custom metrics for horizontal pod autoscaling

 	Extending Kubernetes with custom storage

 	Summary

 	The Future of Kubernetes

 	The Kubernetes momentum

 	The importance of the CNCF

 	Project curation

 	Certification

 	Training

 	Community and education

 	Tooling

 	The rise of managed Kubernetes platforms

 	Public cloud Kubernetes platforms

 	Bare-metal, private clouds, and Kubernetes on the edge

 	Kubernetes Platform as a Service (PaaS)

 	Upcoming trends

 	Security

 	Networking

 	Custom hardware and devices

 	Service mesh

 	Serverless computing

 	Kubernetes on the Edge

 	Native CI/CD

 	Operators

 	Summary

 	References

 	Other Books You May Enjoy

 	Index

 Preface

 Kubernetes is an open source system that automates the deployment, scaling, and management of containerized applications. If you are running more than just a few containers or want to automate the management of your containers, you need Kubernetes. This book focuses on guiding you through the advanced management of Kubernetes clusters.

 The book begins by explaining the fundamentals behind Kubernetes' architecture and covers Kubernetes' design in detail. You will discover how to run complex stateful microservices on Kubernetes, including such advanced features as horizontal pod autoscaling, rolling updates, resource quotas, and persistent storage backends. Using real-world use cases, you will explore the options for network configuration and understand how to set up, operate, secure, and troubleshoot Kubernetes clusters. Finally, you will learn about advanced topics such as custom resources, API aggregation, service meshes, and serverless computing. All the content is up to date and complies with Kubernetes 1.18. By the end of this book, you'll know everything you need to know to go from intermediate to advanced level.

 Who this book is for

 The book is for system administrators and developers who have intermediate-level knowledge about Kubernetes and are now waiting to master its advanced features. You should also have basic networking knowledge. This advanced-level book provides a pathway to master Kubernetes.

 What this book covers

 Chapter 1, Understanding Kubernetes Architecture, in this chapter, we will build together the foundation necessary to utilize Kubernetes to its full potential. We will start by understanding what Kubernetes is, what Kubernetes isn't, and what container orchestration means exactly. Then we will cover important Kubernetes concepts that will form the vocabulary we will use throughout the book.

 Chapter 2, Creating Kubernetes Clusters, in this chapter, we will roll up our sleeves and build some Kubernetes clusters using minikube, KinD, and k3d. We will discuss and evaluate other tools such as Kubeadm, Kube-spray, bootkube, and stackube. We will also look into deployment environments such as local, cloud, and bare metal.

 Chapter 3, High Availability and Reliability, in this chapter, we will dive into the topic of highly available clusters. This is a complicated topic. The Kubernetes project and the community haven't settled on one true way to achieve high-availability nirvana. There are many aspects to highly available Kubernetes clusters, such as ensuring that the control plane can keep functioning in the face of failures, protecting the cluster state in etcd, protecting the system's data, and recovering capacity and/or performance quickly. Different systems will have different reliability and availability requirements.

 Chapter 4, Securing Kubernetes, in this chapter, we will explore the important topic of security. Kubernetes clusters are complicated systems composed of multiple layers of interacting components. Isolation and compartmentalization of different layers is very important when running critical applications. To secure the system and ensure proper access to resources, capabilities, and data, we must first understand the unique challenges facing Kubernetes as a general-purpose orchestration platform that runs unknown workloads. Then we can take advantage of various securities, isolation, and access control mechanisms to make sure the cluster, the applications running on it, and the data are all safe. We will discuss various best practices and when it is appropriate to use each mechanism.

 Chapter 5, Using Kubernetes Resources in Practice, in this chapter, we will design a fictional massive-scale platform that will challenge Kubernetes' capabilities and scalability. The Hue platform is all about creating an omniscient and omnipotent digital assistant. Hue is a digital extension of you. Hue will help you do anything, find anything, and, in many cases will do a lot on your behalf. It will obviously need to store a lot information, integrate with many external services, respond to notifications and events, and be smart about interacting with you.

 Chapter 6, Managing Storage, in this chapter, we'll look at how Kubernetes manages storage. Storage is very different from compute, but at a high level they are both resources. Kubernetes as a generic platform takes the approach of abstracting storage behind a programming model and a set of plugins for storage providers.

 Chapter 7, Running Stateful Applications with Kubernetes, in this chapter, we will learn how to run stateful applications on Kubernetes. Kubernetes takes a lot of work out of our hands by automatically starting and restarting pods across the cluster nodes as needed, based on complex requirements and configurations such as namespaces, limits, and quotas. But when pods run storage-aware software, such as databases and queues, relocating a pod can cause the system to break.

 Chapter 8, Deploying and Updating Applications, in this chapter, we will explore the automated pod scalability that Kubernetes provides, how it affects rolling updates, and how it interacts with quotas. We will touch on the important topic of provisioning and how to choose and manage the size of the cluster. Finally, we will go over how the Kubernetes team improved the performance of Kubernetes and how they test the limits of Kubernetes with the Kubemark tool.

 Chapter 9, Packaging Applications, in this chapter, we are going to look into Helm, the Kubernetes package manager. Every successful and non-trivial platform must have a good packaging system. Helm was developed by Deis (acquired by Microsoft on April 4, 2017) and later contributed to the Kubernetes project directly. It became a CNCF project in 2018. We will start by understanding the motivation for Helm, its architecture, and its components.

 Chapter 10, Exploring Advanced Networking, in this chapter, we will examine the important topic of networking. Kubernetes as an orchestration platform manages containers/pods running on different machines (physical or virtual) and requires an explicit networking model.

 Chapter 11, Running Kubernetes on Multiple Clouds and Cluster Federation, in this chapter, we'll take it to the next level, with running Kubernetes on multiple clouds, multiple clusters, and cluster federation. A Kubernetes cluster is a closely-knit unit where all the components run in relative proximity and are connected by a fast network (typically a physical data center or cloud provider availability zone). This is great for many use cases, but there are several important use cases where systems need to scale beyond a single cluster.

 Chapter 12, Serverless Computing on Kubernetes, in this chapter, we will explore the fascinating world of serverless computing in the cloud. The term "serverless" is getting a lot of attention, but it is a misnomer used to describe two different paradigms. A true serverless application runs as a web application in the user's browser or a mobile app and only interacts with external services. The types of serverless systems we build on Kubernetes are different.

 Chapter 13, Monitoring Kubernetes Clusters, in this chapter, we're going to talk about how to make sure your systems are up and running and performing correctly and how to respond when they aren't. In Chapter 3, High Availability and Reliability, we discussed related topics. The focus here is about knowing what's going on in your system and what practices and tools you can use.

 Chapter 14, Utilizing Service Meshes, in this chapter, we will learn how service meshes allow you to externalize cross-cutting concerns like monitoring and observability from the application code. The service mesh is a true paradigm shift in the way you can design, evolve, and operate distributed systems on Kubernetes. I like to think of it as aspect-oriented programming for cloud-native distributed systems.

 Chapter 15, Extending Kubernetes, in this chapter, we will dig deep into the guts of Kubernetes. We will start with the Kubernetes API and learn how to work with Kubernetes programmatically via direct access to the API, the Python client, and automating Kubectl. Then, we'll look into extending the Kubernetes API with custom resources. The last part is all about the various plugins Kubernetes supports. Many aspects of Kubernetes operation are modular and designed for extension. We will examine the API aggregation layer and several types of plugins, such as custom schedulers, authorization, admission control, custom metrics, and volumes. Finally, we'll look into extending Kubectl and adding your own commands.

 Chapter 16, The Future of Kubernetes, in this chapter, we'll look at the future of Kubernetes from multiple angles. We'll start with the momentum of Kubernetes since its inception, across dimensions such as community, ecosystem, and mindshare. Spoiler alert: Kubernetes won the container orchestration wars by a land slide. As Kubernetes grows and matures, the battle lines shift from beating competitors to fighting against its own complexity. Usability, tooling, and education will play a major role as container orchestration is still new, fast-moving, and not a well-understood domain. Then we will take a look at some very interesting patterns and trends, and finally, we will review my predictions from the 2nd edition and I will make some new predictions.

 To get the most out of this book

 To follow the examples in each chapter, you need a recent version of Docker and Kubernetes installed on your machine, ideally Kubernetes 1.18. If your operating system is Windows 10 Professional, you can enable hypervisor mode; otherwise, you will need to install VirtualBox and use a Linux guest OS. If you use macOS then you're good to go.

 Download the example code files

 You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you.

 You can download the code files by following these steps:

 	Log in or register at http://www.packtpub.com.

 	Select the SUPPORT tab.

 	Click on Code Downloads & Errata.

 	Enter the name of the book in the Search box and follow the on-screen instructions.

 Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

 	WinRAR / 7-Zip for Windows

 	Zipeg / iZip / UnRarX for macOS

 	7-Zip / PeaZip for Linux

 The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Mastering-Kubernetes-Third-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781839211256_ColorImages.pdf.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: If you chose HyperKit instead of VirtualBox, you need to add the flag --vm-driver=hyperkit when starting the cluster.

 A block of code is set as follows:

 apiVersion: "etcd.database.coreos.com/v1beta2"
kind: "EtcdCluster"
metadata:
 name: "example-etcd-cluster"
spec:
 size: 3
 version: "3.2.13"

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 apiVersion: "etcd.database.coreos.com/v1beta2"
kind: "EtcdCluster"
metadata:
 name: "example-etcd-cluster"
spec:
 size: 3
 version: "3.2.13"

 Any command-line input or output is written as follows:

 $ k get pods
NAME READY STATUS RESTARTS AGE
echo-855975f9c-r6kj8 1/1 Running 0 2m11s

 Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example: "Select System info from the Administration panel."

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com, and mention the book's title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book we would be grateful if you would report this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Reviews

 Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

 For more information about Packt, please visit packtpub.com.

 1

 Understanding Kubernetes Architecture

 In one sentence, Kubernetes is a platform to orchestrate the deployment, scaling, and management of container-based applications. You have probably read about Kubernetes, and maybe even dipped your toes in and used it in a side project or maybe even at work. But to understand what Kubernetes is all about, how to use it effectively, and what the best practices are requires much more.

 Kubernetes is a big open source project and ecosystem with a lot of code and a lot of functionality. Kubernetes came out of Google, but joined the Cloud Native Computing Foundation (CNCF) and became the clear leader in the space of container-based applications.

 In this chapter, we will build the foundation necessary to utilize Kubernetes to its full potential. We will start by understanding what Kubernetes is, what Kubernetes isn't, and what container orchestration means exactly. Then we will cover important Kubernetes concepts that will form the vocabulary we will use throughout the book. After that, we will dive into the architecture of Kubernetes proper and look at how it enables all the capabilities it provides for its users. Then, we will discuss the various runtimes and container engines that Kubernetes supports (Docker is just one option), and finally, we will discuss the role of Kubernetes in the full continuous integration and deployment pipeline.

 At the end of this chapter, you will have a solid understanding of container orchestration, what problems Kubernetes addresses, the rationale of Kubernetes design and architecture, and the different runtimes it supports. You'll also be familiar with the overall structure of the open source repository and be ready to jump in and find answers to any questions.

 What is Kubernetes?

 Kubernetes is a platform that encompasses a huge number of services and capabilities that keeps growing. The core functionality is scheduling workloads in containers across your infrastructure, but it doesn't stop there. Here are some of the other capabilities Kubernetes brings to the table:

 	Mounting storage systems

 	Distributing secrets

 	Checking application health and readiness

 	Replicating application instances

 	Using the Horizontal Pod Autoscaler

 	Using Cluster Autoscaling

 	Naming and service discovery

 	Balancing loads

 	Rolling updates

 	Monitoring resources

 	Accessing and ingesting logs

 	Debugging applications

 	Providing authentication and authorization

 We will cover all these capabilities in great detail throughout the book. At this point, just absorb and appreciate how much value Kubernetes can add to your system.

 Kubernetes has impressive scope, but it is also important to understand what Kubernetes explicitly doesn't provide.

 What Kubernetes is not

 Kubernetes is not a Platform as a Service (PaaS). It doesn't dictate many important aspects that are left to you or to other systems built on top of Kubernetes, such as Deis, OpenShift, and Eldarion; for example:

 	Kubernetes doesn't require a specific application type or framework

 	Kubernetes doesn't require a specific programming language

 	Kubernetes doesn't provide databases or message queues

 	Kubernetes doesn't distinguish apps from services

 	Kubernetes doesn't have a click-to-deploy service marketplace

 	Kubernetes doesn't provide a built-in function as a service solution

 	Kubernetes doesn't mandate a logging, monitoring, and alerting system

 Now that we have a clear idea about the boundaries of Kubernetes, let's dive into its primary responsibility – container orchestration.

 Understanding container orchestration

 The primary responsibility of Kubernetes is container orchestration. That means making sure that all the containers that execute various workloads are scheduled to run on physical or virtual machines. The containers must be packed efficiently following the constraints of the deployment environment and the cluster configuration. In addition, Kubernetes must keep an eye on all running containers and replace dead, unresponsive, or otherwise unhealthy containers. Kubernetes provides many more capabilities, which you will learn about in the following chapters. In this section, the focus is on containers and their orchestration.

 Physical machines, virtual machines, and containers

 It all starts and ends with hardware. In order to run your workloads, you need some real hardware provisioned. That includes actual physical machines with certain compute capabilities (CPUs or cores), memory, and some local persistent storage (spinning disks or SSDs). In addition, you will need some shared persistent storage and to hook up all these machines using networking, so they can find and talk to each other. At this point, you run multiple virtual machines on the physical machines or stay at the bare-metal level (real hardware only – no virtual machines). Kubernetes can be deployed on a bare-metal cluster or on a cluster of virtual machines. Kubernetes, in turn, can orchestrate the containers it manages directly on bare metal or on virtual machines. In theory, a Kubernetes cluster can be composed of a mix of bare-metal and virtual machines, but this is not very common.

 The benefits of containers

 Containers represent a true paradigm shift in the development and operation of large, complicated software systems. Here are some of the benefits compared to more traditional models:

 	Agile application creation and deployment

 	Continuous development, integration, and deployment

 	Dev and Ops separation of concerns

 	Environmental consistency across development, testing, staging, and production

 	Cloud and OS distribution portability

 	Application-centric management (dependencies are packaged with the application)

 	Resource isolation (container CPU and memory can be limited)

 	Resource utilization (multiple containers can be deployed on the same node)

 The benefits of container-based development and deployment are significant in many contexts, but are particularly significant if you deploy your system to the cloud.

 Containers in the cloud

 Containers are ideal to package microservices because while providing isolation to the microservice, they are very lightweight and you don't incur a lot of overhead when deploying many microservices as you do with virtual machines. That makes containers ideal for cloud deployment, where allocating a whole virtual machine for each microservice would be cost-prohibitive.

 All major cloud providers, such as Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft's Azure, provide container hosting services these days. Many other companies have jumped on the Kubernetes wagon and offer managed Kubernetes services, including:

 	IBM IKS

 	Alibaba Cloud

 	DigitalOcean DKS

 	Oracle OKS

 	OVH Managed Kubernetes

 	Rackspace KaaS

 The Google Kubernetes Engine (GKE) was always based on Kubernetes. Amazon's Elastic Kubernetes Service (EKS) was added in addition to the proprietary AWS ECS orchestration solution. Microsoft Azure's container service used to be based on Apache Mesos but later switched to Kubernetes with Azure Kubernetes Service (AKS). You could always deploy Kubernetes on all the cloud platforms, but it wasn't deeply integrated with other services. However, at the end of 2017, all cloud providers announced direct support for Kubernetes. Microsoft's launched AKS, AWS released EKS, and Alibaba Cloud started working on a Kubernetes controller manager to integrate Kubernetes seamlessly.

 Cattle versus pets

 In the olden days, when systems were small, each server had a name. Developers and users knew exactly what software was running on each machine. I remember that, in many of the companies I worked for, we had multi-day discussions to decide on a naming theme for our servers. For example, composers and Greek mythology characters were popular choices. Everything was very cozy. You treated your servers like beloved pets. When a server died it was a major crisis. Everybody scrambled to try to figure out where to get another server, what was even running on the dead server, and how to get it working on the new server. If the server stored some important data, then hopefully you had an up-to-date backup and maybe you'd even be able to recover it.

 Obviously, that approach doesn't scale. When you have tens or hundreds of servers, you must start treating them like cattle. You think about the collective and not individuals. You may still have some pets like your CI/CD machines (although managed CI/CD solutions are becoming more common), but your web servers and backend services are just cattle.

 Kubernetes takes the cattle approach to the extreme and takes full responsibility for allocating containers to specific machines. You don't need to interact with individual machines (nodes) most of the time. This works best for stateless workloads. For stateful applications, the situation is a little different, but Kubernetes provides a solution called StatefulSet, which we'll discuss soon.

 In this section, we covered the idea of container orchestration and discussed the relationships between hosts (physical or virtual) and containers, as well as the benefits of running containers in the cloud, and finished with a discussion about cattle versus pets. In the following section, we will get to know the world of Kubernetes and learn its concepts and terminology.

 Kubernetes concepts

 In this section, I'll briefly introduce many important Kubernetes concepts and give you some context as to why they are needed and how they interact with other concepts. The goal is to get familiar with these terms and concepts. Later, we'll see how these concepts are woven together and organized into API groups and resource categories to achieve awesomeness. You can consider many of these concepts as building blocks. Some of the concepts, such as nodes and masters, are implemented as a set of Kubernetes components. These components are at a different abstraction level, and I discuss them in detail in a dedicated section later in this chapter – Kubernetes components.

 Here is the famous Kubernetes architecture diagram:

 [image:]
 Figure 1.1: Kubernetes architecture diagram

 Clusters

 A cluster is a collection of hosts (nodes) that provide compute, memory, storage, and networking resources. Kubernetes uses these resources to run the various workloads that comprise your system. Note that your entire system may consist of multiple clusters. We will discuss this advanced use case of federation in detail in Chapter 11, Running Kubernetes on Multiple Clouds and Cluster Federation.

 Nodes

 A node is a single host. It may be a physical or virtual machine. Its job is to run pods. Each Kubernetes node runs several Kubernetes components, such as the kubelet, the container runtime, and kube-proxy. Nodes are managed by a Kubernetes master. The nodes are the worker bees of Kubernetes and shoulder all the heavy lifting. In the past, they were called minions. If you read some old documentation or articles, don't get confused. Minions are just nodes.

 The master

 The master is the control plane of Kubernetes. It consists of several components, such as an API server, a scheduler, and a controller manager. The master is responsible for the global state of the cluster, cluster-level scheduling of pods, and handling of events. Usually, all the master components are set up on a single host. When considering high-availability scenarios or very large clusters, you will want to have master redundancy. We will discuss highly available clusters in detail in Chapter 4, Securing Kubernetes.

 Pods

 A pod is the unit of work in Kubernetes. Each pod contains one or more containers. Containers in pods are always scheduled together (always run on the same machine). All the containers in a pod have the same IP address and port space; they can communicate using localhost or standard inter-process communication. In addition, all the containers in a pod can have access to shared local storage on the node hosting the pod. Containers don't get access to local storage or any other storage by default. Volumes of storage must be mounted into each container inside the pod explicitly. Pods are an important feature of Kubernetes. It is possible to run multiple applications inside a single Docker container by having something like supervisord as the main Docker process that runs multiple processes, but this practice is often frowned upon for the following reasons:

 	Transparency: Making the containers within the pod visible to the infrastructure enables the infrastructure to provide services to those containers, such as process management and resource monitoring. This facilitates a number of conveniences for users.

 	Decoupling software dependencies: The individual containers may be versioned, rebuilt, and redeployed independently. Kubernetes may even support live updates of individual containers someday.

 	Ease of use: Users don't need to run their own process managers, worry about signal and exit-code propagation, and so on.

 	Efficiency: Because the infrastructure takes on more responsibility, containers can be more lightweight.

 Pods provide a great solution for managing groups of closely related containers that depend on each other and need to co-operate on the same host to accomplish their purpose. It's important to remember that pods are considered ephemeral, throwaway entities that can be discarded and replaced at will. Any pod storage is destroyed with its pod. Each pod gets a unique ID (UID), so you can still distinguish between them if necessary.

 Labels

 Labels are key-value pairs that are used to group together sets of objects – very often pods. This is important for several other concepts, such as replication controllers, replica sets, deployments, and services that operate on dynamic groups of objects and need to identify the members of the group. There is an N × N relationship between objects and labels. Each object may have multiple labels, and each label may be applied to different objects. There are certain restrictions on labels by design. Each label on an object must have a unique key. The label key must adhere to a strict syntax. It has two parts: prefix and name. The prefix is optional. If it exists then it is separated from the name by a forward slash (/) and it must be a valid DNS sub-domain. The prefix must be 253 characters long at most. The name is mandatory and must be 63 characters long at most. Names must start and end with an alphanumeric character (a-z, A-Z, 0-9) and contain only alphanumeric characters, dots, dashes, and underscores. Values follow the same restrictions as names. Note that labels are dedicated to identifying objects and not for attaching arbitrary metadata to objects. This is what annotations are for.

 Annotations

 Annotations let you associate arbitrary metadata with Kubernetes objects. Kubernetes just stores the annotations and makes their metadata available. Annotations, like labels, are key-value pairs where the key may have an optional prefix and is separated from the key name by a forward slash (/). The name and prefix (if provided) must follow strict rules. For details, check out https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/#syntax-and-character-set.

 In my experience, you always need such metadata for complicated systems, and it's nice that Kubernetes recognizes this need and provides it out of the box so you don't have to come up with your own separate metadata store and mapping object for their metadata. While annotations are useful, their lack of structure can pose some problems when trying to process annotations in a generic way. Custom resource definitions are often touted as an alternative. We'll cover those later, in Chapter 15, Extending Kubernetes.

 Label selectors

 Label selectors are used to select objects based on their labels. Equality-based selectors specify a key name and a value. There are two operators, = (or ==) and !=, for equality or inequality based on the value; for example:

 role = webserver

 This will select all objects that have that label key and value.

 Label selectors can have multiple requirements separated by a comma; for example:

 role = webserver, application != foo

 Set-based selectors extend the capabilities, and allow selection based on multiple values:

 role in (webserver, backend)

 Services

 Services are used to expose some functionality to users or other services. They usually encompass a group of pods, usually identified by – you guessed it – a label. You can have services that provide access to external resources, or to pods you control directly at the virtual IP level. Native Kubernetes services are exposed through convenient endpoints. Note that services operate at layer 3 (TCP/UDP). Kubernetes 1.2 added the Ingress object, which provides access to HTTP objects. More on that later. Services are published or discovered via one of two mechanisms: DNS or environment variables. Services can be load-balanced by Kubernetes. However, developers can choose to manage load balancing themselves in the case of services that use external resources or require special treatment.

 There are many gory details associated with IP addresses, virtual IP addresses, and port spaces. We will discuss them in depth in Chapter 10, Exploring Advanced Networking.

 Volume

 Local storage on the pod is ephemeral and goes away with the pod. Sometimes that's all you need if the goal is just to exchange data between containers of the node, but sometimes it's important for the data to outlive the pod, or it's necessary to share data between pods. The volume concept supports that need. Note that, while Docker has a volume concept too, it's quite limited (although getting more powerful). Kubernetes uses its own separate volumes. Kubernetes also supports additional container runtimes, so it can't rely on Docker volumes even in principle.

 There are many volume types. Kubernetes currently directly supports many volume types, but the modern approach to extending Kubernetes with more volume types is through the Container Storage Interface (CSI), which we'll discuss in detail later. The built-in volume types will be gradually phased out in favor of out-of-tree plugins available through the CSI.

 Replication controllers and replica sets

 Replication controllers and replica sets both manage a group of pods identified by a label selector and ensure that a certain number are always up and running. The main difference between them is that replication controllers test for membership by name equality and replica sets can use set-based selection. Replica sets are the way to go as they are a superset of replication controllers. I expect replication controllers to be deprecated at some point. Kubernetes guarantees that you will always have the same number of pods running as you specified in a replication controller or a replica set. Whenever the number drops due to a problem with the hosting node or the pod itself, Kubernetes will fire up new instances. Note that, if you manually start pods and exceed the specified number, the replica set controller will kill some extra pods.

 Replication controllers used to be central to many workflows, such as rolling updates and running one-off jobs. As Kubernetes evolved, it introduced direct support for many of these workflows, with dedicated objects such as Deployment, Job, CronJob, and DaemonSet. We will meet them all later.

 StatefulSet

 Pods come and go, and if you care about their data then you can use persistent storage. That's all good. But sometimes you want Kubernetes to manage a distributed data store such as Cassandra or MySQL Galera. These clustered stores keep the data distributed across uniquely identified nodes. You can't model that with regular pods and services. Enter StatefulSet. If you remember, earlier we discussed pets versus cattle and how the cattle mindset is the way to go.

 Well, StatefulSet sits somewhere in the middle. StatefulSet ensures (similar to a replication set) that a given number of instances with unique identities are running at any given time. StatefulSet members have the following properties:

 	A stable hostname, available in DNS

 	An ordinal index

 	Stable storage linked to the ordinal and hostname

 StatefulSet can help with peer discovery as well as adding or removing members safely.

 Secrets

 Secrets are small objects that contain sensitive info such as credentials and tokens. They are stored by default as plaintext in etcd, accessible by the Kubernetes API server, and can be mounted as files in pods (using dedicated secret volumes that piggyback on regular data volumes) that need access to them. The same secret can be mounted in multiple pods. Kubernetes itself creates secrets for its components, and you can create your own secrets. Another approach is to use secrets as environment variables. Note that secrets in a pod are always stored in memory (tmpfs in the case of mounted secrets) for better security.

 Names

 Each object in Kubernetes is identified by a UID and a name. The name is used to refer to the object in API calls. Names should be up to 253 characters long and use lowercase alphanumeric characters, a dash (-), and a dot (.). If you delete an object, you can create another object with the same name as the deleted object, but the UIDs must be unique across the lifetime of the cluster. The UIDs are generated by Kubernetes, so you don't have to worry about it.

 Namespaces

 A namespace is a kind of virtual cluster. You can have a single physical cluster that contains multiple virtual clusters segregated by namespaces. By default, pods in one namespace can access pods and services in other namespaces. In multi-tenancy scenarios where it's important to totally isolate namespaces, you can do it with proper network policies. Note that node objects and persistent volumes don't live in a namespace. Kubernetes may schedule pods from different namespaces to run on the same node. Likewise, pods from different namespaces can use the same persistent storage.

 When using namespaces, you have to consider network policies and resource quotas to ensure proper access and distribution of the physical cluster resources.

 We've covered most of Kubernetes' primary concepts; there are a few more I mentioned briefly. In the next section, we will continue our journey into Kubernetes architecture by looking into its design motivations, the internals and implementation, and we'll even pick at the source code.

 Diving into Kubernetes architecture in depth

 Kubernetes has very ambitious goals. It aims to manage and simplify the orchestration, deployment, and management of distributed systems across a wide range of environments and cloud providers. It provides many capabilities and services that should work across all that diversity while evolving and remaining simple enough for mere mortals to use. This is a tall order. Kubernetes achieves this by following a crystal-clear, high-level design and well-thought-out architecture that promotes extensibility and pluggability. Many parts of Kubernetes are still hardcoded or environment-aware, but the trend is to refactor them into plugins and keep the core small, generic, and abstract. In this section, we will peel Kubernetes like an onion, starting with various distributed system design patterns and how Kubernetes supports them, then go over the surface of Kubernetes, which is its set of APIs, and then take a look at the actual components that comprise Kubernetes. Finally, we will take a quick tour of the source-code tree to gain an even better insight into the structure of Kubernetes itself.

 At the end of this section, you will have a solid understanding of Kubernetes architecture and implementation, and why certain design decisions were made.

 Distributed system design patterns

 All happy (working) distributed systems are alike, to paraphrase Tolstoy in Anna Karenina. That means that to function properly, all well-designed distributed systems must follow some best practices and principles. Kubernetes doesn't want to be just a management system; it wants to support and enable these best practices and provide high-level services to developers and administrators. Let's look at some of those best practices, described as design patterns.

 The sidecar pattern

 The sidecar pattern is about co-locating another container in a pod in addition to the main application container. The application container is unaware of the sidecar container and just goes about its business. A great example is a central logging agent. Your main container can just log to stdout, but the sidecar container will send all logs to a central logging service where they will be aggregated with the logs from the entire system. The benefits of using a sidecar container versus adding central logging to the main application container are enormous. First, applications are not burdened anymore with central logging, which could be a nuisance. If you want to upgrade or change your central logging policy or switch to a totally new provider, you just need to update the sidecar container and deploy it. None of your application containers change, so you can't break them by accident. The Istio service mesh uses the sidecar pattern to inject its proxies into each pod.

 The ambassador pattern

 The ambassador pattern is about representing a remote service as if it were local and possibly enforcing some policy. A good example of the ambassador pattern is if you have a Redis cluster with one master for writes and many replicas for reads. A local ambassador container can serve as a proxy and expose Redis to the main application container on the localhost. The main application container simply connects to Redis on localhost:6379 (Redis default port), but it connects to the ambassador running in the same pod, which filters the requests, and sends write requests to the real Redis master and read requests randomly to one of the read replicas. Just like with the sidecar pattern, the main application has no idea what's going on. That can help a lot when testing against a real local Redis. Also, if the Redis cluster configuration changes, only the ambassador needs to be modified; the main application remains blissfully unaware.

 The adapter pattern

 The adapter pattern is about standardizing output from the main application container. Consider the case of a service that is being rolled out incrementally: it may generate reports in a format that doesn't conform to the previous version. Other services and applications that consume that output haven't been upgraded yet. An adapter container can be deployed in the same pod with the new application container and massage the output to match the old version until all consumers have been upgraded. The adapter container shares the filesystem with the main application container, so it can watch the local filesystem, and whenever the new application writes something, it immediately adapts it.

 Multi-node patterns

 Single-node patterns are all supported directly by Kubernetes via pods. Multi-node patterns such as leader election, work queues, and scatter-gather are not supported directly, but composing pods with standard interfaces to accomplish them is a viable approach with Kubernetes.

 Many tools, frameworks, and add-ons that integrate deeply with Kubernetes utilize these design patterns. The beauty of these patterns is that they are all loosely coupled and don't require Kubernetes to be modified or even be aware of the presence of these integrations. The vibrant ecosystem around Kubernetes is a direct result of its architecture. Let's dig one level deeper and get familiar with the Kubernetes APIs.

 The Kubernetes APIs

 If you want to understand the capabilities of a system and what it provides, you must pay a lot of attention to its API. The API provides a comprehensive view of what you can do with the system as a user. Kubernetes exposes several sets of REST APIs for different purposes and audiences via API groups. Some of the APIs are used primarily by tools and some can be used directly by developers. An important aspect of the APIs is that they are under constant development. The Kubernetes developers keep it manageable by trying to extend (adding new objects and new fields to existing objects) and avoid renaming or dropping existing objects and fields. In addition, all API endpoints are versioned and often have an alpha or beta notation too; for example:

 /api/v1
/api/v2alpha1

 You can access the API through the kubectl CLI, via client libraries, or directly through REST API calls. There are elaborate authentication and authorization mechanisms we will explore in a later chapter. If you have the right permissions, you can list, view, create, update, and delete various Kubernetes objects. At this point, let's get a glimpse of the surface area of the APIs. The best way to explore the API is via API groups. Some API groups are enabled by default. Other groups can be enabled/disabled via flags. For example, to disable the batch V1 group and enable the batch V2 Alpha group, you can set the --runtime-config flag when running the API server as follows:

 --runtime-config=batch/v1=false,batch/v2alpha=true

 The following resources are enabled by default in addition to the core resources:

 	DaemonSets

 	Deployments

 	HorizontalPodAutoscalers

 	Ingress

 	Jobs

 	ReplicaSets

 In addition to API groups, another useful classification of available APIs is by functionality. Enter resource categories...

 Resource categories

 The Kubernetes API is huge, and breaking it down into categories helps a lot when you're trying to find your way around. Kubernetes defines the following resource categories:

 	Workloads: Objects you use to manage and run containers in the cluster

 	Discovery and Load Balancing: Objects you use to expose your workloads to the world as externally accessible, load-balanced services

 	Config and Storage: Objects you use to initialize and configure your applications, and to persist data that's outside the container

 	Cluster: Objects that define how the cluster itself is configured; these are typically used only by cluster operators

 	Metadata: Objects you use to configure the behavior of other resources within the cluster, such as HorizontalPodAutoscaler for scaling workloads

 In the following sub-sections, I'll list the resources that belong to each group with the API group they belong to in the following format: <resource name>: <API group>; for example, Container: core, where the resource is Container and the API group is core. I will not specify the version here because APIs move rapidly from alpha to beta to GA (general availability) and from V1 to V2, and so on.

 The workloads API

 The workloads API contains many resources. Here is a list of all the resources with the API groups they belong to:

 	Container: core

 	CronJob: batch

 	DaemonSet: apps

 	Deployment: apps

 	Job: batch

 	Pod: core

 	ReplicaSet: apps

 	ReplicationController: core

 	StatefulSet: apps

 Containers are created by controllers through pods. Pods run containers and provide environmental dependencies such as shared or persistent storage volumes and configuration or secret data injected into the container.

 Here is an example of the detailed documentation of one of the most common operations – getting a list of all the pods as a REST API:

 GET /api/v1/pods

 It accepts various query parameters (all optional):

 	pretty: If true, the output is pretty printed

 	labelSelector: A selector expression to limit the result

 	watch: If true, watch for changes and return a stream of events

 	resourceVersion: With watch, returns only events that occurred after that version

 	timeoutSeconds: Timeout for the list or watch operation

 The next category of resources deals with high-level networking.

 Discovery and Load Balancing

 This category is also known as service APIs. By default, workloads are only accessible within the cluster, and they must be exposed externally using either a LoadBalancer or NodePort Service.

 For development, internally accessible workloads can be accessed via proxy through the API master using the kubectl proxy command:

 	Endpoints: core

 	Ingress: networking.k8s.io

 	Service: core

 The next category of resources deals with storage and internal state management.

 Config and Storage

 Dynamic configuration without redeployment is a cornerstone of Kubernetes and running complex distributed applications on your Kubernetes cluster. Storing data is another paramount concern for any non-trivial system. The config and storage category provides multiple resources to address these concerns:

 	ConfigMap: core

 	CSIDriver: storage.k8s.io

 	CSINode: storage.k8s.io

 	Secret: core

 	PersistentVolumeClaim: core

 	StorageClass: storage.k8s.io

 	Volume: storage.k8s.io

 	VolumeAttachment: storage.k8s.io

 The next category of resources deals with helper resources that are usually part of other high-level resources.

 Metadata

 The metadata resources typically show up as sub-resources of the resources of the configuration. For example, a limit range will be part of a pod configuration. You will not interact with these objects directly most of the time. There are many metadata resources – there isn't much point in listing all of them. You can find the complete list here: https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.16/#-strong-metadata-apis-strong-.

 Clusters

 The resources in the cluster category are designed for use by cluster operators as opposed to developers. There are many resources in this category as well. Here are some of the most important resources:

 	Namespace: core

 	Node: core

 	PersistentVolume: core

 	ResourceQuota: core

 	Role: rbac.authorization.k8s.io

 	RoleBinding: rbac.authorization.k8s.io

 	ClusterRole: rbac.authorization.k8s.io

 	ClusterRoleBinding: rbac.authorization.k8s.io

 	NetworkPolicy: networking.k8s.io

 Now that we understand how Kubernetes organizes and exposes its capabilities via API groups and resource categories, let's see how it manages the physical infrastructure and keeps it up with the state of the cluster.

 Kubernetes components

 A Kubernetes cluster has several master components used to control the cluster, as well as node components that run on each worker node. Let's get to know all these components and how they work together.

 Master components

 The master components can all run on one node, but in a highly available setup or a very large cluster, they may be spread across multiple nodes.

 The API server

 The Kubernetes API server exposes the Kubernetes REST API. It can easily scale horizontally as it is stateless and stores all the data in the etcd cluster. The API server is the embodiment of the Kubernetes control plane.

 Etcd

 Etcd is a highly reliable distributed data store. Kubernetes uses it to store the entire cluster state. In a small, transient cluster a single instance of etcd can run on the same node with all the other master components. But for more substantial clusters, it is typical to have a three-node or even five-node etcd cluster for redundancy and high availability.

 The Kube controller manager

 The Kube controller manager is a collection of various managers rolled up into one binary. It contains the replication controller, the pod controller, the services controller, the endpoints controller, and others. All these managers watch over the state of the cluster via the API and their job is to steer the cluster into the desired state.

 Cloud controller managers

 When running in the cloud, Kubernetes allows cloud providers to integrate their platform for the purpose of managing nodes, routes, services, and volumes. The cloud provider code interacts with the Kubernetes code. It replaces some of the functionality of the Kube controller manager. When running Kubernetes with a cloud controller manager, you must set the Kube controller manager flag --cloud-provider to "external". This will disable the control loops that the cloud controller manager is taking over. The cloud controller manager was introduced in Kubernetes 1.6 and it's being used by multiple cloud providers already, such as:

 	GCP

 	AWS

 	Azure

 	Baidu Cloud

 	DigitalOcean

 	Oracle

 	Linode

 A quick note about Go to help you parse the code: the method name comes first, followed by the method's parameters in parentheses. Each parameter is a pair, consisting of a name followed by its type. Finally, the return values are specified. Go allows multiple return types. It is very common to return an error object in addition to the actual result. If everything is OK, the error object will be nil.

 Here is the main interface of the cloudprovider package:

 package cloudprovider
import (
 "errors"
 "fmt"
 "strings"
 "k8s.io/api/core/v1"
 "k8s.io/apimachinery/pkg/types"
 "k8s.io/client-go/informers"
 "k8s.io/kubernetes/pkg/controller"
)
// Interface is an abstract, pluggable interface for cloud providers.
type Interface interface {
 Initialize(clientBuilder controller.ControllerClientBuilder)
 LoadBalancer() (LoadBalancer, bool)
 Instances() (Instances, bool)
 Zones() (Zones, bool)
 Clusters() (Clusters, bool)
 Routes() (Routes, bool)
 ProviderName() string
 HasClusterID() bool
}

 Most of the methods return other interfaces with their own method. For example, here is the LoadBalancer interface:

 type LoadBalancer interface {
GetLoadBalancer(clusterName string,
 service *v1.Service) (status *v1.LoadBalancerStatus,
 exists bool,
 err error)
EnsureLoadBalancer(clusterName string,
 service *v1.Service,
 nodes []*v1.Node) (*v1.LoadBalancerStatus, error)
UpdateLoadBalancer(clusterName string, service *v1.Service, nodes []*v1.Node) error
EnsureLoadBalancerDeleted(clusterName string, service *v1.Service) error
}

 The cloud controller manager is instrumental in bringing Kubernetes to all the major cloud providers, but the heart and soul of Kubernetes is the scheduler.

 kube-scheduler

 Kube-scheduler is responsible for scheduling pods into nodes. This is a very complicated task as it needs to consider multiple interacting factors, such as the following:

 	Resource requirements

 	Service requirements

 	Hardware/software policy constraints

 	Node affinity and anti-affinity specifications

 	Pod affinity and anti-affinity specifications

 	Taints and tolerations

 	Data locality

 	Deadlines

 If you need some special scheduling logic not covered by the default kube-scheduler, you can replace it with your own custom scheduler. You can also run your custom scheduler side by side with the default scheduler and have your custom scheduler schedule only a subset of the pods.

 DNS

 Starting with Kubernetes 1.3, a DNS service is part of the standard Kubernetes cluster. It is scheduled as a regular pod. Every service (except headless services) receives a DNS name. Pods can receive a DNS name too. This is very useful for automatic discovery.

 Node components

 Nodes in the cluster need a couple of components to interact with the cluster master components, receive workloads to execute, and update the Kubernetes API server regarding their status.

 Proxy

 Kube-proxy does low-level network housekeeping on each node. It reflects the Kubernetes services locally and can perform TCP and UDP forwarding. It finds cluster IPs via environment variables or DNS.

 Kubelet

 The kubelet is the Kubernetes representative on the node. It oversees communicating with the master components and manages the running pods. That includes the following:

 	Receiving pod specs

 	Downloading pod secrets from the API server

 	Mounting volumes

 	Running the pod's containers (via the configured runtime)

 	Reporting the status of the node and each pod

 	Running the container startup, liveness, and readiness probes

 In this section, we dug into the guts of Kubernetes and explored its architecture from a very high level of vision and supported design patterns, through its APIs and the components used to control and manage the cluster. In the next section, we will take a quick look at the various runtimes that Kubernetes supports.

 Kubernetes runtimes

 Kubernetes originally only supported Docker as a container runtime engine. But that is no longer the case. Kubernetes now supports several different runtimes:

 	Docker (via a CRI shim)

 	rkt (direct integration to be replaced with Rktlet)

 	CRI-O

 	Frakti (Kubernetes on the Hypervisor, previously Hypernetes)

 	rktlet (CRI implementation for rkt)

 	CRI-containerd

 The major design policy is that Kubernetes itself should be completely decoupled from specific runtimes. The Container Runtime Interface (CRI) enables it.

 In this section, you'll get a closer look at the CRI and get to know the individual runtime engines. At the end of this section, you'll be able to make a well-informed decision about which runtime engine is appropriate for your use case and under what circumstances you may switch or even combine multiple runtimes in the same system.

 The container runtime interface (CRI)

 The CRI is a collection of a gRPC API, specifications/requirements, and libraries for container runtimes to integrate with a kubelet on a node. In Kubernetes 1.7, the internal Docker integration in Kubernetes was replaced with a CRI-based integration. This is a big deal. It opened the door to multiple implementations that can take advantage of advances in the container world. The kubelet doesn't need to interface directly with multiple runtimes. Instead, it can talk to any CRI-compliant container runtime. The following diagram illustrates the flow:

 [image:]
 Figure 1.2: The container runtime interface (CRI) flow diagram

 There are two gRPC service interfaces, ImageService and RuntimeService, that CRI container runtimes (or shims) must implement. ImageService is responsible for managing images. Here is the gRPC/protobuf interface (this is Google's Protobuf specification language and not Go):

 service ImageService {
 rpc ListImages(ListImagesRequest) returns (ListImagesResponse) {}
 rpc ImageStatus(ImageStatusRequest) returns (ImageStatusResponse) {}
 rpc PullImage(PullImageRequest) returns (PullImageResponse) {}
 rpc RemoveImage(RemoveImageRequest) returns (RemoveImageResponse) {}
 rpc ImageFsInfo(ImageFsInfoRequest) returns (ImageFsInfoResponse) {}
}

 RuntimeService is responsible for managing pods and containers. Here is the gRPC/protobuf interface:

 service RuntimeService {
 rpc Version(VersionRequest) returns (VersionResponse) {}
 rpc RunPodSandbox(RunPodSandboxRequest) returns (RunPodSandboxResponse) {}
 rpc StopPodSandbox(StopPodSandboxRequest) returns (StopPodSandboxResponse) {}
 rpc RemovePodSandbox(RemovePodSandboxRequest) returns (RemovePodSandboxResponse) {}
 rpc PodSandboxStatus(PodSandboxStatusRequest) returns (PodSandboxStatusResponse) {}
 rpc ListPodSandbox(ListPodSandboxRequest) returns (ListPodSandboxResponse) {}
 rpc CreateContainer(CreateContainerRequest) returns (CreateContainerResponse) {}
 rpc StartContainer(StartContainerRequest) returns (StartContainerResponse) {}
 rpc StopContainer(StopContainerRequest) returns (StopContainerResponse) {}
 rpc RemoveContainer(RemoveContainerRequest) returns (RemoveContainerResponse) {}
 rpc ListContainers(ListContainersRequest) returns (ListContainersResponse) {}
 rpc ContainerStatus(ContainerStatusRequest) returns (ContainerStatusResponse) {}
 rpc UpdateContainerResources(UpdateContainerResourcesRequest) returns (UpdateContainerResourcesResponse) {}
 rpc ExecSync(ExecSyncRequest) returns (ExecSyncResponse) {}
 rpc Exec(ExecRequest) returns (ExecResponse) {}
 rpc Attach(AttachRequest) returns (AttachResponse) {}
 rpc PortForward(PortForwardRequest) returns (PortForwardResponse) {}
 rpc ContainerStats(ContainerStatsRequest) returns (ContainerStatsResponse) {}
 rpc ListContainerStats(ListContainerStatsRequest) returns (ListContainerStatsResponse) {}
 rpc UpdateRuntimeConfig(UpdateRuntimeConfigRequest) returns (UpdateRuntimeConfigResponse) {}
 rpc Status(StatusRequest) returns (StatusResponse) {}
}

 The data types used as arguments and return types are called messages and are also defined as part of the API. Here is one of them:

 message CreateContainerRequest {
 string pod_sandbox_id = 1; ContainerConfig config = 2; PodSandboxConfig sandbox_config = 3;
}

 As you can see, messages can be embedded inside each other. The CreateContainerRequest message has one string field and two other fields, which are themselves messages: ContainerConfig and PodSandboxConfig.

 Now that you are familiar at the code level with what Kubernetes considers a runtime engine, let's look at the individual runtime engines briefly.

 Docker

 Docker is, of course, the 800-pound gorilla of containers. Kubernetes was originally designed to manage only Docker containers. The multi-runtime capability was first introduced in Kubernetes 1.3 and the CRI in Kubernetes 1.5. Until then, Kubernetes could only manage Docker containers.

 I assume you're very familiar with Docker and what it brings to the table if you are reading this book. Docker enjoys tremendous popularity and growth, but there is also a lot of criticism of it. Critics often mention the following concerns:

 	Security

 	Difficulty setting up multi-container applications (in particular, networking)

 	Development, monitoring, and logging

 	The limitations of Docker containers running one command

 	Releasing half-baked features too fast

 Docker is aware of the criticisms and has addressed some of these concerns. In particular, Docker invested in its Docker Swarm product. Docker Swarm is a Docker-native orchestration solution that competes with Kubernetes. It is simpler to use than Kubernetes, but it's not as powerful or mature.

 Starting with Docker 1.12, swarm mode is included in the Docker daemon natively, which upset some people due to bloat and scope creep. As a result, more people turned to CoreOS rkt as an alternative solution.

 Starting with Docker 1.11, released in April 2016, Docker has changed the way it runs containers. The runtime now uses containerd and runC to run Open Container Initiative (OCI) images in containers:

 [image:]
 Figure 1.3: Architecture of Docker 1.11 after building it on runC and containerd

 rkt

 rkt is a container manager from CoreOS (the developers of the CoreOS Linux distro, etcd, flannel, and more). It is not developed anymore as CoreOS was acquired by Red Hat, who was later acquired by IBM. However, the legacy of rkt is the proliferation of multiple container runtimes beyond Docker and pushing Docker toward the standardized OCI effort.

 The rkt runtime prides itself on its simplicity and a strong emphasis on security and isolation. It doesn't have a daemon like Docker Engine and relies on the OS init system, such as systemd, to launch the rkt executable. rkt can download images (both App Container (appc) images and OCI images), verify them, and run them in containers. Its architecture is much simpler.

 App container

 CoreOS started a standardization effort in December 2014 called appc. This includes a standard image format (ACI – Application Container Image), runtime, signing, and discovery. A few months later, Docker started its own standardization effort with OCI. At this point, it seems these efforts will converge. This is a great thing as tools, images, and runtime will be able to interoperate freely. We're not there yet.

 CRI-O

 CRI-O is a Kubernetes incubator project. It is designed to provide an integration path between Kubernetes and OCI-compliant container runtimes like Docker. CRI-O provides the following capabilities:

 	Support for multiple image formats, including the existing Docker image format

 	Support for multiple means to download images, including trust and image verification

 	Container image management (managing image layers, overlay filesystems, and so on)

 	Container process lifecycle management

 	Monitoring and logging required to satisfy the CRI

 	Resource isolation as required by the CRI

 It supports runc and Kata containers right now, but any OCI-compliant container runtime can be plugged in and be integrated with Kubernetes.

 Hyper containers

 Hyper containers are another option. A Hyper container has a lightweight VM (its own guest kernel) and it can run on bare metal. Instead of relying on Linux cgroups for isolation, it relies on a hypervisor. This approach presents an interesting mix compared to standard bare-metal clusters, which are difficult to set up, and public clouds, where containers are deployed on heavyweight VMs.

 Frakti

 Frakti lets Kubernetes use hypervisors via the OCI-compliant runV project to run its pods and containers. It's a lightweight, portable, and secure approach that provides strong isolation with its own kernel compared to the traditional Linux namespace-based approaches, but not as heavyweight as a full-fledged VM.

 Stackube

 Stackube (previously called Hypernetes) is a multi-tenant distribution that uses Hyper containers as well as some OpenStack components for authentication, persistent storage, and networking. Since containers don't share the host kernel, it is safe to run containers of different tenants on the same physical host. Stackube uses Frakti, of course, as its container runtime.

 In this section, we've covered the various runtime engines that Kubernetes supports as well as the trend toward standardization, convergence, and externalizing the runtime support from core Kubernetes. In the next section, we'll take a step back and look at the big picture, and how Kubernetes fits into the CI/CD pipeline.

 Continuous integration and deployment

 Kubernetes is a great platform for running your microservice-based applications. But, at the end of the day, it is an implementation detail. Users, and often most developers, may not be aware that the system is deployed on Kubernetes. But Kubernetes can change the game and make things that were too difficult before possible.

 In this section, we'll explore the CI/CD pipeline and what Kubernetes brings to the table. At the end of this section, you'll be able to design CI/CD pipelines that take advantage of Kubernetes properties such as easy scaling and development-production parity to improve the productivity and robustness of day-to-day development and deployment.

 What is a CI/CD pipeline?

 A CI/CD pipeline is a set of tools and steps that takes a set of changes by developers or operators that modify the code, data, or configuration of a system, tests them, and deploys them to production (and possibly other environments). Some pipelines are fully automated and some are semi-automated with human checks. In large organizations, there may be test and staging environments that changes are deployed to automatically, but release to production requires manual intervention. The following diagram depicts a typical pipeline:

 [image:]
 Figure 1.4: Diagram representing CI/CD pipeline

 It may be worth mentioning that developers can be completely isolated from production infrastructure. Their interface is just a Git workflow, where a good example is Deis Workflow (PaaS on Kubernetes, similar to Heroku).

 Designing a CI/CD pipeline for Kubernetes

 When your deployment target is a Kubernetes cluster, you should rethink some traditional practices. For starters, the packaging is different. You need to bake images for your containers. Reverting code changes is super easy and instantaneous by using smart labeling. It gives you a lot of confidence that, if a bad change slips through the testing net somehow, you'll be able to revert to the previous version immediately. But you want to be careful there. Schema changes and data migrations can't be automatically rolled back.

 Another unique capability of Kubernetes is that developers can run a whole cluster locally. That takes some work when you design your cluster, but since the microservices that comprise your system run in containers, and those containers interact via APIs, it is possible and practical to do. As always, if your system is very data-driven, you will need to accommodate that and provide data snapshots and synthetic data that your developers can use.

 There are many commercial CI/CD solutions that support Kubernetes, but there are also several Kubernetes-native solutions, such as Tekton, Argo CD, and Jenkins X.

 A Kubernetes-native CI/CD solution runs inside your cluster, is specified using Kubernetes CRDs, and uses containers to execute the steps. By using a Kubernetes-native CI/CD solution, you get to benefit from Kubernetes managing and easily scaling your CI/CD pipelines, which is otherwise often a non-trivial task.

 Summary

 In this chapter, we covered a lot of ground, and you got to understand the design and architecture of Kubernetes. Kubernetes is an orchestration platform for microservice-based applications running as containers. Kubernetes clusters have master and worker nodes. Containers run within pods. Each pod runs on a single physical or virtual machine. Kubernetes directly supports many concepts, such as services, labels, and persistent storage. You can implement various distributed system design patterns on Kubernetes. Container runtimes just need to implement the CRI. Docker, rkt, hyper containers, and more are supported.

 In Chapter 2, Creating Kubernetes Clusters, we will explore the various ways to create Kubernetes clusters, discuss when to use different options, and build a multi-node cluster.

 2

 Creating Kubernetes Clusters

 Overview

 In the previous chapter, we learned what Kubernetes is all about, how it is designed, what concepts it supports, its runtime engines, and how it fits within the CI/CD pipeline.

 Creating a Kubernetes cluster from scratch is a non-trivial task. There are many options and tools to select from. There are many factors to consider. In this chapter, we will roll our sleeves up and build us some Kubernetes clusters using Minikube, KinD, and K3d. We will discuss and evaluate other tools such as Kubeadm, Kubespray, KRIB, RKE, and bootkube. We will also look into deployment environments such as local, cloud, and bare metal. The topics we will cover are as follows:

 	Creating a single-node cluster with Minikube

 	Creating a multi-node cluster with KinD

 	Creating a multi-node cluster using k3d

 	Creating clusters in the cloud

 	Creating bare-metal clusters from scratch

 	Reviewing other options for creating Kubernetes clusters

 At the end of this chapter, you will have a solid understanding of the various options to create Kubernetes clusters and knowledge of the best-of-breed tools to support the creation of Kubernetes clusters. You will have also built several clusters, both single-node and multi-node.

 Creating a single-node cluster with Minikube

 In this section, we will create a local single-node cluster using Minikube. Local clusters are the most useful for developers that want quick edit-test-deploy-debug cycles on their machine, before committing their changes. Local clusters are very useful for DevOps and operators that want to play with Kubernetes locally, without concerns about breaking a shared environment. While Kubernetes is typically deployed on Linux in production, many developers work on Windows PCs or Macs. That said, there are not too many differences if you do want to install Minikube on Linux:

 [image:]
 Figure 2.1: The minikube logo

 Meet kubectl

 Before we start creating clusters, let us talk about kubectl. It is the official Kubernetes CLI and it interacts with your Kubernetes cluster's API server via its API. It is configured by default using the ~/.kube/config file, which is a YAML file that contains metadata, connection info, and authentication tokens or certificates for one or more clusters. Kubectl provides commands you can use to view your configuration and switch between clusters if it contains more than one. You can also point kubectl at a different config file by setting the KUBECONFIG environment variable. I prefer a third approach, which is keeping separate config file for each cluster and copying the active cluster's config file to ~/.kube/config (symlinks do not work).

 We will discover together what kubectl can do along the way. The purpose here is just to avoid confusion when working with different clusters and configuration files.

 Quick introduction to Minikube

 Minikube is the most mature local Kubernetes cluster. It runs the latest stable Kubernetes release and it supports Windows, macOS, and Linux. It supports:

 	LoadBalancer service type via Minikube tunnel

 	NodePort service type via Minikube service

 	Multiple clusters

 	Filesystem mounts

 	GPU support for machine learning

 	RBAC

 	Persistent volumes

 	Ingress

 	Dashboard via Minikube dashboard

 	Custom container runtimes via the start --container-runtime flag

 	Configuration API server and kubelet options via command-line flags

 	Add-ons

 Getting ready

 There are some prerequisites to install before you can create the cluster itself. These include VirtualBox, the kubectl command-line interface to Kubernetes, and, of course, Minikube itself. Here is a list of the latest versions at the time of writing:

 	VirtualBox: https://www.virtualbox.org/wiki/Downloads

 	Kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl/

 	Minikube: https://kubernetes.io/docs/tasks/tools/install-minikube/

 On Windows

 Install VirtualBox and make sure kubectl and Minikube are on your path. I personally just throw all command-line programs I use into c:. You may prefer another approach. I use the excellent ConEMU to manage multiple consoles, terminals, and SSH sessions. It works with Command Prompt, PowerShell, PuTTY, Cygwin, msys, and Git-Bash. It does not get much better than that on Windows.

 With Windows 10 Pro, you have the option to use the Hyper-V hypervisor. This is technically a better solution than VirtualBox, but it requires the Pro version of Windows and is completely Windows-specific. By using VirtualBox, these instructions are universal and will be easy to adapt to other versions of Windows, or other operating systems altogether. If you have Hyper-V enabled, you must disable it because VirtualBox cannot coexist with Hyper-V.

 I recommend using PowerShell in administrator mode. You can add the following alias and function to your PowerShell profile:

 Set-Alias -Name k -Value kubectl
function mk
{
 minikube-windows-amd64 `
 --show-libmachine-logs `
 --alsologtostderr `
 @args
}

 On macOS

 On macOS, you have the option of using HyperKit instead of VirtualBox:

 $ curl -LO https://storage.googleapis.com/minikube/releases/latest/docker-machine-driver-hyperkit \
 && chmod +x docker-machine-driver-hyperkit \
 && sudo mv docker-machine-driver-hyperkit /usr/local/bin/ \
 && sudo chown root:wheel /usr/local/bin/docker-machine-driver-hyperkit \
 && sudo chmod u+s /usr/local/bin/docker-machine-driver-hyperkit

 You can add aliases to your .bashrc file (similar to the PowerShell alias and function on Windows):

 alias k='kubectl'
alias mk='/usr/local/bin/minikube'

 If you chose HyperKit instead of VirtualBox, you need to add the flag --vm-driver=hyperkit when starting the cluster.

 It is also important to disable any VPN when using HyperKit.

 Now, you can use k and mk and type less. The flags to Minikube in the mk function provide better logging and direct it to the console in addition to files (similar to tee).

 Type mk version to verify Minikube is correctly installed and functioning:

 $ mk version
minikube version: v1.10.1

 Type k version to verify kubectl is correctly installed and functioning:

 $ k version
Client Version: version.Info{Major:"1", Minor:"18", GitVersion:"v1.18.3", GitCommit:"641856db18352033a0d96dbc99153fa3b27298e5", GitTreeState:"clean", BuildDate:"2020-05-20T12:52:00Z", GoVersion:"go1.13.9", Compiler:"gc", Platform:"darwin/amd64"}
The connection to the server localhost:8080 was refused — did you specify the right host or port?
Unable to connect to the server: dial tcp 192.168.99.100:8443: getsockopt: operation timed out

 Do not worry about the error on the last line. There is no cluster running, so kubectl cannot connect to anything. That is expected.

 You can explore the available commands and flags for both Minikube and kubectl. I will not go over each command, only the commands I use.

 Creating the cluster

 The Minikube tool supports multiple versions of Kubernetes. At the time of writing, the latest version is 1.18.0, which is also the default:

 $ mk start
[image:] minikube v1.10.1 on darwin (amd64)
[image:] Creating virtualbox VM (CPUs=2, Memory=2048MB, Disk=20000MB) ...
[image:] Configuring environment for Kubernetes v1.18.0 on Docker 19.03.8
[image:] Pulling images ...
[image:] Launching Kubernetes ...
[image:] Verifying: apiserver proxy etcd scheduler controller dns
[image:] Done! kubectl is now configured to use "minikube"

 When you restart an existing stopped cluster, you will see the following output:

 $ mk start
[image:] minikube v1.10.1 on darwin (amd64)
[image:] Tip: Use 'minikube start -p <name>' to create a new cluster, or 'minikube delete' to delete this one.
[image:] Restarting existing virtualbox VM for "minikube" ...
[image:] Waiting for SSH access ...
[image:] Configuring environment for Kubernetes v1.18.0 on Docker 19.03.8
[image:] Relaunching Kubernetes v1.18.0 using kubeadm ...
[image:] Verifying: apiserver proxy etcd scheduler controller dns
[image:] Done! kubectl is now configured to use "minikube"

 Let us review what Minikube did behind the curtains for you. You will need to do a lot of it when creating a cluster from scratch:

 	Start a VirtualBox VM

 	Create certificates for the local machine and the VM

 	Download images

 	Set up networking between the local machine and the VM

 	Run the local Kubernetes cluster on the VM

 	Configure the cluster

 	Start all the Kubernetes control plane components

 	Configure kubectl to talk to the cluster

 Troubleshooting

 If something goes wrong during the process, try to follow the error messages. You can add the --alsologtostderr flag to get detailed error info to the console. Everything Minikube does is organized neatly under ~/.minikube. Here is the directory structure:

 $ tree ~/.minikube -L 2
/Users/gigi.sayfan/.minikube
├── addons
├── apiserver.crt
├── apiserver.key
├── ca.crt
├── ca.key
├── ca.pem
├── cache
│ ├── images
│ ├── iso
│ └── v1.15.0
├── cert.pem
├── certs
│ ├── ca-key.pem
│ ├── ca.pem
│ ├── cert.pem
│ └── key.pem
├── client.crt
├── client.key
├── config
├── files
├── key.pem
├── logs
├── machines
│ ├── minikube
│ ├── server-key.pem
│ └── server.pem
├── profiles
│ └── minikube
├── proxy-client-ca.crt
├── proxy-client-ca.key
├── proxy-client.crt
└── proxy-client.key
 13 directories, 19 files

 Checking out the cluster

 Now that we have a cluster up and running, let's peek inside.

 First, let's ssh into the VM:

 $ mk ssh
 _ _
 _ _ () ()
 ___ ___ (_) ___ (_)| |/') _ _ | |_ __
/' _ ` _ `\| |/' _ `\| || , < () ()| '_`\ /'__`\
| () () || || () || || |\`\ | (_) || |_))(___/
(_) (_) (_)(_)(_) (_)(_)(_) (_)`___/'(_,__/'`____)
$ uname -a
Linux minikube 4.19.107 #1 SMP Mon May 11 14:51:04 PDT 2020 x86_64 GNU/Linux
$

 Great! That works. The weird marks symbols are ASCII art for "minikube." Now, let us start using kubectl, because it is the Swiss Army knife of Kubernetes and will be useful for all clusters (including federated clusters).

 Disconnect from the VM via Ctrl + D or by typing:

 $ logout

 We will cover many of the kubectl commands throughout our journey. First, let us check the cluster status using cluster-info:

 $ k cluster-info
Kubernetes master is running at https://192.168.99.103:8443
KubeDNS is running at https://192.168.99.103:8443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
To further debug and diagnose cluster problems, use kubectl cluster-info dump.

 You can see that the master is running properly. To see a much more detailed view of all the objects in the cluster as JSON, type k cluster-info dump. The output can be a little daunting, so let us use more specific commands to explore the cluster.

 Let us check out the nodes in the cluster using get nodes:

 $ k get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready master 28m v1.16.3

 So, we have one node called minikube. To get a lot more information about it, type k describe node minikube.

 The output is verbose; I will let you try it yourself.

 Doing work

 We have a nice empty cluster up and running (well, not completely empty as the DNS service and dashboard run as pods in the kube-system namespace). It is time to deploy some pods:

 $ k create deployment echo --image=gcr.io/google_containers/echoserver:1.8
deployment.apps/echo created

 Let us check out the pod that was created:

 $ k get pods
NAME READY STATUS RESTARTS AGE
echo-855975f9c-r6kj8 1/1 Running 0 2m11s

 To expose our pod as a service, type the following:

 $ k expose deployment echo --type=NodePort --port=8080
service/echo exposed

 Exposing the service as type NodePort means that it is exposed to the host on some port. But it is not the 8080 port we ran the pod on. Ports get mapped in the cluster. To access the service, we need the cluster IP and the exposed port:

 $ mk ip
192.168.99.103
$ k get service echo --output="jsonpath='{.spec.ports[0].nodePort}'"
31800

 Now, we can access the echo service, which returns a lot of information.

 Replace the IP address and port with the results of the previous commands:

 $ curl http://192.168.99.103:31800/hi
 Hostname: echo-855975f9c-r6kj8

 Pod Information:
 -no pod information available-

 Server values:
 server_version=nginx: 1.13.3 - lua: 10008

 Request Information:
 client_address=172.17.0.1
 method=GET
 real path=/hi
 query=
 request_version=1.1
 request_uri=http://192.168.99.103:8080/hi

 Request Headers:
 accept=*/*
 host=192.168.99.103:31800
 user-agent=curl/7.64.0

 Request Body:
 -no body in request-

 Congratulations! You just created a local Kubernetes cluster, deployed a service, and exposed it to the world.

 Examining the cluster with the dashboard

 Kubernetes has a very nice web interface, which is deployed, of course, as a service in a pod. The dashboard is well designed and provides a high-level overview of your cluster. It also lets you drill down into individual resources, view logs, edit resource files, and more. It is the perfect weapon when you want to check out your cluster manually. To launch it, type:

 $ mk dashboard
[image:] Enabling dashboard ...
[image:] Verifying dashboard health ...
[image:] Launching proxy ...
[image:] Verifying proxy health ...
[image:] Opening http://127.0.0.1:56853/api/v1/namespaces/kube-system/services/http:kubernetes-dashboard:/proxy/ in your default browser...

 Minikube will open a browser window with the dashboard UI. Note that, on Windows, Microsoft Edge cannot display the dashboard. I had to run it myself on a different browser.

 Here is the workloads view, which displays deployments, replica sets, replication controllers, and pods:

 [image:]
 Figure 2.2: Kubernetes dashboard UI

 It can also display daemon sets, stateful sets, and jobs, but we do not have any in this cluster.

 In this section, we created a local single-node Kubernetes cluster on Windows, explored it a little bit using kubectl, deployed a service, and played with the web UI. In the next section, we will move on to a multi-node cluster.

 Creating a multi-node cluster with KinD

 In this section, we will create a multi-node cluster using KinD. We will also repeat the deployment of the echo server we deployed on Minikube and observe the differences. Spoiler alert – everything will be faster and easier!

 Quick introduction to KinD

 KinD stands for Kubernetes in Docker. It is a tool for creating ephemeral clusters (no persistent storage). It was built primarily for running the Kubernetes conformance tests. It supports Kubernetes 1.11+. Under the cover, it uses kubeadm to bootstrap Docker containers as nodes in the cluster. KinD is a combination of a library and a CLI. You can use the library in your code for testing or other purposes. KinD can create highly available clusters with multiple master nodes. Finally, KinD is a CNCF conformant Kubernetes installer. It better be if it is used for the conformance tests of Kubernetes itself :-).

 KinD is super fast to start, but it has some limitations too: no persistent storage and no support for alternative runtimes yet, only Docker.

 Let's install KinD and get going.

 Installing KinD

 You must have Docker installed as KinD is literally running as a Docker container. If you have Go 1.11+ installed, you can install the KinD CLI via:

 $ GO111MODULE="on" go get sigs.k8s.io/kind@v0.8.1

 Otherwise, on macOS, type:

 $ curl -Lo ./kind-darwin-amd64 https://github.com/kubernetes-sigs/kind/releases/download/v0.8.1/kind-darwin-amd64
$ chmod +x ./kind-darwin-amd64
$ mv ./kind-darwin-amd64 /usr/local/bin/kind

 On Windows, type (in PowerShell):

 c:\> curl.exe -Lo kind-windows-amd64.exe https://github.com/kubernetes-sigs/kind/releases/download/v0.8.1/kind-windows-amd64
c:\> Move-Item .\kind-windows-amd64.exe c:\windows\kind.exe

 Creating the cluster with KinD

 Creating a cluster is super easy:

 $ kind create cluster
Creating cluster "kind" ...
 Ensuring node image (kindest/node:v1.16.3) [image:]
 Preparing nodes [image:]
 Creating kubeadm config [image:]
 Starting control-plane [image:]
Cluster creation complete. You can now use the cluster with:
export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"
kubectl cluster-info

 KinD suggests that you export KUBECONFIG, but as I mentioned earlier, I prefer to copy the config file to ~/.kube/config so I do not have to export again if I want to access the cluster from another terminal window:

 $ cp $(kind get kubeconfig-path --name="kind") ~/.kube/config

 Now, we can access the cluster using kubectl:

 $ k cluster-info
Kubernetes master is running at https://localhost:58560
KubeDNS is running at https://localhost:58560/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump.'

 However, this creates a single-node cluster:

 $ k get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 11m v1.16.3

 Let us delete it and create a multi-node cluster:

 $ kind delete cluster
Deleting cluster "kind" ...

 To create a multi-node cluster, we need to provide a configuration file with the specification of our nodes. Here is a configuration file that will create a cluster with one control-plane node and two worker nodes:

 kind: Cluster
apiVersion: kind.sigs.k8s.io/v1alpha3
nodes:
- role: control-plane
- role: worker
- role: worker

 Let us save the configuration file as kind-multi-node-config.yaml and create the cluster:

 $ kind create cluster --config kind-multi-node-config.yaml
Creating cluster "kind" ...
 Ensuring node image (kindest/node:v1.16.3) [image:]
 Preparing nodes [image:] [image:] [image:]
 Creating kubeadm config [image:]
 Starting control-plane [image:]
 Joining worker nodes [image:]
Cluster creation complete. You can now use the cluster with:
export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"
kubectl cluster-info

 Yeah, it works! We have a local three-node cluster now:

 $ k get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 12m v1.16.3
kind-worker NotReady <none> 11m v1.16.3
kind-worker2 NotReady <none> 11m v1.16.3

 KinD is also kind enough (see what I did there) to let us create highly available (HA) clusters with multiple control plane nodes for redundancy. Let us give it a try and see what it looks like with two control-plane nodes and two worker nodes:

 kind: Cluster
apiVersion: kind.sigs.k8s.io/v1alpha3
nodes:
- role: control-plane
- role: control-plane
- role: worker
- role: worker

 Let us save the configuration file as kind-ha-multi-node-config.yaml, delete the current cluster, and create a new HA cluster:

 $ kind delete cluster
Deleting cluster "kind" ...
$ kind create cluster --config kind-ha-multi-node-config.yaml
Creating cluster "kind" ...
 Ensuring node image (kindest/node:v1.16.3) [image:]
 Preparing nodes [image:] [image:] [image:] [image:] [image:] [image:]
 Starting the external load balancer [image:]
 Creating kubeadm config [image:]
 Starting control-plane [image:]
 Joining more control-plane nodes [image:]
 Joining worker nodes [image:]
Cluster creation complete. You can now use the cluster with:
export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"
kubectl cluster-info

 Hmmm... there is something new here. Now, KinD creates an external load balancer, as well as join more control-plane nodes before joining the worker nodes. The load balancer is necessary to distribute requests across all the control-plane nodes.

 Note that the external load balancer does not show as a node using kubectl:

 $ k get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 8m31s v1.16.3
kind-control-plane2 Ready master 8m14s v1.16.3
kind-worker Ready <none> 7m35s v1.16.3
kind-worker2 Ready <none> 7m35s v1.16.3

 However, KinD has its own get nodes command, where you can see the load balancer:

 $ kind get nodes
kind-control-plane2
kind-worker
kind-control-plane
kind-worker2
kind-external-load-balancer

 Doing work with KinD

 Let us deploy our echo service on the KinD cluster. It starts the same:

 $ k create deployment echo --image=gcr.io/google_containers/echoserver:1.8 deployment.apps/echo created
$ k expose deployment echo --type=NodePort --port=8080
service/echo exposed

 Checking our services, we can see the echo service front and center:

 $ k get svc echo
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
echo NodePort 10.105.48.21 <none> 8080:31550/TCP 3m5s

 However, there is no external IP to the service. With Minikube, we got the IP of the Minikube node itself via $(minikube ip), and we can use it in combination with the node port to access the service. That is not an option with KinD clusters. Let us see how to use a proxy to access the echo service.

 Accessing Kubernetes services locally though a proxy

 In this section, we will go into a lot of detail about networking, services, and how to expose them outside the cluster.

 Here, I am just showing how to get it done and keeping you in suspense for now. First, we need to run the kubectl proxy command, which exposes the API server, pods, and services on localhost:

 $ k proxy &
[1] 10653
Starting to serve on 127.0.0.1:8001

 Then, we can access the echo service though a specially crafted proxy URL that includes the exposed port (8080) and NOT the node port.

 I use Httpie here. You can use curl too. To install Httpie, follow the instructions here: https://httpie.org/doc#installation:

 $ http http://localhost:8001/api/v1/namespaces/default/services/echo:8080/proxy/
HTTP/1.1 200 OK
Content-Length: 534
Content-Type: text/plain
Date: Thu, 28 May 2020 21:27:56 GMT
Server: echoserver
Hostname: echo-74545d499-wqkn9
Pod Information:
 -no pod information available-
Server values:
 server_version=nginx: 1.13.3 - lua: 10008
Request Information:
 client_address=10.40.0.0
 method=GET
 real path=/
 query=
 request_version=1.1
 request_uri=http://localhost:8080/
Request Headers:
 accept=*/*
 accept-encoding=gzip, deflate
 host=localhost:8001
 user-agent=HTTPie/0.9.9
 x-forwarded-for=127.0.0.1, 172.17.0.1
 x-forwarded-uri=/api/v1/namespaces/default/services/echo:8080/proxy/
Request Body:
 -no body in request-

 We will deep dive into exactly what is going on in a future chapter (Chapter 12, Serverless Computing on Kubernetes). Let us check out my favorite local cluster solution: k3d.

 Creating a multi-node cluster with k3d

 In this section, we'll create a multi-node cluster using k3d from Rancher. We will not repeat the deployment of the echo server because it is identical to the KinD cluster, including accessing it though a proxy. Spoiler alert – it is even faster and more user-friendly than KinD!

 Quick introduction to k3s and k3d

 Rancher created k3s, which is a lightweight Kubernetes distribution. Rancher says that k3s is five less than k8s, if that makes any sense. The basic idea is to remove features and capabilities that most people don't need, such as:

 	Non-default features

 	Legacy features

 	Alpha features

 	In-tree storage drivers

 	In-tree cloud providers

 However, the big ticket item is that k3s removed Docker and uses containerd instead. You can still bring Docker back if you depend on it.

 Another major change is that k3s stores its state in a SQLite DB instead of etcd.

 For networking and DNS, k3s uses Flannel and CoreDNS.

 k3s also added a simplified installer that takes care of SSL and certificate provisioning.

 The end result is astonishing – a single binary (less than 40 MB) that needs only 512 MB of memory.

 Unlike Minikube and KinD, k3s is actually designed for production. The primary use case is for edge computing, IoT, and CI systems. It is optimized for ARM devices.

 OK. That's k3s, but what's k3d? k3d takes all the goodness that is k3s, packages it in Docker (similar to KinD), and adds a friendly CLI to manage it.

 Installing k3d

 Installing k3d is as simple as:

 $ curl -s https://raw.githubusercontent.com/rancher/k3d/master/install.sh | bash

 The usual disclaimer is in effect – make sure to read the installation script before downloading and piping it to bash.

 Creating the cluster with k3d

 Are you ready to be amazed? Creating a single-node cluster with k3d takes less than 2 seconds!

 $ time k3d create --workers 1
2020/05/28 17:07:36 Created cluster network with ID f09fde83314b059d1a442ec1d01fcd62e522e5f1d838121528c5a1ae582e3cbf
2020/05/28 17:07:36 Creating cluster [k3s-default]
2020/05/28 17:07:36 Creating server using docker.io/rancher/k3s:v1.17.3-k3s1...
2020/05/28 17:07:36 Booting 1 workers for cluster k3s-default
2020/05/28 17:07:37 Created worker with ID 8a6bd47f7a5abfbac5c396c45f13db04c7e18749ff4d2e054e737fe7f7843010
2020/05/28 17:07:37 SUCCESS: created cluster [k3s-default]
2020/05/28 17:07:37 You can now use the cluster with:
export KUBECONFIG="$(k3d get-kubeconfig --name='k3s-default')"
kubectl cluster-info
real 0m1.896s
user 0m0.009s
sys 0m0.011s

 What about a multi-node cluster? We saw that KinD was much slower, especially when creating a HA cluster with multiple control-plane nodes and an external load balancer.

 Let's delete the single-node cluster first:

 $ k3d delete
2020/05/28 17:08:42 Removing cluster [k3s-default]
2020/05/28 17:08:42 ...Removing 1 workers
2020/05/28 17:08:43 ...Removing server
2020/05/28 17:08:45 SUCCESS: removed cluster [k3s-default]

 Now, let's create a cluster with three worker nodes. That takes a little over 5 seconds:

 $ time k3d create --workers 3
2020/05/28 17:09:16 Created cluster network with ID 5cd1e01434edb1facdab28e563b78b605af416e2ad062dc121400c3f8a5d166c
2020/05/28 17:09:16 Creating cluster [k3s-default]
2020/05/28 17:09:16 Creating server using docker.io/rancher/k3s:v1.17.3-k3s1...
2020/05/28 17:09:17 Booting 3 workers for cluster k3s-default
2020/05/28 17:09:19 Created worker with ID 4b442116f8df7debecc9d70cee8ae8fb8f16783c0a8f111268be531f71dd54fa
2020/05/28 17:09:20 Created worker with ID 369879f1a38d60935908705f56b34a95caf6a44970beeb509c0cfb2047cd503a
2020/05/28 17:09:20 Created worker with ID d531937996fd25490276e32150b69aa2356c90cfcd1b480ab77ec3d2be08a2f6
2020/05/28 17:09:20 SUCCESS: created cluster [k3s-default]
2020/05/28 17:09:20 You can now use the cluster with:
export KUBECONFIG="$(k3d get-kubeconfig --name='k3s-default')"
kubectl cluster-info
real 0m5.164s
user 0m0.011s
sys 0m0.019s

 Let's verify the cluster works as expected:

 $ export KUBECONFIG="$(k3d get-kubeconfig --name='k3s-default')"
$ kubectl cluster-info
Kubernetes master is running at https://localhost:6443
CoreDNS is running at https://localhost:6443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

 Here are the nodes. Note that there is just one master called k3d-k3s-default-server:

 $ k get nodes
NAME STATUS ROLES AGE VERSION
k3d-k3s-default-server Ready <none> 14h v1.17.3-k3s1
k3d-k3s-default-worker-0 Ready <none> 14h v1.17.3-k3s1
k3d-k3s-default-worker-1 Ready <none> 14h v1.17.3-k3s1
k3d-k3s-default-worker-2 Ready <none> 14h v1.17.3-k3s1

 You can stop and start clusters, create multiple clusters, and list existing clusters using the k3d CLI. Here are all the commands. Feel free to explore them further:

 $ k3d
NAME:
 k3d - Run k3s in Docker!
USAGE:
 k3d [global options] command [command options] [arguments...]
VERSION:
 v1.7.0
AUTHORS:
 Thorsten Klein iwilltry42@gmail.com
 Rishabh Gupta r.g.gupta@outlook.com
 Darren Shepherd
COMMANDS:
 check-tools, ct Check if docker is running
 shell Start a subshell for a cluster
 create, c Create a single- or multi-node k3s cluster in docker containers
 delete, d, del Delete cluster
 stop Stop cluster
 start Start a stopped cluster
 list, ls, l List all clusters
 get-kubeconfig Get kubeconfig location for cluster
 help, h Shows a list of commands or help for one command
GLOBAL OPTIONS:
 --verbose Enable verbose output
 --help, -h show help
 --version, -v print the version

 You can repeat the steps for deploying, exposing, and accessing the echo service on your own. It works just like KinD.

 OK. We created clusters using Minikube, KinD, and k3d. Let's compare them so that you can decide which one works for you.

 Comparing Minikube, KinD, and k3d

 Minikube is the official local Kubernetes release. It is part of Kubernetes; it's very mature and very full featured. That said, it requires a VM and is both slow to install and to start. It can also get into trouble with networking at arbitrary times and sometimes the only remedy is deleting the cluster and rebooting. Also, Minikube supports a single node only. I suggest using Minikube only if it supports some feature that you need that is not available in either KinD or k3d.

 KinD is much faster than Minikube and is used for Kubernetes conformance tests, so by definition, it is a conformant Kubernetes distribution. It is the only local cluster solution that provides HA clusters with multiple control-plane nodes. It is also designed to be used as a library, which I don't find as a big attraction because it is very easy to automate CLIs from code. The main downside of KinD for local development is that it is ephemeral. I recommend using KinD if you contribute to Kubernetes itself and want to test against it.

 k3d is the clear winner for me. It's lightning fast, supports multiple clusters, and supports multiple worker nodes per cluster. It's also easy to stop and start clusters without losing state.

 Alright. Let's take a look at the cloud.

 Creating clusters in the cloud (GCP, AWS, Azure)

 Creating clusters locally is fun. It's also important during development and when trying to troubleshoot problems locally. But, in the end, Kubernetes is designed for cloud-native applications (applications that run in the cloud). Kubernetes doesn't want to be aware of individual cloud environments because that doesn't scale. Instead, Kubernetes has the concept of a cloud-provider interface. Every cloud provider can implement this interface and then host Kubernetes. Note that, as of version 1.5, Kubernetes still maintains implementations for many cloud providers in its tree, but in the future, they will be refactored out.

 The cloud-provider interface

 The cloud-provider interface is a collection of Go data types and interfaces. It is defined in a file called cloud.go, available at https://github.com/kubernetes/cloud-provider/blob/master/cloud.go.

 Here is the main interface:

 type Interface interface {
 Initialize(clientBuilder controller.ControllerClientBuilder)
 LoadBalancer() (LoadBalancer, bool)
 Instances() (Instances, bool)
 Zones() (Zones, bool)
 Clusters() (Clusters, bool)
 Routes() (Routes, bool)
 ProviderName() string
 HasClusterID() bool
}

 This is very clear. Kubernetes operates in terms of instances, zones, clusters, and routes, and also requires access to a load balancer and provider name. The main interface is primarily a gateway. Most methods return yet other interfaces.

 For example, the Clusters interface is very simple:

 type Clusters interface {
 ListClusters() ([]string, error)
 Master(clusterName string) (string, error)
}

 The ListClusters() method returns cluster names. The Master() method returns the IP address or DNS name of the master node.

 The other interfaces are not much more complicated. The entire file is 214 lines long (at the time of writing), including lots of comments. The take-home point is that it is not too complicated to implement a Kubernetes provider if your cloud utilizes those basic concepts.

 GCP

 The Google Cloud Platform (GCP) supports Kubernetes out of the box. The so-called Google Kubernetes Engine (GKE) is a container management solution built on Kubernetes. You don't need to install Kubernetes on GCP, and you can use the Google Cloud API to create Kubernetes clusters and provision them. The fact that Kubernetes is a built-in part of the GCP means it will always be well integrated and well tested, and you don't have to worry about changes in the underlying platform breaking the cloud-provider interface.

 All in all, if you plan to base your system on Kubernetes and you don't have any existing code on other cloud platforms, then GCP is a solid choice. It leads the pack in terms of maturity, polish, and depth of integration to GCP services, and is usually the first to update to newer versions of Kubernetes.

 AWS

 AWS has its own container management service called Elastic Container Service (ECS) that is not based on Kubernetes. It also has a managed Kubernetes service called Elastic Kubernetes Service (EKS). However, you can run Kubernetes yourself on AWS EC2 instances.

 In fact, most of the production Kubernetes deployments in the world run on AWS EC2. Let's talk about how to roll your own Kubernetes first and then we'll discuss EKS.

 Kubernetes on EC2

 AWS was a supported cloud provider from the get-go. There is a lot of documentation on how to set it up. While you could provision some EC2 instances yourself and use kubeadm to create a cluster, I recommend using the Kops (Kubernetes Operations) project. Kops is a Kubernetes project available on GitHub: https://github.com/kubernetes/kops/blob/master/docs/aws.md. It is not part of the core Kubernetes repository, but it is developed and maintained by the Kubernetes developers.

 It supports the following features:

 	Automated Kubernetes cluster CRUD for the cloud (AWS).

 	Highly available Kubernetes clusters.

 	Uses a state-sync model for dry-run and automatic idempotency.

 	Custom support for kubectl add-ons.

 	Kops can generate Terraform configuration.

 	Based on a simple meta-model defined in a directory tree.

 	Easy command-line syntax.

 	Community support.

 To create a cluster, you need to do some minimal DNS configuration via route53, set up a S3 bucket to store the cluster configuration, and then run a single command:

 kops create cluster --cloud=aws --zones=us-east-1c ${NAME}

 The complete instructions can be found here: https://github.com/kubernetes/kops/blob/master/docs/getting_started/aws.md.

 At the end of 2017, AWS joined the CNCF and made two big announcements regarding Kubernetes: its own Kubernetes-based container orchestration solution (EKS) and a container-on-demand solution (Fargate).

 AWS EKS

 AWS EKS is a fully managed and highly available Kubernetes solution. It has three masters running in three AZs. EKS also takes care of upgrades and patching. The great thing about EKS is that it runs a stock Kubernetes. This means you can use all the standard plugins and tools developed by the community. It also opens the door to convenient cluster federation with other cloud providers and/or your own on-premise Kubernetes clusters.

 EKS provides deep integration with AWS infrastructure like how IAM authentication is integrated with Kubernetes role-based access control (RBAC).

 You can also use AWS PrivateLink if you want to access your Kubernetes masters directly from your own Amazon Virtual Private Cloud (Amazon VPC). With PrivateLink, your Kubernetes masters and the Amazon EKS service endpoint appear as an elastic network interface with private IP addresses in your Amazon VPC.

 Another important piece of the puzzle is a special CNI plugin that lets your Kubernetes components talk to each other using AWS networking.

 EKS keeps getting better and Amazon demonstrated that it is committed to keeping it up to date and improving it. If you are an AWS shop and getting into Kubernetes, I recommend starting with EKS as opposed to building your own cluster.

 The eksctl tool is a great CLI for creating and managing EKS clusters and node groups. I successfully created, deleted, and added nodes to several Kubernetes clusters on AWS using eksctl. Check out https://eksctl.io/.

 Fargate

 AWS Fargate lets you run containers directly without worrying about provisioning hardware. It eliminates a huge part of the operational complexity at the cost of losing some control. When using Fargate, you package your application into a container, specify CPU and memory requirements, define networking and IAM policies, and you're off to the races. Fargate can run on top of ECS at the moment and EKS in the future. It is a very interesting member in the serverless camp, although it's not directly related to Kubernetes.

 Azure

 Azure used to have its own container management service. You could use the Mesos-based DC/OS or Docker Swarm to manage them. But you can also use Kubernetes, of course. You could also provision the cluster yourself (for example, using Azure's desired state configuration) and then create the Kubernetes cluster using kubeadm. Azure doesn't have a Kops equivalent, but the Kubespray project is a good option.

 However, in the second half of 2017, Azure jumped on the Kubernetes bandwagon too and introduced the Azure Kubernetes Service (AKS). It is similar to Amazon EKS, although it's a little further ahead in its implementation.

 AKS provides a REST API as well as a CLI to manage your Kubernetes cluster. However, you can use kubectl and any other Kubernetes tooling directly.

 Here are some of the benefits of using AKS:

 	Automated Kubernetes version upgrades and patching

 	Easy cluster scaling

 	Self-healing hosted control plane (masters)

 	Cost savings – pay only for running agent pool nodes

 AKS also offers integration with Azure Container Instances (ACI), which is similar to AWS Fargate. This means that not only the control plane of your Kubernetes cluster is managed, but also the worker nodes.

 Another interesting feature of AKS is AKS-Engine: https://github.com/Azure/aks-engine. AKS-Engine is an open source project, which is the core of AKS. One of the downsides of using a managed service is that you have to accept the choices of the cloud provider. If you have special requirements, then the other option is to create your own cluster, which is a big undertaking. With AKS Engine, you get to take the work the AKS team did and customize just the parts that are important to you.

 Other cloud providers

 GCP, AWS, and Azure are leading the pack, but there are quite a few other companies that offer managed Kubernetes services. In general, I recommend using these providers if you already have significant business connections or integrations.

 Once upon a time in China

 If you operate in China with its special constraints and limitations, you should probably use a Chinese cloud platform. There are three big ones: Alibaba, Tencent, and Huawei.

 The Chinese Alibaba Cloud is an up and comer on the cloud platform scene. It mimics AWS pretty closely, although its English documentation leaves a lot to be desired. I deployed some production application on Ali baba cloud, but not Kubernetes clusters. The Alibaba cloud supports Kubernetes in several ways via its Alibaba container service for Kubernetes (ACK):

 	Run your own dedicated Kubernetes cluster (you must create three master nodes and upgrade and maintain them)

 	Use the managed Kubernetes cluster (you're just responsible for the worker nodes)

 	Use the serverless Kubernetes cluster via Elastic container instances (ECIs), which is like Fargate and ACI

 ACK is a CNCF certified Kubernetes distribution. If you need to deploy cloud-native applications in China, then ACK looks like a solid option.

 Tencent is another large Chinese company with its own cloud platform and Kubernetes support. Tencent Kubernetes engine (TKE) seems less mature than ACK.

 Finally, the Huawei cloud platform offers the Cloud Container Engine (CCE), which is built on Kubernetes. It supports VMs, bare metal, and GPU accelerated instances.

 IBM Kubernetes Service

 IBM is investing heavily in Kubernetes. It acquired RedHat at the end of 2018. RedHat was, of course, a major player in the Kubernetes world, building its OpenShift Kubernetes-based platform and contributing RBAC to Kubernetes. IBM has its own cloud platform and offers a managed Kubernetes cluster. You can try it out for free with $200 credit.

 IBM is also involved in the development of Istio and Knative, so IKS will likely have deep integration with those up and coming technologies.

 Oracle Container Service

 Oracle also has a cloud platform and, of course, offers a managed Kubernetes service too, with high availability, bare-metal instances, and multi-AZ support.

 In this section, we covered the cloud-provider interface and looked at the recommended ways to create Kubernetes clusters on various cloud providers. The scene is still young, and the tools are evolving quickly. I believe convergence will happen soon. Tools and projects like Kargo and Kubernetes-anywhere have already been deprecated or merged into other projects. Kubeadm has matured and is the underlying foundation of many other tools to bootstrap and create Kubernetes clusters on and off the cloud. Now, let's consider what it takes to create bare-metal clusters where you have to provision the hardware and low-level networking too.

 Creating a bare-metal cluster from scratch

 In the previous section, we looked at running Kubernetes on cloud providers. This is the dominant deployment story for Kubernetes. But there are strong use cases for running Kubernetes on bare metal. I won't focus on hosted versus on-premises here. This is yet another dimension. If you already manage a lot of servers on-premises, you are in the best position to decide.

 Use cases for bare metal

 Bare-metal clusters are a bear, especially if you manage them yourself. There are companies that provide commercial support for bare-metal Kubernetes clusters, such as Platform 9, but the offerings are not mature yet. A solid open source option is Kubespray, which can deploy industrial-strength Kubernetes clusters on bare metal, AWS, GCE, Azure, and OpenStack.

 Here are some use cases where it makes sense:

 	Price: If you already manage large-scale bare clusters, it may be much cheaper to run Kubernetes clusters on your physical infrastructure.

 	Low network latency: If you must have low latency between your nodes, then the VM overhead might be too much.

 	Regulatory requirements: If you must comply with regulations, you may not be allowed to use cloud providers.

 	You want total control over hardware: Cloud providers give you many options, but you may have special needs.

 When should you consider creating a bare-metal cluster?

 The complexities of creating a cluster from scratch are significant. A Kubernetes cluster is not a trivial beast. There is a lot of documentation on the web on how to set up bare-metal clusters, but as the whole ecosystem moves forward, many of these guides get out of date quickly.

 You should consider going down this route if you have the operational capability to debug problems at every level of the stack. Most of the problems will probably be networking-related, but filesystems and storage drivers can bite you too, as well as general incompatibilities and version mismatches between components such as Kubernetes itself, Docker (or other runtimes, if you use them), images, your OS, your OS kernel, and the various add-ons and tools you use. If you opt for using VMs on top of bare metal, then you add another layer of complexity.

 Understanding the process

 There is a lot to do. Here is a list of some of the concerns you'll have to address:

 	Implementing your own cloud-provider interface or sidestepping it

 	Choosing a networking model and how to implement it (CNI plugin, direct compile)

 	Whether or not to use network policies

 	Select images for system components

 	Security model and SSL certificates

 	Admin credentials

 	Templates for components such as API Server, replication controller, and scheduler

 	Cluster services: DNS, logging, monitoring, and GUI

 I recommend the following guide from the Kubernetes site to get a deeper understanding of what it takes to create a HA cluster from scratch using kubeadm: https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/.

 Using virtual private cloud infrastructure

 If your use case falls under the bare-metal use cases, but you don't have the necessary skilled manpower or the inclination to deal with the infrastructure challenges of bare metal, you have the option to use a private cloud such as OpenStack with Stackube: https://github.com/openstack/stackube. If you want to aim a little higher in the abstraction ladder, then Mirantis offers a cloud platform built on top of OpenStack and Kubernetes.

 Let's review a few more tools for building Kubernetes clusters on bare metal. Some of these tools support OpenStack as well.

 Building your own cluster with Kubespray

 Kubespray is a project for deploying production-ready highly available Kubernetes clusters. It uses Ansible and can deploy Kubernetes on a large number of targets, such as:

 	AWS

 	GCE

 	Azure

 	OpenStack

 	vSphere

 	Packet (bare metal)

 	Oracle Cloud Infrastructure (experimental)

 And also to plain bare metal.

 It is highly customizable and support multiple operating systems for the nodes, multiple CNI plugins for networking, and multiple container runtimes.

 If you want to test it locally, it can deploy to a multi-node vagrant setup too. If you're an Ansible fan, Kubespray may be a great choice for you.

 Building your cluster with KRIB

 KRIB is a Kubernetes installer for bare metal clusters that are provisioned using Digital Rebar Provision (DRP). DRP is a single Golang executable that takes care of a lot of the heavy lifting like DHCP in terms of bare-metal provisioning (PXE/iPXE), and workflow automation. KRIB drives kubeadm to ensure it ends up with a valid Kubernetes cluster. The process involves:

 	Server discovery

 	Installation of the KRIB Content and Certificate Plugin

 	Starting the cluster deployment

 	Monitoring the deployment

 	Accessing the cluster

 See https://kubernetes.io/docs/setup/production-environment/tools/krib/ for more details.

 Building your cluster with RKE

 Rancher Kubernetes Engine (RKE) is a friendly Kubernetes installer that can install Kubernetes on bare-metal as well as virtualized servers. RKE aims to address the complexity of installing Kubernetes. It is open source and has great documentation. Check it out here: http://rancher.com/docs/rke/v0.1.x/en/.

 Bootkube

 Bootkube is very interesting too. It can launch self-hosted Kubernetes clusters. Self-hosted means that most of the cluster components run as regular pods and can be managed, monitored, and upgraded using the same tools and processes you use for your containerized applications. There are significant benefits to this approach that simplify the development and operation of Kubernetes clusters.

 It is a Kubernetes incubator project, but it doesn't seem very active. Check it out here: https://github.com/kubernetes-incubator/bootkube.

 In this section, we considered the option to build a bare-metal cluster Kubernetes cluster. We looked into the use cases that require it and highlighted the challenges and difficulties.

 Summary

 In this chapter, we got into some hands-on cluster creation. We created a single-node cluster using Minikube and a multi-node cluster using KinD and k3d. Then, we looked at the many options to create Kubernetes clusters on cloud providers. Finally, we touched on the complexities of creating Kubernetes clusters on bare metal. The current state of affairs is very dynamic. The basic components are changing rapidly, the tooling is getting better, and there are different options for each environment. Kubeadm is now the cornerstone of most installation options, which is great for consistency and consolidation of effort.

 It's still not completely trivial to stand up a Kubernetes cluster on your own, but with some effort and attention to detail, you can get it done quickly.

 In the next chapter, we will explore the important topics of scalability and high availability. Once your cluster is up and running, you need to make sure it stays that way, even as the volume of requests increases. This requires ongoing attention and building the ability to recover from failures, as well as adjusting to changes in traffic.

 References

 	https://github.com/kubernetes/minikube

 	https://kind.sigs.k8s.io/

 	https://k3s.io/

 	https://github.com/rancher/k3d

 	https://kubespray.io/#/

 	https://www.alibabacloud.com/product/kubernetes

 	https://www.ibm.com/cloud/container-service

 3

 High Availability and Reliability

 In Chapter 2, Creating Kubernetes Clusters, we learned how to create Kubernetes clusters in different environments, experimented with different tools, and created a couple of clusters. Creating a Kubernetes cluster is just the beginning of the story. Once the cluster is up and running, you need to make sure it stays operational.

 In this chapter, we will dive into the topic of highly available clusters. This is a complicated topic. The Kubernetes project and the community haven't settled on one true way to achieve high availability nirvana. There are many aspects to highly available Kubernetes clusters, such as ensuring that the control plane can keep functioning in the face of failures, protecting the cluster state in etcd, protecting the system's data, and recovering capacity and/or performance quickly. Different systems will have different reliability and availability requirements. How to design and implement a highly available Kubernetes cluster will depend on those requirements.

 At the end of this chapter, you will understand the various concepts associated with high availability and be familiar with Kubernetes high availability best practices and when to employ them. You will be able to upgrade live clusters using different strategies and techniques, and you will be able to choose between multiple possible solutions based on trade-offs between performance, cost, and availability.

 High availability concepts

 In this section, we will start our journey into high availability by exploring the concepts and building blocks of reliable and highly available systems. The million (trillion?) dollar question is, how do we build reliable and highly available systems from unreliable components? Components will fail; you can take that to the bank. Hardware will fail; networks will fail; configuration will be wrong; software will have bugs; people will make mistakes. Accepting that, we need to design a system that can be reliable and highly available even when components fail. The idea is to start with redundancy, detect component failure, and replace bad components quickly.

 Redundancy

 Redundancy is the foundation of reliable and highly available systems at the hardware and data levels. If a critical component fails and you want the system to keep running, you must have another identical component ready to go. Kubernetes itself takes care of your stateless pods via replication controllers and replica sets. But, your cluster state in etcd and the master components themselves need redundancy to function when some components fail. In addition, if your system's stateful components are not backed up by redundant storage (for example, on a cloud platform), then you need to add redundancy to prevent data loss.

 Hot swapping

 Hot swapping is the concept of replacing a failed component on the fly without taking the system down, with minimal (ideally, zero) interruption for users. If the component is stateless (or its state is stored in separate redundant storage), then hot swapping a new component to replace it is easy and just involves redirecting all clients to the new component. But, if it stores local state, including in memory, then hot swapping is not trivial. There are two main options:

 	Give up on in-flight transactions

 	Keep a hot replica in sync

 The first solution is much simpler. Most systems are resilient enough to cope with failures. Clients can retry failed requests and the hot-swapped component will service them.

 The second solution is more complicated and fragile, and will incur a performance overhead because every interaction must be replicated to both copies (and acknowledged). It may be necessary for some parts of the system.

 Leader election

 Leader or master election is a common pattern in distributed systems. You often have multiple identical components that collaborate and share the load, but one component is elected as the leader and certain operations are serialized through the leader. You can think of distributed systems with leader election as a combination of redundancy and hot swapping. The components are all redundant and, when the current leader fails or becomes unavailable, a new leader is elected and hot-swapped in.

 Smart load balancing

 Load balancing is about distributing the workload across multiple replicas that service incoming requests. This is useful for scaling up and down under heavy load by adjusting the number of replicas. When some replicas fail, the load balancer will stop sending requests to failed or unreachable components. Kubernetes will provision new replicas, restore capacity, and update the load balancer. Kubernetes provides great facilities to support this via services, endpoints, replica sets, labels, and ingress controllers.

 Idempotency

 Many types of failure can be temporary. This is most common with networking issues or with too-stringent timeouts. A component that doesn't respond to a health check will be considered unreachable and another component will take its place. Work that was scheduled for the presumably failed component may be sent to another component. But the original component may still be working and complete the same work. The end result is that the same work may be performed twice. It is very difficult to avoid this situation. To support exactly-once semantics, you need to pay a heavy price in overhead, performance, latency, and complexity. Thus, most systems opt to support at-least-once semantics, which means it is OK for the same work to be performed multiple times without violating the system's data integrity. This property is called idempotency. Idempotent systems maintain their state even if an operation is performed multiple times.

 Self-healing

 When component failures occur in dynamic systems, you usually want the system to be able to heal itself. Kubernetes replication controllers and replica sets are great examples of self-healing systems. But failure can extend well beyond pods. Self-healing starts with the automated detection of problems followed by an automated resolution. Quotas and limits help create checks and balances to ensure automated self-healing doesn't run amok due to unpredictable circumstances such as DDOS attacks. Self-healing systems deal very well with transient failures by retrying failed operations and escalating failures only when it's clear there is no other option. Some self-healing systems have fallback paths including serving cached content if up-to-date content is unavailable. Self-healing systems attempt to degrade gracefully and keep working until the core issue can be fixed.

 In this section, we considered various concepts involved in creating reliable and highly available systems. In the next section, we will apply them and demonstrate best practices for systems deployed on Kubernetes clusters.

 High availability best practices

 Building reliable and highly available distributed systems is a non-trivial endeavor. In this section, we will check some of the best practices that enable a Kubernetes-based system to function reliably and be available in the face of various failure categories. We will also dive deep and see how to go about constructing your own highly available clusters.

 Note that you should roll your own highly available Kubernetes cluster only in very special cases. Tools such as Kubespray provide battle-tested ways to create highly available clusters. You should take advantage of all the work and effort that went into these tools.

 Creating highly available clusters

 To create a highly available Kubernetes cluster, the master components must be redundant. That means etcd must be deployed as a cluster (typically across three or five nodes) and the Kubernetes API server must be redundant. Auxiliary cluster-management services such as Heapster storage may be deployed redundantly too, if necessary. The following diagram depicts a typical reliable and highly available Kubernetes cluster in a stacked etcd topology. There are several load-balanced master nodes, each one containing whole master components as well as an etcd component:

 [image:]
 Figure 3.1: A highly available cluster configuration

 This is not the only way to configure highly available clusters. You may prefer, for example, to deploy a standalone etcd cluster to optimize the machines to their workload or if you require more redundancy for your etcd cluster than the rest of the master nodes.

 The following diagram shows a Kubernetes cluster where etcd is deployed as an external cluster:

 [image:]
 Figure 3.2: etcd used as an external cluster

 Self-hosted Kubernetes clusters, where control plane components are deployed as pods and stateful sets in the cluster, are a great approach to simplify the robustness, disaster recovery, and self-healing of the control plane components by applying Kubernetes to Kubernetes.

 Making your nodes reliable

 Nodes will fail, or some components will fail, but many failures are transient. The basic guarantee is to make sure that the Docker daemon (or whatever the CRI implementation is) and the kubelet restart automatically in the event of a failure.

 If you run CoreOS, a modern Debian-based OS (including Ubuntu >= 16.04), or any other OS that uses systemd as its init mechanism, then it's easy to deploy Docker and the kubelet as self-starting daemons:

 systemctl enable docker
systemctl enable kublet

 For other operating systems, the Kubernetes project selected monit for their high-availability example, but you can use any process monitor you prefer. The main requirement is to make sure that those two critical components will restart in the event of failure, without external intervention.

 Protecting your cluster state

 The Kubernetes cluster state is stored in etcd. The etcd cluster was designed to be super reliable and distributed across multiple nodes. It's important to take advantage of these capabilities for a reliable and highly available Kubernetes cluster.

 Clustering etcd

 You should have at least three nodes in your etcd cluster. If you need more reliability and redundancy, you can go for five, seven, or any other odd number of nodes. The number of nodes must be odd to have a clear majority in the event of a network split.

 In order to create a cluster, the etcd nodes should be able to discover each other. There are several methods to accomplish this. I recommend using the excellent etcd operator from CoreOS:

 [image:]
 Figure 3.3: The Kubernetes etcd operator logo

 The operator takes care of many complicated aspects of etcd operation, such as the following:

 	Create and destroy

 	Resizing

 	Failovers

 	Rolling upgrades

 	Backup and restore

 Installing the etcd operator

 The easiest way to install the etcd operator is using Helm – the Kubernetes package manager. If you don't have Helm installed yet, follow the instructions here: https://github.com/kubernetes/helm#install.

 Next, save the following YAML to helm-rbac.yaml:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: tiller
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: tiller
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
 - kind: ServiceAccount
 name: tiller
 namespace: kube-system

 This creates a service account for Tiller and gives it a cluster admin role:

 $ k apply -f helm-rbac.yaml
serviceaccount/tiller created
clusterrolebinding.rbac.authorization.k8s.io/tiller created

 Then initialize Helm with the Tiller service account:

 $ helm2 init --service-account tiller
$HELM_HOME has been configured at /Users/gigi.sayfan/.helm.
Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.
Please note: by default, Tiller is deployed with an insecure 'allow unauthenticated users' policy.To prevent this, run 'helm init' with the --tiller-tls-verify flag.
For more information on securing your installation see: https://docs.helm.sh/using_helm/#securing-your-helm-installation

 Don't worry about the warnings at this point. We will dive deep into Helm in Chapter 9, Packaging Applications.

 Now, we can finally install the etcd operator. I use x as a short release name to make the output less verbose. You may want to use more meaningful names:

 $ helm2 install stable/etcd-operator --name x
NAME: x
LAST DEPLOYED: Thu May 28 17:33:16 2020
NAMESPACE: default
STATUS: DEPLOYED
RESOURCES:
==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
x-etcd-operator-etcd-backup-operator-dffcbd97-hfsnc 0/1 Pending 0 0s
x-etcd-operator-etcd-operator-669975754b-vhhq5 0/1 Pending 0 0s
x-etcd-operator-etcd-restore-operator-6b787cc5c-6dk77 0/1 Pending 0 0s
==> v1/Service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
etcd-restore-operator ClusterIP 10.43.182.231 <none> 19999/TCP 0s
==> v1/ServiceAccount
NAME SECRETS AGE
x-etcd-operator-etcd-backup-operator 1 0s
x-etcd-operator-etcd-operator 1 0s
x-etcd-operator-etcd-restore-operator 1 0s
==> v1beta1/ClusterRole
NAME AGE
x-etcd-operator-etcd-operator 0s
==> v1beta1/ClusterRoleBinding
NAME AGE
x-etcd-operator-etcd-backup-operator 0s
x-etcd-operator-etcd-operator 0s
x-etcd-operator-etcd-restore-operator 0s
==> v1beta2/Deployment
NAME READY UP-TO-DATE AVAILABLE AGE
x-etcd-operator-etcd-backup-operator 0/1 1 0 0s
x-etcd-operator-etcd-operator 0/1 1 0 0s
x-etcd-operator-etcd-restore-operator 0/1 1 0 0s
NOTES:
1. etcd-operator deployed.
 If you would like to deploy an etcd-cluster set cluster.enabled to true in values.yaml
 Check the etcd-operator logs
 export POD=$(kubectl get pods -l app=x-etcd-operator-etcd-operator --namespace default --output name)
 kubectl logs $POD --namespace=default

 Now that the operator is installed, we can use it to create the etcd cluster.

 Creating the etcd Cluster

 Save the following to etcd-cluster.yaml:

 apiVersion: "etcd.database.coreos.com/v1beta2"
kind: "EtcdCluster"
metadata:
 name: "example-etcd-cluster"
spec:
 size: 3
 version: "3.2.13"

 To create the cluster type, use the following command:

 $ k create -f etcd-cluster.yaml
etcdcluster.etcd.database.coreos.com/etcd-cluster created

 Let's verify the cluster pods were created properly:

 $ k get pods -o wide | grep etcd-cluster
etcd-cluster-2fs2lpz7p7 1/1 Running 0 2m53s 10.42.2.4 k3d-k3s-default-worker-1
etcd-cluster-58547r5f6x 1/1 Running 0 3m49s 10.42.1.5 k3d-k3s-default-worker-0
etcd-cluster-z7s4bfksdl 1/1 Running 0 117s 10.42.3.5 k3d-k3s-default-worker-2

 As you can see, each etcd pod was scheduled to run on a different node. This is exactly what we want with a redundant datastore like etcd.

 The -o wide format for kubectl's get command provides additional information for the get pods command the node for the pod is scheduled on.

 Verifying the etcd cluster

 Once the etcd cluster is up and running, you can access it with the etcdctl tool to check on the cluster status and health. Kubernetes lets you execute commands directly inside pods or containers via the exec command (similar to docker exec).

 Here is how to check if the cluster is healthy:

 $ k exec etcd-cluster-2fs2lpz7p7 -- etcdctl cluster-health
member 1691519f36d795b7 is healthy: got healthy result from http://etcd-cluster-2fs2lpz7p7.etcd-cluster.default.svc:2379
member 1b67c8cb37fca67e is healthy: got healthy result from http://etcd-cluster-58547r5f6x.etcd-cluster.default.svc:2379
member 3d4cbb73aeb3a077 is healthy: got healthy result from http://etcd-cluster-z7s4bfksdl.etcd-cluster.default.svc:2379
cluster is healthy

 Here is to how to set and get key-value pairs:

 $ k exec etcd-cluster-2fs2lpz7p7 -- etcdctl set test "Yeah, it works"
Yeah, it works
$ k exec etcd-cluster-2fs2lpz7p7 -- etcdctl get test
Yeah, it works

 Protecting your data

 Protecting the cluster state and configuration is great, but even more important is protecting your own data. If somehow the cluster state gets corrupted, you can always rebuild the cluster from scratch (although the cluster will not be available during the rebuild). But if your own data is corrupted or lost, you're in deep trouble. The same rules apply: redundancy is king. But while the Kubernetes cluster state is very dynamic, much of your data may be less dynamic.

 For example, a lot of historic data is often important and can be backed up and restored. Live data might be lost, but the overall system may be restored to an earlier snapshot and suffer only temporary damage.

 You should consider Velero as a solution for backing up your entire cluster, including your own data. Heptio (now part of VMware) developed Velero, which is open source and may be a life-saver for critical systems.

 Check it out at https://velero.io.

 Running redundant API servers

 API servers are stateless, fetching all the necessary data on the fly from the etcd cluster. This means that you can easily run multiple API servers without needing to coordinate between them. Once you have multiple API servers running, you can put a load balancer in front of them to make it transparent to clients.

 Running leader election with Kubernetes

 Some master components, such as the scheduler and the controller manager, can't have multiple instances active at the same time. This would be chaos, as multiple schedulers would try to schedule the same pod into multiple nodes or multiple times into the same node. The correct way to have a highly scalable Kubernetes cluster is to have these components run in leader election mode. This means that multiple instances are running, but only one is active at a time and if it fails, another one is elected as leader and takes its place.

 Kubernetes supports this mode via the --leader-elect flag. The scheduler and the controller manager can be deployed as pods by copying their respective manifests to /etc/kubernetes/manifests.

 Here is a snippet from a scheduler manifest that shows the use of the flag:

 command:
 - /bin/sh
 - -c
 - /usr/local/bin/kube-scheduler --master=127.0.0.1:8080 --v=2 --leader-elect=true 1>>/var/log/kube-scheduler.log
 2>&1

 Here is a snippet from a controller manager manifest that shows the use of the flag:

 - command:
 - /bin/sh
 - -c
 - /usr/local/bin/kube-controller-manager --master=127.0.0.1:8080 --cluster-name=e2e-test-bburns
 --cluster-cidr=10.245.0.0/16 --allocate-node-cidrs=true --cloud-provider=gce --service-account-private-key-file=/srv/kubernetes/server.key
 --v=2 --leader-elect=true 1>>/var/log/kube-controller-manager.log 2>&1
 image: gcr.io/google_containers/kube-controller-manager:fda24638d51a48baa13c35337fcd4793

 There are several other flags to control leader election. All of them have reasonable defaults:

 --leader-elect-lease-duration duration Default: 15s
--leader-elect-renew-deadline duration Default: 10s
--leader-elect-resource-lock endpoints Default: "endpoints" ("configmaps" is the other option)
--leader-elect-retry-period duration Default: 2s

 Note that it is not possible to have these components restarted automatically by Kubernetes like other pods because these are exactly the Kubernetes components responsible for restarting failed pods, so they can't restart themselves if they fail. There must be a ready-to-go replacement already running.

 Making your staging environment highly available

 High availability is not trivial to set up. If you go to the trouble of setting up high availability, it means there is a business case for a highly available system. It follows that you want to test your reliable and highly available cluster before you deploy it to production (unless you're Netflix, where you test in production). Also, any change to the cluster may, in theory, break your high availability without disrupting other cluster functions. The essential point is that, just like anything else, if you don't test it, assume it doesn't work.

 We've established that you need to test reliability and high availability. The best way to do this is to create a staging environment that replicates your production environment as closely as possible. This can get expensive. There are several ways to manage the cost:

 	An ad hoc highly available staging environment: Create a large highly available cluster only for the duration of high availability testing.

 	Compress time: Create interesting event streams and scenarios ahead of time, feed the input, and simulate the situations in rapid succession.

 	Combine high availability testing with performance and stress testing: At the end of your performance and stress tests, overload the system and see how the reliability and high availability configuration handles the load.

 Testing high availability

 Testing high availability takes planning and a deep understanding of your system. The goal of every test is to reveal flaws in the system's design and/or implementation, and to provide good enough coverage that, if the tests pass, you'll be confident that the system behaves as expected.

 In the realm of reliability, self-healing, and high availability, it means you need to figure out ways to break the system and watch it put itself back together.

 This requires several elements, as follows:

 	A comprehensive list of possible failures (including reasonable combinations)

 	For each possible failure, it should be clear how the system should respond

 	A way to induce the failure

 	A way to observe how the system reacts

 None of the elements are trivial. The best approach in my experience is to do it incrementally and try to come up with a relatively small number of generic failure categories and generic responses, rather than an exhaustive, ever-changing list of low-level failures.

 For example, a generic failure category is node-unresponsive; the generic response could be rebooting the node; the way to induce the failure could be stopping the virtual machine (VM) of the node (if it's a VM). The observation should be that, while the node is down, the system still functions properly based on standard acceptance tests; the node is eventually up, and the system gets back to normal. There may be many other things you want to test, such as whether the problem was logged, whether relevant alerts went out to the right people, and whether various stats and reports were updated.

 But beware of over-generalizing. In the case of the generic unresponsive node failure, a key component is detecting that the node is unresponsive. If your method of detection is faulty, then your system will not react properly. Use best practices like health checks and readiness checks.

 Note that, sometimes, a failure can't be resolved in a single response. For example, in our unresponsive node case, if it's a hardware failure, then rebooting will not help. In this case, a second line of response comes into play and maybe a new node is provisioned to replace the failed node. In this case, you can't be too generic and you may need to create tests for specific types of pod/role that were on the node (such as etcd, master, worker, database, and monitoring).

 If you have high quality requirements, be prepared to spend much more time setting up the proper testing environments and the tests than even the production environment.

 One last important point is to try to be as unintrusive as possible. That means that, ideally, your production system will not have testing features that allow shutting down parts of it or cause it to be configured to run at reduced capacity for testing. The reason is that it increases the attack surface of your system and it could be triggered by accident by mistakes in configuration. Ideally, you can control your testing environment without resorting to modifying the code or configuration that will be deployed in production. With Kubernetes, it is usually easy to inject pods and containers with custom test functionality that can interact with system components in the staging environment, but will never be deployed in production.

 In this section, we looked at what it takes to actually have a reliable and highly available cluster, including etcd, the API server, the scheduler, and the controller manager. We considered best practices for protecting the cluster itself, as well as your data, and paid special attention to the issue of starting environments and testing.

 High availability, scalability, and capacity planning

 Highly available systems must also be scalable. The load on most complicated distributed systems can vary dramatically based on the time of day, weekdays versus weekends, seasonal effects, marketing campaigns, and many other factors. Successful systems will have more users over time and accumulate more and more data. That means that the physical resources of the clusters—mostly nodes and storage—will have to grow over time too. If your cluster is under-provisioned, it will not be able to satisfy all the demand and it will not be available because requests will time out or be queued up and not processed fast enough.

 This is the realm of capacity planning. One simple approach is to over-provision your cluster. Anticipate the demand and make sure you have enough of a buffer for spikes of activity. But be aware that this approach suffers from several deficiencies:

 	For highly dynamic and complicated distributed systems, it's difficult to forecast the demand even approximately.

 	Over-provisioning is expensive. You spend a lot of money on resources that are rarely or never used.

 	You have to periodically redo the whole process because the average and peak load on the system changes over time.

 A much better approach is to use intent-based capacity planning where high-level abstraction is used and the system adjusts itself accordingly. In the context of Kubernetes, there is the horizontal pod autoscaler (HPA) that can grow and shrink the number of pods needed to handle requests for a particular service. But, that works only to change the ratio of resources allocated to different services. When the entire cluster approaches saturation, you simply need more resources. This is where the cluster autoscaler comes into play. It is a Kubernetes project that became available with Kubernetes 1.8. It works particularly well in cloud environments where additional resources can be provisioned via programmatic APIs.

 When the cluster autoscaler (CA) determines that pods can't be scheduled (that is, they are in the pending state), it provisions a new node for the cluster. It can also remove nodes from the cluster if it determines that the cluster has more nodes than necessary to handle the load. The CA will check for pending pods every 30 seconds. It will remove nodes only after 10 minutes of not being used, to avoid thrashing.

 Here are some issues to consider:

 	A cluster may require more nodes even if the total CPU or memory utilization is low due to control mechanisms like affinity, anti-affinity, taints, tolerations, pod priorities, and pod disruption budgets.

 	 In addition to the built-in delays in triggering the scaling up or down of nodes, there is an additional delay of several minutes when provisioning a new node from the cloud provider.

 	 The interactions between the HPA and the CA can be subtle.

 Installing the cluster autoscaler

 Note that you can't test the CA locally. You must have a Kubernetes cluster running on one of the following supported cloud providers:

 	GCE

 	GKE

 	AWS EKS

 	Azure

 	Alibaba Cloud

 	Baidu Cloud

 I have installed the CA successfully on GKE as well as AWS EKS.

 The eks-cluster-autoscaler.yaml file contains all the Kubernetes resources needed to install the CA on EKS. It involves creating a service account and giving it various RBAC permissions because it needs to monitor node usage across the cluster and be able to act on it. Finally, there is a deployment that actually deploys the CA image itself with a command-line interface that includes the range of nodes (that is, the minimum and maximum number) it should maintain, and in the case of EKS, a node group is needed too. The maximum number is important to prevent a situation where an attack or error causes the CA to just add more and more nodes uncontrollably, racking up a huge bill. Here is a snippet from the pod template:

 spec: serviceAccountName: cluster-autoscaler
 containers: - image: k8s.gcr.io/cluster-autoscaler:v1.2.2
 name: cluster-autoscaler
 resources:
 limits:
 cpu: 100m
 memory: 300Mi
 requests:
 cpu: 100m
 memory: 300Mi
 command:
 - ./cluster-autoscaler
 - --v=4 - --stderrthreshold=info
 - --cloud-provider=aws
 - --skip-nodes-with-local-storage=false - --nodes=2:5:eksctl-project-nodegroup-ng-name-NodeGroup-suffix
 env: - name: AWS_REGION
 value: us-east-1 volumeMounts: - name: ssl-certs
 mountPath: /etc/ssl/certs/ca-certificates.crt
 readOnly: true imagePullPolicy: "Always" volumes: - name: ssl-certs
 hostPath: path: "/etc/ssl/certs/ca-bundle.crt"

 The combination of the HPA and CA provides a truly elastic cluster where the HPA ensures that services use the proper amount of pods to handle the load per service, and the CA makes sure that the number of nodes matches the overall load on the cluster.

 Considering the vertical pod autoscaler

 The vertical pod autoscaler (VPA) is another autoscaler that operates on pods. Its job is to provide additional resources (CPU and memory) to pods that have too low limits. It is designed primarily for stateful services, but can work for stateless services too. It is based on a CRD (custom resource definition) and has three components:

 	Recommender: Watches CPU and memory usage and provides recommendations for new values for CPU and memory requests

 	Updater: Kills managed pods whose CPU and memory requests don't match the recommendations made by the recommender

 	Admission plugin: Sets the CPU and memory requests for new or recreated pods based on recommendations

 The VPA is still in beta. Here are some of the main limitations:

 	Unable to update running pods (hence the updater kills pods to get them restarted with the correct requests)

 	Can't evict pods that aren't managed by a controller

 	The VPA is incompatible with the HPA

 This section covered the interactions between auto-scalability and high availability and looked at different approaches for scaling Kubernetes clusters and the applications running on those clusters.

 Live cluster updates

 One of the most complicated and risky tasks involved in running a Kubernetes cluster is a live upgrade. The interactions between different parts of the system in different versions are often difficult to predict, but in many situations, it is required. Large clusters with many users can't afford to be offline for maintenance. The best way to attack complexity is to divide and conquer. Microservice architecture helps a lot here. You never upgrade your entire system. You just constantly upgrade several sets of related microservices, and if APIs have changed, then you upgrade their clients, too. A properly designed upgrade will preserve backward-compatibility at least until all clients have been upgraded, and then deprecate old APIs across several releases.

 In this section, we will discuss how to go about updating your cluster using various strategies such as rolling updates, blue-green deployments, and canary deployments. We will also discuss when it's appropriate to introduce breaking upgrades versus backward-compatible upgrades. Then we will get into the critical topic of schema and data migrations.

 Rolling updates

 Rolling updates are updates where you gradually update components from the current version to the next. This means that your cluster will run current and new components at the same time. There are two different cases to consider here:

 	New components are backward-compatible

 	New components are not backward-compatible

 If the new components are backward-compatible, then the upgrade should be very easy. In earlier versions of Kubernetes, you had to manage rolling updates very carefully with labels and change the number of replicas gradually for both the old and new versions (although kubectl rolling-update is a convenient shortcut for replication controllers). But, the Deployment resource introduced in Kubernetes 1.2 makes it much easier and supports replica sets. It has the following capabilities built in:

 	Running server side (it keeps going if your machine disconnects)

 	Versioning

 	Multiple concurrent rollouts

 	Updating deployments

 	Aggregating status across all pods

 	Rollbacks

 	Canary deployments

 	Multiple upgrade strategies (rolling upgrade is the default)

 Here is a sample manifest for a deployment that deploys three nginx pods:

 apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9 ports:
 - containerPort: 80

 The resource kind is Deployment and it's got the name nginx-deployment, which you can use to refer to this deployment later (for example, for updates or rollbacks). The most important part is, of course, the spec, which contains a pod template. The replicas determine how many pods will be in the cluster, and the template spec has the configuration for each container. In this case, this is just a single container.

 To start the rolling update, create the Deployment resource and check that it rolled out successfully:

 $ k create -f nginx-deployment.yaml
deployment.apps/nginx-deployment created
$ k rollout status deployment/nginx-deployment
deployment "nginx-deployment" successfully rolled out

 Deployments have an update strategy, which defaults to rollingUpdate:

 $ k get deployment nginx-deployment -o yaml | grep strategy -A 4
strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate

 The following diagram illustrates how a rolling update works:

 [image:]
 Figure 3.4: How a rolling update progresses

 Complex deployments

 The Deployment resource is great when you just want to upgrade one pod, but you may often need to upgrade multiple pods, and those pods sometimes have version inter-dependencies. In those situations, you must sometimes forgo a rolling update or introduce a temporary compatibility layer. For example, suppose service A depends on service B. Service B now has a breaking change. The v1 pods of service A can't interoperate with the pods from service B v2. It is also undesirable from both reliability and change-management points of view to make the v2 pods of service B support the old and new APIs. In this case, the solution may be to introduce an adapter service that implements the v1 API of the B service. This service will sit between A and B, and will translate requests and responses across versions. This adds complexity to the deployment process and requires several steps, but the benefit is that the A and B services themselves are simple. You can do rolling updates across incompatible versions and all indirection will go away once everybody upgrades to v2 (all A pods and all B pods).

 But rolling updates are not always the answer.

 Blue-green deployments

 Rolling updates are great for availability, but sometimes the complexity involved in managing a proper rolling update is considered too high, or it adds a significant amount of work that pushes back more important projects. In these cases, blue-green upgrades provide a great alternative. With a blue-green release, you prepare a full copy of your production environment with the new version. Now you have two copies, old (blue) and new (green). It doesn't matter which one is blue and which one is green. The important thing is that you have two fully independent production environments. Currently, blue is active and services all requests. You can run all your tests on green. Once you're happy, you flip the switch and green becomes active. If something goes wrong, rolling back is just as easy; just switch back from green to blue.

 The following diagram illustrates how blue-green deployments work using two deployments, two labels, and a single service that uses a label selector to switch from the blue deployment to the green deployment:

 [image:]
 Figure 3.5: Blue-green deployment in practice

 I totally ignored the storage and in-memory state in the previous discussion. This immediate switch assumes that blue and green are composed of stateless components only and share a common persistence layer.

 If there were storage changes or breaking changes to the API accessible to external clients, then additional steps need to be taken. For example, if blue and green have their own storage, then all incoming requests may need to be sent to both blue and green, and green may need to ingest historical data from blue to get in sync before switching.

 Canary deployments

 Blue-green deployments are cool. However, there are times where a more nuanced approach is needed. Suppose you are responsible for a large distributed system with many users. The developers plan to deploy a new version of their service. They tested the new version of the service in the test and staging environments. But, the production environment is too complicated to be replicated one to one for testing purposes. This means there is a risk that the service will misbehave in production. That's where canary deployments shine.

 The basic idea is to test the service in production, but in a limited capacity. This way, if something is wrong with the new version, only a small fraction of your users or a small fraction of requests will be impacted. This can be implemented very easily in Kubernetes at the pod level. If a service is backed up by 10 pods, then you deploy the new version and then only 10% of the requests will be routed by the service load balancer to the canary pod, while 90% of the requests will still be serviced by the current version.

 The following diagram illustrates this approach:

 [image:]
 Figure 3.6: Canary deployment in practice

 There are more sophisticated ways to route traffic to a canary deployment using a service mesh. We will examine that in a later chapter (Chapter 14, Utilizing Service Meshes).

 Let's address the hard problem of managing data-contract changes.

 Managing data-contract changes

 Data contracts describe how data is organized. It's an umbrella term for structure metadata. The most common example is a relational database schema. Other examples include network payloads, file formats, and even the content of string arguments or responses. If you have a configuration file, then this configuration file has both a file format (JSON, YAML, TOML, XML, INI, or a custom format) and some internal structure that describes what kind of hierarchy, keys, values, and data types are valid. Sometimes the data contract is explicit and sometimes it's implicit. Either way, you need to manage it carefully, or else you'll get runtime errors when code that's reading, parsing, or validating encounters data with an unfamiliar structure.

 Migrating data

 Data migration is a big deal. Many systems these days manage staggering amounts of data measured in terabytes, petabytes, or more. The amount of collected and managed data will continue to increase for the foreseeable future. The pace of data collection exceeds the pace of hardware innovation. The essential point is that if you have a lot of data and you need to migrate it, it can take a while. In a previous company, I oversaw a project to migrate close to 100 terabytes of data from one Cassandra cluster of a legacy system to another Cassandra cluster.

 The second Cassandra cluster had a different schema and was accessed by a Kubernetes cluster 24/7. The project was very complicated, and thus it kept getting pushed back when urgent issues popped up. The legacy system was still in place side by side with the next-gen system long after the original estimate.

 There were a lot of mechanisms in place to split the data and send it to both clusters, but then we ran into scalability issues with the new system and we had to address those before we could continue. The historical data was important, but it didn't have to be accessed with the same service level as recent hot data. So, we embarked on yet another project to send historical data to cheaper storage. That meant, of course, that client libraries or frontend services had to know how to query both stores and merge the results. When you deal with a lot of data, you can't take anything for granted. You run into scalability issues with your tools, your infrastructure, your third-party dependencies, and your processes. Moving to a large scale is not just a quantity change; it often means qualitative change as well. Don't expect it to go smoothly. It is much more than copying some files from A to B.

 Deprecating APIs

 API deprecation comes in two flavors: internal and external. Internal APIs are APIs used by components that are fully controlled by you and your team or organization. You can be sure that all API users will upgrade to the new API within a short time. External APIs are used by users or services outside your direct sphere of influence. There are a few gray-area situations when you work for a huge organization (think Google), and even internal APIs may need to be treated as external APIs. If you're lucky, all your external APIs are used by self-updating applications or through a web interface you control. In those cases, the API is practically hidden and you don't even need to publish it.

 If you have a lot of users (or a few very important users) using your API, you should consider deprecation very carefully. Deprecating an API means you force your users to change their application to work with you or stay locked to an earlier version.

 There are a few ways you can mitigate the pain:

 	Don't deprecate. Extend the existing API or keep the previous API active. It is sometimes pretty simple, although it adds to the testing burden.

 	Provide client libraries in all relevant programming languages to your target audience. This is always a good practice. It allows you to make many changes to the underlying API without disrupting users (as long as you keep the programming language interface stable).

 	If you have to deprecate, explain why, allow ample time for users to upgrade, and provide as much support as possible (for example, an upgrade guide with examples). Your users will appreciate it.

 Large cluster performance, cost, and design trade-offs

 In the previous section, we looked at live cluster upgrades and application updates. We explored various techniques and how Kubernetes supports them. We also discussed difficult problems such as breaking changes, data contract changes, data migration, and API deprecation. In this section, we will consider the various options and configurations of large clusters with different reliability and high availability properties. When you design your cluster, you need to understand your options and choose wisely based on the needs of your organization.

 The topics we will cover include various availability requirements, from best effort all the way to the holy grail of zero downtime. Finally, we will settle down on the practical site-reliability engineering approach. For each category of availability, we will consider what it means from the perspectives of performance and cost.

 Availability requirements

 Different systems have very different requirements for reliability and availability. Moreover, different sub-systems have very different requirements. For example, billing systems are always a high priority because if the billing system is down, you can't make money. But, even within the billing system, if the ability to dispute charges is sometimes unavailable, it may be OK from a business point of view.

 Best effort

 Best effort means, counter-intuitively, no guarantee whatsoever. If it works, great! If it doesn't work – oh well, what are you going to do? This level of reliability and availability may be appropriate for internal components that change often so the effort to make them robust is not worth it. As long as the services or clients that invoke the unreliable services are able to handle the occasional errors or outages, then all is well. It may also be appropriate for services released in the wild as beta.

 Best effort is great for developers. Developers can move fast and break things. They are not worried about the consequences and they don't have to go through a gauntlet of rigorous tests and approvals. The performance of best-effort services may be better than more robust services because the best-effort service can often skip expensive steps such as verifying requests, persisting intermediate results, and replicating data. But, on the other hand, more robust services are often heavily optimized and their supporting hardware is fine-tuned to their workload. The cost of best-effort services is usually lower because they don't need to employ redundancy, unless the operators neglect to do basic capacity planning and just over-provision needlessly.

 In the context of Kubernetes, the big question is whether all the services provided by the cluster are best effort. If this is the case, then the cluster itself doesn't have to be highly available. You could probably have a single master node with a single instance of etcd, and Heapster or another monitoring solution may not need to be deployed. This is typically appropriate for local development clusters only. Even a shared development cluster that multiple developers use should have a decent level of reliability and robustness or else all the developers will be twiddling their thumbs whenever the cluster goes down unexpectedly.

 Maintenance windows

 In a system with maintenance windows, special times are dedicated for performing various maintenance activities, such as applying security patches, upgrading software, pruning log files, and database cleanups. With a maintenance window, the system (or a sub-system) becomes unavailable. This is planned off-time and, often, users are notified. The benefit of maintenance windows is that you don't have to worry how your maintenance actions are going to interact with live requests coming into the system. It can drastically simplify operations. System administrators and operators love maintenance windows just as much as developers love best-effort systems.

 The downside, of course, is that the system is down during maintenance. This may only be acceptable for systems where user activity is limited to certain times (such as US office hours or weekdays only).

 With Kubernetes, you can set up maintenance windows by redirecting all incoming requests via the load balancer to a web page (or JSON response) that notifies users about the maintenance window.

 But in most cases, the flexibility of Kubernetes should allow you to do live maintenance. In extreme cases, such as upgrading the Kubernetes version, or the switch from etcd v2 to etcd v3, you may want to resort to a maintenance window. Blue-green deployment is another alternative. But the larger the cluster, the more expansive the blue-green alternative, because you must duplicate your entire production cluster, which is both costly and can cause you to run into problems like insufficient quota.

 Quick recovery

 Quick recovery is another important aspect of highly available clusters. Something will go wrong at some point. Your unavailability clock starts running. How quickly can you get back to normal?

 Sometimes it's not up to you. For example, if your cloud provider has an outage (and you didn't implement a federated cluster, as we will discuss later), then you just have to sit and wait until they sort it out. But the most likely culprit is a problem with a recent deployment. There are, of course, time-related issues, and even calendar-related issues. Do you remember the leap-year bug that took down Microsoft Azure on February 29, 2012?

 The poster boy of quick recovery is, of course, blue-green deployment – if you keep the previous version running when the problem is discovered. But, that's usually good for problems that happen during deployment or shortly after. If a sneaky bug lays dormant and is discovered only hours after the deployment, then you will have torn down your blue deployment already and you will not be able to revert to it.

 On the other hand, rolling updates mean that if the problem is discovered early, then most of your pods will still run the previous version.

 Data-related problems can take a long time to reverse, even if your backups are up to date and your restore procedure actually works (definitely test this regularly).

 Tools like Heptio Velero can help in some scenarios by creating snapshot backups of your cluster that you can just restore if something goes wrong and you're not sure how to fix it.

 Zero downtime

 Finally, we arrive at the zero-downtime system. There is no such thing as a zero-downtime system. All systems fail and all software systems definitely fail. Sometimes the failure is serious enough that the system or some of its services will be down. Think about zero downtime as a best-effort distributed system design. You design for zero downtime in the sense that you provide a lot of redundancy and mechanisms to address expected failures without bringing the system down. As always, remember that, even if there is a business case for zero downtime, it doesn't mean that every component must have zero downtime. Reliable (within reason) systems can be constructed from highly unreliable components.

 The plan for zero downtime is as follows:

 	Redundancy at every level: This is a required condition. You can't have a single point of failure in your design because when it fails, your system is down.

 	Automated hot swapping of failed components: Redundancy is only as good as the ability of the redundant components to kick into action as soon as the original component has failed. Some components can share the load (for example, stateless web servers), so there is no need for explicit action. In other cases, such as the Kubernetes scheduler and controller manager, you need a leader election in place to make sure the cluster keeps humming along.

 	Tons of metrics, monitoring, and alerts to detect problems early: Even with careful design, you may miss something or some implicit assumption might invalidate your design. Often, such subtle issues creep up on you and with enough attention, you may discover it before it becomes an all-out system failure. For example, suppose there is a mechanism in place to clean up old log files when disk space is over 90% full, but for some reason, it doesn't work. If you set an alert for when disk space is over 95% full, then you'll catch it and be able to prevent the system failure.

 	Tenacious testing before deployment to production: Comprehensive tests have proven themselves as a reliable way to improve quality. It is hard work to have comprehensive tests for something as complicated as a large Kubernetes cluster running a massive distributed system, but you need it. What should you test? Everything. That's right. For zero downtime, you need to test both the application and the infrastructure together. Your 100% passing unit tests are a good start, but they don't provide much confidence that when you deploy your application on your production Kubernetes cluster, it will still run as expected. The best tests are, of course, on your production cluster after a blue-green deployment or identical cluster. In lieu of a full-fledged identical cluster, consider a staging environment with as much fidelity as possible to your production environment. Here is a list of tests you should run. Each of these tests should be comprehensive because if you leave something untested, it might be broken:
 	Unit tests

 	Acceptance tests

 	Performance tests

 	Stress tests

 	Rollback tests

 	Data restore tests

 	Penetration tests

 Does that sound crazy? Good. Zero-downtime, large-scale systems are hard. There is a reason why Microsoft, Google, Amazon, Facebook, and other big companies have tens of thousands of software engineers (combined) just working on infrastructure, operations, and making sure things are up and running.

 	Keep the raw data: For many systems, the data is the most critical asset. If you keep the raw data, you can recover from any data corruption and processed data loss that happens later. This will not really help you with zero downtime because it can take a while to re-process the raw data, but it will help with zero data loss, which is often more important. The downside to this approach is that the raw data is often huge compared to the processed data. A good option may be to store the raw data in cheaper storage compared to the processed data.

 	Perceived uptime as a last resort: OK. Some part of the system is down. You may still be able to maintain some level of service. In many situations, you may have access to a slightly stale version of the data or can let the user access some other part of the system. It is not a great user experience, but technically the system is still available.

 Site reliability engineering

 Site reliability engineering (SRE) is a real-world approach for operating reliable distributed systems. SRE embraces failures and works with service-level indicators (SLIs), service-level objectives (SLOs), and service-level agreements (SLAs). Each service has an objective, such as latency below 50 milliseconds for 95% of requests. If a service violates its objectives, then the team focuses on fixing the issue before going back to work on new features and capabilities.

 The beauty of SRE is that you get to play with the knobs for cost and performance If you want to invest more in reliability, then be ready to pay for it with resources and development time.

 Performance and data consistency

 When you develop or operate distributed systems, the CAP theorem should always be in the back of your mind. CAP stands for consistency, availability, and partition tolerance.

 Consistency means that every read receives the most recent write or an error. Availability means that every request receives a non-error response (but the response may be stale). Partition tolerance means the system continues to operate even when an arbitrary number of messages between nodes are dropped or delayed by the network.

 The theorem says that you can have, at most, two out of the three. Since any distributed system can suffer from a network partition, in practice you can choose between CP or AP. CP means that in order to remain consistent, the system will not be available in the event of a network partition. AP means that the system will always be available but might not be consistent. For example, reads from different partitions might return different results because one of the partitions didn't receive a write. In this section, we will focus on highly available systems, which means AP. To achieve high availability, we must sacrifice consistency. But that doesn't mean that our system will have corrupt or arbitrary data. The keyword is eventual consistency. Our system may be a little bit behind and provide access to somewhat stale data, but eventually, you'll get what you expect.

 When you start thinking in terms of eventual consistency, it opens the door to potentially significant performance improvements. For example, if some important value is updated frequently (for example, every second), but you send its value only every minute, you have reduced your network traffic by a factor of 60 and you're on average only 30 seconds behind real-time updates. This is very significant. This is huge. You have just scaled your system to handle 60 times more users or requests with the same amount of resources.

 Summary

 In this chapter, we looked at reliable and highly available large-scale Kubernetes clusters. This is arguably the sweet spot for Kubernetes. While it is useful to be able to orchestrate a small cluster running a few containers, it is not necessary, but at scale, you must have an orchestration solution in place you can trust to scale with your system, and provide the tools and the best practices to do that.

 You now have a solid understanding of the concepts of reliability and high availability in distributed systems. You delved into the best practices for running reliable and highly available Kubernetes clusters. You explored the nuances of live Kubernetes cluster upgrades and you can make wise design choices regarding levels of reliability and availability, as well as their performance and cost.

 In the next chapter, we will address the important topic of security in Kubernetes. We will also discuss the challenges of securing Kubernetes and the risks involved. We will learn all about namespaces, service accounts, admission control, authentication, authorization, and encryption.

 References

 	https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/

 	https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/

 	https://medium.com/magalix/kubernetes-autoscaling-101-cluster-autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231

 4

 Securing Kubernetes

 In Chapter 3, High Availability and Reliability, we looked at reliable and highly available Kubernetes clusters, the basic concepts, the best practices, how to do live updates, and the many design trade-offs regarding performance and cost.

 In this chapter, we will explore the important topic of security. Kubernetes clusters are complicated systems composed of multiple layers of interacting components. Isolation and compartmentalization of different layers is very important when running critical applications. To secure the system and ensure proper access to resources, capabilities, and data, we must first understand the unique challenges facing Kubernetes as a general-purpose orchestration platform that runs unknown workloads. Then we can take advantage of various securities, isolation, and access control mechanisms to make sure the cluster, the applications running on it, and the data are all safe. We will discuss various best practices and when it is appropriate to use each mechanism.

 At the end of this chapter, you will have a good understanding of Kubernetes security challenges. You will gain practical knowledge of how to harden Kubernetes against various potential attacks, establishing defense in depth, and will even be able to safely run a multi-tenant cluster while providing different users full isolation as well as full control over their part of the cluster.

 Understanding Kubernetes security challenges

 Kubernetes is a very flexible system that manages very low-level resources in a generic way. Kubernetes itself can be deployed on many operating systems and hardware or virtual-machine solutions, on-premises, or in the cloud. Kubernetes runs workloads implemented by runtimes it interacts with through a well-defined runtime interface, but without understanding how they are implemented. Kubernetes manipulates critical resources such as networking, DNS, and resource allocation on behalf of or in service of applications it knows nothing about. This means that Kubernetes is faced with the difficult task of providing good security mechanisms and capabilities in a way that application developers and cluster administrators can utilize, while protecting itself, the developers, and the administrators from common mistakes.

 In this section, we will discuss security challenges in several layers or components of a Kubernetes cluster: nodes, network, images, pods, and containers. Defense in depth is an important security concept that requires systems to protect themselves at each level, both to mitigate attacks that penetrate other layers and to limit the scope and damage of a breach. Recognizing the challenges in each layer is the first step toward defense in depth.

 Node challenges

 The nodes are the hosts of the runtime engines. If an attacker gets access to a node, this is a serious threat. It can control at least the host itself and all the workloads running on it. But it gets worse. The node has a kubelet running that talks to the API server. A sophisticated attacker can replace the kubelet with a modified version and effectively evade detection by communicating normally with the Kubernetes API server, yet running its own workloads instead of the scheduled workloads, collecting information about the overall cluster, and disrupting the API server and the rest of the cluster by sending malicious messages. The node will have access to shared resources and to secrets that may allow it to infiltrate even deeper. A node breach is very serious, both because of the possible damage and the difficulty of detecting it after the fact.

 Nodes can be compromised at the physical level too. This is more relevant on bare-metal machines where you can tell which hardware is assigned to the Kubernetes cluster.

 Another attack vector is resource drain. Imagine that your nodes become part of a bot network that, unrelated to your Kubernetes cluster, just runs its own workloads like cryptocurrency mining and drains CPU and memory. The danger here is that your cluster will choke and run out of resources to run your workloads or alternatively, your infrastructure may scale automatically and allocate more resources.

 Another problem is the installation of debugging and troubleshooting tools or modifying the configuration outside of an automated deployment. Those are typically untested and, if left behind and active, can lead to at least degraded performance, but can also cause more sinister problems. At the least, it increases the attack surface.

 Where security is concerned, it's a numbers game. You want to understand the attack surface of the system and where you're vulnerable. Let's list all the node challenges:

 	An attacker takes control of the host

 	An attacker replaces the kubelet

 	An attacker takes control of a node that runs master components (such as the API server, scheduler, or controller manager)

 	An attacker gets physical access to a node

 	An attacker drains resources unrelated to the Kubernetes cluster

 	Self-inflicted damage occurs through the installation of debugging and troubleshooting tools or a configuration change

 Network challenges

 Any non-trivial Kubernetes cluster spans at least one network. There are many challenges related to networking. You need to understand how your system components are connected at a very fine level. Which components are supposed to talk to each other? What network protocols do they use? What ports? What data do they exchange? How is your cluster connected to the outside world?

 There is a complex chain of exposing ports and capabilities or services:

 	Container to host

 	Host to host within the internal network

 	Host to the world

 Using overlay networks (which will be discussed more in Chapter 10, Exploring Advanced Networking) can help with defense in depth where, even if an attacker gains access to a container, they are sandboxed and can't escape to the underlay network's infrastructure.

 Discovering components is a big challenge too. There are several options here, such as DNS, dedicated discovery services, and load balancers. Each comes with a set of pros and cons that take careful planning and insight to get right for your situation.

 Making sure two containers can find each other and exchange information is not trivial.

 You need to decide which resources and endpoints should be publicly accessible. Then you need to come up with a proper way to authenticate users, services, and authorize them to operate on resources. Often you may want to control access between internal services too.

 Sensitive data must be encrypted on the way into and out of the cluster and sometimes at rest, too. That means key management and safe key exchange, which is one of the most difficult problems to solve in security.

 If your cluster shares networking infrastructure with other Kubernetes clusters or non-Kubernetes processes then you have to be diligent about isolation and separation.

 The ingredients are network policies, firewall rules, and software-defined networking (SDN). The recipe is often customized. This is especially challenging with on-premises and bare-metal clusters. Let's recap:

 	Come up with a connectivity plan

 	Choose components, protocols, and ports

 	Figure out dynamic discovery

 	Public versus private access

 	Authentication and authorization (including between internal services)

 	Design firewall rules

 	Decide on a network policy

 	Key management and exchange

 There is a constant tension between making it easy for containers, users, and services to find and talk to each other at the network level versus locking down access and preventing attacks through the network or attacks on the network itself.

 Many of these challenges are not Kubernetes-specific. However, the fact that Kubernetes is a generic platform that manages key infrastructure and deals with low-level networking makes it necessary to think about dynamic and flexible solutions that can integrate system-specific requirements into Kubernetes.

 Image challenges

 Kubernetes runs containers that comply with one of its runtime engines. It has no idea what these containers are doing (except collecting metrics). You can put certain limits on containers via quotas. You can also limit their access to other parts of the network via network policies. But, in the end, containers do need access to host resources, other hosts in the network, distributed storage, and external services. The image determines the behavior of a container. There are two categories of problems with images:

 	Malicious images

 	Vulnerable images

 Malicious images are images that contain code or configuration that was designed by an attacker to do some harm, collect information, or just take advantage of your infrastructure for their purposes (for example, crypto mining). Malicious code can be injected into your image preparation pipeline, including any image repositories you use. Alternatively, you may install third-party images that were compromised themselves and now contain malicious code.

 Vulnerable images are images you designed (or third-party images you install) that just happen to contain some vulnerability that allows an attacker to take control of the running container or cause some other harm, including injecting their own code later.

 It's hard to tell which category is worse. At the extreme, they are equivalent because they allow seizing total control of the container. The other defenses that are in place (remember defense in depth?) and the restrictions you put on the container will determine how much damage it can do. Minimizing the danger of bad images is very challenging. Fast-moving companies utilizing microservices may generate many images daily. Verifying an image is not an easy task either. Consider, for example, how Docker images are made of layers.

 The base images that contain the operating system may become vulnerable any time a new vulnerability is discovered. Moreover, if you rely on base images prepared by someone else (very common) then malicious code may find its way into those base images, which you have no control over and you trust implicitly.

 When a vulnerability in a third-party dependency is discovered, ideally there is already a fixed version and you should patch it as soon as possible.

 We can summarize the image challenges that developers are likely to face as follows:

 	Kubernetes doesn't know what images are doing

 	Kubernetes must provide access to sensitive resources for the designated function

 	It's difficult to protect the image preparation and delivery pipeline (including image repositories)

 	The speed of development and deployment of new images conflict with the careful review of changes

 	Base images that contain the OS or other common dependencies can easily get out of date and become vulnerable

 	Base images are often not under your control and might be more prone to the injection of malicious code

 Integrating a static image analyzer like CoreOS Clair or the Anchore Engine into your CI/CD pipeline can help a lot. In addition, minimizing the blast radius by limiting the resource access of containers only to what they need to perform their job can reduce the impact on your system if a container gets compromised. You must also be diligent about patching known vulnerabilities.

 Configuration and deployment challenges

 Kubernetes clusters are administered remotely. Various manifests and policies determine the state of the cluster at each point in time. If an attacker gets access to a machine with administrative control over the cluster, they can wreak havoc, such as collecting information, injecting bad images, weakening security, and tampering with logs. As usual, bugs and mistakes can be just as harmful; by neglecting important security measures, you leave the cluster open for attack. It is very common these days for employees with administrative access to the cluster to work remotely from home or from a coffee shop and have their laptops with them, where you are just one kubectl command from opening the floodgates.

 Let's reiterate the challenges:

 	Kubernetes is administered remotely

 	An attacker with remote administrative access can gain complete control over the cluster

 	Configuration and deployment is typically more difficult to test than code

 	Remote or out-of-office employees risk extended exposure, allowing an attacker to gain access to their laptops or phones with administrative access

 There are some best practices to minimize this risk, such as a layer of indirection in the form of a jump box, requiring a VPN connection, and using multi-factor authentication and one-time passwords.

 Pod and container challenges

 In Kubernetes, pods are the unit of work and contain one or more containers. The pod is a grouping and deployment construct. But often, containers that are deployed together in the same pod interact through direct mechanisms. The containers all share the same localhost network and often share mounted volumes from the host. This easy integration between containers in the same pod can result in exposing parts of the host to all the containers. This might allow one bad container (either malicious or just vulnerable) to open the way for an escalated attack on other containers in the pod, later taking over the node itself and the entire cluster. Master add-ons are often collocated with master components and present that kind of danger, especially because many of them are experimental. The same goes for daemon sets that run pods on every node. The practice of sidecar containers where additional containers are deployed in a pod along with your application container is very popular, especially with service meshes. This increases that risk because the sidecar containers are often outside your control, and if compromised, can provide access to your infrastructure.

 Multi-container pod challenges include the following:

 	The same pod containers share the localhost network

 	The same pod containers sometimes share a mounted volume on the host filesystem

 	Bad containers might poison other containers in the pod

 	Bad containers have an easier time attacking the node if collocated with another container that accesses crucial node resources

 	Experimental add-ons that are collocated with master components might be experimental and less secure

 	Service meshes introduce a sidecar container that might become an attack vector

 Consider carefully the interaction between containers running in the same pod. You should realize that a bad container might try to compromise its sibling containers in the same pod as its first attack.

 Organizational, cultural, and process challenges

 Security is often held in contrast to productivity. This is a normal trade-off and nothing to worry about. Traditionally, when developers and operations were separate, this conflict was managed at an organizational level. Developers pushed for more productivity and treated security requirements as the cost of doing business. Operations controlled the production environment and were responsible for access and security procedures. The DevOps movement brought down the wall between developers and operations. Now, speed of development often takes a front-row seat. Concepts such as continuous deployment deploying multiple times a day without human intervention were unheard of in most organizations. Kubernetes was designed for this new world of cloud-native applications. But, it was developed based on Google's experience. Google had a lot of time and skilled experts to develop the proper processes and tooling to balance rapid deployments with security. For smaller organizations, this balancing act might be very challenging and security could be weakened by focusing too much on productivity.

 The challenges facing organizations that adopt Kubernetes are as follows:

 	Developers that control the operation of Kubernetes might be less security-oriented

 	The speed of development might be considered more important than security

 	Continuous deployment might make it difficult to detect certain security problems before they reach production

 	Smaller organizations might not have the knowledge and expertise to manage security properly in Kubernetes clusters

 There are no easy answers here. You should be deliberate in striking the right balance between security and agility. I recommend having a dedicated security team (or at least one person focused on security) participate in all planning meetings and advocate for security. It's important to bake security into your system from the get-go.

 In this section, we reviewed the many challenges you face when you try to build a secure Kubernetes cluster. Most of these challenges are not specific to Kubernetes, but using Kubernetes means there is a large part of your system that is generic and is unaware of what the system is doing.

 This can pose problems when trying to lock down a system. The challenges are spread across different levels:

 	Node challenges

 	Network challenges

 	Image challenges

 	Configuration and deployment challenges

 	Pod and container challenges

 	Organizational and process challenges

 In the next section, we will look at the facilities Kubernetes provides to address some of those challenges. Many of the challenges require solutions at the larger system scope. It is important to realize that just utilizing all of Kubernetes' security features is not enough.

 Hardening Kubernetes

 The previous section cataloged and listed the variety of security challenges facing developers and administrators deploying and maintaining Kubernetes clusters. In this section, we will hone in on the design aspects, mechanisms, and features offered by Kubernetes to address some of the challenges. You can get to a pretty good state of security by judicious use of capabilities such as service accounts, network policies, authentication, authorization, admission control, AppArmor, and secrets.

 Remember that a Kubernetes cluster is one part of a bigger system that includes other software systems, people, and processes. Kubernetes can't solve all problems. You should always keep in mind general security principles, such as defense in depth, a need-to-know basis, and the principle of least privilege. In addition, log everything you think may be useful in the event of an attack and have alerts for early detection when the system deviates from its state. It may be just a bug or it may be an attack. Either way, you want to know about it and respond.

 Understanding service accounts in Kubernetes

 Kubernetes has regular users that are managed outside the cluster for humans connecting to the cluster (for example, via the kubectl command), and it has service accounts.

 Regular user accounts are global and can access multiple namespaces in the cluster. Service accounts are constrained to one namespace. This is important. It ensures namespace isolation, because whenever the API server receives a request from a pod, its credentials will apply only to its own namespace.

 Kubernetes manages service accounts on behalf of the pods. Whenever Kubernetes instantiates a pod, it assigns the pod a service account. The service account identifies all the pod processes when they interact with the API server. Each service account has a set of credentials mounted in a secret volume. Each namespace has a default service account called default. When you create a pod, it is automatically assigned the default service account unless you specify a different service account.

 You can create additional service accounts. Create a file called custom-service-account.yaml with the following content:

 apiVersion: v1
kind: ServiceAccount
metadata:
 name: custom-service-account

 Now type the following:

 $ kubectl create -f custom-service-account.yaml
serviceaccount/custom-service-account created

 Here is the service account listed alongside the default service account:

 $ kubectl get serviceAccounts
NAME SECRETS AGE
custom-service-account 1 39s
default 1 18d

 Note that a secret was created automatically for your new service account.

 To get more detail, type the following:

 $ kubectl get serviceAccounts/custom-service-account -o yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 creationTimestamp: "2020-06-01T01:24:24Z"
 name: custom-service-account
 namespace: default
 resourceVersion: "654316"
 selfLink: /api/v1/namespaces/default/serviceaccounts/custom-service-account
 uid: 69393e47-c3b2-11e9-bb43-0242ac130002
secrets:
- name: custom-service-account-token-kdwhs

 You can see the secret itself, which includes a ca.crt file and a token, by typing the following:

 $ kubectl get secret custom-service-account-token-kdwhs -o yaml

 How does Kubernetes manage service accounts?

 The API server has a dedicated component called the service account admission controller. It is responsible for checking, at pod creation time, if the API server has a custom service account and, if it does, that the custom service account exists. If there is no service account specified, then it assigns the default service account.

 It also ensures the pod has ImagePullSecrets, which are necessary when images need to be pulled from a remote image registry. If the pod spec doesn't have any secrets, it uses the service account's ImagePullSecrets.

 Finally, it adds a volume with an API token for API access and a volumeSource mounted at /var/run/secrets/kubernetes.io/serviceaccount.

 The API token is created and added to the secret by another component called the Token Controller whenever a service account is created. The Token Controller also monitors secrets and adds or removes tokens wherever secrets are added to or removed from a service account.

 The service account controller ensures the default service account exists for every namespace.

 Accessing the API server

 Accessing the API server requires a chain of steps that include authentication, authorization, and admission control. At each stage, the request may be rejected. Each stage consists of multiple plugins that are chained together.

 The following diagram illustrates this:

 [image:]
 Figure 4.1: Accessing the API server

 Authenticating users

 When you first create the cluster, some keys and certificates are created for you to authenticate against the cluster. Kubectl uses them to authenticate itself to the API server and vice versa over TLS (an encrypted HTTPS connection). You can view your configuration using this command:

 $ kubectl config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://localhost:6443
 name: default
contexts:
- context:
 cluster: default
 user: default
 name: default
current-context: default
kind: Config
preferences: {}
users:
- name: default
 user:
 password: DATA+OMITTED
 username: admin

 This is the configuration for a k3d cluster. It may look different for other types of clusters.

 Note that if multiple users need to access the cluster, the creator should provide the necessary client certificates and keys to the other users in a secure manner.

 This is just establishing basic trust with the Kubernetes API server itself. You're not authenticated yet. Various authentication modules may look at the request and check for various additional client certificates, passwords, bearer tokens, and JWT tokens (for service accounts). Most requests require an authenticated user (either a regular user or a service account), although there are some anonymous requests too. If a request fails to authenticate with all the authenticators it will be rejected with a 401 HTTP status code (unauthorized, which is a bit of a misnomer).

 The cluster administrator determines what authentication strategies to use by providing various command-line arguments to the API server:

 	--client-ca-file= (for x509 client certificates specified in a file)

 	--token-auth-file= (for bearer tokens specified in a file)

 	--basic-auth-file= (for user/password pairs specified in a file)

 	--enable-bootstrap-token-auth (for bootstrap tokens used by kubeadm)

 Service accounts use an automatically loaded authentication plugin. The administrator may provide two optional flags:

 	--service-account-key-file= (A PEM-encoded key for signing bearer tokens. If unspecified, the API server's TLS private key will be used.)

 	--service-account-lookup (If enabled, tokens that are deleted from the API will be revoked.)

 There are several other methods, such as OpenID Connect, webhooks, Keystone (the OpenStack identity service), and an authenticating proxy. The main theme is that the authentication stage is extensible and can support any authentication mechanism.

 The various authentication plugins will examine the request and, based on the provided credentials, will associate the following attributes:

 	username (a user-friendly name)

 	uid (a unique identifier and more consistent than the username)

 	groups (a set of group names the user belongs to)

 	extra fields (these map string keys to string values)

 In Kubernetes 1.11, kubectl gained the ability to use credential plugins to receive an opaque token from a provider such as an organizational LDAP server. These credentials are sent by kubectl to the API server that typically uses a webhook token authenticator to authenticate the credentials and accept the request.

 The authenticators have no knowledge whatsoever of what a particular user is allowed to do. They just map a set of credentials to a set of identities. The authenticators run in an unspecified order; the first authenticator to accept the passed credentials will associate an identity with the incoming request and the authentication is considered successful. If all authenticators reject the credentials then authentication failed.

 Impersonation

 It is possible for users to impersonate different users (with proper authorization). For example, an admin may want to troubleshoot some issue as a different user with fewer privileges. This requires passing impersonation headers to the API request. The headers are as follows:

 	Impersonate-User: The username to act as.

 	Impersonate-Group: A group name to act as. Can be provided multiple times to set multiple groups. Optional. Requires Impersonate-User.

 	Impersonate-Extra-(extra name): A dynamic header used to associate extra fields with the user. Optional. Requires Impersonate-User.

 With kubectl, you pass --as and --as-group parameters.

 Authorizing requests

 Once a user is authenticated, authorization commences. Kubernetes has generic authorization semantics. A set of authorization modules receives the request, which includes information such as the authenticated username and the request's verb (list, get, watch, create, and so on). Unlike authentication, all authorization plugins will get a shot at any request. If a single authorization plugin rejects the request or no plugin had an opinion then it will be rejected with a 403 HTTP status code (forbidden). A request will continue only if at least one plugin accepts it and no other plugin rejected it.

 The cluster administrator determines what authorization plugins to use by specifying the --authorization-mode command-line flag, which is a comma-separated list of plugin names.

 The following modes are supported:

 	--authorization-mode=AlwaysDeny rejects all requests. Use if you don't need authorization.

 	--authorization-mode=AlwaysAllow allows all requests. Use if you don't need authorization. This is useful during testing.

 	--authorization-mode=ABAC allows for a simple, local file-based, user-configured authorization policy. ABAC stands for Attribute-Based Access Control.

 	--authorization-mode=RBAC is a role-based mechanism where authorization policies are stored and driven by the Kubernetes API. RBAC stands for Role-Based Access Control.

 	--authorization-mode=Node is a special mode designed to authorize API requests made by kubelets.

 	--authorization-mode=Webhook allows for authorization to be driven by a remote service using REST.

 You can add your own custom authorization plugin by implementing the following straightforward Go interface:

 type Authorizer interface {
 Authorize(a Attributes) (authorized bool, reason string, err error)
}

 The Attributes input argument is also an interface that provides all the information you need to make an authorization decision:

 type Attributes interface {
 GetUser() user.Info
 GetVerb() string
 IsReadOnly() bool
 GetNamespace() string
 GetResource() string
 GetSubresource() string
 GetName() string
 GetAPIGroup() string
 GetAPIVersion() string
 IsResourceRequest() bool
 GetPath() string
}

 You can find the source code at https://github.com/kubernetes/apiserver/blob/master/pkg/authorization/authorizer/interfaces.go.

 Using the kubectl can-i command, you check what actions you can perform and even impersonate other users:

 $ kubectl auth can-i create deployments
Yes
$ kubectl auth can-i create deployments --as jack
no

 Using admission control plugins

 OK. The request was authenticated and authorized, but there is one more step before it can be executed. The request must go through a gauntlet of admission-control plugins. Similar to the authorizers, if a single admission controller rejects a request, it is denied.

 Admission controllers are a neat concept. The idea is that there may be global cluster concerns that could be grounds for rejecting a request. Without admission controllers, all authorizers would have to be aware of these concerns and reject the request. But, with admission controllers, this logic can be performed once. In addition, an admission controller may modify the request. Admission controllers run in either validating mode or mutating mode. As usual, the cluster administrator decides which admission control plugins run by providing a command-line argument called admission-control. The value is a comma-separated and ordered list of plugins. Here is the list of recommended plugins for Kubernetes >= 1.9 (the order matters):

 --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota,DefaultTolerationSeconds

 Let's look at some of the available plugins (more are added all the time):

 	DefaultStorageClass: Adds a default storage class to requests for the creation of a PersistentVolumeClaim that doesn't specify a storage class.

 	DefaultTolerationSeconds: Sets the default toleration of pods for taints (if not set already): notready:NoExecute and notreachable:NoExecute.

 	EventRateLimit: Limits flooding of the API server with events (new in Kubernetes 1.9).

 	ExtendedResourceToleration: Combine taints on nodes with special resources such as GPUs and Field Programmable Gate Array (FPGA) with toleration on pods that request those resources. The end result is that the node with the extra resources will be dedicated for pods with the proper toleration.

 	ImagePolicyWebhook: This complicated plugin connects to an external backend to decide whether a request should be rejected based on the image.

 	LimitPodHardAntiAffinity: Denies any pod that defines the AntiAffinity topology key other than kubernetes.io/hostname in requiredDuringSchedulingRequiredDuringExecution.

 	LimitRanger: Rejects requests that violate resource limits.

 	MutatingAdmissionWebhook: Calls registered mutating webhooks that are able to modify their target object. Note that there is no guarantee that the change will be effective due to potential changes by other mutating webhooks.

 	NamespaceAutoProvision: Creates the namespace in the request if it doesn't exist already.

 	NamespaceLifecycle: Rejects object creation requests in namespaces that are in the process of being terminated or don't exist.

 	PodSecurityPolicy: Rejects a request if the request security context doesn't conform to pod security policies.

 	ResourceQuota: Rejects requests that violate the namespace's resource quota.

 	ServiceAccount: Automation for service accounts.

 	ValidatingAdmissionWebhook: This admission controller calls any validating webhooks that match the request. Matching webhooks are called in parallel; if any of them rejects the request, the request fails.

 As you can see, the admission control plugins have very diverse functionality. They support namespace-wide policies and enforce validity of requests mostly from the resource management and security points of view. This frees up the authorization plugins to focus on valid operations. ImagePolicyWebHook is the gateway to validating images, which is a big challenge. MutatingAdmissionWebhook and ValidatingAdmissionWebhook are the gateways to dynamic admission control, where you can deploy your own admission controller without compiling it into Kubernetes. Dynamic admission control is suitable for tasks like semantic validation of resources (do all pods have the standard set of labels?).

 The division of responsibility for validating an incoming request through the separate stages of authentication, authorization, and admission, each with its own plugins, makes a complicated process much more manageable to understand and use.

 The mutating admission controllers provide a lot of flexibility and the ability to automatically enforce certain policies without burdening the users (for example, creating a namespace automatically if it doesn't exist).

 Securing pods

 Pod security is a major concern, since Kubernetes schedules the pods and lets them run. There are several independent mechanisms for securing pods and containers. Together these mechanisms support defense in depth, where, even if an attacker (or a mistake) bypasses one mechanism, it will get blocked by another.

 Using a private image repository

 This approach gives you a lot of confidence that your cluster will only pull images that you have previously vetted, and you can manage upgrades better. You can configure your HOME/.docker/config.json on each node. But, on many cloud providers, you can't do this because nodes are provisioned automatically for you.

 ImagePullSecrets

 This approach is recommended for clusters on cloud providers. The idea is that the credentials for the registry will be provided by the pod, so it doesn't matter what node it is scheduled to run on. This circumvents the problem with .dockercfg at the node level.

 First, you need to create a secret object for the credentials:

 $ kubectl create secret the-registry-secret
 --docker-server=<docker registry server>
 --docker-username=<username>
 --docker-password=<password>
 --docker-email=<email>
secret 'docker-registry-secret' created.

 You can create secrets for multiple registries (or multiple users for the same registry) if needed. The kubelet will combine all ImagePullSecrets.

 But, since pods can access secrets only in their own namespace, you must create a secret on each namespace where you want the pod to run.

 Once the secret is defined, you can add it to the pod spec and run some pods on your cluster. The pod will use the credentials from the secret to pull images from the target image registry:

 apiVersion: v1
kind: Pod
metadata:
 name: cool-pod
 namespace: the-namespace
spec:
 containers:
 - name: cool-container
 image: cool/app:v1
 imagePullSecrets:
 - name: the-registry-secret

 Specifying a security context

 A security context is a set of operating-system-level security settings such as UID, gid, capabilities, and SELinux role. These settings are applied at the container level as a container security context. You can specify a pod security context that will apply to all the containers in the pod. The pod security context can also apply its security settings (in particular, fsGroup and seLinuxOptions) to volumes.

 Here is a sample pod security context:

 apiVersion: v1
kind: Pod
metadata:
 name: hello-world
spec:
 containers:
 ...
 securityContext:
 fsGroup: 1234
 supplementalGroups: [5678]
 seLinuxOptions:
 level: 's0:c123,c456'

 The container security context is applied to each container and it overrides the pod security context. It is embedded in the containers section of the pod manifest. Container context settings can't be applied to volumes, which remain at the pod level.

 Here is a sample container security context:

 apiVersion: v1
kind: Pod
metadata:
 name: hello-world
spec:
 containers:
 - name: hello-world-container
 # The container definition
 # ...
 securityContext:
 privileged: true
 seLinuxOptions:
 level: 's0:c123,c456'

 Protecting your cluster with AppArmor

 AppArmor is a Linux kernel security module. With AppArmor, you can restrict a process running in a container to a limited set of resources such as network access, Linux capabilities, and file permissions. You configure AppArmor through profiles.

 Requirements

 AppArmor support was added as beta in Kubernetes 1.4. It is not available for every operating system, so you must choose a supported OS distribution in order to take advantage of it. Ubuntu and SUSE Linux support AppArmor and enable it by default. Other distributions have optional support. To check if AppArmor is enabled, type the following:

 cat /sys/module/apparmor/parameters/enabled
Y

 If the result is Y then it's enabled.

 The profile must be loaded into the kernel. Check the following file:

 /sys/kernel/security/apparmor/profiles

 Also, only the Docker runtime supports AppArmor at this time.

 Securing a pod with AppArmor

 Since AppArmor is still in beta, you specify the metadata as annotations and not as bonafide fields. When it gets out of beta, this will change.

 To apply a profile to a container, add the following annotation:

 container.apparmor.security.beta.kubernetes.io/:

 The profile reference can be either the default profile, runtime/default, or a profile file on the host/localhost.

 Here is a sample profile that prevents writing to files:

 #include <tunables/global>
profile k8s-apparmor-example-deny-write flags=(attach_disconnected) {
 #include <abstractions/base>
 file,
 # Deny all file writes.
 deny /** w,
}

 AppArmor is not a Kubernetes resource, so the format is not the YAML or JSON you're familiar with.

 To verify the profile was attached correctly, check the attributes of process 1:

 kubectl exec <pod-name> cat /proc/1/attr/current

 Pods can be scheduled on any node in the cluster by default. This means the profile should be loaded into every node. This is a classic use case for DaemonSet.

 Writing AppArmor profiles

 Writing profiles for AppArmor by hand is not trivial. There are some tools that can help: aa-genprof and aa-logprof can generate a profile for you and assist in fine-tuning it by running your application with AppArmor in complain mode. The tools keep track of your application's activity and AppArmor warnings, and create a corresponding profile. This approach works, but it feels clunky.

 My favorite tool is bane (https://github.com/jessfraz/bane), which generates AppArmor profiles from a simpler profile language based on the TOML syntax. Bane profiles are very readable and easy to grasp. Here is a snippet from a bane profile:

 Name = 'nginx-sample'
[Filesystem]
read only paths for the container
ReadOnlyPaths = [
 '/bin/**',
 '/boot/**',
 '/dev/**',
]
paths where you want to log on write
LogOnWritePaths = [
 '/**'
]
allowed capabilities
[Capabilities]
Allow = [
 'chown',
 'setuid',
]
[Network]
Raw = false
Packet = false
Protocols = [
 'tcp',
 'udp',
 'icmp'
]

 The generated AppArmor profile is pretty gnarly.

 Pod security policies

 Pod security policies (PSPs) are available as beta since Kubernetes 1.4. It must be enabled, and you must also enable the PSP admission control to use them. A PSP is defined at the cluster level and defines the security context for pods. There are a couple of differences between using a PSP and directly specifying a security context in the pod manifest, as we did earlier:

 	Apply the same policy to multiple pods or containers

 	Let the administrator control pod creation so users don't create pods with inappropriate security contexts

 	Dynamically generate a different security context for a pod via the admission controller

 PSPs really scale the concept of security contexts. Typically, you'll have a relatively small number of security policies compared to the number of pods (or rather, pod templates). This means that many pod templates and containers will have the same security policy. Without PSP, you have to manage it individually for each pod manifest.

 Here is a sample PSP that allows everything:

 kind: PodSecurityPolicy
apiVersion: extensions/v1beta1policy/v1beta1
metadata:
 name: permissive
spec:
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 runAsUser:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 volumes:
 - "*"

 As you can see it is much more human-readable than AppArmor, and is available on every OS and runtime.

 Authorizing pod security policies via RBAC

 This is the recommended way to enable the use of policies. Let's create a ClusterRole (Role works too) to grant access to use the target policies. It should look like the following:

 kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: <role name>
rules:
- apiGroups: ['extensionspolicy']
 resources: ['podsecuritypolicies']
 verbs: ['use']
 resourceNames:
 - <list of policies to authorize>

 Then, we need to bind the cluster role to the authorized users:

 kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: <binding name>
roleRef:
 kind: ClusterRole
 name: <role name>
 apiGroup: rbac.authorization.k8s.io
subjects:
 - < list of authorized service accounts >

 Here is a specific service account:

 - kind: ServiceAccount
 name: <authorized service account name>
 namespace: <authorized pod namespace>

 You can also authorize specific users, but it's not recommended:

 - kind: User
 apiGroup: rbac.authorization.k8s.io
 name: <authorized user name>

 If using a role binding instead of cluster role binding, then it will apply only to pods in the same namespace as the binding. This can be paired with system groups to grant access to all pods run in the namespace:

 - kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:serviceaccounts

 Or equivalently, granting access to all authenticated users in a namespace is done as follows:

 - kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:authenticated

 Managing network policies

 Node, pod, and container security is imperative, but it's not enough. Network segmentation is critical to design secure Kubernetes clusters that allow multi-tenancy, as well as to minimize the impact of security breaches. Defense in depth mandates that you compartmentalize parts of the system that don't need to talk to each other, while also carefully managing the direction, protocols, and ports of traffic.

 Network policies allow the fine-grained control and proper network segmentation of your cluster. At the core, a network policy is a set of firewall rules applied to a set of namespaces and pods selected by labels. This is very flexible because labels can define virtual network segments and be managed as a Kubernetes resource.

 This is a huge improvement over trying to segment your network using traditional approaches like IP address ranges and subnet masks, where you often run out of IP addresses or allocate too many just in case.

 Choosing a supported networking solution

 Some networking backends (network plugins) don't support network policies. For example, the popular Flannel can't be used to apply policies. This is critical. You will be able to define network policies even if your network plugin doesn't support them. Your policies will simply have no effect, giving you a false sense of security.

 Here is a list of network plugins that support network policies (both ingress and egress):

 	Calico

 	WeaveNet

 	Canal

 	Cillium

 	Kube-Router

 	Romana

 	Contiv

 If you run your cluster on a managed Kubernetes service then the choice has already been made for you.

 We will explore the ins and outs of network plugins in Chapter 10, Exploring Advanced Networking. Here we focus on network policies.

 Defining a network policy

 You define a network policy using a standard YAML manifest.

 Here is a sample policy:

 apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: the-network-policy
 namespace: default
spec:
 podSelector:
 matchLabels:
 role: db
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: cool-project
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: tcp
 port: 6379

 The spec part has two important parts, the podSelector and the ingress. The podSelector governs which pods this network policy applies to. The ingress governs which namespaces and pods can access these pods and which protocols and ports they can use.

 In the preceding sample network policy, the pod selector specified the target for the network policy to be all the pods that are labeled role: db. The ingress section has a from sub-section with a namespace selector and a pod selector. All the namespaces in the cluster that are labeled project: cool-project, and within these namespaces, all the pods that are labeled role: frontend can access the target pods labeled role: db. The ports section defines a list of pairs (protocol and port) that further restrict what protocols and ports are allowed. In this case, the protocol is tcp and the port is 6379 (the standard Redis port).

 Note that the network policy is cluster-wide, so pods from multiple namespaces in the cluster can access the target namespace. The current namespace is always included, so even if it doesn't have the project:cool label, pods with role:frontend can still have access.

 It's important to realize that the network policy operates in a whitelist fashion. By default, all access is forbidden, and the network policy can open certain protocols and ports to certain pods that match the labels. However, the whitelist nature of the network policy applies only to pods that are selected for at least one network policy. If a pod is not selected it will allow all access. Always make sure all your pods are covered by a network policy.

 Another implication of the whitelist nature is that, if multiple network policies exist, then the unified effect of all the rules applies. If one policy gives access to port 1234 and another gives access to port 5678 for the same set of pods, then a pod may be accessed through either 1234 or 5678.

 To use network policies responsibly, consider starting with a deny-all network policy:

 apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress

 Then, start adding network policies to allow ingress to specific pods explicitly. Note that you must apply the deny-all policy for each namespace:

 $ kubectl -n <namespace> create -f deny-all-network-policy.yaml

 Limiting egress to external networks

 Kubernetes 1.8 added egress network policy support, so you can control outbound traffic too. Here is an example that prevents access to the external IP 1.2.3.4. The order: 999 ensures the policy is applied before other policies:

 apiVersion: v1
kind: policy
metadata:
 name: default-deny-egress
spec:
 order: 999
 egress:
 - action: deny
 destination:
 net: 1.2.3.4
 source: {}

 Cross-namespace policies

 If you divide your cluster into multiple namespaces, it can come in handy sometimes if pods can communicate across namespaces. You can specify the ingress.namespaceSelector field in your network policy to enable access from multiple namespaces. This is useful, for example, if you have production and staging namespaces and you periodically populate your staging environments with snapshots of your production data.

 Using secrets

 Secrets are paramount in secure systems. They can be credentials such as usernames and passwords, access tokens, API keys, certificates, or crypto keys. Secrets are typically small. If you have large amounts of data you want to protect, you should encrypt it and keep the encryption/decryption keys as secrets.

 Storing secrets in Kubernetes

 Kubernetes used to store secrets in etcd as plaintext by default. This means that direct access to etcd should be limited and carefully guarded. Starting with Kubernetes 1.7, you can now encrypt your secrets at rest (when they're stored by etcd).

 Secrets are managed at the namespace level. Pods can mount secrets either as files via secret volumes or as environment variables. From a security standpoint, this means that any user or service that can create a pod in a namespace can have access to any secret managed for that namespace. If you want to limit access to a secret, put it in a namespace accessible to a limited set of users or services.

 When a secret is mounted into a container, it is never written to disk. It is stored in tmpfs. When the kubelet communicates with the API server, it normally uses TLS, so the secret is protected in transit.

 Configuring encryption at rest

 You need cto pass this argument when you start the API server:

 --encryption-provider-config

 Here is a sample encryption config:

 apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
 - resources:
 - secrets
 providers:
 - identity: {}
 - aesgcm:
 keys:
 - name: key1
 secret: c2VjcmV0IGlzIHNlY3VyZQ==
 - name: key2
 secret: dGhpcyBpcyBwYXNzd29yZA==
 - aescbc:
 keys:
 - name: key1
 secret: c2VjcmV0IGlzIHNlY3VyZQ==
 - name: key2
 secret: dGhpcyBpcyBwYXNzd29yZA==
 - secretbox:
 keys:
 - name: key1
 secret: YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXoxMjM0NTY=

 Creating secrets

 Secrets must be created before you try to create a pod that requires them. The secret must exist; otherwise, the pod creation will fail.

 You can create secrets with the following command: kubectl create secret.

 Here I create a generic secret called hush-hush, which contains two keys, a username and password:

 $ kubectl create secret generic hush-hush --from-literal=username=tobias --from-literal=password=cutoffs
secret/hush-hush created

 The resulting secret is opaque:

 $ kubectl describe secrets/hush-hush
Name: hush-hush
Namespace: default
Labels: <none>
Annotations: <none>
Type: Opaque
Data
====
password: 7 bytes
username: 6 bytes

 You can create secrets from files using --from-file instead of --from-literal, and you can also create secrets manually if you encode the secret value as base64.

 Key names inside a secret must follow the rules for DNS sub-domains (without the leading dot).

 Decoding secrets

 To get the content of a secret you can use kubectl get secret:

 $ kubectl get secrets/hush-hush -o yaml
apiVersion: v1
data:
 password: Y3V0b2Zmcw==
 username: dG9iaWFz
kind: Secret
metadata:
 creationTimestamp: "2020-06-01T06:57:07Z"
 name: hush-hush
 namespace: default
 resourceVersion: "56655"
 selfLink: /api/v1/namespaces/default/secrets/hush-hush
 uid: 8d50c767-c705-11e9-ae89-0242ac120002
type: Opaque

 The values are base64-encoded. You need to decode them yourself:

 $ echo 'Y3V0b2Zmcw==' | base64 --decode
cutoffs

 Using secrets in a container

 Containers can access secrets as files by mounting volumes from the pod. Another approach is to access the secrets as environment variables. Finally, a container (given that its service account has the permission) can access the Kubernetes API directly or use kubectl get secret.

 To use a secret mounted as a volume, the pod manifest should declare the volume and it should be mounted in the container's spec:

 apiVersion: v1
kind: Pod
metadata:
 name: pod-with-secret
spec:
 containers:
 - name: container-with-secret
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true ; do sleep 10 ; done"]
 volumeMounts:
 - name: secret-volume
 mountPath: "/mnt/hush-hush"
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: hush-hush

 The volume name (secret-volume) binds the pod volume to the mount in the container. Multiple containers can mount the same volume. When this pod is running, the username and password are available as files under /etc/hush-hush:

 $ kubectl create -f pod-with-secret.yaml
$ kubectl exec pod-with-secret -- cat /mnt/hush-hush/username
tobias
$ kubectl exec pod-with-secret -- cat /mnt/hush-hush/password
cutoffs

 Running a multi-user cluster

 In this section, we will look briefly at the option to use a single cluster to host systems for multiple users or multiple user communities (which is also known as multi-tenancy). The idea is that those users are totally isolated and may not even be aware that they share the cluster with other users. Each user community will have its own resources, and there will be no communication between them (except maybe through public endpoints). The Kubernetes namespace concept is the ultimate expression of this idea.

 The case for a multi-user cluster

 Why should you run a single cluster for multiple isolated users or deployments? Isn't it simpler to just have a dedicated cluster for each user? There are two main reasons: cost and operational complexity. If you have many relatively small deployments and you want to create a dedicated cluster for each one, then you'll have a separate master node and possibly a three-node etcd cluster for each one. That can add up. Operational complexity is very important too. Managing tens, hundreds, or thousands of independent clusters is no picnic. Every upgrade and every patch needs to be applied to each cluster. Operations might fail and you'll have to manage a fleet of clusters where some of them are in a slightly different state than the others. Meta-operations across all clusters may be more difficult. You'll have to aggregate and write your tools to perform operations and collect data from all clusters.

 Let's look at some use cases and requirements for multiple isolated communities or deployments:

 	A platform or service provider for software-as-a-service

 	Managing separate testing, staging, and production environments

 	Delegating responsibility to community/deployment admins

 	Enforcing resource quotas and limits on each community

 	Users see only resources in their community

 Using namespaces for safe multi-tenancy

 Kubernetes namespaces are the perfect answer to safe multi-tenant clusters. This is not a surprise, as this was one of the design goals of namespaces.

 You can easily create namespaces in addition to the built-in kube-system and default. Here is a YAML file that will create a new namespace called custom-namespace. All it has is a metadata item called name. It doesn't get any simpler:

 apiVersion: v1
kind: Namespace
metadata:
 name: custom-namespace

 Let's create the namespace:

 $ kubectl create -f custom-namespace.yaml
namespace/custom-namespace created
$ kubectl get namespaces
NAME STATUS AGE
custom-namespace Active 36s
default Active 26h
kube-node-lease Active 26h
kube-public Active 26h
kube-system Active 26h

 We can see the default namespace, our new custom-namespace, and a few system namespaces prefixed with kube-.

 The status field can be Active or Terminating. When you delete a namespace, it will move into the Terminating state. When the namespace is in this state, you will not be able to create new resources in this namespace. This simplifies the clean-up of namespace resources and ensures the namespace is really deleted. Without it, the replication controllers might create new pods when existing pods are deleted.

 To work with a namespace, you add the --namespace (or -n for short) argument to kubectl commands. Here is how to run a pod in interactive mode in the custom-namespace namespace:

 $ kubectl run trouble -it -n custom-namespace --image=g1g1/py-kube:0.2 --generator=run-pod/v1 bash
If you don't see a command prompt, try pressing enter.
root@trouble:/#

 Listing pods in the custom-namespace returns only the pod we just launched:

 $ kubectl get pods --namespace=custom-namespace
NAME READY STATUS RESTARTS AGE
trouble 1/1 Running 0 113s

 Listing pods without the namespace returns the pods in the default namespace:

 $ kubectl get pods
NAME READY STATUS RESTARTS AGE
pod-with-secret 1/1 Running 0 11h

 Avoiding namespace pitfalls

 Namespaces are great, but they can add some friction. When you use just the default namespace, you can simply omit the namespace. When using multiple namespaces, you must qualify everything with the namespace. This can add some burden, but doesn't present any danger.

 However, if some users (for example, cluster administrators) can access multiple namespaces, then you're open to accidentally modifying or querying the wrong namespace. The best way to avoid this situation is to hermetically seal the namespace and require different users and credentials for each namespace, just like you should use a user account for most operations on your machine or remote machines and use root via sudo only when you have too.

 In addition, you should use tools that help make it clear what namespace you're operating on (for example, shell prompt if working from the command line or listing the namespace prominently in a web interface). One of the most popular tools is kubens (available along with kubectx), available at https://github.com/ahmetb/kubectx.

 Make sure that users that can operate on a dedicated namespace don't have access to the default namespace. Otherwise, every time they forget to specify a namespace, they'll operate quietly on the default namespace.

 Summary

 In this chapter, we covered the many security challenges facing developers and administrators building systems and deploying applications on Kubernetes clusters. But we also explored the many security features and the flexible plugin-based security model that provides many ways to limit, control, and manage containers, pods, and nodes. Kubernetes already provides versatile solutions to most security challenges, and it will only get better as capabilities such as AppArmor and various plugins move from alpha/beta status to general availability. Finally, we considered how to use namespaces to support multi-user communities or deployments in the same Kubernetes cluster.

 In the next chapter, we will look in detail into many Kubernetes resources and concepts, and how to use them and combine them effectively. The Kubernetes object model is built on top of a solid foundation of a small number of generic concepts such as resources, manifests, and metadata. This empowers an extensible, yet surprisingly consistent, object model to expose a very diverse set of capabilities for developers and administrators.

 References

 	https://www.stackrox.com/post/2019/04/setting-up-kubernetes-network-policies-a-detailed-guide/

 	https://github.com/ahmetb/kubernetes-network-policy-recipes

 	https://jeremievallee.com/2018/05/28/kubernetes-rbac-namespace-user.html

 5

 Using Kubernetes Resources in Practice

 In this chapter, we will design a fictional massive-scale platform that will challenge Kubernetes' capabilities and scalability. The Hue platform is all about creating an omniscient and omnipotent digital assistant. Hue is a digital extension of you. Hue will help you do anything, find anything, and, in many cases will do a lot on your behalf. It will obviously need to store a lot of information, integrate with many external services, respond to notifications and events, and be smart about interacting with you.

 We will take the opportunity in this chapter to get to know kubectl and related tools a little better and explore in detail familiar resources we've seen before, such as pods, as well as new resources such as jobs. We will explore advanced scheduling and resource management. At the end of this chapter, you will have a clear picture of how impressive Kubernetes is and how it can be used as the foundation for hugely complex systems.

 Designing the Hue platform

 In this section, we will set the stage and define the scope of the amazing Hue platform. Hue is not Big Brother, Hue is Little Brother! Hue will do whatever you allow it to do. Hue will be able to do a lot, which might concern some people, but you get to pick how much or how little Hue can help you with. Get ready for a wild ride!

 Defining the scope of Hue

 Hue will manage your digital persona. It will know you better than you know yourself. Here is a list of some of the services Hue can manage and help you with:

 	Search and content aggregation

 	Medical – electronic health records, DNA sequencing

 	Smart home

 	Finance – banking, savings, retirement, investing

 	Office

 	Social

 	Travel

 	Wellbeing

 	Family

 Smart reminders and notifications

 Let's think of the possibilities. Hue will know you, but also know your friends, the aggregate of other users across all domains. Hue will update its models in real time. It will not be confused by stale data. It will act on your behalf, present relevant information, and learn your preferences continuously. It can recommend new shows or books that you may like, make restaurant reservations based on your schedule and your family or friends, and control your house automation.

 Security, identity, and privacy

 Hue is your proxy online. The ramifications of someone stealing your Hue identity, or even just eavesdropping on your Hue interactions, are devastating. Potential users may even be reluctant to trust the Hue organization with their identity. Let's devise a non-trust system where users have the power to pull the plug on Hue at any time. Here are a few ideas:

 	Strong identity via a dedicated device with multi-factor authorization, including multiple biometric factors

 	Frequently rotating credentials

 	Quick service pause and identity verification of all external services (will require original proof of identity for each provider)

 	The Hue backend will interact with all external services via short-lived tokens

 	Architecting Hue as a collection of loosely coupled microservices with strong compartmentalization

 	GDPR compliance

 	End-to-end encryption

 	Avoid owning critical data (let external providers manage it)

 Hue's architecture will need to support enormous variation and flexibility. It will also need to be very extensible where existing capabilities and external services are constantly upgraded, and new capabilities and external services are integrated into the platform. That level of scale calls for microservices, where each capability or service is totally independent of other services except for well-defined interfaces via standard and/or discoverable APIs.

 Hue components

 Before embarking on our microservice journey, let's review the types of component we need to construct for Hue.

 User profile

 The user profile is a major component, with lots of sub-components. It is the essence of the user, their preferences, their history across every area, and everything that Hue knows about them. The benefit you can get from Hue is affected strongly by the richness of the profile. But the more information is managed by the profile, the more damage you can suffer if the data (or part of it) is compromised.

 A big piece of managing the user profile is the reports and insights that Hue will provide to the user. Hue will employ sophisticated machine learning to better understand the user and their interactions with other users and external service providers.

 User graph

 The user graph component models networks of interactions between users across multiple domains. Each user participates in multiple networks: social networks such as Facebook, Instagram, and Twitter; professional networks; hobby networks; and volunteer communities. Some of these networks are ad hoc and Hue will be able to structure them to benefit users. Hue can take advantage of the rich profiles it has of user connections to improve interactions even without exposing private information.

 Identity

 Identity management is critical, as mentioned previously, so it merits a separate component. A user may prefer to manage multiple mutually exclusive profiles with separate identities. For example, maybe users are not comfortable with mixing their health profile with their social profile at the risk of inadvertently exposing personal health information to their friends. While Hue can find useful connections for you, you may prefer to trade off capabilities for more privacy.

 Authorizer

 The authorizer is a critical component where the user explicitly authorizes Hue to perform certain actions or collect various data on its behalf. This involves access to physical devices, accounts of external services, and levels of initiative.

 External service

 Hue is an aggregator of external services. It is not designed to replace your bank, your health provider, or your social network. It will keep a lot of metadata about your activities, but the content will remain with your external services. Each external service will require a dedicated component to interact with the external service API and policies. When no API is available, Hue emulates the user by automating the browser or native apps.

 Generic sensor

 A big part of Hue's value proposition is to act on the user's behalf. In order to do that effectively, Hue needs to be aware of various events. For example, if Hue reserved a vacation for you but it senses that a cheaper flight is available, it can either automatically change your flight or ask you for confirmation. There is an infinite number of things to sense. To reign in sensing, a generic sensor is needed. The generic sensor will be extensible, but exposes a generic interface that the other parts of Hue can utilize uniformly even as more and more sensors are added.

 Generic actuator

 This is the counterpart of the generic sensor. Hue needs to perform actions on your behalf; for example, reserving a flight or a doctor's appointment. To do that, Hue needs a generic actuator that can be extended to support particular functions but can interact with other components, such as the identity manager and the authorizer, in a uniform fashion.

 User learner

 This is the brain of Hue. It will constantly monitor all your interactions (that you authorize) and update its model of you and other users in your networks. This will allow Hue to become more and more useful over time, predict what you need and what will interest you, provide better choices, surface more relevant information at the right time, and avoid being annoying and overbearing.

 Hue microservices

 The complexity of each of the components is enormous. Some of the components, such as the external service, the generic sensor, and the generic actuator, will need to operate across hundreds, thousands, or more external services that constantly change outside the control of Hue. Even the user learner needs to learn the user's preferences across many areas and domains. Microservices address this need by allowing Hue to evolve gradually and grow more isolated capabilities without collapsing under its own complexity. Each microservice interacts with generic Hue infrastructure services through standard interfaces and, optionally, with a few other services through well-defined and versioned interfaces. The surface area of each microservice is manageable and the orchestration between microservices is based on standard best practices.

 Plugins

 Plugins are the key to extending Hue without a proliferation of interfaces. The thing about plugins is that often, you need plugin chains that cross multiple abstraction layers. For example, if you want to add a new integration for Hue with YouTube, then you can collect a lot of YouTube-specific information – your channels, favorite videos, recommendations, and videos you have watched. To display this information to users and allow them to act on it, you need plugins across multiple components and eventually in the user interface as well. Smart design will help by aggregating categories of actions such as recommendations, selections, and delayed notifications to many different services.

 The great thing about plugins is that they can be developed by anyone. Initially, the Hue development team will have to develop the plugins, but as Hue becomes more popular, external services will want to integrate with Hue and build Hue plugins to enable their service.

 That will lead, of course, to a whole ecosystem of plugin registration, approval, and curation.

 Data stores

 Hue will need several types of data stores, and multiple instances of each type, to manage its data and metadata:

 	Relational database

 	Graph database

 	Time-series database

 	In-memory caching

 	Blob storage

 Due to the scope of Hue, each one of these databases will have to be clustered, scalable, and distributed.

 In addition, Hue will use local storage on edge devices.

 Stateless microservices

 The microservices should be mostly stateless. This will allow specific instances to be started and killed quickly and migrated across the infrastructure as necessary. The state will be managed by the stores and accessed by the microservices with short-lived access tokens. Hue will store frequently accessed data in easily hydrated fast caches when appropriate.

 Serverless functions

 A big part of Hue's functionality per user will involve relatively short interactions with external services or other Hue services. For those activities it may not be necessary to run a full-fledged persistent microservice that needs to be scaled and managed. A more appropriate solution may be to use a serverless function that is more lightweight.

 Queue-based interactions

 All these microservices need to talk to each other. Users will ask Hue to perform tasks on their behalf. External services will notify Hue of various events. Queues coupled with stateless microservices provide the perfect solution. Multiple instances of each microservice will listen to various queues and respond when relevant events or requests are popped from the queue. Serverless functions may be triggered as a result of particular events too. This arrangement is very robust and easy to scale. Every component can be redundant and highly available. While each component is fallible, the system is very fault-tolerant.

 A queue can be used for asynchronous RPC or request-response style interactions too, where the calling instance provides a private queue name and the response is posted to the private queue.

 That said, sometimes direct service-to-service interaction (or serverless function-to-service interaction) though a well-defined interface makes more sense and simplifies the architecture.

 Planning workflows

 Hue often needs to support workflows. A typical workflow will take a high-level task, such as making a dentist appointment. It will extract the user's dentist's details and schedule, match it with the user's schedule, choose between multiple options, potentially confirm with the user, make the appointment, and set up a reminder. We can classify workflows into fully automatic and human workflows where humans are involved. Then there are workflows that involve spending money and might require an additional level of approval.

 Automatic workflows

 Automatic workflows don't require human intervention. Hue has full authority to execute all the steps from start to finish. The more autonomy the user allocates to Hue, the more effective it will be. The user will be able to view and audit all workflows, past and present.

 Human workflows

 Human workflows require interaction with a human. Most often it will be the user that needs to make a choice from multiple options or approve an action. But it may involve a person on another service. For example, to make an appointment with a dentist, Hue may have to get a list of available times from the secretary. In the future, Hue will be able to handle conversation with humans and possibly automate some of these workflows too.

 Budget-aware workflows

 Some workflows, such as paying bills or purchasing a gift, require spending money. While, in theory, Hue can be granted unlimited access to the user's bank account, most users will probably be more comfortable with setting budgets for different workflows or just making spending a human-approved activity. Potentially, the user can grant Hue access to a dedicated account or set of accounts and, based on reminders and reports, allocate more or fewer funds to Hue as needed.

 Using Kubernetes to build the Hue platform

 In this section, we will look at various Kubernetes resources and how they can help us build Hue. First, we'll get to know the versatile kubectl a little better, then we will look at how to run long-running processes in Kubernetes, exposing services internally and externally, using namespaces to limit access, launching ad hoc jobs, and mixing in non-cluster components. Obviously, Hue is a huge project, so we will demonstrate the ideas on a local cluster and not actually build a real Hue Kubernetes cluster. Consider it primarily a thought experiment. If you wish to explore building a real microservice-based distributed system on Kubernetes, check out Hands-On Microservices with Kubernetes.

 Using kubectl effectively

 kubectl is your Swiss Army knife. It can do pretty much anything around a cluster. Under the hood, kubectl connects to your cluster via the API. It reads your ~/.kube/config file, which contains information necessary to connect to your cluster or clusters. The commands are divided into multiple categories:

 	Generic commands: Deal with resources in a generic way: create, get, delete, run, apply, patch, replace, and so on

 	Cluster management commands: Deal with nodes and the cluster at large: cluster-info, certificate, drain, and so on

 	Troubleshooting commands: Describe, logs, attach, exec, and so on

 	Deployment commands: Deal with deployment and scaling: rollout, scale, auto-scale, and so on

 	Settings commands: Deal with labels and annotations: label, annotate, and so on

 	Misc commands: Help, config, and version

 	Custimization commands: Integrate the kustomize.io capabilities into kubectl

 You can view the configuration with Kubernetes' config view command.

 Here is the configuration for my local k3s cluster:

 $ k config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://localhost:6443
 name: default
contexts:
- context:
 cluster: default
 user: default
 name: default
current-context: default
kind: Config
preferences: {}
users:
- name: default
 user:
 password: 6ce7b64ff48ac13f06af428d92b3d4bf
 username: admin

 Understanding kubectl resource configuration files

 Many kubectl operations, such as create, require a complicated hierarchical structure (since the API requires this structure). kubectl uses YAML or JSON configuration files. YAML is more concise and human-readable. Here is a YAML configuration file for creating a pod:

 apiVersion: v1
kind: Pod
metadata:
 name: ""
 labels:
 name: ""
 namespace: ""
 annotations: []
 generateName: ""
spec:
 ...

 ApiVersion

 The very important Kubernetes API keeps evolving and can support different versions of the same resource via different versions of the API.

 Kind

 Kind tells Kubernetes what type of resource it is dealing with; in this case, pod. This is always required.

 Metadata

 A lot of information that describes the pod and where it operates:

 	Name: Identifies the pod uniquely within its namespace

 	Labels: Multiple labels can be applied

 	Namespace: The namespace the pod belongs to

 	Annotations: A list of annotations available for query

 Spec

 Spec is a pod template that contains all the information necessary to launch a pod. It can be quite elaborate, so we'll explore it in multiple parts:

 spec:
 containers: [
 ...
],
 "restartPolicy": "",
 "volumes": []

 Container spec

 The pod spec's containers section is a list of container specs. Each container spec has the following structure:

 name: "",
image: "",
command: [""],
args: [""],
env:
 - name: "",
 value: ""
imagePullPolicy: "",
ports:
 - containerPort": 0,
 name: "",
 protocol: ""
resources:
 cpu: ""
 memory: ""

 Each container has an image, a command that, if specified, replaces the Docker image command. It also has arguments and environment variables. Then, there are of course the image pull policy, ports, and resource limits. We covered those in earlier chapters.

 Deploying long-running microservices in pods

 Long-running microservices should run in pods and be stateless. Let's look at how to create pods for one of Hue's microservices. Later, we will raise the level of abstraction and use a deployment.

 Creating pods

 Let's start with a regular pod configuration file for creating a Hue learner internal service. This service doesn't need to be exposed as a public service and it will listen to a queue for notifications and store its insights in some persistent storage.

 We need a simple container that will run in the pod. Here is possibly the simplest Docker file ever, which will simulate the Hue learner:

 FROM busybox
CMD ash -c "echo 'Started...'; while true ; do sleep 10 ; done"

 It uses the busybox base image, prints to standard output Started..., and then goes into an infinite loop, which is, by all accounts, long-running.

 I have built two Docker images tagged as g1g1/hue-learn:0.3 and g1g1/hue-learn:v0.4 and pushed them to the Docker Hub registry (g1g1 is my username):

 $ docker build . -t g1g1/hue-learn:0.3
$ docker build . -t g1g1/hue-learn:0.4
$ docker push g1g1/hue-learn:0.3
$ docker push g1g1/hue-learn:0.4

 Now these images are available to be pulled into containers inside of Hue's pods.

 We'll use YAML here because it's more concise and human-readable. Here are the boilerplate and metadata labels:

 apiVersion: v1
kind: Pod
metadata:
 name: hue-learner
 labels:
 app: hue
 service: learner
 runtime-environment: production
 tier: internal-service

 The reason I use an annotation for the version and not a label is that labels are used to identify the set of pods in the deployment. Modifying labels is not allowed.

 Next comes the important containers spec, which defines for each container the mandatory name and image:

 spec:
 containers:
 - name: hue-learner
 image: g1g1/hue-learn:0.3

 The resources section tells Kubernetes the resource requirements of the container, which allows for more efficient and compact scheduling and allocations. Here, the container requests 200 milli-cpu units (0.2 core) and 256 MiB (2 to the power of 28 bytes):

 resources:
 requests:
 cpu: 200m
 memory: 256Mi

 The environment section allows the cluster administrator to provide environment variables that will be available to the container. Here it tells it to discover the queue and the store via dns. In a testing environment, it may use a different discovery method:

 env:
 - name: DISCOVER_QUEUE
 value: dns
 - name: DISCOVER_STORE
 value: dns

 Decorating pods with labels

 Labeling pods wisely is key for flexible operations. It lets you evolve your cluster live, organize your microservices into groups you can operate on uniformly, and drill down on the fly to observe different subsets.

 For example, our Hue learner pod has the following labels:

 	runtime-environment: production

 	tier: internal-service

 The runtime-environment label allows performing global operations on all pods that belong to a certain environment. The tier label can be used to query all pods that belong to a particular tier. These are just examples; your imagination is the limit here.

 Here is how to list the labels with the get pods command:

 $ kubectl get po -n kube-system --show-labels
NAME READY STATUS RESTARTS AGE LABELS
coredns-b7464766c-s4z28 1/1 Running 3 15d k8s-app=kube-dns,pod-template-hash=b7464766c
svclb-traefik-688zv 2/2 Running 6 15d app=svclb-traefik,controller-revision-hash=66fd644d6,pod-template-generation=1,svccontroller.k3s.cattle.io/svcname=traefik
svclb-traefik-hfk8t 2/2 Running 6 15d app=svclb-traefik,controller-revision-hash=66fd644d6,pod-template-generation=1,svccontroller.k3s.cattle.io/svcname=traefik
svclb-traefik-kp9wh 2/2 Running 6 15d app=svclb-traefik,controller-revision-hash=66fd644d6,pod-template-generation=1,svccontroller.k3s.cattle.io/svcname=traefik
svclb-traefik-sgmbg 2/2 Running 6 15d app=svclb-traefik,controller-revision-hash=66fd644d6,pod-template-generation=1,svccontroller.k3s.cattle.io/svcname=traefik
traefik-56688c4464-c4sfq 1/1 Running 3 15d app=traefik,chart=traefik-1.64.0,heritage=Tiller,pod-template-hash=56688c4464,release=traefik

 Now, if you want to filter and list only the pods of the traefik app type:

 $ kubectl get po -n kube-system -l app=traefik
NAME READY STATUS RESTARTS AGE
traefik-56688c4464-c4sfq 1/1 Running 3 15d

 Deploying long-running processes with deployments

 In a large-scale system, pods should never be just created and let loose. If a pod dies unexpectedly for whatever reason, you want another one to replace it to maintain overall capacity. You can create replication controllers or replica sets yourself, but that leaves the door open to mistakes, as well as the possibility of partial failure. It makes much more sense to specify how many replicas you want when you launch your pods in a declarative manner. This is what Kubernetes deployments are for.

 Let's deploy three instances of our Hue learner microservice with a Kubernetes deployment resource. Note that deployment objects became stable at Kubernetes 1.9:

 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: hue-learn
 labels:
 app: hue
 service: learn
 spec:
 replicas: 3
 selector:
 matchLabels:
 app: hue
 service: learn
 template:
 metadata:
 labels:
 app: hue
 spec:
 <same spec as in the pod template>

 The pod spec is identical to the spec section from the pod configuration file previously.

 Let's create the deployment and check its status:

 $ kubectl create -f hue-learn-deployment.yaml
deployment.apps/hue-learn created
$ kubectl get deployment hue-learn
NAME READY UP-TO-DATE AVAILABLE AGE
hue-learn 3/3 3 3 32s
$ kubectl get pods -l app=hue
NAME READY STATUS RESTARTS AGE
hue-learn-558f5c45cd-fbvpj 1/1 Running 0 81s
hue-learn-558f5c45cd-s6vkk 1/1 Running 0 81s
hue-learn-558f5c45cd-tdlpq 1/1 Running 0 81s

 You can get a lot more information about the deployment using the kubectl describe command.

 Updating a deployment

 The Hue platform is a large and ever-evolving system. You need to upgrade constantly. Deployments can be updated to roll out updates in a painless manner. You change the pod template to trigger a rolling update fully managed by Kubernetes.

 Currently, all the pods are running with version 0.3:

 $ kubectl get pods -o jsonpath='{.items[*].spec.containers[0].image}'
g1g1/hue-learn:0.3
g1g1/hue-learn:0.3
g1g1/hue-learn:0.3

 Let's update the deployment to upgrade to version 0.4. Modify the image version in the deployment file. Don't modify labels; it will cause an error. Save it to hue-learn-deployment-0.4.yaml. Then we can use the apply command to upgrade the version and verify that the pods now run 0.4:

 $ kubectl apply -f hue-learn-deployment-0.4.yaml
deployment "hue-learn" updated

 Note that it can take several minutes to see the following output due to the nature of the rolling update operation:

 $ kubectl get pods -o jsonpath='{.items[*].spec.containers[0].image}'
g1g1/hue-learn:0.4
g1g1/hue-learn:0.4
g1g1/hue-learn:0.4

 Note that new pods are created and the original 0.3 pods are terminated in a rolling update manner:

 $ kubectl get pods
NAME READY STATUS RESTARTS AGE IP NODE
hue-learn-558f5c45cd-fbvpj 1/1 Terminating 0 8m7s 10.42.3.15 k3d-k3s-default-server
hue-learn-558f5c45cd-s6vkk 0/1 Terminating 0 8m7s 10.42.0.7 k3d-k3s-default-worker-0
hue-learn-558f5c45cd-tdlpq 0/1 Terminating 0 8m7s 10.42.2.15 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-lggk7 1/1 Running 0 38s 10.42.2.16 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-pwflv 1/1 Running 0 31s 10.42.1.10 k3d-k3s-default-worker-1
hue-learn-5c9bb545d9-q25hl 1/1 Running 0 35s 10.42.0.8 k3d-k3s-default-worker-0

 Separating internal and external services

 Internal services are services that are accessed directly only by other services or jobs in the cluster (or administrators that log in and run ad hoc tools). In some cases, internal services are not accessed at all, and just perform their function and store their results in a persistent store that other services access in a decoupled way.

 But some services need to be exposed to users or external programs. Let's look at a fake Hue service that manages a list of reminders for a user. It doesn't really do much – just returns a fixed list of reminders – but we'll use it to illustrate how to expose services. I already pushed a hue-reminders image to Docker Hub:

 docker push g1g1/hue-reminders:3.0

 Deploying an internal service

 Here is the deployment, which is very similar to the Hue-learner deployment, except that I dropped the annotations, env, and resources sections, kept just one or two labels to save space, and added a ports section to the container. That's crucial because a service must expose a port through which other services can access it:

 apiVersion: apps/v1
kind: Deploymen
tmetadata:
 name: hue-reminders
spec:
 replicas: 2
 selector:
 matchLabels:
 app: hue
 service: reminders
 template:
 metadata:
 name: hue-reminders
 labels:
 app: hue
 service: reminders
 spec:
 containers:
 - name: hue-reminders
 image: g1g1/hue-reminders:3.0
 ports:
 - containerPort: 8080

 When we run the deployment, two hue-reminders pods are added to the cluster:

 $ kubectl create -f hue-reminders-deployment.yaml
deployment.apps/hue-reminders created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hue-learn-5c9bb545d9-lggk7 1/1 Running 0 22m
hue-learn-5c9bb545d9-pwflv 1/1 Running 0 22m
hue-learn-5c9bb545d9-q25hl 1/1 Running 0 22m
hue-reminders-9b7d65d86-4kf5t 1/1 Running 0 7s
hue-reminders-9b7d65d86-tch4w 1/1 Running 0 7s

 OK. The pods are running. In theory, other services can look up or be configured with their internal IP address and just access them directly because they are all in the same network address space. But this doesn't scale. Every time a reminder's pod dies and is replaced by a new one, or when we just scale up the number of pods, all the services that access these pods must know about it. Kubernetes services solve this issue by providing a single stable access point to all the pods. Here is the service definition:

 apiVersion: v1
kind: Service
metadata:
 name: hue-reminders
 labels:
 app: hue
 service: reminders
spec:
 ports:
 - port: 8080
 protocol: TCP
 selector:
 app: hue
 service: reminders

 The service has a selector that determines the backing pods by their matching labels. It also exposes a port, which other services will use to access it (it doesn't have to be the same port as the container's port).

 The protocol field can be one of TCP, UDP, and since Kubernetes 1.12 also SCTP (if the feature gate is enabled).

 Creating the Hue-reminders service

 Let's create the service and explore it a little bit:

 $ kubectl create -f hue-reminders-service.yaml
service/hue-reminders created
$ kubectl describe svc hue-reminders
Name: hue-reminders
Namespace: default
Labels: app=hue
 service=reminders
Annotations: <none>
Selector: app=hue,service=reminders
Type: ClusterIP
IP: 10.43.166.58
Port: <unset> 8080/TCP
TargetPort: 8080/TCP
Endpoints: 10.42.1.12:8080,10.42.2.17:8080
Session Affinity: None
Events: <none>

 The service is up and running. Other pods can find it through environment variables or DNS. The environment variables for all services are set at pod creation time. That means that if a pod is already running when you create your service, you'll have to kill it and let Kubernetes recreate it with the environment variables (you create your pods via a deployment, right?):

 $ kubectl exec hue-learn-5c9bb545d9-w8hrr -- printenv | grep HUE_REMINDERS_SERVICE
HUE_REMINDERS_SERVICE_HOST=10.43.166.58
HUE_REMINDERS_SERVICE_PORT=8080

 But using DNS is much simpler. Your service DNS name is:

 <service name>.<namespace>.svc.cluster.local

 $ kubectl exec hue-learn-5c9bb545d9-w8hrr -- nslookup hue-reminders.default.svc.cluster.local
Server: 10.43.0.10
Address 1: 10.43.0.10 kube-dns.kube-system.svc.cluster.local
Name: hue-reminders.default.svc.cluster.local
Address 1: 10.43.247.147 hue-reminders.default.svc.cluster.local

 Now, all the services in the default namespace can access the hue-reminders service though its service endpoint and port 8080:

 $ kubectl exec hue-learn-5c9bb545d9-w8hrr -- wget -q -O - hue-reminders.default.svc.cluster.local:8080
Dentist appointment at 3pm
Dinner at 7pm

 Yes, at the moment hue-reminders always returns the same two reminders:

 Dentist appointment at 3pm
Dinner at 7pm

 Exposing a service externally

 The service is accessible inside the cluster. If you want to expose it to the world, Kubernetes provides three ways to do it:

 	Configure NodePort for direct access

 	Configure a cloud load balancer if you run it in a cloud environment

 	Configure your own load balancer if you run on bare metal

 Before you configure a service for external access, you should make sure it is secure. The Kubernetes documentation has a good example that covers all the gory details here:

 https://github.com/kubernetes/examples/blob/master/staging/https-nginx/README.md.

 We've already covered the principles in Chapter 4, Securing Kubernetes.

 Here is the spec section of the hue-reminders service when exposed to the world through NodePort:

 spec:
 type: NodePort
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 name: http
 - port: 443
 protocol: TCP
 name: https
 selector:
 app: hue-reminders

 The main downside of exposing services though NodePort is that the port numbers are shared across all services and you must coordinate them globally across your entire cluster to avoid conflicts.

 But there are other reasons that you may want to avoid exposing a Kubernetes service directly, and you may prefer to use an Ingress resource in front of the service.

 Ingress

 Ingress is a Kubernetes configuration object that lets you expose a service to the outside world and takes care of a lot of details. It can do the following:

 	Provide an externally visible URL to your service

 	Load balance traffic

 	Terminate SSL

 	Provide name-based virtual hosting

 To use Ingress, you must have an Ingress controller running in your cluster. Note that Ingress was introduced in Kubernetes 1.1, but it is still in beta and has many limitations. If you're running your cluster on GKE, you're probably OK. Otherwise, proceed with caution. One of the current limitations of the Ingress controller is that it isn't built for scale. As such, it is not a good option for the Hue platform yet. We'll cover the Ingress controller in greater detail in Chapter 10, Exploring Advanced Networking.

 Here is what an Ingress resource looks like:

 apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: test-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /testpath
 backend:
 serviceName: test
 servicePort: 80

 Note the annotation, which hints that it is an Ingress object that works with the Nginx Ingress controller. There are many other Ingress controllers and they typically use annotations to encode information they need that is not captured by the Ingress object itself and its rules.

 Other Ingress controllers include:

 	Traefik

 	Gloo

 	Contour

 	AWS ALB Ingress controller

 	HAPRoxy Ingress

 	Voyager

 Advanced scheduling

 One of the strongest suits of Kubernetes is its powerful yet flexible scheduler. The job of the scheduler, put simply, is to choose nodes to run newly created pods. In theory the scheduler could even move existing pods around between nodes, but in practice it doesn't do that at the moment and instead leaves this functionality for other components.

 By default, the scheduler follows several guiding principles, including:

 	Split pods from the same replica set or stateful set across nodes

 	Schedule pods to nodes that have enough resources to satisfy the pod requests

 	Balance out the overall resource utilization of nodes

 This is pretty good default behavior, but sometimes you may want better control over specific pod placement. Kubernetes 1.6 introduced several advanced scheduling options that give you fine-grained control over which pods are scheduled or not scheduled on which nodes as well as which pods are to be scheduled together or separately.

 Let's review these mechanisms in the context of Hue.

 Node selector

 The node selector is pretty simple. A pod can specify which nodes it wants to be scheduled on in its spec. For example, the trouble-shooter pod has a nodeSelector that specifies the kubernetes.io/hostname label of the worker-2 node:

 apiVersion: v1
kind: Pod
metadata:
 name: trouble-shooter
 labels:
 role: trouble-shooter
spec:
 nodeSelector:
 kubernetes.io/hostname: k3d-k3s-default-worker-2
 containers:
 - name: trouble-shooter
 image: g1g1/py-kube:0.2
 command: ["bash"]
 args: ["-c", "echo started...; while true ; do sleep 1 ; done"]

 When creating this pod it is indeed scheduled to the worker-2 node:

 $ k apply -f trouble-shooter.yaml
pod/trouble-shooter created
$ k get po trouble-shooter -o jsonpath='{.spec.nodeName}'
k3d-k3s-default-worker-2

 Taints and tolerations

 You can taint a node in order to prevent pods from being scheduled on this node. This can be useful, for example, if you don't want pods to be scheduled on your master nodes. Tolerations allow pods to declare that they can "tolerate" a specific node taint and then these pods can be scheduled on the tainted node. A node can have multiple taints and a pod can have multiple tolerations. A taint is a triplet: key, value, effect. The key and value are used to identify the taint. The effect is one of:

 	NoSchedule (no pods will be scheduled to the node unless it tolerates the taint)

 	PreferNoSchedule (soft version of NoSchedule; the scheduler will attempt not to schedule pods that don't tolerate the taint)

 	NoExecute (no new pods will be scheduled, but also existing pods that don't tolerate the taint will be evicted)

 Currently, there is a hue-learn pod that runs on the master node (k3d-k3s-default-server):

 $ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
hue-learn-5c9bb545d9-dk4c4 1/1 Running 0 7h40m 10.42.3.17 k3d-k3s-default-server
hue-learn-5c9bb545d9-sqx28 1/1 Running 0 7h40m 10.42.2.18 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-w8hrr 1/1 Running 0 7h40m 10.42.0.11 k3d-k3s-default-worker-0
hue-reminders-6f9f54d8f-hwjwd 1/1 Running 0 3h51m 10.42.0.13 k3d-k3s-default-worker-0
hue-reminders-6f9f54d8f-p4z8z 1/1 Running 0 3h51m 10.42.1.14 k3d-k3s-default-worker-1

 Let's taint our master node:

 $ k taint nodes k3d-k3s-default-server master=true:NoExecute
node/k3d-k3s-default-server tainted

 We can now review the taint:

 $ k get nodes k3d-k3s-default-server -o jsonpath='{.spec.taints[0]}'
map[effect:NoExecute key:master value:true]

 Yeah, it worked! there are now no pods scheduled on the master node. The pod on the master was terminated and a new pod (hue-learn-5c9bb545d9-nn4xk) is now running on worker-1:

 $ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
hue-learn-5c9bb545d9-nn4xk 1/1 Running 0 3m46s 10.42.1.15 k3d-k3s-default-worker-1
hue-learn-5c9bb545d9-sqx28 1/1 Running 0 9h 10.42.2.18 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-w8hrr 1/1 Running 0 9h 10.42.0.11 k3d-k3s-default-worker-0
hue-reminders-6f9f54d8f-hwjwd 1/1 Running 0 6h 10.42.0.13 k3d-k3s-default-worker-0
hue-reminders-6f9f54d8f-p4z8z 1/1 Running 0 6h 10.42.1.14 k3d-k3s-default-worker-1
trouble-shooter 1/1 Running 0 16m 10.42.2.20 k3d-k3s-default-worker-2

 To allow pods to tolerate the taint, add a toleration to their spec, such as:

 tolerations:
- key: "master"
 operator: "Equal"
 value: "true"
 effect: "NoSchedule"

 Node affinity and anti-affinity

 Node affinity is a more sophisticated form of nodeSelector. It has three main advantages:

 	Rich selection criteria (nodeSelector is just AND of exact matches on the labels)

 	Rules can be soft

 	You can achieve anti-affinity using operators such as NotIn and DoesNotExist

 Note that if you specify both nodeSelector and nodeAffinity then the pod will be scheduled only to a node that satisfies both requirements.

 For example, if we add the following section to our trouble-shooter pod it will not be able to run on any node because it conflicts with nodeSelector:

 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: NotIn
 values:
 - k3d-k3s-default-worker-2

 Pod affinity and anti-affinity

 Pod affinity and anti-affinity provide yet another avenue for managing where your workloads run. All the methods we discussed so far – node selectors, taints/tolerations, node affinity/anti-affinity – were about assigning pods to nodes. But pod affinity is about the relationships between different pods. Pod affinity has several other concepts associated with it: namespacing (since pods are namespaced), topology zone (node, rack, cloud provider zone, cloud provider region), and weight (for preferred scheduling). A simple example is if you want hue-reminders to always be scheduled with a trouble-shooter pod. Let's see how to define it in the pod template spec of the hue-reminders deployment:

 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: role
 operator: In
 values:
 - trouble-shooter
 topologyKey: failure-domain.beta.kubernetes.io/zone

 Then after re-deploying hue-reminders, all the hue-reminders pods are scheduled to run on worker-2 next to the trouble-shooter pod:

 $ k get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
hue-learn-5c9bb545d9-nn4xk 1/1 Running 0 156m 10.42.1.15 k3d-k3s-default-worker-1
hue-learn-5c9bb545d9-sqx28 1/1 Running 0 12h 10.42.2.18 k3d-k3s-default-worker-2
hue-learn-5c9bb545d9-w8hrr 1/1 Running 0 12h 10.42.0.11 k3d-k3s-default-worker-0
hue-reminders-5cb9b845d8-kck5d 1/1 Running 0 14s 10.42.2.24 k3d-k3s-default-worker-2
hue-reminders-5cb9b845d8-kpvx5 1/1 Running 0 14s 10.42.2.23 k3d-k3s-default-worker-2
trouble-shooter 1/1 Running 0 14m 10.42.2.21 k3d-k3s-default-worker-2

 Using namespaces to limit access

 The Hue project is moving along nicely, and we have a few hundred microservices and about 100 developers and DevOps engineers working on it. Groups of related microservices emerge, and you notice that many of these groups are pretty autonomous. They are completely oblivious to the other groups. Also, there are some sensitive areas such as health and finance that you want to control access to more effectively. Enter namespaces.

 Let's create a new service, Hue-finance, and put it in a new namespace called restricted.

 Here is the YAML file for the new restricted namespace:

 kind: Namespace
apiVersion: v1
metadata:
 name: restricted
 labels:
 name: restricted

 We can create it as usual:

 $ kubectl create -f restricted-namespace.yaml
namespace "restricted" created

 Once the namespace has been created, we can configure a context for the namespace. This will allow restricting access just to this namespace to specific users:

 $ kubectl config set-context restricted --namespace=restricted --cluster=default --user=default
Context "restricted" set.
$ kubectl config use-context restricted
Switched to context "restricted".

 Let's check our cluster configuration:

 apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://localhost:6443
 name: default
contexts:
- context:
 cluster: default
 user: default
 name: default
- context:
 cluster: default
 namespace: restricted
 user: default
 name: restricted
current-context: restricted
kind: Config
preferences: {}
users:
- name: default
 user:
 password: <REDACTED>
 username: admin

 As you can see, there are two contexts now and the current context is restricted. If we wanted to, we could even create dedicated users with their own credentials that are allowed to operate in the restricted namespace. This is not necessary in this case since we are the cluster admin.

 Now, in this empty namespace, we can create our hue-finance service, and it will be on its own:

 $ kubectl create -f hue-finance-deployment.yaml
deployment.apps/hue-learn created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hue-finance-7d4b84cc8d-gcjnz 1/1 Running 0 6s
hue-finance-7d4b84cc8d-tqvr9 1/1 Running 0 6s
hue-finance-7d4b84cc8d-zthdr 1/1 Running 0 6s

 You don't have to switch contexts. You can also use the --namespace=<namespace> and --all-namespaces command-line switches, but when operating for a while in the same non-default namespace it's nice to set the context to that namespace.

 Using kustomization for hierarchical cluster structures

 This is not a typo. Kubectl recently incorporated the functionality of kustomize (https://kustomize.io/). It is a way to configure Kubernetes without templates. There was a lot of drama about the way the kustomize functionality was integrated into kubectl itself, since there are other options and it was an open question if kubectl should be that opinionated. But that's all in the past. The bottom line is that kubectl apply -k unlocks a treasure trove of configuration options. Let's understand what problem it helps us to solve and take advantage of it to help us manage Hue.

 Understanding the basics of kustomize

 Kustomize was created as a response to template-heavy approaches like Helm to configure and customize Kubernetes clusters. It is designed around the principle of declarative application management. It takes a valid Kubernetes YAML manifest (base) and specializes it or extends it by overlaying additional YAML patches (overlays). Overlays depend on their bases. All files are valid YAML files. There are no placeholders.

 A kustomization.yaml file controls the process. Any directory that contains a kustomization.yaml file is called a root. For example:

 apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: staging
commonLabels:
 environment: staging
bases:
 - ../base
patchesStrategicMerge:
 - hue-learn-patch.yaml
resources:
 - namespace.yaml

 kustomize can work well in a GitOps environment where different kustomizations live in a Git repo and changes to the bases, overlays, or kustomization.yaml files trigger a deployment.

 One of the best use cases for kustomize is organizing your system into multiple namespaces such as staging and production. Let's restructure the Hue platform deployment manifests.

 Configuring the directory structure

 First, we need a base directory that will contain the commonalities of all the manifests. Then we will have an overlays directory that contains staging and production sub-directories:

 $ tree
.
├── base
│ ├── hue-learn.yaml
│ └── kustomization.yaml
├── overlays
│ ├── production
│ │ ├── kustomization.yaml
│ │ └── namespace.yaml
│ └── staging
│ ├── hue-learn-patch.yaml
│ ├── kustomization.yaml
│ └── namespace.yaml

 The hue-learn.yaml file in the base directory is just an example. There may be many files there. Let's review it quickly:

 apiVersion: v1
kind: Pod
metadata:
 name: hue-learner
 labels:
 tier: internal-service
spec:
 containers:
 - name: hue-learner
 image: g1g1/hue-learn:0.3
 resources:
 requests:
 cpu: 200m
 memory: 256Mi
 env:
 - name: DISCOVER_QUEUE
 value: dns
 - name: DISCOVER_STORE
 value: dns

 It is very similar to the manifest we created earlier, but it doesn't have the app: hue label. It is not necessary because the label is provided by the kustomization.yaml file as a common label for all the listed resources:

 apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
commonLabels:
 app: hue
resources:
 - hue-learn.yaml

 Applying kustomizations

 We can observe the results by running the kubectl kustomize command on the base directory. You can see that the common label app: hue was added:

 $ kubectl kustomize base
apiVersion: v1
kind: Pod
metadata:
 labels:
 app: hue
 tier: internal-service
 name: hue-learner
spec:
 containers:
 - env:
 - name: DISCOVER_QUEUE
 value: dns
 - name: DISCOVER_STORE
 value: dns
 image: g1g1/hue-learn:0.3
 name: hue-learner
 resources:
 requests:
 cpu: 200m
 memory: 256Mi

 In order to actually deploy the kustomization, we can run kubectl -k apply. But the base is not supposed to be deployed on its own. Let's dive into the overlays/staging directory and examine it.

 The namespace.yaml file just creates the staging namespace. It will also benefit from all the kustomizations, as we'll soon see:

 apiVersion: v1
kind: Namespace
metadata:
 name: staging

 The kustomization.yaml file adds the common label environment: staging. It depends on the base directory and adds the namespace.yaml file to the resources list (which already includes the hue-learn.yaml from the base directory):

 apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: staging
commonLabels:
 environment: staging
bases:
 - ../../base
patchesStrategicMerge:
 - hue-learn-patch.yaml
resources:
 - namespace.yaml

 But that's not all. The most interesting part of kustomization is patching.

 Patching

 Patches add or replace parts of manifests. They never remove existing resources or parts of resources. The hue-learn-patch.yaml updates the image from g1g1/hue-learn:0.3 to g1g1/hue-learn:0.4:

 apiVersion: v1
kind: Pod
metadata:
 name: hue-learner
spec:
 containers:
 - name: hue-learner
 image: g1g1/hue-learn:0.4

 This is a strategic merge. Kustomize supports another type of patch called JsonPatches6902. It is based on RFC 6902. It is often more concise than a strategic merge. Note that since JSON is a subset of YAML, we can use YAML syntax for JSON 6902 patches. Here is the same patch of changing the image version:

 - op: replace
 path: /spec/containers/0/image
 value: g1g1/hue-learn:0.4

 Kustomizing the entire staging namespace

 Here is what kustomize generates when it is running on the overlays/staging directory:

 $ kubextl kustomize overlays/staging
apiVersion: v1
kind: Namespace
metadata:
 labels:
 environment: staging
 name: staging

apiVersion: v1
kind: Pod
metadata:
 labels:
 app: hue
 environment: staging
 tier: internal-service
 name: hue-learner
 namespace: staging
spec:
 containers:
 - env:
 - name: DISCOVER_QUEUE
 value: dns
 - name: DISCOVER_STORE
 value: dns
 image: g1g1/hue-learn:0.4
 name: hue-learner
 resources:
 requests:
 cpu: 200m
 memory: 256Mi

 Note that the namespace didn't inherit the app: hue label from the base, but only the environment: staging label from its local kustomization file. The hue-learn pod on the other hand got all labels as well the namespace designation.

 It's time to deploy it to the cluster:

 $ kubectl apply -k overlays/staging/
namespace/staging created
pod/hue-learner created

 Now, we can review the pod in the newly created staging namespace:

 $ kubectl get po -n staging
NAME READY STATUS RESTARTS AGE
hue-learner 1/1 Running 0 8s

 Launching jobs

 Hue has evolved and has a lot of long-running processes deployed as microservices, but it also has a lot of tasks that run, accomplish some goal, and exit. Kubernetes supports this functionality via the Job resource. A Kubernetes job manages one or more pods and ensures that they run until they are successful. If one of the pods managed by the job fails or is deleted, then the job will run a new pod until it succeeds.

 There are also many serverless or function-as-a-service solutions for Kubernetes, but they are built on top of native Kubernetes. We will dedicate a whole chapter to serverless computing.

 Here is a job that runs a Python process to compute the factorial of 5 (hint: it's 120):

 apiVersion: batch/v1
kind: Job
metadata:
 name: factorial5
spec:
 template:
 metadata:
 name: factorial5
 spec:
 containers:
 - name: factorial5
 image: g1g1/py-kube:0.2
 command: ["python",
 "-c",
 "import math; print(math.factorial(5))"]
 restartPolicy: Never

 Note that the restartPolicy must be either Never or OnFailure. The default value – Always – is invalid because a job shouldn't restart after a successful completion.

 Let's start the job and check its status:

 $ kubectl create -f factorial-job.yaml
job.batch/factorial5 created
$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
factorial5 1/1 2s 2m53s

 The pods of completed tasks are displayed with a status of Completed:

 $ kubectl get pods
NAME READY STATUS RESTARTS AGE
factorial5-tf9qb 0/1 Completed 0 26m
hue-learn-5c9bb545d9-nn4xk 1/1 Running 3 2d11h
hue-learn-5c9bb545d9-sqx28 1/1 Running 3 2d21h
hue-learn-5c9bb545d9-w8hrr 1/1 Running 3 2d21h
hue-reminders-5cb9b845d8-kck5d 1/1 Running 3 2d8h
hue-reminders-5cb9b845d8-kpvx5 1/1 Running 3 2d8h
trouble-shooter 1/1 Running 3 2d9h

 The factorial5 pod has a status of Completed. Let's check out its output in the logs:

 $ kubectl logs factorial5-tf9qb
120

 Running jobs in parallel

 You can also run a job with parallelism. There are two fields in the spec, called completions and parallelism. completions is set to 1 by default. If you want more than one successful completion, then increase this value. parallelism determines how many pods to launch. A job will not launch more pods than needed for successful completion, even if the parallelism value is greater.

 Let's run another job that just sleeps for 20 seconds until it has three successful completions. We'll use a parallelism factor of six, but only three pods will be launched:

 apiVersion: batch/v1
kind: Job
metadata:
 name: sleep20
spec:
 completions: 3
 parallelism: 6
 template:
 metadata:
 name: sleep20
 spec:
 containers:
 - name: sleep20
 image: g1g1/py-kube:0.2
 command: ["python",
 "-c",
 "import time; print('started...');
 time.sleep(20); print('done.')"]
 restartPolicy: Never

 We can now see that all jobs completed, and the pods are not ready because they already did the job:

 $ kubectl get pods
NAME READY STATUS RESTARTS AGE
sleep20-2mb7g 0/1 Completed 0 17m
sleep20-74pwh 0/1 Completed 0 15m
sleep20-txgpz 0/1 Completed 0 15m

 Cleaning up completed jobs

 When a job completes, it sticks around – and its pods, too. This is by design, so you can look at logs or connect to pods and explore. But normally, when a job has completed successfully, it is not needed anymore. It's your responsibility to clean up completed jobs and their pods. The easiest way is to simply delete the job object, which will delete all the pods too:

 $ kubectl get jobs
NAME COMPLETIONS DURATION AGE
factorial5 1/1 2s 6h59m
sleep20 3/3 3m7s 5h54m
$ kubectl delete job factorial5
job.batch "factorial5" deleted
$ kubectl delete job sleep20
job.batch "sleep20" deleted

 Scheduling cron jobs

 Kubernetes cron jobs are jobs that run for a specified time, once or repeatedly. They behave as regular Unix cron jobs specified in the /etc/crontab file.

 In Kubernetes 1.4 they were known as a ScheduledJob. But in Kubernetes 1.5, the name was changed to CronJob. Starting with Kubernetes 1.8 the CronJob resource is enabled by default in the API server and there is no need to pass a --runtime-config flag anymore, but it's still in beta. Here is the configuration to launch a cron job every minute to remind you to stretch. In the schedule, you may replace the * with ?:

 apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: cron-demo
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 template:
 metadata:
 labels:
 name: cron-demo
 spec:
 containers:
 - name: cron-demo
 image: g1g1/py-kube:0.2
 args:
 - python
 - -c
 - from datetime import datetime; print('[{}] CronJob demo here...'.format(datetime.now()))
 restartPolicy: OnFailure

 In the pod spec, under the job template, I added a label name: cron-demo. The reason is that cron jobs and their pods are assigned names with a random prefix by Kubernetes. The label allows you to easily discover all the pods of a particular cron job.

 See the following command lines:

 $ kubectl get pods
NAME READY STATUS RESTARTS AGE
cron-demo-1568250120-7jrq8 0/1 Completed 0 3m
cron-demo-1568250180-sw5qq 0/1 Completed 0 2m
cron-demo-1568250240-mmfzm 0/1 Completed 0 1m

 Note that each invocation of a cron job launches a new job object with a new pod:

 $ kubectl get jobs
NAME COMPLETIONS DURATION AGE
cron-demo-1568244780 1/1 2s 1m
cron-demo-1568250060 1/1 3s 88s
cron-demo-1568250120 1/1 3s 38s

 As usual, you can check the output of the pod of a completed cron job using the logs command:

 $ kubectl logs cron-demo-1568250240-mmfzm
[2020-06-01 01:04:03.245204] CronJob demo here...

 When you delete a cron job it stops scheduling new jobs, then deletes all the existing job objects and all the pods it created.

 You can use the designated label (name=cron-demo in this case) to locate all the job objects launched by the cron job. You can also suspend a cron job so it doesn't create more jobs without deleting completed jobs and pods. You can also manage previous jobs by setting in the spec history limits: .spec.successfulJobsHistoryLimit and .spec.failedJobsHistoryLimit.

 Mixing non-cluster components

 Most real-time system components in the Kubernetes cluster will communicate with out-of-cluster components. Those could be completely external third-party services accessible through some API, but can also be internal services running in the same local network that, for various reasons, are not part of the Kubernetes cluster.

 There are two categories here: inside the cluster network and outside the cluster network. Why is the distinction important?

 Outside-the-cluster-network components

 These components have no direct access to the cluster. They can only access it through APIs, externally visible URLs, and exposed services. These components are treated just like any external user. Often, cluster components will just use external services, which pose no security issue. For example, in a previous job we had a Kubernetes cluster that reported exceptions to a third-party service (https://sentry.io/welcome/). It was one-way communication from the Kubernetes cluster to the third-party service.

 Inside-the-cluster-network components

 These are components that run inside the network but are not managed by Kubernetes. There are many reasons to run such components. They could be legacy applications that have not been kubernetized yet, or some distributed data store that is not easy to run inside Kubernetes. The reason to run these components inside the network is for performance, and to have isolation from the outside world so traffic between these components and pods can be more secure. Being part of the same network ensures low latency, and the reduced need for authentication is both convenient and can avoid authentication overhead.

 Managing the Hue platform with Kubernetes

 In this section, we will look at how Kubernetes can help operate a huge platform such as Hue. Kubernetes itself provides a lot of capabilities to orchestrate pods and manage quotas and limits, detecting and recovering from certain types of generic failures (hardware malfunctions, process crashes, unreachable services). But in a complicated system such as Hue, pods and services may be up and running but in an invalid state or waiting for other dependencies in order to perform their duties. This is tricky because if a service or pod is not ready yet but is already receiving requests, then you need to manage it somehow: fail (puts responsibility on the caller), retry (how many times? For how long? How often?), and queue for later (who will manage this queue?).

 It is often better if the system at large can be aware of the readiness state of different components, or if components are visible only when they are truly ready. Kubernetes doesn't know Hue, but it provides several mechanisms such as liveness probes, readiness probes, and init containers to support application-specific management of your cluster.

 Using liveness probes to ensure your containers are alive

 Kubelets watch over your containers. If a container process crashes, the kubelet will take care of it based on the restart policy. But this is not always enough. Your process may not crash but instead run into an infinite loop or a deadlock. The restart policy might not be nuanced enough. With a liveness probe, you get to decide when a container is considered alive. Here is a pod template for the Hue music service. It has a livenessProbe section, which uses the httpGet probe. An HTTP probe requires a scheme (http or https, default to http; a host, default to PodIp; a path; and a port).

 The probe is considered successful if the HTTP status is between 200 and 399. Your container may need some time to initialize, so you can specify an initialDelayInSeconds. The kubelet will not hit the liveness check during this period:

 apiVersion: v1
kind: Pod
metadata:
 labels:
 app: music
 service: music
 name: hue-music
spec:
 containers:
 - name: hue-music
 image: busybox
 livenessProbe:
 httpGet:
 path: /pulse
 port: 8888
 httpHeaders:
 - name: X-Custom-Header
 value: ItsAlive
 initialDelaySeconds: 30
 timeoutSeconds: 1

 If a liveness probe fails for any container, then the pod's restart policy comes into effect. Make sure your restart policy is not Never, because that will make the probe useless.

 There are two other types of probe:

 	TcpSocket – Just checks that a port is open

 	Exec – Runs a command that returns 0 for success

 Using readiness probes to manage dependencies

 Readiness probes are used for different purposes. Your container may be up and running, but it may depend on other services that are unavailable at the moment. For example, hue-music may depend on access to a data service that contains your listening history. Without access, it is unable to perform its duties.

 In this case, other services or external clients should not send requests to the Hue music service, but there is no need to restart it. Readiness probes address this use case. When a readiness probe fails for a container, the container's pod will be removed from any service endpoint it is registered with. This ensures that requests don't flood services that can't process them. Note that you can also use readiness probes to temporarily remove pods that are overbooked until they drain some internal queue.

 Here is a sample readiness probe. I use the exec probe here to execute a custom command. If the command exits a non-zero exit code, the container will be torn down:

 readinessProbe:
 exec:
 command:
 - /usr/local/bin/checker
 - --full-check
 - --data-service=hue-multimedia-service
 initialDelaySeconds: 60
 timeoutSeconds: 5

 It is fine to have both a readiness probe and a liveness probe on the same container as they serve different purposes.

 Employing init containers for orderly pod bring-up

 Liveness and readiness probes are great. They recognize that, at startup, there may be a period where the container is not ready yet but shouldn't be considered failed. To accommodate that, there is the initialDelayInSeconds setting, which describes the time for which containers will not be considered failed. But what if this initial delay is potentially very long? Maybe, in most cases, a container is ready after a couple of seconds and ready to process requests, but because the initial delay is set to five minutes just in case, we waste a lot of time where the container is idle. If the container is part of a high-traffic service, then many instances can all sit idle for five minutes after each upgrade and pretty much make the service unavailable.

 Init containers address this problem. A pod may have a set of init containers that run to completion before other containers are started. An init container can take care of all the non-deterministic initialization and let application containers with their readiness probe have minimal delay.

 Init containers came out of beta in Kubernetes 1.6. You specify them in the pod spec as the initContainers field, which is very similar to the containers field. Here is an example:

 apiVersion: v1
kind: Pod
metadata:
 name: hue-fitness
spec:
 containers:
 - name: hue-fitness
 image: busybox
 initContainers:
 - name: install
 image: busybox

 Pod readiness and readiness gates

 Pod readiness was introduced in Kubernetes 1.11 and became stable in Kubernetes 1.14. While readiness probes allow you to determine at the pod level if a pod's ready to serve requests, the overall infrastructure that supports delivering traffic to the pod might not be ready yet. For example, the service, network policy, and load balancer might take some extra time. This can be a problem especially during rolling deployments where Kubernetes might terminate the old pods before the new pods are really ready, which will cause degradation in service capacity and even cause a service outage in extreme cases (if all old pods were terminated and no new pod is fully ready).

 This is the problem that the Pod ready++ proposal addresses. The idea is to extend the concept of pod readiness to check additional conditions in addition to making sure all the containers are ready. This is done by adding a new field to the PodSpec called readinessGates. You can specify a set of conditions that must be satisfied for the pod to be considered ready. In the following example, the pod is not ready because the "www.example.com/feature-1" condition has a status of False:

 Kind: Pod
...
spec:
 readinessGates:
 - conditionType: www.example.com/feature-1
status:
 conditions:
 - type: Ready # this is a builtin PodCondition
 status: "False"
 lastProbeTime: null
 lastTransitionTime: 2018-01-01T00:00:00Z
 - type: "www.example.com/feature-1" # an extra PodCondition
 status: "False"
 lastProbeTime: null
 lastTransitionTime: 2018-01-01T00:00:00Z
 containerStatuses:
 - containerID: docker://abcd...
 ready: true
...

 Sharing with DaemonSet pods

 DaemonSet pods are pods that are deployed automatically, one per node (or a designated subset of the nodes). They are typically used for keeping an eye on nodes and ensuring they are operational. This is a very important function, which we will cover in Chapter 13, Monitoring Kubernetes Clusters. But they can be used for much more. The nature of the default Kubernetes scheduler is that it schedules pods based on resource availability and requests. If you have lots of pods that don't require a lot of resources, similarly many pods will be scheduled on the same node. Let's consider a pod that performs a small task and then, every second, sends a summary of all its activities to a remote service. Now, imagine that, on average, 50 of these pods are scheduled on the same node. This means that, every second, 50 pods make 50 network requests with very little data. How about we cut it down by 50× to just a single network request? With a DaemonSet pod, all the other 50 pods can communicate with it instead of talking directly to the remote service. The DaemonSet pod will collect all the data from the 50 pods and, once a second, will report it in aggregate to the remote service. Of course, that requires the remote service API to support aggregate reporting. The nice thing is that the pods themselves don't have to be modified; they will just be configured to talk to the DaemonSet pod on localhost instead of the remote service. The DaemonSet pod serves as an aggregating proxy.

 The interesting part about this configuration file is that the hostNetwork, hostPID, and hostIPC options are set to true. This enables the pods to communicate efficiently with the proxy, utilizing the fact they are running on the same physical host:

 apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: hue-collect-proxy
 labels:
 tier: stats
 app: hue-collect-proxy
spec:
 selector:
 matchLabels:
 tier: stats
 app: hue-collect-proxy
 template:
 metadata:
 labels:
 tier: stats
 app: hue-collect-proxy
 spec:
 hostPID: true
 hostIPC: true
 hostNetwork: true
 containers:
 - name: hue-collect-proxy
 image: busybox

 Evolving the Hue platform with Kubernetes

 In this section, we'll discuss other ways to extend the Hue platform and service additional markets and communities. The question is always this: what Kubernetes features and capabilities can we use to address new challenges or requirements?

 Utilizing Hue in an enterprise

 An enterprise often can't run in the cloud, either due to security and compliance reasons or for performance reasons because the system has to work with data and legacy systems that are not cost-effective to move to the cloud. Either way, Hue for enterprise must support on-premises clusters and/or bare-metal clusters.

 While Kubernetes is most often deployed on the cloud, and even has a special cloud-provider interface, it doesn't depend on the cloud and can be deployed anywhere. It does require more expertise, but enterprise organizations that already run systems on their own data centers have that expertise.

 Advancing science with Hue

 Hue is so great at integrating information from multiple sources that it would be a boon for the scientific community. Consider how Hue can help multi-disciplinary collaboration between scientists from different disciplines.

 A network of scientific communities might require deployment across multiple geographically distributed clusters. Enter cluster federation. Kubernetes has this use case in mind and has developed support for it. We will discuss it at length in a later chapter.

 Educating the kids of the future with Hue

 Hue can be utilized for education and provide many services to online education systems. But privacy concerns may prevent deploying Hue for kids as a single, centralized system. One possibility is to have a single cluster, with namespaces for different schools. Another deployment option is that each school or county has its own Hue Kubernetes cluster. In the second case, Hue for education must be extremely easy to operate to cater for schools without a lot of technical expertise. Kubernetes can help a lot by providing self-healing and auto-scaling features and capabilities for Hue, to be as close to zero-administration as possible.

 Summary

 In this chapter, we designed and planned the development, deployment, and management of the Hue platform – an imaginary omniscient and omnipotent service – built on microservice architecture. We used Kubernetes as the underlying orchestration platform, of course, and delved into many of its concepts and resources. In particular, we focused on deploying pods for long-running services as opposed to jobs for launching short-term or cron jobs, explored internal services versus external services, and also used namespaces to segment a Kubernetes cluster. Then we looked at the management of a large system such as Hue with liveness and readiness probes, init containers, and DaemonSets.

 You should now feel comfortable architecting web-scale systems composed of microservices and understand how to deploy and manage them in a Kubernetes cluster.

 In the next chapter, we will look into the super-important area of storage. Data is king but often the least flexible element of the system. Kubernetes provides a storage model and many options for integrating with various storage solutions.

 References

 	https://blog.jetstack.io/blog/kustomize-cert-manager/

 	https://skryvets.com/blog/2019/05/15/kubernetes-kustomize-json-patches-6902

 6

 Managing Storage

 In this chapter, we'll look at how Kubernetes manages storage. Storage is very different from compute, but at a high level they are both resources. Kubernetes as a generic platform takes the approach of abstracting storage behind a programming model and a set of plugins for storage providers. First, we'll go into detail about the conceptual storage model and how storage is made available to containers in the cluster. Then, we'll cover the common cloud platform storage providers, such as Amazon Web Services (AWS), Google Compute Engine (GCE), and Azure. Then we'll look at a prominent open source storage provider, GlusterFS from Red Hat, which provides a distributed filesystem. We'll also look into an alternative solution – Flocker – that manages your data in containers as part of the Kubernetes cluster. Finally, we'll see how Kubernetes supports the integration of existing enterprise storage solutions.

 At the end of this chapter, you'll have a solid understanding of how storage is represented in Kubernetes, the various storage options in each deployment environment (local testing, public cloud, and enterprise), and how to choose the best option for your use case.

 You should try the code samples in this chapter on minikube or another cluster that supports storage adequately. The KinD cluster has some problems related to labeling nodes, which is necessary for some storage solutions.

 Persistent volumes walkthrough

 In this section, we will understand the Kubernetes storage conceptual model and see how to map persistent storage into containers so they can read and write. Let's start by understanding the problem of storage. Containers and pods are ephemeral.

 Anything a container writes to its own filesystem gets wiped out when the container dies. Containers can also mount directories from their host node and read or write to them. These will survive container restarts, but the nodes themselves are not immortal. Also, if the pod itself is rescheduled to a different node, the container will not have access to the old node host's filesystem.

 There are other problems, such as ownership for mounted hosted directories when the container dies. Just imagine a bunch of containers writing important data to various data directories on their host and then going away, leaving all that data all over the nodes with no direct way to tell what container wrote what data. You can try to record this information, but where would you record it? It's pretty clear that for a large-scale system, you need persistent storage accessible from any node to reliably manage the data.

 Volumes

 The basic Kubernetes storage abstraction is the volume. Containers mount volumes that bind to their pod and they access the storage wherever it may be as if it's in their local filesystem. This is nothing new, and it is great, because as a developer who writes applications that need access to data, you don't have to worry about where and how the data is stored.

 Using emptyDir for intra-pod communication

 It is very simple to share data between containers in the same pod using a shared volume. Container 1 and container 2 simply mount the same volume and can communicate by reading and writing to this shared space. The most basic volume is the emptyDir. An emptyDir volume is an empty directory on the host. Note that it is not persistent because when the pod is removed from the node, the contents are erased. If a container just crashes, the pod will stick around and you can access it later. Another very interesting option is to use a RAM disk, by specifying the medium as Memory. Now, your containers communicate through shared memory, which is much faster, but more volatile of course. If the node is restarted, the emptyDir's volume contents are lost.

 Here is a pod configuration file that has two containers that mount the same volume, called shared-volume. The containers mount it in different paths, but when the hue-global-listener container is writing a file to /notifications, the hue-job-scheduler will see that file under /incoming:

 apiVersion: v1
kind: Pod
metadata:
 name: hue-scheduler
spec:
 containers:
 - image: g1g1/hue-global-listener:1.0
 name: hue-global-listener
 volumeMounts:
 - mountPath: /notifications
 name: shared-volume
 - image: g1g1/hue-job-scheduler:1,0
 name: hue-job-scheduler
 volumeMounts:
 - mountPath: /incoming
 name: shared-volume
 volumes:
 - name: shared-volume
 emptyDir: {}

 To use the shared memory option, we just need to add medium: Memory to the emptyDir section:

 volumes:
 - name: shared-volume
 emptyDir:
 medium: Memory

 To verify it worked, let's create the pod and then write a file using one container and read it using the other container:

 $ kubectl create -f hue-scheduler.yaml
pod/hue-scheduler created

 Note that the pod has two containers:

 $ kubectl get pod hue-scheduler -o json | jq .spec.containers
[
 {
 "image": "g1g1/hue-global-listener:1.0",
 "name": "hue-global-listener",
 "volumeMounts": [
 {
 "mountPath": "/notifications",
 "name": "shared-volume"
 },
 ...
]
 ...
 },
 {
 "image": "g1g1/hue-job-scheduler:1.0",
 "name": "hue-job-scheduler",
 "volumeMounts": [
 {
 "mountPath": "/incoming",
 "name": "shared-volume"
 },
 ...
]
 ...
 }
]

 Now, we can create a file in the /notifications directory of the hue-global-listener container and list it in the /incoming directory of the hue-job-scheduler container:

 $ kubectl exec -it hue-scheduler -c hue-global-listener -- touch /notifications/1.txt
$ kubectl exec -it hue-scheduler -c hue-job-scheduler -- ls /incoming
1.txt

 Using HostPath for intra-node communication

 Sometimes, you want your pods to get access to some host information (for example, the Docker daemon) or you want pods on the same node to communicate with each other. This is useful if the pods know they are on the same host. Since Kubernetes schedules pods based on available resources, pods usually don't know what other pods they share the node with. There are several cases where a pod can rely on other pods being scheduled with it on the same node:

 	In a single-node cluster, all pods obviously share the same node

 	DaemonSet pods always share a node with any other pod that matches their selector

 	Pods are always scheduled together due to node or pod affinity

 For example, in Chapter 5, Using Kubernetes Resources in Practice, we discussed a DaemonSet pod that serves as an aggregating proxy to other pods. Another way to implement this behavior is for the pods to simply write their data to a mounted volume that is bound to a host directory and the DaemonSet pod can directly read it and act on it.

 Before you decide to use the HostPath volume, make sure you understand the limitations:

 	The behavior of pods with the same configuration might be different if they are data-driven and the files on their host are different

 	It can violate resource-based scheduling (coming soon to Kubernetes) because Kubernetes can't monitor HostPath resources

 	The containers that access host directories must have a security context with privileged set to true or, on the host side, you need to change the permissions to allow writing

 Here is a configuration file that mounts the /coupons directory into the hue-coupon-hunter container, which is mapped to the host's /etc/hue/data/coupons directory:

 apiVersion: v1
kind: Pod
metadata:
 name: hue-coupon-hunter
spec:
 containers:
 - image: busybox name: hue-coupon-hunter
 volumeMounts:
 - mountPath: /coupons
 name: coupons-volume
 volumes:
 - name: coupons-volume
 host-path:
 path: /etc/hue/data/coupons

 Since the pod doesn't have a privileged security context, it will not be able to write to the host directory. Let's change the container spec to enable it by adding a security context:

 - image: the_g1g1/hue-coupon-hunter
 name: hue-coupon-hunter
 volumeMounts:
 - mountPath: /coupons
 name: coupons-volume
 securityContext:
 privileged: true

 In the following diagram, you can see that each container has its own local storage area inaccessible to other containers or pods, and the host's /data directory is mounted as a volume into both container 1 and container 2:

 [image:]
 Figure 6.1: Container directories

 Using local volumes for durable node storage

 Local volumes are similar to HostPath, but they persist across pod restarts and node restarts. In that sense, they are considered persistent volumes. They were added in Kubernetes 1.7. As of Kubernetes 1.14, they are considered stable. The purpose of local volumes is to support StatefulSets where specific pods need to be scheduled on nodes that contain specific storage volumes. Local volumes have node affinity annotations that simplify the binding of pods to the storage they need to access.

 We need to define a storage class for using local volumes. We will cover storage classes in depth later in this chapter. In one sentence, storage classes use a provisioner to allocate storage to pods. Let's define the storage class in a file called local-storage-class.yaml and create it:

 apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

 $ kubectl create -f local-storage-class.yaml
storageclass.storage.k8s.io/local-storage created

 Now, we can create a persistent volume using the storage class that will persist even after the pod that's using it is terminated:

 apiVersion: v1
kind: PersistentVolume
metadata:
 name: local-pv
 labels:
 release: stable
 capacity: 100Gi
spec:
 capacity:
 storage: 100Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-storage
 local:
 path: /mnt/disks/disk-1
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - minikube

 Provisioning persistent volumes

 While emptyDir volumes can be mounted and used by containers, they are not persistent and don't require any special provisioning because they use existing storage on the node. HostPath volumes persist on the original node, but if a pod is restarted on a different node, it can't access the HostPath volume from its previous node. Local volumes are real persistent volumes that use storage provisioned ahead of time by administrators or dynamic provisioning via storage classes. They persist on the node and can survive pod restarts and rescheduling and even node restarts. Some persistent volumes use external storage (not a disk physically attached to the node) provisioned ahead of time by administrators.

 In cloud environments, the provisioning may be very streamlined but it is still required, and as a Kubernetes cluster administrator you have to at least make sure your storage quota is adequate and monitor usage versus your quota diligently.

 Remember that persistent volumes are resources that the Kubernetes cluster is using, similar to nodes. As such, they are not managed by the Kubernetes API server.

 You can provision resources statically or dynamically.

 Provisioning persistent volumes statically

 Static provisioning is straightforward. The cluster administrator creates persistent volumes backed up by some storage media ahead of time, and these persistent volumes can be claimed by containers.

 Provisioning persistent volumes dynamically

 Dynamic provisioning may happen when a persistent volume claim doesn't match any of the statically provisioned persistent volumes. If the claim specified a storage class and the administrator configured that class for dynamic provisioning, then a persistent volume may be provisioned on the fly. We will see examples later when we discuss persistent volume claims and storage classes.

 Provisioning persistent volumes externally

 One of the recent trends is to move storage provisioners out of Kubernetes core into volume plugins (also known as out-of-tree). External provisioners work just like in-tree dynamic provisioners but can be deployed and updated independently. More and more in-tree storage provisioners migrate out-of-tree. Check out this Kubernetes incubator project:

 https://github.com/kubernetes-incubator/external-storage

 Creating persistent volumes

 Here is the configuration file for an NFS persistent volume:

 apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-777
spec:
 capacity:
 storage: 100Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteMany
 - ReadOnlyMany
 persistentVolumeReclaimPolicy: Recycle
 storageClassName: slow
 mountOptions:
 - hard
 - nfsvers=4.1
 nfs:
 path: /tmp
 server: 172.17.0.2

 A persistent volume has a spec and metadata that possibly includes a storage class name. Let's focus on the spec here. There are six sections: capacity, volume mode, access modes, reclaim policy, storage class, and the volume type (nfs in the example).

 Capacity

 Each volume has a designated amount of storage. Storage claims may be satisfied by persistent volumes that have at least that amount of storage. In the example, the persistent volume has a capacity of 100 gibibytes (a single gibibyte (GiB) is 2 to the power of 30 bytes). It is important when allocating static persistent volumes to understand the storage request patterns. For example, if you provision 20 persistent volumes with 100 GiB capacity and a container claims a persistent volume with 150 GiB, then this claim will not be satisfied even though there is enough capacity overall in the cluster:

 capacity:
 storage: 100Gi

 Volume mode

 The optional volume mode was added in Kubernetes 1.9 as an alpha feature (moved to beta in Kubernetes 1.13) for static provisioning. It lets you specify whether you want a filesystem ("Filesystem") or raw storage ("Block"). If you don't specify volume mode, then the default is "Filesystem", just like it was pre-1.9.

 Access modes

 There are three access modes:

 	ReadOnlyMany: Can be mounted read-only by many nodes

 	ReadWriteOnce: Can be mounted as read-write by a single node

 	ReadWriteMany: Can be mounted as read-write by many nodes

 The storage is mounted to nodes, so even with ReadWriteOnce, multiple containers on the same node can mount the volume and write to it. If that causes a problem, you need to handle it through some other mechanism (for example, claim the volume only in DaemonSet pods that you know will have just one per node).

 Different storage providers support some subset of these modes. When you provision a persistent volume, you can specify which modes it will support. For example, NFS supports all modes, but in the example, only these modes were enabled:

 accessModes:
 - ReadWriteMany
 - ReadOnlyMany

 Reclaim policy

 The reclaim policy determines what happens when a persistent volume claim is deleted. There are three different policies:

 	Retain: The volume will need to be reclaimed manually

 	Delete: The associated storage asset, such as AWS EBS, GCE PD, Azure disk, or OpenStack Cinder volume, is deleted

 	Recycle: Delete content only (rm -rf /volume/*)

 The Retain and Delete policies mean the persistent volume is not available anymore for future claims. The Recycle policy allows the volume to be claimed again.

 Currently, only NFS and HostPath support recycling. AWS EBS, GCE PD, Azure disks, and Cinder volumes support deletion. Dynamically provisioned volumes are always deleted.

 Storage class

 You can specify a storage class using the optional storageClassName field of the spec. If you do, then only persistent volume claims that specify the same storage class can be bound to the persistent volume. If you don't specify a storage class, then only persistent volume claims that don't specify a storage class can be bound to it:

 storageClassName: slow

 Volume type

 The volume type is specified by name in the spec. There is no volumeType section. In the preceding example, NFS is the volume type:

 nfs:
 path: /tmp
 server: 172.17.0.8

 Each volume type may have its own set of parameters. In this case, it's a path and server.

 We will go over various volume types later.

 Mount options

 Some persistent volume types have additional mount options you can specify. The mount options are not validated. If you provide an invalid mount option, the volume provisioning will fail. For example, NFS supports additional mount options:

 mountOptions:
 - hard
 - nfsvers=4.1

 Making persistent volume claims

 When containers want access to some persistent storage, they make a claim (or rather, the developer and cluster administrator coordinate on necessary storage resources to claim). The claim will match some storage (such as a volume).

 Let's create a local volume. First, we need to create a backing directory:

 $ mk ssh "sudo mkdir -p /mnt/disks/disk-1"

 Now, we can create a local volume backed by the /mnt/disks/disk1 directory:

 apiVersion: v1
kind: PersistentVolume
metadata:
 name: local-pv
 labels:
 release: stable
 capacity: 100Gi
spec:
 capacity:
 storage: 100Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-storage
 local:
 path: /mnt/disks/disk-1
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - minikube

 $ kubectl create -f local-volume.yaml
persistentvolume/local-pv created

 Here is a sample claim that matches the persistent volume we just created:

 kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: local-storage-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 80Gi
 storageClassName: local-storage
 selector:
 matchLabels:
 release: "stable"
 matchExpressions:
 - {key: capacity, operator: In, values: [80Gi, 100Gi]}

 Let's create the claim and then explain what the different pieces do:

 $ kubectl create -f local-persistent-volume-claim.yaml
persistentvolumeclaim/local-storage-claim created

 The name storage-claim will be important later when mounting the claim into a container.

 The access mode in the spec is ReadWriteOnce, which means if the claim is satisfied, no other claim with the ReadWriteOnce access mode can be satisfied, but claims for ReadOnlyMany can still be satisfied.

 The resources section requests 80 GiB. This can be satisfied by our persistent volume, which has a capacity of 100 Gi. But, this is a little bit of a waste because 20 Gi will not be used by definition.

 The storage class name is normal. As mentioned earlier it must match the class name of the persistent volume. However, with PVC there is a difference between an empty class name ("") and no class name at all. The former (empty class name) matches persistent volumes with no storage class name. The latter (no class name) will be able to bind to persistent volumes only if the DefaultStorageClass admission plugin is turned off or if it's on and the default storage class is used.

 The selector section allows you to filter available volumes further. For example, here the volume must match the label release:stable and also have a label with either capacity:80Gi or capacity:100Gi. Imagine that we have several other volumes provisioned with capacities of 200 Gi and 500 Gi. We don't want to claim a 500 Gi volume when we only need 80 Gi.

 Kubernetes always tries to match the smallest volume that can satisfy a claim, but if there are no 80 Gi or 100 Gi volumes then the labels will prevent assigning a 200 Gi or 500 Gi volume and use dynamic provisioning instead.

 It's important to realize that claims don't mention volumes by name. You can't claim a specific volume. The matching is done by Kubernetes based on storage class, capacity, and labels.

 Finally, persistent volume claims belong to a namespace. Binding a persistent volume to a claim is exclusive. That means that a persistent volume will be bound to a namespace. Even if the access mode is ReadOnlyMany or ReadWriteMany, all the pods that mount the persistent volume claim must be from that claim's namespace.

 Mounting claims as volumes

 OK. We have provisioned a volume and claimed it. It's time to use the claimed storage in a container. This turns out to be pretty simple. First, the persistent volume claim must be used as a volume in the pod and then the containers in the pod can mount it, just like any other volume. Here is a pod configuration file that specifies the persistent volume claim we created earlier (bound to the local persistent volume we provisioned):

 kind: Pod
apiVersion: v1
metadata:
 name: the-pod
spec:
 containers:
 - name: the-container
 image: g1g1/py-kube:0.2
 volumeMounts:
 - mountPath: "/mnt/data"
 name: persistent-volume
 volumes:
 - name: persistent-volume
 persistentVolumeClaim:
 claimName: local-storage-claim

 The key is in the persistentVolumeClaim section under volumes. The claim name (storage-claim here) uniquely identifies the specific claim within the current namespace and makes it available as a volume named persistent-volume here. Then, the container can refer to it by its name and mount it to /mnt/data.

 Before we create the pod it's important to note that the persistent volume claim didn't actually claim any storage yet and wasn't bound to our local volume. The claim is pending until some container actually attempts to mount a volume using the claim:

 $ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
local-storage-claim Pending local-storage 12s

 Now, the claim will be bound when creating the pod:

 $ kubectl create -f pod-with-local-claim.yaml
pod/the-pod created
$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
local-storage-claim Bound local-pv 100Gi RWO local-storage 20m

 Raw block volumes

 Kubernetes 1.9 added this capability as an alpha feature. As of Kubernetes 1.16, it is in beta.

 Raw block volumes provide direct access to the underlying storage, which is not mediated via a filesystem abstraction. This is very useful for applications that require high performance from storage, such as databases, or when consistent I/O performance and low latency are needed. Fiber Channel (FC), iSCSI, and a local SSD are all suitable for use as raw block storage. As of Kubernetes 1.16, the following storage providers support raw block volumes:

 	AWS Elastic Block Store

 	AzureDisk

 	FC

 	GCEPersistentDisk

 	iSCSI

 	Local volume

 	RBD (Ceph Block Device)

 	Vsphere volume (alpha)

 Here is how to define a raw block volume using an FC provider:

 apiVersion: v1
kind: PersistentVolume
metadata:
 name: block-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 persistentVolumeReclaimPolicy: Retain
 fc:
 targetWWNs: ["50060e801049cfd1"]
 lun: 0
 readOnly: false

 A matching Persistent Volume Claim (PVC) must specify volumeMode: Block as well. Here is what it looks like:

 apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: block-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 resources:
 requests:
 storage: 10Gi

 Pods consume raw block volumes as devices under /dev and not as mounted filesystems. Containers can then access this device and read/write to it. In practice, this means that I/O requests to block storage go directly to the underlying block storage and don't pass though the filesystem drivers. This is faster in theory, but in practice, it can actually decrease performance if your applications benefit from filesystem buffering.

 Here is a pod with a container that binds the block-pvc with the raw block storage as a device named /dev/xdva:

 apiVersion: v1
kind: Pod
metadata:
 name: pod-with-block-volume
spec:
 containers:
 - name: fc-container
 image: fedora:26
 command: ["/bin/sh", "-c"]
 args: ["tail -f /dev/null"]
 volumeDevices:
 - name: data
 devicePath: /dev/xvda
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: block-pvc

 Storage classes

 Storage classes let an administrator configure your cluster with custom persistent storage (as long as there is a proper plugin to support it). A storage class has a name in the metadata (it must be specified in the annotation to claim), a provisioner, and parameters.

 We declared a storage class for local storage earlier. Here is a sample storage class that uses AWS EBS as a provisioner (so, it works only on AWS):

 apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: slow
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io1
 iopsPerGB: "10"
 fsType: ext4

 You may create multiple storage classes for the same provisioner with different parameters. Each provisioner has its own parameters.

 The currently supported provisioners are as follows:

 	AWS Elastic Block Store

 	AzureFile

 	AzureDisk

 	CephFS

 	Cinder

 	FC

 	FlexVolume

 	Flocker

 	GcePersistentDisk

 	GlusterFS

 	iSCSI

 	Quobyte

 	NFS

 	RBD

 	Vsphere volume

 	Portworx volume

 	ScaleIO

 	StorageOS

 	Local

 This list doesn't contain provisioners for other volume types, such as gitRepo or secret, that are not backed by your typical network storage. Those volume types don't require a storage class. Utilizing volume types intelligently is a major part of architecting and managing your cluster.

 Default storage class

 The cluster administrator can also assign a default storage class. When a default storage class is assigned and the DefaultStorageClass admission plugin is turned on, then claims with no storage class will be dynamically provisioned using the default storage class. If the default storage class is not defined or the admission plugin is not turned on, then claims with no storage class can only match volumes with no storage class.

 Demonstrating persistent volume storage end to end

 To illustrate all the concepts, let's do a mini demonstration where we create a HostPath volume, claim it, mount it, and have containers write to it.

 Let's start by creating a hostPath volume using the dir storage class. Save the following in dir-persistent-volume.yaml:

 kind: PersistentVolume
apiVersion: v1
metadata:
 name: dir-pv
spec:
 storageClassName: dir
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteMany
 hostPath:
 path: "/tmp/data"

 Then, let's create it:

 $ kubectl create -f dir-persistent-volume.yaml
persistentvolume/dir-pv created

 To check out the available volumes, you can use the resource type persistentvolumes or pv for short:

 $ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
dir-pv 1Gi RWX Retain Available dir

 The capacity is 1 GiB as requested. The reclaim policy is Retain because host path volumes are retained (not destroyed). The status is Available because the volume has not been claimed yet. The access mode is specified as RWX, which means ReadWriteMany. All access modes have a shorthand version:

 	RWO: ReadWriteOnce

 	ROX: ReadOnlyMany

 	RWX: ReadWriteMany

 We have a persistent volume. Let's create a claim. Save the following to dir-persistent-volume-claim.yaml:

 kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: dir-pvc
spec:
 storageClassName: dir accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

 Then, run the following command:

 $ kubectl create -f dir-persistent-volume-claim.yaml
persistentvolumeclaim/dir-pvc created

 Let's check the claim and the volume:

 $ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
dir-pvc Bound dir-pv 1Gi RWX dir
$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
dir-pv 1Gi RWX Retain Bound default/dir-pvc dir

 As you can see, the claim and the volume are bound to each other and reference each other. The reason the binding works is that the same storage class is used by the volume and the claim. But, what happens if they don't match? Let's remove the storage class from the persistent volume claim and see what happens. Save the following persistent volume claim to some-persistent-volume-claim.yaml:

 kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: some-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

 Then, create it:

 $ kubectl create -f some-persistent-volume-claim.yaml
persistentvolumeclaim/some-pvc created

 OK. It was created. Let's check it out:

 $ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
dir-pvc Bound dir-pv 1Gi RWX dir
some-pvc Bound pvc-276fdd9d-b787-4c3e-a94b-e886edaa1039 1Gi RWX standard

 Very interesting. The some-pvc claim was bound to a new volume using the standard storage class. This is an example of dynamic provisioning, where a new persistent volume was created on the fly to satisfy the some-pvc claim that didn't match any existing volume.

 Here is the dynamic volume. It is also a HostPath volume created under /tmp/hostpath-provisioner:

 $ kubectl get pv pvc-276fdd9d-b787-4c3e-a94b-e886edaa1039 -o yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 annotations:
 hostPathProvisionerIdentity: 7f22c7da-dc16-11e9-a3e9-080027a42754
 pv.kubernetes.io/provisioned-by: k8s.io/minikube-hostpath
 creationTimestamp: "2020-06-08T23:11:36Z"
 finalizers:
 - kubernetes.io/pv-protection
 name: pvc-276fdd9d-b787-4c3e-a94b-e886edaa1039
 resourceVersion: "193570"
 selfLink: /api/v1/persistentvolumes/pvc-276fdd9d-b787-4c3e-a94b-e886edaa1039
 uid: e1f6579f-8ddb-401f-be44-f52742c91cfa
spec:
 accessModes:
 - ReadWriteMany
 capacity:
 storage: 1Gi
 claimRef:
 apiVersion: v1
 kind: PersistentVolumeClaim
 name: some-pvc
 namespace: default
 resourceVersion: "193563"
 uid: 276fdd9d-b787-4c3e-a94b-e886edaa1039
 hostPath:
 path: /tmp/hostpath-provisioner/pvc-276fdd9d-b787-4c3e-a94b-e886edaa1039
 type: ""
 persistentVolumeReclaimPolicy: Delete
 storageClassName: standard
 volumeMode: Filesystem
status:
 phase: Bound

 The final step is to create a pod and assign the claim as a volume. Save the following to shell-pod.yaml:

 kind: Pod
apiVersion: v1
metadata:
 name: just-a-shell
 labels:
 name: just-a-shell
spec:
 containers:
 - name: a-shell
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true ; do sleep 1 ; done"]
 volumeMounts:
 - mountPath: "/data"
 name: pv
 - name: another-shell
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true ; do sleep 1 ; done"]
 volumeMounts:
 - mountPath: "/another-data"
 name: pv
 volumes:
 - name: pv
 persistentVolumeClaim:
 claimName: dir-pvc

 This pod has two containers that use the g1g1/py-kube:0.2 image and both run a shell command that just sleeps in an infinite loop. The idea is that the containers will keep running, so we can connect to them later and check their filesystem. The pod mounts our persistent volume claim with a volume name of pv. Note that the volume specification is done at the pod level just once and multiple containers can mount it into different directories.

 Let's create the pod and verify that both containers are running:

 $ kubectl create -f shell-pod.yaml
pod/just-a-shell created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
just-a-shell 2/2 Running 0 3m41s

 Then, SSH to the node. This is the host, whose /tmp/data is the pod's volume that is mounted as /data and /another-data into each of the running containers:

 $ minikube ssh
 _ _
 _ _ () ()
 ___ ___ (_) ___ (_)| |/') _ _ | |_ __
/' _ ' _ '\| |/' _ '\| || , < () ()| '_'\ /'__'\
| () () || || () || || |\'\ | (_) || |_))(___/
(_) (_) (_)(_)(_) (_)(_)(_) (_)'___/'(_,__/''____)
$

 Inside the node, we can communicate with the containers using Docker commands. Let's look at the last two running containers:

 $ docker ps -n 2 --format '{{.ID}}\t{{.Image}}\t{{.Command}}'
341f7ab2b4cc 1c757b9abf75 "/bin/bash -c 'while…"
189b2fc840e2 1c757b9abf75 "/bin/bash -c 'while…"

 Then, let's create a file in the /tmp/data directory on the host. It should be visible to both containers via the mounted volume:

 $ sudo su
$ echo "yeah, it works!" > /tmp/data/cool.txt

 Let's check that the cool.txt file is indeed available:

 $ docker exec -it 189b2fc840e2 cat /data/cool.txt
yeah, it works!
$ docker exec -it 341f7ab2b4cc cat /another-data/cool.txt
yeah, it works!

 We can even create a new file, yo.txt, in one of the containers and see that it's available to the other container or to the node itself:

 $ docker exec -it 341f7ab2b4cc bash
root@just-a-shell:/# echo yo > /another-data/yo.txt
root@just-a-shell:/#

 Let's verify directly from kubectl that yo.txt is available to both containers:

 $ kubectl exec -it just-a-shell -c a-shell -- cat /data/yo.txt
yo
$ kubectl exec -it just-a-shell -c another-shell -- cat /another-data/yo.txt
yo

 Yes. Everything works as expected and both containers share the same storage.

 Public cloud storage volume types – GCE, AWS, and Azure

 In this section, we'll look at some of the common volume types available in the leading public cloud platforms. Managing storage at scale is a difficult task that eventually involves physical resources, similar to nodes. If you choose to run your Kubernetes cluster on a public cloud platform, you can let your cloud provider deal with all these challenges and focus on your system. But it's important to understand the various options, constraints, and limitations of each volume type.

 Many of the volume types we will go over are handled by in-tree plugins (part of core Kubernetes), but are in the process of migrating to out-of-tree CSI plugins. We will cover CSI later.

 Amazon EBS

 AWS provides Elastic Block Store (EBS) as persistent storage for EC2 instances. An AWS Kubernetes cluster can use AWS EBS as persistent storage with the following limitations:

 	The pods must run on AWS EC2 instances as nodes

 	Pods can only access EBS volumes provisioned in their availability zone

 	An EBS volume can be mounted on a single EC2 instance.

 Those are severe limitations. The restriction for a single availability zone, while great for performance, eliminates the ability to share storage at scale or across a geographically distributed system without custom replication and synchronization. The limit of a single EBS volume to a single EC2 instance means even within the same availability zone, pods can't share storage (even for reading) unless you make sure they run on the same node.

 With all the disclaimers out of the way, let's see how to mount an EBS volume:

 apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:
 - image: some-container
 name: some-container
 volumeMounts:
 - mountPath: /ebs
 name: some-volume
 volumes:
 - name: some-volume
 awsElasticBlockStore:
 volumeID: <volume-id>
 fsType: ext4

 You must create the EBS volume in AWS and then you just mount it into the pod. There is no need for a claim or storage class because you mount the volume directly by ID. The awsElasticBlockStore volume type is known to Kubernetes.

 Amazon EFS

 AWS recently released a new service called Elastic File System (EFS). This is really a managed NFS service. It's using NFS 4.1 protocol and it has many benefits over EBS:

 	Multiple EC2 instances can access the same files across multiple availability zones (but within the same region)

 	Capacity is automatically scaled up and down based on actual usage

 	You pay only for what you use

 	You can connect on-premises servers to EFS over VPN

 	EFS runs off SSD drives that are automatically replicated across availability zones

 That said, EFS is more expansive than EBS even when you consider the automatic replication to multiple availability zones (assuming you fully utilize your EBS volumes). It uses an external provisioner and it is not trivial to deploy. Follow the instructions here:

 https://github.com/kubernetes-incubator/external-storage/tree/master/aws/efs

 From Kubernetes' point of view, AWS EFS is just an NFS volume. You provision it as such:

 apiVersion: v1
kind: PersistentVolume
metadata:
 name: efs-share
spec:
 capacity:
 storage: 200Gi
 accessModes:
 - ReadWriteMany
 nfs:
 server: eu-west-1b.fs-64HJku4i.efs.eu-west-1.amazonaws.com
 path: /

 Once everything is set up, you've defined your storage class, and the persistent volume exists, you can create a claim and mount it into as many pods as you like in ReadWriteMany mode. Here is the persistent claim:

 kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: efs
 annotations:
 volume.beta.kubernetes.io/storage-class: "aws-efs"
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Mi

 Here is a pod that consumes it:

 kind: Pod
apiVersion: v1
metadata:
 name: test-pod
spec:
 containers:
 - name: test-pod
 image: gcr.io/google_containers/busybox:1.24
 command:
 - "/bin/sh"
 args:
 - "-c"
 - "touch /mnt/SUCCESS && exit 0 || exit 1"
 volumeMounts:
 - name: efs-pvc
 mountPath: "/mnt"
 restartPolicy: "Never"
 volumes:
 - name: efs-pvc
 persistentVolumeClaim:
 claimName: efs

 GCE persistent disk

 The gcePersistentDisk volume type is very similar to awsElasticBlockStore. You must provision the disk ahead of time. It can only be used by GCE instances in the same project and zone. But the same volume can be used as read-only on multiple instances. This means it supports ReadWriteOnce and ReadOnlyMany. You can use a GCE persistent disk to share data as read-only between multiple pods in the same zone.

 The pod that's using a persistent disk in ReadWriteOnce mode must be controlled by a replication controller, a replica set, or a deployment with a replica count of 0 or 1. Trying to scale beyond 1 will fail for obvious reasons:

 apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:
 - image: some-image
 name: some-container
 volumeMounts:
 - mountPath: /pd
 name: some-volume
 volumes:
 - name: some-volume
 gcePersistentDisk:
 pdName: <persistent disk name>
 fsType: ext4

 The GCE persistent disk supports a regional disk option since Kubernetes 1.10 (in beta). Regional persistent disks automatically sync between two zones. The key to using them in Kubernetes is to specify a special label for failure domain that specifies the two zones:

 apiVersion: v1
kind: PersistentVolume
metadata:
 name: test-volume
 labels:
 failure-domain.beta.kubernetes.io/zone: us-central1-a__us-central1-b
spec:
 capacity:
 storage: 400Gi
 accessModes:
 - ReadWriteOnce
 gcePersistentDisk:
 pdName: data-disk
 fsType: ext4

 Azure data disk

 The Azure data disk is a virtual hard disk stored in Azure Storage. It's similar in capabilities to AWS EBS. Here is a sample pod configuration file:

 apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:
 - image: some-container
 name: some-container
 volumeMounts:
 - name: some-volume
 mountPath: /azure
 volumes:
 - name: some-volume
 azureDisk:
 diskName: test.vhd
 diskURI: https://someaccount.blob.microsoft.net/vhds/test.vhd

 In addition to the mandatory diskName and diskURI parameters, it also has a few optional parameters:

 	kind: Either Shared (multiple disks per storage account), Dedicated (a single blob disk per storage account), or Managed (an Azure-managed data disk). The default is Shared.

 	cachingMode: The disk caching mode. This must be either None, ReadOnly, or ReadWrite. The default is None.

 	fsType: The filesystem type set to mount. The default is ext4.

 	readOnly: Sets whether the filesystem is to be used as readOnly. The default is false.

 Azure data disks are limited to 1,023 GB. Each Azure VM can have up to 16 data disks. You can attach an Azure data disk to a single Azure VM.

 Azure Files

 In addition to the data disk, Azure has also a shared filesystem similar to AWS EFS. However, Azure Files uses the SMB/CIFS protocol (it supports SMB 2.1 and SMB 3.0). It is based on the Azure storage platform and has the same availability, durability, scalability, and geo-redundancy capabilities as Azure Blob, Table, or Queue storage.

 In order to use Azure Files, you need to install on each client VM the cifs-utils package. You also need to create a secret, which is a required parameter:

 apiVersion: v1
kind: Secret
metadata:
 name: azure-file-secret
type: Opaque
data:
 azurestorageaccountname: <base64 encoded account name>
 azurestorageaccountkey: <base64 encoded account key>

 Here is a pod that uses Azure Files:

 apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:
 - image: some-container
 name: some-container
 volumeMounts:
 - name: some-volume
 mountPath: /azure
 volumes:
 - name: some-volume
 azureFile:
 secretName: azure-file-secret
 shareName: azure-share
 readOnly: false

 Azure Files supports sharing within the same region as well as connecting on-premises clients.

 GlusterFS and Ceph volumes in Kubernetes

 GlusterFS and Ceph are two distributed persistent storage systems. GlusterFS is, at its core, a network filesystem. Ceph is, at its core, an object store. Both expose block, object, and filesystem interfaces. Both use the xfs filesystem under the hood to store the data and metadata as xattr attributes. There are several reasons why you may want to use GlusterFs or Ceph as persistent volumes in your Kubernetes cluster:

 	You may have a lot of data and applications that access the data in GlusterFS or Ceph

 	You have operational expertise managing GlusterFS or Ceph

 	You run in the cloud, but the limitations of the cloud platform's persistent storage are a non-starter

 Using GlusterFS

 GlusterFS is intentionally simple, exposing the underlying directories as they are and leaving it to clients (or middleware) to handle high availability, replication, and distribution. Gluster organizes the data into logical volumes, which encompass multiple nodes (machines) that contain bricks, which store files. Files are allocated to bricks according to the Distributed Hash Table (DHT). If files are renamed or the GlusterFS cluster is expanded or rebalanced, files may be moved between bricks. The following diagram shows the GlusterFS building blocks:

 [image:]
 Figure 6.2: Gluster FS building blocks

 To use a GlusterFS cluster as persistent storage for Kubernetes (assuming you have an up-and-running GlusterFS cluster), you need to follow several steps. In particular, the GlusterFS nodes are managed by the plugin as a Kubernetes service (although as an application developer it doesn't concern you).

 Creating endpoints

 Here is an example of an endpoints resource that you can create as a normal Kubernetes resource using kubectl create:

 {
 "kind": "Endpoints",
 "apiVersion": "v1",
 "metadata": {
 "name": "glusterfs-cluster"
 },
 "subsets": [
 {
 "addresses": [
 {
 "ip": "10.240.106.152"
 }
],
 "ports": [
 {
 "port": 1
 }
]
 },
 {
 "addresses": [
 {
 "ip": "10.240.79.157"
 }
],
 "ports": [
 {
 "port": 1
 }
]
 }

]
}

 Adding a GlusterFS Kubernetes service

 To make the endpoints persistent, you use a Kubernetes service with no selector to indicate the endpoints are managed manually:

 {
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "glusterfs-cluster"
 },
 "spec": {
 "ports": [
 {"port": 1}
]
 }
}

 Creating pods

 Finally, in the pod spec's volumes section, provide the following information:

 "volumes": [
 {
 "name": "glusterfsvol",
 "glusterfs": {
 "endpoints": "glusterfs-cluster",
 "path": "kube_vol",
 "readOnly": true
 }
 }
]

 The containers can then mount glusterfsvol by name.

 The endpoints tell the GlusterFS volume plugin how to find the storage nodes of the GlusterFS cluster.

 Using Ceph

 Ceph's object store can be accessed using multiple interfaces. Kubernetes supports the Rados Block Device (RBD) (block) and CEPHFS (filesystem) interfaces. Unlike GlusterFS, Ceph does a lot of work automatically. It does distribution, replication, and self-healing all on its own. The following diagram shows how RADOS – the underlying object store – can be accessed in multiple days:

 [image:]
 Figure 6.3: Ways to access RADOS

 Kubernetes supports Ceph via the Rados Block Device (RBD) interface.

 Connecting to Ceph using RBD

 You must install ceph-common on each node of the Kubernetes cluster. Once you have your Ceph cluster up and running, you need to provide some information required by the Ceph RBD volume plugin in the pod configuration file:

 	monitors: The Ceph monitors.

 	pool: The name of the RADOS pool. If not provided, the default RBD pool is used.

 	image: The image name that RBD has created.

 	user: The RADOS username. If not provided, the default admin is used.

 	keyring: The path to the keyring file. If not provided, the default /etc/ceph/keyring is used.

 	secretName: The name of the authentication secrets. If provided, secretName overrides keyring. See the following paragraph for more information about how to create a secret.

 	fsType: The filesystem type (ext4, xfs, and so on) that is formatted on the device.

 	readOnly: Whether the filesystem is used as readOnly.

 If the Ceph authentication secret is used, you need to create a secret object:

 apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
type: "kubernetes.io/rbd"
data:
 key: QVFCMTZWMVZvRjVtRXhBQTVrQ1FzN2JCajhWVUxSdzI2Qzg0SEE9PQ==

 The secret type is kubernetes.io/rbd.

 Here is a sample pod that uses Ceph through RBD with a secret:

 apiVersion: v1
kind: Pod
metadata:
 name: rbd2
spec:
 containers:
 - image: kubernetes/pause
 name: rbd-rw
 volumeMounts:
 - name: rbdpd
 mountPath: /mnt/rbd
 volumes:
 - name: rbdpd
 rbd:
 monitors:
 - '10.16.154.78:6789'
 - '10.16.154.82:6789'
 - '10.16.154.83:6789'
 pool: kube
 image: foo
 fsType: ext4
 readOnly: true
 user: admin
 secretRef:
 name: ceph-secret

 Ceph RBD supports the ReadWriteOnce and ReadOnlyMany access modes.

 Connecting to Ceph using CephFS

 If your Ceph cluster is already configured with CephFS, then you can assign it very easily to pods. Also, CephFS supports ReadWriteMany access modes.

 The configuration is similar to Ceph RBD, except you don't have a pool, image, or filesystem type. The secret can be a reference to a Kubernetes secret object (preferred) or a secret file:

 apiVersion: v1
kind: Pod
metadata:
 name: cephfs2
spec:
 containers:
 - name: cephfs-rw
 image: kubernetes/pause
 volumeMounts:
 - mountPath: "/mnt/cephfs"
 name: cephfs
 volumes:
 - name: cephfs
 cephfs:
 monitors:
 - 10.16.154.78:6789
 - 10.16.154.82:6789
 - 10.16.154.83:6789
 user: admin
 secretRef:
 name: ceph-secret
 readOnly: true

 You can also provide a path as a parameter in the CephFS system. The default is /.

 The in-tree RBD provisioner has an out-of-tree copy now in the external-storage Kubernetes incubator project.

 Flocker as a clustered container data volume manager

 So far, we have discussed storage solutions that stored the data outside the Kubernetes cluster (except for emptyDir and HostPath, which are not persistent). Flocker is a little different. It is Docker-aware. It was designed to let Docker data volumes transfer with their container when the container is moved between nodes. You may want to use the Flocker volume plugin if you're migrating a Docker-based system that uses a different orchestration platform, such as Docker Compose or Mesos, to Kubernetes and you use Flocker for orchestrating storage. Personally, I feel that there is a lot of duplication between what Flocker does and what Kubernetes does to abstract storage.

 Flocker has a control service and agents on each node. Its architecture is very similar to Kubernetes with its API server and the kubelet running on each node. The Flocker control service exposes a REST API and manages the configuration of the state across the cluster. The agents are responsible for ensuring that the state of their node matches the current configuration. For example, if a dataset needs to be on node X, then the Flocker agent on node X will create it.

 The following diagram showcases the Flocker architecture:

 [image:]
 Figure 6.4: The Flocker architecture

 In order to use Flocker as persistent volumes in Kubernetes, you first must have a properly configured Flocker cluster. Flocker can work with many backing stores (again, very similar to Kubernetes persistent volumes).

 Then you need to create Flocker datasets, and at that point you're ready to hook it up as a persistent volume. After all your hard work, this part is easy and you just need to specify the Flocker dataset name:

 apiVersion: v1
kind: Pod
metadata:
 name: flocker-web
spec:
 containers:
 - name: web
 image: nginx
 ports:
 - name: web
 containerPort: 80
 volumeMounts:
 # name must match the volume name below
 - name: www-root
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: www-root
 flocker:
 datasetName: my-flocker-vol

 Integrating enterprise storage into Kubernetes

 If you have an existing Storage Area Network (SAN) exposed over the iSCSI interface, Kubernetes has a volume plugin for you. It follows the same model as other shared persistent storage plugins we've seen earlier. It supports the following features:

 	Connect to one portal

 	Mount a device directly or via multipathd

 	Format and partition any new device

 	Authenticate via CHAP

 You must configure the iSCSI initiator, but you don't have to provide any initiator information. All you need to provide is the following:

 	The IP address of the iSCSI target and port (if not the default 3260)

 	The target's iqn (an iSCSI-qualified name) – typically the reversed domain name

 	LUN – the logical unit number

 	The filesystem type

 	A read-only Boolean flag

 The iSCSI plugin supports ReadWriteOnce and ReadonlyMany. Note that you can't partition your device at this time. Here is the volume spec:

 volumes:
 - name: iscsi-volume
 iscsi:
 targetPortal: 10.0.2.34:3260
 iqn: iqn.2001-04.com.example:storage.kube.sys1.xyz
 lun: 0
 fsType: ext4
 readOnly: true

 Rook – the new kid on the block

 Rook is an open source cloud-native storage orchestrator. It is currently an incubating CNCF project. It provides a consistent experience on top of multiple storage solutions including Ceph, edgeFS, Cassandra, Minio, NFS, CockroachDB, and YugabyteDB (although only Ceph and EdgeFS support is considered stable). Here are the features Rook provides:

 	Scheduling

 	Life cycle management

 	Resource management

 	Monitoring

 Rook takes advantage of modern Kubernetes' best practices like CRDs and operators. Once you install the Rook operator, you can create a Ceph cluster using a Rook CRD as follows:

 apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 cephVersion:
 # For the latest ceph images, see https://hub.docker.com/r/ceph/ceph/tags
 image: ceph/ceph:v14.2.4-20190917
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 dashboard:
 enabled: true
 storage:
 useAllNodes: true
 useAllDevices: false
 # Important: Directories should only be used in pre-production environments
 directories:
 - path: /var/lib/rook

 Note that the Rook framework itself is still considered alpha software. It is definitely a project to watch even if you decide not to use it right away.

 Projecting volumes

 It's possible to project multiple volumes into a single directory, so they appear as a single volume. The supported volume types are Kubernetes-managed: secret, downwardAPI, and configMap. This is useful if you want to mount multiple sources of configuration into a pod. Instead of having to create a separate volume for each source, you can bundle all of them into a single projected volume. Here is an example:

 apiVersion: v1
kind: Pod
metadata:
 name: the-pod
spec:
 containers:
 - name: the-container
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: the-secret
 items:
 - key: username
 path: the-group/the-user
 - downwardAPI:
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: the-container
 resource: limits.cpu
 - configMap:
 name: the-configmap
 items:
 - key: config
 path: the-group/the-config

 Using out-of-tree volume plugins with FlexVolume

 FlexVolume became generally available in Kubernetes 1.8. It allows you to consume out-of-tree storage through a uniform API. Storage providers write a driver that you install on all nodes. The FlexVolume plugin can dynamically discover existing drivers. Here is an example of using a FlexVolume to bind to an external NFS volume:

 apiVersion: v1
kind: Pod
metadata:
 name: nginx-nfs
 namespace: default
spec:
 containers:
 - name: nginx-nfs
 image: nginx
 volumeMounts:
 - name: test
 mountPath: /data
 ports:
 - containerPort: 80
 volumes:
 - name: test
 flexVolume:
 driver: "k8s/nfs"
 fsType: "nfs"
 options:
 server: "172.16.0.25"
 share: "dws_nas_scratch"

 However, at this point I highly recommend you avoid using the FlexVolume plugin and utilize CSI plugins instead.

 The Container Storage Interface

 The Container Storage Interface (CSI) is an initiative to standardize the interaction between container orchestrators and storage providers. It is driven by Kubernetes, Docker, Mesos, and Cloud Foundry. The idea is that storage providers implement just one CSI driver and container orchestrators need to support only the CSI. It is the equivalent of CNI for storage. There are several advantages over the FlexVolume approach:

 	CSI is an industry-wide standard

 	New capabilities are made available for CSI plugins only (such as volume snapshots and volume cloning)

 	FlexVolume plugins require access to the node and master root filesystem to deploy drivers

 	FlexVolume's storage driver often requires many external dependencies

 	FlexVolume's EXEC-style interface is clunky

 A CSI volume plugin was added in Kubernetes 1.9 as an alpha feature and is generally available since Kubernetes 1.13. FlexVolume will remain for backward compatibility, at least for a while.

 Here is a diagram that demonstrates how CSI works within Kubernetes:

 [image:]
 Figure 6.5: CSI within Kubernetes

 There is currently a major migration effort to port all in-tree plugins to out-of-tree CSI drivers.

 See https://kubernetes-csi.github.io for more details.

 Volume snapshotting and cloning

 These features are available only to CSI drivers. They represent the benefits of a uniform storage model that allows adding optional advanced functionality across all storage providers with a uniform interface.

 Volume snapshots

 Volume snapshots are in alpha status as of Kubernetes 1.12. They are exactly what they sound like: a snapshot of a volume at a certain point in time. You can create and later restore volumes from a snapshot. It's interesting that the API objects associated with snapshots are CRDs and not part of the core Kubernetes API. The objects are:

 	VolumeSnapshotClass

 	VolumeSnapshotContents

 	VolumeSnapshot

 Volume snapshots work using an external-prosnapshotter sidecar container that the Kubernetes team developed. It watches for snapshot CRDs to be created and interacts with the snapshot controller, which can invoke the CreateSnapshot and DeleteSnapshot operations of CSI drivers that implement snapshot support.

 You can also provision volumes from a snapshot.

 Here is a persistent volume claim bound to a snapshot:

 apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: restore-pvc
spec:
 storageClassName: csi-hostpath-sc
 dataSource:
 name: new-snapshot-test
 kind: VolumeSnapshot
 apiGroup: snapshot.storage.k8s.io
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

 Volume cloning

 Volume cloning is available in beta status as of Kubernetes 1.16. Volume clones are new volumes that are populated with the content of an existing volume. Once the volume cloning is complete, there is no relation between the original and clone. Their context will diverge over time. You can perform a clone by creating a snapshot and then creating a new volume from the snapshot. But volume cloning is more streamlined and efficient.

 Volume cloning must be enabled with a feature gate: --feature-gates=VolumePVCDataSource=true

 It works just for dynamic provisioning and uses the storage class of the source volume for the clone as well. You initiate a volume clone by specifying an existing persistent volume claim as the data source of a new persistent volume claim. That triggers dynamic provisioning of a new volume that clones the source claim's volume:

 apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: clone-of-pvc-1
 namespace: myns
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: cloning
 resources:
 requests:
 storage: 5Gi
 dataSource:
 kind: PersistentVolumeClaim
 name: pvc-1

 Summary

 In this chapter, we took a deep look into storage in Kubernetes. We've looked at the generic conceptual model based on volumes, claims, and storage classes, as well as the implementation of volume plugins. Kubernetes eventually maps all storage systems into mounted filesystems in containers or devices of raw block storage. This straightforward model allows administrators to configure and hook up any storage system from localhost directories through cloud-based shared storage all the way to enterprise storage systems. The transition of storage provisioners from in-tree to CSI-based out-of-tree drivers bodes well for the storage ecosystem. You should now have a clear understanding of how storage is modeled and implemented in Kubernetes and be able to make intelligent choices regarding how to implement storage in your Kubernetes cluster.

 In Chapter 7, Running Stateful Applications with Kubernetes, we'll see how Kubernetes can raise the level of abstraction and, on top of storage, how it can help in developing, deploying, and operating stateful applications using concepts such as stateful sets.

 7

 Running Stateful Applications with Kubernetes

 In this chapter, we will learn how to run stateful applications on Kubernetes. Kubernetes takes a lot of work out of our hands by automatically starting and restarting pods across the cluster nodes as needed, based on complex requirements and configurations such as namespaces, limits, and quotas. But when pods run storage-aware software, such as databases and queues, relocating a pod can cause the system to break. First, we'll explore the essence of stateful pods and why they are much more complicated to manage in Kubernetes. We will look at a few ways to manage the complexity, such as shared environment variables and DNS records. In some situations, a redundant in-memory state, a DaemonSet, or persistent storage claims can do the trick. The main solution that Kubernetes promotes for state-aware pods is the StatefulSet (previously called PetSet) resource, which allows us to manage an indexed collection of pods with stable properties. Finally, we will dive deep into a full-fledged example of running a Cassandra cluster on top of Kubernetes.

 Stateful versus stateless applications in Kubernetes

 A stateless Kubernetes application is an application that doesn't manage its state in the Kubernetes cluster. All of the state is stored outside the cluster and the cluster containers access it in some manner. In this section, we'll learn why state management is critical to the design of a distributed system and the benefits of managing state within the Kubernetes cluster.

 Understanding the nature of distributed data-intensive apps

 Let's start from the basics here. Distributed applications are a collection of processes that run on multiple machines, process inputs, manipulate data, expose APIs, and possibly have other side effects. Each process is a combination of its program, its runtime environment, and its inputs and outputs. The programs you write at school get their input as command-line arguments, maybe they read a file or access a database, and then write their results to the screen or a file or a database. Some programs keep state in memory and can serve requests over the network. Simple programs run on a single machine and can hold all their state in memory or read from a file. Their runtime environment is their operating system. If they crash, the user has to restart them manually. They are tied to their machine. A distributed application is a different animal. A single machine is not enough to process all the data or serve all the requests quickly enough. A single machine can't hold all the data. The data that needs to be processed is so large that it can't be downloaded cost-effectively into each processing machine. Machines can fail and need to be replaced. Upgrades need to be performed over all the processing machines. Users may be distributed across the globe.

 Taking all these issues into account, it becomes clear that the traditional approach doesn't work. The limiting factor becomes the data. Users/clients must receive only summary or processed data. All massive data processing must be done close to the data itself because transferring data is prohibitively slow and expensive. Instead, the bulk of processing code must run in the same data center and network environment of the data.

 Why manage state in Kubernetes?

 The main reason to manage state in Kubernetes itself as opposed to a separate cluster is that a lot of the infrastructure needed to monitor, scale, allocate, secure, and operate a storage cluster is already provided by Kubernetes. Running a parallel storage cluster will lead to a lot of duplicated effort.

 Why manage state outside of Kubernetes?

 Let's not rule out the other option. It may be better in some situations to manage state in a separate non-Kubernetes cluster, as long as it shares the same internal network (data proximity trumps everything).

 Some valid reasons are as follows:

 	You already have a separate storage cluster and you don't want to rock the boat

 	Your storage cluster is used by other non-Kubernetes applications

 	Kubernetes support for your storage cluster is not stable or mature enough

 	You may want to approach stateful applications in Kubernetes incrementally, starting with a separate storage cluster and integrating more tightly with Kubernetes later

 Shared environment variables versus DNS records for discovery

 Kubernetes provides several mechanisms for global discovery across the cluster. If your storage cluster is not managed by Kubernetes, you still need to tell Kubernetes pods how to find it and access it. There are two common methods:

 	DNS

 	Environment variables

 In some cases, you may want to use both, as environment variables can override DNS.

 Accessing external data stores via DNS

 The DNS approach is simple and straightforward. Assuming your external storage cluster is load balanced and can provide a stable endpoint, then pods can just hit that endpoint directly and connect to the external cluster.

 Accessing external data stores via environment variables

 Another simple approach is to use environment variables to pass connection information to an external storage cluster. Kubernetes offers the ConfigMap resource as a way to keep configuration separate from the container image. The configuration is a set of key-value pairs. The configuration information can be exposed as an environment variable inside the container as well as volumes. You may prefer to use secrets for sensitive connection information.

 Creating a ConfigMap

 The following file is a ConfigMap that keeps a list of addresses:

 apiVersion: v1
kind: ConfigMap
metadata:
 name: db-config
data:
 db-ip-addresses: 1.2.3.4,5.6.7.8

 Save it as db-config-map.yaml and run:

 $ kubectl create -f db-config-map.yaml
configmap/db-config created

 The data section contains all the key-value pairs (in this case, just a single pair with a key name of db-ip-addresses). It will be important later when consuming the ConfigMap in a pod. You can check out the content to make sure it's OK:

 $ kubectl get configmap db-config -o yaml
apiVersion: v1
data:
 db-ip-addresses: 1.2.3.4,5.6.7.8
kind: ConfigMap
metadata:
 creationTimestamp: "2020-06-08T14:25:39Z"
 name: db-config
 namespace: default
 resourceVersion: "366427"
 selfLink: /api/v1/namespaces/default/configmaps/db-config
 uid: 2d0a357a-e38e-11e9-90a4-0242ac120002

 There are other ways to create a ConfigMap. You can directly create them using the --from-value or --from-file command-line arguments.

 Consuming a ConfigMap as an environment variable

 When you are creating a pod, you can specify a ConfigMap and consume its values in several ways. Here is how to consume our configuration map as an environment variable:

 apiVersion: v1
kind: Pod
metadata:
 name: some-pod
spec:
 containers:
 - name: some-container
 image: busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: DB_IP_ADDRESSES
 valueFrom:
 configMapKeyRef:
 name: db-config
 key: db-ip-addresses
 restartPolicy: Never

 This pod runs the busybox minimal container and executes an env bash command and immediately exits. The db-ip-addresses key from db-configmap is mapped to the DB_IP_ADDRESSES environment variable, and is reflected in the output:

 $ kubectl create -f pod-with-db.yaml
pod/some-pod created
$ kubectl logs some-pod | grep DB_IP
DB_IP_ADDRESSES=1.2.3.4,5.6.7.8

 Using a redundant in-memory state

 In some cases, you may want to keep a transient state in memory. Distributed caching is a common case. Time-sensitive information is another one. For these use cases, there is no need for persistent storage, and multiple pods accessed through a service may be just the right solution. We can use standard Kubernetes techniques, such as labeling, to identify pods that belong to the distributed cache, store redundant copies of the same state, and expose them through a service. If a pod dies, Kubernetes will create a new one and, until it catches up, the other pods will serve the state. We can even use the pod's anti-affinity feature to ensure that pods that maintain redundant copies of the same state are not scheduled to the same node.

 Of course, you could also use something like Memcached or Redis.

 Using DaemonSet for redundant persistent storage

 Some stateful applications, such as distributed databases or queues, manage their state redundantly and sync their nodes automatically (we'll take a very deep look into Cassandra later). In these cases, it is important that pods are scheduled to separate nodes. It is also important that pods are scheduled to nodes with a particular hardware configuration or are even dedicated to the stateful application. The DaemonSet feature is perfect for this use case. We can label a set of nodes and make sure that the stateful pods are scheduled on a one-by-one basis to the selected group of nodes.

 Applying persistent volume claims

 If the stateful application can use effectively shared persistent storage, then using a persistent volume claim in each pod is the way to go, as we demonstrated in Chapter 6, Managing Storage. The stateful application will be presented with a mounted volume that looks just like a local filesystem.

 Utilizing StatefulSets

 StatefulSets are especially designed to support distributed stateful applications where the identities of the members are important, and if a pod is restarted it must retain its identity in the set. It provides ordered deployment and scaling. Unlike regular pods, the pods of a StatefulSet are associated with persistent storage.

 When to use a StatefulSet

 StatefulSets are great for applications that require one or more of the following:

 	Stable, unique network identifiers

 	Stable, persistent storage

 	Ordered, graceful deployment and scaling

 	Ordered, graceful deletion and termination

 The components of a StatefulSet

 There are several pieces that need to be configured correctly in order to have a working StatefulSet:

 	A headless service responsible for managing the network identity of the StatefulSet pods

 	The StatefulSet itself with a number of replicas

 	Persistent storage provisioned dynamically or by an administrator

 Here is an example of a headless service called nginx that will be used for a StatefulSet:

 apiVersion: v1
kind: Service
metadata:
 name: nginx
 labels:
 app: nginx
spec:
ports:
 - port: 80
 name: web
clusterIP: None
selector:
 app: nginx

 Now, the StatefulSet configuration file will reference the service:

 apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 serviceName: "nginx"
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx

 The next part is the pod template, which includes a mounted volume named www:

 spec:
 terminationGracePeriodSeconds: 1800
 containers:
 - name: nginx
 image: gcr.io/google_containers/nginx-slim:0.8
 imagePullPolicy: Always
 ports:
 - containerPort: 80
 name: web
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html

 Last but not least, volumeClaimTemplates uses a claim named www matching the mounted volume. The claim requests 1 GiB of storage with ReadWriteOnce access:

 volumeClaimTemplates:
 - metadata:
 name: www
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

 Running a Cassandra cluster in Kubernetes

 In this section, we will explore in detail a very large example of configuring a Cassandra cluster to run on a Kubernetes cluster. The full example can be accessed here:

 https://kubernetes.io/docs/tutorials/stateful-application/cassandra/

 First, we'll learn a little bit about Cassandra and its idiosyncrasies, and then follow a step-by-step procedure to get it running using several of the techniques and strategies we've covered in the previous section.

 Quick introduction to Cassandra

 Cassandra is a distributed columnar data store. It was designed from the get-go for big data. Cassandra is fast, robust (no single point of failure), highly available, and linearly scalable. It also has multi-datacenter support. It achieves all this by having a laser focus and carefully crafting the features it supports—and just as importantly—the features it doesn't support. In a previous company, I ran a Kubernetes cluster that used Cassandra as the main data store for sensor data (about 100 TB). Cassandra allocates the data to a set of nodes (node ring) based on a distributed hash table (DHT) algorithm. The cluster nodes talk to each other via a gossip protocol and learn quickly about the overall state of the cluster (what nodes joined and what nodes left or are unavailable). Cassandra constantly compacts the data and balances the cluster. The data is typically replicated multiple times for redundancy, robustness, and high availability. From a developer's point of view, Cassandra is very good for time-series data and provides a flexible model where you can specify the consistency level in each query. It is also idempotent (a very important feature for a distributed database), which means repeated inserts or updates are allowed.

 Here is a diagram that shows how a Cassandra cluster is organized and how a client can access any node and how the request will be forwarded automatically to the nodes that have the requested data:

 [image:]
 Figure 7.1: Request interacting with a Cassandra cluster

 The Cassandra Docker image

 Deploying Cassandra on Kubernetes as opposed to a standalone Cassandra cluster deployment requires a special Docker image. This is an important step because it means we can use Kubernetes to keep track of our Cassandra pods. The image is available here:

 https://github.com/kubernetes/examples/blob/master/cassandra/image/Dockerfile

 The Dockerfile is coming up. The base image is a flavor of Debian designed for use in containers (see https://github.com/kubernetes/kubernetes/tree/master/build/debian-base).

 The Cassandra Dockerfile defines some build arguments that must be set when the image is built, creates a bunch of labels, defines many environment variables, adds all the files to the root directory inside the container, runs the build.sh script, declares the Cassandra data volume (where the data is stored), exposes a bunch of ports, and finally uses dumb-init to execute the run.sh script:

 FROM k8s.gcr.io/debian-base-amd64:0.3
ARG BUILD_DATE
ARG VCS_REF
ARG CASSANDRA_VERSION
ARG DEV_CONTAINER
LABEL \
 org.label-schema.build-date=$BUILD_DATE \
 org.label-schema.docker.dockerfile="/Dockerfile" \
 org.label-schema.license="Apache License 2.0" \
 org.label-schema.name="k8s-for-greeks/docker-cassandra-k8s" \
 org.label-schema.url="https://github.com/k8s-for-greeks/" \
 org.label-schema.vcs-ref=$VCS_REF \
 org.label-schema.vcs-type="Git" \
 org.label-schema.vcs-url="https://github.com/k8s-for-greeks/docker-cassandra-k8s"
ENV CASSANDRA_HOME=/usr/local/apache-cassandra-${CASSANDRA_VERSION} \
 CASSANDRA_CONF=/etc/cassandra \
 CASSANDRA_DATA=/cassandra_data \
 CASSANDRA_LOGS=/var/log/cassandra \
 JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 \
 PATH=${PATH}:/usr/lib/jvm/java-8-openjdk-amd64/bin:/usr/local/apache-cassandra-${CASSANDRA_VERSION}/bin
ADD files /
RUN clean-install bash \
 && /build.sh \
 && rm /build.sh
VOLUME ["/$CASSANDRA_DATA"]
7000: intra-node communication
7001: TLS intra-node communication
7199: JMX
9042: CQL
9160: thrift service
EXPOSE 7000 7001 7199 9042 9160
CMD ["/usr/bin/dumb-init", "/bin/bash", "/run.sh"]

 Here are all the files used by the Dockerfile:

 	build.sh

 	cassandra-seed.h

 	cassandra.yaml

 	jvm.options

 	kubernetes-cassandra.jar

 	logback.xml

 	ready-probe.sh

 	run.sh

 We will not cover all of them; we'll focus on the build.sh and run.sh scripts.

 Exploring the build.sh script

 Cassandra is a Java program. The build script installs the Java runtime environment and a few necessary libraries and tools. It then sets a few variables that will be used later, such as CASSANDRA_PATH.

 It downloads the correct version of Cassandra from the Apache organization (Cassandra is an Apache open source project), creates the /cassandra_data/data directory where Cassandra will store its SSTables and the /etc/cassandra configuration directory, copies files into the configuration directory, adds a Cassandra user, sets the readiness probe, installs Python, moves the Cassandra jar file and the seed shared library to their target destination, and then cleans up all the intermediate files generated during this process:

 apt-get update && apt-get dist-upgrade -y
clean-install \
 openjdk-8-jre-headless \
 libjemalloc1 \
 localepurge \
 dumb-init \
 wget
CASSANDRA_PATH="cassandra/${CASSANDRA_VERSION}/apache-cassandra-${CASSANDRA_VERSION}-bin.tar.gz"
CASSANDRA_DOWNLOAD=http://www.apache.org/dyn/closer.cgi?path=/${CASSANDRA_PATH}&as_json=1
CASSANDRA_MIRROR='wget -q -O - ${CASSANDRA_DOWNLOAD} | grep -oP "(?<=\"preferred\": \")[^\"]+"'
echo "Downloading Apache Cassandra from $CASSANDRA_MIRROR$CASSANDRA_PATH..."
wget -q -O - $CASSANDRA_MIRROR$CASSANDRA_PATH \
 | tar -xzf - -C /usr/local
mkdir -p /cassandra_data/data
mkdir -p /etc/Cassandra
mv /logback.xml /cassandra.yaml /jvm.options /etc/cassandra/
mv /usr/local/apache-cassandra-${CASSANDRA_VERSION}/conf/cassandra-env.sh /etc/cassandra/
adduser --disabled-password --no-create-home --gecos '' --disabled-login cassandra
chmod +x /ready-probe.sh
chown cassandra: /ready-probe.sh
DEV_IMAGE=${DEV_CONTAINER:-}
if [! -z "$DEV_IMAGE"]; then
 clean-install python;
else
 rm -rf $CASSANDRA_HOME/pylib;
fi
mv /kubernetes-cassandra.jar /usr/local/apache-cassandra-${CASSANDRA_VERSION}/lib
mv /cassandra-seed.so /etc/cassandra/
mv /cassandra-seed.h /usr/local/lib/include
apt-get -y purge localepurge
apt-get -y autoremove
apt-get clean
rm <many files and directories>

 Exploring the run.sh script

 The run.sh script requires some shell skills and knowledge of Cassandra to understand, but it's worth the effort.

 First, some local variables are set for the Cassandra configuration file at /etc/cassandra/cassandra.yaml. The CASSANDRA_CFG variable will be used in the rest of the script:

 set -e
CASSANDRA_CONF_DIR=/etc/Cassandra
CASSANDRA_CFG=$CASSANDRA_CONF_DIR/cassandra.yaml

 If no CASSANDRA_SEEDS were specified, then set the HOSTNAME, which is used by the StatefulSet later:

 # we are doing StatefulSet or just setting our seeds
if [-z "$CASSANDRA_SEEDS"]; then
 HOSTNAME=$(hostname -f)
 CASSANDRA_SEEDS=$(hostname -f)
fi

 Then comes a long list of environment variables with defaults. The syntax ${VAR_NAME:-} uses the VAR_NAME environment variable, if it's defined, or the default value.

 A similar syntax, ${VAR_NAME:=}, does the same thing, but also assigns the default value to the environment variable if it's not defined. This a subtle but important difference.

 Both variations are used here:

 # The following vars relate to their counter parts in $CASSANDRA_CFG
for instance rpc_address
CASSANDRA_RPC_ADDRESS="${CASSANDRA_RPC_ADDRESS:-0.0.0.0}"
CASSANDRA_NUM_TOKENS="${CASSANDRA_NUM_TOKENS:-32}"
CASSANDRA_CLUSTER_NAME="${CASSANDRA_CLUSTER_NAME:='Test Cluster'}"
CASSANDRA_LISTEN_ADDRESS=${POD_IP:-$HOSTNAME}
CASSANDRA_BROADCAST_ADDRESS=${POD_IP:-$HOSTNAME}
CASSANDRA_BROADCAST_RPC_ADDRESS=${POD_IP:-$HOSTNAME}
CASSANDRA_DISK_OPTIMIZATION_STRATEGY="${CASSANDRA_DISK_OPTIMIZATION_TRATEGY:-ssd}"
CASSANDRA_MIGRATION_WAIT="${CASSANDRA_MIGRATION_WAIT:-1}"
CASSANDRA_ENDPOINT_SNITCH="${CASSANDRA_ENDPOINT_SNITCH:-SimpleSnitch}"
CASSANDRA_DC="${CASSANDRA_DC}"
CASSANDRA_RACK="${CASSANDRA_RACK}"
CASSANDRA_RING_DELAY="${CASSANDRA_RING_DELAY:-30000}"
CASSANDRA_AUTO_BOOTSTRAP="${CASSANDRA_AUTO_BOOTSTRAP:-true}"
CASSANDRA_SEEDS="${CASSANDRA_SEEDS:false}"
CASSANDRA_SEED_PROVIDER="${CASSANDRA_SEED_PROVIDER:-org.apache.cassandra.locator.SimpleSeedProvider}"
CASSANDRA_AUTO_BOOTSTRAP="${CASSANDRA_AUTO_BOOTSTRAP:false}"

 By the way, I contributed my part to Kubernetes by opening a pull request to fix a minor typo here. See https://github.com/kubernetes/examples/pull/348.

 The next part configures monitoring Java Management Exceptions (JMX) and controls garbage collection output:

 # Turn off JMX auth
CASSANDRA_OPEN_JMX="${CASSANDRA_OPEN_JMX:-false}"
send GC to STDOUT
CASSANDRA_GC_STDOUT="${CASSANDRA_GC_STDOUT:-false}"

 Then comes a section where all the variables are printed to the screen. Let's skip most of it:

 echo Starting Cassandra on ${CASSANDRA_LISTEN_ADDRESS}
echo CASSANDRA_CONF_DIR ${CASSANDRA_CONF_DIR}
echo CASSANDRA_CFG ${CASSANDRA_CFG}
echo CASSANDRA_AUTO_BOOTSTRAP ${CASSANDRA_AUTO_BOOTSTRAP}
...

 The next section is very important. By default, Cassandra uses a simple snitch, which is unaware of racks and data centers. This is not optimal when the cluster spans multiple data centers and racks.

 Cassandra is rack-aware and datacenter-aware and can optimize both for redundancy and high availability while limiting communication across data centers appropriately:

 # if DC and RACK are set, use GossipingPropertyFileSnitch
if [[$CASSANDRA_DC && $CASSANDRA_RACK]]; then
 echo "dc=$CASSANDRA_DC" > $CASSANDRA_CONF_DIR/cassandra-rackdc.properties
 echo "rack=$CASSANDRA_RACK" >> $CASSANDRA_CONF_DIR/cassandra-rackdc.properties
 CASSANDRA_ENDPOINT_SNITCH="GossipingPropertyFileSnitch"
fi

 Memory management is also important, and you can control the maximum heap size to ensure Cassandra doesn't start thrashing and swapping to disk:

 if [-n "$CASSANDRA_MAX_HEAP"]; then
 sed -ri "s/^(#)?-Xmx[0-9]+.*/-Xmx$CASSANDRA_MAX_HEAP/" "$CASSANDRA_CONF_DIR/jvm.options"
 sed -ri "s/^(#)?-Xms[0-9]+.*/-Xms$CASSANDRA_MAX_HEAP/" "$CASSANDRA_CONF_DIR/jvm.options"
fi
if [-n "$CASSANDRA_REPLACE_NODE"]; then
 echo "-Dcassandra.replace_address=$CASSANDRA_REPLACE_NODE/" >> "$CASSANDRA_CONF_DIR/jvm.options"
fi

 The rack and data center information is stored in a simple Java properties file:

 for rackdc in dc rack; do
 var="CASSANDRA_${rackdc^^}"
 val="${!var}"
 if ["$val"]; then
 sed -ri 's/^('"$rackdc"'=).*/\1 '"$val"'/' "$CASSANDRA_CONF_DIR/cassandra-rackdc.properties"
 fi
done

 The next section loops over all the variables defined earlier, finds the corresponding key in the Cassandra.yaml configuration files, and overwrites them. That ensures that each configuration file is customized on the fly just before it launches Cassandra:

 for yaml in \
 broadcast_address \
 broadcast_rpc_address \
 cluster_name \
 disk_optimization_strategy \
 endpoint_snitch \
 listen_address \
 num_tokens \
 rpc_address \
 start_rpc \
 key_cache_size_in_mb \
 concurrent_reads \
 concurrent_writes \
 memtable_cleanup_threshold \
 memtable_allocation_type \
 memtable_flush_writers \
 concurrent_compactors \
 compaction_throughput_mb_per_sec \
 counter_cache_size_in_mb \
 internode_compression \
 endpoint_snitch \
 gc_warn_threshold_in_ms \
 listen_interface \
 rpc_interface \
 ; do
 var="CASSANDRA_${yaml^^}"
 val="${!var}"
 if ["$val"]; then
 sed -ri 's/^(#)?('"$yaml"':).*/\2 '"$val"'/' "$CASSANDRA_CFG"
 fi
done
echo "auto_bootstrap: ${CASSANDRA_AUTO_BOOTSTRAP}" >> $CASSANDRA_CFG

 The next section is all about setting the seeds or seed provider depending on the deployment solution (StatefulSet or not). There is a little trick for the first pod to bootstrap as its own seed:

 # set the seed to itself. This is only for the first pod, otherwise
it will be able to get seeds from the seed provider
if [[$CASSANDRA_SEEDS == 'false']]; then
 sed -ri 's/- seeds:.*/- seeds: "'"$POD_IP"'"/' $CASSANDRA_CFG
else # if we have seeds set them. Probably StatefulSet
 sed -ri 's/- seeds:.*/- seeds: "'"$CASSANDRA_SEEDS"'"/' $CASSANDRA_CFG
fi
sed -ri 's/- class_name: SEED_PROVIDER/- class_name: '"$CASSANDRA_SEED_PROVIDER"'/' $CASSANDRA_CFG

 The following section sets up various options for remote management and JMX monitoring. It's critical in complicated distributed systems to have proper administration tools.

 Cassandra has deep support for the ubiquitous JMX standard:

 # send gc to stdout
if [[$CASSANDRA_GC_STDOUT == 'true']]; then
 sed -ri 's/ -Xloggc:\/var\/log\/cassandra\/gc\.log//' $CASSANDRA_CONF_DIR/cassandra-env.sh
fi
enable RMI and JMX to work on one port
echo "JVM_OPTS=\"\$JVM_OPTS -Djava.rmi.server.hostname=$POD_IP\"" >> $CASSANDRA_CONF_DIR/cassandra-env.sh
getting WARNING messages with Migration Service
echo "-Dcassandra.migration_task_wait_in_seconds=${CASSANDRA_MIGRATION_WAIT}" >> $CASSANDRA_CONF_DIR/jvm.options
echo "-Dcassandra.ring_delay_ms=${CASSANDRA_RING_DELAY}" >> $CASSANDRA_CONF_DIR/jvm.options
if [[$CASSANDRA_OPEN_JMX == 'true']]; then
 export LOCAL_JMX=no
 sed -ri 's/ -Dcom\.sun\.management\.jmxremote\.authenticate=true/ -Dcom\.sun\.management\.jmxremote\.authenticate=false/' $CASSANDRA_CONF_DIR/cassandra-env.sh
 sed -ri 's/ -Dcom\.sun\.management\.jmxremote\.password\.file=\/etc\/cassandra\/jmxremote\.password//' $CASSANDRA_CONF_DIR/cassandra-env.sh
fi

 Finally, it protects the data directory such that only the cassandra user can access it, the CLASSPATH is set to the Cassandra jar file, and it launches Cassandra in the foreground (not daemonized) as the cassandra user:

 chmod 700 "${CASSANDRA_DATA}"
chown -c -R cassandra "${CASSANDRA_DATA}" "${CASSANDRA_CONF_DIR}"
export CLASSPATH=/kubernetes-cassandra.jar
su cassandra -c "$CASSANDRA_HOME/bin/cassandra -f"

 Hooking up Kubernetes and Cassandra

 Connecting Kubernetes and Cassandra takes some work because Cassandra was designed to be very self-sufficient, but we want to let it hook into Kubernetes at the right time to provide capabilities such as automatically restarting failed nodes, monitoring, allocating Cassandra pods, and providing a unified view of the Cassandra pods side by side with other pods.

 Cassandra is a complicated beast and has many knobs to control it. It comes with a Cassandra.yaml configuration file, and you can override all the options with environment variables.

 Digging into the Cassandra configuration file

 There are two settings that are particularly relevant: the seed provider and the snitch. The seed provider is responsible for publishing a list of IP addresses (seeds) of nodes in the cluster. Every node that starts running connects to the seeds (there are usually at least three) and if it successfully reaches one of them they immediately exchange information about all the nodes in the cluster. This information is updated constantly for each node as the nodes gossip with each other.

 The default seed provider configured in Cassandra.yaml is just a static list of IP addresses, in this case just the loopback interface:

 # any class that implements the SeedProvider interface and has a
constructor that takes a Map<String, String> of parameters will do.
seed_provider:
 # Addresses of hosts that are deemed contact points.
 # Cassandra nodes use this list of hosts to find each other and learn
 # the topology of the ring. You must change this if you are running
 # multiple nodes!
 #- class_name: io.k8s.cassandra.KubernetesSeedProvider
 - class_name: SEED_PROVIDER
 parameters:
 # seeds is actually a comma-delimited list of addresses.
 # Ex: "<ip1>,<ip2>,<ip3>"
 - seeds: "127.0.0.1"

 The other important setting is the snitch. It has two roles: it teaches Cassandra enough about your network topology to route requests efficiently, and it allows Cassandra to spread replicas around your cluster to avoid correlated failures. It does this by grouping machines into data centers and racks. Cassandra will do its best not to have more than one replica on the same rack (which may not actually be a physical location).

 Cassandra comes pre-loaded with several snitch classes, but none of them are Kubernetes-aware. The default is SimpleSnitch, but it can be overridden:

 # You can use a custom Snitch by setting this to the full class
name of the snitch, which will be assumed to be on your classpath.
endpoint_snitch: SimpleSnitch

 Other snitches are:

 	GossipingPropertyFileSnitch

 	PropertyFileSnitch

 	Ec2Snitch

 	Ec2MultiRegionSnitch

 	RackInferringSnitch

 The custom seed provider

 When running Cassandra nodes as pods in Kubernetes, Kubernetes may move pods around, including seeds. To accommodate that, a Cassandra seed provider needs to interact with the Kubernetes API server.

 Here is a short snippet from the custom KubernetesSeedProvider Java class that implements the Cassandra SeedProvider API:

 public class KubernetesSeedProvider implements SeedProvider {
...
 /**
 * Call Kubernetes API to collect a list of seed providers
 *
 * @return list of seed providers
 */
 public List<InetAddress> getSeeds() {
 GoInterface go = (GoInterface) Native.loadLibrary("cassandra-seed.so", GoInterface.class);
 String service = getEnvOrDefault("CASSANDRA_SERVICE", "cassandra");
 String namespace = getEnvOrDefault("POD_NAMESPACE", "default");
 String initialSeeds = getEnvOrDefault("CASSANDRA_SEEDS", "");
 if ("".equals(initialSeeds)) {
 initialSeeds = getEnvOrDefault("POD_IP", "");
 }
 String seedSizeVar = getEnvOrDefault("CASSANDRA_SERVICE_NUM_SEEDS", "8");
 Integer seedSize = Integer.valueOf(seedSizeVar);
 String data = go.GetEndpoints(namespace, service, initialSeeds);
 ObjectMapper mapper = new ObjectMapper();
 try {
 Endpoints = mapper.readValue(data, Endpoints.class);
 logger.info("cassandra seeds: {}", endpoints.ips.toString());
 return Collections.unmodifiableList(endpoints.ips);
 } catch (IOException e) {
 // This should not happen
 logger.error("unexpected error building cassandra seeds: {}" , e.getMessage());
 return Collections.emptyList();
 }
}

 Creating a Cassandra headless service

 The role of the headless service is to allow clients in the Kubernetes cluster to connect to the Cassandra cluster through a standard Kubernetes service instead of keeping track of the network identities of the nodes or putting a dedicated load balancer in front of all the nodes. Kubernetes provides all that out of the box through its services.

 Here is the configuration file:

 apiVersion: v1
kind: Service
metadata:
 labels:
 app: cassandra
 name: Cassandra
spec:
 clusterIP: None
 ports:
 - port: 9042
 selector:
 app: Cassandra

 The app: Cassandra label will group all the pods to participate in the service. Kubernetes will create endpoint records and the DNS will return a record for discovery. clusterIP is set to None, which means the service is headless and Kubernetes will not do any load balancing or proxying. This is important because Cassandra nodes do their own communication directly.

 The 9042 port is used by Cassandra to serve CQL requests. Those can be queries, inserts/updates (it's always an upsert with Cassandra), or deletes.

 Using StatefulSets to create the Cassandra cluster

 Declaring a StatefulSet is not trivial. It is arguably the most complex Kubernetes resource. It has a lot of moving parts: standard metadata, the StatefulSet spec, the pod template (which is often pretty complex itself), and volume claim templates.

 Dissecting the StatefulSet YAML file

 Let's go methodically over this example StatefulSet YAML file that declares a three-node Cassandra cluster.

 Here is the basic metadata. Note the apiVersion string is apps/v1 (StatefulSets became generally available in Kubernetes 1.9):

 apiVersion: "apps/v1"
kind: StatefulSet
metadata:
 name: Cassandra
 labels:
 app: cassandra

 The StatefulSet spec defines the headless service name, the label selector (app: cassandra), how many pods there are in the StatefulSet, and the pod template (explained later). The replicas field specifies how many pods are in the StatefulSet:

 spec:
 serviceName: Cassandra
 replicas: 3
 selector:
 matchLabels:
 app: Cassandra
 template:
 ...

 The term replicas for the pods is an unfortunate choice because the pods are not replicas of each other. They share the same pod template, but they have a unique identity and they are responsible for different subsets of the state in general. This is even more confusing in the case of Cassandra, which uses the same term, replicas, to refer to groups of nodes that redundantly duplicate some subset of the state (but are not identical, because each can manage additional state too). I opened a GitHub issue with the Kubernetes project to change the term from replicas to members:

 https://github.com/kubernetes/kubernetes.github.io/issues/2103

 The pod template contains a single container based on the custom Cassandra image. It also sets the termination grace period to 30 minutes. This means that when Kubernetes needs to terminate the pod, it will send the containers a SIGTERM signal notifying them they should exit and giving them a chance to do it gracefully. Any container that is still running after the grace period will be killed via SIGKILL.

 Here is the pod template with the app: cassandra label:

 template:
 metadata:
 labels:
 app: Cassandra
 spec:
 terminationGracePeriodSeconds: 1800
 containers:
 ...

 The containers section has multiple important parts. It starts with a name and the image we looked at earlier:

 containers:
 - name: Cassandra
 image: gcr.io/google-samples/cassandra:v14
 imagePullPolicy: Always

 Then, it defines multiple container ports needed for external and internal communication by Cassandra nodes:

 ports:
 - containerPort: 7000
 name: intra-node
 - containerPort: 7001
 name: tls-intra-node
 - containerPort: 7199
 name: jmx
 - containerPort: 9042
 name: cql

 The resources section specifies the CPU and memory needed by the container. This is critical because the storage management layer should never be a performance bottleneck due to CPU or memory. Note that it follows the best practice of identical requests and limits to ensure the resources are always available once allocated:

 resources:
 limits:
 cpu: "500m"
 memory: 1Gi
 requests:
 cpu: "500m"
 memory: 1Gi

 Cassandra needs access to Inter Process Communication (IPC), which the container requests through the security context's capabilities:

 securityContext:
 capabilities:
 add:
 - IPC_LOCK

 The lifecycle section runs the Cassandra nodetool drain command to make sure data on the node is transferred to other nodes in the Cassandra cluster when the container needs to shut down. This is the reason a 30-minute grace period is needed. Node draining involves moving a lot of data around:

 lifecycle:
 preStop:
 exec:
 command:
 - /bin/sh
 - -c
 - nodetool drain

 The env section specifies environment variables that will be available inside the container. The following is a partial list of the necessary variables. The CASSANDRA_SEEDS variable is set to the headless service so a Cassandra node can talk to seed nodes on startup and discover the whole cluster. Note that in this configuration we don't use the special Kubernetes seed provider. POD_IP is interesting because it utilizes the Downward API to populate its value via the field reference to status.podIP:

 env:
 - name: MAX_HEAP_SIZE
 value: 512M
 - name: HEAP_NEWSIZE
 value: 100M
 - name: CASSANDRA_SEEDS
 value: "cassandra-0.cassandra.default.svc.cluster.local"
 - name: CASSANDRA_CLUSTER_NAME
 value: "K8Demo"
 - name: CASSANDRA_DC
 value: "DC1-K8Demo"
 - name: CASSANDRA_RACK
 value: "Rack1-K8Demo"
 - name: CASSANDRA_SEED_PROVIDER
 value: io.k8s.cassandra.KubernetesSeedProvider
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP

 The readiness probe makes sure that requests are not sent to the node until it is actually ready to service them. The ready-probe.sh script utilizes Cassandra's nodetool status command:

 readinessProbe:
 exec:
 command:
 - /bin/bash
 - -c
 - /ready-probe.sh
 initialDelaySeconds: 15
 timeoutSeconds: 5

 The last part of the container spec is the volume mount, which must match a persistent volume claim:

 volumeMounts:
 - name: cassandra-data
 mountPath: /var/lib/cassandra

 That's it for the container spec. The last part is the volume claim templates. In this case, dynamic provisioning is used. It's highly recommended to use SSD drives for Cassandra storage, and especially its journal. The requested storage in this example is 1 GiB. I discovered through experimentation that 1-2 TB is ideal for a single Cassandra node. The reason is that Cassandra does a lot of data shuffling under the covers, compacting and rebalancing the data. If a node leaves the cluster or a new one joins the cluster, you have to wait until the data is properly rebalanced before the data from the node that left is properly re-distributed or a new node is populated. Note that Cassandra needs a lot of disk space to do all this shuffling. It is recommended to have 50% free disk space. When you consider that you also need replication (typically 3x), then the required storage space can be 6x your data size. You can get by with 30% free space if you're adventurous and maybe use just 2x replication depending on your use case. But don't get below 10% free disk space, even on a single node. I learned the hard way that Cassandra will simply get stuck and will be unable to compact and rebalance such nodes without extreme measures.

 A storage class called fast must be defined in this case. Usually, for Cassandra, you need a special storage class and can't use the Kubernetes cluster default storage class.

 The access mode is, of course, ReadWriteOnce:

 volumeClaimTemplates:
 - metadata:
 name: cassandra-data
 spec:
 storageClassName: fast
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

 When deploying a StatefulSet, Kubernetes creates the pod in order according to its index number. When scaling up or down, it also does it in order. For Cassandra, this is not important because it can handle nodes joining or leaving the cluster in any order. When a Cassandra pod is destroyed (ungracefully), the persistent volume remains. If a pod with the same index is created later, the original persistent volume will be mounted into it. This stable connection between a particular pod and its storage enables Cassandra to manage the state properly.

 Summary

 In this chapter, we covered the topic of stateful applications and how to integrate them with Kubernetes. We discovered that stateful applications are complicated and considered several mechanisms for discovery, such as DNS and environment variables. We also discussed several state management solutions, such as in-memory redundant storage and persistent storage. The bulk of the chapter revolved around deploying a Cassandra cluster inside a Kubernetes cluster using a StatefulSet. We drilled down into the low-level details in order to appreciate what it really takes to integrate a third-party complex distributed system such as Cassandra into Kubernetes. At this point, you should have a thorough understanding of stateful applications and how to apply them in your Kubernetes-based system. You are armed with multiple methods for various use cases, and maybe you've even learned a little bit about Cassandra.

 In the next chapter, we will continue our journey and explore the important topic of scalability, in particular auto-scalability, and how to deploy and do live upgrades and updates as the cluster dynamically grows. These issues are very intricate, especially when the cluster has stateful apps running on it.

 8

 Deploying and Updating Applications

 In this chapter, we will explore the automated pod scalability that Kubernetes provides, how it affects rolling updates, and how it interacts with quotas. We will touch on the important topic of provisioning and how to choose and manage the size of the cluster. Finally, we will go over how the Kubernetes team improved the performance of Kubernetes and how they test the limits of Kubernetes with the Kubemark tool. Here are the main points we will cover:

 	Horizontal pod autoscaling

 	Performing rolling updates with autoscaling

 	Handling scarce resources with quotas and limits

 	Pushing the envelope with Kubernetes performance

 At the end of this chapter, you will have the ability to plan a large-scale cluster, provision it economically, and make informed decisions about the various trade-offs between performance, cost, and availability. You will also understand how to set up horizontal pod autoscaling and use resource quotas intelligently to let Kubernetes automatically handle intermittent fluctuations in volume as well as deploy software safely to your cluster.

 Horizontal pod autoscaling

 Kubernetes can watch over your pods and scale them when the CPU utilization or some other metric crosses a threshold. The autoscaling resource specifies the details (percentage of CPU, how often to check) and the corresponding autoscale controller adjusts the number of replicas, if needed.

 The following diagram illustrates the different players and their relationships:

 [image:]
 Figure 8.1: HPA interacting with pods

 As you can see, the horizontal pod autoscaler (HPA) doesn't create or destroy pods directly. It relies instead on the replication controller or deployment resources. This is very smart because you don't need to deal with situations where autoscaling conflicts with the replication controller or deployments trying to scale the number of pods, unaware of the autoscaler efforts.

 The autoscaler automatically does what we had to do ourselves before. Without the autoscaler, if we had a replication controller with replicas set to 3, but we determined that based on average CPU utilization we actually needed 4, then we would update the replication controller from 3 to 4 and keep monitoring the CPU utilization manually in all pods. The autoscaler will do it for us.

 Declaring an HPA

 To declare an HPA, we need a replication controller, or a deployment, and an autoscaling resource. Here is a simple deployment configured to maintain 3 Nginx pods:

 apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 run: nginx
 template:
 metadata:
 labels:
 run: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 requests:
 cpu: 400m
 ports:
 - containerPort: 80

 Note that in order to participate in autoscaling, the containers must request a specific amount of CPU.

 The HPA references the Nginx deployment in scaleTargetRef:

 apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: nginx
spec:
 maxReplicas: 4
 minReplicas: 2
 targetCPUUtilizationPercentage: 90
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: nginx

 The minReplicas and maxReplicas values specify the range of scaling. This is needed to avoid runaway situations that could occur because of some problem. Imagine that, due to some bug, every pod immediately uses 100% CPU regardless of the actual load. Without the maxReplicas limit, Kubernetes will keep creating more and more pods until all cluster resources are exhausted.

 If we are running in a cloud environment with autoscaling of VMs, then we will incur a significant cost. The other side of this problem is that, if there is no minReplicas and there is a lull in activity, then all pods could be terminated, and when new requests come in all the pods will have to be created and scheduled again. If there are patterns of on and off activity, then this cycle can repeat multiple times. Keeping the minimum of replicas running can smooth this phenomenon. In the preceding example, minReplicas is set to 2 and maxReplicas is set to 4. Kubernetes will ensure that there are always between 2 to 4 Nginx instances running.

 The target CPU utilization percentage is a mouthful. Let's abbreviate it to TCUP. You specify a single number like 80%, but Kubernetes doesn't start scaling up and down immediately when the threshold is crossed. This could lead to constant thrashing if the average load hovers around the TCUP. Kubernetes will alternate frequently between adding more replicas and removing replicas. A new scale-up algorithm was added in Kubernetes 1.12 that can handle automatically scaling up your cluster. Scaling down is left to the cluster administrator, who can configure how long the autoscaler will wait before scaling down a pod. The mechanism is a special flag to the controller-manager called --horizontal-pod-autoscaler-downscale-stabilization. It determines the minimum wait between consecutive downscale operations. The default value is five minutes.

 Let's check the HPA:

 $ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
nginx Deployment/nginx <unknown>/90% 2 4 0 4s

 As you can see, the targets are unknown. The HPA requires a metrics server to measure the CPU percentage. One of the easiest ways to install the metrics server is by using Helm. We have installed Helm in Chapter 3, High Availability and Reliability already. Here is the command to install the Kubernetes metrics server into the monitoring namespace:

 $ helm install metrics-server bitnami/metrics-server
 --version 4.2.1 \
 --namespace monitoring

 After redeploying nginx and the HPA, you can see the utilization and that the replica count is 3, which is within the range of 2-4:

 $ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
nginx Deployment/nginx 0%/90% 2 4 3 109s

 Custom metrics

 CPU utilization is an important metric to gauge if pods that are bombarded with too many requests should be scaled up, or if they are mostly idle and can be scaled down. But CPU is not the only and sometimes not even the best metric to keep track of. Memory may be the limiting factor, or even more specialized metrics, such as the depth of a pod's internal on-disk queue, the average latency on a request, or the average number of service timeouts.

 The horizontal pod custom metrics were added as an alpha extension in version 1.2. In version 1.6 they were upgraded to beta status. You can now autoscale your pods based on multiple custom metrics. The autoscaler will evaluate all the metrics and will autoscale based on the largest number of replicas required, so the requirements of all the metrics are respected.

 Using the HPA with custom metrics requires some configuration when launching your cluster. First, you need to enable the API aggregation layer. Then you need to register your resource metrics API and your custom metrics API. Heapster provides an implementation of the resource metrics API you can use. Just start Heapster with the --api-server flag set to true, but note that Heapster is deprecated as of Kubernetes 1.11. You need to run a separate server that exposes the custom metrics API. A good starting point is https://github.com/kubernetes-incubator/custom-metrics-apiserver.

 The next step is to start kube-controller-manager with the following flags:

 	--horizontal-pod-autoscaler-use-rest-clients=true

 	--kubeconfig or --master

 The --master flag will override --kubeconfig if both are specified. These flags specify the location of the API aggregation layer, allowing the controller manager to communicate to the API server.

 In Kubernetes 1.7, the standard aggregation layer that Kubernetes provides runs in-process with the kube-apiserver, so the target IP address can be found with:

 $ kubectl get pods --selector k8s-app=kube-apiserver -n kube-system -o jsonpath='{.items[0].status.podIP}'

 Autoscaling with Kubectl

 Kubectl can create an autoscale resource using the standard create command and a configuration file. But Kubectl also has a special command, autoscale, that lets you easily set an autoscaler in one command without a special configuration file.

 First, let's start a deployment that makes sure there are three replicas of a simple pod that just runs an infinite bash loop:

 apiVersion: apps/v1
kind: Deployment
metadata:
 name: bash-loop
spec:
 replicas: 3
 selector:
 matchLabels:
 name: bash-loop
 template:
 metadata:
 labels:
 name: bash-loop
 spec:
 containers:
 - name: bash-loop
 image: g1g1/py-kube:0.2
 resources:
 requests:
 cpu: 100m
 command: ["/bin/bash", "-c", "while true; do sleep 10; done"]

 $ kubectl create -f bash-loop-deployment.yaml
deployment.apps/bash-loop created

 Here is the resulting deployment:

 $ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 3/3 3 3 61m

 You can see that the desired and current count are both three, meaning three pods are running. Let's make sure:

 $ kubectl get pods
NAME READY STATUS RESTARTS AGE
bash-loop-6746f7f75f-2w8ft 1/1 Running 0 62m
bash-loop-6746f7f75f-b2nks 1/1 Running 1 62m
bash-loop-6746f7f75f-g9j8t 1/1 Running 0 62m

 Now, let's create an autoscaler. To make it interesting, we'll set the minimum number of replicas to 4 and the maximum number to 6:

 $ kubectl autoscale deployment bash-loop --min=4 --max=6 --cpu-percent=50
horizontalpodautoscaler.autoscaling/bash-loop autoscaled

 Here is the resulting HPA (you can use hpa). It shows the referenced deployment, the target and current CPU percentage, and the min/max pods. The name matches the referenced deployment, bash-loop:

 $ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
bash-loop Deployment/bash-loop 0%/50% 4 6 4 58s

 Originally, the deployment was set to have three replicas, but the autoscaler has a minimum of four pods. What's the effect on the deployment? Now the desired number of replicas is four. If the average CPU utilization goes above 50%, then it may climb to five or even six:

 $ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 4/4 4 4 65m

 Just to make sure everything works, here is another look at the pods. Note the new pod (2 minutes and 23 seconds old) that was created because of the autoscaling:

 $ kubectl get po
NAME READY STATUS RESTARTS AGE
bash-loop-6746f7f75f-2w8ft 1/1 Running 0 66m
bash-loop-6746f7f75f-b2nks 1/1 Running 1 66m
bash-loop-6746f7f75f-g9j8t 1/1 Running 0 66m
bash-loop-6746f7f75f-mvv74 1/1 Running 0 2m23s

 When we delete the HPA, the deployment retains the last desired number of replicas (four in this case). Nobody remembers that deployment was created with three replicas:

 $ kubectl delete hpa bash-loop
horizontalpodautoscaler.autoscaling "bash-loop" deleted

 As you can see, the deployment wasn't reset and still maintains four pods even when the autoscaler is gone:

 $ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 4/4 4 4 68m

 Let's try something else. What happens if we create a new HPA with a range of 2 to 6 and the same CPU target of 50%?

 $ kubectl autoscale deployment bash-loop --min=2 --max=6 --cpu-percent=50
horizontalpodautoscaler.autoscaling/bash-loop autoscaled

 Well, the deployment still maintains its four replicas, which is within the range:

 $ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 4/4 4 4 73m

 However, the actual CPU utilization is zero, or close to zero. The replica count should have been scaled down to two replicas, but because the HPA doesn't scale down immediately we have to wait a few minutes:

 $ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
bash-loop 2/2 2 2 78m

 Let's check out the HPA itself:

 $ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
bash-loop Deployment/bash-loop 0%/50% 2 6 2 8m43s

 Performing rolling updates with autoscaling

 Rolling updates are the cornerstone of managing large clusters. Kubernetes supports rolling updates at the replication controller level and by using deployments. Rolling updates using replication controllers are incompatible with the HPA. The reason is that during a rolling deployment, a new replication controller is created and the HPA remains bound to the old replication controller. Unfortunately, the intuitive Kubectl rolling-update command triggers a replication controller rolling update.

 Since rolling updates are such an important capability, I recommend that you always bind HPAs to a deployment object instead of a replication controller or a replica set. When the HPA is bound to a deployment, it can set the replicas in the deployment spec and let the deployment take care of the necessary underlying rolling update and replication.

 Here is a deployment configuration file we've used for deploying the hue-reminders service:

 apiVersion: apps/v1
kind: Deployment
metadata:
 name: hue-reminders
spec:
 replicas: 2
 selector:
 matchLabels:
 app: hue
 service: reminders
 template:
 metadata:
 name: hue-reminders
 labels:
 app: hue
 service: reminders
 spec:
 containers:
 - name: hue-reminders
 image: g1g1/hue-reminders:2.2
 resources:
 requests:
 cpu: 100m
 ports:
 - containerPort: 80

 To support it with autoscaling and ensure we always have between 10 to 15 instances running, we can create an autoscaler configuration file:

 apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: hue-reminders
spec:
 maxReplicas: 15
 minReplicas: 10
 targetCPUUtilizationPercentage: 90
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: hue-reminders

 Alternatively, we can use the kubectl autoscale command:

 $ kubectl autoscale deployment hue-reminders --min=10 --max=15 --cpu-percent=90

 Let's perform a rolling update from version 2.2 to 3.0:

 $ kubectl set image deployment/hue-reminders hue-reminders=g1g1/hue-reminders:3.0 --record

 We can check the status using rollout status:

 $ kubectl rollout status deployment hue-reminders
Waiting for deployment "hue-reminders" rollout to finish: 7 out of 10 new replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 7 out of 10 new replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 7 out of 10 new replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 8 out of 10 new replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 8 out of 10 new replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 8 out of 10 new replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 8 out of 10 new replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 9 out of 10 new replicas have been updated...
Waiting for deployment "hue-reminders" rollout to finish: 4 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 3 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 3 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 3 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 2 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 2 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 2 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 1 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 1 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 1 old replicas are pending termination...
Waiting for deployment "hue-reminders" rollout to finish: 8 of 10 updated replicas are available...
Waiting for deployment "hue-reminders" rollout to finish: 9 of 10 updated replicas are available...
deployment "hue-reminders" successfully rolled out

 Finally, we review the history of the deployment:

 $ kubectl rollout history deployment hue-reminders
deployment.extensions/hue-reminders REVISION CHANGE-CAUSE
1 <none>
2 kubectl set image deployment/hue-reminders hue-reminders=g1g1/hue-reminders:3.0 --record=true

 Handling scarce resources with limits and quotas

 With the HPA creating pods on the fly, we need to think about managing our resources. Scheduling can easily get out of control, and inefficient use of resources is a real concern. There are several factors that can interact with each other in subtle ways:

 	Overall cluster capacity

 	Resource granularity per node

 	Division of workloads per namespace

 	DaemonSets

 	StatefulSets

 	Affinity, anti-affinity, taints, and tolerations

 First, let's understand the core issue. The Kubernetes scheduler has to take into account all these factors when it schedules pods. If there are conflicts or a lot of overlapping requirements, then Kubernetes may have a problem finding room to schedule new pods. For example, a very extreme yet simple scenario is that a DaemonSet runs on every node a pod that requires 50% of the available memory. Now, Kubernetes can't schedule any pod that needs more than 50% memory because the DaemonSet pod gets priority. Even if you provision new nodes, the DaemonSet will immediately commandeer half of the memory.

 StatefulSets are similar to DaemonSets in that they require new nodes to expand. The trigger to adding new members to the stateful set is growth in data, but the impact is taking resources from the pool available for Kubernetes to schedule other members. In a multi-tenant situation, the noisy neighbor problem can rear its head in a provisioning or resource allocation context. You may plan exact rations meticulously in your namespace between different pods and their resource requirements, but you share the actual nodes with your neighbors from other namespaces that you may not even have visibility into.

 Most of these problems can be mitigated by judiciously using namespace resource quotas and careful management of the cluster capacity across multiple resource types such as CPU, memory, and storage.

 But, in most situations, a more robust and dynamic approach is to take advantage of the cluster autoscaler, which can add capacity to the cluster when needed.

 Enabling resource quotas

 Most Kubernetes distributions support ResourceQuota out of the box. The API server's --admission-control flag must have ResourceQuota as one of its arguments. You will also have to create a ResourceQuota object to enforce it. Note that there may be at most one ResourceQuota object per namespace to prevent potential conflicts. This is enforced by Kubernetes.

 Resource quota types

 There are different types of quota we can manage and control. The categories are compute, storage, and objects.

 Compute resource quota

 Compute resources are CPU and memory. For each one, you can specify a limit or request a certain amount. Here is the list of compute-related fields. Note that requests.cpu can be specified as just cpu, and requests.memory can be specified as just memory:

 	limits.cpu: Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value

 	limits.memory: Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value

 	requests.cpu: Across all pods in a non-terminal state, the sum of CPU requests cannot exceed this value

 	requests.memory: Across all pods in a non-terminal state, the sum of memory requests cannot exceed this value

 Since Kubernetes 1.10 you can also specify a quota for extended resources such as GPU resources. Here is an example:

 requests.nvidia.com/gpu: 10

 Storage resource quota

 The storage resource quota type is a little more complicated. There are two entities you can restrict per namespace: the amount of storage and the number of persistent volume claims. However, in addition to just globally setting the quota on the total storage or the total number of persistent volume claims, you can also do that per storage class. The notation for storage class resource quota is a little verbose, but it gets the job done:

 	requests.storage: The total amount of requested storage across all persistent volume claims

 	persistentvolumeclaims: The maximum number of persistent volume claims allowed in the namespace

 	.storageclass.storage.k8s.io/requests.storage: The total amount of requested storage across all persistent volume claims associated with the storage class name

 	.storageclass.storage.k8s.io/persistentvolumeclaims: The maximum number of persistent volume claims allowed in the namespace that are associated with the storage class name

 Kubernetes 1.8 added alpha support for ephemeral storage quotas too:

 	requests.ephemeral-storage: The total amount of requested ephemeral storage across all pods in the namespace claims

 	limits.ephemeral-storage: The total amount of limits for ephemeral storage across all pods in the namespace claims

 Object count quota

 Kubernetes has another category of resource quotas, which is API objects. My guess is that the goal is to protect the Kubernetes API server from having to manage too many objects. Remember that Kubernetes does a lot of work under the hood. It often has to query multiple objects to authenticate, authorize, and ensure that an operation doesn't violate any of the many policies that may be in place. A simple example is pod scheduling based on replication controllers. Imagine that you have 1,000,000,000 replication controller objects. Maybe you just have three pods and most of the replication controllers have zero replicas. Still, Kubernetes will spend all its time just verifying that indeed all those billion replication controllers have no replicas of their pod templates and that they don't need to kill any pods. This is an extreme example, but the concept applies. Too many API objects means a lot of work for Kubernetes.

 Since Kubernetes 1.9 you can restrict the number of any namespaced resource (prior to that coverage of objects that can be restricted was a little spotty). The syntax is interesting: count/<resource type>.<group>. Typically, in the YAML files and kubectl you identify objects by group first as in <group>/<resource type>.

 Here are some objects you may want to limit (note that deployments can be limited for two separate API groups):

 count/configmaps
count/deployments.apps
count/deployments.extensions
count/persistentvolumeclaims
count/replicasets.apps
count/replicationcontrollers
count/secrets
count/services
count/statefulsets.apps
count/jobs.batch
count/cronjobs.batch

 Since Kubernetes 1.5 you can restrict the number of custom resources too. Note that while the custom resource definition is cluster-wide this allows you to restrict the actual number of the custom resources in each namespace. For example:

 count/awesome.custom.resource

 The most glaring omission is namespaces. There is no limit to the number of namespaces. Since all limits are per namespace, you can easily overwhelm Kubernetes by creating too many namespaces, where each namespace has only a small number of API objects.

 But, the ability to create namespaces, which don't need resource quotas to constrain them, should be reserved for the cluster administrator only.

 Quota scopes

 Some resources, such as pods, may be in different states, and it is useful to have different quotas for these different states. For example, if there are many pods that are terminating (this happens a lot during rolling updates) then it is OK to create more pods even if the total number exceeds the quota. This can be achieved by only applying a pod object count quota to non-terminating pods. Here are the existing scopes:

 	Terminating: Match pods where activeDeadlineSeconds >= 0

 	NotTerminating: Match pods where activeDeadlineSeconds is nil

 	BestEffort: Match pods that have best effort quality of service

 	NotBestEffort: Match pods that do not have best effort quality of service

 While the BestEffort scope applies only to pods, the Terminating, NotTerminating, and NotBestEffort scopes apply to CPU and memory too. This is interesting because a resource quota limit can prevent a pod from terminating. Here are the supported objects:

 	cpu

 	memory

 	limits.cpu

 	limits.memory

 	requests.cpu

 	requests.memory

 	pods

 Resource quotas and priority classes

 Kubernetes 1.9 introduced priority classes as a way to prioritize scheduling pods when resources are scarce. In Kubernetes 1.14 priority classes became stable. However, as of Kubernetes 1.12 resource quotas support separate resource quotas per priority class (in beta). That means that with priority classes you can sculpt your resource quotas in a very fine-grained manner even within a namespace.

 Requests and limits

 The meaning of requests and limits in the context of resource quotas is that it requires the containers to explicitly specify the target attribute. This way, Kubernetes can manage the total quota because it knows exactly what range of resources is allocated to each container.

 Working with quotas

 That was a lot of theory. It's time to get hands on. Let's create a namespace first:

 $ kubectl create namespace ns
namespace/ns created

 Using namespace-specific context

 When working with namespaces other than the default, I prefer to use a context, so I don't have to keep typing --namespace=ns for every command:

 $ kubectl config set-context ns --namespace=ns --user=default --cluster=default
Context "ns" created.
$ kubectl config use-context ns
Switched to context "ns".

 Creating quotas

 Here is a quota for compute:

 apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-quota
spec:
 hard:
 pods: 2
 requests.cpu: 1
 requests.memory: 20Mi
 limits.cpu: 2
 limits.memory: 2Gi

 We create it by typing:

 $ kubectl apply -f compute-quota.yaml
resourcequota/compute-quota created

 And here is a count quota:

 apiVersion: v1
kind: ResourceQuota
metadata:
 name: object-counts-quota
spec:
 hard:
 count/configmaps: 10
 count/persistentvolumeclaims: 4
 count/jobs.batch: 20
 count/secrets: 3

 We create it by typing:

 $ kubectl apply -f object-count-quota.yaml
resourcequota/object-counts-quota created

 We can observe all the quotas:

 $ kubectl get quota
NAME CREATED AT
compute-quota 2020-06-08T16:44:28Z
object-counts-quota 2020-06-08T18:14:01Z

 We can drill down to get all the information by using describe for both resource quotas:

 $ kubectl describe quota compute-quota
Name: compute-quota
Namespace: ns
Resource Used Hard
-------- ---- ----
limits.cpu 0 2
limits.memory 0 2Gi
pods 0 2
requests.cpu 0 1
requests.memory 0 20Mi
$ kubectl describe quota object-counts-quota
Name: object-counts-quota
Namespace: ns
Resource Used Hard
-------- ---- ----
count/configmaps 0 10
count/jobs.batch 0 20
count/persistentvolumeclaims 0 4
count/secrets 1 3

 As you can see, it reflects exactly the specification and it is defined in the ns namespace.

 This view gives us an instant understanding of global resource usage of important resources across the cluster without diving into too many separate objects.

 Let's add an Nginx server to our namespace:

 $ kubectl create -f nginx-deployment.yaml
deployment.apps/nginx created

 Let's check the pods:

 $ kubectl get pods
No resources found.

 Uh-oh. No resources found. But, there was no error when the deployment was created. Let's check out the deployment then:

 $ kubectl describe deployment nginx
Name: nginx
Namespace: ns
CreationTimestamp: Mon, 8 Jun 2020 21:13:02 -0700
Labels: <none>
Annotations: deployment.kubernetes.io/revision: 1
Selector: run=nginx
Replicas: 3 desired | 0 updated | 0 total | 0 available | 3 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: run=nginx
 Containers:
 nginx:
 Image: nginx
 Port: 80/TCP
 Host Port: 0/TCP
 Requests:
 cpu: 400m
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Progressing True NewReplicaSetCreated
 Available False MinimumReplicasUnavailable
 ReplicaFailure True FailedCreate
OldReplicaSets: <none>
NewReplicaSet: nginx-5759dd6b5c (0/3 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 72s deployment-controller Scaled up replica set nginx-5759dd6b5c to 3

 There it is, in the conditions section – the ReplicationFailure status is True and the reason is FailedCreate. You can see that the deployment created a new replica set called 5759dd6b5c, but it couldn't create the pods it was supposed to create. We still don't know why. Let's check out the ReplicaSet object. I use the JSON output format (-o json) and pipe it to jq for its nice layout, which is much better than the jsonpath output format that kubectl supports natively:

 $ kubectl get rs nginx-5759dd6b5c -o json | jq .status.conditions
[
 {
 "lastTransitionTime": "2020-06-08T04:13:02Z",
 "message": "pods \"nginx-5759dd6b5c-9wjk7\" is forbidden: failed quota: compute-quota: must specify limits.cpu,limits.memory,requests.memory",
 "reason": "FailedCreate",
 "status": "True",
 "type": "ReplicaFailure"
 }
]

 The message is crystal clear. Since there is a compute quota in the namespace, every container must specify its CPU, memory requests, and limit. The quota controller must account for all container compute resources usage to ensure the total namespace quota is respected.

 OK. We understand the problem, but how to resolve it? We can create a dedicated deployment object for each pod type we want to use and carefully set the CPU and memory requests and limit.

 For example, we can define nginx deployment with resources. Since the resource quota specifies a hard limit of 2 pods, let's reduce the number of replicas from 3 to 2 as well:

 apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 run: nginx
 template:
 metadata:
 labels:
 run: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 requests:
 cpu: 400m
 memory: 6Mi
 limits:
 cpu: 400m
 memory: 6Mi
 ports:
 - containerPort: 80

 Let's create it and check the pods:

 $ kubectl create -f nginx-deployment-with-resources.yaml
deployment.apps/nginx created
$ kubectl get po
NAME READY STATUS RESTARTS AGE
nginx-c6db6d7d-zpz96 1/1 Running 0 36s
nginx-c6db6d7d-dztkr 1/1 Running 0 36s

 Yeah, it works! However, specifying the limit and resources for each pod type can be exhausting. Is there an easier or better way?

 Using limit ranges for default compute quotas

 A better way is to specify default compute limits. Enter limit ranges. Here is a configuration file that sets some defaults for containers:

 apiVersion: v1
kind: LimitRange
metadata:
 name: limits
spec:
 limits:
 - default:
 cpu: 400m
 memory: 5Mi
 defaultRequest:
 cpu: 400m
 memory: 5Mi
 type: Container

 Let's create it and observe the default limits:

 $ kubectl create -f limits.yaml
limitrange 'limits' created
$ kubectl describe limits
Name: limits
Namespace: ns
Type Resource Min Max Default Request Default Limit Max Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Container cpu - - 100m 200m -
Container memory - - 5Mi 6Mi -

 To test it, let's delete our current nginx deployment with the explicit limits and deploy again our original nginx:

 $ kubectl delete deployment nginx
deployment.extensions "nginx" deleted
$ kubectl create -f nginx-deployment.yaml
deployment.apps/nginx created
$ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 2/3 2 2 26s

 As you can see, only 2 out of 3 pods are ready. What happened? The default limits worked, but if you recall, the compute quota had a hard limit of 2 pods for the namespace. There is no way to override it with the RangeLimit object, so the deployment was able to create only two nginx pods.

 Choosing and managing the cluster capacity

 With Kubernetes' horizontal pod autoscaling, DaemonSets, StatefulSets, and quotas, we can scale and control our pods, storage, and other objects. However, in the end, we're limited by the physical (virtual) resources available to our Kubernetes cluster. If all your nodes are running at 100% capacity, you need to add more nodes to your cluster. There is no way around it. Kubernetes will just fail to scale. On the other hand, if you have very dynamic workloads then Kubernetes can scale down your pods, but if you don't scale down your nodes correspondingly you will still pay for the excess capacity. In the cloud you can stop and start instances on demand. Combining it with the cluster autoscaler can solve the compute capacity problem automatically. That's the theory. In practice there are always nuances.

 Choosing your node types

 The simplest solution is to choose a single node type with a known quantity of CPU, memory, and local storage. But that is typically not the most efficient and cost-effective solution. It makes capacity planning simple because the only question is how many nodes are needed. Whenever you add a node, you add a known quantity of CPU and memory to your cluster, but most Kubernetes clusters and components within the cluster handle different workloads. We may have a stream processing pipeline where many pods receive some data and process it in one place.

 This workload is CPU-heavy and may or may not need a lot of memory. Other components, such as a distributed memory cache, need a lot of memory, but very little CPU. Other components, such as a Cassandra cluster, need multiple SSD disks attached to each node.

 For each type of node you should consider proper labeling and making sure that Kubernetes schedules the pods that are designed to run on that node type.

 Choosing your storage solutions

 Storage is a huge factor in scaling a cluster. There are three categories of scalable storage solution:

 	Roll your own

 	Use your cloud platform storage solution

 	Use an out-of-cluster solution

 When you use roll your own, you install some type of storage solution in your Kubernetes cluster. The benefits are flexibility and full control, but you have to manage and scale it yourself.

 When you use your cloud platform storage solution, you get a lot out of the box, but you lose control, you typically pay more, and depending on the service you may be locked in to that provider.

 When you use an out-of-cluster solution, the performance and cost of data transfer may be much greater. You typically use this option if you need to integrate with an existing system.

 Of course, large clusters may have multiple data stores from all categories. This is one of the most critical decisions you have to make, and your storage needs may change and evolve over time.

 Trading off cost and response time

 If money is not an issue you can just over-provision your cluster. Every node will have the best hardware configuration available, you'll have way more nodes than are needed to process your workloads, and you'll have copious amounts of available storage. But guess what? Money is always an issue!

 You may get by with over-provisioning when you're just starting and your cluster doesn't handle a lot of traffic. You may just run five nodes, even if two nodes are enough most of the time. Multiply everything by 1,000 and someone will come asking questions if you have thousands of idle machines and petabytes of empty storage.

 OK. So, you measure and optimize carefully and you get 99.99999% utilization of every resource. Congratulations, you just created a system that can't handle an iota of extra load or the failure of a single node without dropping requests on the floor or delaying responses.

 You need to find the middle ground. Understand the typical fluctuations of your workloads and consider the cost/benefit ratio of having excess capacity versus having reduced response time or processing ability.

 Sometimes, if you have strict availability and reliability requirements, you can build redundancy into the system and then you over-provision by design. For example, you want to be able to hot swap a failed component with no downtime and no noticeable effects. Maybe you can't lose even a single transaction. In this case, you'll have a live backup for all critical components, and that extra capacity can be used to mitigate temporary fluctuations without any special actions.

 Using multiple node configurations effectively

 Effective capacity planning requires you to understand the usage patterns of your system and the load each component can handle. That may include a lot of data streams generated inside the system. When you have a solid understanding of the typical workloads, you can look at workflows and which components handle which parts of the load. Then you can compute the number of pods and their resource requirements. In my experience, there are some relatively fixed workloads, some workloads that vary predictably (such as office hours versus non-office hours), and then you have your completely crazy workloads that behave erratically. You have to plan according for each workload, and you can design several families of node configurations that can be used to schedule pods that match a particular workload.

 Benefiting from elastic cloud resources

 Most cloud providers let you scale instances automatically, which is a perfect complement to Kubernetes' horizontal pod autoscaling. If you use cloud storage, it also grows magically without you having to do anything. However, there are some gotchas that you need to be aware of.

 Autoscaling instances

 All the big cloud providers have instance autoscaling in place. There are some differences, but scaling up and down based on CPU utilization is always available, and sometimes custom metrics are available too. Sometimes, load balancing is offered as well. As you can see, there is some overlap with Kubernetes here.

 If your cloud provider doesn't have adequate autoscaling with proper control, it is relatively easy to roll your own, where you monitor your cluster resource usage and invoke cloud APIs to add or remove instances. You can extract the metrics from Kubernetes.

 Here is a diagram that shows how two new instances are added based on a CPU load monitor:

 [image:]
 Figure 8.2: Adding load instances

 Mind your cloud quotas

 When working with cloud providers, some of the most annoying things are quotas. I've worked with four different cloud providers (AWS, GCP, Azure, and Alibaba cloud) and I was always bitten by quotas at some point. The quotas exist to let the cloud providers do their own capacity planning (and also to protect you from inadvertently starting 1,000,000 instances that you won't be able to pay for), but from your point of view it is yet one more thing that can trip you up. Imagine that you set up a beautiful autoscaling system that works like magic, and suddenly the system doesn't scale when you hit 100 nodes. You quickly discover that you are limited to 100 nodes and you open a support request to increase the quota. However, a human must approve quota requests, and that can take a day or two. In the meantime, your system is unable to handle the load.

 Manage regions carefully

 Cloud platforms are organized in regions and availability zones. Some services and machine configurations are available only in some regions. Cloud quotas are also managed at the regional level. Performance and cost of data transfers within regions is much lower (often free) than across regions. When planning your cluster, you should consider carefully your geo-distribution strategy. If you need to run your cluster across multiple regions, you may have some tough decisions to make regarding redundancy, availability, performance, and cost.

 Considering container-native solutions

 A container-native solution is when your cloud provider offers a way to deploy containers directly into their infrastructure. You don't need to provision instances and then install a container runtime (like the Docker daemon) and only then deploy your containers. Instead, you just provide your containers and the platform is responsible for finding a machine to run your container. You are totally separated from the actual machines your containers are running on.

 All the major cloud providers now provide solutions that abstract instances completely:

 	AWS Fargate

 	Azure Container Instances (ACI)

 	Google Cloud Run

 These solutions are not Kubernetes-specific, but they can work great with Kubernetes. The cloud providers already provide managed Kubernetes control plane with Google's Google Kubernetes Engine (GKE), Microsoft's Azure Kubernetes Service (AKS), and Amazon Web Services' Elastic Kubernetes Service (EKS). But managing the data plane (the nodes) was left to the cluster administrator.

 The container-native solution allows the cloud provider to do that on your behalf. Google Run for GKE and AKS with ACI already provide it. AWS EKS will support Fargate in the near future.

 For example, in AKS you can provision virtual nodes. A virtual node is not backed up by an actual VM. Instead it utilizes ACI to deploy containers when necessary. You pay for it only when it the cluster needs to scale beyond the capacity of the regular nodes. It is faster to scale then using the cluster autoscaler that needs to provision an actual VM-backed node.

 The following diagram illustrates this burst to the ACI approach:

 [image:]
 Figure 8.3: Virtual node scaling

 Pushing the envelope with Kubernetes

 In this section, we will see how the Kubernetes team pushes Kubernetes to its limit. The numbers are quite telling, but some of the tools and techniques, such as Kubemark, are ingenious, and you may even use them to test your clusters. In the wild, there are some Kubernetes clusters with 3,000 - 5,000 nodes. At CERN, the OpenStack team achieved 2 million requests per second:

 http://superuser.openstack.org/articles/scaling-magnum-and-kubernetes-2-million-requests-per-second/

 Mirantis conducted a performance and scaling test in their scaling lab where they deployed 5,000 Kubernetes nodes (in VMs) on 500 physical servers.

 OpenAI scaled their machine learning Kubernetes cluster to 2,500 nodes an learned some valuable lessons such as minding the query load of logging agents and storing events in a separate etcd cluster:

 https://blog.openai.com/scaling-kubernetes-to-2500-nodes/

 There are many more interesting use cases here:

 https://www.cncf.io/projects/case-studies/

 By the end of this section you'll appreciate the effort and creativeness that goes into improving Kubernetes on a large scale, you will know how far you can push a single Kubernetes cluster and what performance to expect, and you'll get an inside look at some tools and techniques that can help you evaluate the performance of your own Kubernetes clusters.

 Improving the performance and scalability of Kubernetes

 The Kubernetes team focused heavily on performance and scalability in Kubernetes 1.6. When Kubernetes 1.2 was released, it supported clusters of up to 1,000 nodes within the Kubernetes service-level objectives. Kubernetes 1.3 doubled the number to 2,000 nodes, and Kubernetes 1.6 brought it to a staggering 5,000 nodes per cluster. We will get into the numbers later, but first let's look under the hood and see how Kubernetes achieved these impressive improvements.

 Caching reads in the API server

 Kubernetes keeps the state of the system in etcd, which is very reliable, though not superfast (although etcd 3 delivered massive improvement specifically to enable larger Kubernetes clusters). The various Kubernetes components operate on snapshots of that state and don't rely on real-time updates. That fact allows the trading of some latency for throughput. All the snapshots used to be updated by etcd watches. Now, the API server has an in-memory read cache that is used for updating state snapshots. The in-memory read cache is updated by etcd watches. These schemes significantly reduces the load on etcd and increase the overall throughput of the API server.

 The pod lifecycle event generator

 Increasing the number of nodes in a cluster is key for horizontal scalability, but pod density is crucial too. Pod density is the number of pods that the Kubelet can manage efficiently on one node.

 If pod density is low, then you can't run too many pods on one node. That means that you might not benefit from more powerful nodes (more CPU and memory per node) because the Kubelet will not be able to manage more pods. The other alternative is to force the developers to compromise their design and create coarse-grained pods that do more work per pod. Ideally, Kubernetes should not force your hand when it comes to pod granularity. The Kubernetes team understands this very well and invested a lot of work in improving pod density.

 In Kubernetes 1.1, the official (tested and advertised) number was 30 pods per node. I actually ran 40 pods per node on Kubernetes 1.1, but I paid for it in excessive Kubelet overhead that stole CPU from the worker pods. In Kubernetes 1.2, the number jumped to 100 pods per node.

 The Kubelet used to poll the container runtime constantly for each pod in its own goroutine. That put a lot of pressure on the container runtime that during peaks to performance has reliability issues, in particular CPU utilization. The solution was the Pod Lifecycle Event Generator (PLEG). The way the PLEG works is that it lists the state of all the pods and containers and compares it to the previous state. This is done once for all the pods and containers. Then, by comparing the state to the previous state, the PLEG knows which pods need to sync again and invokes only those pods. That change resulted in a significant four-times-lower CPU usage by the Kubelet and the container runtime. It also reduced the polling period, which improves responsiveness.

 The following diagram shows the CPU utilization for 120 pods on Kubernetes 1.1 versus Kubernetes 1.2. You can see the 4X factor very clearly:

 [image:]
 Figure 8.4: CPU utilization for 120 pods with Kube 1.1 and Kube 1.2

 Serializing API objects with protocol buffers

 The API server has a REST API. REST APIs typically use JSON as their serialization format, and the Kubernetes API server was no different. However, JSON serialization implies marshaling and unmarshaling JSON to native data structures. This is an expensive operation. In a large-scale Kubernetes cluster, a lot of components need to query or update the API server frequently. The cost of all that JSON parsing and composition adds up quickly. In Kubernetes 1.3, the Kubernetes team added an efficient protocol buffers serialization format. The JSON format is still there, but all internal communication between Kubernetes components uses the protocol buffers serialization format.

 etcd3

 Kubernetes switched from etcd2 to etcd3 in Kubernetes 1.6. This was a big deal. Scaling Kubernetes to 5,000 nodes wasn't possible due to limitations of etcd2, especially related to the watch implementation. The scalability needs of Kubernetes drove many of the improvements of etcd3, as CoreOS used Kubernetes as a measuring stick. Some of the big ticket items are talked about here.

 GRPC instead of REST

 etcd2 has a REST API, etcd3 has a gRPC API (and a REST API via gRPC gateway). The http/2 protocol at the base of gRPC can use a single TCP connections for multiple streams of requests and responses.

 Leases instead of TTLs

 etcd2 uses Time to Live (TTL) per key as the mechanism to expire keys, while etcd3 uses leases with TTLs where multiple keys can share the same key. This significantly reduces keep-alive traffic.

 Watch implementation

 The watch implementation of etcd3 takes advantage of gRPC bi-directional streams and maintain a single TCP connection to send multiple events, which reduced the memory footprint by at least an order of magnitude.

 State storage

 With etcd3 Kubernetes started storing all the state as protocol buffers, which eliminated a lot of wasteful JSON serialization overhead.

 Other optimizations

 The Kubernetes team made many other optimizations such as:

 	Optimizing the scheduler (which resulted in 5-10x higher scheduling throughput)

 	Switching all controllers to a new recommended design using shared informers, which reduced resource consumption of controller-manager

 	Optimizing individual operations in the API server (conversions, deep copies, patch)

 	Reducing memory allocation in the API server (which significantly impacts the latency of API calls)

 Measuring the performance and scalability of Kubernetes

 In order to improve performance and scalability, you need a sound idea of what you want to improve and how you're going to measure the improvements. You must also make sure that you don't violate basic properties and guarantees in the quest for improved performance and scalability. What I love about performance improvements is that they often buy you scalability improvements for free. For example, if a pod needs 50% of the CPU of a node to do its job and you improve performance so that the pod can do the same work using 33% CPU, then you can suddenly run three pods instead of two on that node, and you've improved the scalability of your cluster by 50% overall (or reduced your cost by 33%).

 The Kubernetes SLOs

 Kubernetes has Service Level Objectives (SLOs). Those guarantees must be respected when trying to improve performance and scalability. Kubernetes has a one-second response time for API calls. That's 1,000 milliseconds. It actually achieves an order of magnitude faster response times most of the time.

 Measuring API responsiveness

 The API has many different endpoints. There is no simple API responsiveness number. Each call has to be measured separately. In addition, due to the complexity and the distributed nature of the system, not to mention networking issues, there can be a lot of volatility to the results. A solid methodology is to break the API measurements into separate endpoints and then run a lot of tests over time and look at percentiles (which is standard practice).

 It's also important to use enough hardware to manage a large number of objects. The Kubernetes team used a 32-core VM with 120 GB for the master in this test.

 The following diagram describes the 50th, 90th, and 99th percentile of various important API call latencies for Kubernetes 1.3. You can see that the 90th percentile is very low, below 20 milliseconds. Even the 99th percentile is less than 125 milliseconds for the DELETE pods operation, and less than 100 milliseconds for all other operations:

 [image:]
 Figure 8.5: API call latencies

 Another category of API calls is LIST operations. Those calls are more expansive because they need to collect a lot of information in a large cluster, compose the response, and send a potential large response. This is where performance improvements such as the in-memory read cache and the protocol buffers serialization really shine. The response time is understandably greater than the single API calls, but it is still way below the SLO of one second (1,000 milliseconds):

 [image:]
 Figure 8.6: API LIST call latencies

 Measuring end-to-end pod startup time

 One of the most important performance characteristics of a large dynamic cluster is end-to-end pod startup time. Kubernetes creates, destroys, and shuffles pods around all the time. You could say that the primary function of Kubernetes is to schedule pods.

 In the following diagram, you can see that pod startup time is less volatile than API calls. This makes sense since there is a lot of work that needs to be done, such as launching a new instance of a runtime, that doesn't depend on cluster size. With Kubernetes 1.2 on a 1,000-node cluster, the 99th percentile end-to-end time to launch a pod was less than 3 seconds. With Kubernetes 1.3, the 99th percentile end-to-end time to launch a pod was a little over 2.5 seconds.

 It's remarkable that the time is very close, but a little better with Kubernetes 1.3 on a 2,000-node cluster versus a 1,000-node cluster:

 [image:]
 [image:]
 Figures 8.7 and 8.8: Pod startup latencies

 Testing Kubernetes at scale

 Clusters with thousands of nodes are expensive. Even a project such as Kubernetes that enjoys the support of Google and other industry giants still needs to come up with reasonable ways to test without breaking the bank.

 The Kubernetes team runs a full-fledged test on a real cluster at least once per release to collect real-world performance and scalability data. However, there is also a need for a lightweight and cheaper way to experiment with potential improvements and to detect regressions. Enter the Kubemark.

 Introducing the Kubemark tool

 The Kubemark is a Kubernetes cluster that runs mock nodes called hollow nodes used for running lightweight benchmarks against large-scale (hollow) clusters. Some of the Kubernetes components that are available on a real node such as the Kubelet are replaced with a hollow Kubelet. The hollow Kubelet fakes a lot of the functionality of a real Kubelet. A hollow Kubelet doesn't actually start any containers, and it doesn't mount any volumes. But from the Kubernetes cluster point of view – the state stored in etcd – all those objects exist and you can query the API server. The hollow Kubelet is actually the real Kubelet with an injected mock Docker client that doesn't do anything.

 Another important hollow component is the hollow proxy, which mocks the Kubeproxy component. It again uses the real Kubeproxy code with a mock proxier interface that does nothing and avoids touching iptables.

 Setting up a Kubemark cluster

 A Kubemark cluster uses the power of Kubernetes. To set up a Kubemark cluster, perform the following steps:

 	Create a regular Kubernetes cluster where we can run N hollow nodes.

 	Create a dedicated VM to start all master components for the Kubemark cluster.

 	Schedule N hollow node pods on the base Kubernetes cluster. Those hollow nodes are configured to talk to the Kubemark API server running on the dedicated VM.

 	Create add-on pods by scheduling them on the base cluster and configuring them to talk to the Kubemark API server.

 A full-fledged guide is available here:

 https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md

 Comparing a Kubemark cluster to a real-world cluster

 The performance of Kubemark clusters is mostly similar to the performance of real clusters. For the pod startup end-to-end latency, the difference is negligible. For the API-responsiveness, the differences are greater, though generally less than a factor of two. However, trends are exactly the same: an improvement/regression on a real cluster is visible as a similar percentage drop/increase in metrics on Kubemark.

 Summary

 In this chapter, we've covered many topics relating to scaling Kubernetes clusters. We discussed how the HPA can automatically manage the number of running pods based on CPU utilization or other metrics, how to perform rolling updates correctly and safely in the context of autoscaling, and how to handle scarce resources via resource quotas. Then we moved on to overall capacity planning and management of the cluster's physical or virtual resources. Finally, we delved into the ins and outs of performance benchmarking on Kubernetes.

 At this point, you have a good understanding of all the factors that come into play when a Kubernetes cluster is facing dynamic and growing workloads. You have multiple tools to choose from for planning and designing your own scaling strategy.

 In the next chapter, we will learn how to package applications for deployment on Kubernetes. We will discuss Helm as well as Kustomize and other solutions.

 9

 Packaging Applications

 In this chapter, we are going to look at Helm, the Kubernetes package manager. Every successful and non-trivial platform must have a good packaging system. Helm was developed by Deis (acquired by Microsoft in April 2017) and later contributed to the Kubernetes project directly. It became a CNCF project in 2018. We will start by understanding the motivation for Helm, its architecture, and its components. Then, we'll get hands-on and demonstrate how to use Helm and its charts within Kubernetes. That includes finding, installing, customizing, deleting, and managing charts. Last but not least, we'll cover how to create your own charts and handle versioning, dependencies, and templating.

 The topics we will cover are as follows:

 	Understanding Helm

 	Using Helm

 	Creating your own charts

 Understanding Helm

 Kubernetes provides many ways to organize and orchestrate your containers at runtime, but it lacks a higher-level organization for grouping sets of images together. This is where Helm comes in. In this section, we'll go over the motivation for Helm, its architecture and components, and discuss what has changed in the transition from Helm 2 to Helm 3.

 The motivation for Helm

 Helm provides support for several important use cases:

 	Managing complexity

 	Easy upgrades

 	Simple sharing

 	Safe rollbacks

 Charts can describe even the most complex apps, provide repeatable application installation, and serve as a single point of authority. In-place upgrades and custom hooks allow easy updates. It's simple to share charts that can be versioned and hosted on public or private servers. When you need to roll back recent upgrades, Helm provides a single command that allows you to roll back a cohesive set of changes to your infrastructure.

 The Helm 2 architecture

 Helm is designed to perform the following:

 	Create new charts from scratch

 	Package charts into chart archive (TGZ) files

 	Interact with chart repositories where charts are stored

 	Install and uninstall charts into an existing Kubernetes cluster

 	Manage the release cycle of charts that have been installed with Helm

 Helm uses a client-server architecture to achieve these goals.

 Helm 2 components

 Helm has a server component that runs on your Kubernetes cluster and a client component that you can run on a local machine.

 The Tiller server

 This server is responsible for managing releases. It interacts with the Helm clients as well as the Kubernetes API server. Its main functions are as follows:

 	Listening for incoming requests from the Helm client

 	Combining a chart and configuration to build a release

 	Installing charts into Kubernetes

 	Tracking the subsequent release

 	Upgrading and uninstalling charts by interacting with Kubernetes

 The Helm client

 You install the Helm client on your machine. It is responsible for the following:

 	Local chart development

 	Managing repositories

 	Interacting with the Tiller server

 	Sending charts to be installed

 	Asking for information about releases

 	Requesting upgrades or the uninstallation of existing releases

 Helm 3

 Helm 2 is great and plays a very important role in the Kubernetes ecosystem. However, there was a lot of criticism about Tiller – its server-side component. Helm 2 was designed and implemented before RBAC became the official access control method. In the interest of usability, Tiller is installed by default with a very open set of permissions. It wasn't easy to lock it down for production usage. This is especially challenging in multi-tenant clusters.

 The Helm team listened to the criticisms and came up with the Helm 3 design. Instead of the Tiller in-cluster component, Helm 3 utilizes the Kubernetes API server itself via CRDs to manage the state of releases. The bottom line is that Helm 3 is a client-only program. It can still manage releases and perform the same tasks as Helm 2, but without needing to install a server-side component.

 This approach is more Kubernetes-native, is less complicated, and the security concerns are gone. Helm users can perform via Helm only as much as their Kube config allows.

 Using Helm

 Helm is a rich package management system that lets you perform all the necessary steps to manage the applications installed on your cluster. Let's roll up our sleeves and get going. We'll look at installing both Helm 2 and Helm 3, but we will use Helm 3 for all of our hands-on experiments and demonstrations.

 Installing Helm

 Installing Helm involves installing the client and the server. Helm is implemented in Go. The Helm 2 executable can serve as either the client or the server. Helm 3, as mentioned before, is a client-only program.

 Installing the Helm client

 You must have Kubectl configured properly to talk to your Kubernetes cluster because the Helm client uses the Kubectl configuration to talk to the Helm server (Tiller).

 Helm provides binary releases for all platforms here:

 https://github.com/helm/helm/releases

 For Windows, the chocolatey package manager is the best option (and is usually up to date):

 choco install kubernetes-helm

 For macOS and Linux, you can install the client from a script:

 $ curl https://raw.githubusercontent.com/helm/helm/master/scripts/get > get_helm.sh
$ chmod 700 get_helm.sh
$./get_helm.sh

 On macOS, you can also use Homebrew:

 $ brew install kubernetes-helm
$ helm version
version.BuildInfo{Version:"v3.0.0", GitCommit:"e29ce2a54e96cd02ccfce88bee4f58bb6e2a28b6", GitTreeState:"clean", GoVersion:"go1.13.4"}

 Installing the Tiller server for Helm 2

 If you run Helm 2 for some reason, then you need to install Tiller – the server-side component – which is not necessary for Helm 3. Tiller typically runs inside your cluster. For development, it is sometimes easier to run Tiller locally.

 Installing Tiller in-cluster

 The easiest way to install Tiller is from a machine where the Helm 2 client is installed. Run the following command: helm init.

 This will initialize both the client as well as the Tiller server on the remote Kubernetes cluster. When the installation is complete, you will have a running Tiller pod in the kube-system namespace of your cluster:

 $ kubectl get po --namespace=kube-system -l name=tiller
NAME READY STATUS RESTARTS AGE
tiller-deploy-3210613906-2j5sh 1/1 Running 0 1m

 You can also run helm version to check both the client's version and the server's version:

 $ helm version
Client: &version.Version{SemVer:"2.16.8", GitCommit:"1402a4d6ec9fb349e17b912e32fe259ca21181e3", GitTreeState:"clean"}
Server: &version.Version{SemVer:"2.16.8", GitCommit:"1402a4d6ec9fb349e17b912e32fe259ca21181e3", GitTreeState:"clean"}

 Finding charts

 In order to install useful applications and software with Helm, you need to find their charts first. Helm was designed to work with multiple repositories of charts. Helm 2 was configured to search the stable repository by default, but you could add additional repositories. Helm 3 comes with no default, but you can search Helm Hub (https://hub.helm.sh/) or specific repositories. Helm Hub was launched in December 2018, and it was designed to make it easier for you to discover charts and repositories hosted outside the stable or incubator repositories.

 This is where the helm search command comes in. Helm can search the Helm Hub or a specific repository.

 The hub contains 1,300 charts at the moment:

 $ helm search hub | wc -l
 1300

 We can search the hub for a specific keyword like mariadb:

 $ helm search hub mariadb
URL CHART VERSION APP VERSION DESCRIPTION
https://hub.helm.sh/charts/ibm-charts/ibm-galer... 1.1.0 Galera Cluster is a multi-master solution for M...
https://hub.helm.sh/charts/ibm-charts/ibm-maria... 1.1.2 MariaDB is developed as open source software an...
https://hub.helm.sh/charts/bitnami/mariadb 7.5.1 10.3.23 Fast, reliable, scalable, and easy to use open-...
https://hub.helm.sh/charts/bitnami/phpmyadmin 6.2.0 5.0.2 phpMyAdmin is an mysql administration frontend
https://hub.helm.sh/charts/bitnami/mariadb-cluster 1.0.1 10.2.14 Chart to create a Highly available MariaDB cluster
https://hub.helm.sh/charts/bitnami/mariadb-galera 3.1.3 10.4.13 MariaDB Galera is a multi-master database clust...

 As you can see, there are several charts that match the keyword MariaDB. You can investigate them further and find the best one for your use case.

 Adding repositories

 By default, Helm 3 comes with no repositories set up, so you can only search the hub. Let's add the bitnami repository, so we can limit our search to that repository only:

 $ helm repo add bitnami https://charts.bitnami.com/bitnami
"bitnami" has been added to your repositories

 Now, we can search the bitnami repo:

 $ helm search repo mariadb
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/mariadb 7.5.1 10.3.23 Fast, reliable, scalable, and easy to use open-...
bitnami/mariadb-cluster 1.0.1 10.2.14 Chart to create a Highly available MariaDB cluster
bitnami/mariadb-galera 3.1.3 10.4.13 MariaDB Galera is a multi-master database clust...
stable/mariadb 7.3.14 10.3.22 DEPRECATED Fast, reliable, scalable, and easy t...
bitnami/phpmyadmin 6.2.0 5.0.2 phpMyAdmin is an mysql administration frontend
stable/phpmyadmin 4.3.5 5.0.1 DEPRECATED phpMyAdmin is an mysql administratio...

 The results are a subset of the results returned from the hub.

 The official repository has a rich library of charts that represent all of the modern open source databases, monitoring systems, Kubernetes-specific helpers, and a slew of other offerings, such as a Minecraft server. Searching for Helm charts is a good way to find interesting projects and tools. I often search for the kube keyword:

 $ helm search repo kube
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/kube-state-metrics 0.3.2 1.9.7 kube-state-metrics is a simple service that lis...
bitnami/kubeapps 3.7.1 v1.10.1 Kubeapps is a dashboard for your Kubernetes clu...
bitnami/kubewatch 1.0.14 0.0.4 Kubewatch notifies your slack rooms when change...
kubefed-charts/kubefed 0.3.0 KubeFed helm chart
kubefed-charts/federation-v2 0.0.10 Kubernetes Federation V2 helm chart
bitnami/external-dns 3.2.0 0.7.2 ExternalDNS is a Kubernetes addon that configur...
bitnami/metallb 0.1.14 0.9.3 The Metal LB for Kubernetes
bitnami/metrics-server 4.2.0 0.3.7 Metrics Server is a cluster-wide aggregator of ...
bitnami/prometheus-operator 0.20.0 0.39.0 The Prometheus Operator for Kubernetes provides...

 To get more information about a specific chart, we can use the show command (you can use the inspectalias command too). Let's look at bitnami/mariadb:

 $ helm show chart bitnami/mariadb
Error: failed to download "bitnami/mariadb" (hint: running 'helm repo update' may help)

 Ha-ha. Helm requires that the repositories are up to date. Let's update our repositories:

 $ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "bitnami" chart repository
Update Complete. [image:] Happy Helming![image:]

 Now, it works:

 $ helm show chart bitnami/mariadb
apiVersion: v1
appVersion: 10.3.22
description: Fast, reliable, scalable, and easy to use open-source relational database
 system. MariaDB Server is intended for mission-critical, heavy-load production systems
 as well as for embedding into mass-deployed software. Highly available MariaDB cluster.
home: https://mariadb.org
icon: https://bitnami.com/assets/stacks/mariadb/img/mariadb-stack-220x234.png
keywords:
- mariadb
- mysql
- database
- sql
- prometheus
maintainers:
- email: containers@bitnami.com
 name: Bitnami
name: mariadb
sources:
- https://github.com/bitnami/bitnami-docker-mariadb
- https://github.com/prometheus/mysqld_exporter
version: 7.5.1

 You can also ask Helm to show you the README file, the values, or all of the information associated with a chart. This can be overwhelming at times.

 Installing packages

 OK. You've found the package of your dreams. Now, you probably want to install it on your Kubernetes cluster. When you install a package, Helm creates a release that you can use to keep track of the installation progress. Let's install MariaDB using the helm install command. Let's go over the output in detail.

 The first part of the output lists the name of the release that we provided mariadb, when it was deployed, the namespace, and the revision:

 $ helm install mariadb bitnami/mariadb
NAME: mariadb
LAST DEPLOYED: Mon Jun 8 12:26:34 2020
NAMESPACE: ns
STATUS: deployed
REVISION: 1

 The next part includes custom notes, which can be pretty wordy. There is a lot of useful information here about verifying, getting credentials, connecting to the database, and upgrading the chart if necessary:

 NOTES:
Please be patient while the chart is being deployed
Tip:
 Watch the deployment status using the command: kubectl get pods -w --namespace default -l release=mariadb
Services:
 echo Master: mariadb.ns.svc.cluster.local:3306
 echo Slave: mariadb-slave.ns.svc.cluster.local:3306
Administrator credentials:
 Username: root
 Password : $(kubectl get secret --namespace default mariadb -o jsonpath="{.data.mariadb-root-password}" | base64 --decode)
To connect to your database:
 1. Run a pod that you can use as a client:
 kubectl run mariadb-client --rm --tty -i --restart='Never' --image docker.io/bitnami/mariadb:10.3.18-debian-9-r36 --namespace default --command – bash
 2. To connect to master service (read/write):
 mysql -h mariadb.ns.svc.cluster.local -uroot -p my_database
 3. To connect to slave service (read-only):
 mysql -h mariadb-slave.ns.svc.cluster.local -uroot -p my_database
To upgrade this helm chart:
 1. Obtain the password as described on the 'Administrator credentials' section and set the 'rootUser.password' parameter as shown below:
 ROOT_PASSWORD=$(kubectl get secret --namespace default mariadb -o jsonpath="{.data.mariadb-root-password}" | base64 --decode)
 helm upgrade mariadb bitnami/mariadb --set rootUser.password=$ROOT_PASSWORD

 Checking the installation status

 Helm doesn't wait for the installation to complete because it may take a while. The helm status command displays the latest information on a release in the same format as the output of the initial helm install command. In the output of the install command, you can see that the persistent volume claim had a pending status. Let's check it out now:

 $ kubectl get pods -w -l release=mariadb
NAME READY STATUS RESTARTS AGE
mariadb-master-0 0/1 Pending 0 4m21s
mariadb-slave-0 0/1 Pending 0 4m21s

 Oh, no. The pods are pending. A quick investigation shows that MariaDB declares a persistent volume claim; however, since there is no default storage class in the cluster, there is no way to provide the storage needed:

 $ kubectl describe pvc data-mariadb-master-0
Name: data-mariadb-master-0
Namespace: default
StorageClass:
Status: Pending
Volume:
Labels: app=mariadb
 component=master
 heritage=Helm
 release=mariadb
Annotations: <none>
Finalizers: [kubernetes.io/pvc-protection]
Capacity:
Access Modes:
VolumeMode: Filesystem
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal FailedBinding 3m3s (x42 over 13m) persistentvolume-controller no persistent volumes available for this claim and no storage class is set Mounted By: mariadb-master-0

 That's OK. We can create a default storage class with a dynamic provisioner. First, let's use Helm to install a dynamic host path provisioner. Refer to https://github.com/rimusz/hostpath-provisioner for details. We add a new Helm repo, update our repo list, and then install the proper chart:

 $ helm repo add rimusz https://charts.rimusz.net
"rimusz" has been added to your repositories
$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "rimusz" chart repository
...Successfully got an update from the "bitnami" chart repository
Update Complete. [image:] Happy Helming![image:]
$ helm upgrade --install hostpath-provisioner --namespace kube-system rimusz/hostpath-provisioner
Release "hostpath-provisioner" does not exist. Installing it now.
NAME: hostpath-provisioner
LAST DEPLOYED: Mon Jun 8 17:52:56 2020
NAMESPACE: kube-system
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The Hostpath Provisioner service has now been installed.
A storage class named 'hostpath' has now been created
and is available to provision dynamic volumes.
You can use this storageclass by creating a 'PersistentVolumeClaim' with the
correct storageClassName attribute. For example:

 kind: PersistentVolumeClaim
 apiVersion: v1
 metadata:
 name: test-dynamic-volume-claim
 spec:
 storageClassName: "hostpath"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

 Since we don't control the persistent volume claim that the MariaDB chart is creating, we can't specify the new "hostpath" storage class. However, we can make sure it is the default storage class!

 $ kubectl get sc
NAME PROVISIONER AGE
hostpath (default) hostpath 6m26s

 If you have another storage class set as the default, you can make it non-default like so:

 kubectl patch storageclass <your-class-name> -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'

 We have to perform one more non-conventional step. Because we run our tests on k3d + k3s where the nodes are virtual, the host directory of the host path provisioner is actually allocated inside the Docker container that corresponds to the node. For some reason, the permissions for those directories allow only the root to create directories. This can be fixed by running the following command on each of the Docker containers that correspond to the k3s nodes:

 $ docker exec -it <container name> chmod -R 0777 /mnt/hostpath

 Now, we can try again. This time everything works. Yay!

 Here are the pods, the volumes, the persistent volume claims, and the StatefulSets created by the MariaDB release:

 $ kubectl get po
NAME READY STATUS RESTARTS AGE
mariadb-master-0 1/1 Running 0 24m
mariadb-slave-0 1/1 Running 9 24m
$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-b51aeb37-4a43-4f97-ad52-40e6b6eda4f4 8Gi RWO Delete Bound default/data-mariadb-master-0 hostpath 30m
pvc-58c7e42e-a01b-4544-8691-3e56de4676eb 8Gi RWO Delete Bound default/data-mariadb-slave-0 hostpath 30m
$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
data-mariadb-master-0 Bound pvc-b51aeb37-4a43-4f97-ad52-40e6b6eda4f4 8Gi RWO hostpath 30m
data-mariadb-slave-0 Bound pvc-58c7e42e-a01b-4544-8691-3e56de4676eb 8Gi RWO hostpath 30m
$ kubectl get sts
NAME READY AGE
mariadb-master 1/1 30m
mariadb-slave 1/1 30m

 Let's try to connect and verify that MariaDB is indeed accessible. Let's modify the suggested commands from the notes a little bit in order to connect. Instead of running bash and then running mysql, we can directly run the mysql command on the container. First, let's get the root password and copy it to the clipboard (on macOS):

 $ kubectl get secret -o yaml mariadb -o jsonpath="{.data.mariadb-root-password}" | base64 --decode | pbcopy

 Then we can connect using mariadb-client and paste the password when you see If you don't see a command prompt, try pressing enter.:

 $ kubectl run --generator=run-pod/v1 mariadb-client --rm -it --image bitnami/mariadb --command -- mysql -h mariadb.default.svc.cluster.local -uroot -p
If you don't see a command prompt, try pressing enter.
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 1364
Server version: 10.3.18-MariaDB-log Source distribution
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MariaDB [(none)]>

 Then, we can start playing with our MariaDB database:

 MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| my_database |
| mysql |
| performance_schema |
| test |
+--------------------+
5 rows in set (0.001 sec)

 Customizing a chart

 Very often, as a user, you will want to customize or configure the charts that you install. Helm fully supports customization via config files. To learn about possible customizations, you can use the helm show command again; however, this time, focus on the values. Here is a partial output:

 $ helm show values bitnami/mariadb
db:
 forcePassword: false
 name: my_database
 password: null
 user: null
image:
 debug: false
 pullPolicy: IfNotPresent
 registry: docker.io
 repository: bitnami/mariadb
 tag: 10.3.18-debian-9-r36
master:
 affinity: {}
 antiAffinity: soft
 config: |-
 [mysqld]
 skip-name-resolve
 explicit_defaults_for_timestamp
 basedir=/opt/bitnami/mariadb
 port=3306
 socket=/opt/bitnami/mariadb/tmp/mysql.sock
 tmpdir=/opt/bitnami/mariadb/tmp
 max_allowed_packet=16M
 bind-address=0.0.0.0
 pid-file=/opt/bitnami/mariadb/tmp/mysqld.pid
 log-error=/opt/bitnami/mariadb/logs/mysqld.log
 character-set-server=UTF8
 collation-server=utf8_general_ci
 [client]
 port=3306
 socket=/opt/bitnami/mariadb/tmp/mysql.sock
 default-character-set=UTF8
...
rbac:
 create: false
replication:
 enabled: true
 forcePassword: false
 password: null
 user: replicator
rootUser:
 forcePassword: false
 password: null

 For example, if you want to set a root password and create a database when installing MariaDB, you can create the following YAML file and save it as mariadb-config.yaml:

 mariadbRootPassword: supersecret
mariadbDatabase: awesome_stuff

 First uninstall the existing mariadb release:

 $ helm uninstall mariadb

 Then, run Helm and pass it the YAML file:

 $ helm install -f mariadb-config.yaml mariadb bitnami/mariadb

 You can also set individual values on the command line with --set. If both --f and --set try to set the same values, then --set takes precedence.

 For example, in this case, the root password will be evenbettersecret:

 $ helm install -f mariadb-config.yaml --set mariadbRootPassword=evenbettersecret bitnami/mariadb

 You can specify multiple values using comma-separated lists: --set a=1, b=2.

 Additional installation options

 The helm install command can install from several sources:

 	A chart repository (as we've seen)

 	A local chart archive (helm install foo-0.1.1.tgz)

 	An unpacked chart folder (helm install path/to/foo)

 	A full URL (helm install https://example.com/charts/foo-1.2.3.tgz)

 Upgrading and rolling back a release

 You may want to upgrade a package that you have installed to the latest and greatest version. Helm provides the upgrade command, which operates intelligently and only updates things that have changed. For example, let's check the current values of our mariadb installation:

 $ helm get values mariadb
USER-SUPPLIED VALUES:
mariadbDatabase: awesome_stuff
mariadbRootPassword: evenbettersecret

 Now, let's run, upgrade, and change the name of the database:

 $ helm upgrade mariadb --set mariadbDatabase=awesome_sauce bitnami/mariadb
$ helm get values mariadb
USER-SUPPLIED VALUES:
mariadbDatabase: awesome_sauce

 Note that we've lost our root password. All of the existing values are replaced when you upgrade. OK, let's roll back. The helm history command shows us all of the available revisions we can roll back to:

 $ helm history mariadb
REVISION UPDATED STATUS CHART APP VERSION DESCRIPTION
1 Mon Jun 8 09:14:10 2020 superseded mariadb-7.3.14 10.3.22 Install complete
2 Mon Jun 8 09:22:22 2020 superseded mariadb-7.3.14 10.3.22 Upgrade complete
3 Mon Jun 8 09:23:47 2020 superseded mariadb-7.3.14 10.3.22 Upgrade complete
4 Mon Jun 8 09:24:17 2020 deployed mariadb-7.3.14 10.3.22 Upgrade complete

 Let's roll back to revision 3:

 $ helm rollback mariadb 3
Rollback was a success! Happy Helming!
$ helm history mariadb
REVISION UPDATED STATUS CHART APP VERSION DESCRIPTION
1 Mon Jun 8 09:14:10 2020 superseded mariadb-7.3.14 10.3.22 Install complete
2 Mon Jun 8 09:22:22 2020 superseded mariadb-7.3.14 10.3.22 Upgrade complete
3 Mon Jun 8 09:23:47 2020 superseded mariadb-7.3.14 10.3.22 Upgrade complete
4 Mon Jun 8 09:24:17 2019 superseded mariadb-7.3.14 10.3.22 Upgrade complete
5 Mon Jun 8 09:26:04 2019 deployed mariadb-7.3.14 10.3.22 Rollback to 3

 As you can see, the rollback created a new revision number 5. Revision 4 is still there in case we want to go back to it.

 Let's verify that our changes were rolled back:

 $ helm get values mariadb
USER-SUPPLIED VALUES:
mariadbDatabase: awesome_stuff
mariadbRootPassword: evenbettersecret

 Yep. The database name was rolled back to awesome_stuff and we got the root password back.

 Deleting a release

 You can, of course, uninstall a release too using the helm uninstall command.

 First, let's examine the list of releases. We have only the mariadb release:

 $ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
mariadb default 5 2020-06-08 09:26:04.766743 -0700 PDT deployed mariadb-7.3.14 10.3.22

 Now, let's uninstall it:

 $ helm uninstall mariadb
release "mariadb" uninstalled

 So, no more releases:

 $ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

 Helm can keep track of uninstalled releases too. If you provide --keep-history when you uninstall, then you'll be able to see any uninstalled releases using the --all or --uninstalled flags with helm list:

 $ helm list --all
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
mariadb default 1 2020-06-08 09:35:47.641033 -0700 PDT uninstalled mariadb-7.3.14 10.3.22

 Working with repositories

 Helm stores charts in repositories that are simple HTTP servers. Any standard HTTP server can host a Helm repository. In the cloud, the Helm team verifies that both AWS S3 and Google Cloud storage can serve as Helm repositories in web-enabled mode.

 Note that Helm doesn't provide tools to upload charts to remote repositories because that would require the remote server to understand Helm, to know where to put the chart, and to know how to update the index.yaml file.

 On the client side, the helm repo command lets you list, add, remove, index, and update:

 $ helm repo

 This command consists of multiple subcommands to interact with chart repositories.

 It can be used to add, remove, list, and index chart repositories. Example usage:

 $ helm repo add [NAME] [REPO_URL]
Usage:
 helm repo [command]
Available Commands:
 add add a chart repository
 index generate an index file given a directory containing packaged charts
 list list chart repositories
 remove remove a chart repository
 update update information of available charts locally from chart repositories

 We've already used the helm repo add command earlier. Let's see how to create our own charts and manage them.

 Managing charts with Helm

 Helm provides several commands to manage charts.

 It can create a new chart for you:

 $ helm create cool-chart
Creating cool-chart

 Helm will create the following files and directories under cool-chart:

 $ tree cool-chart
cool-chart
├── Chart.yaml
├── charts
├── templates
│ ├── NOTES.txt
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ ├── ingress.yaml
│ ├── service.yaml
│ ├── serviceaccount.yaml
│ └── tests
│ └── test-connection.yaml
└── values.yaml

 Once you have edited your chart, you can package it into a tar gzipped archive:

 $ helm package cool-chart
Successfully packaged chart and saved it to: cool-chart-0.1.0.tgz

 Helm will create an archive called cool-chart-0.1.0.tgz and store it in the local directory.

 You can also use helm lint to help you to find issues with your chart's formatting or information:

 $ helm lint cool-chart
==> Linting cool-chart
[INFO] Chart.yaml: icon is recommended
1 chart(s) linted, 0 chart(s) failed

 Taking advantage of starter packs

 The helm create command takes an optional --starter flag that lets you specify a starter chart.

 Starters are just regular charts located in $HELM_HOME/starters. As a chart developer, you may author charts that are specifically designed to be used as starters. Such charts should be designed with the following considerations in mind:

 	The YAML will be overwritten by the generator

 	Users will expect to be able to modify such a chart's contents, so the documentation should indicate how users can do this

 At the moment, there is no way to install charts; the only way to add a chart to $HELM_HOME/starters is to manually copy it there. Make sure to mention that in your chart's documentation if you develop starter pack charts.

 Creating your own charts

 A chart is a collection of files that describe a related set of Kubernetes resources. A single chart might be used to deploy something simple, such as a Memcached pod, or something complex, such as a full web app stack with HTTP servers, databases, caches, queues, and so on.

 Charts are created as files laid out in a particular directory tree. Then, they can be packaged into versioned archives to be deployed. The key file is Chart.yaml.

 The Chart.yaml file

 The Chart.yaml file is the main file of a Helm chart. It requires name and version fields:

 	name: The name of the chart (same as the directory name)

 	version: A SemVer 2 version

 It may also contain various optional fields:

 	kubeVersion: A SemVer range of compatible Kubernetes versions

 	description: A single sentence describing this project

 	keywords: A list of keywords about this project

 	home: The URL of this project's home page

 	sources: A list of URLs to source code for this project

 	dependencies: A list of (name, version, repository) for each dependency (repository is the URL)

 	maintainers: A list of (name, email, URL) for each maintainer (name is required)

 	icon: The URL to an SVG or PNG image to be used as an icon

 	appVersion: The version of the app that this contains

 	deprecated: Whether this chart is deprecated (Boolean)

 Versioning charts

 The version field inside of the Chart.yaml is used by many Helm tools. When generating a package, the helm package command will use the version that it finds in Chart.yaml when constructing the package name. The system assumes that the version number in the chart package name matches the version number in Chart.yaml. Violating this assumption will cause an error.

 The appVersion field

 The appVersion field is not related to the version field. It is not used by Helm and serves as metadata or a piece of documentation for users who want to understand what they are deploying. Helm ignores it.

 Deprecating charts

 From time to time, you may want to deprecate a chart. You can mark a chart as deprecated by setting the optional deprecated field in Chart.yaml to true. This is enough to deprecate the latest version of a chart. You can later reuse the chart name and publish a newer version that is not deprecated. The workflow for deprecating charts is:

 	Update the chart's Chart.yaml file to mark the chart as deprecated and bump the version

 	Release the new version to the chart repository

 	Remove the chart from the source repository (for example, Git)

 Chart metadata files

 Charts may contain various metadata files like README.md, LICENSE, and NOTES.txt that describe the installation, configuration, usage, and license of a chart. The README.md file should be formatted as Markdown. It should provide the following information:

 	A description of the application or service the chart provides

 	Any prerequisites or requirements to run the chart

 	Description of options in the YAML and default values

 	Any other information that may be relevant to the installation or configuration of the chart

 If the chart contains a templates/NOTES.txt file, it will be displayed after the installation or when viewing the release status. The notes should be concise to avoid clutter and point to the README.md file for detailed explanations. It's common to put usage notes and any next steps in this NOTES.txt file. Remember that the file is evaluated as a template. The notes are printed to the screen when you run helm install as well as helm status.

 Managing chart dependencies

 In Helm, a chart may depend on other charts. These dependencies are expressed explicitly by listing them in a requirements.yaml file or by copying the dependency charts into the charts sub-folder during installation. This provides a great way to benefit from and reuse the knowledge and work of others. A dependency can be either a chart archive (foo-1.2.3.tgz) or an unpacked chart folder. But its name cannot start with _ or .. Such files are ignored by the chart loader.

 Managing dependencies with requirements.yaml

 Instead of manually placing charts in the charts sub-folder, it is better to declare dependencies using a requirements.yaml file inside of your chart. The following is just an illustration. The charts are fictional.

 A requirements.yaml file is a simple file used for listing the chart dependencies:

 dependencies:
 - name: foo
 version: 1.2.3
 repository: http://example.com/charts
 - name: bar
 version: 43.52.6
 repository: http://another.example.com/charts

 The name field is the name of the chart you want.

 The version field is the version of the chart you want.

 The repository field is the full URL to the chart repository.

 Note that you must also use helm repo add to add the repository locally if it isn't added already.

 Once you have a dependencies file, you can run the Helm dependency update, and it will use your dependency file to download all of the specified charts into the charts sub-folder for you:

 $ helm dep up cool-chart
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "local" chart repository
...Successfully got an update from the "bitnami" chart repository
...Successfully got an update from the "example" chart repository
...Successfully got an update from the "another" chart repository
Update Complete. Happy Helming!
Saving 2 charts
Downloading Foo from repo http://example.com/charts
Downloading Bar from repo http://another.example.com/charts

 Helm stores the dependency charts as archives in the charts folder. In our example, the charts sub-folder will contain the following files:

 charts/
 foo-1.2.3.tgz
 bar-43.52.61.tgz

 Managing charts and their dependencies with requirements.yaml is best practice for explicitly documenting dependencies, sharing across the team, and supporting automated pipelines.

 Utilizing special fields in requirements.yaml

 Each entry in the requirements.yaml file may also contain the optional fields tags and condition.

 These fields can be used to dynamically control the loading of charts (by default, all charts are loaded). If the tags or condition fields are present, Helm will evaluate them and determine if the target chart should be loaded or not:

 	Condition: The condition field holds one or more comma-delimited YAML paths. If a path exists in the top parent's values and resolves to a Boolean value, the chart will be enabled or disabled based on that Boolean value. Only the first valid path found in the list is evaluated, and if no paths exist, then the condition has no effect and the chart will be loaded.

 	Tags: The tags field is a YAML list of labels to associate with this chart. In the top parent's values, all charts with tags can be enabled or disabled by specifying the tag and a Boolean value.

 Here are example requirements.yaml and values.yaml files that make good use of conditions and tags to enable and disable the installation of dependencies. The requirements.yaml file defines two conditions for installing its dependencies based on the value of the global enabled field and the specific subchart's enabled field:

 # parent/requirements.yaml
dependencies:
 - name: subchart1
 repository: http://localhost:10191
 version: 0.1.0
 condition: subchart1.enabled, global.subchart1.enabled
 tags:
 - front-end
 - subchart1
 - name: subchart2
 repository: http://localhost:10191
 version: 0.1.0
 condition: subchart2.enabled,global.subchart2.enabled
 tags:
 - back-end
 - subchart2

 The values.yaml file assigns values to some of the condition variables. The subchart2 tag doesn't get a value, so it is considered to be enabled automatically:

 # parent/values.yaml
subchart1:
 enabled: true
tags:
 front-end: false
 back-end: true

 You can set tags and condition values from the command line too when installing a chart, and they'll take precedence over the values.yaml file:

 $ helm install --set subchart2.enabled=false

 The resolution of tags and conditions is as follows:

 	Conditions that are set in values override tags. The first condition path that exists per chart takes effect, while other conditions are ignored.

 	If any of a chart's tags are true, the chart is enabled.

 	Tags and condition values must be set in the top parent's values.

 	The tags' key-in values must be a top-level key. Globals and nested tags tables are not currently supported.

 Using templates and values

 Any non-trivial application will require you to configure and adapt to the specific use case. Helm charts are templates that use the Go template language to populate placeholders. Helm supports additional functions from the Sprig library and a few other specialized functions. The template files are stored in the templates/ sub-folder of the chart. Helm will use the template engine to render all of the files in this folder and apply the provided value files.

 Writing template files

 Template files are just text files that follow the Go template language rules. They can generate Kubernetes configuration files along with any other file. Here is the service template file of the GitLab CE chart:

 apiVersion: v1
kind: Service
metadata:
 name: {{ template "gitlab-ce.fullname" . }}
 labels:
 app: {{ template "gitlab-ce.fullname" . }}
 chart: "{{ .Chart.Name }}-{{ .Chart.Version }}"
 release: "{{ .Release.Name }}"
 heritage: "{{ .Release.Service }}"
spec:
 type: {{ .Values.serviceType }}
 ports:
 - name: ssh
 port: {{ .Values.sshPort | int }}
 targetPort: ssh
 - name: http
 port: {{ .Values.httpPort | int }}
 targetPort: http
 - name: https
 port: {{ .Values.httpsPort | int }}
 targetPort: https
 selector:
 app: {{ template "gitlab-ce.fullname" . }}

 It is available here: https://github.com/helm/charts/tree/master/stable/gitlab-ce/templates/svc.yaml.

 Don't worry if it looks confusing. The basic idea is that you have a simple text file with a placeholder for values that can be populated later in various ways, as well as some functions and pipelines that can be applied to those values.

 Using pipelines and functions

 Helm allows rich and sophisticated syntax in the template files via the built-in Go template functions, sprig functions, and pipelines. Here is an example template that takes advantage of these capabilities. It uses the repeat, quote, and upper functions for the food and drink keys, and it uses pipelines to chain multiple functions together:

 apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ .Release.Name }}-configmap
data:
 greeting: "Hello World"
 drink: {{ .Values.favorite.drink | repeat 3 | quote }}
 food: {{ .Values.favorite.food | upper }}

 Let's add a values.yaml file:

 favorite:
 drink: coffee
 food: pizza

 Testing and troubleshooting your charts

 Now, we can use helm template to see the result:

 $ helm template food food-chart

Source: food-chart/templates/config-map.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: food-configmap
data:
 greeting: "Hello World"
 drink: "coffeecoffeecoffee"
 food: PIZZA

 As you can see, our templating worked. The drink coffee was repeated 3 times and quoted. The food pizza became uppercase PIZZA (unquoted).

 Another good way of debugging is to run install with the --dry-run flag. It provides additional information:

 $ helm install food food-chart --dry-run
NAME: food
LAST DEPLOYED: Mon Jun 8 09:46:19 2020
NAMESPACE: default
STATUS: pending-install
REVISION: 1
TEST SUITE: None
USER-SUPPLIED VALUES:
{}
COMPUTED VALUES:
favorite:
 drink: coffee
 food: pizza
HOOKS:
MANIFEST:

Source: food-chart/templates/config-map.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: food-configmap
data:
 greeting: "Hello World"
 drink: "coffeecoffeecoffee"
 food: PIZZA

 You can also override values on the command line:

 $ helm template food food-chart --set favorite.drink=water

Source: food-chart/templates/config-map.yaml
apiVersion: v1
kind: ConfigMap
metadata:
 name: food-configmap
data:
 greeting: "Hello World"
 drink: "waterwaterwater"
 food: PIZZA

 The ultimate test is, of course, to install your chart in your cluster. You don't need to upload your chart to a chart repository for testing; just run helm install locally:

 $ helm install food food-chart
NAME: food
LAST DEPLOYED: Mon Jun 8 08:22:36 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

 There is now a Helm release called food:

 $ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
food default 1 2020-06-08 08:22:36.217166 -0700 PDT deployed food-chart-0.1.0 1.16.0

 More importantly, the food ConfigMap was created with the correct data:

 $ kubectl get cm -o yaml
apiVersion: v1
items:
- apiVersion: v1
 data:
 drink: coffeecoffeecoffee
 food: PIZZA
 greeting: Hello World
 kind: ConfigMap
 metadata:
 creationTimestamp: "2020-06-08T15:22:36Z"
 name: food-configmap
 namespace: default
 resourceVersion: "313012"
 selfLink: /api/v1/namespaces/default/configmaps/food-configmap
 uid: a3c02518-4fe2-4a72-bdd0-99a268c7033f
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

 Embedding built-in objects

 Helm provides some built-in objects that you can use in your templates. In the GitLab chart template, Release.Name, Release.Service, Chart.Name, and Chart.Version are examples of Helm's predefined values. Other objects are:

 	Values

 	Chart

 	Template

 	Files

 	Capabilities

 The Values object contains all the values defined in the values file or on the command line. The Chart object is the content of Chart.yaml. The Template object contains information about the current template. The Files and Capabilities objects are map-like objects that allow access via various functions to non-specialized files and any general information about the Kubernetes cluster.

 Note that unknown fields in Chart.yaml are ignored by the template engine and cannot be used to pass arbitrarily structured data to templates.

 Feeding values from a file

 Here is part of the GitLab CE default values file. The values from this file are used to populate multiple templates. The values represent defaults that you can override by copying the file and modifying it to fit your needs. Note the useful comments that explain the purpose and various options for each value:

 ## GitLab CE image
ref: https://hub.docker.com/r/gitlab/gitlab-ce/tags/
##
image: gitlab/gitlab-ce:9.4.1-ce.0
For minikube, set this to NodePort, elsewhere use LoadBalancer
ref: http://kubernetes.io/docs/user-guide/services/#publishing-services---service-types
##
serviceType: LoadBalancer
Ingress configuration options
##
ingress:
 annotations:
 # kubernetes.io/ingress.class: nginx
 # kubernetes.io/tls-acme: "true"
 enabled: false
 tls:
 # - secretName: gitlab.cluster.local
 # hosts:
 # - gitlab.cluster.local
 url: gitlab.cluster.local
Configure external service ports
ref: http://kubernetes.io/docs/user-guide/services/
sshPort: 22
httpPort: 80
httpsPort: 443

 Here is how to provide your own YAML values file to override the defaults during the install command:

 $ helm install --values=custom-values.yaml gitlab-ce

 Scope, dependencies, and values

 value files can declare values for the top-level chart, as well as for any of the charts that are included in that chart's charts folder. For example, let's look at the sentry chart from https://github.com/sapcc/helm-charts/blob/master/system/sentry.

 This chart has two chart dependencies: postgresql and redis:

 [image:]
 Figure 9.1: sentry chart

 Both the postgressql and redis charts have their own values.yaml file with their defaults. However, the top-level values.yaml file contains some default values for its dependency charts, postgresql and redis:

 postgresql:
 postgresDatabase: sentry
 persistence:
 enabled: true
 accessMode: ReadWriteMany
 size: 50Gi
 resources:
 requests:
 memory: 10Gi
 cpu: 4
redis:
 # redisPassword:
 persistence:
 enabled: true
 accessMode: ReadWriteMany
 size: 10Gi
 resources:
 requests:
 memory: 10Gi
 cpu: 2

 The top-level chart has access to the values of its dependent charts, but not vice versa. There is also a global value that is accessible to all charts. For example, you could add something like this:

 global:
 app: cool-app

 When a global value is present, it will be replicated to each dependent chart's values, as follows:

 global:
 app: cool-app
postgresql:
 global:
 app: cool-app
 ...
 redis:
 global:
 app: cool-app
 ...

 Summary

 In this chapter, we took a look at Helm, the Kubernetes package manager. Helm gives Kubernetes the ability to manage complicated software composed of many Kubernetes resources with inter-dependencies. It serves the same purpose as an OS package manager. It organizes packages and lets you search charts, install and upgrade charts, and share charts with collaborators. You can develop your own charts and store them in repositories. Helm 3 is a client-side-only solution that uses CRDs to manage the status of releases, instead of the Tiller server-side component of Helm 2, which poses a lot of security issues with its default configuration.

 At this point, you should be able to understand the important role that Helm serves in the Kubernetes ecosystem and community. You should be able to use it productively and even develop and share your own charts.

 In the next chapter, we will look at how Kubernetes does networking at a pretty low level.

 10

 Exploring Advanced Networking

 In this chapter, we will examine the important topic of networking. Kubernetes as an orchestration platform manages containers/pods running on different machines (physical or virtual) and requires an explicit networking model. We will look at the following topics:

 	The Kubernetes networking model

 	Standard interfaces that Kubernetes supports, such as EXEC, Kubenet, and, in particular, CNI

 	Various networking solutions that satisfy the requirements of Kubernetes networking

 	Network policies and load balancing options

 	Writing a custom CNI plugin

 By the end of this chapter, you will understand the Kubernetes approach to networking and be familiar with the solution space for aspects such as standard interfaces, networking implementations, and load balancing. You will even be able to write your very own CNI plugin if you wish.

 Understanding the Kubernetes networking model

 The Kubernetes networking model is based on a flat address space. All pods in a cluster can directly see one another. Each pod has its own IP address. There is no need to configure any Network Address Translation (NAT). In addition, containers in the same pod share their pod's IP address and can communicate with one another through localhost. This model is pretty opinionated, but once set up, it makes life considerably easier for both developers and administrators. It makes it particularly easy to migrate traditional network applications to Kubernetes. A pod represents a traditional node and each container represents a traditional process.

 Intra-pod communication (container to container)

 A running pod is always scheduled on one (physical or virtual) node. This means that all the containers run on the same node and can talk to each other in various ways, such as using the local filesystem, any IPC mechanism, or using localhost and well-known ports. There is no danger of port collision between different pods because each pod has its own IP address and, when a container in the pod uses localhost, it applies to the pod's IP address only. So, if container 1 in pod 1 connects to port 1234 that container 2 listens to on pod 1, it will not conflict with another container in pod 2 running on the same node that also listens on port 1234. The only caveat is that if you're exposing ports to the host, then you should be careful about pod-to-node affinity. This can be handled using several mechanisms, including DaemonSet and pod anti-affinity.

 Inter-pod communication (pod to pod)

 Pods in Kubernetes are allocated a network-visible IP address (not private to the node). Pods can communicate directly without the help of network address translation, tunnels, proxies, or any other obfuscating layer. Well-known port numbers can be used for a configuration-free communication scheme. The pod's internal IP address is the same as its external IP address that other pods see (within the cluster network; not exposed to the outside world). This means that standard naming and discovery mechanisms such as DNS work out of the box.

 Pod-to-service communication

 Pods can talk to one another directly using their IP addresses and well-known ports, but that requires the pods to know each other's IP addresses. In a Kubernetes cluster, pods can be destroyed and created constantly. There may also be multiple replicas of the same pod spec, each with its own IP address. The service provides a layer of indirection that is very useful because the service is stable even if the set of actual pods that respond to requests is ever-changing. In addition, you get automatic, highly available load balancing because the kube-proxy on each node takes care of redirecting traffic to the correct pod:

 [image:]
 Figure 10.1: kube-proxy redirecting traffic to pods

 External access

 Eventually, some containers need be accessible from the outside world. The pod IP addresses are not visible externally. The service is the right vehicle, but external access typically requires two redirects. For example, cloud provider load balancers are not Kubernetes aware, so they can't direct traffic to a particular service directly to a node that runs a pod that can process the request. Instead, the public load balancer just directs traffic to any node in the cluster and the kube-proxy on that node will redirect again to an appropriate pod if the current node doesn't run the necessary pod.

 The following diagram shows how the external load balancer on the right side just sends traffic to an arbitrary node, where the kube-proxy takes care of further routing if needed:

 [image:]
 Figure 10.2: External versus internal load balancers

 Kubernetes networking versus Docker networking

 Docker is the incumbent container runtime. It also has its own separate networking model that is not used by Kubernetes, but it is useful to understand. Docker networking follows a different model by default, although over time, it starts to gravitate toward the Kubernetes model. In Docker networking, each container has its own private IP address from the 172.xxx.xxx.xxx address space confined to its own node. It can talk to other containers on the same node via their own 172.xxx.xxx.xxx different IP addresses. This makes sense for Docker because it doesn't have the notion of a pod with multiple interacting containers, so it models every container as lightweight VMs that have their own network identity. Note that with Kubernetes, containers from different pods that run on the same node can't connect over localhost (unless exposing host ports, which is discouraged). The whole idea is that, in general, Kubernetes can kill and create pods anywhere, so different pods shouldn't rely, in general, on other pods available on the node. DaemonSets are a notable exception, but the Kubernetes networking model is designed to work for all use cases and doesn't add special cases for direct communication between different pods on the same node.

 How do Docker containers communicate across nodes? The container must publish ports to the host. This obviously requires port coordination, because if two containers try to publish the same host port, they'll conflict with one another. Then, containers (or other processes) connect to the host's port that gets channeled into the container. A big downside is that containers can't self-register with external services because they don't know what their host's IP address is. You could work around this by passing the host's IP address as an environment variable when you run the container, but that requires external coordination and complicates the process.

 The following diagram shows the networking setup with Docker using the bridge network driver. Each container has its own IP address; Docker creates the docker0 bridge on every node:

 [image:]
 Figure 10.3: Networking setup with Docker using the bridge network driver

 Docker now supports other network drivers with their own models:

 	host: Use host networking directly

 	overlay: Use an overlay network instead of OS routing to connect across Docker daemons

 	macvlan: Assign a MAC address to a container and make it look like a physical device

 	none: Disable networking when using a custom network driver

 There are also third-party network plugins.

 Now that we understand the differences between Kubernetes and Docker networking models, it's time to talk about how pods and containers find one another.

 Lookup and discovery

 In order for pods and containers to communicate with each other, they need to find one another. There are several ways for containers to locate other containers or announce themselves. There are also some architectural patterns that allow containers to interact indirectly. Each approach has its own pros and cons.

 Self-registration

 We've mentioned self-registration several times. Let's understand what it means exactly. When a container runs, it knows its pod's IP address. Each container that wants to be accessible to other containers in the cluster can connect to a registration service and register its IP address and port. Other containers can query the registration service for the IP addresses and ports of all registered containers and connect to them. When a container is destroyed (gracefully), it will unregister itself. If a container dies ungracefully, then a mechanism needs to be established to detect that. For example, the registration service can periodically ping all registered containers, or the containers are required periodically to send a keepalive message to the registration service.

 The benefit of self-registration is that once the generic registration service is in place (no need to customize it for different purposes), there is no need to worry about keeping track of containers. Another huge benefit is that containers can employ sophisticated policies and decide to unregister temporarily if they are unavailable based on local conditions; for example, if a container is busy and doesn't want to receive any more requests at the moment. This sort of smart and decentralized dynamic load balancing can be very difficult to achieve globally. The downside is that the registration service is yet another non-standard component that containers need to know about in order to locate other containers.

 Services and endpoints

 Kubernetes services can be regarded as a registration service. Pods that belong to a service are registered automatically based on their labels. Other pods can look up the endpoints to find all the service pods or take advantage of the service itself and directly send a message to the service that will get routed to one of the backend pods, although, most of the time, pods will just send their message to the service itself that will forward it to one of the backing pods. Dynamic membership can be achieved using a combination of the replica count of deployments, health checks, readiness checks, and horizontal pod autoscaling.

 Loosely coupled connectivity with queues

 What if containers can talk to one another without knowing their IP addresses and ports or even service IP addresses or network names? What if most of the communication can be asynchronous and decoupled? In many cases, systems can be composed of loosely coupled components that are not only unaware of the identities of other components, but they are unaware that other components even exist. Queues facilitate such loosely coupled systems. Components (containers) listen to messages from the queue, respond to messages, perform their jobs, and post messages to the queue regarding progress, completion status, and errors. Queues have many benefits:

 	It is easy to add processing capacity without coordination; just add more containers that listen to the queue

 	It is easy to keep track of overall load by means of queue depth

 	It is easy to have multiple versions of components running side by side by versioning messages and/or topics

 	It is easy to implement load balancing as well as redundancy by having multiple consumers process requests in different modes

 	It is easy to add or remove other types of listeners dynamically

 The downsides of queues are the following:

 	There is a need to ensure that the queue provides appropriate durability and high availability so that it doesn't become a critical single point of failure (SPOF)

 	Containers need to work with the async queue API (could be abstracted away)

 	Implementing request-response requires somewhat cumbersome listening on response queues

 Overall, queues are an excellent mechanism for large-scale systems and they can be utilized in large Kubernetes clusters to ease coordination.

 Loosely coupled connectivity with data stores

 Another loosely coupled method is to use a data store (for example, Redis) to store messages and then other containers can read them. While possible, this is not the design objective of data stores and the result is often cumbersome, fragile, and doesn't have the best performance. Data stores are optimized for data storage and not for communication.

 That said, data stores can be used in conjunction with queues, where a component stores some data in a data store and then sends a message to the queue that data is ready for processing. Multiple components listen to the message and all start processing the data in parallel.

 Kubernetes ingress

 Kubernetes offers an ingress resource and controller that is designed to expose Kubernetes services to the outside world. You can do it yourself, of course, but many tasks involved in defining ingress are common across most applications for a particular type of ingress such as a web application, CDN, or DDoS protector. You can also write your own ingress objects.

 The ingress object is often used for smart load balancing and TLS termination. Instead of configuring and deploying your own Nginx server, you can benefit from the built-in ingress controller. If you need a refresher, hop over to Chapter 5, Using Kubernetes Resources in Practice, where we discussed the ingress resource with examples.

 Kubernetes network plugins

 Kubernetes has a network plugin system since networking is so diverse and different and people would like to implement it in different ways. Kubernetes is flexible enough to support any scenario. The primary network plugin is CNI, which we will discuss in depth. But Kubernetes also comes with a simpler network plugin, called Kubenet. Before we go over the details, let's get on the same page with the basics of Linux networking (just the tip of the iceberg).

 Basic Linux networking

 Linux, by default, has a single shared network space. The physical network interfaces are all accessible in this namespace. However, the physical namespace can be divided into multiple logical namespaces, which is very relevant to container networking.

 IP addresses and ports

 Network entities are identified by their IP address. Servers can listen to incoming connections on multiple ports. Clients can connect to (TCP)s or send/receive data from (UDP), servers within their network.

 Network namespaces

 Namespaces group a bunch of network devices such that they can reach other servers in the same namespace, but not other servers, even if they are physically on the same network. Linking networks or network segments can be done via bridges, switches, gateways, and routing.

 Subnets, netmasks, and CIDRs

 The granular division of network segments is very useful when designing and maintaining networks. Dividing networks into smaller subnets with a common prefix is a common practice. These subnets can be defined by bitmasks that represent the size of the subnet (how many hosts it can contain). For example, a netmask of 255.255.255.0 means that the first 3 octets are used for routing and only 256 (actually 254) individual hosts are available. The Classless Inter-Domain Routing (CIDR) notation is often used for this purpose because it is more concise, encodes more information, and also allows hosts from multiple legacy classes (A, B, C, D, E) to be combined. For example, 172.27.15.0/24 means that the first 24 bits (3 octets) are used for routing.

 Virtual Ethernet devices

 Virtual Ethernet (veth) devices represent physical network devices. When you create a veth device that's linked to a physical device, you can assign that veth device (and, by extension, the physical device) to a namespace where devices from other namespaces can't reach it directly, even if, physically, they are on the same local network.

 Bridges

 Bridges connect multiple network segments to an aggregate network, so that all the nodes can communicate with one another. Bridging is done at the L1 (physical) and L2 (data link) layers of the OSI network model.

 Routing

 Routing connects separate networks, typically based on routing tables that instruct network devices how to forward packets to their destination. Routing is done through various network devices, such as routers, bridges, gateways, switches, and firewalls, including regular Linux boxes.

 Maximum transmission unit

 The maximum transmission unit (MTU) determines how big packets can be. On Ethernet networks, for example, the MTU is 1,500 bytes. The bigger the MTU, the better the ratio between payload and headers, which is a good thing. However, the downside is that minimum latency is reduced because you have to wait for the entire packet to arrive and, furthermore, in the case of failure, you have to retransmit the entire big packet.

 Pod networking

 Here is a diagram that describes the relationship between pod, host, and the global internet at the networking level via veth0:

 [image:]
 Figure 10.4: veth relationships

 Kubenet

 Back to Kubernetes. Kubenet is a network plugin. It's very rudimentary and just creates a Linux bridge called cbr0 and a veth device for each pod. Cloud providers typically use it to set up routing rules for communication between nodes, or in single-node environments. The veth pair connects each pod to its host node using an IP address from the host's IP addresses range.

 Requirements

 The Kubenet plugin has the following requirements:

 	The node must be assigned a subnet to allocate IP addresses for its pods

 	The standard CNI bridge, lo, and host-local plugins are required at version 0.2.0 or greater

 	The kubelet must be run with the --network-plugin=kubenet argument

 	The kubelet must be run with the --non-masquerade-cidr=<clusterCidr> argument

 	The kubelet must be run with --pod-cidr, or the kube-controller-manager must be run with --allocate-node-cidrs=true --cluster-cidr=<cidr>

 Setting the MTU

 The MTU is critical for network performance. Kubernetes network plugins such as Kubenet make their best efforts to deduce optimal MTU, but sometimes they need help. If an existing network interface (for example, the Docker docker0 bridge) sets a small MTU, then Kubenet will reuse it. Another example is IPSEC, which requires a lowering of the MTU due to the extra overhead from IPSEC encapsulation, but the Kubenet network plugin doesn't take it into consideration. The solution is to avoid relying on the automatic calculation of the MTU and just tell the kubelet what MTU should be used for network plugins via the --network-plugin-mtu command-line switch that is provided to all network plugins, although, at the moment, only the Kubenet network plugin accounts for this command-line switch.

 Container networking interface

 Container Networking Interface (CNI) is a specification as well as a set of libraries for writing network plugins to configure network interfaces in Linux containers (not just Docker). The specification actually evolved from the rkt network proposal. There is a lot of momentum behind CNI and it is the established industry standard. Some of the organizations that use CNI are as follows:

 	Kubernetes

 	OpenShift

 	Mesos

 	Kurma

 	Cloud Foundry

 	Nuage

 	IBM

 	AWS EKS and ECS

 	Lyft

 The CNI team maintains some core plugins, but there are a lot of third-party plugins as well that contribute to the success of CNI. Here is a non-exhaustive list:

 	Project Calico: A layer 3 virtual network

 	Weave: A multi-host Docker network

 	Contiv networking: Policy-based networking

 	Cilium: BPF and XDP for containers

 	Multus: A multi plugin

 	CNI-Genie: A generic CNI network plugin

 	Flannel: A network fabric for containers, designed for Kubernetes

 	Infoblox: Enterprise IP address management for containers

 	Silk: A CNI plugin designed for Cloud Foundry

 	Linen: A CNI plugin designed for overlay networks with Open vSwitch and that fits in an SDN/OpenFlow network environment

 	SR-IOV: A CNI plugin that supports I/O virtualization

 	ovn-kubernetes: A CNI plugin built on Open vSwitch (OVS) and Open Virtual Networking (OVN)

 	DANM: A CNI-compliant networking solution for TelCo workloads running on Kubernetes

 CNI plugins provide a standard networking interface to arbitrary networking solutions.

 Container runtime

 CNI defines a plugin spec for networking application containers, but the plugin must be plugged into a container runtime that provides some services. In the context of CNI, an application container is a network-addressable entity (has its own IP address). For Docker, each container has its own IP address. For Kubernetes, each pod has its own IP address, and the pod is the CNI container and not the containers within the pod.

 Likewise, rkt's app containers are similar to Kubernetes pods in that they may contain multiple Linux containers. If in doubt, just remember that a CNI container must have its own IP address. The runtime's job is to configure a network and then execute one or more CNI plugins, passing them the network configuration in JSON format.

 The following diagram shows a container runtime using the CNI plugin interface to communicate with multiple CNI plugins:

 [image:]
 Figure 10.5: The CNI plugin interface in practice

 CNI plugin

 The CNI plugin's job is to add a network interface to the container network namespace and bridge the container to the host via a veth pair. It should then assign an IP address via an IP Address Management (IPAM) plugin and set up routes.

 The container runtime (Docker, rkt, or any other CRI-compliant runtime) invokes the CNI plugin as an executable. The plugin needs to support the following operations:

 	Add a container to the network

 	Remove a container from the network

 	Report the version

 The plugin uses a simple command-line interface, standard input/output, and environment variables. The network configuration in JSON format is passed to the plugin through standard input. The other arguments are defined as environment variables:

 	CNI_COMMAND: Indicates the desired operation: ADD, DEL, or VERSION

 	CNI_CONTAINERID: Container ID

 	CNI_NETNS: Path to the network namespace file

 	CNI_IFNAME: Interface name to set up; the plugin must honor this interface name or return an error

 	CNI_ARGS: Extra arguments passed in by the user at invocation time; alphanumeric key-value pairs separated by semicolons, for example, FOO=BAR;ABC=123

 	CNI_PATH: List of paths to search for CNI plugin executables; paths are separated by an OS-specific list separator, for example,: on Linux and ; on Windows

 If the command succeeds, the plugin returns a zero-exit code and the generated interfaces (in the case of the ADD command) are streamed to standard output as JSON. This low-tech interface is smart in the sense that it doesn't require any specific programming language or component technology or binary API. CNI plugin writers can use their favorite programming language, too.

 The result of invoking the CNI plugin with the ADD command appears as follows:

 {
 "cniVersion": "0.3.0",
 "interfaces": [(this key omitted by IPAM plugins)
 {
 "name": "<name>",
 "mac": "<MAC address>", (required if L2 addresses are meaningful)
 "sandbox": "<netns path or hypervisor identifier>" (required for container/hypervisor interfaces, empty/omitted for host interfaces)
 }
],
 "ip": [
 {
 "version": "<4-or-6>",
 "address": "<ip-and-prefix-in-CIDR>",
 "gateway": "<ip-address-of-the-gateway>", (optional)
 "interface": <numeric index into 'interfaces' list>
 },
 ...
],
 "routes": [(optional)
 {
 "dst": "<ip-and-prefix-in-cidr>",
 "gw": "<ip-of-next-hop>" (optional)
 },
 ...
]
 "dns": {
 "nameservers": <list-of-nameservers> (optional)
 "domain": <name-of-local-domain> (optional)
 "search": <list-of-additional-search-domains> (optional)
 "options": <list-of-options> (optional)
 }
}

 The input network configuration contains a lot of information: cniVersion, name, type, args (optional), ipMasq (optional), ipam, and dns. The ipam and dns parameters are dictionaries with their own specific keys. Here is an example of a network configuration:

 {
 "cniVersion": "0.3.0",
 "name": "dbnet",
 "type": "bridge",
 // type (plugin) specific
 "bridge": "cni0",
 "ipam": {
 "type": "host-local",
 // ipam specific
 "subnet": "10.1.0.0/16",
 "gateway": "10.1.0.1"
 },
 "dns": {
 "nameservers": ["10.1.0.1"]
 }
}

 Note that additional plugin-specific elements can be added. In this case, the bridge: cni0 element is a custom one that the specific bridge plugin understands.

 The CNI spec also supports network configuration lists where multiple CNI plugins can be invoked in order.

 Later in this chapter, we will dig into a fully fledged implementation of a CNI plugin.

 Kubernetes networking solutions

 Networking is a vast topic. There are many ways to set up networks and connect devices, pods, and containers. Kubernetes can't be opinionated about it. The high-level networking model of a flat address space for pods is all that Kubernetes prescribes. Within that space, many valid solutions are possible, with various capabilities and policies for different environments. In this section, we'll examine some of the available solutions and understand how they map to the Kubernetes networking model.

 Bridging on bare metal clusters

 The most basic environment is a raw bare metal cluster with just an L2 physical network. You can connect your containers to the physical network with a Linux bridge device. The procedure is quite involved and requires familiarity with low-level Linux network commands such as brctl, ipaddr, iproute, iplink, and nsenter. If you plan to implement it, this guide can serve as a good start (search for the With Linux Bridge devices section): http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/.

 Contiv

 Contiv is a general-purpose network plugin for container networking that can be used with Docker directly, Mesos, Docker Swarm, and, of course, Kubernetes via a CNI plugin. Contiv is focused on network policies that overlap somewhat with Kubernetes' own network policy object. Here are some of the capabilities of the Contiv net plugin:

 	Supports both Libnetwork's CNM and the CNI specification

 	A feature-rich policy model for providing secure, predictable application deployment

 	Best-in-class throughput for container workloads

 	Multi-tenancy, isolation, and overlapping subnets

 	Integrated IPAM and service discovery

 	A variety of physical topologies:

 	Layer2 (VLAN)

 	Layer3 (BGP)

 	Overlay (VXLAN)

 	Cisco SDN solution (ACI)

 	IPv6 support

 	Scalable policy and route distribution

 Integration with application blueprints, including the following:

 	Docker Compose

 	Kubernetes deployment manager

 	Service load balancing is incorporated in east-west microservice load balancing

 	Traffic isolation for storage, control (for example, etcd/consul), network, and management traffic

 Contiv has many features and capabilities. However, I'm not sure if it's the best choice for Kubernetes due to its broad surface area and the fact that it caters to multiple platforms.

 Open vSwitch

 Open vSwitch is a mature software-based virtual switch solution endorsed by many big players. The Open Virtualization Network (OVN) solution lets you build various virtual networking topologies. It has a dedicated Kubernetes plugin, but it is not easy to set up, as demonstrated by this guide: https://github.com/openvswitch/ovn-kubernetes. The Linen CNI plugin may be easier to set up although it doesn't support all the features of OVN:

 https://github.com/John-Lin/linen-cni

 Here is a diagram of the Linen CNI plugin:

 [image:]
 Figure 10.6: The Linen CNI plugin

 Open vSwitch can connect bare metal servers, VMs, and pods/containers using the same logical network. It actually supports both overlay and underlay modes.

 Here are some of its key features:

 	Standard 802.1Q VLAN model with trunk and access ports

 	NIC bonding with or without LACP on the upstream switch

 	NetFlow, sFlow(R), and mirroring for increased visibility

 	Quality of Service (QoS) configuration, plus policing

 	Geneve, GRE, VXLAN, STT, and LISP tunneling

 	802.1ag connectivity fault management

 	OpenFlow 1.0 plus numerous extensions

 	Transactional configuration database with C and Python bindings

 	High-performance forwarding using a Linux kernel module

 Nuage networks VCS

 The Virtualized Cloud Services (VCS) product from Nuage networks provides a highly scalable, policy-based Software-Defined Networking (SDN) platform. It is an enterprise-grade offering that builds on top of the open source open vSwitch for the data plane, along with a feature-rich SDN controller built on open standards.

 The Nuage platform uses overlays to provide seamless policy-based networking between Kubernetes pods and non-Kubernetes environments (VMs and bare metal servers). Nuage's policy abstraction model is designed with applications in mind and makes it easy to declare fine-grained policies for applications. The platform's real-time analytics engine enables visibility and security monitoring for Kubernetes applications.

 In addition, all VCS components can be installed in containers. There are no special hardware requirements.

 Flannel

 Flannel is a virtual network that gives a subnet to each host for use with container runtimes. It runs a flanneld agent on each host that allocates a subnet to the node from a reserved address space stored in etcd. Forwarding packets between containers and, ultimately, hosts is done by one of multiple backends. The most common backend uses UDP over a TUN device that tunnels through port 8285 by default (make sure it's open in your firewall).

 The following diagram describes in detail the various components of Flannel, the virtual network devices it creates, and how they interact with the host and the pod via the docker0 bridge.

 It also shows the UDP encapsulation of packets and how they are transmitted between hosts:

 [image:]
 Figure 10.7: Flannel

 Other backends include the following:

 	vxlan: Uses in-kernel VXLAN to encapsulate the packets.

 	host-gw: Creates IP routes to subnets via remote machine IPs. Note that this requires direct layer2 connectivity between hosts running Flannel.

 	aws-vpc: Creates IP routes in an Amazon VPC route table.

 	gce: Creates IP routes in a Google Compute Engine network.

 	alloc: Only performs subnet allocation (no forwarding of data packets).

 	ali-vpc: Creates IP routes in an Alibaba Cloud VPC route table.

 Calico

 Calico is a versatile virtual networking and network security solution for containers. Calico can integrate with all the primary container orchestration frameworks and runtimes:

 	Kubernetes (CNI plugin)

 	Mesos (CNI plugin)

 	Docker (Libnetwork plugin)

 	OpenStack (Neutron plugin)

 Calico can also be deployed on-premises or on public clouds with its full feature set. Calico's network policy enforcement can be specialized for each workload and ensures that traffic is controlled precisely and packets always go from their source to vetted destinations. Calico can map automatically network policy concepts from orchestration platforms to its own network policy. The reference implementation of Kubernetes' network policy is Calico. Calico can be deployed together with Flannel utilizing the Flannel networking layer and Calico's network policy facilities.

 Romana

 Romana is a modern cloud-native container networking solution. It operates at layer 3, taking advantage of standard IP address management techniques. Whole networks can become the unit of isolation as Romana uses Linux hosts to create gateways and routes to the networks. Operating at layer 3 means that no encapsulation is needed. Network policy is enforced as a distributed firewall across all endpoints and services. Hybrid deployments across cloud platforms and on-premises deployments are easier as there is no need to configure virtual overlay networks. New Romana virtual IPs allow on-premises users to expose services on layer 2 LANs via external IPs and service specs.

 Some of the benefits of using real routable IP addresses are as follows:

 	Performance: Traffic is forwarded and processed by hosts and network equipment at full speed; no cycles are spent encapsulating packets.

 	Scalability: Native, routed IP networking offers tremendous scalability, as demonstrated by the internet itself. Romana's use of routed IP addressing for endpoints means that no time, CPU, or memory-intensive tunnels or other encapsulation needs to be managed or maintained and that network equipment can run at optimal efficiency.

 	Visibility: Packet traces show the real IP addresses, allowing easier troubleshooting and traffic management.

 The following diagram shows how Romana eliminates a lot of the overhead by using direct L2 routing, where ToR stands for the top-of-rack switch:

 [image:]
 Figure 10.8: Romana blocks and routes in an L2-to-host data center

 When networks are configured for L3-to-host routing, where hosts don't necessarily share an L2 segment, in this case, there is no need to configure routes between hosts that use the default route to the ToR switch. Here is a diagram to illustrate this:

 [image:]
 Figure 10.9: Romana blocks and routes in an L3-to-host data center

 Weave Net

 Weave Net is all about ease of use and zero configuration. It uses VXLAN encapsulation under the hood and micro DNS on each node. As a developer, you operate at a higher abstraction level. You name your containers and Weave Net lets you connect to them and use standard ports for services. That helps to migrate existing applications into containerized applications and microservices. Weave Net has a CNI plugin for interfacing with Kubernetes (and Mesos). On Kubernetes 1.4 and higher, you can integrate Weave Net with Kubernetes by running a single command that deploys a DaemonSet:

 kubectl apply -f https://git.io/weave-kube

 The Weave Net pods on every node will take care of attaching any new pod you create to the Weave network. Weave Net supports the network policy API, while also providing a complete, yet easy-to-setup, solution.

 Using network policies effectively

 The Kubernetes network policy is about managing network traffic to selected pods and namespaces. In a world of hundreds of microservices deployed and orchestrated, as is often the case with Kubernetes, managing networking and connectivity between pods is essential. It's important to understand that it is not primarily a security mechanism. If an attacker can reach the internal network, they will probably be able to create their own pods that comply with the network policy in place and communicate freely with other pods. In the previous section, we looked at different Kubernetes networking solutions and focused on the container networking interface. In this section, the focus is on network policy, although there are strong connections between the networking solution and how network policy is implemented on top of it.

 Understanding the Kubernetes network policy design

 A network policy is a specification of how selections of pods can communicate with each other and other network endpoints. Network policy resources use labels to select pods and define whitelist rules that allow traffic to the selected pods in addition to what is allowed by the isolation policy for a given namespace.

 Network policies and CNI plugins

 There is an intricate relationship between network policies and CNI plugins. Some CNI plugins implement both network connectivity and network policy, while others implement just one aspect, but they can collaborate with another CNI plugin that implements the other aspect (for example, Calico and Flannel).

 Configuring network policies

 Network policies are configured via the NetworkPolicy resource. Here is a sample network policy:

 apiVersion: extensions/v1beta1networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
 namespace: default
spec:
 podSelector:
 matchLabels:
 role: db
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: awesome-project
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: tcp
 port: 6379

 Implementing network policies

 While the network policy API itself is generic and is part of the Kubernetes API, the implementation is tightly coupled to the networking solution. That means that on each node, there is a special agent or gatekeeper that does the following:

 	Intercepts all traffic coming into the node

 	Verifies that it adheres to the network policy

 	Forwards or rejects each request

 Kubernetes provides the facilities to define and store network policies through the API. Enforcing the network policy is left to the networking solution or a dedicated network policy solution that is tightly integrated with the specific networking solution. Calico and Canal are good examples of this approach. Calico has its own networking solution and a network policy solution that works together. However, it can also provide network policy enforcement on top of Flannel as part of Canal. In both cases, there is tight integration between the two pieces. The following diagram shows how the Kubernetes policy controller manages the network policies and how agents on the nodes execute it:

 [image:]
 Figure 10.10: Kubernetes policy controller

 Load balancing options

 Load balancing is a critical capability in dynamic systems, such as a Kubernetes cluster. Nodes, VMs, and pods come and go, but the clients typically can't keep track of which individual entities can service their requests. Even if they could, it requires a complicated dance of managing a dynamic map of the cluster, refreshing it frequently, and handling disconnected, unresponsive, or just slow nodes.

 This so-called client-side load balancing is appropriate in special cases only. Server-side load balancing is a battle-tested and well-understood mechanism that adds a layer of indirection that hides the internal turmoil from the clients or consumers outside the cluster. There are options for external as well as internal load balancers. You can also mix and match and use both. The hybrid approach has its own particular pros and cons, such as performance versus flexibility.

 External load balancer

 An external load balancer is a load balancer that runs outside the Kubernetes cluster. There must be an external load balancer provider that Kubernetes can interact with to configure the external load balancer with health checks, firewall rules, and to get the external IP address of the load balancer.

 The following diagram shows the connection between the load balancer (in the cloud), the Kubernetes API server, and the cluster nodes. The external load balancer has an up-to-date picture of which pods run on which nodes and it can direct external service traffic to the right pods:

 [image:]
 Figure 10.11: Cloud-based load balancer

 Configuring an external load balancer

 The external load balancer is configured via the service configuration file, or directly through Kubectl. We use a service type of load balancer instead of using a service type of ClusterIP, which directly exposes a Kubernetes node as a load balancer. This depends on an external load balancer provider being properly installed and configured in the cluster. Google's GKE is the most well-tested provider, but other cloud platforms provide their integrated solution on top of their cloud load balancer.

 Via a configuration file

 Here is an example service configuration file that accomplishes this goal:

 apiVersion: v1
kind: Service
metadata:
 name: api-gateway
spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 5000
 selector:
 svc: api-gateway
 app: delinkcious

 Via Kubectl

 You may also accomplish the same result using a direct kubectl command:

 $ kubectl expose deployment api-gateway --port=80 --target-port=5000 --name=api-gateway --type=LoadBalancer

 The decision whether to use a service configuration file or kubectl command is usually determined by the way you set up the rest of your infrastructure and deploy your system. Configuration files are more declarative and arguably more appropriate for production usage where you want a versioned, auditable, and repeatable way to manage your infrastructure.

 Finding the load balancer IP addresses

 The load balancer will have two IP addresses of interest. The internal IP address can be used inside the cluster to access the service. Clients outside the cluster will use the external IP address.

 It's a good practice to create a DNS entry for the external IP address. It is particularly important if you want to use TLS/SSL, which require stable hostnames. To get both addresses, use the kubectl describe service command. The IP field denotes the internal IP address, and the LoadBalancer Ingress field denotes the external IP address:

 $ kubectl describe services example-service
Name: example-service
Selector: app=example
Type: LoadBalancer
IP: 10.67.252.103
LoadBalancer Ingress: 123.45.678.9
Port: <unnamed> 80/TCP
NodePort: <unnamed> 32445/TCP
Endpoints: 10.64.0.4:80,10.64.1.5:80,10.64.2.4:80
Session Affinity: None
No events.

 Preserving client IP addresses

 Sometimes, the service may be interested in the source IP address of the clients. Up until Kubernetes 1.5, this information wasn't available. In Kubernetes 1.5, there is a beta feature available only on GKE through an annotation to get the source IP address. In Kubernetes 1.7, the capability to preserve the original client IP was added to the API.

 Specifying original client IP address preservation

 You need to configure the following two fields of the service spec:

 	service.spec.externalTrafficPolicy: This field determines whether the service should route external traffic to a node-local endpoint or a cluster-wide endpoint, which is the default. The Cluster option doesn't reveal the client source IP and might add a hop to a different node, but spreads the load well. The Local option keeps the client source IP and doesn't add an extra hop as long as the service type is LoadBalancer or NodePort. Its downside is that it might not balance the load very well.

 	service.spec.healthCheckNodePort: This field is optional. If used, then the service health check will use this port number. The default is the allocated node port. This has an effect on services of the LoadBalancer type whose externalTrafficPolicy is set to Local.

 Here is an example:

 apiVersion: v1
kind: Service
metadata:
 name: api-gateway
spec:
 type: LoadBalancer
 externalTrafficPolicy: Local
 ports:
 - port: 80
 targetPort: 5000
 selector:
 svc: api-gateway
 app: delinkcious

 Understanding even external load balancing

 External load balancers operate at the node level; while they direct traffic to a particular pod, the load distribution is done at the node level. This means that if your service has four pods, and three of them are on node A and the last one is on node B, then an external load balancer is likely to divide the load evenly between node A and node B. This will have the three pods on node A handle half of the load (1/6 each) and the single pod on node B handle the other half of the load on its own. Weights may be added in the future to address this issue.

 Service load balancing

 Service load balancing is designed for funneling internal traffic within the Kubernetes cluster and not for external load balancing. This is done by using a service type of ClusterIP. It is possible to expose a service load balancer directly via a preallocated port by using a service type of NodePort and utilizing it as an external load balancer, but it wasn't designed for that use case. Desirable features such as SSL termination and HTTP caching will not be readily available.

 The following diagram shows how the service load balancer (the yellow clouds) can route traffic to one of the backend pods it manages (via labels of course):

 [image:]
 Figure 10.12: Service load balancer routing traffic

 Ingress

 Ingress in Kubernetes is, at its core, a set of rules that allow inbound connections to reach cluster services. In addition, some ingress controllers support the following:

 	Connection algorithms

 	Request limits

 	URL rewrites and redirects

 	TCP/UDP load balancing

 	SSL termination

 	Access control and authorization

 Ingress is specified using an Ingress resource and serviced by an ingress controller. It's important to note that ingress is still in beta (since Kubernetes 1.1) and it doesn't yet demonstrate all the necessary capabilities. Here is an example of an ingress resource that manages traffic into two services.

 The rules map the externally visible http://foo.bar.com/foo to the s1 service, and http://foo.bar.com/bar to the s2 service:

 apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test
spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: s1
 servicePort: 80
 - path: /bar
 backend:
 serviceName: s2
 servicePort: 80

 There are two official ingress controllers right now. One of them is an L7 ingress controller for GCE only, while the other is a more general-purpose Nginx ingress controller that lets you configure the Nginx web server through a ConfigMap. The NGNIX ingress controller is very sophisticated and brings to bear a lot of features that are not available yet through the ingress resource directly. It uses the endpoint's API to directly forward traffic to pods. It supports Minikube, GCE, AWS, Azure, and bare metal clusters. For more details, check out the following link:

 https://github.com/kubernetes/ingress-nginx

 However, there are many more ingress controllers that may be better for your use case, such as:

 	Ambassador

 	Traefik

 	Contour

 	Gloo

 HAProxy

 We discussed using a cloud provider external load balancer using the load balancer service type and using the internal service load balancer inside the cluster using ClusterIP. If we want a custom external load balancer, we can create a custom external load balancer provider and use LoadBalancer or the third service type, NodePort. High-Availability Proxy (HAProxy) is a mature and battle-tested load-balancing solution. It is considered one of the best choices for implementing external load balancing with on-premises clusters. This can be done in several ways:

 	Utilize NodePort and carefully manage port allocations

 	Implement the custom load balancer provider interface

 	Run HAProxy inside your cluster as the only target of your frontend servers at the edge of the cluster (load balanced or not)

 You can use all these approaches with HAProxy. Regardless, it is still recommended to use ingress objects. The service-loadbalancer project is a community project that implemented a load-balancing solution on top of HAProxy. You can find it here: https://github.com/kubernetes/contrib/tree/master/service-loadbalancer.

 Utilizing the NodePort

 Each service will be allocated a dedicated port from a predefined range. This usually is a high range, such as 30,000 and upward, so as to avoid clashing with other applications using low known ports. HAProxy will run outside the cluster in this case and it will be configured with the correct port for each service. Then it can just forward any traffic to any nodes and Kubernetes via the internal service, and the load balancer will route it to a proper pod (double load balancing). This is, of course, sub-optimal because it introduces another hop. The way to circumvent it is to query the endpoint's API and dynamically manage for each service the list of its backend pods and directly forward traffic to the pods.

 Custom load balancer provider using HAProxy

 This approach is a little more complicated, but the benefit is that it is better integrated with Kubernetes and can make the transition to/from on-premises from/to the cloud easier.

 Running HAProxy inside the Kubernetes cluster

 In this approach, we use the internal HAProxy load balancer inside the cluster. There may be multiple nodes running HAProxy and they will share the same configuration to map incoming requests and load-balance them across the backend servers (the Apache servers in the following diagram):

 [image:]
 Figure 10.13: HAProxy load balancing

 HAProxy also developed its own ingress controller, which is Kubernetes aware. This is arguably the most streamlined way to utilize HAProxy in your Kubernetes cluster. Here are some of the capabilities you acquire when using the HAProxy ingress controller:

 	Streamlined integration with the HAProxy load balancer

 	SSL termination

 	Rate limiting

 	IP whitelisting

 	Multiple load balancing algorithms: round-robin, least connections, URL hash, and random

 	A dashboard that shows the health of your pods, current request rates, response times, and so on

 	Traffic overload protection

 MetalLB

 MetalLB also provides a load balancer solution for bare metal clusters. It is highly configurable and supports multiple modes such as L2 and BGP. I had success configuring it even for minikube.

 For more details, check out the following link:

 https://metallb.universe.tf

 Keepalived VIP

 Keepalived Virtual IP (Keepalived VIP) is not necessarily a load-balancing solution of its own.

 It can be a complement to the Nginx ingress controller or the HAProxy-based service LoadBalancer. The main motivation is that pods move around in Kubernetes, including your load balancer(s). That creates a problem for clients outside the network that require a stable endpoint. DNS is often not good enough due to performance issues. Keepalived provides a high-performance virtual IP address that can serve as the address to the Nginx ingress controller or the HAProxy load balancer. Keepalived utilizes core Linux networking facilities, such as IPVS (IP virtual server) and implements high availability via Virtual Redundancy Router Protocol (VRRP). Everything runs at layer 4 (TCP/UDP). It takes some effort and attention to detail to configure it. Luckily, there is a Kubernetes contrib project that can get you started: https://github.com/kubernetes/contrib/tree/master/keepalived-vip.

 Traefic

 Traefic is a modern HTTP reverse proxy and load balancer. It was designed to support microservices. It works with many backends, including Kubernetes, to manage its configuration automatically and dynamically. This is a game changer compared to traditional load balancers. It has an impressive list of features:

 	It is fast

 	Single Go executable

 	Tiny official Docker image

 	Rest API

 	Hot-reloading of configuration; no need to restart the process

 	Circuit breakers; retry

 	Round-robin, rebalancer, load balancers

 	Metrics (Rest, Prometheus, Datadog, Statsd, InfluxDB)

 	Clean AngularJS web UI

 	Websocket, HTTP/2, GRPC ready

 	Access logs (JSON, CLF)

 	Let's Encrypt support (automatic HTTPS with renewal)

 	High availability with cluster mode

 Load balancing on Kubernetes is an exciting area. It offers many options for both north-south and east-west load balancing. Now that we have covered load balancing in detail, let's dive deep into the CNI plugins and how they are implemented.

 Writing your own CNI plugin

 In this section, we will look at what it takes to actually write your own CNI plugin. First, we will look at the simplest plugin possible – the loopback plugin. Then, we will examine the plugin skeleton that implements most of the boilerplate associated with writing a CNI plugin. Finally, we will review the implementation of the bridge plugin. Before we dive in, here is a quick reminder of what a CNI plugin is:

 	A CNI plugin is an executable

 	It is responsible for connecting new containers to the network, assigning unique IP addresses to CNI containers, and taking care of routing

 	A container is a network namespace (in Kubernetes, a pod is a CNI container)

 	Network definitions are managed as JSON files, but stream to the plugin via standard input (no files are being read by the plugin)

 	Auxiliary information can be provided via environment variables

 First look at the loopback plugin

 The loopback plugin simply adds the loopback interface. It is so simple that it doesn't require any network configuration information. Most CNI plugins are implemented in Golang and the loopback CNI plugin is no exception. The full source code is available here: https://github.com/containernetworking/plugins/blob/master/plugins/main/loopback.

 There are multiple packages from the container networking project on GitHub that provide many of the building blocks necessary to implement CNI plugins and the netlink package for adding interfaces, removing interfaces, setting IP addresses, and setting routes. Let's look at the imports of the loopback.go file first:

 package main
import (
 "encoding/json"
 "errors"
 "fmt"
 "net"
 "github.com/vishvananda/netlink"
 "github.com/containernetworking/cni/pkg/skel"
 "github.com/containernetworking/cni/pkg/types"
 "github.com/containernetworking/cni/pkg/types/current"
 "github.com/containernetworking/cni/pkg/version"
 "github.com/containernetworking/plugins/pkg/ns"
 bv "github.com/containernetworking/plugins/pkg/utils/buildversion")

 Then, the plugin implements two commands, cmdAdd and cmdDel, which are called when a container is added to or removed from the network. Here is the add command, which does all the heavy lifting:

 func cmdAdd(args *skel.CmdArgs) error {
 conf, err := parseNetConf(args.StdinData)
 if err != nil {
 return err
 }
 var v4Addr, v6Addr *net.IPNet
 args.IfName = "lo" // ignore config, this only works for loopback
 err = ns.WithNetNSPath(args.Netns, func(_ ns.NetNS) error {
 link, err := netlink.LinkByName(args.IfName)
 if err != nil {
 return err // not tested
 }
 err = netlink.LinkSetUp(link)
 if err != nil {
 return err // not tested
 }
 v4Addrs, err := netlink.AddrList(link, netlink.FAMILY_V4)
 if err != nil {
 return err // not tested
 }
 if len(v4Addrs) != 0 {
 v4Addr = v4Addrs[0].IPNet
 // sanity check that this is a loopback address
 for _, addr := range v6Addrs {
 if !addr.IP.IsLoopback() {
 return fmt.Errorf("loopback interface found with non-loopback address %q", addr.IP)
 }
 }
 }
 v6Addrs, err := netlink.AddrList(link, netlink.FAMILY_V6)
 if err != nil {
 return err // not tested
 }
 if len(v6Addrs) != 0 {
 v6Addr = v6Addrs[0].IPNet
 // sanity check that this is a loopback address
 for _, addr := range v6Addrs {
 if !addr.IP.IsLoopback() {
 return fmt.Errorf("loopback interface found with non-loopback address %q", addr.IP)
 }
 }
 }
 return nil
 })
 if err != nil {
 return err // not tested
 }
 var result types.Result
 if conf.PrevResult != nil {
 // If loopback has previous result which passes from previous CNI plugin,
 // loopback should pass it transparently
 result = conf.PrevResult
 } else {
 loopbackInterface := ¤t.Interface{Name: args.IfName, Mac: "00:00:00:00:00:00", Sandbox: args.Netns}
 r := ¤t.Result{CNIVersion: conf.CNIVersion, Interfaces: []*current.Interface{loopbackInterface}}
 if v4Addr != nil {
 r.IPs = append(r.IPs, ¤t.IPConfig{
 Version: "4",
 Interface: current.Int(0),
 Address: *v4Addr,
 })
 }
 if v6Addr != nil {
 r.IPs = append(r.IPs, ¤t.IPConfig{
 Version: "6",
 Interface: current.Int(0),
 Address: *v6Addr,
 })
 }
 result = r
 }
 return types.PrintResult(result, conf.CNIVersion)
}

 The core of this function is setting the interface name to lo (for loopback) and adding the link to the container's network namespace. It supports both IPv4 and IPv6.

 The del command does the opposite and is much simpler:

 func cmdDel(args *skel.CmdArgs) error {
 if args.Netns == "" {
 return nil
 }
 args.IfName = "lo" // ignore config, this only works for loopback
 err := ns.WithNetNSPath(args.Netns, func(ns.NetNS) error {
 link, err := netlink.LinkByName(args.IfName)
 if err != nil {
 return err // not tested
 }
 err = netlink.LinkSetDown(link)
 if err != nil {
 return err // not tested
 }
 return nil
 })
 if err != nil {
 return err // not tested
 }
 return nil
}

 The main function simply calls the PluginMain() function of the skel package, passing the command functions. The skel package will take care of running the CNI plugin executable and will invoke the cmdAdd and cmdDel functions at the right time:

 func main() {
 skel.PluginMain(cmdAdd, cmdCheck, cmdDel, version.All, bv.BuildString("loopback"))
}

 Building on the CNI plugin skeleton

 Let's now explore the skel package and see what it does under the covers. The PluginMain() entry point is responsible for invoking PluginMainWithError(), catching errors, printing them to standard output, and exiting:

 func PluginMain(cmdAdd, cmdCheck, cmdDel func(_ *CmdArgs) error, versionInfo version.PluginInfo, about string) {
 if e := PluginMainWithError(cmdAdd, cmdCheck, cmdDel, versionInfo, about); e != nil {
 if err := e.Print(); err != nil {
 log.Print("Error writing error JSON to stdout: ", err)
 }
 os.Exit(1)
 }
}

 The PluginErrorWithMain() function instantiates a dispatcher, sets it up with all the I/O streams and the environment, and invokes its internal pluginMain() method:

 func PluginMainWithError(cmdAdd, cmdCheck, cmdDel func(_ *CmdArgs) error, versionInfo version.PluginInfo, about string) *types.Error {
 return (&dispatcher{
 Getenv: os.Getenv,
 Stdin: os.Stdin,
 Stdout: os.Stdout,
 Stderr: os.Stderr,
 }).pluginMain(cmdAdd, cmdCheck, cmdDel, versionInfo, about)
}

 Here is, finally, the main logic of the skeleton. It gets the cmd arguments from the environment (which includes the configuration from standard input), detects which cmd is invoked, and calls the appropriate plugin function (cmdAdd or cmdDel). It can also return version information:

 func (t *dispatcher) pluginMain(cmdAdd, cmdCheck, cmdDel func(_ *CmdArgs) error, versionInfo version.PluginInfo, about string) *types.Error {
 cmd, cmdArgs, err := t.getCmdArgsFromEnv()
 if err != nil {
 // Print the about string to stderr when no command is set
 if err.Code == types.ErrInvalidEnvironmentVariables && t.Getenv("CNI_COMMAND") == "" && about != "" {
 _, _ = fmt.Fprintln(t.Stderr, about)
 return nil
 }
 return err
 }
 if cmd != "VERSION" {
 if err = validateConfig(cmdArgs.StdinData); err != nil {
 return err
 }
 if err = utils.ValidateContainerID(cmdArgs.ContainerID); err != nil {
 return err
 }
 if err = utils.ValidateInterfaceName(cmdArgs.IfName); err != nil {
 return err
 }
 }
 switch cmd {
 case "ADD":
 err = t.checkVersionAndCall(cmdArgs, versionInfo, cmdAdd)
 case "CHECK":
 configVersion, err := t.ConfVersionDecoder.Decode(cmdArgs.StdinData)
 if err != nil {
 return types.NewError(types.ErrDecodingFailure, err.Error(), "")
 }
 if gtet, err := version.GreaterThanOrEqualTo(configVersion, "0.4.0"); err != nil {
 return types.NewError(types.ErrDecodingFailure, err.Error(), "")
 } else if !gtet {
 return types.NewError(types.ErrIncompatibleCNIVersion, "config version does not allow CHECK", "")
 }
 for _, pluginVersion := range versionInfo.SupportedVersions() {
 gtet, err := version.GreaterThanOrEqualTo(pluginVersion, configVersion)
 if err != nil {
 return types.NewError(types.ErrDecodingFailure, err.Error(), "")
 } else if gtet {
 if err := t.checkVersionAndCall(cmdArgs, versionInfo, cmdCheck); err != nil {
 return err
 }
 return nil
 }
 }
 return types.NewError(types.ErrIncompatibleCNIVersion, "plugin version does not allow CHECK", "")
 case "DEL":
 err = t.checkVersionAndCall(cmdArgs, versionInfo, cmdDel)
 case "VERSION":
 if err := versionInfo.Encode(t.Stdout); err != nil {
 return types.NewError(types.ErrIOFailure, err.Error(), "")
 }
 default:
 return types.NewError(types.ErrInvalidEnvironmentVariables, fmt.Sprintf("unknown CNI_COMMAND: %v", cmd), "")
 }
 if err != nil {
 return err
 }
 return nil
}

 The loopback plugin is one of the simplest CNI plugins. Now, let's check out the bridge plugin.

 Reviewing the bridge plugin

 The bridge plugin is more substantial. Let's look at some of the key parts of its implementation. The full source code is available here:

 https://github.com/containernetworking/plugins/tree/master/plugins/main/bridge

 The plugin defines a network configuration struct with the following fields in the bridge.go file:

 type NetConf struct {
 types.NetConf
 BrName string 'json:"bridge"'
 IsGW bool 'json:"isGateway"'
 IsDefaultGW bool 'json:"isDefaultGateway"'
 ForceAddress bool 'json:"forceAddress"'
 IPMasq bool 'json:"ipMasq"'
 MTU int 'json:"mtu"'
 HairpinMode bool 'json:"hairpinMode"'
 PromiscMode bool 'json:"promiscMode"'
 Vlan int 'json:"vlan"'
}

 We will not cover what each parameter does and how it interacts with the other parameters due to space limitations. The goal is to understand the flow and have a starting point if you want to implement your own CNI plugin. The configuration is loaded from JSON via the loadNetConf() function.

 It is called at the beginning of the cmdAdd() and cmdDel() functions:

 n, cniVersion, err := loadNetConf(args.StdinData)

 Here is the core of the cmdAdd() function, which uses information from network configuration, sets up the bridge, and sets up a veth device:

 br, brInterface, err := setupBridge(n)
 if err != nil {
 return err
 }
 netns, err := ns.GetNS(args.Netns)
 if err != nil {
 return fmt.Errorf("failed to open netns %q: %v", args.Netns, err)
 }
 defer netns.Close()
 hostInterface, containerInterface, err := setupVeth(netns, br, args.IfName, n.MTU, n.HairpinMode, n.Vlan)
 if err != nil {
 return err
 }

 Later, the function handles the L3 mode with its multiple cases:

 // Assume L2 interface only
 result := ¤t.Result{CNIVersion: cniVersion, Interfaces: []*current.Interface{brInterface, hostInterface, containerInterface}}
 if isLayer3 {
 // run the IPAM plugin and get back the config to apply
 r, err := ipam.ExecAdd(n.IPAM.Type, args.StdinData)
 if err != nil {
 return err
 }
 // release IP in case of failure
 defer func() {
 if !success {
 ipam.ExecDel(n.IPAM.Type, args.StdinData)
 }
 }()
 // Convert whatever the IPAM result was into the current Result type
 ipamResult, err := current.NewResultFromResult(r)
 if err != nil {
 return err
 }
 result.IPs = ipamResult.IPs
 result.Routes = ipamResult.Routes
 if len(result.IPs) == 0 { return errors.New("IPAM plugin returned missing IP config")
 }
 // Gather gateway information for each IP family
 gwsV4, gwsV6, err := calcGateways(result, n)
 if err != nil {
 return err
 }
 // Configure the container hardware address and IP address(es)
 if err := netns.Do(func(_ ns.NetNS) error {
 ...
 }
 if n.IsGW {
 ...
 }
 if n.IPMasq {
 ...
 }
 }

 Finally, it updates the MAC address that may have changed and returns the results:

 // Refetch the bridge since its MAC address may change when the first
 // veth is added or after its IP address is set
 br, err = bridgeByName(n.BrName)
 if err != nil {
 return err
 }
 brInterface.Mac = br.Attrs().HardwareAddr.String()
 result.DNS = n.DNS
 // Return an error requested by testcases, if any
 if debugPostIPAMError != nil {
 return debugPostIPAMError
 }
 success = true
 return types.PrintResult(result, cniVersion)

 This is just part of the full implementation. There is also route setting and hardware IP allocation. If you plan to write your own CNI plugin, I encourage you to pursue the full source code, which is quite extensive, to get the full picture.

 Summary

 In this chapter, we covered a lot of ground. Networking is such a vast topic as there are so many combinations of hardware, software, operating environments, and user skills. It is a very complicated endeavor to come up with a comprehensive networking solution that is both robust, secure, performs well, and is easy to maintain. For Kubernetes clusters, the cloud providers mostly solve these issues. But if you run on-premises clusters or need a tailor-made solution, you get a lot of options to choose from. Kubernetes is a very flexible platform, designed for extension. Networking in particular is totally pluggable. The main topics we discussed were the Kubernetes networking model (flat address space where pods can reach other and share localhost between all containers inside a pod), how lookup and discovery work, the Kubernetes network plugins, various networking solutions at different levels of abstraction (a lot of interesting variations), using network policies effectively to control the traffic inside the cluster, and the spectrum of load-balancing solutions, and finally, we looked at how to write a CNI plugin by dissecting a real-world implementation.

 At this point, you are probably overwhelmed, especially if you're not a subject matter expert. Nonetheless, you should have a solid grasp of the internals of Kubernetes networking, be aware of all the interlocking pieces required to implement a fully fledged solution, and be able to craft your own solution based on trade-offs that make sense for your system and your skill level.

 In Chapter 11, Running Kubernetes on Multiple Clouds and Cluster Federation, we will go even bigger and look at running Kubernetes on multiple clusters, cloud providers, and federation. This is an important part of the Kubernetes story for geo-distributed deployments and ultimate scalability. Federated Kubernetes clusters can exceed local limitations, but they bring a whole slew of challenges as well.

 11

 Running Kubernetes on Multiple Clouds and Cluster Federation

 In this chapter, we'll take it to the next level by running Kubernetes on multiple clouds, multiple clusters, and cluster federation. A Kubernetes cluster is a closely knit unit where all of the components run in relative proximity and are connected by a fast network (typically, a physical data center or cloud provider availability zone). This is great for many use cases, but there are several important use cases where systems need to scale beyond a single cluster. One approach to address this use case is with Kubernetes federation, which is a methodical way to combine multiple Kubernetes clusters and interact with them as a single entity. Another approach taken by the Gardener (https://gardener.cloud/) project is to provide an abstraction around managing multiple separate Kubernetes clusters.

 We will cover the following topics:

 	The history of cluster federation on Kubernetes

 	Understanding cluster federation

 	A deep dive into what cluster federation is all about

 	How to prepare, configure, and manage a cluster federation

 	How to run a federated workload across multiple clusters

 	Introduction to the Gardener project

 The history of cluster federation on Kubernetes

 Before jumping into the details of cluster federation, let's get some historical context. It's funny to talk about the history of a project like Kubernetes that didn't even exist 5 years ago, but the pace of development and a large number of contributors took Kubernetes through accelerated evolution. This is especially relevant for Kubernetes federation.

 In March 2015, the first revision of the Kubernetes Cluster Federation (https://github.com/kubernetes/community/blob/master/contributors/design-proposals/multicluster/federation.md) proposal was published. Back then, it was fondly nicknamed "Ubernetes." The basic idea was to reuse the existing Kubernetes APIs to manage multiple clusters. This proposal, now called Federation V1, went through several rounds of revision and implementation, but it never reached general availability and is considered deprecated at this point. The SIG cluster workgroup realized that the multi-cluster problem was more complicated than initially perceived. There are many ways to skin this particular cat, and there is no one-size-fits-all solution.

 The new direction for cluster federation is dedicated APIs for federation. In the rest of the chapter, we will consider the Federation V2 design. Note that the current status is considered Alpha, so I don't recommend putting it to use in production without significant consideration.

 Understanding cluster federation

 Cluster federation is conceptually simple. You aggregate multiple Kubernetes clusters and treat them as a single logical cluster. There is a federation control plane that presents to clients a single unified view of the system.

 The following diagram demonstrates the big picture of the Kubernetes Cluster Federation. The pink box is a host cluster that runs the federation APIs and the green boxes are member clusters:

 [image:]
 Figure 11.1: The Kubernetes Cluster Federation

 The federation control plane consists of a federation API server and a federation controller manager that collaborate with each other. The federated API server forwards requests to all the clusters in the federation. In addition, the federated controller manager performs the duties of the controller manager across all of the clusters by routing requests to the individual federation cluster members' changes. In practice, cluster federation is not trivial and can't be totally abstracted away. Cross-pod communication and data transfer may suddenly incur a massive latency and cost overhead. Let's look at the use cases for cluster federation first, understand how the federated components and resources work, and then examine the hard parts: location affinity, cross-cluster scheduling, and federated data access.

 Important use cases for cluster federation

 There are four categories of use cases that benefit from cluster federation.

 Capacity overflow

 Public cloud platforms such as AWS, GCE, and Azure are great and provide many benefits, but they are not cheap. Many large organizations have invested a lot in their own data centers. Other organizations work with private service providers such as OVS, Rackspace, or Digital Ocean. If you have the operational capacity to manage and operate infrastructure on your own, it makes a lot of economic sense to run your Kubernetes cluster on your infrastructure rather than in the cloud. But what if some of your workloads fluctuate and, for a relatively short amount of time, require a lot more capacity?

 For example, your system may be hit especially hard on the weekends or maybe during holidays. The traditional approach is to just provision extra capacity. But in many dynamic situations, this is not easy. With capacity overflow, you can run the bulk of your work in a Kubernetes cluster running on an on-premises data center or with a private service provider and have a secondary cloud-based Kubernetes cluster running on one of the big platform providers. Most of the time, the cloud-based cluster will be shut down (stopped instances), but when the need arises, you can elastically add capacity to your system by starting some stopped instances. Kubernetes Cluster Federation can make this configuration relatively straightforward. It eliminates a lot of headaches about capacity planning and paying for hardware that's not used most of the time.

 This approach is sometimes called "cloud bursting."

 Sensitive workloads

 This is almost the opposite of capacity overflow. Maybe you've embraced the cloud-native lifestyle, and your entire system runs on the cloud, but some data or workloads deal with sensitive information. Regulatory compliance or your organization's security policies may dictate that those data and workloads must run in an environment that's fully controlled by you. Your sensitive data and workloads may be subject to external auditing. It may be critical to ensure that no information ever leaks from the private Kubernetes cluster to the cloud-based Kubernetes cluster. But it may be desirable to have visibility in the public cluster and be able to launch non-sensitive workloads from the private cluster to the cloud-based cluster. If the nature of a workload can change dynamically from non-sensitive to sensitive, then it needs to be addressed by coming up with a proper policy and process of implementation.

 For example, you may prevent workloads from changing their nature. Alternatively, you may migrate a workload that has suddenly become sensitive and ensure that it doesn't run on the cloud-based cluster anymore. Another important instance is national compliance, where certain data is required by law to remain and be accessed only from a designated geographical region (typically, a country). In this case, a cluster must be created in that geographical region.

 Avoiding vendor lock-in

 Large organizations often prefer to have options and not be tied to a single provider. The risk is often too great, because the provider may shut down or be unable to provide the same level of service. Having multiple providers is often good for negotiating prices, too. Kubernetes is designed to be vendor-agnostic. You can run it on different cloud platforms, private service providers, and on-premises data centers.

 However, this is not trivial. If you want to be sure that you are able to switch providers quickly or shift some workloads from one provider to the next, you should already be running your system on multiple providers. You can do it yourself, or there are some companies that provide the service of running Kubernetes transparently on multiple providers. Since different providers run different data centers, you automatically get some redundancy and protection from vendor-wide outages.

 Geo-distributing high availability

 High availability means that a service will remain available to users even when some parts of the system fail. In the context of a federated Kubernetes cluster, the scope of failure is an entire cluster, which is typically due to problems with the physical data center hosting the cluster, or perhaps a wider issue with the platform provider. The key to high availability is redundancy. Geo-distributed redundancy means having multiple clusters running in different locations. It may be different availability zones of the same cloud provider, different regions of the same cloud provider, or even different cloud providers altogether (refer to the Avoiding vendor lock-in section). There are many issues to address when it comes to running a cluster federation with redundancy. We'll discuss some of these issues later. Assuming that the technical and organizational issues have been resolved, high availability will allow you to switch traffic from a failed cluster to another cluster. This should be transparent to the users up to a point (if there is a delay during the switchover, some in-flight requests or tasks may disappear or fail). The system administrators may need to take extra steps to support the switchover and to deal with the original cluster failure.

 Now that we understand why multi-cluster federation is such an important aspect of Kubernetes, it's time to dive in.

 Learning the basics of Kubernetes federation

 Kubernetes federation is a complex topic, and we will ease our way into it. In this section, we will first look at some basic concepts, then at the building blocks of the API, and finally at its supported features and capabilities.

 Defining basic concepts

 Let's start our journey into the Kubernetes federation with some basic concepts and terminology. The following table describes the most important concepts and terms:

 	
 Concept

 	
 Description

 	
 Federate

 	
 Create a common interface to a pool of clusters in order to deploy Kubernetes applications across those clusters.

 	
 KubeFed

 	
 The API and control plane of Kubernetes Cluster Federation.

 	
 Host Cluster

 	
 A cluster that exposes the KubeFed API and runs the KubeFed control plane.

 	
 Cluster Registration

 	
 The process of adding a new cluster to the federation.

 	
 Member Cluster

 	
 A cluster that is registered with the KubeFed API and that KubeFed controllers have authentication credentials for. The Host Cluster can be a Member Cluster too.

 	
 ServiceDNSRecord

 	
 A resource that associates one or more Kubernetes Service resources with a scheme to construct DNS resource records for the Service.

 	
 IngressDNSRecord

 	
 A resource that associates one or more Kubernetes Ingress resources with a scheme to construct DNS resource records for the Ingress.

 	
 Endpoint

 	
 A resource that represents a Domain Name System (DNS) resource record.

 	
 DNSEndpoint

 	
 A Custom Resource wrapper for the Endpoint resource.

 In addition to these concepts, the architecture is based on three building blocks.

 Federation building blocks

 A federation is responsible for a given set of API types (Kubernetes resources) that it manages and distributes into a set of member clusters. For each API type, there are common dedicated resources that the federation control plane uses to keep their state:

 	FederatedTemplate: This stores the basic specification of the managed resource

 	FederatedPlacement: This type holds the specification of the clusters that the resource should be distributed to

 	FederatedOverrides: This optional resource can specify how the Template resource should behave on specific clusters

 These types are all associated by name. For example, for the ReplicaSet resource, there are FederatedReplicaSetTemplate, FederatedReplicaSetPlacement, and FederatedReplicaSetOverrides.

 In addition to this, the following elements can be used by higher-level APIs to customize and control the behavior of the federation:

 	Status: Collects the status of resources distributed by KubeFed across all federated clusters

 	Policy: Determines which subset of clusters a resource is allowed to be distributed to

 	Scheduling: Decides how workloads should be distributed across different clusters

 The following diagram illustrates the full life cycle and interaction of all the elements of the Kubernetes federation:

 [image:]
 Figure 11.2: Life cycle of the Kubernetes federation

 Federation features

 These concepts and the foundational building blocks are used to implement the following features:

 	Push propagation of arbitrary types to remote clusters

 	A command-line interface program called kubefedctl to interact with the KubeFed API

 	Generating KubeFed APIs without writing code

 	Multi-cluster Service DNS via external-dns

 	Multi-cluster Ingress DNS via external-dns

 	Replica Scheduling Preferences

 The KubeFed control plane

 The KubeFed control plane requires Kubernetes 1.13 or later. It consists of two components that, together, enable a federation of Kubernetes clusters to appear and function as a single unified Kubernetes cluster.

 The federation API server

 The federation API server manages the Kubernetes clusters that, together, comprise the federation. It manages the federation state (which clusters are part of the federation) in an etcd database in the same way as a regular Kubernetes cluster, but the state it keeps is just those clusters that are members of the federation. The state of each cluster is stored in the etcd database of that cluster. The main purpose of the federation API server is to interact with the federation controller manager and route requests to the federation's member clusters. The federation members don't need to know that they are part of a federation: they just work the same.

 The federation controller manager

 The federation controller manager makes sure the federation's desired state matches the actual state. It forwards any necessary changes to the relevant cluster or clusters. The federated controller manager binary contains multiple controllers for all of the different federated resources that we'll cover later in the chapter. The control logic is similar, though: it observes changes and brings the cluster state to the desired state when they deviate. This is done for each member in the cluster federation.

 The following diagram demonstrates this perpetual control loop:

 [image:]
 Figure 11.3: The federation controller manager's perpetual control loop

 The hard parts

 So far, the federation seems almost straightforward. KubeFed does the heavy lifting for you. You just group a bunch of clusters together, access them through the control plane, and everything just gets replicated to all of the clusters. But there are hard and difficult factors and basic concepts that complicate this simplified view. Much of the power of Kubernetes is derived from its ability to do a lot of work behind the scenes. Within a single cluster deployed fully in a single physical data center or availability zone where all the components are connected with a fast network, Kubernetes is very effective on its own. In a Kubernetes Cluster Federation, the situation is different. Latency, data transfer costs, and moving pods between clusters all have different trade-offs. Depending on the use case, making federation work may require extra attention, planning, and maintenance on the part of the system designers and operators. In addition, some of the federated resources are not as mature as their local counterparts, and that adds more uncertainty. Refer to https://github.com/kubernetes-sigs/kubefed for up-to-date information.

 Federated unit of work

 The unit of work in a Kubernetes cluster is the pod. You can't break a pod in Kubernetes. The entire pod will always be deployed together and be subject to the same life cycle treatment. Should the pod remain the unit of work for a cluster federation? Maybe it makes more sense to be able to associate a bigger unit, such as a whole ReplicaSet, deployment, or service with a specific cluster. If the cluster fails, the entire ReplicaSet, deployment, or service is scheduled to a different cluster. How about a collection of tightly coupled ReplicaSets? The answers to these questions are not always easy and may even change dynamically as the system evolves.

 Location affinity

 Location affinity is a major concern. When can pods be distributed across clusters? What are the relationships between those pods? Are there any requirements for affinity between pods or pods and other resources, such as storage? There are several major categories:

 	Strictly coupled

 	Loosely coupled

 	Preferentially coupled

 	Strictly decoupled

 	Uniformly spread

 When designing the system and how to allocate and schedule services and pods across the federation, it's important to make sure the location affinity requirements are always respected.

 Strictly coupled

 The strictly coupled requirement applies to applications where the pods must be in the same cluster. If you partition the pods, the application will fail (perhaps due to real-time requirements that can't be met when networking across clusters), or the cost may be too high (pods accessing a lot of local data). The only way to move such tightly coupled applications to another cluster is to start a complete copy (including data) on another cluster and then shut down the application on the current cluster. If the data is too large, the application may practically be immovable and sensitive to catastrophic failure. This is the most difficult situation to deal with, and, if possible, you should architect your system to avoid the strictly coupled requirement.

 Loosely coupled

 Loosely coupled applications are best when the workload is embarrassingly parallel, and each pod doesn't need to know about the other pods or access a lot of data. In these situations, pods can be scheduled to clusters just based on capacity and resource utilization across the federation. If necessary, pods can be moved from one cluster to another without problems. For example, consider a stateless validation service that performs a calculation and gets all of its input in the request itself and doesn't query or write any federation-wide data. It just validates its input and returns a valid/invalid verdict to the caller.

 Preferentially coupled

 Preferentially coupled applications perform better when all the pods are in the same cluster or the pods and the data are co-located, but this is not a hard requirement. For example, this could work with applications that require only eventual consistency, where some federation-wide application periodically synchronizes the application state across all clusters. In these cases, allocation is done explicitly to one cluster but leaves a safety hatch for running or migrating to other clusters under stress.

 Strictly decoupled

 Some services have fault isolation or high-availability requirements that force partitioning across clusters. There is no point running three replicas of a critical service if all replicas might end up scheduled to the same cluster, because that cluster just becomes an ad hoc SPOF.

 Uniformly spread

 Uniformly spread is when an instance of a service, ReplicaSet, or pod must run on each cluster. It is similar to DaemonSet, but instead of ensuring there is one instance on each node, it's one per cluster. A good example is a Redis cache backed up by some external persistent storage. The pods in each cluster should have their own cluster-local Redis cache to avoid accessing the central storage, which may be slower or become a bottleneck. On the other hand, there is no need for more than one Redis service per cluster (it could be distributed across several pods in the same cluster).

 Cross-cluster scheduling

 Cross-cluster scheduling goes hand in hand with location affinity. When a new pod is created or an existing pod fails and a replacement needs to be scheduled, where should it go? The current cluster federation doesn't handle all the scenarios and options for location affinity that we mentioned earlier.

 At this point, cluster federation handles the loosely coupled (including weighted distribution) and strictly coupled (by making sure the number of replicas matches the number of clusters) categories well. Anything else will require that you don't use cluster federation. You'll have to add your own custom federation layer, which takes more specialized concerns into account and can accommodate more intricate scheduling use cases.

 Federated data access

 This is a tough problem. If you have a lot of data and pods running in multiple clusters (possibly on different continents) and need to access them quickly, then you have several unpleasant options:

 	Replicate your data to each cluster (this is slow to replicate, expensive to transfer, expensive to store, and complicated to sync and deal with errors)

 	Access the data remotely (this is slow to access, expensive on each access, and can be a SPOF)

 	Use a sophisticated hybrid solution with per-cluster caching of some of the hottest data (this is complicated, results in stale data, and you still need to transfer a lot of data)

 Federated auto-scaling

 There is currently no support for federated auto-calling. There are two dimensions of scaling that can be utilized, as well as a combination of the two dimensions:

 	Per-cluster scaling

 	Adding/removing clusters from the federation

 	Hybrid approach

 Consider the relatively simple scenario of a loosely coupled application running on three clusters with five pods in each cluster. At some point, 15 pods can't handle the load anymore. We need to add more capacity. We can increase the number of pods per cluster, but if we do this at the federation level, then we will have six pods running in each cluster. We've increased the federation capacity by three pods when only one pod is needed. Of course, if you have more clusters, the problem gets worse. Another option is to pick a cluster and just change its capacity. This is possible with annotations, but now we're explicitly managing capacity across the federation. It can get complicated very quickly if we have lots of clusters running hundreds of services with dynamically changing requirements.

 Adding a whole new cluster is even more complicated. Where should we add the new cluster? There is no requirement for extra availability that can guide the decision. It is just about extra capacity. Creating a new cluster also often requires a complicated first-time setup, where it may take days to approve various quotas on public cloud platforms. The hybrid approach increases the capacity of existing clusters in the federation until it reaches a threshold and then starts adding new clusters. The benefit of this approach is that when you're getting closer to the capacity limit of each cluster, you start preparing new clusters that will be ready to go when necessary. Other than that, it also requires a lot of effort, and you pay for the flexibility and scalability with increased complexity.

 Managing a Kubernetes Cluster Federation

 Managing a Kubernetes Cluster Federation involves many activities above and beyond managing a single cluster. You need to consider cascading resource deletion, load balancing across clusters, failover across clusters, federated service discovery, and federated discovery. Let's go over the various activities in detail. Note that due to the Alpha status of KubeFed, this should not be considered a step-by-step guide to follow. The goal here is to get a sense of what's involved in the management of multiple Kubernetes clusters as a federation.

 Installing kubefedctl

 The best way to interact with KubeFed is through the kubefedctl CLI. Here are the instructions to install the latest release of kubefedctl for macOS:

 VERSION=0.3.0
OS=Darwin
ARCH=amd64
curl -LO https://github.com/kubernetes-sigs/kubefed/releases/download/v${VERSION}/kubefedctl-${VERSION}-${OS}-${ARCH}.tgz
tar -zxvf kubefedctl-*.tgz
chmod u+x kubefedctl
sudo mv kubefedctl /usr/local/bin/

 If typing kubefedctl is too much of a burden, then you can alias it like I did:

 alias kf='kubefedctl'

 To verify it's installed correctly, just run it and you will see the following:

 $ kf
kubefedctl controls a Kubernetes Cluster Federation. Find more information at https://sigs.k8s.io/kubefed.
Usage:
 kubefedctl [flags]
 kubefedctl [command]
Available Commands:
 disable Disables propagation of a Kubernetes API type
 enable Enables propagation of a Kubernetes API type
 federate Federate creates a federated resource from a kubernetes resource
 help Help about any command
 join Register a cluster with a KubeFed control plane
 orphaning-deletion Manage orphaning delete policy
 unjoin Remove the registration of a cluster from a KubeFed control plane
 version Print the version info
Flags:
 --alsologtostderr log to standard error as well as files
 -h, --help help for kubefedctl
 --log-backtrace-at traceLocation when logging hits line file:N, emit a stack trace (default :0)
 --log-dir string If non-empty, write log files in this directory
 --log-file string If non-empty, use this log file
 --log-flush-frequency duration Maximum number of seconds between log flushes (default 5s)
 --logtostderr log to standard error instead of files (default true)
 --skip-headers If true, avoid header prefixes in the log messages
 --stderrthreshold severity logs at or above this threshold go to stderr
 -v, --v Level number for the log level verbosity
 --vmodule moduleSpec comma-separated list of pattern=N settings for file-filtered logging
Use "kubefedctl [command] --help" for more information about a command.

 The next step is to create some clusters that will form our federation.

 Creating clusters

 KubeFed officially supports four Kubernetes environments:

 	KinD (Kubernetes in Docker)

 	Minikube

 	GKE

 	IBM Cloud

 The KinD environment is used by the KubeFed end-to-end tests. However, minikube is the easiest to set up for playing around with. Here are the instructions for creating two minikube clusters:

 minikube start -p cluster-1
minikube start -p cluster-2

 Then, in each cluster, verify all of the pods are running before moving forward.

 Configuring the Host Cluster

 OK. It's time to install the KubeFed control plane in your host cluster. The KubeFed project provides a convenient Helm chart for the task. Unfortunately, KubeFed doesn't support Helm 3 yet, because they use an outdated annotation (crd-install hook). You probably have Helm 3 installed, but you should install Helm 2 as well if you want to try using KubeFed. Since Helm 2 uses Tiller in the cluster, you need to create a service account for Tiller and give it administrator permissions so that it can install the KubeFed control plane securely:

 $ kubectl config use-context cluster-1
Switched to context "cluster-1".
$ cat << EOF | kubectl apply -f –
apiVersion: v1
kind: ServiceAccount
metadata:
 name: tiller
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: tiller
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
 - kind: ServiceAccount
 name: tiller
 namespace: kube-system
EOF
serviceaccount/tiller created
clusterrolebinding.rbac.authorization.k8s.io/tiller created
$ helm2 init --service-account tiller

 Next, we need to add the KubeFed chart repository:

 $ helm2 repo add kubefed-charts https://raw.githubusercontent.com/kubernetes-sigs/kubefed/master/charts
"kubefed-charts" has been added to your repositories
$ helm2 repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts
kubefed-charts https://raw.githubusercontent.com/kubernetes-sigs/kubefed/master/charts

 We can verify that the KubeFed chart is now available using this helm search command:

 $ helm2 search kubefed
NAME CHART VERSION APP VERSION DESCRIPTION
kubefed-charts/federation-v2 0.0.10

 Update your repo:

 $ helm2 repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "kubefed-charts" chart
repository
...Successfully got an update from the "stable" chart repository
Update Complete. [image:] Happy Helming![image:]

 Then, the installation is as simple as:

 $ helm2 install kubefed-charts/kubefed --name kubefed --version=$VERSION --namespace kube-federation-system --devel

 Registering clusters with the federation

 Once the control plane is installed, make sure your ~/.kube/config file has contexts for the host cluster and all of the member clusters. Then, you can use the kubefedctl join command to add clusters to the federation:

 $ kf join cluster1 --cluster-context cluster-1 --host-cluster-context cluster-1 --v=2
$ kf join cluster2 --cluster-context cluster-2 --host-cluster-context cluster-1 --v=2

 Note that cluster-1, here, is the host cluster but is also registered as a member cluster. This is totally fine. There is no need to have a dedicated host cluster.

 To check the status of the federation, you can get the kubefedclusters CRDs:

 $ kubectl -n kube-federation-system get kubefedclusters

 NAME READY AGE
 cluster-1 True 1m
 cluster-2 True 1m

 The preceding command works with Helm 2. In the future, we expect it to work with Helm 3. You can refer to https://github.com/kubernetes-sigs/kubefed/blob/master/charts/kubefed/README.md#installing-the-chart to check for this.

 You use kubectl here and not kubefedctl.

 If you want to unregister a cluster from the federation, use the kubefedctl unjoin command.

 $ kf unjoin cluster-2 --cluster-context cluster-2 --host-cluster-context cluster-1 --v=2

 Working with federated API types

 Kubernetes federation V1 supported only a limited number of Kubernetes API types. With KubeFed V2, any API type can be federated, including your own CRDs.

 However, this doesn't happen automatically. You need to first enable any type that you want to federate:

 $ kf enable <API Type>

 The specification of the type to enable is pretty flexible. It can be the kind of type, the plural name, the group-qualified plural name, or the short name. For example, for deployments, it can be Deployment (kind), deploy (short name), deployments (plural), or deployment.apps (group-qualified plural name).

 When you enable a type, kubefedctl generates a Federated<Type> CRD (for example, FederatedDeployment) and a Federated<Type>Config association to the original type (Deployment).

 Note that the target type must be installed on all member clusters. Ideally, all clusters should run the same version of Kubernetes and be upgraded in tandem to avoid versioning issues. Even if all of the clusters run the same version of Kubernetes, they might not have the same CRDs installed. Remember, you can federate CRDs too, but only as long as they are installed on all clusters.

 Suppose you have a CRD called awesome in the API group example.com. You can verify it is installed in cluster-1 and cluster-2 by running this little script:

 CLUSTER_CONTEXTS=(cluster-1 cluster-2)
for c in ${CLUSTER_CONTEXTS}; do
 echo ----- ${c} -----
 kubectl --context=${c} api-resources --api-group=example.com
done

 The result should be:

 ----- cluster1 -----
NAME SHORTNAMES APIGROUP NAMESPACED KIND
awesome example.com true Awesome
----- cluster2 -----
NAME SHORTNAMES APIGROUP NAMESPACED KIND
awesome Awesome

 Federating resources

 Enabling API types for your federation doesn't actually distribute any resources across the clusters. When you are ready to propagate resources across your federation, you can use the federate command:

 kubefedctl federate <TYPE NAME> <RESOURCE NAME> [flags]

 Let's look at the output of federating a pod without actually federating it (similar to a dry run). Here is the command:

 $ kf federate pod trouble --output yaml

 Here are some selected parts of the generated output. First, the API version is types.kubefed.io/v1beta1, and the kind is FederatedPod:

 apiVersion: types.kubefed.io/v1beta1
kind: FederatedPod
metadata:
 name: trouble
 namespace: default

 Then comes the spec that contains the placement with its clusterSelector, in case you want to only federate to clusters that match some criteria:

 spec:
 placement:
 clusterSelector:
 matchLabels: {}

 The rest of the spec is a standard pod template:

 template:
 metadata:
 labels:
 run: trouble
 spec:
 containers:
 - args:
 - bash
 image: g1g1/py-kube:0.2
 imagePullPolicy: IfNotPresent
 name: trouble
 resources: {}
 ...

 By default, the federated resource will be created in the same namespace as the target type. Of course, the API type must be enabled and installed in all the federation clusters.

 Federating an entire namespace

 KubeFed supports whole namespace federation too. This is very useful because namespaces are convenient for organizing groups of resources together, and it often makes sense to federate all of the resources in a namespace in one fell swoop. Conceptually, a namespace is also a Kubernetes resource, so you can think of it as just federating a single resource, which is the namespace. However, in practice, namespaces are different from other resources because they are the only resources that contain other resources. The key to federated namespaces is the --contents flag that is required. You can also exclude some resources from the federation using the --skip-api-resources flag with a comma-separated list of resources:

 kubefedctl federate namespace awesome-namespace --contents --skip-api-resources "secrets,apps"

 Checking the status of federated resources

 The top-level status field of a federated resource contains information about the propagation of the resource across the federation's member clusters. Here is an example:

 apiVersion: types.kubefed.io/v1beta1
kind: FederatedNamespace
metadata:
 name: awesome-namespace
 namespace: awesome-namespace
spec:
 placement: clusterSelector: {}
status:
 # The status True of the condition of type Propagation
 # indicates that the state of all member clusters is as
 # intended as of the last probe time.
 conditions:
 - type: Propagation
 status: True
 lastTransitionTime: "2019-12-08T14:33:45Z"
 lastUpdateTime: "2019-12-08T14:33:45Z"
 # The namespace 'awesome-namespace' has been verified to exist in the
 # following clusters as of the lastUpdateTime recorded
 # in the 'Propagation' condition. Since that time, no
 # change has been detected to this resource or the
 # resources it manages.
 clusters:
 - name: cluster-1
 - name: cluster-2

 Using overrides

 In the real world, not all clusters are the same. You may need to make various cluster-specific changes. The overrides field of the FederatedDeployment allows you to do exactly that. You specify the overrides field using the jsonpatch (http://jsonpatch.com/) syntax, similar to Kustomize.

 For each override, you specify a path (for example, /spec/replicas), and then you either provide a value to set (for example, value: 5) or an operation (for example, add or remove) and a value to apply. Here is an example:

 kind: FederatedDeployment
...
spec:
 ...
 overrides:
 # Apply overrides to cluster1
 - clusterName: cluster1
 clusterOverrides:
 # Set the replicas field to 5
 - path: "/spec/replicas"
 value: 5
 # Set the image of the first container
 - path: "/spec/template/spec/containers/0/image"
 value: "nginx:1.17.0-alpine"
 # Ensure the annotation "foo: bar" exists
 - path: "/metadata/annotations"
 op: "add"
 value:
 foo: bar
 # Ensure an annotation with key "baz" does not exist
 - path: "/metadata/annotations/baz"
 op: "remove"

 Using placement to control federation

 The placement field of the federated resources controls which member cluster the resource will be federated to. There two ways to place federated resources:

 	A direct list of cluster names

 	A label-based cluster selector

 Here is a direct list placement:

 spec:
 placement:
 clusters:
 - name: cluster-1
 - name: cluster-2

 And here is a label-based cluster selector that deploys the resource to clusters that have a label federate: True:

 spec:
 placement:
 clusterSelector:
 matchLabels:
 federate: True

 So far, so good; however, there's more. If there is no placement field, or if there is a placement with an empty clusterSelector, then the resource will be placed in all of the member clusters:

 spec:
 placement:
 clusterSelector: {}

 However, if an empty list of clusters is specified, then the resource will not be deployed to ANY cluster!

 spec:
 placement:
 clusters: []

 In general, a list of clusters, if specified, always overrides the cluster selector. In this case, the resource will not be deployed to any cluster because of the empty list of clusters, not even to clusters that have a matching label:

 spec:
 placement:
 clusters: []
 clusterSelector:
 matchLabels:
 federate: True

 Debugging propagation failures

 You can use kubectl and the same techniques you use to debug general Kubernetes issues. The kubectl describe command will show you events related to a federated resource:

 $ kubectl describe <federated CRD> <CR name> -n awesome-namespace

 If that doesn't help, then you can check the federation controller logs:

 $ kubectl logs deployment/kubefed-controller-manager -n kube-federation-system

 Now that you have a good sense of how to work with federated resources, let's look at some of the higher abstractions that are built on top of the basics.

 Employing higher-order behavior

 There several high-level multi-cluster considerations and patterns that KubeFed supports out of the box. These behaviors are built on top of the foundation building blocks of templates, overrides, and placement. Let's review them.

 Utilizing multi-cluster Ingress DNS

 Ingress in a single cluster is done at the edge of the cluster and forwards traffic into the cluster. Ingress literally means entrance. However, in the multi-cluster world, the situation is different. The cluster may be needed to send requests from the receiving cluster to a different cluster. Finding the correct destination relies on an external DNS, which is used in addition to the in-cluster CoreDNS. The primary idea is that the endpoints from all of the clusters are managed by a DNS endpoint controller and an Ingress DNS controller. They watch all the clusters and update the multi-cluster IngressDNSRecord and domain names. An External DNS Controller interacts with the external DNS Provider to assign external names that are valid across all the clusters and allow you to locate endpoints across clusters.

 The following diagram illustrates the flow of information and the control loops:

 [image:]
 Figure 11.4: Ingress DNS

 Utilizing multi-cluster Service DNS

 In a Kubernetes federation, services need to be federated, which means their backing pods may be federated across multiple clusters. In order to access those pods and their endpoints, federated services require a mechanism that is very similar to the multi-cluster ingress DNS.

 The typical workflow is:

 	Create FederatedDeployment and FederatedService objects.

 	Create a Domain object that associates a DNS zone and an authoritative nameserver for the KubeFed control plane.

 	Create a ServiceDNSRecord object that identifies the intended domain name of a multi-cluster Service object.

 	The DNS Endpoint controller will create a DNSEndpoint object associated with the ServiceDNSRecord. It contains three A records:
 	<service>.<namespace>.<federation>.svc.<federation-domain>

 	<service>.<namespace>.<federation>.svc.<region>.<federation-domain>

 	<service>.<namespace>.<federation>.svc.<availability-zone>.<region>.<federation-domain>

 	An external DNS system watches and lists DNSEndpoint objects and creates DNS resource records in external DNS providers.

 The following diagram illustrates this process:

 [image:]
 Figure 11.5: Service DNS

 Next, let's look at the critical topic of multi-cluster scheduling.

 Utilizing multi-cluster scheduling

 Consider what it means to do multi-cluster scheduling. You need to specify for each deployment the total number of replicas just like on a single cluster, but you also need to provide some constraints and guidance for distributing the pods across the different clusters. Enter the ReplicaSchedulingPreference. This resource allows you to specify all of your preferences and accomplish a healthy distribution of your workloads across all the federation clusters.

 Here is a simple example that specifies the total number of 15 replicas. KubeFed will try to distribute the 15 replicas evenly across all of the member clusters:

 apiVersion: scheduling.kubefed.io/v1alpha1
kind: ReplicaSchedulingPreference
metadata:
 name: awesome-deployment
 namespace: awesome-ns
spec:
 targetKind: FederatedDeployment
 totalReplicas: 15

 If there are three clusters in the federation, then 5 replicas will run in each cluster.

 The following example is a little more elaborate and uses weighted distribution. The weights are 2:3 for cluster-1 and cluster-2. This means that the 15 replicas will be distributed in a ratio of 2 to 3, which results in 6 replicas running in cluster-1 and 9 replicas running in cluster-2:

 apiVersion: scheduling.kubefed.io/v1alpha1
kind: ReplicaSchedulingPreference
metadata:
 name: awesome-deployment
 namespace: awesome-ns
spec:
 targetKind: FederatedDeployment
 totalReplicas: 15
 clusters:
 cluster-1:
 weight: 2
 cluster-2:
 weight: 3

 Weighted distribution is nice, but it can lead to undesirable edge cases, especially when one of the member clusters becomes unreachable or is otherwise unavailable. To maintain some boundaries, you can specify for each cluster a range of the minimum and maximum number of replicas that are allowed to run in the cluster. KubeFed will do its best to maintain the weighted distribution without violating the constraints of the minimum and maximum number of replicas. In particular, the maximum number is a hard limit that KubeFed will always respect. The minimum number might be impossible to uphold under certain circumstances.

 In the following example, the same 2:3 ratio of 15 replicas is maintained. However, cluster-1 has a maxReplicas limit of 5, so it will run just 5 replicas and not 6 as before. On the other hand, cluster-2 has a maxReplicas limit of 12, so it can pick up the slack and run 10 replicas, which is one more replica than before. The end result is that all 15 replicas are scheduled, that is, cluster-1 runs 5 replicas and cluster-2 runs 10 replicas, which is a ratio of 1:2 and not 2:3. That's the best KubeFed can do under this particular set of constraints while still scheduling all 15 replicas:

 apiVersion: scheduling.kubefed.io/v1alpha1
kind: ReplicaSchedulingPreference
metadata:
 name: awesome-deployment
 namespace: awesome-ns
spec:
 targetKind: FederatedDeployment
 totalReplicas: 15
 clusters:
 cluster-1:
 weight: 2
 minReplicas: 4
 maxReplicas: 5
 cluster-2:
 weight: 3
 minReplicas: 4
 maxReplicas: 12

 You can also do a uniform distribution with exceptions. For example, you can distribute evenly across all clusters except one particular cluster that has some constraints. Here, 100 replicas will be distributed evenly to all clusters, except for cluster-3, which must have at least 5 replicas:

 apiVersion: scheduling.kubefed.io/v1alpha1
kind: ReplicaSchedulingPreference
metadata:
 name: awesome-deployment
 namespace: awesome-ns
spec:
 targetKind: FederatedDeployment
 totalReplicas: 100
 clusters:
 "*":
 weight: 1
 cluster-3:
 minReplicas: 5
 weight: 1

 Cluster federation shines when you want to treat your multi-cluster system like one big cluster. However, in many cases, the correct level of abstraction is a collection of separate clusters. This is where the Gardener project comes in.

 Introducing the Gardener project

 The Gardener (https://gardener.cloud/) project is an open source project developed by SAP. It lets you manage thousands (yes, thousands!) of Kubernetes clusters efficiently and economically. Gardener solves a very complex problem, and the solution is elegant but not simple. In this section, we will cover the terminology of Gardener, its conceptual model, dive deep into its architecture, and learn about its features of extensibility. The primary theme of Gardener is to use Kubernetes to manage Kubernetes clusters. A good way to think about Gardener is as Kubernetes-control-plane-as-a-service.

 Understanding the terminology of Gardener

 The Gardener project, as you may have guessed, uses botanical terminology to describe the world. There is a garden, which is a Kubernetes cluster that is responsible for managing seed clusters. A seed is a Kubernetes cluster that is responsible for managing a set of shoot clusters. A shoot cluster is a Kubernetes cluster that runs actual workloads. The cool idea behind Gardener is that the shoot clusters contain only the worker nodes. The control planes of all the shoot clusters run as Kubernetes pods and services in the seed cluster.

 The following diagram describes, in detail, the structure of Gardener and the relationships between its components:

 [image:]
 Figure 11.6: The structure of Gardener and its components

 Don't panic! Underlying all of this complexity is a crystal-clear conceptual model.

 Understanding the conceptual model of Gardener

 The architecture diagram of Gardener can be overwhelming. Let's unpack it slowly and consider the underlying principles. Gardener really embraces the spirit of Kubernetes and offloads a lot of the complexity of managing a large set of Kubernetes clusters to Kubernetes itself. At its heart, Gardener is an aggregated API server (an extended Kubernetes API server) that manages a set of custom resources using various controllers. It embraces and takes full advantage of Kubernetes extensibility. This approach is common in the Kubernetes community. Define a set of custom resources and let Kubernetes manage them for you. The novelty of Gardener is that it takes this approach to the extreme and abstracts away parts of the Kubernetes infrastructure itself.

 In a "normal" Kubernetes cluster, the control plane runs in the same cluster as the worker nodes. Typically, in large clusters, control plane components like the Kubernetes API server and etcd run on dedicated nodes and don't mix with the worker nodes. Gardener thinks in terms of many clusters, and it takes all the control planes of all the shoot clusters and uses a seed cluster to manage them. So the Kubernetes control planes of the shoot clusters are managed in the seed cluster as regular Kubernetes Deployments, which are automatically provided with replication, monitoring, self-healing, and rolling updates by Kubernetes.

 So the control plane of a Kubernetes shoot cluster is analogous to a Deployment. The seed cluster, on the other hand, maps to a Kubernetes node. It manages multiple shoot clusters. We recommend that you have a seed cluster per cloud provider. The Gardener developers actually work on a Gardenlet controller for seed clusters that is similar to the kubelet on nodes.

 If the seed clusters are like Kubernetes nodes, then the garden cluster that manages those seed clusters is like a Kubernetes cluster that manages its worker nodes.

 By pushing the Kubernetes model this far, the Gardener project leverages the strengths of Kubernetes to achieve a robustness and a performance that would be very difficult to build from scratch.

 Let's dive into the architecture.

 Diving into the Gardener architecture

 Gardener creates a Kubernetes namespace in the seed cluster for each shoot cluster. It manages the certificates of the shoot cluster as Kubernetes secrets in the seed cluster.

 Managing cluster state

 The etcd data store for each cluster is deployed as a StatefulSet with one replica. In addition to this, events are stored in a separate etcd instance. The etcd data is periodically snapshotted and stored in remote storage for backup and restore purposes. This enables the very fast recovery of clusters that have lost their control plane (for example, when an entire seed cluster becomes unreachable). Note that when a seed cluster goes down, the shoot cluster continues to run as usual.

 Managing the control plane

 As mentioned before, the control plane of a shoot cluster X runs in a separate seed cluster, while the worker nodes run in a shoot cluster. This means that pods in the shoot cluster can use an internal DNS to locate each other, but communication to the Kubernetes API server running in the seed cluster must be done through an external DNS. This means the Kubernetes API server runs as a service of type LoadBalancer.

 Preparing the infrastructure

 When creating a new shoot cluster, it's important to provide the necessary infrastructure. Gardener uses Terraform for this task. It generates a Terraform script based on the shoot cluster specification and stores it as a ConfigMap in the seed cluster. A dedicated Terraformer component runs as a Job, performs all the provisioning, and then writes the state into a separate ConfigMap.

 Using the Machine controller manager

 To provision nodes in a provider-agnostic way that can work for private clouds too, Gardener has several custom resources such as MachineDeployment, MachineClass, MachineSet, and Machine. They work with the Kubernetes Cluster Lifecycle group to unify their abstractions because there is a lot of overlap. In addition, Gardener takes advantage of the cluster auto-scaler to offload the complexity of scaling node pools up and down.

 Networking across clusters

 The seed cluster and shoot clusters can run on different cloud providers. The worker nodes in the shoot clusters are often deployed in private networks. Since the control plane needs to interact closely with the worker nodes (mostly the kubelet), the Gardener creates a VPN for direct communication.

 Monitoring clusters

 Observability is a big part of operating complex distributed systems. Gardener provides a lot of monitoring out of the box using the best of class open source projects like a central Prometheus (https://github.com/prometheus/prometheus) server, which is deployed in the garden cluster that collects information about all seed clusters.

 In addition, each shoot cluster gets its own Prometheus instance in the seed cluster. To collect metrics, Gardener deploys two kube-state-metrics (https://github.com/kubernetes/kube-state-metrics) instances for each cluster (one for the control plane in the seed and one for the worker nodes in the shoot). The node-exporter (https://github.com/prometheus/node_exporter) is deployed too, to provide additional information about the nodes. The Prometheus AlertManager (https://prometheus.io/docs/alerting/alertmanager/) is used to notify the operator when something goes wrong. Grafana (https://github.com/grafana/grafana) is used to display dashboards with relevant data about the state of the system.

 The gardenctl CLI

 You can manage Gardener only using kubectl, but you will have to switch profiles and contexts a lot as you explore different clusters. Gardener provides the gardenctl command-line tool, which offers higher-level abstractions and can operate on multiple clusters at the same time. Here is an example:

 $ gardenctl ls shoots
projects:
- project: team-a
 shoots:
 - dev-eu1
 - prod-eu1
$ gardenctl target shoot prod-eu1
[prod-eu1]
$ gardenctl show Prometheus
NAME READY STATUS RESTARTS AGE IP NODE
prometheus-0 3/3 Running 0 106d 10.241.241.42 ip-10-240-7-72.eu-central-1.compute.internal
URL: https://user:password@p.prod-eu1.team-a.seed.aws-eu1.example.com

 One of the most prominent features of Gardener is its extensibility. It has a large surface area and supports many environments. Let's look at how extensibility is built into its design.

 Extending Gardener

 Gardener supports the following environments:

 	AWS

 	GCP

 	Azure

 	AliCloud

 	Packet

 	OpenStack

 It started like Kubernetes itself with a lot of provider-specific support in the primary Gardener repository. Over time, it followed the Kubernetes example, which externalized cloud providers and migrated the providers to a separate Gardener extension. Providers can be specified using a CloudProfile CRD, such as:

 apiVersion: gardener.cloud/v1alpha1
kind: CloudProfile
metadata:
 name: aws
spec:
 type: aws
caBundle: |
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----
 dnsProviders:
 - type: aws-route53
 - type: unmanaged
 kubernetes:
 versions:
 - 1.12.1
 - 1.11.0
 - 1.10.5
 machineTypes:
 - name: m4.large
 cpu: "2"
 gpu: "0"
 memory: 8Gi
 # storage: 20Gi # optional (not needed in every environment, may only be specified if no volumeTypes have been specified)
 ...
 volumeTypes: # optional (not needed in every environment, may only be specified if no machineType has a 'storage' field)
 - name: gp2
 class: standard
 - name: io1
 class: premium
 providerConfig:
 apiVersion: aws.cloud.gardener.cloud/v1alpha1
 kind: CloudProfileConfig
 constraints:
 minimumVolumeSize: 20Gi
 machineImages:
 - name: coreos
 regions:
 - name: eu-west-1
 ami: ami-32d1474b
 - name: us-east-1
 ami: ami-e582d29f
 zones:
 - region: eu-west-1
 zones:
 - name: eu-west-1a
 unavailableMachineTypes: # list of machine types defined above that are not available in this zone
 - name: m4.large
 unavailableVolumeTypes: # list of volume types defined above that are not available in this zone
 - name: gp2
 - name: eu-west-1b
 - name: eu-west-1c

 Then, a shoot cluster will choose a provider and configure it with the necessary information:

 apiVersion: gardener.cloud/v1alpha1
kind: Shoot
metadata:
 name: johndoe-aws
 namespace: garden-dev
spec:
 cloudProfileName: aws
 secretBindingName: core-aws
 cloud:
 type: aws
 region: eu-west-1
 providerConfig:
 apiVersion: aws.cloud.gardener.cloud/v1alpha1
 kind: InfrastructureConfig
 networks:
 vpc: # specify either 'id' or 'cidr'
 # id: vpc-123456
 cidr: 10.250.0.0/16
 internal:
 - 10.250.112.0/22
 public:
 - 10.250.96.0/22
 workers:
 - 10.250.0.0/19
 zones:
 - eu-west-1a
 workerPools:
 - name: pool-01
 # Taints, labels, and annotations are not yet implemented. This requires interaction with the machine-controller-manager, see
 # https://github.com/gardener/machine-controller-manager/issues/174. It is only mentioned here as future proposal.
 # taints:
 # - key: foo
 # value: bar
 # effect: PreferNoSchedule
 # labels:
 # - key: bar
 # value: baz
 # annotations:
 # - key: foo
 # value: hugo
 machineType: m4.large
 volume: # optional, not needed in every environment, may only be specified if the referenced CloudProfile contains the volumeTypes field
 type: gp2
 size: 20Gi
 providerConfig:
 apiVersion: aws.cloud.gardener.cloud/v1alpha1
 kind: WorkerPoolConfig
 machineImage:
 name: coreos
 ami: ami-d0dcef3
 zones:
 - eu-west-1a
 minimum: 2
 maximum: 2
 maxSurge: 1
 maxUnavailable: 0
 kubernetes:
 version: 1.11.0
 ...
 dns:
 provider: aws-route53
 domain: johndoe-aws.garden-dev.example.com
 maintenance:
 timeWindow:
 begin: 220000+0100
 end: 230000+0100
 autoUpdate:
 kubernetesVersion: true
 backup:
 schedule: "*/5 * * * *"
 maximum: 7
 addons:
 kube2iam:
 enabled: false
 kubernetes-dashboard:
 enabled: true
 cluster-autoscaler:
 enabled: true
 nginx-ingress:
 enabled: true
 loadBalancerSourceRanges: []
 kube-lego:
 enabled: true
 email: john.doe@example.com

 However, the extensibility goals of Gardener go far beyond just being provider-agnostic. The overall process of standing up a Kubernetes cluster involves many steps. The Gardener project aims to let the operator customize each and every step by defining custom resources and Webhooks. Here is a general flow diagram with the CRDs, mutating/validating admission controllers, and Webhooks associated with each step:

 [image:]
 Figure 11.7: General flow diagram with the CRDs, mutating/validating admission controllers, and Webhooks

 Here are the CRD categories that comprise the extensibility space of Gardener:

 	DNS providers (for example, Route53 and CloudDNS)

 	Blob storage providers (for example, S3, GCS, and ABS)

 	Infrastructure providers (for example, AWS, GCP, and Azure)

 	Operating systems (for example, CoreOS Container Linux, Ubuntu, and FlatCar Linux)

 	Network plugins (for example, Calico, Flannel, and Cilium)

 	Non-essential extensions (for example, the Let's Encrypt certificate service)

 Gardener ring

 Another novel idea is to create a cluster ring of at least three clusters, where shoot clusters serve as seed clusters for the next cluster in the ring. Together with the ability to migrate control planes to other clusters, the ring provides a robust solution that can self-heal if any cluster becomes unavailable. This is especially powerful if clusters are deployed on different cloud providers or at least in different regions. It has the potential to protect the garden from severe situations like a total region outage or even a complete cloud provider outage.

 Here is how the ring is organized:

 [image:]
 Figure 11.8: The Gardener Ring

 Summary

 In this chapter, we've covered the important aspects of a Kubernetes Cluster Federation as well as the management of many Kubernetes clusters using the Gardener project. Cluster federation is still in beta and is a little raw, but it is already usable. There aren't a lot of deployments, and the officially supported target platforms are currently AWS and GCE/GKE, but there is a lot of momentum behind cloud federation. It is a very important piece for building massively scalable systems on Kubernetes. We've discussed the motivation and use cases for the Kubernetes Cluster Federation, the federation control plane components, and the federated Kubernetes objects. We also looked at the less supported aspects of a federation, such as custom scheduling, federated data access, and auto-scaling. We then looked at how to run multiple Kubernetes clusters, which includes setting up a Kubernetes Cluster Federation, adding and removing clusters to the federation along with load balancing, federated failover when something goes wrong, service discovery, and migration. Then, we dived into running federated workloads across multiple clusters with federated services and the various challenges associated with this scenario.

 The Gardener project has a very interesting approach and architecture. It tackles the problem of multiple clusters from a different angle and focuses on the large-scale management of clusters. It is relatively new, but it is used at scale by SAP and other partners.

 At this point, you should have a clear understanding of the current state of a federation, what it takes to utilize the existing capabilities provided by Kubernetes, and what pieces you'll have to implement yourself to augment incomplete or immature features. Depending on your use case, you may decide that it's still too early or that you want to take the plunge. The developers who are working on the Kubernetes federation are moving fast, so it's very likely that it will be much more mature and battle-tested by the time you need to make your decision.

 If you're in a position where you need to manage more than a few Kubernetes clusters, the Gardener project may be for you.

 In the next chapter, we will explore the exciting world of serverless computing on Kubernetes. Serverless can mean two different things: when you don't have to manage servers for your long-running workloads and when running functions on a service. Both forms of serverless are available for Kubernetes and both are extremely useful.

 12

 Serverless Computing on Kubernetes

 In this chapter, we will explore the fascinating world of serverless computing in the cloud. The term "serverless" is getting a lot of attention, but it is a misnomer used to describe two different paradigms. A true serverless application runs as a web application in the user's browser or a mobile app and only interacts with external services. The types of serverless systems we build on Kubernetes are different. We will explain exactly what serverless means on Kubernetes and how it relates to other serverless solutions. We will cover serverless cloud solutions, introduce Knative – the Kubernetes foundation for functions as a service – and dive into Kubernetes Functions as a Service (FaaS) frameworks.

 Let's start by clarifying what serverless is all about.

 Understanding serverless computing

 OK. Let's get it out of the way. The servers are still there. The term "serverless" means that you don't have to provision, configure, and manage the servers yourself. Public cloud platforms were a real paradigm shift by eliminating the need for dealing with physical hardware, data centers, and networking. But, even on the cloud it takes a lot of work and knowhow to create and provision machine images, provision instances, configure them, upgrade and patch operating systems, define network policies, and manage certificates and access control. With serverless computing, large chunks of this important but tedious work go away.

 The allure of serverless is multi-pronged:

 	A whole category of problems dealing with provisioning goes away

 	Capacity planning is a non-issue

 	You pay only for what you use

 You lose some control because you have to live with the choices made by the cloud provider. But, there is a lot of customization you can take advantage of for critical parts of the system. Of course, where you need total control you can still manage your own infrastructure.

 The bottom line is that the serverless approach is not just hype, but provides real benefits. Let's examine the two flavors of serverless.

 Running long-running services on "serverless" infrastructure

 Long-running services are the bread and butter of microservice based distributed systems. These services must be always available and waiting to service requests, and can be scaled up and down to match the volume. In the traditional cloud, you had to provision enough capacity to handle spikes and changing volumes, which often led to over-provisioning or increased delays in processing when requests were waiting for under-provisioned services.

 Serverless services address this issue with zero effort from developers and relatively little effort from operators. The idea is that you just mark your service to run on the serverless infrastructure and configure it with some parameters such as the expected CPU, memory, and any limits for the scaling. The service appears to other services and clients just like a traditional service you deployed on infrastructure you provisioned yourself.

 Services that fall into this category have the following characteristics:

 	They're always running (they never scale down to zero)

 	They expose multiple endpoints (such as HTTP and gRPC)

 	They require that you implement the request handling and routing yourself

 	They can listen to events instead or in addition to exposing endpoints

 	Service instances can maintain in-memory caches, long-term connections, and sessions

 	In Kubernetes, microservices are represented directly by the Service resource

 Now, let's look at FaaS.

 Running FaaS on "serverless" infrastructure

 Even in the largest distributed systems, we don't have every workload handling multiple requests per second. There are always tasks that need to run in response to relatively infrequent events, be it on schedule or invoked in an ad hoc manner. It's possible to have a long-running service just sitting there twiddling its virtual thumbs and processing a request every now and then. But that's wasteful. You can try to hitch such tasks to other long-running services, but that creates very undesirable coupling, which goes against the philosophy of microservices.

 A much better approach is to treat such tasks separately and provide different abstractions and tooling to address them. Kubernetes has the concepts of a Job and a CronJob object. They address some of issues that FaaS tackles, but not completely.

 A FaaS solution is often much simpler to get up and running compared to a traditional service. The developers may only need to write the code for the function. The FaaS solution will take care of the rest:

 	Building and packaging

 	Exposing as an endpoint

 	Triggers based on events

 	Automatic provisioning and scaling

 	Monitoring and providing logs and metrics

 Here are some of the characteristics of a FaaS solution:

 	Runs on demand (that is, it can scale down to zero)

 	Exposes a single endpoint (usually HTTP)

 	Can be triggered by events or get an automatic endpoint

 	Often has severe limitations on resource usage and maximum runtime

 	Sometimes, it might have a cold start (that is, when scaling up from zero)

 Serverless Kubernetes in the cloud

 All the major cloud providers now supports serverless long-running services for Kubernetes. Surprisingly, Microsoft Azure was the first to offer this. Kubernetes interacts with nodes via the kubelet. The basic idea of serverless infrastructure is that instead of provisioning actual nodes (be they physical or on virtual machines (VMs)), a virtual node is created in some fashion. Different cloud providers use different solutions to accomplish this goal.

 Don't forget the cluster autoscaler

 Before jumping into cloud provider-specific solutions, make sure to check out the Kubernetes-native option of the cluster autoscaler. The cluster autoscaler scales the nodes in your cluster and doesn't suffer from the limitations of some of the other solutions. All the Kubernetes scheduling and control mechanisms work out of the box with the cluster autoscaler because it just automates adding and removing regular nodes from your cluster. No exotic or provider-specific capabilities are used.

 But, you may have good reasons to prefer a more provider-integrated solution. For example, Fargate runs inside Firecracker, which is a lightweight VM with strong security boundaries (as a side note, Lambda functions run on Firecracker too). Similarly, Google Cloud Run runs in gVisor.

 Azure AKS and Azure Container Instances

 Azure has supported Azure Container Instances (ACI) for a long time. ACI is not Kubernetes-specific. It allows the running of on-demand containers on Azure in a managed environment. It is similar in some regards to Kubernetes, but is Azure-specific. It even has the concept of a container group, which is similar to a pod. All containers in a container group will be scheduled to run on the same host machine:

 [image:]
 Figure 12.1: ACI container group

 The integration with Kubernetes/AKS is modeled as bursting from AKS to ACI. The guiding principle here is that for your known workloads, you should provision your own nodes, but if there are spikes then the extra load will burst dynamically to ACI. This approach is considered more economical because running on ACI is more expansive than provisioning your own nodes. AKS uses the virtual kubelet (https://virtual-kubelet.io/) CNCF project to integrate your Kubernetes cluster with the infinite capacity of ACI. It works by adding a virtual node to your cluster backed by ACI that appears on the Kubernetes side as a single node with infinite resources:

 [image:]
 Figure 12.2: Virtual node architecture in AKS

 Let's see how AWS does it with EKS and Fargate.

 AWS EKS and Fargate

 AWS released Fargate (https://aws.amazon.com/fargate/) in 2018, which is similar to Azure ACI and lets you run containers in a managed environment. Originally, you could use Fargate on EC2 or ECS (AWS proprietary container orchestration). At the big AWS conference, re:Invent 2019, Fargate became generally available on EKS too. That means that you now have a fully managed Kubernetes solution that is truly serverless.

 EKS takes care of control plane and Fargate takes care of worker nodes for you:

 [image:]
 Figure 12.3: EKS and Fargate in practice

 Use of EKS and Fargate models the interaction between your Kubernetes cluster and Fargate differently than AKS and ACI. While on AKS, a single infinite virtual node represents the entire capacity of ACI, on EKS each pod gets its own virtual node. But of course, those nodes are not real nodes. Fargate has its own control plane and data plane that support EC2 and ECS, as well as EKS. The EKS-Fargate integration is done via a set of custom Kubernetes controllers that watch for pods that need to be deployed to a particular namespace or have specific labels, and forwards those pods to be scheduled by Fargate. The following diagram illustrates the integration between EKS and Fargate:

 [image:]
 Figure 12.4: Integration between EKS and Fargate

 When working with Fargate, there are several limitations you should be aware of:

 	A maximum of 4 vCPUs and 30 GB memory per pod

 	No support for stateful workloads that require persistent volumes or filesystems

 	No DaemonSets, privileged pods, or pods that use HostNetwork or HostPort

 	You can only use the application load balancer

 If those limitations are too severe for you, you can try a more direct approach and utilize the virtual kubelet project to integrate Fargate into your cluster.

 What about Google, the father of Kubernetes?

 Google Cloud Run

 It may come as a surprise, but Google is the Johnny-come-lately of serverless Kubernetes. Cloud Run is Google's serverless offering. It is based on Knative, which we will dissect in depth in the next section. The basic premise is that there are two flavors of Cloud Run. Plain Cloud Run is similar to ACI and Fargate. It lets you run containers in an environment fully managed by Google. Cloud for Anthos supports GKE and On-Prem lets you run containerized workloads in your GKE cluster.

 Cloud for Anthos is currently the only serverless platform to allow running on custom machine types (including GPUs). Anthos Cloud Run services participate in the Istio service mesh and provide a streamlined Kubernetes-native experience.

 Note that while managed Cloud Run instances use gVisor isolation, Anthos Cloud Run uses standard Kubernetes isolation (container-based).

 It's time to learn more about Knative.

 Knative

 Kubernetes doesn't have built-in support for FaaS. As a result, many solutions were developed by the community for the ecosystem. The goal of Knative is to provide building blocks that multiple FaaS solutions can utilize without reinventing the wheel.

 But that's not all! Knative also offers the unique capability of scaling long-running services all the way down to zero. This is a big deal. There are many use cases where you may prefer to have a long-running service that can handle a lot of requests coming its way in rapid succession. In those situations, it is not the best approach to fire a new function instance per request. But, when there is no traffic coming in, it's great to scale the service to zero instances, pay nothing, and leave more capacity for other services that may need more resources at that time. Knative supports other important use cases including load balancing based on percentages, load balancing based on metrics, blue-green deployments, canary deployments, and advanced routing. It can even optionally do automatic TLS certificates as well as HTTP monitoring. Finally, Knative works with both HTTP and gRPC.

 There are currently two Knative components: Knative Serving and Knative Eventing. There used to also be a Knative build component, but it was factored out to form the foundation of Tekton (https://github.com/tektoncd/pipeline), a Kubernetes-native CD project.

 Let's start with Knative Serving.

 Knative Serving

 The domain of Knative Serving is running versions services on Kubernetes and routing traffic to those services. This is above and beyond standard Kubernetes services. A Knative service defines several CRDs to model its domain: Service, Route, Configuration, and Revision. The Service manages a Route and a Configuration. A Configuration can have multiple Revisions.

 The Route can route service traffic to a particular revision. Here is a diagram that illustrates the relationship between the different objects:

 [image:]
 Figure 12.5: Relationships between Knative objects

 The Knative Service object

 The Knative Service object combines the Kubernetes Deployment and Service into a single object. That makes a lot of sense because, except for the special case of headless services (https://kubernetes.io/docs/concepts/services-networking/service/#headless-services), there is always a deployment behind every service.

 The Service automatically manages the entire life cycle of its workload. It is responsible for creating the route and configuration and a new revision whenever the service is updated. This is very convenient because the user just needs to deal with the Service object.

 Here is the metadata for the helloworld-go Knative service:

 $ kubectl get ksvc helloworld-go -o json | jq .metadata
{
 "annotations": {
 "serving.knative.dev/creator": "minikube-user",
 "serving.knative.dev/lastModifier": "minikube-user"
 },
 "creationTimestamp": "2019-12-25T18:44:34Z",
 "generation": 1,
 "name": "helloworld-go",
 "namespace": "default",
 "resourceVersion": "43258",
 "selfLink": "/apis/serving.knative.dev/v1/namespaces/default/services/helloworld-go",
 "uid": "d1979430-464e-49d6-bf68-bb384d1ef0b3"
}

 And here is the spec:

 $ kubectl get ksvc helloworld-go -o json | jq .spec
{
 "template": {
 "metadata": {
 "creationTimestamp": null
 },
 "spec": {
 "containerConcurrency": 0,
 "containers": [
 {
 "env": [
 {
 "name": "TARGET",
 "value": "Yeah, it works!!!"
 }
],
 "image": "gcr.io/knative-samples/helloworld-go",
 "name": "user-container",
 "readinessProbe": {
 "successThreshold": 1,
 "tcpSocket": {
 "port": 0
 }
 },
 "resources": {}
 }
],
 "timeoutSeconds": 300
 }
 },
 "traffic": [
 {
 "latestRevision": true,
 "percent": 100
 }
]
}

 Note the traffic section of the spec that directs 100% of requests to the latest revision. This is what determines the Route CRD.

 The Knative Route object

 The Knative Route object allows the directing of a percentage of incoming requests to particular revisions. The default is 100% to the latest revision, but you can change it. This allows advanced deployment scenarios such as blue-green deployments as well as canary deployments.

 For example, this is how to switch from blue to green when deploying a new version. Start with 100% going to the current revision and 0% going to the new revision (tagged v2):

 apiVersion: serving.knative.dev/v1
kind: Route
metadata:
 name: blue-green-demo # Route name is unchanged, since we're updating an existing Route
 namespace: default
spec:
 traffic:
 - revisionName: blue-green-demo-lcfrd
 percent: 100 # All traffic still going to the first revision
 - revisionName: blue-green-demo-m9548
 percent: 0 # 0% of traffic routed to the second revision
 tag: v2 # A named route

 Then, to switch all traffic to the new version, apply the following change to the route:

 apiVersion: serving.knative.dev/v1
kind: Route
metadata:
 name: blue-green-demo # Updating our existing route
 namespace: default
spec:
 traffic:
 - revisionName: blue-green-demo-lcfrd
 percent: 0
 tag: v1 # Adding a new named route for v1
 - revisionName: blue-green-demo-m9548
 percent: 100
 # Named route for v2 has been removed, since we don't need it anymore

 If you want more gradual shifting of the load, you can do different percentages as long as they add up to 100%.

 The Knative Configuration object

 The Configuration CRD contains the latest version of the service and the number of generations. For example, if we update the service to version 2:

 apiVersion: serving.knative.dev/v1 # Current version of Knative
kind: Service
metadata:
 name: helloworld-go # The name of the app
 namespace: default # The namespace the app will use
spec:
 template:
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-go # The URL to the image of the app
 env:
 - name: TARGET # The environment variable printed out by the sample app
 value: "Yeah, it still works - version 2 !!!"

 Then the configuration will contain this new version, but mark it as generation 2:

 $ kubectl get configurations helloworld-go -o yaml
apiVersion: serving.knative.dev/v1
kind: Configuration
metadata:
 annotations:
 serving.knative.dev/creator: minikube-user
 serving.knative.dev/lastModifier: minikube-user
 creationTimestamp: "2019-12-25T18:44:34Z"
 generation: 2
 labels:
 serving.knative.dev/route: helloworld-go
 serving.knative.dev/service: helloworld-go
 name: helloworld-go
 namespace: default
 ownerReferences:
 - apiVersion: serving.knative.dev/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: Service
 name: helloworld-go
 uid: d1979430-464e-49d6-bf68-bb384d1ef0b3
 resourceVersion: "75459"
 selfLink: /apis/serving.knative.dev/v1/namespaces/default/configurations/helloworld-go
 uid: c1ce42e0-e6ec-412f-9e07-4c41370e024c
spec:
 template:
 metadata:
 creationTimestamp: null
 spec:
 containerConcurrency: 0
 containers:
 - env:
 - name: TARGET
 value: Yeah, it still works - version 2 !!!
 image: gcr.io/knative-samples/helloworld-go
 name: user-container
 readinessProbe:
 successThreshold: 1
 tcpSocket:
 port: 0
 resources: {}
 timeoutSeconds: 300
status:
 conditions:
 - lastTransitionTime: "2019-12-26T03:21:45Z"
 status: "True"
 type: Ready
 latestCreatedRevisionName: helloworld-go-l58sn
 latestReadyRevisionName: helloworld-go-l58sn
 observedGeneration: 2

 But note that the Route will still point to version 1:

 $ kubectl get route helloworld-go -o yaml
apiVersion: serving.knative.dev/v1
kind: Route
metadata:
 annotations:
 serving.knative.dev/creator: minikube-user
 serving.knative.dev/lastModifier: minikube-user
 creationTimestamp: "2019-12-25T18:44:35Z"
 generation: 1
 labels:
 serving.knative.dev/service: helloworld-go
 name: helloworld-go
 namespace: default
 ownerReferences:
 - apiVersion: serving.knative.dev/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: Service
 name: helloworld-go
 uid: d1979430-464e-49d6-bf68-bb384d1ef0b3
 resourceVersion: "75500"
 selfLink: /apis/serving.knative.dev/v1/namespaces/default/routes/helloworld-go
 uid: 5a22217f-7090-46d2-b009-61ca0d3b6561
spec:
 traffic:
 - configurationName: helloworld-go
 latestRevision: true
 percent: 100
status:
 address:
 url: http://helloworld-go.default.svc.cluster.local
 conditions:
 - lastTransitionTime: "2019-12-25T18:45:25Z"
 status: "True"
 type: AllTrafficAssigned
 - lastTransitionTime: "2019-12-26T03:21:51Z"
 status: "True"
 type: IngressReady
 - lastTransitionTime: "2019-12-26T03:21:51Z"
 status: "True"
 type: Ready
 observedGeneration: 1
 traffic:
 - latestRevision: true
 percent: 100
 revisionName: helloworld-go-l58sn
 url: http://helloworld-go.default.example.com

 The Knative Revision object

 However, both the current and new versions will be captured as separate revisions:

 $ kubectl get revisions
NAME CONFIG NAME K8S SERVICE NAME GENERATION READY REASON
helloworld-go-fltxb helloworld-go helloworld-go-fltxb 1 True
helloworld-go-l58sn helloworld-go helloworld-go-l58sn 2 True

 As you can see, both generations are present and that allows routing to either one of them or dividing the traffic between them using a Route, as we saw earlier.

 To summarize, Knative Serving provides better deployment and networking for Kubernetes for long-running services and functions. Let's see what Knative Eventing brings to the table.

 Knative Eventing

 Traditional services on Kubernetes or other systems expose API endpoints that consumers can hit (often over HTTP) to send a request for processing. This pattern of request-response is very useful and hence is so popular. However, this is not the only pattern for invoking services or functions. Most distributed systems have some form of loosely coupled interactions where events are published. It is desirable to invoke some code when events occur.

 Before Knative, you had to build this capability yourself or use some third-party library that binds events to code. Knative Eventing aims to provide a standard way to accomplish this task. It is compatible with the CNCF's CloudEvents specification (https://github.com/cloudevents/spec/blob/master/spec.md#design-goals).

 Getting familiar with Knative Eventing terminology

 Before diving into the architecture, let's define some terms and concepts we will use later.

 Event consumer

 There are two types of event consumers: Addressable and Callable. Addressable consumers can receive events over HTTP through their status.address.url field. The Kubernetes Service object doesn't have such a field, but it is also considered a special case of an Addressable consumer.

 Callable consumers receive an event delivered over HTTP and may return another event in the response that will be consumed just like an external event. Callable consumers provide an effective way to transform events.

 Event source

 This is the originator of an event. Knative supports many common sources and you can write your own custom event source too. Here is a list of supported event sources (many of them are still in the early development phase):

 	AWS SQS

 	Apache Camel

 	Apache CouchDB

 	Apache Kafka

 	BitBucket

 	Cron Job

 	GCP Pub/Sub

 	GitHub

 	GitLab

 	Google Cloud Scheduler

 	Kubernetes (Kubernetes Events)

 There are also a few meta controllers that assist in implementing event sources, such as the following:

 	ContainerSource: https://github.com/knative/eventing/blob/master/pkg/apis/sources/v1alpha1/containersource_types.go

 	AutoContainerSource: https://github.com/Harwayne/auto-container-source

 	Same Source: https://github.com/grantr/sample-source

 Broker and Trigger

 A broker mediates events identified by particular attributes and matches them with consumers via triggers. The trigger includes a filter of event attributes and an addressable consumer. When the event arrives at the broker, it forwards it to consumers that have triggers with matching filters to the event attributes. The following diagram illustrates this workflow:

 [image:]
 Figure 12.6: Broker and trigger workflow

 Event types and the Event Registry

 Events can have a type, which is modeled as the EventType CRD. The Event Registry stores all the event types. Triggers can use the event type as one of their filter criteria.

 Channels and subscriptions

 A channel is an optional persistence layer. Different event types may be routed to different channels with different backing stores. Some channels may store an event in memory, while other channels may persist to disk via NATS streaming, Kafka, or something similar. Subscribers (consumers) eventually receive and handle the events.

 The architecture of Knative Eventing

 The current architecture supports two modes of event delivery:

 	Simple delivery

 	Fan-out delivery

 The simple delivery is just 1:1 source to consumer. The consumer can be a core Kubernetes service or a Knative service. If the consumer is unreachable, the source is responsible for handling the fact that the event can't be delivered. The source can retry, log an error, or take any other appropriate action.

 The following diagram illustrates this simple concept:

 [image:]
 Figure 12.7: Simple delivery

 Fan-out delivery supports arbitrarily complex processing, where multiple consumers subscribe to the same event on a channel. Once an event is received by the channel, the source is not responsible for the event anymore. This allows more dynamic subscriptions of consumers because the source doesn't even know who the consumers are.

 The following diagram illustrates the complex processing and subscription patterns that can arise when using channels:

 [image:]
 Figure 12.8: Delivery with channels and subscriptions

 At this point, you should have a decent understanding of the scope of Knative and how it establishes a solid serverless foundation for Kubernetes. Let's play around a little with Knative and see what it feels like.

 Taking Knative for a ride

 Knative is a not a small piece of software. It has many moving parts, it supports many modes of operation, and it can integrate with many systems. We will just explore a small part of it using a Minikube cluster.

 We will perform the following:

 	Create a compatible Minikube cluster

 	Install Knative using Gloo as its ingress gateway

 	Deploy a Knative service

 	Invoke the Knative service

 	Verify it can scale to zero

 Here we go...

 Installing Knative

 There are many ways to install Knative. See https://knative.dev/docs/install. We will use the minikube installation. First, let's create a minikube cluster with the specific parameters recommended by Knative:

 $ minikube start --memory=8192 --cpus=4 \
 --vm-driver=hyperkit \
 --disk-size=30g \
 --extra-config=apiserver.enable-admission-plugins="LimitRanger,NamespaceExists,NamespaceLifecycle,ResourceQuota,ServiceAccount,DefaultStorageClass,MutatingAdmissionWebhook"
[image:] minikube v1.10.1 on Darwin 10.15.5
[image:] Selecting 'hyperkit' driver from user configuration (alternates: [])
[image:] Downloading driver docker-machine-driver-hyperkit:
 > docker-machine-driver-hyperkit.sha256: 65 B / 65 B [---] 100.00% ? p/s 0s
 > docker-machine-driver-hyperkit: 10.81 MiB / 10.81 MiB 100.00% 8.84 MiB p
[image:] The 'hyperkit' driver requires elevated permissions. The following commands will be executed:
 $ sudo chown root:wheel /Users/gigi.sayfan/.minikube/bin/docker-machine-driver-hyperkit
 $ sudo chmod u+s /Users/gigi.sayfan/.minikube/bin/docker-machine-driver-hyperkit
Password:
[image:] Downloading VM boot image ...
 > minikube-v1.10.1.iso.sha256: 65 B / 65 B [--------------] 100.00% ? p/s 0s
 > minikube-v1.10.1.iso: 150.93 MiB / 150.93 MiB [] 100.00% 10.27 MiB p/s 14s
[image:] Creating hyperkit VM (CPUs=4, Memory=8192MB, Disk=30000MB) ...
[image:] Preparing Kubernetes v1.18.2 on Docker '19.03.8' ...
 ▪ apiserver.enable-admission-plugins=LimitRanger,NamespaceExists,NamespaceLifecycle,ResourceQuota,ServiceAccount,DefaultStorageClass,MutatingAdmissionWebhook
[image:] Downloading kubeadm v1.18.0
[image:] Downloading kubelet v1.18.0
[image:] Pulling images ...
[image:] Launching Kubernetes ...
[image:] Waiting for cluster to come online ...
[image:] Done! kubectl is now configured to use "minikube"

 Knative requires an ingress gateway. The current options are Istio, Ambassador, and Gloo. Let's use Gloo as it is very lightweight:

 $ curl -sL https://run.solo.io/gloo/install | sh
Attempting to download glooctl version v1.3.29
Downloading glooctl-darwin-amd64...
Download complete!, validating checksum...
Checksum valid.
Gloo was successfully installed [image:]
Add the gloo CLI to your path with:
 export PATH=$HOME/.gloo/bin:$PATH
Now run:
 glooctl install gateway # install gloo's function gateway functionality into the 'gloo-system' namespace
 glooctl install ingress # install very basic Kubernetes Ingress support with Gloo into namespace gloo-system
 glooctl install knative # install Knative serving with Gloo configured as the default cluster ingress
Please see visit the Gloo Installation guides for more: https://gloo.solo.io/installation/

 Make sure glooctl is on your path (I copied $HOME/.gloo/bin/glooctl to /usr/local/bin) then run the following command to install both Gloo and Knative:

 $ glooctl install knative -g --install-knative-version="0.15.0"
installing Knative CRDs...
installing Knative...
Knative successfully installed!
$ glooctl install knative --install-knative=false
Creating namespace gloo-system... Done.
Starting Gloo installation...
Gloo was successfully installed!

 Deploying a Knative service

 At this point, we can deploy Knative services. Here is a simple hello-world app that returns a "Hello Yeah, it works!!!" message. Save the following YAML to service.yaml:

 apiVersion: serving.knative.dev/v1 # Current version of Knative
kind: Service
metadata:
 name: helloworld-go # The name of the app
 namespace: default # The namespace the app will use
spec:
 template:
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-go # The URL to the image of the app
 env:
 - name: TARGET # The environment variable printed out by the sample app
 value: "Yeah, it works!!!"

 Then deploy it:

 $ kubectl create -f service.yaml
service.serving.knative.dev/helloworld-go created

 Invoking a Knative service

 You can view the deployed Knative service by getting the kservice (or ksvc) CRD:

 $ kubectl get kservice
NAME URL LATESTCREATED LATESTREADY READY REASON
helloworld-go http://helloworld-go.default.example.com helloworld-go-fltxb helloworld-go-fltxb True

 The LATESTCREATED and LATESTREADY columns correspond to a standard Kubernetes service of type ClusterIP that the Knative service delegates the actual work to:

 $ kubectl get svc helloworld-go-fltxb
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
helloworld-go-fltxb ClusterIP 10.96.124.21 <none> 80/TCP 67m

 Normally, the Gloo external proxy LoadBalancer service receives the incoming requests and routes them to the Knative service. But minikube LoadBalancer services have no external IP:

 $ kubectl get svc knative-external-proxy -n gloo-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
knative-external-proxy LoadBalancer 10.96.72.13 <pending> 80:30150/TCP,443:30146/TCP 4h53m

 To work around this, we need to get the URL of the proxy using glooctl proxy url --name knative-external-proxy and use that URL to access the service while passing the original URL as a Host header:

 $ curl -H "Host: helloworld-go.default.example.com" $(glooctl proxy url --name knative-external-proxy)
Hello Yeah, it works!!!!

 Checking the scale-to-zero option in Knative

 Knative is configured by default to scale to zero with a grace period of 30 seconds. That means that after 30 seconds of inactivity (no request coming in), all the pods will be terminated until a new request comes in. To verify this, we can wait 30 seconds and check the pods in the default namespace:

 $ kubectl get po
No resources found in default namespace.

 Then, we can invoke the service and immediately check the pods:

 $ curl -H "Host: helloworld-go.default.example.com" $(glooctl proxy url --name knative-external-proxy)
Hello Yeah, it works!!!!
$ kubectl get po
NAME READY STATUS RESTARTS AGE
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 2/2 Running 0 6s

 Let's watch when the pods disappear by using the -w flag. Apparently, the pods start terminating after a minute:

 $ kubectl get po -w
NAME READY STATUS RESTARTS AGE
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 2/2 Running 0 49s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 2/2 Terminating 0 62s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 1/2 Terminating 0 83s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 0/2 Terminating 0 84s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 0/2 Terminating 0 96s
helloworld-go-fltxb-deployment-74b5dc8665-2j7hw 0/2 Terminating 0 96s

 At this point, we've had a little fun with Knative and can now move on to discussing FaaS solutions on Kubernetes.

 Kubernetes FaaS frameworks

 Let's acknowledge the elephant in the room – FaaS. The Kubernetes Job and CronJob are great, and having cluster autoscaling and cloud providers managing the infrastructure is awesome. Knative, with its scale-to-zero and traffic routing functionalities, is super cool. But what about actual FaaS? Fear not – Kubernetes has many options here. Maybe too many options. There are more than ten FaaS frameworks for Kubernetes:

 	Fission

 	Kubeless

 	FaaS

 	OpenWhisk

 	Riff (built on top of Knative)

 	Nuclio

 	Funktion

 	BlueNimble

 	Fn

 	Gestalt

 	Rainbond

 	IronFunctions

 We will look into a few of the more popular options.

 Fission

 Fission (https://fission.io/) is a mature and well-documented framework. It models the FaaS world as environments, functions, and triggers. Environments are needed to build and run your function code for the specific languages. Each language environment contains an HTTP server and often a dynamic loader (for dynamic languages). Functions are the objects that represent the serverless functions and triggers determine how the functions deployed in the cluster can be invoked. There are four kinds of triggers:

 	HTTP trigger: Invokes a function via an HTTP endpoint

 	Timer trigger: Invokes a function at a certain time

 	Message queue trigger: Invokes a function when an event is pulled from message queue (this supports Kafka, NATS, and Azure queues)

 	Kubernetes watch trigger: Invokes a function in response to a Kubernetes event in your cluster

 It's interesting that the message queue triggers are not just fire and forget. They support optional response and error queues. Here is a diagram that shows the flow:

 [image:]
 Figure 12.9: Message queue trigger flow

 Fission is proud of its 100-millisecond cold-start. It achieves this by keeping a pool of "warm" containers with a small dynamic loader. When a function is first called, there is a running container ready to go and the code is sent to this container for execution. In a sense, Fission cheats because it never starts cold. The bottom line is that Fission doesn't scale to zero, but is very fast for first-time calls.

 Fission Workflows

 Fission has one other claim to fame – Fission Workflows. This feature allows you to build sophisticated workflows made of chains of Fission functions. Here is a diagram that describes the architecture of Fission Workflows:

 [image:]
 Figure 12.10: Fission workflow architecture

 You define workflows in YAML that specify tasks (often Fission functions), inputs, outputs, conditions, and delays:

 apiVersion: 1
description: Send a message to a slack channel when the temperature exceeds a certain threshold
output: CreateResult
Input: 'San Fransisco, CA'
tasks:
 # Fetch weather for input
 FetchWeather:
 run: wunderground-conditions
 inputs:
 default:
 apiKey: <API_KEY>
 state: "{$.Invocation.Inputs.default.substring($.Invocation.Inputs.default.indexOf(',') + 1).trim()}"
 city: "{$.Invocation.Inputs.default.substring(0, $.Invocation.Inputs.default.indexOf(',')).trim()}"
 ToCelsius:
 run: tempconv
 inputs:
 default:
 temperature: "{$.Tasks.FetchWeather.Output.current_observation.temp_f}"
 format: F
 target: C
 requires:
 - FetchWeather
 # Send a slack message if the temperature threshold has been exceeded
 CheckTemperatureThreshold:
 run: if
 inputs:
 if: "{$.Tasks.ToCelsius.Output.temperature > 25}"
 then:
 run: slack-post-message
 inputs:
 default:
 message: "{'It is ' + $.Tasks.ToCelsius.Output.temperature + 'C in ' + $.Invocation.Inputs.default + ' :fire:'}"
 path: <HOOK_URL>
 requires:
 - ToCelsius
 # Besides the potential Slack message, compose the response of this workflow {location, celsius, fahrenheit}
 CreateResult:
 run: compose
 inputs:
 celsius: "{$.Tasks.ToCelsius.Output.temperature}"
 fahrenheit: "{$.Tasks.FetchWeather.Output.current_observation.temp_f}"
 location: "{$.Invocation.Inputs.default}"
 sentSlackMsg: "{$.Tasks.CheckTemperatureThreshold.Output}"
 requires:
 - ToCelsius
 - CheckTemperatureThreshold

 Let's give Fission a try.

 Experimenting with Fission

 First, let's install Fission using Helm (Helm 3):

 $ kubectl create ns fission
$ helm install fission --namespace fission \
 --set serviceType=NodePort,routerServiceType=NodePort \
 https://github.com/fission/fission/releases/download/1.9.0/fission-all-1.9.0.tgz

 Here are all the CRDs it created:

 $ kubectl get crd -o name | grep fission
customresourcedefinition.apiextensions.k8s.io/canaryconfigs.fission.io
customresourcedefinition.apiextensions.k8s.io/environments.fission.io
customresourcedefinition.apiextensions.k8s.io/functions.fission.io
customresourcedefinition.apiextensions.k8s.io/httptriggers.fission.io
customresourcedefinition.apiextensions.k8s.io/kuberneteswatchtriggers.fission.io
customresourcedefinition.apiextensions.k8s.io/messagequeuetriggers.fission.io
customresourcedefinition.apiextensions.k8s.io/packages.fission.io
customresourcedefinition.apiextensions.k8s.io/timetriggers.fission.io

 The Fission CLI will come in handy too:

 $ curl -Lo fission https://github.com/fission/fission/releases/download/1.9.0/fission-cli-osx && chmod +x fission && sudo mv fission /usr/local/bin/

 We need to create an environment to be able to build our function. Let's go with a Python environment:

 $ fission environment create --name python --image fission/python-env
environment 'python' created

 With a Python environment in place, we can create a serverless function. First, save this code to yeah.py:

 def main():
 return 'Yeah, it works!!!'

 Then, we create the Fission function called yeah:

 $ fission function create --name yeah --env python --code yeah.py
Package 'yeah-b9d5d944-9c6e-4e67-81fb-96e047625b74' created
function 'yeah' created

 We can test the function though the Fission CLI:

 $ fission function test --name yeah
Yeah, it works!!!

 The real deal is invoking it though an HTTP endpoint. We need to create a route for that:

 $ fission route create --method GET --url /yeah --function yeah

 With the route in place, we still need to export the FISSION_ROUTER environment variable:

 $ export FISSION_ROUTER=$(minikube ip):$(kubectl -n fission get svc router -o jsonpath='{...nodePort}')

 With all the preliminaries out of the way, let's invoke our function via httpie:

 $ http http://${FISSION_ROUTER}/yeah
HTTP/1.1 200 OK
Content-Length: 17
Content-Type: text/html; charset=utf-8
Date: Wed, 10 Jun 2020 01:16:51 GMT
Yeah, it works!!!

 Kubeless

 Kubeless is another successful Kubernetes FaaS framework. It uses Kubernetes for autoscaling, routing, monitoring, and so on. Its claim to fame is bringing the most Kubernetes-native FaaS framework, along with its great UI. Kubeless models the world using similar concepts to Fission. Let's explore its architecture.

 Kubeless architecture

 Kubeless maintains a Kubernetes deployment and service for each function. It doesn't scale to zero, but as a result has a very fast response time. It is based on three pillars: runtimes, functions, and triggers. Let's examine them.

 Kubeless runtimes

 A Kubeless runtime is basically an image for each supported language that the Kubeless controller manager launches when a new function is created. The controller is watching the function CRD and if it changes, it dynamically reloads the code.

 Kubeless can tell us exactly what the supported runtimes are:

 $ kubeless get-server-config
INFO[0000] Current Server Config:
INFO[0000] Supported Runtimes are: ballerina0.981.0, dotnetcore2.0, dotnetcore2.1, go1.10, go1.11, go1.12, java1.8, java11, nodejs6, nodejs8, nodejs10, nodejs12, php7.2, php7.3, python2.7, python3.4, python3.6, python3.7, ruby2.3, ruby2.4, ruby2.5, ruby2.6, jvm1.8, nodejs_distroless8, nodejsCE8, vertx1.8

 Kubeless functions

 The Kubeless function CRD actually contains the source code for dynamic languages. When the Kubeless controller manager detects that a new function has been created, it will create a deployment and service for the function. It will also update the deployment if the function ever changes. The function can then be triggered via HTTP or events.

 It is also possible to pre-build function images. This offers some performance benefits when redeploying the same function multiple times.

 Kubeless triggers

 Kubeless functions can be triggered (invoked) in multiple ways. You can directly invoke them from the CLI or the UI during development, which is very nice. But the real deal is triggering the functions in production. Similar to other frameworks, you can invoke functions via HTTP endpoints (after all, they are deployed as Kubernetes services). You will need to expose the service to the outside world yourself though.

 Kubeless also supports triggering based on event sources. Current event sources include Kafka, NATS, and AWS Kinesis.

 It's time to get hands-on with Kubeless.

 Playing with Kubeless

 Let's install the CLI first via brew:

 $ brew install kubeless

 The Helm charts for Kubeless are broken at the moment. It may be fixed by the time you read this. We will install it directly:

 $ export RELEASE=$(curl -s https://api.github.com/repos/kubeless/kubeless/releases/latest | grep tag_name | cut -d '"' -f 4)
$ kubectl create ns kubeless
$ kubectl create -f https://github.com/kubeless/kubeless/releases/download/$RELEASE/kubeless-$RELEASE.yaml
configmap/kubeless-config created
deployment.apps/kubeless-controller-manager created
serviceaccount/controller-acct created
clusterrole.rbac.authorization.k8s.io/kubeless-controller-deployer created
clusterrolebinding.rbac.authorization.k8s.io/kubeless-controller-deployer created
customresourcedefinition.apiextensions.k8s.io/functions.kubeless.io created
customresourcedefinition.apiextensions.k8s.io/httptriggers.kubeless.io created
customresourcedefinition.apiextensions.k8s.io/cronjobtriggers.kubeless.io created

 We can verify whether Kubeless was installed properly by checking the kubeless-controller-manager (which should be ready):

 $ kubectl get deploy kubeless-controller-manager -n kubeless
NAME READY UP-TO-DATE AVAILABLE AGE
kubeless-controller-manager 1/1 1 1 11h

 Alright, let's create a function. Here is our test Python function. Note the signature that includes an event object and a context object. The request body is always in the data field of the event object regardless of how the function was invoked and which programming language was used. In Python, the type of event['data'] is bytes and not a string. I learned it the hard way when I tried to concatenate the string 'Yeah, ' with event['data']. I changed it to a bytes type b'Yeah, ' and all was well:

 def yeah(event, context):
 print(event)
 print(context)
 return b'Yeah, ' + event['data']

 We can deploy it to the cluster with the kubeless function deploy command:

 $ kubeless function deploy yeah --runtime python3.7 \
 --from-file yeah.py \
 --handler yeah.yeah
INFO[0000] Deploying function...
INFO[0000] Function yeah submitted for deployment
INFO[0000] Check the deployment status executing 'kubeless function ls yeah'

 After a while, the function will be ready:

 $ kubeless function ls
NAME NAMESPACE HANDLER RUNTIME DEPENDENCIES STATUS
yeah default yeah.yeah python3.7 1/1 READY

 Now, we can invoke it from the kubeless CLI:

 $ kubeless function call yeah --data 'it works!!!'
Yeah, it works!!!

 We can check the logs too and see the entire event and context that we print inside the function:

 $ kubeless function logs yeah
{'data': it works!!!', 'event-id': 'cUoOtQDb5bt5V88', 'event-type': 'application/x-www-form-urlencoded', 'event-time': '2019-12-27T17:05:16Z', 'event-namespace': 'cli.kubeless.io', 'extensions': {'request': <LocalRequest: POST http://192.168.64.3:8443/>}}{'function-name': <function yeah at 0x7f07b3a5a7b8>, 'timeout': 180.0, 'runtime': 'python3.7', 'memory-limit': '0'}

 Using the Kubeless UI

 Let's check out the famous Kubeless web UI:

 $ kubectl create -f https://raw.githubusercontent.com/kubeless/kubeless-ui/master/k8s.yaml
serviceaccount/ui-acct created
clusterrole.rbac.authorization.k8s.io/kubeless-ui created
clusterrolebinding.rbac.authorization.k8s.io/kubeless-ui created
deployment.apps/ui created
service/ui created

 The service was deployed in the kubeless namespace. We can use port-forward to expose it:

 $ kubectl get svc -n kubeless
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ui NodePort 10.96.248.15 <none> 3000:32079/TCP 93s
$ k port-forward -n kubeless svc/ui 3000
Forwarding from 127.0.0.1:3000 -> 3000
Forwarding from [::1]:3000 -> 3000

 It is indeed a very user-friendly and convenient UI:

 [image:]
 Figure 12.11: Kubeless web UI

 You can see all your functions, run them with different parameters, and see the responses and the logs. You can even edit and save your changes all from the comfort of the web UI. I discovered that when passing event data through the event UI, you must use POST and not the default GET, and also that the data arrives as a string and not as bytes, like it did when invoking the function through the CLI. This is inconsistent and annoying. It means that the function can't assume the type of the event data and must handle both cases. Overall, however, the Kubeless UI definitely lives up to its reputation.

 Kubeless with the serverless framework

 You can also work with Kubeless using the serverless framework. For more details, check out the guide at https://serverless.com/framework/docs/providers/kubeless/guide/intro/.

 Knative and riff

 Riff is an open source project from Pivotal for running functions on Kubernetes. Its recursive name stands for "riff is for functions". Riff is built on top of Knative and enjoys all its benefits. It adds a CLI and the ability to build the function containers for you via another open source project from Heroku and Pivotal Cloud-native Buildpacks (https://buildpacks.io/).

 Riff is used to power PKS – Pivotal's enterprise Kubernetes offering. That should give you a lot of confidence that it is robust and battle tested.

 Understanding riff runtimes

 Riff supports different runtimes. A riff runtime is unlike a Kubeless runtime or a Fission environment. It is more about the underlying implementation that riff uses to implement its FaaS capabilities. There are three different runtimes:

 	Core

 	Knative

 	Streaming

 The core runtime uses vanilla Kubernetes objects to create a Deployment and a Service. No ingress or autoscaling is provided. It doesn't provide much value, really.

 The Knative runtime uses Knative (obviously) and it also depends on Istio (so, no Knative and Gloo if you're using riff).

 Installing riff with Helm 2

 At the moment the riff Helm chart is not compatible with Helm 3. Let's use Helm 2 to install riff. First, we'll add the project riff charts to our repo list:

 $ helm2 repo add projectriff https://projectriff.storage.googleapis.com/charts/releases
$ helm2 repo update

 Next, we'll install Istio (specifically, a version provided by project riff itself to ensure compatibility):

 $ helm2 install projectriff/istio --name istio -n istio-system --set gateways.istio-ingressgateway.type=NodePort --wait --devel

 Finally, let's install riff itself (make sure to first delete the knative-serving namespace if it exists):

 $ helm2 install projectriff/riff --name riff \
 --set tags.core-runtime=true \
 --set tags.knative-runtime=true \
 --set tags.streaming-runtime=false \
 --wait --devel

 Now that riff is installed in our cluster, we can install the riff CLI. On macOS, we can use homebrew:

 $ brew install riff

 You can find instructions for other operating systems at https://github.com/projectriff/cli/#installation-of-the-latest-release.

 We can verify the status of the riff installation with the riff doctor command:

 $ riff doctor
NAMESPACE STATUS
riff-system ok
RESOURCE READ WRITE
configmaps allowed allowed
secrets allowed allowed
pods allowed n/a
pods/log allowed n/a
applications.build.projectriff.io allowed allowed
containers.build.projectriff.io allowed allowed
functions.build.projectriff.io allowed allowed
deployers.core.projectriff.io allowed allowed
processors.streaming.projectriff.io missing missing
streams.streaming.projectriff.io missing missing
adapters.knative.projectriff.io allowed allowed
deployers.knative.projectriff.io allowed allowed

 The status is OK and all the components are installed, except the two streaming components we didn't install on purpose (as they require Kafka).

 Functions will be packaged as images and stored in a container registry. So, we need to give riff credentials:

 $ export DOCKER_ID=g1g1
$ riff credential apply dockerhub-creds --docker-hub $DOCKER_ID --set-default-image-prefix

 Be sure to use your own DockerHub ID (not mine obviously). Riff will ask you for your password.

 Moving on, it's time to create the function. Riff requires a little more ceremony than other FaaS frameworks. The function code must be in a Git repository. Let's use a simple Node.js square function from the riff project:

 module.exports = x => {
 const xx = x ** 2;
 console.log('the square of ${x} is ${xx}');
 return xx;
}

 Here is how to create a function with riff:

 $ riff function create square \
 --git-repo https://github.com/projectriff-samples/node-square \
 --artifact square.js \
Created function "square"

 The next step is to create a deployer:

 $ riff knative deployer create knative-square --function-ref square –tail
Created deployer "knative-square"

 To invoke the function, we need to get the proper IP address and node port of the Istio ingress gateway from Minikube. In a cluster that supports public IP addresses, it will be available through a proper DNS name:

 MINIKUBE_IP=$(minikube ip)
INGRESS_PORT=$(kubectl get svc istio-ingressgateway --namespace istio-system --output 'jsonpath={.spec.ports[?(@.port==80)].nodePort}')

 Now we can invoke the function:

 $ curl http://$MINIKUBE_IP:$INGRESS_PORT/ -w '\n' \
-H 'Host: knative-square.default.example.com' \
-H 'Content-Type: application/json' \
-d 12
144

 The bottom line is that riff feels a little rough. It provides a CLI and a way to build images from code, but you still have to configure a lot of things and go through a GitHub repo and container registry. It doesn't feel very agile and there is definitely no UI. For event-based triggering, you need to install the streaming runtime separately and it supports only Kafka, which is not everyone's cup of tea.

 Summary

 In this chapter, we covered the hot topic of serverless computing. We explained the two meanings of serverless – eliminating the need to manage servers, and deploying and running FaaS. We explored in depth the aspects of serverless infrastructure in the cloud, especially in the context of Kubernetes. We compared the built-in cluster autoscaler as a Kubernetes-native serverless solution to the offerings of cloud providers such as AWS EKS+Fargate, Azure AKS+ACI, and Google Cloud Run. We switched gears and dove into the exciting and promising Knative project with its scale-to-zero capabilities and advanced deployment options. Then, we moved to the wild world of FaaS on Kubernetes. We mentioned the plethora of solutions out there and examined them in detail with hands-on experiments for some of the prominent solutions out there: Fission, Kubeless, and riff. The bottom line is that both flavors of serverless computing bring real benefits as far as operations and cost management are concerned. It's going to be fascinating to watch the evolution and consolidation of these technologies in the cloud and Kubernetes.

 In the next chapter, our focus will be on monitoring and observability. Complex systems such as large Kubernetes clusters, with lots of different workloads and continuous-delivery pipeline and configuration changes, must have excellent monitoring in place in order to keep all the balls up in the air. Kubernetes has some great options that we should take advantage of.

 13

 Monitoring Kubernetes Clusters

 In the previous chapter, we looked at serverless computing and its manifestations on Kubernetes. A lot of innovation happens in this space and it's both super useful and fascinating to follow the evolution.

 In this chapter, we're going to talk about how to make sure your systems are up and running, performing correctly, and how to respond to them when they aren't. In Chapter 3, High Availability and Reliability, we discussed related topics. The focus here is about knowing what's going on in your system and what practices and tools you can use.

 The are many aspects to monitoring, such as logging, metrics, distributed tracing, error reporting, and alerting. Practices like auto-scaling and self-healing depend on monitoring to detect that there is a need to scale or to heal.

 The topics we will cover in this chapter include:

 	Understanding observability

 	Logging with Kubernetes

 	Recording metrics with Kubernetes

 	Distributed tracing with Jaeger

 	Troubleshooting problems

 The Kubernetes community recognizes the importance of monitoring and has put a lot of effort into making sure Kubernetes has a solid monitoring story. The Cloud Native Computing Foundation (CNCF) is the de facto curator of cloud native infrastructure projects. It's graduated eight projects so far (early 2020). Kubernetes was the first project to graduate and out of the other seven, three projects focus on monitoring: Prometheus, Fluentd, and Jaeger. Before we dive into the ins and outs of Kubernetes monitoring and specific projects and tools, we should get a better understanding of what monitoring is all about. A good framework for thinking about monitoring is how observable your system is. Indeed, observability is another term that people flaunt about these days.

 Understanding observability

 Observability is a big word. What does it mean in practice? There are different definitions out there and big debates regarding how monitoring and observability are similar and different. I take the stance that observability is the property of the system that defines what we can tell about the state and behavior of the system, right now and historically. In particular, we are interested in the health of the system and its components. Monitoring is the collection of tolls, processes, and techniques we use to increase the observability of the system.

 There are different facets of information that we need to collect, record, and aggregate in order to get a good sense of what our system is doing. Those facets include logs, metrics, distributed traces, and errors. The monitoring or observability data is multi-dimensional and crosses many levels. Just collecting it doesn't help much. We need to be able to query it, visualize it, and alert other systems when things go wrong. Let's review the various components of observability.

 Logging

 Logging is a key monitoring tool. Every self-respecting long-running software must have logs. Logs capture timestamped events. They are critical for many applications, like business intelligence, security, compliance, audits, debugging, and troubleshooting. It's important to understand that a complicated distributed system will have different logs for different components, and extracting insights from logs is not a trivial undertaking.

 There are several key attributes to logs: format, storage, and aggregation.

 Log format

 Logs may come in various formats. Plain text is very common and human-readable but requires a lot of work to parse and merge with other logs. Structured logs are more suitable for large systems because they can be processed at scale. Binary logs make sense for systems that generate a lot of logs as they are more space efficient, but they requires custom tools and processing to extract their information.

 Log storage

 Logs can be stored in memory, on the filesystem, in a database, in cloud storage, sent to remote logging, or any combination of those options. In the cloud-native world, where software runs in containers, it's important to know where logs are stored and how to fetch them when necessary.

 Questions as to durability come to mind when containers come and go. On Kubernetes, the standard output and error of containers is automatically logged and available, even when the pod terminates. However, issues such as having enough space for logs and log rotation are always relevant.

 Log aggregation

 In the end, the best practice when sending local logs to a centralized logging service that is designed to handle various log formats is to persist them, as necessary, and aggregate many types of logs in a way that they can be queried and reasoned about.

 Metrics

 Metrics measure the same aspect of the system over time. Metrics are time series of numerical values (typically, floating-point numbers). Each metric has a name and often a set of labels that help later in slicing and dicing. For example, the CPU utilization of a node or the error rate of a service are metrics.

 Metrics are much more economical than logs. They require a fixed amount of space that doesn't ebb and flow with incoming traffic like logs.

 Also, since metrics are numerical in nature, they don't need parsing and transformations and can be easily combined, analyzed using statistical methods, and used to serve as triggers for events and alerts.

 A lot of metrics at different levels (node, container, process, networks, disk) are often collected for you automatically by the OS, cloud provider, or Kubernetes.

 However, you can also create custom metrics that map to high-level concerns of your system and can be configured with application-level policies.

 Distributed tracing

 Modern distributed systems often use a microservice-based architecture where an incoming request is bounced between multiple microservices, waits in queues, and triggers serverless functions. When you try to analyze errors, failures, data integrity issues, or performance issues, it is critical to be able to follow the path of a request. This is where distributed tracing comes in.

 A distributed trace is a collection of spans and references. You can think of a trace as a directed acyclic graph (DAG) that represents a request traversal though the components of a distributed system. Each span records the time the request spent in a given component, while references are the edges of the graph that connect one space to the following spans.

 Here is an example:

 [image:]
 Figure 13.1: A Directed Acyclic Graph (DAG)

 Distributed tracing is indispensable for understanding complex distributed systems.

 Application error reporting

 Error and exception reporting are sometimes done as part of logging. You definitely want to log errors and looking at logs when things go wrong is a time-honored tradition. However, there are levels for capturing error information that go beyond logging. When an error occurs in one of your applications, it is useful to capture an error message, the location of the error in the code, and the stack trace. This is pretty standard, and most programming languages can provide all this information, although stack traces are multi-line and don't fit well with line-based logs. A very useful additional piece of information is capturing the local state in each level of the stack trace.

 A central error reporting service such as Sentry or Rollbar provides a lot of value specific to errors beyond logging, such as rich error information and context and user information.

 Dashboards and visualization

 OK. You've done a great job of collecting logs, defining metrics, tracing your requests, and reporting rich errors. Now, you want to figure out what your system or parts of it are doing. What is the baseline? How does traffic fluctuate throughout the day, week, and on holidays? When the system is under stress, what parts are the most vulnerable?

 In a complicated system that involves hundreds and thousands of services, data stores, and integrates with external systems, you can just look at the raw log files, metrics, and traces.

 You need to be able combine a lot of information and build system health dashboards, visualize your infrastructure, and create business-level reports and diagrams.

 You may get some of it (especially for infrastructure) automatically if you're using cloud platforms. However, you should expect to do some serious work around visualization and dashboards.

 Alerting

 Dashboards are great for humans that want to get a broad view of the system and be able to drill down and understand how it behaves. Alerting is all about detecting abnormal situations and triggering some action. Ideally, your system should be self-healing and be able to recover on its own from most situations. However, you should at least report it so humans can review what happened at their leisure and decide if further action is needed.

 Alerting can be integrated with emails, chat rooms, and on call systems. It is often linked to metrics and when certain conditions apply, an alert is raised.

 Now that we've covered the different elements involved in monitoring complex systems, let's see how to do it with Kubernetes.

 Logging with Kubernetes

 We need to carefully consider our logging strategy with Kubernetes. There are several types of logs that are relevant for monitoring purposes. Our workloads run in containers, of course, and we care about these logs, but we also care about the logs of Kubernetes components such as kubelets and the container runtime. In addition, chasing logs across multiple nodes and containers is a non-starter. The best practice is to use central logging (also known as log aggregation). There are several options here that we will explore soon.

 Container logs

 Kubernetes stores the standard output and standard error of every container. They are made available through the kubectl logs command.

 Here is a pod manifest that prints the current date and time every 10 seconds:

 apiVersion: v1
kind: Pod
metadata:
 name: now
spec:
 containers:
 - name: now
 image: g1g1/py-kube:0.2
 command: ["/bin/bash", "-c", "while true; do sleep 10; date; done"]

 We can save it to a file called now-pod.yaml and create it:

 $ kubectl apply -f now-pod.yaml
pod/now created

 Wait until the pod is ready. To check out the logs, we use the kubectl logs command:

 $ kubectl logs now
Thu Jun 11 00:32:38 UTC 2020
Thu Jun 11 00:32:48 UTC 2020
Thu Jun 11 00:32:58 UTC 2020
Thu Jun 11 00:33:08 UTC 2020
Thu Jun 11 00:33:18 UTC 2020

 A few points about container logs. kubectl logs expects a pod name. If the pod has multiple containers, you need to specify the container name too:

 $ kubectl logs <pod name> -c <container name>

 Also, if a deployment or replica set creates multiple copies of the same pod, you still have to query each pod independently for its logs. There is no way to get the logs of multiple pods in a single call.

 If a container crashes for some reason, you can use the kubectl logs -p command to look at logs from the container.

 Kubernetes component logs

 If you run Kubernetes in a managed environment like GKE, EKS, or AKS, you won't be able to access Kubernetes component logs, but this is expected. You're not responsible for the Kubernetes control plane. There are Kubernetes components that run on master nodes and there are components that run on each worker node:

 Here are the master components and their log locations:

 	API server: /var/log/kube-apiserver.log

 	Scheduler: /var/log/kube-scheduler.log

 	Controller manager: /var/log/kube-controller-manager.log

 The worker node components and their log locations are:

 	Kubelet: /var/log/kubelet.log

 	Kube proxy: /var/log/kube-proxy.log

 Note that on systemd-based systems, you'll need to use journalctl to view the logs.

 Centralized logging

 Reading container logs is fine for quick and dirty troubleshooting problems in a single pod. To diagnose and debug system-wide issues, we need centralized logging (also known as log aggregation). All the logs from our containers should be sent to a central repository and made accessible for slicing and dicing using filters and queries.

 When deciding on your central logging approach, there are several important decisions: How do we collect the logs? Where do we store the logs? And how do we handle sensitive log information?

 Choosing a log collection strategy

 Logs are typically collected by agents that are running in close proximity to the process generating the logs. They make sure to deliver them to the central logging service.

 Here are the common approaches.

 Direct logging

 In this approach, there is no log agent. It is the responsibility of each application container to send logs to the remote logging service. This is typically done though a client library. It is a high-touch approach and applications need to be aware of the logging target, as well as being configured with proper credentials. If you ever want to change your log collection strategy, you will need to make changes to each and every application (at the least, bumping to a new version of the library):

 [image:]
 Figure 13.2: Direct logging

 Node agent

 The node agent approach is best when you control the worker nodes and you want to abstract away the act of log aggregation from your applications. Each application container can simply write to standard output and standard error, and the agent running on each node will intercept the logs and deliver them to the remote logging service.

 Typically, you deploy the node agent as a DaemonSet, so as nodes are added or removed from the cluster, the log agent will always be present, without any additional work being needed:

 [image:]
 Figure 13.3: Logging with a node agent

 Sidecar container

 The sidecar container is best when you don't have control over your cluster nodes or if you use some serverless computing infrastructure to deploy containers, but you don't want to use the direct logging approach. The node agent approach is out of the question, but you can attach a sidecar container that will collect the logs and deliver them to the central logging service. It is not as efficient as the node agent approach because each container will need its own logging sidecar container, but it can be done at the deployment stage without requiring code changes and application knowledge:

 [image:]
 Figure 13.4: Logging with a sidecar container

 Now that we've covered the topic of log collection, let's consider how to store and manage those logs centrally.

 Cluster-level central logging

 If your entire system is running in a single Kubernetes cluster, then cluster-level logging may be a great choice. You can install a central logging service like Grafana Loki, ElasticSearch, or Graylog in your cluster and enjoy a cohesive log aggregation experience without sending your log data elsewhere.

 However, for in-cluster central logging, this is not always possible or desirable.

 Remote central logging

 There are use cases where in-cluster central logging doesn't cut it for various reasons:

 	Logs are used for audit purposes, so it may be necessary to log to a separate and controlled location (for example, on AWS, it is common to log to a separate account)

 	Your system runs on multiple clusters and logging in each cluster is not really central

 	You run on a cloud provider and prefer to log into the cloud platform logging service (for example, StackDriver on GCP or CloudWatch on AWS)

 	You already work with a remote central logging service like SumoLogic or Splunk and you prefer to continue using them

 	You just don't want the hassle of collecting and storing log data

 Dealing with sensitive log information

 OK. We can collect the logs and send them to a central logging service. If the central logging service is remote, you might need to be selective about which information you log.

 For example, personally identifiable information (PII) and protected health information (PHI) are two categories of information that you probably shouldn't log without making sure access to the log is properly controlled.

 At Helix, for example, we redact PII like usernames and emails.

 Using Fluentd for log collection

 Fluentd (https://www.fluentd.org/) is an open source CNCF graduated project. It is considered best in class on Kubernetes and it can integrate with pretty much every logging backend you want. If you want to set up your own centralized logging solution, I recommend using Fluentd. The following diagram shows how Fluentd can be deployed as a DaemonSet in a Kubernetes cluster:

 [image:]
 Figure 13.5: Fluentd as a DaemonSet in a Kubernetes cluster

 One of the most popular DIY centralized logging solutions is ELK, where E stands for ElasticSearch, L stands for LogStash, and K stands for Kibana. On Kubernetes EFK, where Fluentd replaces LogStash, this is very common, and there are Helm charts and a lot of examples available for deploying and operating it on Kubernetes.

 Fluentd has a plugin-based architecture, so don't feel limited to EFK. Fluentd doesn't require a lot of resources, but if you really need a high-performance solution, Fluentbit (https://fluentbit.io/) is a pure forwarder that uses barely 450 KB of memory.

 Collecting metrics with Kubernetes

 If you have some experience with Kubernetes, you may be familiar with cAdvisor and Heapster. cAdvisor was integrated into the kube-proxy until Kubernetes 1.12 and then it was removed. Heapster was removed in Kubernetes 1.13. If you wish, you can install them, but they are not recommended anymore as there are much better solutions now.

 One caveat is that the Kubernetes dashboard v1 still depends on Heapster. The Kubernetes dashboard v2 is still in Beta at the time of writing. Hopefully, it will be generally available by the time you read this.

 Kubernetes now has a Metrics API. It supports node and pod metrics out of the box. You can also define your own custom metrics.

 A metric contains a timestamp, a usage field, and the time range the metric was collected (many metrics are accumulated over a time period). Here is the API definition for node metrics:

 type NodeMetrics struct {
 metav1.TypeMeta
 metav1.ObjectMeta
 Timestamp metav1.Time
 Window metav1.Duration
 Usage corev1.ResourceList
}
// NodeMetricsList is a list of NodeMetrics.
type NodeMetricsList struct {
 metav1.TypeMeta
 // Standard list metadata.
 // More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
 metav1.ListMeta
 // List of node metrics.
 Items []NodeMetrics
}

 The usage field type is ResourceList, but it's actually a map of a resource name to a quantity:

 // ResourceList is a set of (resource name, quantity) pairs.
type ResourceList map[ResourceName]resource.Quantity

 Quantity (https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/apimachinery/pkg/api/resource/quantity.go#L88) is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, as well as String() and Int64() accessors:

 type Quantity struct {
 // i is the quantity in int64 scaled form, if d.Dec == nil
 i int64Amount

 // d is the quantity in inf.Dec form if d.Dec != nil
 d infDecAmount
 // s is the generated value of this quantity to avoid recalculation
 s string
 // Change Format at will. See the comment for Canonicalize for more details.
 Format
}

 Monitoring with the metrics server

 The Kubernetes metrics-server implements the Kubernetes Metrics API.

 You can deploy it with Helm 3:

 helm install metrics-server bitnami/metrics-server --version 4.2.0 -n kube-system

 On minikube, you enable it as an add-on:

 $ minikube addons enable metrics-server
[image:] metrics-server was successfully enabled

 After waiting a few minutes to let the metrics server collect some data, you can query it using these commands for node metrics:

 $ kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes" | jq .
{
 "kind": "NodeMetricsList",
 "apiVersion": "metrics.k8s.io/v1beta1",
 "metadata": {
 "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes"
 },
 "items": [
 {
 "metadata": {
 "name": "ip-192-168-13-100.ec2.internal",
 "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-192-168-13-100.ec2.internal",
 "creationTimestamp": "2020-01-07T20:05:29Z"
 },
 "timestamp": "2020-01-07T20:04:54Z",
 "window": "30s",
 "usage": {
 "cpu": "85887417n",
 "memory": "885828Ki"
 }
 }
]
}

 In addition, the kubectl top command gets its information from the metrics server:

 $ kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
ip-192-168-13-100.ec2.internal 85m 4% 863Mi 11%
$ kubectl top pods
NAME CPU(cores) MEMORY(bytes)
api-gateway-795f7dcbdb-ml2tm 1m 23Mi
link-db-7445d6cbf7-2zs2m 1m 32Mi
link-manager-54968ff8cf-q94pj 0m 4Mi
nats-cluster-1 1m 3Mi
nats-operator-55dfdc6868-fj5j2 2m 11Mi
news-manager-7f447f5c9f-c4pc4 0m 1Mi
news-manager-redis-0 1m 1Mi
social-graph-db-7565b59467-dmdlw 1m 31Mi
social-graph-manager-64cdf589c7-4bjcn 0m 1Mi
user-db-0 1m 32Mi
user-manager-699458447-6lwjq 1m 1Mi

 The metrics server is also the source for performance information in the Kubernetes dashboard.

 Exploring your cluster with the Kubernetes dashboard

 The Kubernetes dashboard is a web application that you can install and then use to drill down to your cluster through a nice user interface. Depending on your Kubernetes distribution, it may or may not be installed. On minikube, you install it as an add-on:

 $ minikube addons enable dashboard
[image:] dashboard was successfully enabled

 On other distributions, you can install it yourself:

 $ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-beta8/aio/deploy/recommended.yaml

 I'm a big fan of the dashboard because it gives a very condensed view of your entire cluster, as well as the ability to drill down by namespace, resource type, or labels, and even perform a general search:

 [image:]
 Figure 13.6: the Kubernetes dashboard

 The rise of Prometheus

 Prometheus (https://prometheus.io/) is yet another graduated CNCF open source project. It focuses on metrics collection and alert management. It has a simple yet powerful data model for managing time-series data and a sophisticated query language. It is considered best in class in the Kubernetes world. Prometheus lets you define recording rules that are fired at regular intervals and collect data from targets. In addition, you can define alerting rules that evaluate a condition and trigger alerts if the condition is satisfied.

 It has several unique features compared to other monitoring solutions:

 	The collection system is pull over HTTP. Nobody has to push metrics to Prometheus (but push is supported via a gateway).

 	A multi-dimensional data model (each metric is a named time series with a set of key/value pairs attached to each data point).

 	PromQL, a powerful and flexible query language to slice and dice your metrics.

 	Prometheus server nodes are independent and don't rely on shared storage.

 	Target discovery can be dynamic or done via static configuration.

 	Built-in time series storage, but supports other backends if necessary.

 	Built-in alert manager and ability to define alerting rules.

 The following diagram illustrates the entire system:

 [image:]
 Figure 13.7: the Prometheus system

 Installing Prometheus

 Prometheus is a complex beast, as you can see. The best way to install it is using the Prometheus operator (https://github.com/coreos/prometheus-operator).

 However, before you install it, make sure to delete the knative-monitoring namespace if you're using the same cluster that you installed knative on. Knative quietly installs its own Prometheus-based monitoring system into your cluster.

 On minikube, it takes some extra steps and configuration to get ready for Prometheus (they should probably make it an add-on).

 To prepare minikube for Prometheus, we need to start it with some extra arguments:

 $ minikube start --memory=4096 \
 --bootstrapper=kubeadm \
 --extra-config=scheduler.address=0.0.0.0 \
 --extra-config=controller-manager.address=0.0.0.0

 The following article dives into the details: https://medium.com/faun/trying-prometheus-operator-with-helm-minikube-b617a2dccfa3.

 There is a Helm chart that's managed by the community for the Prometheus operator, but it is incompatible with Helm 3 (it uses the dreaded crd-install hook). We will install it with Helm 2, which requires, as you may recall, installing Tiller too. If you have Tiller installed already from previous chapters, you can skip this step:

 $ kubectl create serviceaccount tiller --namespace kube-system
$ kubectl create clusterrolebinding tiller-role-binding \
 --clusterrole cluster-admin --serviceaccount=kube-system:tiller
$ helm2 init --service-account tiller

 Now, we can install the Prometheus operator. This may take a few minutes, so don't be alarmed if it appears to just hang there. The minikube_values.yaml file can be found in the prometheus sub-directory of the code directory:

 $ helm2 install stable/prometheus-operator \
 --version=8.5.4 \
 --name monitoring \
 --namespace monitoring \
 --values=minikube_values.yaml

 The Helm chart installs a comprehensive metric-based monitoring stack with quite a few components:

 	prometheus-operator

 	prometheus

 	alertmanager

 	node-exporter

 	kube-state-metrics

 	grafana

 Check out the pods installed in the monitoring namespace. It should look something like:

 $ kubectl get po -n monitoring
NAME READY STATUS RESTARTS AGE
alertmanager-monitoring-prometheus-oper-alertmanager-0 2/2 Running 0 15m
monitoring-grafana-697fd7b5cc-2rgmq 2/2 Running 0 15m
monitoring-kube-state-metrics-574ccf8cd6-ng2mq 1/1 Running 0 15m
monitoring-prometheus-node-exporter-pgnj8 1/1 Running 0 15m
monitoring-prometheus-oper-operator-74d96f6ffb-r5zt7 2/2 Running 0 15m
prometheus-monitoring-prometheus-oper-prometheus-0 3/3 Running 1 15m

 The Prometheus operator manages Prometheus and its Alertmanager through four CRDs:

 	Prometheus - ServiceMonitor - PrometheusRule – AlertManager

 If you want a more complete and opinionated installation experience, check out kube-prometheus (https://github.com/coreos/kube-prometheus). It installs Prometheus and the AlertManager using a high-availability configuration, as well as additional tools and default rules and a dashboard. It even has its own Metrics API server, so you don't need to enable the metrics-server add-on in minikube.

 Let's examine Prometheus and the other components.

 Interacting with Prometheus

 Prometheus has a basic web UI that you can use to explore its metrics. Let's do port forwarding to localhost:

 $ POD_NAME=$(kubectl get pods -n monitoring -l "app=prometheus" \
 -o jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward -n monitoring $POD_NAME 9090

 Then, you can browse to http://localhost:9090, where you can select different metrics and view raw data or graphs:

 [image:]
 Figure 13.8: Prometheus UI

 Prometheus records an outstanding number of metrics (990, in my current setup). The most relevant metrics on Kubernetes are the metrics exposed by kube-state-metrics and node exporters.

 Incorporating kube-state-metrics

 The Prometheus operator already installs kube-state-metrics. It is a service that listens to Kubernetes events and exposes them though a /metrics HTTP endpoint in the format that Prometheus expects. So, it is a Prometheus exporter.

 This is very different from the Kubernetes metrics server, which is the standard way Kubernetes exposes metrics for nodes and pods and allows you to expose your own custom metrics too. The Kubernetes metrics server is a service that periodically queries Kubernetes for data and stores it in memory. It exposes its data through the Kubernetes Metrics API.

 The metrics exposed by kube-state-metrics are vast. Here is the list of groups of metrics, which is pretty massive on its own. Each group corresponds to a Kubernetes API object and contains multiple metrics:

 	CertificateSigningRequest metrics

 	ConfigMap metrics

 	CronJob metrics

 	DaemonSet metrics

 	Deployment metrics

 	Endpoint metrics

 	Horizontal Pod Autoscaler metrics

 	Ingress metrics

 	Job metrics

 	LimitRange metrics

 	MutatingWebhookConfiguration metrics

 	Namespace metrics

 	NetworkPolicy metrics

 	Node metrics

 	PersistentVolume metrics

 	PersistentVolumeClaim metrics

 	Pod Disruption Budget metrics

 	Pod metrics

 	ReplicaSet metrics

 	ReplicationController metrics

 	ResourceQuota metrics

 	Secret metrics

 	Service metrics

 	StatefulSet metrics

 	StorageClass metrics

 	ValidatingWebhookConfiguration metrics

 	VerticalPodAutoscaler metrics

 	VolumeAttachment metrics

 For example, here are the metrics collected for Kubernetes services:

 	kube_service_info

 	kube_service_labels

 	kube_service_created

 	kube_service_spec_type

 	kube_service_spec_external_ip

 	kube_service_status_load_balancer_ingress

 Utilizing the node exporter

 kube-state-metrics collects node information from the Kubernetes API server, but this information is pretty limited. Prometheus comes with its own node exporter, which collects tons of low-level information about the nodes. Remember that Prometheus may be the de facto standard metrics platform on Kubernetes, but it is not Kubernetes-specific. For other systems that use Prometheus, the node exporter is super important. On Kubernetes, if you manage your own nodes, this information can be invaluable too.

 Here is a small subset of the metrics exposed by the node exporter:

 [image:]
 Figure 13.9: Metrics exposed by the node exporter

 Incorporating custom metrics

 The built-in metrics, node metrics, and Kubernetes metrics are great, but very often, the most interesting metrics are domain-specific and need to be captured as custom-metrics. There are two ways to do this:

 	Write your own exporter and tell Prometheus to scrape it

 	Use the push gateway, which allows you to push metrics into Prometheus

 	In my book, Hands-On Microservices with Kubernetes, I provide a full-fledged example of how to implement your own exporter from a Go service

 The push gateway is more appropriate if you already have a push-based metrics collector in place and you just want to have Prometheus record those metrics. It provides a convenient migration path from other metrics collection systems to Prometheus.

 Alerting with Alertmanager

 Collecting metrics is great, but when things go south, or ideally BEFORE things go south, you want to get notified. In Prometheus, this is the job of the Alertmanager. You can define rules as expressions-based metrics and when those expressions become true, they trigger an alert.

 Alerts can serve multiple purposes. They can be handled automatically by a controller that is responsible for mitigating specific problems, they can wake up a poor on-call engineer at 3 A.M, they can result in an email or a group chat message, or any combination of those options.

 The Alertmanager lets you group similar alerts into a single notification, inhibiting notifications if other alerts are already firing and silencing alerts. All those features are useful when a large-scale system is in trouble. The stakeholders are aware of the situation, and don't need repeated alerts or multiple variations of the same alert firing constantly while troubleshooting and trying to find the root cause.

 One of the cool things about the Prometheus operator is that it manages everything in CRDs. That includes all the rules, including the alert rules:

 $ kubectl get prometheusrules -n monitoring
NAME AGE
monitoring-prometheus-oper-alertmanager.rules 2d9h
monitoring-prometheus-oper-etcd 2d9h
monitoring-prometheus-oper-general.rules 2d9h
monitoring-prometheus-oper-k8s.rules 2d9h
monitoring-prometheus-oper-kube-apiserver-error 2d9h
monitoring-prometheus-oper-kube-apiserver.rules 2d9h
monitoring-prometheus-oper-kube-prometheus-node-recording.rules 2d9h
monitoring-prometheus-oper-kube-scheduler.rules 2d9h
monitoring-prometheus-oper-kubernetes-absent 2d9h
monitoring-prometheus-oper-kubernetes-apps 2d9h
monitoring-prometheus-oper-kubernetes-resources 2d9h
monitoring-prometheus-oper-kubernetes-storage 2d9h
monitoring-prometheus-oper-kubernetes-system 2d9h
monitoring-prometheus-oper-kubernetes-system-apiserver 2d9h
monitoring-prometheus-oper-kubernetes-system-controller-manager 2d9h
monitoring-prometheus-oper-kubernetes-system-kubelet 2d9h
monitoring-prometheus-oper-kubernetes-system-scheduler 2d9h
monitoring-prometheus-oper-node-exporter 2d9h
monitoring-prometheus-oper-node-exporter.rules 2d9h
monitoring-prometheus-oper-node-network 2d9h
monitoring-prometheus-oper-node-time 2d9h
monitoring-prometheus-oper-node.rules 2d9h
monitoring-prometheus-oper-prometheus 2d9h
monitoring-prometheus-oper-prometheus-operator 2d9h

 Here is the node time rule, which checks every second if the node time has deviated more than 0.05 of a second from the time of the node running the Prometheus pod (of course, you want to make sure this node's clock is correct by having NTP properly configured):

 $ kubectl get prometheusrules monitoring-prometheus-oper-node-time -n monitoring -o yaml
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 ...
spec:
 groups:
 - name: node-time
 rules:
 - alert: ClockSkewDetected
 annotations:
 message: Clock skew detected on node-exporter {{ $labels.namespace }}/{{ $labels.pod
 }}. Ensure NTP is configured correctly on this host.
 expr: abs(node_timex_offset_seconds{job="node-exporter"}) > 0.05
 for: 2m
 labels:
 severity: warning

 Alerts are very important, but there are cases where you want to visualize the overall state of your system or drill down into specific aspects. This is where visualization comes into play.

 Visualizing your metrics with Grafana

 You've already seen the Prometheus Expression browser, which can display your metrics as a graph or in table form. However, we can do much better. Grafana (https://grafana.com/) is an open source monitoring system that specializes in stunningly beautiful visualizations of metrics. It doesn't store the metrics itself, but works with many data sources, and Prometheus is one of them. Grafana has alerting capabilities too, but when working with Prometheus, it's best to rely on its Alertmanger.

 The Prometheus operator installs Grafana and configures a large number of useful Kubernetes dashboards. Check out this beautiful dashboard of Kubernetes networking of pods filtered by namespace:

 [image:]
 Figure 13.10: Pods filtered by namespace

 To access Grafana, type the following commands:

 $ POD_NAME=$(kubectl get pods -n monitoring -l "app=grafana" \
 -o jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward -n monitoring $POD_NAME 3000

 Then, you can browse to http://localhost:3000 and have some fun with Grafana. Grafana requires a username and password. The default credentials are admin for the user and prom-operator for the password.

 Here are the dashboards that are pre-configured:

 [image:]
 Figure 13.11: pre-configured dashboards

 As you can see, the list is pretty extensive, but you can define your own dashboards if you want. There are a lot of fancy visualizations you can create with Grafana. I encourage you to explore it further. The Grafana dashboard is stored as config maps. If you want to add a custom dashboard, just add a config map that contains your dashboard spec. There is a dedicated sidecar container that watches new config maps being added and it will make sure to add your custom dashboard.

 Considering Loki

 If you like Prometheus and Grafana and you haven't settled on a centralized logging solution yet (or if you're unhappy with your current logging solution), then you should consider Grafana Loki (https://grafana.com/oss/loki/). Loki is an open source project for log aggregation, inspired by Prometheus. Unlike most log aggregation systems, it doesn't index the log contents but rather a set of labels applied to the log. That makes is very efficient. It is still relatively new (started in 2018), so you should evaluate whether it fits your needs before making the decision to adopt it. One thing is for sure: Loki has excellent Grafana support.

 There are several advantages for Loki compared to something like EFK when Prometheus is used as the metrics platform. In particular, the set of labels you use to tag your metrics will serve just as well to tag your logs. Also, the fact that Grafana is used as a uniform visualization platform for both logs and metrics is useful.

 We dedicated a lot of time to discussing metrics on Kubernetes. Let's talk about distributed tracing and the Jaeger project.

 Distributed tracing with Jaeger

 In microservice-based systems, every request may travel between multiple microservices calling each other, wait in queues, and trigger serverless functions. To debug and troubleshoot such systems, you need to be able to keep track of requests and follow them along their path.

 Distributed tracing provides several capabilities that allow you, the developers, and the operators to understand their distributed systems:

 	Distributed transaction monitoring

 	Performance and latency tracking

 	Root cause analysis

 	Service dependency analysis

 	Distributed context propagation

 Distributed tracing often requires participation of the applications and services instrumenting endpoints. Since the microservices world is polyglot, multiple programming languages may be used. It makes sense to use a shared distributed tracing specification and framework that supports many programming languages. Enter OpenTracing...

 What is OpenTracing?

 OpenTracing (https://opentracing.io/) is an API specification and a set of frameworks and libraries in different languages. It is also an incubating CNCF project. OpenTracing is supported by multiple products and became a de facto standard. By using a product that complies with OpenTracing, you are not locked in and you work with an API that may be familiar to your developers. Note that OpenTracing recently merged with OpenCensus to form OpenTelemetry, which is a specification and platform for collecting both metrics and distributed traces. It is still in early development (Sandbox CNCF project), so we'll stick with OpenTracing at the moment.

 Here is a list of the tracers that support OpenTracing:

 	Jaeger

 	LightStep

 	Instana

 	Apache SkyWalking

 	inspectIT

 	stagemonitor

 	Datadog

 	Wavefront by VMware

 	Elastic APM

 Most of the mainstream programming languages are supported:

 	Go

 	JavaScript

 	Java

 	Python

 	Ruby

 	PHP

 	Objective-C

 	C++

 	C#

 OpenTracing concepts

 The two main concepts of OpenTracing are Span and Trace.

 A Span is the basic unit of work or operation. It has a name, start time, and a duration. Spans can be nested if one operation starts another operation. Spans propagate with a unique ID and context. A Trace is an acyclic graph of Spans that originated from the same request and share the same context. A Trace represents the execution path of a request throughout the system. The following diagram illustrates the relationship between a Trace and Spans:

 [image:]
 Figure 13.12: Trace and Spans relationship

 Let's take a look at Jaeger.

 Introducing Jaeger

 Jaeger (https://www.jaegertracing.io/) is yet another CNCF graduated project, just like Fluentd and Prometheus. It completes the trinity of CNCF-graduated observability projects for Kubernetes. Jaeger was developed originally by Uber and quickly became the forerunner distributed tracing solution for Kubernetes.

 There are other open source distributed tracing systems available, like Zipkin (https://zipkin.io/) and AppDash (https://github.com/sourcegraph/appdash). The inspiration for most of these systems (as well as Jaeger) is Google's Dapper (https://research.google/pubs/pub36356/). The cloud platform provides their own tracers, like AWS X-Ray.

 There are various differences between all these systems. Jaeger's strong points are:

 	Scalable design

 	Multiple OpenTracing-compatible clients

 	Light memory footprint

 	Agents collect metrics over UDP

 Jaeger architecture

 Jaeger is a scalable system. It can be deployed as a single binary with all its components and stores the data in memory, but also as a distributed system where spans and traces are stored in persistent storage.

 Jaeger has several components that collaborate to provide a word-class distributed tracing experience. The following diagram illustrates the architecture:

 [image:]
 Figure 13.13: Jaeger architecture

 Let's understand what the purpose of each component is.

 Jaeger client

 The Jaeger client is a library that implements the OpenTracing API in order to instrument a service or application for distributed tracing. The client library is used by the service or application to create spans and attach context like trace ID, span ID, and additional payload.

 A very important aspect of Jaeger instrumentation is that it uses sampling and only 1 out of 1,000 traces are actually sampled. This is very different than logs and metrics, which record each and every event. This makes distributed tracing relatively lightweight, while still providing enough insight for high-volume applications.

 Jaeger agent

 The role of the agent is deployed locally to each node. It listens to spans over UDP – which makes it pretty performant – batches them, and sends them in bulk to the collector. This way, services don't need to discover collector or worry about connecting to them. Instrumented services simply send their spans to the local agent. The agent can also inform the client about sampling strategies.

 Jaeger collector

 The collector receives traces from all the agents. It is responsible for validating, indexing, transforming, and eventually storing the traces. The storage component can be a data store like Cassandra or Elasticsearch. However, it can also be a Kafka instance that enables async processing of traces.

 Jaeger query

 The Jaeger query service is responsible for presenting a UI to query the traces and spans the collector puts in storage.

 Installing Jaeger

 There are Helm charts that can be used to install Jaeger and the Jaeger operator, which is in beta at the time of writing. However, let's give it a try and see how far we can go:

 $ helm repo add jaegertracing https://jaegertracing.github.io/helm-charts
$ helm search repo jaegertracing
NAME CHART VERSION APP VERSION DESCRIPTION
jaegertracing/jaeger 0.18.3 1.16.0 A Jaeger Helm chart for Kubernetes
jaegertracing/jaeger-operator 2.12.3 1.16.0 jaeger-operator Helm chart for Kubernetes

 Let's install Jaeger itself first, into the monitoring namespace:

 $ helm install jaeger jaegertracing/jaeger -n monitoring
NAME: jaeger
LAST DEPLOYED: Fri Jun 12 20:03:24 2020
NAMESPACE: monitoring
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
You can log into the Jaeger Query UI here:
 export POD_NAME=$(kubectl get pods --namespace monitoring -l "app.kubernetes.io/instance=jaeger,app.kubernetes.io/component=query" -o jsonpath="{.items[0].metadata.name}")
 echo http://127.0.0.1:8080/
 kubectl port-forward --namespace monitoring $POD_NAME 8080:16686

 Unfortunately, we can't use Helm 3 to install the Jaeger operator. We must resort to Helm 2 again:

 $ helm2 install jaegertracing/jaeger-operator -n jaeger-operator --namespace monitoring
NAME: jaeger-operator
LAST DEPLOYED: Sa Jun 13 00:42:17 2020
NAMESPACE: monitoring
STATUS: DEPLOYED
RESOURCES:
==> v1/Deployment
NAME AGE
jaeger-operator 0s
==> v1/Pod(related)
NAME AGE
jaeger-operator-b7f44c755-fwmrr 0s
==> v1/Role
NAME AGE
jaeger-operator 0s
==> v1/RoleBinding
NAME AGE
jaeger-operator 0s
==> v1/Service
NAME AGE
jaeger-operator-metrics 0s
==> v1/ServiceAccount
NAME AGE
jaeger-operator 0s
NOTES:
jaeger-operator is installed.
Check the jaeger-operator logs
 export POD=$(kubectl get pods -l app.kubernetes.io/instance=jaeger-operator -lapp.kubernetes.io/name=jaeger-operator --namespace monitoring --output name)
 kubectl logs $POD --namespace=monitoring

 Let's bring up the Jaeger UI:

 $ export POD_NAME=$(kubectl get pods --namespace monitoring -l "app.kubernetes.io/instance=jaeger,app.kubernetes.io/component=query" -o jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward --namespace monitoring $POD_NAME 8080:16686

 Now, we can browse to http://localhost:8080 and see the Jaeger UI:

 [image:]
 Figure 13.14: The Jaeger UI

 In the next chapter – Chapter 14, Utilizing Service Meshes – we will see more of Jaeger and how to use it. Now, let's turn our attention to troubleshooting using all the monitoring and observability mechanisms we've discussed.

 Troubleshooting problems

 Troubleshooting a complex distributed system is no picnic. Abstractions, separation of concerns, information hiding, and encapsulation are great during development, testing, and when making changes to the system. But when things go wrong, you need to cross all those boundaries and layers of abstraction from the user action in their app through the entire stack, all the way to the infrastructure, thus crossing all the business logic, asynchronous processes, legacy systems, and third-party integrations. This is a challenge, even with large monolithic systems, but even more so with microservice-based distributed systems. Monitoring will assist you, but let's talk first about preparation, processes, and best practices.

 Taking advantage of staging environments

 When building a large system, developers work on their local machines (ignoring cloud development environments here) and eventually, the code is deployed to the production environment. However, there are a few steps between those two extremes. Complex systems operate in an environment that is not easy to duplicate locally. You should test changes that have been made to code or configuration in an environment that is similar to your production environment. This is your staging environment, where you should catch most problems that can't be caught by the developer running tests locally in their development environment.

 The software delivery process should accommodate the detection of bad code and configuration as early as possible. However, sometimes, bad changes will be detected only in production and cause an incident. You should have an incident management process in place as well, which typically involves reverting to the previous version of whatever component caused the issue and then trying to find the root cause, often by debugging in the staging environment.

 But sometimes, the problem is not with your code or configuration. In the end, your Kubernetes cluster runs on nodes (yes, even if it's managed), and those nodes can suffer many issues.

 Detecting problems at the node level

 In Kubernetes' conceptual model, the unit of work is the pod. However, pods are scheduled on nodes. When it comes to monitoring and the reliability of the infrastructure, the nodes are what require the most attention, because Kubernetes itself (the scheduler, replica sets, and horizontal pod autoscalers) takes care of the pods. Nodes can suffer from a variety of problems that Kubernetes is unaware of. As a result, it will keep scheduling pods to the bad nodes, and the pods might fail to function properly. Here are some of the problems that nodes may suffer while still appearing functional:

 	Bad CPU

 	Bad memory

 	Bad disk

 	Kernel deadlock

 	Corrupt filesystem

 	Problems with the container runtime (for example, the Docker daemon)

 The kubelet running on each node can't detect these problems. We need another solution. Enter the node problem detector.

 The node problem detector is a pod that runs on every node. It needs to solve a difficult problem. It must detect various low-level problems across different environments, different hardware, and different operating systems. It must be reliable enough not to be affected itself (otherwise, it can't report the problem), and it needs to have relatively low overhead to avoid spamming the master. In addition, it needs to run on every node. The source code can be found at https://github.com/kubernetes/node-problem-detector.

 The most natural way is to deploy the node problem detector as a DaemonSet so that every node always as a problem detector. On Google's GCE clusters, it runs as an add-on.

 Problem daemons

 The problem with the node problem detector (pun intended) is that there are too many problems that it needs to handle. Trying to cram all of them into a single codebase can lead to a complex, bloated, and never-stabilizing codebase. The design of the node problem detector calls for separation of the core functionality of reporting node problems to the master from specific problem detection.

 The reporting API is based on generic conditions and events. Problem detection should be done by separate problem daemons (each in its own container). This way, it is possible to add and evolve new problem detectors without impacting the core node problem detector. In addition, the control plane may have a remedy controller that can resolve some node problems automatically, therefore implementing self-healing.

 At this stage (Kubernetes 1.18), problem daemons are baked into the node problem detector binary, and they execute as Goroutines, so you don't get the benefits of the loosely coupled design just yet. In the future, each problem daemon will run in its own container.

 In addition to problems with nodes, the other area where things can break down is networking. The various monitoring tools we discussed earlier can help us identify problems across the infrastructure, in our code, or with third-party dependencies.

 Let's talk about various options in our toolbox, how they compare, and how to utilize them for maximal effect.

 Dashboards versus alerts

 Dashboards are purely for humans. The idea of a good dashboard is to provide, at a glance, a lot of useful information about the state of the system or a particular component. There are many user experience elements to designing good dashboards, just like designing any UI. Monitoring dashboards can cover a lot of data across many components, over long time periods, and may support drilling down into finer and finer levels of detail.

 Alerts, on the other hand, are constantly checking certain conditions (often based on metrics) and, when triggered, can either result in automatic resolution of the cause of the alert or eventually notify a human, who will probably start the investigation by looking at some dashboards.

 Beyond self-healing systems that handle certain alerts automatically (or ideally resolve the issue before an alert is even raised), humans will typically be involved in troubleshooting. Even in cases where the system automatically recovered from a problem, at some point, a human will review the actions the system took and verify that the current behavior, including automatic recovery from problems, is adequate.

 In many cases, severe problems (incidents) discovered by humans looking at dashboards (not scalable) or notified by alerts will require some investigation, remediation, and, later, post-mortem. In all those stages, the next layer of monitoring comes into play.

 Logs versus metrics versus error reports

 Let's understand where each of these tools excel and how best to combine their strengths to debug difficult problems. Let's assume we have good test coverage and our business/domain logic code is by and large correct. We run into problems in the production environment. There could be several types of problems that happen only in production:

 	Misconfiguration (production configuration is incorrect out of date)

 	Infrastructure provisioning

 	Insufficient permissions and access to data, services, or third-party integrations

 	Environment-specific code

 	Software bugs that are exposed by production inputs

 	Scalability issues

 That's quite a list, and it's probably not even complete. Typically, when something goes wrong, it is in response to some change. What kind of changes are we talking about? Here are a few:

 	Deployment of a new version of the code

 	Dynamic reconfiguration of a deployed application

 	New users or existing users changing the way they interact with the system

 	Changes to the underlying infrastructure (for example, by cloud provider)

 	New path in the code is utilized for the first time (for example, fallback to another region)

 Since there is such a broad spectrum of problems and causes, it is difficult to suggest a linear path to resolution. For example, if the failure caused an error, then looking at an error report might be the best starting point. However, if the issue is that some action that was supposed to happen didn't happen, then there is no error to look at. In this case, it might make sense to look at the logs and compare them to the logs from a previous successful request. In the case of infrastructure or scalability problems, metrics may give us the best initial insight.

 The bottom line is that debugging distributed systems requires using multiple tools together in the pursuit of the ever-elusive root cause.

 Of course, in a distributed system with lots of components and microservices, it is not even clear where to look. This is where distributed tracing shines and can help us narrow down and identify the culprit.

 Detecting performance and root cause with distributed tracing

 With distributed tracing in place, every request will generate a trace with a graph of spans. Jaeger uses sampling of 1/1,000 by default, so once in a blue moon, issues might escape it, but for persistent problems, we will be able to follow the path of a request, see how long each span takes, and if the processing of a request bails out for some reason, it will be very easy to notice. At this point, you need to go back to the logs, metrics, and errors to hunt the root cause.

 Summary

 In this chapter, we covered the topics of monitoring, observability, and, in general, day 2 operations. We started with a review of the various aspects of monitoring: logs, metrics, error reporting, and distributed tracing. Then, we discussed how to incorporate monitoring capabilities into your Kubernetes cluster. We looked at several CNCF projects like Fluentd for log aggregation, Prometheus for metrics collection and alert management, Grafana for visualization, and Jaeger for distributed tracing. Then, we explored troubleshooting large distributed systems. We realized how difficult it can be and why we need so many different tools to conquer the issues.

 In the next chapter, we will take things to the next level and dive into service meshes. I'm super excited about service meshes because they take much of the complexity related to cloud-native, microservice-based applications and externalize them outside of the microservices. That has a lot of real-world value.

 14

 Utilizing Service Meshes

 In the previous chapter, we looked at monitoring and observability. One of the obstacles of a comprehensive monitoring story is that it requires a lot of changes to the code that are orthogonal to the business logic.

 In this chapter, we will learn about service meshes, which allow you to externalize many of those cross-cutting concerns from the application code. The service mesh is a true paradigm shift in the way you can design, evolve, and operate distributed systems on Kubernetes. I like to think of it as aspect-oriented programming for cloud-native distributed systems. The topics we will cover are:

 	What is a service mesh?

 	Choosing a service mesh

 	Incorporating Istio into your Kubernetes cluster

 Let's jump right in.

 What is a service mesh?

 A service mesh is an architectural pattern for large-scale cloud native applications that are composed of many microservices. When your application is structured as a collection of microservices, there is a lot going on in the boundary between the microservices internally, inside your Kubernetes cluster.

 This is different from traditional monolithic applications, where most of the processing is within the same process.

 Here are some of the concerns that are relevant for each microservice or interaction between microservices:

 	Advanced load balancing

 	Service discovery

 	Support canary deployments

 	Caching

 	Tracing a request across multiple microservices

 	Authentication between services

 	Throttling the number requests a service handles at a given time

 	Automatically retrying failed requests

 	Failing over to an alternative component when a component fails consistently

 	Collecting metrics

 All these concerns are completely orthogonal to the domain logic of the service, but they are all very important. A naive approach is to simply code all these concerns directly in each microservice. This obviously doesn't scale. So, a typical approach is to package all this functionality into a big library or set of libraries and use these libraries in each service:

 [image:]
 Figure 14.1: The big library approach

 There are several problems with the big library approach:

 	You need a library that supports all the programming languages you use

 	If you want to update your library, you need to bump all your services

 	It's difficult to upgrade all services at the same time

 The service mesh doesn't touch your application. It injects a sidecar proxy container into each pod and a service mesh controller. The proxies intercept all communication between the pods and, in collaboration with the mesh controller, take care of all the cross-cutting concerns:

 [image:]
 Figure 14.2: Using a service mesh controller

 Here are some of the attributes of the proxy injection approach:

 	The application is unaware of the service mesh

 	You can turn the mesh on or off per pod and update the mesh independently

 	No need to deploy an agent on each node

 	Different pods on the same node can have different sidecars (or versions)

 	Each pod has its own copy of the proxy

 On Kubernetes, it looks like:

 [image:]
 Figure 14.3: Kubernetes with a service mesh controller

 There is another way to implement the service mesh proxy as a node agent, where it is not injected into each pod. This approach is less common, but in some cases (especially in non-Kubernetes environments), it is useful:

 [image:]
 Figure 14.4: Service mesh proxy as a node agent

 Control plane and data plane

 In the service mesh world, there is a control plane, which is typically a set of controllers on Kubernetes, and there is a data plane, which contains the proxies that connect all the services in the mesh. The data plane consists of all the sidecar containers (or node agent) that intercept all communication between services in the mesh. The control plane is responsible for what actually happens when any traffic between services or a service and the outside world is intercepted.

 Now that we have a good idea what a service mesh is, how it works, and why it is so useful, let's review some of the service meshes out there.

 Choosing a service mesh

 The service mesh concept is relatively new, but there are already many choices out there. Here is a concise review of the current cohort of service meshes.

 Envoy

 Envoy (https://www.envoyproxy.io/) is yet another CNCF graduated project. It is a very versatile and high-performance L7 proxy. It provides many service mesh capabilities, but it is considered pretty low-level and difficult to configure. It is also not Kubernetes-specific. Some of the Kubernetes service meshes use Envoy as the underlying data plane and provide a Kubernetes-native control plane to configure and interact with it. If you want to use Envoy directly on Kubernetes, then the recommendation is to use another open source projects like Ambassador or Gloo as an Ingress controller and/or API gateway.

 Linkerd 2

 Linkerd 2 (https://linkerd.io/) is a Kubernetes-specific service, as well as a CNCF incubating project. It is developed by Buoyant (https://buoyant.io/). Buoyant coined the term service mesh and introduced it to the world a few years ago. They started with a Scala-based service mesh for multiple platforms, including Kubernetes, called Linkerd. However, they decided to develop a better and more performant service mesh targeting Kubernetes only. That's where Linkerd 2 comes in. They implemented the data plane (proxy layer) in Rust and the control plane in Go.

 Kuma

 Kuma (https://kuma.io/) is a service mesh powered by Envoy. It works on Kubernetes, as well as other environments. It is developed by Kong. Its claim to fame is that it is super easy to configure.

 AWS App Mesh

 AWS, of course, has its own proprietary service mesh – AWS App Mesh (https://aws.amazon.com/app-mesh/). App Mesh also uses Envoy as its data plane. It can run on EC2, Fargate, ECS and EKS, and plain Kubernetes. App Mesh is a bit late to the service mesh scene, so it's not as mature as some of the other service meshes. However, it is based on the solid Envoy, so if you're an AWS shop, it may be the best choice due to its tight integration with AWS services.

 Maesh

 Maesh (https://containo.us/maesh/) was developed by the makers of Traefik (https://containo.us/traefik/). It is interesting because it uses the node agent approach as opposed to sidecar containers. It is based heavily on Traefik middleware in order to implement the service mesh functionality. You can configure it by using annotations on your services. It may be an interesting and lightweight approach to trying service meshes if you utilize Traefik at the edge of your cluster.

 Istio

 Last, but not least, Istio (https://istio.io/) is the most well-known service mesh on Kubernetes. It is built on top of Envoy and allows you to configure it in a Kubernetes-native way via YAML manifests. Istio was started by Google, IBM, and Lyft (the Envoy developers). It's a one-click install on Google GKE, but it is widely used in the Kubernetes community. It is also the default ingress/API gateway solution for Knative, which promotes its adoption even further.

 Now that we've discussed the various service meshes choices, let's take Istio for a ride.

 Incorporating Istio into your Kubernetes cluster

 In this section, we will get to know Istio a little better, install it into a fresh cluster, and explore all the service goodness it provides.

 Understanding the Istio architecture

 First, let's meet the main components of Istio and understand what they do and how they relate to each other.

 Istio is a large framework that provides a lot of capabilities, and it has multiple parts that interact with each other and with Kubernetes components (mostly indirectly and unobtrusively). It is divided into a control plane and a data plane. The data plane is a set of proxies (one per pod). Their control plane is a set of components that are responsible for configuring the proxies and collecting telemetry data.

 The following diagram illustrates the different parts of Istio, how they are related to each other, and what information is exchanged between them:

 [image:]
 Figure 14.5: Istio architecture

 Let's go a little deeper into each component, starting with the Envoy proxy.

 Envoy

 We discussed Envoy briefly when we reviewed service meshes for Kubernetes. Here, it serves as the data plane of Istio. Envoy is implemented in C++ and is a high-performance proxy. For each pod in the service mesh, Istio injects (either automatically or through the istioctl CLI) an Envoy side container that does all the heavy lifting, such as:

 	Proxy HTTP, HTTP/2, and gRPC traffic between pods

 	Sophisticated load balancing

 	mTLS termination

 	HTTP/2 and gRPC proxies

 	Providing service health

 	Circuit breaking for unhealthy services

 	Percent-based traffic shaping

 	Injecting faults for testing

 	Detailed metrics

 The Envoy proxy controls all the incoming and outgoing communication to its pod. It is, by far, the most important component of Istio. The configuration of Envoy is not trivial, and this is a large part of what the Istio control plane deals with.

 The next component is Pilot.

 Pilot

 Pilot is responsible for platform-agnostic service discovery, dynamic load balancing, and routing. It translates high-level routing rules into an Envoy configuration. This abstraction layer allows Istio to run on multiple orchestration platforms. Pilot takes all the platform-specific information, converts it into the Envoy data plane configuration format, and propagates it to each Envoy proxy with the Envoy data plane API. Pilot is stateless; in Kubernetes, all the configuration is stored as custom resources definitions (CRDs) in etcd.

 Let's move on to Mixer.

 Mixer

 Mixer is responsible for abstracting the metrics collection, policies, and auditing. These aspects are typically implemented in services by accessing APIs directly for specific backends. This has the benefit of offloading this burden from service developers and putting the control into the hands of the operators that configure Istio. It also enables switching backends easily without code changes. Here are some the backend types that Mixer can work with:

 	Logging

 	Authorization

 	Quota

 	Telemetry

 	Billing

 The interaction between the Envoy proxy and Mixer is straightforward – before each request, the proxy calls Mixer for precondition checks, which might cause the request to be rejected. After each request, the proxy reports the metrics to Mixer. Mixer has an adapter API to facilitate extensions for arbitrary infrastructure backends. It is a major part of its design.

 The next component is Citadel.

 Citadel

 Citadel is responsible for certificate and key management. It is a key part of Istio security. Citadel integrates with various platforms and aligns with their identity mechanisms. For example, in Kubernetes, it uses service accounts; on AWS, it uses AWS IAM; and on GCP/GKE, it can use GCP IAM. The Istio PKI is based on Citadel. It uses X.509 certificates in SPIFEE format as a vehicle for service identity.

 Here is the workflow in Kubernetes:

 	Citadel creates certificates and key pairs for existing service accounts.

 	Citadel watches the Kubernetes API server for new service accounts to provision with a certificate a key pair.

 	Citadel stores the certificates and keys as Kubernetes secrets.

 	Kubernetes mounts the secrets into each new pod that is associated with the service account (this is standard Kubernetes practice).

 	Citadel automatically rotates the Kubernetes secrets when the certificates expire.

 	Pilot generates secure naming information that associates a service account with an Istio service. Pilot then passes the secure naming information to the Envoy proxy.

 The final major component that we will cover is Galley.

 Galley

 Galley is responsible for abstracting the user configuration on different platforms. It provides the ingested configuration to Pilot and Mixer. It is a pretty simple component.

 Now that we have broken down Istio into its major components, let's get ready to install Istio into a Kubernetes cluster.

 Preparing a minikube cluster for Istio

 We will use a minikube cluster to check out Istio. Before installing Istio, we should make sure our cluster has enough capacity to handle Istio, as well as its demo application, Bookinfo. We will start minikube with 16 MB of memory and four CPUs, which should be adequate:

 $ minikube start --memory=16384 --cpus=4

 Minikube can provide a load balancer for Istio. Let's run this command in a separate Terminal as it will block:

 $ minikube tunnel
Status:
 machine: minikube
 pid: 20463
 route: 10.96.0.0/12 -> 192.168.64.5
 minikube: Running
 services: []
 errors:
 minikube: no errors
 router: no errors
 loadbalancer emulator: no errors

 Minikube sometimes doesn't clean up the tunnel network, so it's recommended to run the following command after you stop the cluster:

 $ minikube tunnel --cleanup

 Installing Istio

 With minikube up and running, we can install Istio itself. There are multiple ways to install Istio:

 	Customized installation with Istioctl (the Istio CLI)

 	Customized installation with Helm

 	Using the Istio operator (experimental)

 	Multicluster installation

 The Helm installation will not be supported in the future, so we will go with the recommended istioctl option:

 $ curl -L https://istio.io/downloadIstio | sh -

 The istioctl tool is located in /istio-1.6.3/bin (the version may be different when you download it). Make sure it's in your PATH. The Kubernetes installation manifests are in /istio-1.6.3/install/kubernetes and the examples are in /istio-1.6.3/samples.

 We will install the built-in demo profile, which is great for evaluating Istio:

 $ istioctl manifest apply --set profile=demo
- Applying manifest for component Base...
[image:] Finished applying manifest for component Base.
- Applying manifest for component Citadel...
- Applying manifest for component Tracing...
- Applying manifest for component IngressGateway...
- Applying manifest for component Galley...
- Applying manifest for component Kiali...
- Applying manifest for component EgressGateway...
- Applying manifest for component Prometheus...
- Applying manifest for component Pilot...
- Applying manifest for component Policy...
- Applying manifest for component Injector...
- Applying manifest for component Telemetry...
- Applying manifest for component Grafana...
[image:] Finished applying manifest for component Citadel.
[image:] Finished applying manifest for component Kiali.
[image:] Finished applying manifest for component Galley.
[image:] Finished applying manifest for component Prometheus.
[image:] Finished applying manifest for component Injector.
[image:] Finished applying manifest for component Tracing.
[image:] Finished applying manifest for component Policy.
[image:] Finished applying manifest for component Grafana.
[image:] Finished applying manifest for component IngressGateway.
[image:] Finished applying manifest for component Pilot.
[image:] Finished applying manifest for component EgressGateway.
[image:] Finished applying manifest for component Telemetry.
[image:] Installation complete

 Some familiar names like Prometheus and Grafana pop up already. Let's review our cluster and see what is actually installed. Istio installs itself into the istio-system namespace, which is very convenient since it installs a lot of stuff. Let's check out what services Istio installed:

 $ kubectl get svc -n istio-system -o name
service/grafana
service/istio-citadel
service/istio-egressgateway
service/istio-galley
service/istio-ingressgateway
service/istio-pilot
service/istio-policy
service/istio-sidecar-injector
service/istio-telemetry
service/jaeger-agent
service/jaeger-collector
service/jaeger-query
service/kiali
service/Prometheus
service/tracing
service/zipkin

 There are quite a few services with an istio- prefix and then a bunch of other services:

 	Prometheus

 	Grafana

 	Jaeger

 	Zipkin

 	Tracing

 	Kiali

 This means that if we use Istio in our Kubernetes cluster, we don't need to install Prometheus, Grafana, and Jaeger. They come with Istio. Also, the fact that Istio endorses them gives even more staying power.

 OK. We've installed Istio successfully. Let's install the Bookinfo application, which is Istio's sample application, into our cluster.

 Installing Bookinfo

 Bookinfo is a simple microservice-based application that displays, as the name suggests, information on a single book such as name, description, ISBN, and even reviews. The Bookinfo developers really embraced the polyglot lifestyle, and each microservice is implemented in a different programming language:

 	ProductPage service in Python

 	Reviews service in Java

 	Details service in Ruby

 	Ratings service in JavaScript (Node.js)

 The following diagram describes the relationships and flow of information between the Bookinfo services:

 [image:]
 Figure 14.6: Bookinfo service relationships

 Conveniently enough, Bookinfo comes with Istio, so we already have it in the samples sub-directory and we can install it from there:

 $ cd samples/bookinfo

 We're going to install it into its own bookinfo namespace. Let's create the namespace and then enable the Istio auto injection of the sidecar proxies by adding a label to the namespace:

 $ kubectl create ns bookinfo
namespace/bookinfo created
$ kubectl label namespace bookinfo istio-injection=enabled
namespace/bookinfo labeled

 Installing the application itself is a simple one-liner:

 $ kubectl apply -f platform/kube/bookinfo.yaml -n bookinfo
service/details created
serviceaccount/bookinfo-details created
deployment.apps/details-v1 created
service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
service/productpage created
serviceaccount/bookinfo-productpage created
deployment.apps/productpage-v1 created

 Alright, the application was deployed successfully, including separate service accounts for each service. As you can see, three version of the reviews service were deployed. This will come in handy later, when we play with upgrades and advanced routing and deployment patterns.

 Before moving on, we still need to wait for all the pods to initialize and then Istio will inject its sidecar proxy container. When the dust settles, you should see something like this:

 $ kubectl get po -n bookinfo
NAME READY STATUS RESTARTS AGE
details-v1-78d78fbddf-sdssb 2/2 Running 0 101s
productpage-v1-596598f447-h9576 2/2 Running 0 100s
ratings-v1-6c9dbf6b45-bpqbl 2/2 Running 0 99s
reviews-v1-7bb8ffd9b6-7s6xh 2/2 Running 0 100s
reviews-v2-d7d75fff8-p5lh5 2/2 Running 0 100s
reviews-v3-68964bc4c8-4hqvr 2/2 Running 0 100s

 Note that under the READY column, each pod shows 2/2, which means two containers per pod. One is the application container and the other is the injected proxy.

 Since we're going to operate in the bookinfo namespace, let's define a little alias that will make our life simpler:

 $ alias kb='kubectl -n bookinfo'

 Now, armed with our little kb alias, we can verify that we can get the product page from the ratings service:

 $ kb exec -it $(kb get pod -l app=ratings -o jsonpath='{.items[0].metadata.name}') -c ratings -- curl productpage:9080/productpage | grep -o "<title>.*</title>"
<title>Simple Bookstore App</title>

 However, the application is not accessible to the outside world yet. This is where the Istio gateway comes in. Let's deploy it:

 $ kb apply -f networking/bookinfo-gateway.yaml
gateway.networking.istio.io/bookinfo-gateway created
virtualservice.networking.istio.io/bookinfo created

 On minikube, the external URL for the gateway can be constructed as:

 export INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
$ export GATEWAY_URL=$(minikube ip):${INGRESS_PORT}

 Now, we can try it from the outside:

 $ http http://${GATEWAY_URL}/productpage | grep -o "<title>.*</title>"
<title>Simple Bookstore App</title>

 You can also open the URL in your browser and see some information about Shakespeare's The Comedy of Errors:

 [image:]
 Figure 14.7: The Comedy of Errors

 Alright. We're all set to start exploring the capabilities that Istio brings to the table. Let's start with traffic management.

 Traffic management

 Istio traffic management is about routing traffic to your services according to the destination rules you define. Istio keeps a service registry for all your services and their endpoints. The basic traffic management allows traffic between each pair of services and does simple round-robin load balancing between each service instance.

 However, Istio can do much more. The traffic management API of Istio consists of five resources:

 	Virtual services

 	Destination rules

 	Gateways

 	Service entries

 	Sidecars

 Let's start by applying the default destination rules for Bookinfo:

 $ kubectl apply -f networking/destination-rule-all.yaml
destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

 Then, let's create the Istio virtual services that represent the services in the mesh:

 $ kubectl apply -f networking/virtual-service-all-v1.yaml
virtualservice.networking.istio.io/productpage created
virtualservice.networking.istio.io/reviews created
virtualservice.networking.istio.io/ratings created
virtualservice.networking.istio.io/details created

 We need to wait a little for the virtual service configuration to propagate. Let's then check out the product page virtual service:

 $ kubectl get virtualservices productpage -o yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 ...
 generation: 1
 name: productpage
 namespace: default
spec:
 hosts:
 - productpage
 http:
 - route:
 - destination:
 host: productpage
 subset: v1

 It is pretty straightforward, specifying the HTTP route and the version. The v1 subset is important for the review service, which has multiple versions. The product page service will hit its v1 version because that is the subset that's configured.

 Let's make it a little more interesting and do routing based on the logged-in user. Istio itself doesn't have a concept of user identity, but it routes traffic based on headers. The Bookinfo application adds an end user header to all requests.

 The following command will update the routing rules:

 $ kubectl apply -f networking/virtual-service-reviews-test-v2.yaml
virtualservice.networking.istio.io/reviews configured

 Let's check the new rules:

 $ kubectl get virtualservice reviews -o yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 ...
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: json
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v1

 As you can see, if the HTTP header end user matches "json," then the request will routed to subset 2 of the reviews service; otherwise, to subset 1. Version 2 of the reviews service adds a star rating to the reviews part of the page.

 To test it, we can sign in as user "json" (any password will do) and get the following page:

 [image:]
 Figure 14.8: Reviews after signing in

 There is much more Istio can do in the arena of traffic management:

 	Fault injection for test purposes

 	HTTP and TCP traffic shifting (gradually shift traffic from one version to the next)

 	Request timeouts

 	Circuit breaking

 	Mirroring

 In addition to internal traffic management, Istio supports configuring ingress into the cluster and egress from the cluster, including secure options with TLS and mutual TLS.

 Security

 Security is a core fixture of Istio. It provides identity management, authentication and authorization, security policies, and encryption. The security support is spread across many layers using multiple industry-standard protocols and best-practice security principles like defense in depth, security by default, and zero trust.

 Here is the big picture of the Istio security architecture:

 [image:]
 Figure 14.9: The Istio security architecture

 All these components collaborate to enable a strong security posture:

 	Citadel manages keys and certificates

 	Sidecar and perimeter proxies implement authenticated and authorized communication between clients and servers

 	Pilot distributes security policies and secure naming information to the proxies

 	Mixer manages auditing

 Let's break it down, piece by piece.

 Istio identity

 Istio utilizes secure naming where service names, as defined by the service discovery mechanism (for example, DNS), are mapped to server identities based on certificates. The clients verify the server identities. The server may be configured to verify the client identity. All the security policies apply to given identities. The servers decide what access a client has, based on their identity.

 The Istio identity model can utilize existing identity infrastructure on the platform it is running on. On Kubernetes, it utilizes Kubernetes service accounts, of course.

 Istio supports SPIFEE (https://spiffe.io/) — a standard for the secure identity framework. This is convenient because it allows Istio to integrate quickly with any SPIFEE compliant system. Specifically, Kubernetes X.509 certificates are SPIFEE-compliant.

 Istio PKI

 The Istio public key infrastructure (PKI) is based on Citadel to create SPIFEE certificates. The process on Kubernetes involves the following stages:

 	Citadel watches the Kubernetes API server. For each service account, it creates a SPIFFE certificate and a key pair, which it then stores as standard Kubernetes secrets.

 	Now, whenever Kubernetes creates a pod, it mounts the certificate and key pair as a secret volume called istio-certs that matches the service account.

 	Citadel watches the lifetime of each certificate and automatically rotates the certificates by rewriting the Kubernetes secrets.

 	Pilot generates the secure naming information, which defines what service account or accounts can run a certain service. Pilot then passes the secure naming information to the sidecar, Envoy.

 Istio authentication

 The secure identity model underlies the authentication framework of Istio. Istio supports two modes of authentication: transport authentication and origin authentication.

 Transport authentication

 Transport authentication is used for service to service authentication. The cool thing about it is that Istio provides it with no code changes. It ensures that service to service communication will take place only between services you configure with authentication policies.

 Here is an authentication policy for the reviews service that requires mutual TLS:

 apiVersion: "authentication.istio.io/v1alpha1"
kind: "Policy"
metadata:
 name: "reviews"
spec:
 targets:
 - name: reviews
 peers:
 - mtls: {}

 Origin authentication

 Origin authentication is used for end user authentication. Istio will verify that the end user making the request is allowed to make this request. This request-level authentication utilizes JSON Web Tokens (JWTs) and supports many OpenID Connect backends.

 Here is an example of an origin authentication policy that excludes the /health endpoint for callers with a JWT token issued by Google:

 origins:

 - jwt:
 issuer: https://accounts.google.com
 jwksUri: https://www.googleapis.com/oauth2/v3/certs
 trigger_rules:
 - excluded_paths:
 - exact: /health

 Once the identity of the caller has been established, the authentication framework passes it along with other claims to the next link in the chain – the authorization framework.

 Istio authorization

 Istio can authorize requests at many levels:

 	Entire mesh

 	Entire namespace

 	Workload level

 Here is the authorization architecture of Istio:

 [image:]
 Figure 14.10: Istio's authorization architecture

 Authorization is based on authorization polices. Each policy has a selector (what workloads it applies to) and rules (who is allowed to access a resource and under what conditions).

 If no policy is defined on a workload, all requests are allowed. However, if a policy is defined for a workload, only requests that are allowed by a rule in the policy are allowed. There is no way to define exclusion rules.

 Here is an AuthorizationPolicy that allows two sources (service account cluster.local/ns/default/sa/sleep and namespace dev) to access the workloads with the labels app: httpbin and version: v1 in the namespace foo when the request is sent with a valid JWT token:

 apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:
 selector:
 matchLabels:
 app: httpbin
 version: v1
 rules:
 - from:
 - source:
 principals: ["cluster.local/ns/default/sa/sleep"]
 - source:
 namespaces: ["dev"]
 to:
 - operation:
 methods: ["GET"]
 when:
 - key: request.auth.claims[iss]
 values: ["https://accounts.google.com"]

 The granularity doesn't have to be at the workload level. We can limit the access to specific endpoints and methods too. We can specify the operation using prefix match, suffix match, or presence match, in addition to exact match. For example, the following policy allows access to all paths that start with /test/ and all the paths that end in /info. The allowed methods are GET and HEAD only:

 apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: tester
 namespace: default
spec:
 selector:
 matchLabels:
 app: products
 rules:
 - to:
 - operation:
 paths: ["/test/*", "*/info"]
 methods: ["GET", "HEAD"]

 If we want to get even more fancy, we can specify conditions. For example, we can allow only requests with a specific header. Here is a policy that requires a version header with a value of v1 or v2:

 apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:
 selector:
 matchLabels:
 app: httpbin
 version: v1
 rules:
 - from:
 - source:
 principals: ["cluster.local/ns/default/sa/sleep"]
 to:
 - operation:
 methods: ["GET"]
 when:
 - key: request.headers[version]
 values: ["v1", "v2"]

 For TCP services, the paths and methods fields of the operation don't apply. Istio will simply ignore them. However, we can specify policies for specific ports:

 apiVersion: "security.istio.io/v1beta1"
kind: AuthorizationPolicy
metadata:
 name: mongodb-policy
 namespace: default
spec:
 selector:
 matchLabels:
 app: mongodb
 rules:
 - from:
 - source:
 principals: ["cluster.local/ns/default/sa/bookinfo-ratings-v2"]
 to:
 - operation:
 ports: ["27017"]

 It is possible to plug in other authorization mechanisms by extending Mixer, but it is frowned upon. It's best to stick to Istio authorization, which is very powerful and flexible.

 Let's move on to the topic of custom policies.

 Policies

 Istio is very flexible and lets us enable and define various custom policies to control how requests are handled. Here are some of the policies we can apply:

 	Dynamically rate limit traffic to a service

 	Whitelisting, blacklisting, and denying access to services

 	Rewriting headers

 	Redirecting requests

 	Custom authorization policies

 Policies are powered by the Mixer adapter model. Mixer abstracts away infrastructure backends such as telemetry systems, access control systems, quota enforcements systems, billing systems, and so on. The mixer adapter operates on a generic set of attributes that it receives from Envoy. It then feeds them to the adapter that knows how to interact with the infrastructure backends. The operators (you and me) can configure Mixer with policies that, based on the attribute, define behaviors for the adapter. Here is a diagram that illustrates the interactions between the different components:

 [image:]
 Figure 14.11: Interactions between Mixer components

 Custom policies are not trivial. You have to understand the various objects involved and how to configure them correctly. Also, policy enforcement is disabled by default. If we don't enable it, Istio will ignore our policies.

 It is configured in the istio ConfigMap. Here is how to verify that:

 $ kubectl -n istio-system get cm istio -o jsonpath="{@.data.mesh}" | grep
disablePolicyChecks
disablePolicyChecks: true

 Here is an easy way to enable it:

 $ istioctl manifest apply --set values.global.disablePolicyChecks=false

 If this doesn't work, you can directly edit the ConfigMap:

 $ kubectl edit -n istio-system cm istio

 Now, we can apply some policies. For example, here is how to apply the rate limit policy:

 $ kubectl apply -f policy/mixer-rule-productpage-ratelimit.yaml
handler.config.istio.io/quotahandler created
instance.config.istio.io/requestcountquota created
quotaspec.config.istio.io/request-count created
quotaspecbinding.config.istio.io/request-count created
rule.config.istio.io/quota created

 This created several objects: a handler, an instance, a quota spec, a quota spec binding, and finally a rule that ties all of them together.

 Let's take a look at these objects and see how they collaborate to implement rate limiting. The instance is an instance of a quota template. It defines the dimensions, which in this case are the source, destination, and destination version:

 $ kubectl -n istio-system get instance requestcountquota -o yaml
apiVersion: config.istio.io/v1alpha2
kind: instance
metadata:
 generation: 1
 name: requestcountquota
spec:
 compiledTemplate: quota
 params:
 dimensions:
 destination: destination.labels["app"] | destination.service.name | "unknown"
 destinationVersion: destination.labels["version"] | "unknown"
 source: request.headers["x-forwarded-for"] | "unknown"

 The handler here is a memquota adapter. For production systems, it is recommended to use a Redis adapter.

 You can retrieve the spec using the following command:

 $ kubectl -n istio-system get handler quotahandler -o yaml

 The spec defines multiple quota schemes. First, a default quota of 500 requests per second:

 spec:
 compiledAdapter: memquota
 params:
 quotas:
 - name: requestcountquota.instance.istio-system
 maxAmount: 500
 validDuration: 1s

 Then, it defines overrides for specific services. For example, for the reviews service, only one request is allowed every 5 seconds:

 overrides:
 - dimensions:
 destination: reviews
 maxAmount: 1
 validDuration: 5s

 The productpage service allows two requests every 5 seconds:

 - dimensions:
 destination: productpage
 maxAmount: 2
 validDuration: 5s

 Unless the source has IP address 10.28.11.20, in which case, it's back to 500 requests per second:

 - dimensions:
 destination: productpage
 source: 10.28.11.20
 maxAmount: 500
 validDuration: 1s

 When a request is rejected due to a rate limit, Mixer will return a RESOURCE_EXHAUSTED message to Envoy, which will return an HTTP 429 status code to the caller.

 The rule just ties together the quota instance with the handler:

 $ kubectl -n istio-system get rule quota -o yaml
apiVersion: config.istio.io/v1alpha2
kind: rule
metadata:
 generation: 1
 name: quota
 namespace: istio-system
spec:
 actions:
 - handler: quotahandler
 instances:
 - requestcountquota

 The policy can be applied restricted to a namespace. When the namespace is istio-system, it applies to the entire service mesh.

 Let's look at one of the areas where Istio provides tremendous value – telemetry.

 Monitoring and observability

 Instrumenting your application for telemetry is a thankless job. You need to log, collect metrics, and create spans for tracing. This has several downsides:

 	It takes time and effort to do it in the first place

 	It takes more time and effort to ensure it is consistent across all the services in your cluster

 	You can easily miss some important instrumentation point or configure it incorrectly

 	If you want to change your log provider or distributed tracing solution, you might need to modify all your services

 	It litters your code with lots of stuff that obscures the business logic

 	You might need to explicitly turn it off for testing

 What if all of this was taken care of automatically and never required any code changes? That's the promise of service mesh telemetry. Of course, you may need to do some work, especially if you want to capture custom metrics or do some specific logging. If your system is divided into coherent microservices along boundaries that really represent your domain and workflows, then Istio can help you get decent instrumentation, right out of the box. The idea is that Istio can keep track of what's going on in the seams between your services.

 Logs

 Istio can be configured for log collection, similar to the way we defined policies. The following command will create a log instance and a log handler:

 $ kubectl apply -f telemetry/log-entry.yaml
instance.config.istio.io/newlog created
handler.config.istio.io/newloghandler created

 It uses the logentry template and the stdio built-in adapter. On Kubernetes, the logs are collected as the container logs of the mixer. You can find them via the following command:

 $ kubectl -n istio-system logs -l istio-mixer-type=telemetry | rg newlog
{"level":"warn","time":"2020-06-14T19:27:11.752616Z","instance":"newlog.instance.istio-system","destination":"details","latency":"1.708946ms","responseCode":200,"responseSize":178,"source":"productpage","user":"unknown"}
{"level":"warn","time":"2020-06-14T19:27:11.912198Z","instance":"newlog.instance.istio-system","destination":"details","latency":"1.756211ms","responseCode":200,"responseSize":178,"source":"productpage","user":"unknown"}
{"level":"warn","time":"2020-06-14T19:27:11.918363Z","instance":"newlog.instance.istio-system","destination":"reviews","latency":"29.029062ms","responseCode":200,"responseSize":375,"source":"productpage","user":"unknown"}
{"level":"warn","time":"2020-06-14T19:27:11.758456Z","instance":"newlog.instance.istio-system","destination":"reviews","latency":"4.624288ms","responseCode":200,"responseSize":295,"source":"productpage","user":"unknown"}
{"level":"warn","time":"2020-06-14T19:27:11.918611Z","instance":"newlog.instance.istio-system","destination":"reviews","latency":"27.833674ms","responseCode":200,"responseSize":375,"source":"productpage","user":"unknown"}
istio-mixer-type=telemetry

 As you can see, each log entry contains the log level, the time stamp, the source, the destination, the response code, and the latency.

 It is also possible to access the Envoy logs if necessary. Note that the Envoy logs are disabled by default. You can enable them in the Istio ConfigMap by setting accessLogFile to /dev/output.

 Here are the Envoy logs of the productpage service:

 $ kb logs -l app=productpage -c istio-proxy
[2020-06-14T19:27:11.565Z] "GET /reviews/0 HTTP/1.1" 200 - "-" "-" 0 375 19 19 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "f482f9a7-2033-945f-8885-fd55038fb3ce" "reviews:9080" "172.17.0.18:9080" outbound|9080||reviews.bookinfo.svc.cluster.local - 10.96.145.169:9080 172.17.0.24:54918 – default
[2020-06-14T19:27:11.547Z] "GET /productpage HTTP/1.1" 200 - "-" "-" 0 5282 40 40 "172.17.0.1" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "f482f9a7-2033-945f-8885-fd55038fb3ce" "192.168.64.6:30828" "127.0.0.1:9080" inbound|9080|http|productpage.bookinfo.svc.cluster.local - 172.17.0.24:9080 172.17.0.1:0 – default
[2020-06-14T19:27:11.752Z] "GET /details/0 HTTP/1.1" 200 - "-" "-" 0 178 1 1 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "d3c13544-fc06-9e49-8aeb-077608d70316" "details:9080" "172.17.0.27:9080" outbound|9080||details.bookinfo.svc.cluster.local - 10.96.117.135:9080 172.17.0.24:56584 – default
[2020-06-14T19:27:11.758Z] "GET /reviews/0 HTTP/1.1" 200 - "-" "-" 0 295 5 5 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "d3c13544-fc06-9e49-8aeb-077608d70316" "reviews:9080" "172.17.0.21:9080" outbound|9080||reviews.bookinfo.svc.cluster.local - 10.96.145.169:9080 172.17.0.24:54928 – default
[2020-06-14T19:27:11.747Z] "GET /productpage HTTP/1.1" 200 - "-" "-" 0 4286 18 18 "172.17.0.1" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "d3c13544-fc06-9e49-8aeb-077608d70316" "192.168.64.6:30828" "127.0.0.1:9080" inbound|9080|http|productpage.bookinfo.svc.cluster.local - 172.17.0.24:9080 172.17.0.1:0 – default
[2020-06-14T19:27:11.912Z] "GET /details/0 HTTP/1.1" 200 - "-" "-" 0 178 1 1 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "9f6f8d93-fb3f-98b7-9911-1b1e74aabfbf" "details:9080" "172.17.0.27:9080" outbound|9080||details.bookinfo.svc.cluster.local - 10.96.117.135:9080 172.17.0.24:56596 – default
[2020-06-14T19:27:11.918Z] "GET /reviews/0 HTTP/1.1" 200 - "-" "-" 0 375 29 28 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "9f6f8d93-fb3f-98b7-9911-1b1e74aabfbf" "reviews:9080" "172.17.0.18:9080" outbound|9080||reviews.bookinfo.svc.cluster.local - 10.96.145.169:9080 172.17.0.24:54940 – default
[2020-06-14T19:27:11.906Z] "GET /productpage HTTP/1.1" 200 - "-" "-" 0 5282 43 43 "172.17.0.1" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36" "9f6f8d93-fb3f-98b7-9911-1b1e74aabfbf" "192.168.64.6:30828" "127.0.0.1:9080" inbound|9080|http|productpage.bookinfo.svc.cluster.local - 172.17.0.24:9080 172.17.0.1:0 – default
[Envoy (Epoch 0)] [2020-06-14 19:36:20.012][19][warning][config] [bazel-out/k8-opt/bin/external/envoy/source/common/config/_virtual_includes/grpc_stream_lib/common/config/grpc_stream.h:91] gRPC config stream closed: 13,
[Envoy (Epoch 0)] [2020-06-14 20:06:38.171][19][warning][config] [bazel-out/k8-opt/bin/external/envoy/source/common/config/_virtual_includes/grpc_stream_lib/common/config/grpc_stream.h:91] gRPC config stream closed: 13,

 The format of the Envoy logs is text, but you can configure it to be JSON, by setting the accessLogEncoding to JSON in the ConfigMap. You can even set the format of the logs.

 On Kubernetes, you can use fluentd to send all these logs to a centralized logging system.

 Let's deploy a complete Elasticsearch, Kibana, and Fluentd (EFK) logging stack and see how it integrates with Istio. We will run the following command (the logging-stack.yaml file is in the code folder):

 $ kubectl apply -f logging-stack.yaml
namespace/logging created
service/elasticsearch created
deployment.apps/elasticsearch created
service/fluentd-es created
deployment.apps/fluentd-es created
configmap/fluentd-es-config created
service/kibana created
deployment.apps/kibana created

 The stack is deployed in its own logging namespace. We need to configure Istio to send its logs through fluentd. As usual, this is done by going through Mixer and defining Instance, Handler, and Rule:

 $ kubectl apply -f telemetry/fluentd-istio.yaml
instance.config.istio.io/newlog created
handler.config.istio.io/handler created
rule.config.istio.io/newlogtofluentd created

 It can take a few minutes for some pods to be ready. The next step is to make Kibana – the logging UI – accessible:

 $ kubectl -n logging port-forward $(kubectl -n logging get pod -l app=kibana -o jsonpath='{.items[0].metadata.name}') 5601:5601

 Now, we can browse to http://localhost:5601 and start playing with Kibana. Here is what it looks like:

 [image:]
 Figure 14.12: The Kibana UI

 That pretty much covers logging with Istio. Let's see what Istio has to offer for metrics.

 Metrics

 Istio collects three types of metrics:

 	Proxy metrics

 	Control plane metrics

 	Service metrics

 The collected metrics cover all traffic into, from, and inside the service mesh. As operators, we need to configure Istio. Istio follows the four golden signals doctrine and records the latency, traffic, errors, and saturation.

 Istio installs Prometheus and Grafana as its metrics collection and visualization backend.

 To set up metrics collection, let's run the following command:

 $ kubectl apply -f telemetry/metrics.yaml
instance.config.istio.io/doublerequestcount created
handler.config.istio.io/doublehandler created
rule.config.istio.io/doubleprom created

 Here is an example of proxy-level metrics:

 envoy_cluster_internal_upstream_rq{response_code_class="2xx",cluster_name="xds-grpc"} 7163
envoy_cluster_upstream_rq_completed{cluster_name="xds-grpc"} 7164
envoy_cluster_ssl_connection_error{cluster_name="xds-grpc"} 0
envoy_cluster_lb_subsets_removed{cluster_name="xds-grpc"} 0
envoy_cluster_internal_upstream_rq{response_code="503",cluster_name="xds-grpc"} 1

 And here is an example of a service-level metric:

 istio_requests_total{
 connection_security_policy="mutual_tls",
 destination_app="details",
 destination_principal="cluster.local/ns/default/sa/default",
 destination_service="details.default.svc.cluster.local",
 destination_service_name="details",
 destination_service_namespace="default",
 destination_version="v1",
 destination_workload="details-v1",
 destination_workload_namespace="default",
 reporter="destination",
 request_protocol="http",
 response_code="200",
 response_flags="-",
 source_app="productpage",
 source_principal="cluster.local/ns/default/sa/default",
 source_version="v1",
 source_workload="productpage-v1",
 source_workload_namespace="default"
} 214

 We can also collect metrics for TCP services. Let's install v2 of the ratings service, which uses MongoDB (a TCP service):

 $ kb apply -f platform/kube/bookinfo-ratings-v2.yaml
serviceaccount/bookinfo-ratings-v2 created
deployment.apps/ratings-v2 created

 Next, we install MongoDB itself:

 $ kb apply -f platform/kube/bookinfo-db.yaml
service/mongodb created
deployment.apps/mongodb-v1 created

 Finally, we need to create virtual services for the reviews and ratings service:

 $ kb apply -f networking/virtual-service-ratings-db.yaml
virtualservice.networking.istio.io/reviews configured
virtualservice.networking.istio.io/ratings configured

 At this point, we can expose Prometheus:

 kubectl -n istio-system port-forward \
$(kubectl -n istio-system get pod -l app=prometheus \
-o jsonpath='{.items[0].metadata.name}') 9090:9090 &

 We can view the slew of new metrics available from both Istio services, the Istio control plane, and especially Envoy. Here is a very small subset of the available metrics:

 [image:]
 Figure 14.13: Some of the available metrics

 The last pillar of observability is distributed tracing.

 Distributed tracing

 Istio configures the Envoy proxies to generate trace spans for the associated services. The services themselves are responsible for forwarding the request context. Istio can work with multiple tracing backends, such as:

 	Gaeger

 	Zipkin

 	LightStep

 	DataDog

 Here are the request headers that services should propagate (only some may be present for each request, depending on the tracing backend):

 x-request-id
 x-b3-traceid
 x-b3-spanid
 x-b3-parentspanid
 x-b3-sampled
 x-b3-flags
 x-ot-span-context
 x-cloud-trace-context
 traceparent
 grpc-trace-bin

 The sampling rate of traces is controlled by an environment variable of the Pilot: PILOT_TRACE_SAMPLING:

 $ kubectl -n istio-system get deploy istio-pilot -o yaml \
| grep "name: PILOT_TRACE_SAMPLING" -A 1
 - name: PILOT_TRACE_SAMPLING
 value: "100"

 The demo profile of Bookinfo samples 100% of the requests. We can change it to a lower rate with a granularity of 0.01. The default is 1%.

 Now, we can start the Jaeger UI and explore the traces:

 $ istioctl dashboard jaeger
http://localhost:52466
Handling connection for 9090

 Your browser will automatically open and you should see the familiar Jaeger dashboard, where you can select a service and search for traces:

 [image:]
 Figure 14.14: Selecting a service in Jaeger

 You can click von a trace to see a detailed view of the flow of the request through the system:

 [image:]
 Figure 14.15: Detailed flow of the request

 We've seen a lot of different tools with their own UI. Let's look at dedicated service mesh visualization.

 Visualizing your service mesh with Kiali

 Kiali is an open source project that ties together Prometheus, Grafana, and Jaeger to provide an observability console to your Istio service mesh. It can answer questions like:

 	What microservices participate in the Istio service mesh?

 	How are these microservices connected?

 	How are these microservices performing?

 It has various views and it really allows you to slice and dice your service mesh with zooming in and out, filtering and selecting various properties to display. It's got several views that you can switch between. Here is the overview page:

 [image:]
 Figure 14.16: Kiali's overview page

 However, the most interesting view is the graph view, which can show your services and how they relate to each other. It is fully aware of versions and requests flowing between different workloads, including percentage of requests and latency. It can show both HTTP and TCP services and really provides a great picture of how your service mesh behaves:

 [image:]
 Figure 14.17: Graph view in Kiali

 Summary

 In this chapter, we did a very comprehensive study of service meshes on Kubernetes. Service meshes are here to stay. They are simply the right way to operate a complex distributed system. Separating all the operations concerns out to the proxies and having the service mesh to control them is a paradigm shift. Kubernetes, of course, is designed primarily for complex distributed systems, so the value of the service mesh becomes clear right away. It is also great to see that there are many options for service meshes on Kubernetes. While most service meshes are not specific to Kubernetes, it is one of the most important deployment platforms. In addition, we did a thorough review of Istio – arguably the service mesh with the most momentum – and took it through its paces. We demonstrated many of the benefits of service meshes and how they integrate with various other systems. You should be able to evaluate how useful a service mesh can be for your system and if you should deploy it and start enjoying the benefits.

 In the next chapter, we'll look at the myriad of ways that we can extend Kubernetes and take advantage of its modular and flexible design. This is one of the hallmarks of Kubernetes and why it was adopted so quickly by so many communities.

 15

 Extending Kubernetes

 In this chapter, we will dig deep into the guts of Kubernetes. We will start with the Kubernetes API and learn how to work with Kubernetes programmatically via direct access to the API, the Python client, and automating Kubectl. Then, we'll look into extending the Kubernetes API with custom resources. The last part is all about the various plugins Kubernetes supports. Many aspects of Kubernetes operation are modular and designed for extension. We will examine the API aggregation layer and several types of plugins, such as custom schedulers, authorization, admission control, custom metrics, and volumes. Finally, we'll look into extending Kubectl and adding your own commands.

 The topics covered in this chapter are as follows:

 	Working with the Kubernetes API

 	Extending the Kubernetes API

 	Writing Kubernetes and Kubectl plugins

 	Writing webhooks

 Working with the Kubernetes API

 The Kubernetes API is comprehensive and encompasses the entire functionality of Kubernetes. As you may expect, it is huge. But it is designed very well using best practices, and it is consistent. If you understand the basic principles, you can discover everything you need to know.

 Understanding OpenAPI

 OpenAPI allows API providers to define their operations and models and enables developers to automate their tools and generate their favorite language's client to talk to that API server. Kubernetes has supported Swagger 1.2 (an older version of the OpenAPI spec) for a while, but the spec was incomplete and invalid, making it hard to generate tools/clients based on it.

 In Kubernetes 1.4, alpha support was added for the OpenAPI spec (formerly known as Swagger 2.0 before it was donated to the OpenAPI Initiative) by upgrading the current models and operations. In Kubernetes 1.5, support for the OpenAPI spec has been completed by auto-generating the spec directly from the Kubernetes source, which will keep the spec and documentation completely in sync with future changes in operations/models.

 The new spec enables better API documentation and an auto-generated Python client that we will explore later.

 The spec is modular and divided by group version. This is future-proof. You can run multiple API servers that support different versions. Applications can transition gradually to newer versions.

 The structure of the spec is explained in detail in the OpenAPI spec definition. The Kubernetes team used the operation's tags to separate each group version and fill in as much information as possible about paths/operations and models. For a specific operation, all parameters, methods of call, and responses are documented. The result is impressive.

 Setting up a proxy

 To simplify access, you can use Kubectl to set up a proxy:

 $ kubectl proxy --port 8080

 Now, you can access the API server on http://localhost:8080 and it will reach the same Kubernetes API server that Kubectl is configured for.

 Exploring the Kubernetes API directly

 The Kubernetes API is highly discoverable. You can just browse to the URL of the API server at http://localhost:8080 and get a nice JSON document that describes all the available operations under the paths key.

 Here is a partial list due to space constraints:

 {
 "paths": [
 "/api",
 "/api/v1",
 "/apis",
 "/apis/apps",
 "/apis/storage.k8s.io/v1",
 .
 .
 .
 "/healthz",
 "/healthz/ping",
 "/logs",
 "/metrics",
 "/swaggerapi/",
 "/ui/",
 "/version"
]
}

 You can drill down any one of the paths. For example, here is the response from the /api/v1/namespaces/default endpoint:

 {
 "apiVersion": "v1",
 "kind": "Namespace",
 "metadata": {
 "creationTimestamp": "2017-12-25T10:04:26Z",
 "name": "default",
 "resourceVersion": "4",
 "selfLink": "/api/v1/namespaces/default",
 "uid": "fd497868-e95a-11e7-adce-080027c94384"
 },
 "spec": {
 "finalizers": [
 "kubernetes"
]
 },
 "status": {
 "phase": "Active"
 }
}

 I discovered this endpoint by going first to /api, then discovered /api/v1, which told me there is /api/v1/namespaces, which pointed me to /api/v1/namespaces/default.

 Using Postman to explore the Kubernetes API

 Postman (https://www.getpostman.com) is a very polished application for working with RESTful APIs. If you lean more to the GUI side, you may find it extremely useful.

 The following screenshot shows the available endpoints in the batch V1 API group:

 [image:]
 Figure 15.1: Available endpoints in the batch V1 API group

 Postman has a lot of options and it organizes the information in a very pleasing way. Give it a try.

 Filtering the output with HTTPie and jq

 The output from the API can be too verbose sometimes. Often, you're interested just in one value out of a huge chunk of JSON response. For example, if you want to get the names of all running services you can hit the /api/v1/services endpoint. The response, however, includes a lot of additional information that is irrelevant. Here is a very partial subset of the output:

 $ http http://localhost:8080/api/v1/services
{
 "apiVersion": "v1",
 "items": [
 {
 "metadata": {
 "creationTimestamp": "2020-06-15T05:18:30Z",
 "labels": {
 "component": "apiserver",
 "provider": "kubernetes"
 },
 "name": "kubernetes",
 …
 },
 "spec": {
 …
 },
 "status": {
 "loadBalancer": {}
 }
 },
 …
],
 "kind": "ServiceList",
 "metadata": {
 "resourceVersion": "1076",
 "selfLink": "/api/v1/services"
 }
}

 The complete output is 121 lines long! Let's see how to use HTTPie and jq to gain full control over the output and show only the names of the services. I prefer (https://httpie.org/) over cURL for interacting with REST APIs on the command line. The jq (https://stedolan.github.io/jq/) command-line JSON processor is great for slicing and dicing JSON.

 Examining the full output, you can see that the service name is in the metadata section of each item in the items array. The jq expression that will select just the name is as follows:

 .items[].metadata.name

 Here is the full command and output:

 $ http http://localhost:8080/api/v1/services | jq .items[].metadata.name
"kubernetes"
"kube-dns"
"kubernetes-dashboard"

 Creating a pod via the Kubernetes API

 The API can be used for creating, updating, and deleting resources too. Unlike working with Kubectl, the API requires specifying the manifests in JSON and not YAML syntax (although every JSON document is also valid YAML). Here is a JSON pod definition (nginx-pod.json):

 {
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata":{
 "name": "nginx",
 "namespace": "default",
 "labels": {
 "name": "nginx"
 }
 },
 "spec": {
 "containers": [{
 "name": "nginx",
 "image": "nginx",
 "ports": [{"containerPort": 80}]
 }]
 }
}

 The following command will create the pod via the API:

 $ http POST http://localhost:8080/api/v1/namespaces/default/pods @nginx-pod.json

 To verify it worked, let's extract the name and status of the current pods. The endpoint is /api/v1/namespaces/default/pods.

 The jq expression is items[].metadata.name,.items[].status.phase.

 Here is the full command and output:

 $ FILTER='.items[].metadata.name,.items[].status.phase'
$ http http://localhost:8080/api/v1/namespaces/default/pods | jq $FILTER
"nginx"
"Running"

 Accessing the Kubernetes API via the Python client

 Exploring the API interactively using httpie and jq is great, but the real power of APIs comes when you consume and integrate them with other software. The Kubernetes incubator project provides a full-fledged and very well-documented Python client library. It is available at https://github.com/kubernetes-incubator/client-python.

 First, make sure you have Python installed (both 2.7 and 3.5+ work) work. Then install the Kubernetes package:

 $ pip install kubernetes

 To start talking to a Kubernetes cluster, you need to connect to it. Start an interactive Python session:

 $ python
Python 3.8.0 (default, Jun 15 2020, 16:12:10)
[Clang 10.0.1 (clang-1001.0.46.4)] on Darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

 The Python client can read your Kubectl config:

 >>> from kubernetes import client, config
>>> config.load_kube_config()
>>> v1 = client.CoreV1Api()

 Or it can connect directly to an already running proxy:

 >>> from kubernetes import client, config
>>> client.Configuration().host = 'http://localhost:8080'
>>> v1 = client.CoreV1Api()

 Note that the client module provides methods to get access to different group versions, such as CoreV1API.

 Dissecting the CoreV1API group

 Let's dive in and understand the CoreV1API group. The Python object has 397 public attributes!

 >>> attributes = [x for x in dir(v1) if not x.startswith('__')]
>>> len(attributes)
397

 We ignore the attributes that start with double underscores because they are special class/instance methods unrelated to Kubernetes.

 Let's pick ten random methods and see what they look like:

 >>> import random
>>> from pprint import pprint as pp
>>> pp(random.sample(attributes, 10))
['list_namespaced_secret',
 'connect_post_namespaced_pod_proxy',
 'patch_namespaced_replication_controller_with_http_info',
 'patch_node_status_with_http_info',
 'replace_persistent_volume',
 'read_namespaced_service_status',
 'read_namespaced_replication_controller_status',
 'list_namespaced_secret_with_http_info',
 'replace_namespaced_event_with_http_info',
 'replace_namespaced_resource_quota_with_http_info']

 Very interesting. The attributes begin with a verb such as list, patch, or read. Many of them have a notion of a namespace and many have a with_http_info suffix. To understand better, let's count how many verbs exist and how many attributes use each verb (where the verb is the first token before the underscore):

 >>> from collections import Counter
>>> verbs = [x.split('_')[0] for x in attributes]
>>> pp(dict(Counter(verbs)))
{'api': 1,
 'connect': 96,
 'create': 36,
 'delete': 56,
 'get': 2,
 'list': 56,
 'patch': 48,
 'read': 52,
 'replace': 50}

 We can drill further and look at the interactive help for a specific attribute:

 >>> help(v1.create_node)
Help on method create_node in module kubernetes.client.apis.core_v1_api:
create_node(body, **kwargs) method of kubernetes.client.apis.core_v1_api.CoreV1Api instance
create a Node
This method makes a synchronous HTTP request by default. To make
an asynchronous HTTP request, please pass async_req=True:
>>> thread = api.create_node(body, async_req=True)
>>> result = thread.get()
:param async_req bool
:param V1Node body: (required)
:param str pretty: If 'true', then the output is pretty printed.
:param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint.
:return: V1Node
 If the method is called asynchronously,
 returns the request thread.

 You can poke around yourself and learn more about the API. Let's look at some common operations, such as listing, creating, watching, and deleting objects.

 Listing objects

 You can list different kinds of object. The method names start with list_. Here is an example listing all namespaces:

 for ns in v1.list_namespace().items:
... print(ns.metadata.name)
...
default
kube-public
kube-system

 Creating objects

 To create an object, you need to pass a body parameter to the create method. The body must be a Python dictionary that is equivalent to a YAML configuration file you would use with Kubectl. The easiest way to do it is to actually use a YAML file and then use the Python YAML module (not part of the standard library and must be installed separately) to read the YAML file and load it into a dictionary. For example, to create an nginx-deployment with three replicas, we can use this YAML configuration file (nginx-deployment.yaml):

 apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.17.8
 ports:
 - containerPort: 80

 To install the YAML Python module, type this command:

 $ pip install pyyaml

 Then the following Python 3 program (create_nginx_deployment.py) will create the deployment:

 from os import path
import yaml from kubernetes import client, config
def main():
Configs can be set in Configuration class directly or using
helper utility. If no argument provided, the config will be
loaded from default location.
config.load_kube_config()
with open(path.join(path.dirname(__file__),
 'nginx-deployment.yaml')) as f:
 dep = yaml.safe_load(f)
 k8s = client.AppsV1Api()
 dep = k8s.create_namespaced_deployment(body=dep,
 namespace="default")
 print(f"Deployment created. status='{dep.status}'")
if __name__ == '__main__':
 main()

 Watching objects

 Watching objects is an advanced capability. It is implemented using a separate watch module. Here is an example to watch for 10 namespace events and print them to the screen (watch_demo.py):

 from kubernetes import client, config, watch
Configs can be set in Configuration class directly or using helper utility
config.load_kube_config()
v1 = client.CoreV1Api()
count = 3
w = watch.Watch()
for event in w.stream(v1.list_namespace, _request_timeout=60):
 print(f"Event: {event['type']} {event['object'].metadata.name}")
 count -= 1 if count == 0: w.stop()
print('Done.')

 Here is the output:

 $ python watch_demo.py
Event: ADDED default
Event: ADDED kube-public
Event: ADDED kube-system
Done.

 Invoking Kubectl programmatically

 If you're not a Python developer and don't want to deal with the REST API directly or client libraries, you have another option. Kubectl is used mostly as an interactive command-line tool, but nothing is stopping you from automating it and invoking it through scripts and programs. There are some benefits to using Kubectl as your Kubernetes API client:

 	It's easy to find examples for any usage.

 	It's easy to experiment on the command line to find the right combination of commands and arguments.

 	Kubectl supports output in JSON or YAML for quick parsing.

 	Authentication is built in via Kubectl configuration.

 Using Python subprocesses to run Kubectl

 I'll use Python again, so you can compare using the official Python client versus rolling your own. Python has a module called subprocess that can run external processes such as Kubectl and capture the output. Here is a Python 3 example running Kubectl on its own and displaying the beginning of the usage output:

 >>> import subprocess
>>> out = subprocess.check_output('kubectl').decode('utf-8')
>>> print(out[:276])
kubectl controls the Kubernetes cluster manager.
Find more information at: https://kubernetes.io/docs/reference/kubectl/overview/
Here are some basic Commands for beginners:
create Create a resource from a file or from stdin.
expose Take a replication controller, servic

 The check_checkout() function captures the output as a bytes array that needs to be decoded to UTF-8 to display it properly. We can generalize it a little bit and create a convenience function called k() in the k.py file. It accepts any number of arguments it feeds to Kubectl, and then decodes the output and returns it:

 from subprocess import check_output
def k(*args):
 out = check_output(['kubectl'] + list(args))
 return out.decode('utf-8')

 Let's use it to list all the running pods in the default namespace:

 >>> from k import k
>>> print(k('get', 'po'))
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 4h48m
nginx-deployment-679f9c75b-c79mv 1/1 Running 0 132m
nginx-deployment-679f9c75b-cnmvk 1/1 Running 0 132m
nginx-deployment-679f9c75b-gzfgk 1/1 Running 0 132m

 This is nice for display, but Kubectl already does that. The real power comes when you use the structured output options with the -o flag. Then the result can be converted automatically to a Python object. Here is a modified version of the k() function, which accepts a Boolean use_json keyword argument (default to False), and if True, adds -o json, and then parses the JSON output to a Python object (a dictionary):

 from subprocess import check_output
import json
def k(*args, use_json=False):
 cmd = ['kubectl'] + list(args)
 if use_json:
 cmd += ['-o', 'json']
 out = check_output(cmd).decode('utf-8')
 if use_json:
 out = json.loads(out,)
return out

 That returns a full-fledged API object, which can be navigated and drilled down just like when accessing the REST API directly or using the official Python client:

 >>> result = k('get', 'po', use_json=True)
>>> for r in result['items']:
... print(r['metadata']['name'])
...
nginx-deployment-679f9c75b-c79mv
nginx-deployment-679f9c75b-cnmvk
nginx-deployment-679f9c75b-gzfgk

 Let's see how to delete the deployment and wait until all the pods are gone. The Kubectl delete command doesn't accept the -o json option (although it has the -o name), so let's leave out use_json:

 k('delete', 'deployment', 'nginx-deployment')
while len(k('get', 'po', use_json=True)['items']) > 0:
 print('.') print('Done.')
.
.
.
.
Done.

 Now that we have accessed Kubernetes programmatically via its REST API and by controlling Kubectl, it's time to learn how to extend Kubernetes.

 Extending the Kubernetes API

 Kubernetes is an extremely flexible platform. It was designed from the get-go for extensibility, and as it evolved, more parts of Kubernetes were opened up, exposed through robust interfaces, and they can be replaced by alternative implementations. I venture to say that the exponential adoption of Kubernetes across the board by start - ups, large companies, infrastructure providers, and cloud providers is a direct result of Kubernetes providing a lot of capabilities out of the box, but also allowing easy integration with other actors. In this section, we will cover many of the available extensions points, such as the following:

 	User-defined types (custom resources)

 	API access extensions

 	Infrastructure extensions

 	Operators

 	Scheduler extensions

 Let's understand the various ways you can extend Kubernetes.

 Understanding Kubernetes extension points and patterns

 Kubernetes is made of multiple components: the API server, etcd state store, controller manager, kube-proxy, kubelet, and the container runtime. You can extend and customize deeply each and every one of these components as well as adding your own custom components that watch and react to events, handle new requests, and modify everything about incoming requests.

 The following diagram shows some of the available extension points and how they are connected to various Kubernetes components:

 [image:]
 Figure 15.2: Extension points connecting to Kubernetes components

 Extending Kubernetes with plugins

 Kubernetes defines several interfaces that allow it to interact with a wide variety of plugins by infrastructure providers. We discussed some of these interfaces and plugins in detail in previous chapters. We will just list them here for completeness:

 	CNI: The container networking interface supports a large number of networking solutions for connecting nodes and containers.

 	CSI: The container storage interface supports a large number of storage options for Kubernetes.

 	Device plugins: These allow a node to discover new node resources beyond CPU and memory (for example, GPU).

 Extending Kubernetes with the cloud controller manager

 Kubernetes needs to be deployed eventually on some nodes and use some storage and networking resources. Initially, Kubernetes supported only Google Cloud Platform and AWS. Other cloud providers had to customize multiple Kubernetes core components (Kubelet, Kubernetes Controller Manager, Kubernetes API server) in order to integrate with Kubernetes. The Kubernetes developers identified it as a problem for adoption and created the Cloud Controller Manager (CCM). The CCM cleanly defines the interaction between Kubernetes and the infrastructure layer it is deployed on. Now, cloud providers just provide an implementation of the CCM tailored to their infrastructure and they can utilize upstream Kubernetes without costly and error-prone modifications to the Kubernetes code. All the Kubernetes components interact with the CCM via the predefined interfaces and Kubernetes is blissfully unaware which cloud (or no cloud) it is running on. The following diagram demonstrates the interaction between Kubernetes and a cloud provider via the CCM:

 [image:]
 Figure 15.3: Interaction of the cloud and Kubernetes via a CCM

 If you want to learn more about the CCM, check out this concise article I wrote a couple of years ago: https://medium.com/@the.gigi/kubernetes-and-cloud-providers-b7a6227d3198.

 Extending Kubernetes with webhooks

 Plugins run in the cluster, but in some cases a better extensibility pattern is to delegate a function to an out-of-cluster service. This is very common in the area of access control, where companies and organizations may already have a centralized solution for identity and access control. In those cases, the webhook extensibility pattern is useful. The idea is that you can configure Kubernetes with an endpoint (webhook). Kubernetes will call the endpoint where you can implement your own custom functionality and Kubernetes will take action based on the response. We've seen this pattern when we discussed authentication, authorization, and dynamic admission control.

 Kubernetes defines the expected payloads for each webhook. The webhook implementation must adhere to them in order to successfully interact with Kubernetes.

 Extending Kubernetes with controllers and operators

 The controller pattern is where you write a program that can run inside the cluster or outside the cluster, watch for events, and respond to them. The conceptual model for a controller is to reconcile the current state of the cluster (the parts the controller is interested in) with a desired state. A common practice for controllers is to read the .spec of an object, take some actions, and update its .status. A lot of the core logic of Kubernetes is implemented by a large set of controllers managed by the controller manager, but there is nothing stopping us from deploying our own controllers to the cluster or running controllers that access the API server remotely.

 The operator pattern is another flavor of the controller pattern. Think of an operator as a controller that also has its own set of custom resources that represents some application it manages. The goal of operators is to manage the lifecycle of some application that is deployed in the cluster. A great example is etcd-operator: https://github.com/coreos/etcd-operator.

 If you plan to build your own controllers, I recommend starting with kubebuilder (https://github.com/kubernetes-sigs/kubebuilder). It is a project maintained by the Kubernetes API Machinery SIG and has support for defining multiple custom APIs using CRDs and scaffolds out the controller code to watch these resources.

 For operators consider using the Operator framework (https://github.com/operator-framework) as your starting point.

 Extending Kubernetes scheduling

 Kubernetes' job, in one sentence, is to schedule pods to nodes. Scheduling is at the heart of what Kubernetes does and it does it well. The Kubernetes scheduler can be configured in very advanced ways (daemon sets, taints, tolerations, and so on). But the Kubernetes developers recognize that there may be extraordinary circumstances where you may want to control the core scheduling algorithm. It is possible to replace the core Kubernetes scheduler with your own scheduler or run another scheduler alongside the built-in scheduler to control the scheduling of a subset of the pods. We will see how to do that later in the chapter.

 Extending Kubernetes with custom container runtimes

 Kubernetes originally supported only Docker as a container runtime. The Docker support was embedded in the core Kubernetes codebase. Later, dedicated support for rkt was added. But the Kubernetes developers saw the light and introduced the CRI (container runtime interface), a gRPC interface, which enabled any container runtime that implements it to communicate with the kubelet. Eventually, the hard-coded support for Docker and rkt was phased out and now the kubelet talks to the container runtime only through CRI:

 [image:]
 Figure 15.4: Kubelet communicating with container runtime

 Since the introduction of CRI the number of container runtimes that work with Kubernetes exploded.

 Introducing custom resources

 One of the primary ways to extend Kubernetes is to define new types of resources called custom resources. What can you do with custom resources? Plenty. You can use them to manage resources that live outside the Kubernetes cluster, but with which your pods communicate, through the Kubernetes API. By adding those external resources as custom resources, you get a full picture of your system and you benefit from many Kubernetes API features, such as the following:

 	Custom CRUD REST endpoints

 	Versioning

 	Watches

 	Automatic integration with generic Kubernetes tooling

 Other use cases for custom resources are metadata for custom controllers and automation programs.

 Custom resources that were introduced in Kubernetes 1.7 are a significant improvement over the now deprecated third-party resources. Let's dive in and see what custom resources are all about.

 In order to play nice with the Kubernetes API server, custom resources must conform to some basic requirements. Similar to built-in API objects, they must have the following fields:

 	apiVersion: apiextensions.k8s.io/v1

 	metadata: Standard Kubernetes object metadata

 	kind: CustomResourceDefinition

 	spec: Describes how the resource appears in the API and tools

 	status: Indicates the current status of the CRD

 The spec has an internal structure that includes fields such as group, names, scope, validation, and version. The status includes the fields acceptedNames and Conditions. In the next section, I'll show you an example that clarifies the meaning of these fields.

 Developing custom resource definitions

 You develop your custom resources using Custom Resource Definitions (CRD). The intention is for CRDs to integrate smoothly with Kubernetes and its API and tooling, so you need to provide a lot of information. Here is an example for a custom resource called Candy:

 apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 # name must match the spec fields below, and be in the form: <plural>.<group>
 name: candies.awesome.corp.com
spec:
 # group name to use for REST API: /apis/<group>/<version>
 group: awesome.corp.com
 # version name to use for REST API: /apis/<group>/<version>
 versions:
 - name: v1
 # Each version can be enabled/disabled by Served flag.
 served: true
 # One and only one version must be marked as the storage version.
 storage: true
 schema:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 flavor:
 type: string
 # either Namespaced or Cluster
 scope: Namespaced
 names:
 # plural name to be used in the URL: /apis/<group>/<version>/<plural>
 plural: candies
 # singular name to be used as an alias on the CLI and for display
 singular: candy
 # kind is normally the CamelCased singular type. Your resource manifests use this.
 kind: Candy
 # shortNames allow shorter string to match your resource on the CLI
 shortNames:
 - cn

 The Candy CRD has several interesting parts. The metadata has a fully qualified name that should be unique since CRDs are cluster-scoped. The spec has a versions entry, which can contain multiple versions with a schema for each version that specifies the field of the custom resource. The schema follows the OpenAPI v3 (https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#schemaObject) specification.

 The scope field could be either Namespaced or Cluster. If the scope is Namespaced then the custom resources you create from the CRD will exist only in the namespace they were created in; cluster-scoped custom resources are available in any namespace.

 Finally, the names section refers to the names of the custom resource (not the name of the CRD from the metadata section). The names have plural, singular, kind, and short name options.

 Let's create the CRD:

 $ kubectl create -f candy-crd.yaml
customresourcedefinition.apiextensions.k8s.io/candies.awesome.corp.com created

 Note that the metadata name is returned. It is common to use a plural name. Now, let's verify we can access it:

 $ kubectl get crd
NAME CREATED AT
candies.awesome.corp.com 2020-06-15T10:19:09Z

 There is also an API endpoint for managing this new resource:

 /apis/awesome.corp.com/v1/namespaces/<namespace>/candies/

 Integrating custom resources

 Once the CustomResourceDefinition object has been created, you can create custom resources of that resource kind, Candy in this case (candy becomes CamelCase Candy). Custom resources must respect the schema from the CRD. In the following example, the flavor field is set on the Candy object with a name of chocolate. The apiVersion field is derived from the CRD spec's group and version fields:

 apiVersion: awesome.corp.com/v1
kind: Candy
metadata:
 name: chocolate
spec:
 flavor: sweeeeeeet

 Let's create it:

 $ k create -f chocolate.yaml
candy.awesome.corp.com/chocolate created

 Note that the spec must contain the flavor field from the schema.

 At this point, Kubectl can operate on Candy objects just like it works on built-in objects. Note that resource names are case-insensitive when using Kubectl:

 $ kubectl get candies
NAME AGE chocolate 2m

 We can also view the raw JSON data using the standard -o json flag. Let's use the short name cn this time:

 $ kubectl get cn -o json
{
 "apiVersion": "v1",
 "items": [
 {
 "apiVersion": "awesome.corp.com/v1",
 "kind": "Candy",
 "metadata": {
 "creationTimestamp": "2020-06-15T10:22:25Z",
 "generation": 1,
 "name": "chocolate",
 "namespace": "default",
 "resourceVersion": "1664",
 "selfLink": "/apis/awesome.corp.com/v1/namespaces/default/candies/chocolate",
 "uid": "1b04f5a9-9ae8-475d-bc7d-245042759304"
 },
 "spec": {
 "flavor": "sweeeeeeet"
 }
 }
],
 "kind": "List",
 "metadata": {
 "resourceVersion": "",
 "selfLink": ""
 }
}

 Dealing with unknown fields

 The schema in the spec was introduced with the apiextensions.k8s.io/v1 version of CRDs that became stable in Kubernetes 1.17. With apiextensions.k8s.io/v1beta a schema wasn't required, so arbitrary fields were the way to go. If you just try to change the version of your CRD from v1beta to v1, you're in for a rude awakening. Kubernetes will let you update the CRD, but when you try to create a custom resource later with unknown fields it will fail.

 You must define a schema for all your CRDs. If you must deal with custom resources that may have additional unknown fields you can turn validation off, but the additional fields will be stripped off.

 Here is a Candy resource that has an extra field texture not specified in the schema:

 apiVersion: awesome.corp.com/v1
kind: Candy
metadata:
 name: gummy-bear
spec:
 flavor: delicious
 texture: rubbery

 If we try to create it with validation it will fail:

 $ kubectl create -f gummy-bear.yaml
error: error validating "gummy-bear.yaml": error validating data: ValidationError(Candy.spec): unknown field "texture" in com.corp.awesome.v1.Candy.spec; if you choose to ignore these errors, turn validation off with --validate=false

 But if we turn validation off then all is well, except that only the flavor field will be present and the texture field will not:

 $ kubectl create -f gummy-bear.yaml --validate=false
candy.awesome.corp.com/gummy-bear created
$ kubectl get cn gummy-bear -o yaml
apiVersion: awesome.corp.com/v1
kind: Candy
metadata:
 creationTimestamp: "2020-06-15T22:02:18Z"
 generation: 1
 name: gummy-bear
 namespace: default
 resourceVersion: "93551"
 selfLink: /apis/awesome.corp.com/v1/namespaces/default/candies/gummy-bear
 uid: 1900b97e-55ba-4235-8366-24f469f449e3
spec:
 flavor: delicious

 If you want to add arbitrary fields, you need to turn validation off with --validate=false.

 Finalizing custom resources

 Custom resources support finalizers just like standard API objects. A finalizer is a mechanism where objects are not deleted immediately but have to wait for special controllers that run in the background and watch for deletion requests. The controller may perform any necessary cleanup options and then remove its finalizer from the target object. There may be multiple finalizers on an object. Kubernetes will wait until all finalizers have been removed and only then delete the object. The finalizers in the metadata are just arbitrary strings that their corresponding controller can identify. Kubernetes doesn't know what they mean. It just waits patiently for all the finalizers to be removed before deleting the object. Here is an example with a candy object that has two finalizers: eat-me and drink-me:

 apiVersion: awesome.corp.com/v1
kind: Candy
metadata:
 name: chocolate
 finalizers:
 - eat-me
 - drink-me
spec:
 flavor: sweeeeeeet

 Adding custom printer columns

 By default, when you list custom resources with Kubectl you get only the name and the age of the resource:

 $ kubectl get cn
NAME AGE
chocolate 11h
gummy-bear 16m

 But the CRD schema allows you to add your own columns. Let's add the flavor and the age fields as printable columns to our candy objects:

 apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: candies.awesome.corp.com
spec:
 group: awesome.corp.com
 versions:
 - name: v1
 ...
 additionalPrinterColumns:
 - name: Flavor
 type: string
 description: The flavor of the candy
 jsonPath: .spec.flavor
 - name: Age
 type: date
 jsonPath: .metadata.creationTimestamp
 ...

 Then we can create it, add our candies again, and list them:

 $ kubectl create -f candy-with-flavor-crd.yaml
customresourcedefinition.apiextensions.k8s.io/candies.awesome.corp.com created
$ kubectl create -f chocolate.yaml
candy.awesome.corp.com/chocolate created
$ kubectl create -f gummy-bear.yaml --validate=false
candy.awesome.corp.com/gummy-bear created
$ kubectl get candies
NAME FLAVOR AGE
chocolate sweeeeeeet 64s
gummy-bear delicious 59s

 Understanding API server aggregation

 CRDs are great when all you need is some CRUD operations on your own types. You can just piggyback on the Kubernetes API server, which will store your objects and provide API support and integration with tooling such as Kubectl. If you need more power, you can run controllers that watch for your custom resources and perform some operations when they are created, updated, or deleted. The kubebuilder (https://github.com/kubernetes-sigs/kubebuilder) project is a great framework for building Kubernetes APIs on top of CRDs with your own controllers.

 But CRDs have limitations. If you need more advanced features and customization, you can use API server aggregation and write your own API server that the Kubernetes API server will delegate to. Your API server will use the same API machinery as the Kubernetes API server itself. Some of the advanced capabilities that are only available through the aggregation layer are:

 	Makes your apiserver adopt different storage APIs rather than etcd v3

 	Extends long-running subresources/endpoints such as websockets for your own resources

 	Integrates your apiserver with whatever other external systems

 	Controls the storage of your objects (custom resources are always stored in etcd)

 	Provides long-running resources such as websockets for your own resources

 	Custom operations beyond CRUD (for example, exec or scale)

 	Using protocol buffer payloads

 	Integrates your API server with any external system

 Writing an extension API server is a non-trivial effort. If you decide you need all that power, I recommend using the API builder alpha project: https://github.com/kubernetes-sigs/apiserver-builder-alpha.

 It is a young project, but it takes care of a lot of the necessary boilerplate code. The API builder provides the following capabilities:

 	Bootstrap complete type definitions, controllers, and tests, as well as documentation.

 	The extension control plane you can run locally, inside minikube, or on an actual remote cluster.

 	Your generated controllers will be able to watch and update API objects.

 	Adding resources (including sub-resources).

 	Default values you can override if needed.

 Utilizing the service catalog

 The Kubernetes catalog (https://github.com/kubernetes-sigs/service-catalog) project allows you to integrate smoothly and painlessly any external service that supports the Open Service Broker API specification: https://github.com/openservicebrokerapi/servicebroker.

 The intention of the open service broker API is to expose external services to any cloud environment through a standard specification with supporting documentation and a comprehensive test suite. That lets providers implement a single specification and support multiple cloud environments. The current environments include Kubernetes and Cloud Foundry. The project works towards broad industry adoption.

 The service catalog is useful in particular for integrating the services of cloud platform providers. Here are some examples of such services:

 	Microsoft Azure Cloud Queue

 	Amazon Simple Queue Service

 	Google Cloud Pub/Sub

 The following diagram describes the architecture and workflow of the service catalog, which is implemented as an API server extension using the aggregation layer:

 [image:]
 Figure 15.5: The service catalog

 This capability is a real boon for organizations that are committed to the cloud. You get to build your system on Kubernetes, but you don't have to deploy, manage, and maintain every service in your cluster yourself. You can offload that to your cloud provider, enjoy deep integration, and focus on your application.

 The service catalog can potentially make your Kubernetes cluster fully autonomous by allowing you to provision cloud resources through service brokers. We're not there yet, but the direction is very promising.

 This concludes our discussion of accessing and extending Kubernetes from the outside. In the next section, we will direct our gaze inward and look into customizing the inner workings of Kubernetes itself via plugins.

 Writing Kubernetes plugins

 In this section, we will dive into the guts of Kubernetes and learn to take advantage of its famous flexibility and extensibility. We will learn about different aspects that can be customized via plugins and how to implement such plugins and integrate them with Kubernetes.

 Writing a custom scheduler

 Kubernetes is all about orchestrating containerized workloads. The most fundamental responsibility is to schedule pods to run on cluster nodes. Before we can write our own scheduler, we need to understand how scheduling works in Kubernetes.

 Understanding the design of the Kubernetes scheduler

 The Kubernetes scheduler has a very simple role. When a new pod needs to be created, it assigns it to a target node. That's it. The Kubelet on the target node will take it from there and instruct the container runtime on the node to run the pod's container.

 The Kubernetes scheduler implements the controller pattern:

 	Watch for pending pods

 	Select the right node for the pod

 	Update the node's spec by setting the nodeName field

 The only complicated part is selecting the target node. This process involves two steps:

 	Filtering nodes

 	Ranking nodes

 The scheduler takes a tremendous amount of information and configuration into account. Filtering removes nodes that don't satisfy one of the hard constraints from the candidate list. Ranking nodes assigns a score for each of the remaining nodes and chooses the best node.

 Here are the factors the scheduler evaluates when filtering nodes:

 	Checks if a node has free ports for the pod ports the pod is requesting

 	Checks if a pod specifies a specific node by its hostname

 	Checks if the node has enough resources (CPU, memory, and so on) to meet the requirement of the pod

 	Checks if the pod's node selector matches the node's labels

 	Evaluates if the volumes that the pod requests are available on the node, given the failure zone restrictions for that storage

 	Checks if a pod can fit on a node due to the volumes it requests, and those that are already mounted

 	Decides how many CSI volumes should be attached, and whether that's over a configured limit

 	Checks if a node is reporting memory pressure

 	Checks if a node is reporting that process IDs are scarce

 	Checks if a node is reporting a filesystem is full or nearly full

 	Checks other conditions reported by the node, like networking is unavailable or kubelet is not ready

 	Checks if a pod's tolerations can tolerate the node's taints

 	Checks if a pod can fit due to the volumes it requests

 Once the nodes have been filtered the scheduler will score the nodes based on the following policies (that you can configure):

 	Spread pods across hosts, considering pods that belong to the same service, StatefulSet or ReplicaSet.

 	Inter-pod affinity priority.

 	Least requested priority – favors nodes with fewer requested resources. This policy spreads pods across all nodes of the cluster.

 	Most requestedPriority – favors nodes with the most requested resources. This policy will pack the pods into the smallest set of nodes.

 	Requested to capacity ratio priority – creates a requestedToCapacity based ResourceAllocationPriority using a default resource scoring function shape.

 	Balanced resource allocation – favors nodes with balanced resource usage.

 	Node prefer avoid pods priority – prioritizes nodes according to the node annotation scheduler.alpha.kubernetes.io/preferAvoidPods. You can use this to hint that two different pods shouldn't run on the same node.

 	Node affinity priority – prioritizes nodes according to node affinity scheduling preferences indicated in PreferredDuringSchedulingIgnoredDuringExecution.

 	Taint toleration priority – prepares the priority list for all the nodes, based on the number of intolerable taints on the node. This policy adjusts a node's rank taking that list into account.

 	Image locality priority – favors nodes that already have the container images the pod required.

 	Service spreading priority – favors spreading the pods backing up a service across different nodes.

 	Pod anti-affinity.

 	Equal priority map – all nodes get the same weight. No favorites.

 As you can see, the default scheduler is very sophisticated and can be configured in a very fine-grained way to accommodate most of your needs. But under some circumstances, it might not be the best choice. Particularly in large clusters with many nodes (hundreds or thousands), every time a pod is scheduled, all the nodes need to go through this rigorous and heavyweight procedure of filtering and scoring. Now, consider a situation where you need to schedule a large number of pods at once (for example, training machine learning models). This can put a lot of pressure on your cluster and lead to performance issues.

 Kubernetes has recently introduced ways to make the filtering and scoring process more lightweight by allowing you to filter and score only some of the nodes, but still you may want better control.

 Fortunately, Kubernetes allows us to influence the scheduling process in several ways. Those ways include the following:

 	Direct scheduling of pods to nodes

 	Replacing the scheduler with your own scheduler

 	Extending the scheduler with additional filters

 	Adding another scheduler that runs alongside the default scheduler

 Scheduling pods manually

 Guess what? We can just tell Kubernetes where to place our pod when we create it. All it takes is to specify a node name in the pod's spec and the scheduler will ignore it. If you think about the loosely coupled nature of the controller pattern, it all makes sense. The scheduler is watching for pending pods that DON'T have a node name assigned yet. If you are passing the node name yourself, then the Kubelet on the target node, who watches for pending pods that DO have a node name, will just go ahead and make sure to create a new pod.

 Here is a pod with a pre-defined node name:

 apiVersion: v1
kind: Pod
metadata:
name: some-pod-manual-scheduling
spec:
containers:
- name: some-container
image: gcr.io/google_containers/pause:2.0
nodeName: k3d-k3s-default-worker-1
schedulerName: no-such-scheduler

 If we create and describe the pod, we can see that it was indeed scheduled to the k3d-k3s-default-worker-1 node as requested:

 $ kubectl describe po some-pod-manual-scheduling
Name: some-pod-manual-scheduling
Node: k3d-k3s-default-worker-1/172.19.0.4
Status: Running
 ...
Containers:
 ...
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Events: <none>

 Direct scheduling is also useful for troubleshooting, when you want to schedule a temporary pod to any tainted node without mucking around with adding tolerations.

 Let's create our own custom scheduler now.

 Preparing our own scheduler

 Our scheduler will be super simple. It will just schedule all pending pods that request to be scheduled by the custom-scheduler to node k3d-k3s-default-worker-1. Here is the Python implementation that uses the Kubernetes client package:

 from kubernetes import client, config, watch
def schedule_pod(cli, name):
 target = client.V1ObjectReference()
 target.kind = 'Node'
 target.apiVersion = 'v1'
 target.name = 'k3d-k3s-default-worker-1'
 meta = client.V1ObjectMeta()
 meta.name = name
 body = client.V1Binding(metadata=meta, target=target)
 return cli.create_namespaced_binding('default', body)
def main():
 config.load_kube_config()
 cli = client.CoreV1Api()
 w = watch.Watch()
 for event in w.stream(cli.list_namespaced_pod, 'default'):
 o = event['object']
 if o.status.phase != 'Pending' or o.spec.scheduler_name != 'custom-scheduler':
 continue

 schedule_pod(cli, o.metadata.name)
if __name__ == '__main__':
 main()

 If you want to run a custom scheduler long-term then you should deploy it into the cluster just like any other workload. But if you just want to play around with it or you're still developing your custom scheduler logic, you can run it locally as long as it has the correct credentials to access the cluster and have permissions to watch for pending pods and update their node name.

 Assigning pods to the custom scheduler

 OK. We have a custom scheduler that we can run alongside the default scheduler. But how does Kubernetes choose which scheduler to use to schedule a pod when there are multiple schedulers?

 The answer is that Kubernetes doesn't care. The pod can specify which scheduler it wants to schedule it. The default scheduler will schedule any pod that doesn't specify the schedule or that specifies explicitly the default-scheduler. Other custom schedulers should be responsible and only schedule pods that request them. If multiple schedulers try to schedule the same pod, we will probably end up with multiple copies or naming conflicts.

 For example, our simple custom scheduler is looking for pending pods that specify a scheduler name of custom-scheduler. All other pods will be ignored by it:

 if o.status.phase != 'Pending' or o.spec.scheduler_name != 'custom-scheduler':
 continue

 Here is a pod spec that specifies the custom-scheduler in its spec:

 apiVersion: v1
kind: Pod
metadata:
 name: some-pod-with-custom-scheduler
spec:
 containers:
 - name: some-container
 image: gcr.io/google_containers/pause:2.0
 schedulerName: custom-scheduler

 What happens if our custom scheduler is not running and we try to create this pod?

 $ kubectl create -f some-pod-with-custom-scheduler.yaml
pod/some-pod-with-custom-scheduler created
$ kubectl get po
NAME READY STATUS RESTARTS AGE
some-pod-manual-scheduling 1/1 Running 0 23h
some-pod-with-custom-scheduler 0/1 Pending 0 25s

 The pod is created just fine (meaning the Kubernetes API server stored it in etcd), but it is pending, which means it hasn't been scheduled yet. Since it specified an explicit scheduler, the default scheduler ignores it.

 But if we run our scheduler... it will immediately get scheduled:

 $ python custom_scheduler.py
Waiting for pods to schedule
Scheduling pod some-pod-with-custom-scheduler

 Now we can see that the pod was assigned to a node and it is in a running state:

 $ kubectl get pod -o wide
NAME READY STATUS IP NODE
some-pod-manual-scheduling 1/1 Running 10.42.0.5 k3d-k3s-default-worker-1
some-pod-with-custom-scheduler 1/1 Running 10.42.0.8 k3d-k3s-default-worker-1

 Verifying that the pods were scheduled using the correct scheduler

 We can look at the pod events and see that, for pods scheduled using the default scheduler, you can expect the following events:

 $ kubectl describe po some-pod | grep Events: -A 10
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> default-scheduler Successfully assigned default/some-pod to k3d-k3s-default-worker-0
 Normal Pulled 12m kubelet, k3d-k3s-default-worker-0 Container image "gcr.io/google_containers/pause:2.0" already present on machine
 Normal Created 12m kubelet, k3d-k3s-default-worker-0 Created container some-container
 Normal Started 12m kubelet, k3d-k3s-default-worker-0 Started container some-container

 But for our custom scheduler, there is no Scheduled event:

 $ k describe po some-pod-with-custom-scheduler | grep Events: -A 10
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Pulled 22m kubelet, k3d-k3s-default-worker-1 Container image "gcr.io/google_containers/pause:2.0" already present on machine
 Normal Created 22m kubelet, k3d-k3s-default-worker-1 Created container some-container
 Normal Started 22m kubelet, k3d-k3s-default-worker-1 Started container some-container

 That was a deep dive into scheduling and custom schedulers. Let's check out Kubectl plugins.

 Writing Kubectl plugins

 Kubectl is the workhorse of the aspiring Kubernetes developer and admin. There are now very good visual tools, such as k9s (https://github.com/derailed/k9s), octant (https://github.com/vmware-tanzu/octant), and of course the Kubernetes dashboard. But Kubectl is the most complete way to work interactively with your cluster and participate in automation workflows.

 Kubectl encompasses an impressive list of capabilities, but you will often need to string together multiple commands or a long chain of parameters to accomplish some tasks. You may also want to run some additional tools installed in your cluster.

 You can package such functionality as scripts or containers or any other way, but then you'll run into the issue of where to place them, how to discover them, and how to manage them. The Kubectl plugin gives you a one-stop shop for those extended capabilities. For example, recently I needed to periodically list and move around files on the SFTP server managed by a containerized application running on a Kubernetes cluster. I quickly wrote a few Kubectl plugins that took advantage of my KUBECONFIG credentials to get access to secrets in the cluster that contained the credentials to access the SFTP server and then implemented a lot of application-specific logic for accessing and managing those SFTP directories and files.

 Understanding Kubectl plugins

 Until Kubernetes 1.12, Kubectl plugins required a dedicated YAML file where you specified various metadata and other files that implemented the functionality. In Kubernetes 1.12, Kubectl started using the Git extension model, where any executable on your path with the prefix kubectl- is treated as a plugin.

 Kubectl provides the kubectl plugins list command to list all your current plugins. This model was very successful with Git, and it is extremely simple now to add your own Kubectl plugins.

 If you added an executable called kubectl-foo, then you can run it via kubectl foo. You can have nested commands too. Add kubectl-foo-bar to your path and run it via kubectl foo bar. If you want to use dashes in your commands, then use underscores in your executable. For example, the executable kubectl-do_stuff can be run using kubectl do-stuff.

 The executable itself can be implemented in any language, have its own command-line arguments and flags, and display its own usage and help information.

 Managing Kubectl plugins with Krew

 The lightweight plugin model is great for writing your own plugins, but what if you want to share your plugins with the community?

 Krew (https://github.com/kubernetes-sigs/krew) is a package manager for Kubectl plugins that lets you discover, install, and manage curated plugins.

 You can install Krew with brew on Mac or follow the installation instructions for other platforms. Krew is itself a Kubectl plugin as its executable is kubectl-krew. This means you can either run it directly, kubectl-krew, or through kubectl krew. If you have a k alias for kubectl you would probably prefer the latter:

 $ k krew
 krew is the kubectl plugin manager.
 You can invoke krew through kubectl: "kubectl krew [command]..."
 Usage:
 krew [command]
Available Commands:
 help Help about any command
 info Show information about a kubectl plugin
 install Install kubectl plugins
 list List installed kubectl plugins
 search Discover kubectl plugins
 uninstall Uninstall plugins
 update Update the local copy of the plugin index
 upgrade Upgrade installed plugins to newer versions
 version Show krew version and diagnostics
Flags:
 -h, --help help for krew
 -v, --v Level number for the log level verbosity
Use "krew [command] --help" for more information about a command.

 Note that the krew list command shows only Krew-managed plugins and not all Kubectl plugins. It doesn't even show itself!

 I recommend that you check out the available plugins. Some of them are very useful, and they may give you some ideas for writing your own plugins. Let's see how easy it is to write our own plugin.

 Creating your own Kubectl plugin

 I was recently handed the unpleasant job of baby-sitting a critical application deployed in a Kubernetes cluster on GKE. The original development team wasn't around anymore and there were higher priorities than migrating it into our infrastructure on AWS. I noticed that some of the deployments owned multiple replica sets, but the desired number of replicas is zero. There was nobody around to ask why these replica sets were still around. My guess was that it was an artifact or updates where the old replica set was scaled down to zero, while the new replica set was scaled up, but the old replica set was left there hanging off the deployment. Anyway, let's write a Kubectl plugin that lists stale replica sets with zero replicas.

 It turns out to be super simple. Let's use Python and the excellent sh module, which lets us run command-line commands naturally from Python. In this case, we're just going to run Kubectl itself and get all the replica sets with a custom columns format, then we're going to keep the replica sets that have zero replicas and display them with their owning deployment:

 #!/usr/bin/env python3
import sh
def main():
 """ """
 o = "-o custom-columns='NAME:.metadata.name,DEPLOYMENT:.metadata.ownerReferences[0].name,REPLICAS:.spec.replicas"
 all_rs = sh.kubectl.get.rs(o.split()).stdout.decode('utf-8').split('\n')
 all_rs = [r.split() for r in all_rs if r]
 results = ((name, deployment) for (name, deployment, replicas) in all_rs[1:] if replicas == '0')
 for name, deployment in results:
 print(name, deployment)
if __name__ == '__main__':
 main()

 We can name the file kubectl-show-stale_replica_sets and run it with kubectl show stale-replica-sets. Before running it, we mustn't forget to make it executable and copy it to the PATH:

 $ chmod +x kubectl-show-stale_replica_sets
$ kubectl show stale-replica-sets
cool-app-559f7bd67c cool-app
cool-app-55dc8c5949 cool-app
mice-app-5bd847f99c nice-app

 If you want to develop plugins and share them on Krew, there is a more rigorous process there. I highly recommend developing the plugin in Go and taking advantage of projects such as the Kubernetes cli-runtime (https://github.com/kubernetes/cli-runtime/) and the krew-plugin-template (https://github.com/replicatedhq/krew-plugin-template) projects.

 Kubectl plugins are awesome, but there are some gotchas you should be aware of.

 Kubectl plugin gotchas

 I ran into some of these issues when working with Kubectl plugins.

 Don't forget your shebangs!

 If you don't specify a shebang for your executable you will get an obscure error message:

 $ k show stale-replica-sets
exec format error

 Naming

 Choosing a name for your plugin is not easy. Luckily there are some good guidelines: https://github.com/kubernetes-sigs/krew/blob/master/docs/NAMING_GUIDE.md.

 Those naming guidelines are not just for Krew plugins, but make sense for any Kubectl plugin.

 Overriding existing Kubectl commands

 I originally named the plugin kubectl-get-stale_replica_sets. In theory, Kubectl should try to match the longest plugin name to resolve ambiguities. But, apparently, it doesn't work with built-in commands such as kubectl get.

 This is the error I got:

 $ kubectl get stale-replica-sets
error: the server doesn't have a resource type "stale-replica-sets"

 Renaming kubectl-show-stale_replica_sets solved the problem.

 Flat namespace for Krew plugins

 The space of Kubectl plugins is flat. If you choose a generic plugin name such as kubectl-login you'll have a lot of problems. Even if you qualify it with something like kubectl-gcp-login, you might conflict with some other plugin. This is a scalability problem. I think the solution should involve some strong naming scheme for plugins, such as DNS, and then we should be able to define short names and aliases for convenience.

 Let's now take a look at how to extend access control with webhooks.

 Employing access control webhooks

 Kubernetes always provided ways for you to customize access control. In Kubernetes, access control can be denoted as triple-A: Authentication, Authorization, and Admission control. In early versions it was through plugins that required Go programming, installing into your cluster, registration, and other invasive procedures. Now, Kubernetes lets you customize authentication, authorization, and admission control webhooks. Here is the access control workflow:

 [image:]
 Figure 15.6: Kubernetes access control workflow

 Using an authentication webhook

 Kubernetes lets you extend the authentication process by injecting a webhook for bearer tokens. It requires two pieces of information: how to access the remote authentication service and the duration of the authentication decision (it defaults to two minutes).

 To provide this information and enable authentication webhooks, start the API server with the following command-line arguments:

 	--authentication-token-webhook-config-file=

 	--authentication-token-webhook-cache-ttl (how long to cache auth decisions, default to 2 minutes)

 The configuration file uses the kubeconfig file format. Here is an example:

 # Kubernetes API version
apiVersion: v1
kind of the API object
kind: Config
clusters refers to the remote service.
clusters:
 - name: name-of-remote-authn-service
 cluster:
 certificate-authority: /path/to/ca.pem # CA for verifying the remote service.
 server: https://authn.example.com/authenticate # URL of remote service to query. Must use 'https'.
users refers to the API server's webhook configuration.
users:
 - name: name-of-api-server
 user:
 client-certificate: /path/to/cert.pem # cert for the webhook plugin to use client-key: /path/to/key.pem # key matching the cert
kubeconfig files require a context. Provide one for the API server.
current-context: webhook
contexts:
- context:
 cluster: name-of-remote-authn-service
 user: name-of-api-sever
 name: webhook

 Note that a client certificate and key must be provided to Kubernetes for mutual authentication against the remote authentication service.

 The cache TTL is useful because often users will make multiple consecutive requests to Kubernetes. Having the authentication decision cached can save a lot of round trips to the remote authentication service.

 When an API HTTP request comes in, Kubernetes extracts the bearer token from its headers and posts a TokenReview JSON request to the remote authentication service via the webhook:

 {
 "apiVersion": "authentication.k8s.io/v1beta1",
 "kind": "TokenReview",
 "spec": {
 "token": "<bearer token from original request headers>"
 }
}

 The remote authentication service will respond with a decision. The status of authentication will either be true or false. Here is an example of a successful authentication:

 {
 "apiVersion": "authentication.k8s.io/v1beta1",
 "kind": "TokenReview",
 "status": {
 "authenticated": true,
 "user": {
 "username": "gigi@gg.com",
 "uid": "42",
 "groups": [
 "developers",
],
 "extra": {
 "extrafield1": [
 "extravalue1",
 "extravalue2"
]
 }
 }
 }
}

 A rejected response is much more concise:

 {
 "apiVersion": "authentication.k8s.io/v1beta1",
 "kind": "TokenReview",
 "status": {
 "authenticated": false
 }
}

 Using an authorization webhook

 The authorization webhook is very similar to the authentication webhook. It requires just a configuration file, which is in the same format as the authentication webhook configuration file. There is no authorization caching because unlike authentication, the same user may make lots of requests to different API endpoints with different parameters and authorization decisions may be different, so caching is not a viable option.

 You configure the webhook by passing the following command-line argument to the API server:

 --authorization-webhook-config-file=<configuration filename>

 When a request passes authentication, Kubernetes will send a SubjectAccessReview JSON object to the remote authorization service. It will contain the requesting user (and any user groups it belongs to) and other attributes:

 	requested API group

 	namespace

 	resource

 	verb

 {
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "spec": {
 "resourceAttributes": {
 "namespace": "awesome-namespace",
 "verb": "get",
 "group": "awesome.example.org",
 "resource": "pods"
 },
 "user": "gigi@gg.com",
 "group": [
 "group1",
 "group2"
]
 }
}

 The request may be allowed:

 {
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "status": {
 "allowed": true
 }
}

 Or it may be denied with a reason:

 {
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "status": {
 "allowed": false,
 "reason": "user does not have read access to the namespace"
 }
}

 A user may be authorized to access a resource, but not some non-resource attributes, such as /api, /apis, /metrics, /resetMetrics, /logs, /debug, /healthz, /swagger-ui/, /swaggerapi/, /ui, and /version.

 Here is how to request access to the logs:

 {
 "apiVersion": "authorization.k8s.io/v1beta1",
 "kind": "SubjectAccessReview",
 "spec": {
 "nonResourceAttributes": {
 "path": "/logs",
 "verb": "get"
 },
 "user": "gigi@gg.com",
 "group": [
 "group1",
 "group2"
]
 }
}

 We can check using Kubectl if we are authorized to perform some operation using the can-i command. For example, let's see if we can create deployments:

 $ kubectl auth can-i create deployments
yes

 We can also check if other users or service accounts are authorized to do something. The default service account is NOT allowed to create deployments:

 $ kubectl auth can-i create deployments --as default
no

 Using an admission control webhook

 Dynamic admission control supports webhooks too. It is generally available since Kubernetes 1.16. You need to enable the MutatingAdmissionWebhook and ValidatingAdmissionWebhook admission controllers using --enable-admission-plugins=Mutating,ValidatingAdmissionWebhook. There are several other admission controllers that the Kubernetes developers recommend you run (the order matters):

 --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota

 Configuring a webhook admission controller on the fly

 The authentication and authorization webhooks must be configured when you start the API server. The admission control webhooks can be configured dynamically by creating MutatingWebhookConfiguration or ValidatingWebhookConfiguration API objects. Here is an example:

 apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
...
webhooks:
- name: admission-webhook.example.com
 rules:
 - operations: ["CREATE", "UPDATE"]
 apiGroups: ["apps"]
 apiVersions: ["v1", "v1beta1"]
 resources: ["deployments", "replicasets"]
 scope: "Namespaced"
 ...

 An admission server accesses AdmissionReview requests such as:

 {
 "apiVersion": "admission.k8s.io/v1",
 "kind": "AdmissionReview",
 "request": {
 "uid": "705ab4f5-6393-11e8-b7cc-42010a800002",
 "kind": {"group":"autoscaling","version":"v1","kind":"Scale"},
 "resource": {"group":"apps","version":"v1","resource":"deployments"},
 "subResource": "scale",
 "requestKind": {"group":"autoscaling","version":"v1","kind":"Scale"},
 "requestResource": {"group":"apps","version":"v1","resource":"deployments"},
 "requestSubResource": "scale",
 "name": "cool-deployment",
 "namespace": "cool-namespace",
 "operation": "UPDATE",
 "userInfo": {
 "username": "admin",
 "uid": "014fbff9a07c",
 "groups": ["system:authenticated","my-admin-group"],
 "extra": {
 "some-key":["some-value1", "some-value2"]
 }
 },
 "object": {"apiVersion":"autoscaling/v1","kind":"Scale",...},
 "oldObject": {"apiVersion":"autoscaling/v1","kind":"Scale",...},
 "options": {"apiVersion":"meta.k8s.io/v1","kind":"UpdateOptions",...},
 "dryRun": false
 }
}

 If the request is admitted the response will be as follows:

 {
 "apiVersion": "admission.k8s.io/v1",
 "kind": "AdmissionReview",
 "response": {
 "uid": "<value from request.uid>",
 "allowed": true
 }
}

 If the request is not admitted, then allowed will be False. The admission server may provide a status section too with an HTTP status code and message:

 {
 "apiVersion": "admission.k8s.io/v1",
 "kind": "AdmissionReview",
 "response": {
 "uid": "<value from request.uid>",
 "allowed": false,
 "status": {
 "code": 403,
 "message": "You cannot do this because I say so!!!!"
 }
 }
}

 Providing custom metrics for horizontal pod autoscaling

 Prior to Kubernetes 1.6 custom metrics were implemented as a Heapster model. In Kubernetes 1.6 new custom metrics APIs landed and matured gradually. As of Kubernetes 1.9 they are enabled by default. Custom metrics rely on API aggregation. The recommended path is to start with the custom metrics API server boilerplate available here: https://github.com/kubernetes-sigs/custom-metrics-apiserver.

 Then, you implement the CustomMetricsProvider interface:

 type CustomMetricsProvider interface {
 // GetMetricByName fetches a particular metric for a particular object.
 // The namespace will be empty if the metric is root-scoped.
 GetMetricByName(name types.NamespacedName,
 info CustomMetricInfo,
 metricSelector labels.Selector) (*custom_metrics.MetricValue, error)
 // GetMetricBySelector fetches a particular metric for a set of objects matching
 // the given label selector. The namespace will be empty if the metric is root-scoped.
 GetMetricBySelector(namespace string, selector labels.Selector, info CustomMetricInfo, metricSelector labels.Selector) (*custom_metrics.MetricValueList, error)
 // ListAllMetrics provides a list of all available metrics at
 // the current time. Note that this is not allowed to return
 // an error, so it is reccomended that implementors cache and
 // periodically update this list, instead of querying every time.
 ListAllMetrics() []CustomMetricInfo
}

 Extending Kubernetes with custom storage

 Volume plugins are yet another type of plugin. Prior to Kubernetes 1.8 you had to write a kubelet plugin that required registration with Kubernetes and linking with the Kubelet. Kubernetes 1.8 introduced FlexVolume, which is much more versatile. Kubernetes 1.9 took it to the next level with the Container Storage Interface (CSI) that we covered in Chapter 6, Managing Storage. At this point, if you need to write storage plugins, CSI is the way to go. Since CSI uses the gRPC protocol, the CSI plugin must implement the following gRPC interface:

 service Controller {
 rpc CreateVolume (CreateVolumeRequest)
 returns (CreateVolumeResponse) {}
 rpc DeleteVolume (DeleteVolumeRequest)
 returns (DeleteVolumeResponse) {}
 rpc ControllerPublishVolume (ControllerPublishVolumeRequest)
 returns (ControllerPublishVolumeResponse) {}
 rpc ControllerUnpublishVolume (ControllerUnpublishVolumeRequest)
 returns (ControllerUnpublishVolumeResponse) {}
 rpc ValidateVolumeCapabilities (ValidateVolumeCapabilitiesRequest)
 returns (ValidateVolumeCapabilitiesResponse) {}
 rpc ListVolumes (ListVolumesRequest)
 returns (ListVolumesResponse) {}
 rpc GetCapacity (GetCapacityRequest)
 returns (GetCapacityResponse) {}
 rpc ControllerGetCapabilities (ControllerGetCapabilitiesRequest)
 returns (ControllerGetCapabilitiesResponse) {}
}

 This is not a trivial undertaking, and typically only storage solution providers should implement CSI plugins.

 Summary

 In this chapter, we covered three major topics: working with the Kubernetes API, extending the Kubernetes API, and writing Kubernetes plugins. The Kubernetes API supports the OpenAPI spec and is a great example of REST API design that follows all current best practices. It is very consistent, well organized, and well documented. Yet it is a big API and not easy to understand. You can access the API directly via REST over HTTP, using client libraries including the official Python client, and even by invoking Kubectl.

 Extending the Kubernetes API involves defining your own custom resources and optionally extending the API server itself via API aggregation. Custom resources are most effective when you combine them with additional custom plugins or controllers when you query and update them externally.

 Plugins and webhooks are the foundation of Kubernetes design. Kubernetes was always meant to be extended by users to accommodate any need. We looked at various plugins, such custom schedulers, Kubectl plugins, and access control webhooks. It is very cool that Kubernetes provides such a seamless experience for writing, registering, and integrating all those plugins.

 We also looked at custom metrics and even how to extend Kubernetes with custom storage options.

 At this point, you should be well aware of all the major mechanisms to extend, customize, and control Kubernetes via API access, custom resources, controllers, operators, and custom plugins. You are in a great position to take advantage of these capabilities to augment the existing functionality of Kubernetes and adapt it to your needs and your systems.

 In the next chapter, which will conclude the book, we will look at the future of Kubernetes and the road ahead. Spoiler alert – the future is very bright. Kubernetes has established itself as the gold standard for cloud native computing. It is being used across the board and it keeps evolving responsibly. An entire support system has developed around Kubernetes, including training, open source projects, tools, and products. The community is amazing and the momentum is very strong.

 16

 The Future of Kubernetes

 In this chapter, we'll look at the future of Kubernetes from multiple angles. We'll start with the momentum of Kubernetes since its inception, across dimensions such as community, ecosystem, and mindshare. Spoiler alert – Kubernetes won the container orchestration wars by a landslide. As Kubernetes grows and matures, the battle lines shift from beating competitors to fighting against its own complexity. Usability, tooling, and education will play a major role as container orchestration is still new, fast-moving, and not a well-understood domain. Then, we will take a look at some very interesting patterns and trends and finally, we will review my predictions from the 2nd edition and make some new ones.

 The topics we'll cover are as follows:

 	The Kubernetes momentum

 	The importance of CNCF

 	Kubernetes extensibility

 	Service mesh integration

 	Serverless computing on Kubernetes

 	Kubernetes and VMs

 	Cluster autoscaling

 	Ubiquitous operators

 The Kubernetes momentum

 Kubernetes is undeniably a juggernaut. Not only did Kubernetes beat all the other container orchestrators, but it is also the de facto solution on public clouds, utilized in many private clouds, and even VMware – the virtual machine company – is focused on Kubernetes solutions and integrating its products with Kubernetes.

 Kubernetes works very well in multi-cloud and hybrid cloud scenarios due to its extensible design.

 In addition, Kubernetes makes inroads in the edge too, with custom distributions that expand its broad applicability even more.

 The Kubernetes project continues to release new version every 3 months like clockwork. The community just keeps growing.

 The Kubernetes GitHub repository (https://github.com/kubernetes/kubernetes) has 64,000 stars and one of the most major drivers of this phenomenal growth is the Cloud Native Computing Foundation (CNCF).

 The importance of the CNCF

 The CNCF has become a very important organization in the cloud computing scene. While it is not Kubernetes-specific, the dominance of Kubernetes is undeniable. Kubernetes is the first project to graduate from it, and most of the other projects lean heavily toward Kubernetes. In particular, the CNCF offers certification and training only for Kubernetes. The CNCF, among other roles, ensures the cloud technologies will not suffer from vendor lock-in. Check out this crazy diagram of the entire CNCF landscape: https://landscape.cncf.io/zoom=60.

 Project curation

 The CNCF (https://www.cncf.io/) assigns three maturity levels to projects: graduated, incubating, and sandbox:

 [image:]
 Figure 16.1: Project maturity levels

 Projects (https://www.cncf.io/projects/) start at a certain level – sandbox or incubating – and over time can graduate. That doesn't mean that only graduated projects can be safely used. Many incubating and even sandbox projects are used heavily in production. For example, etcd is the persistent state store of Kubernetes itself and it is just an incubating project. Obviously, it is a highly trusted component. Virtual Kubelet is a sandbox project that powers AWS Fargate and Microsoft ACI. These are clearly enterprise-grade pieces of software.

 The main benefit of the CNCF curation of projects is to help navigate the incredible eco-system that grew around Kubernetes. When you start looking to extend your Kubernetes solution with additional technologies and tools, the CNCF projects are a good place to start.

 Certification

 When technologies start to offer certification programs, you can tell they are here to stay. The CNCF offers several types of certifications:

 	Certified Kubernetes (https://www.cncf.io/certification/software-conformance/), for conforming Kubernetes distributions and installers (about 90); Kubernetes Certified Service Provider (KCSP) (https://www.cncf.io/certification/kcsp/), for vetted service providers with deep Kubernetes experience (134 providers); and Certified Kubernetes Administrator (CKA) (https://www.cncf.io/certification/cka/), for administrators.

 	Certified Kubernetes Application Developer (CKAD) (https://www.cncf.io/certification/ckad/) for developers.

 Training

 The CNCF offers training (https://www.cncf.io/certification/training/) too. There is a free introduction to the Kubernetes course and several paid courses that align with the CKA and CKAD certification exams. In addition, the CNCF maintains a list of Kubernetes training partners (https://landscape.cncf.io/category=kubernetes-training-partner&format=card-mode&grouping=category).

 If you're looking for free Kubernetes training, here are a couple of options:

 	VMware Kubernetes academy (https://kube.academy/)

 	Google Kubernetes Engine on Coursera (https://www.coursera.org/learn/google-kubernetes-engine)

 Community and education

 The CNCF also organizes conferences like KubeCon, CloudNativeCon, and meetups and maintains several communication avenues like slack channels and mailing lists. It also publishes surveys and reports.

 The numbers of attendees and participants keeps growing year over year.

 Tooling

 The number of tools to manage containers and clusters, the various add-ons, extensions, and plugins just keeps growing and growing. Here is a subset of the tools, projects, and companies that participate in the Kubernetes ecosystem:

 [image:]
 Figure 16.2: Participants in the Kubernetes ecosystem

 The rise of managed Kubernetes platforms

 Pretty much every cloud provider has a solid managed Kubernetes offering these days. Sometimes, there are multiple flavors and ways of running Kubernetes on a given cloud provider.

 Public cloud Kubernetes platforms

 Here are some of the prominent managed platforms:

 	Google GKE (https://cloud.google.com/kubernetes-engine/)

 	Microsoft AKS (https://azure.microsoft.com/en-us/services/kubernetes-service/)

 	Amazon EKS (https://aws.amazon.com/eks/)

 	Digital Ocean (https://www.digitalocean.com/products/kubernetes/)

 	Oracle Cloud (https://www.oracle.com/cloud/compute/container-engine-kubernetes.html)

 	IBM Cloud Kubernetes service (https://www.ibm.com/cloud/container-service/)

 	Alibaba ACK (https://www.alibabacloud.com/product/kubernetes)

 	Tencent TKE (https://intl.cloud.tencent.com/product/tke)

 Of course, you can always roll your own and use the public cloud providers just as infrastructure providers. This is a very common use case with Kubernetes.

 Bare-metal, private clouds, and Kubernetes on the edge

 Here, you can find Kubernetes distributions that are designed or configured to run in special environments, often in your own data centers as a private cloud or in more restricted environments like edge computing on small devices:

 	Google Anthos for GKE (https://cloud.google.com/anthos/gke/)

 	OpenStack (https://docs.openstack.org/openstack-helm/latest/install/developer/kubernetes-and-common-setup.html)

 	Rancher k3S (https://rancher.com/docs/k3s/latest/en/)

 	Kubernetes on Raspberry PI (https://www.shogan.co.uk/kubernetes/building-a-raspberry-pi-kubernetes-cluster-part-1-routing/)

 	KubeEdge (https://kubeedge.io/en/)

 Kubernetes Platform as a Service (PaaS)

 This category of offerings aims to abstract some of the complexity of Kubernetes and put a simpler facade in front of it. There are many varieties here. Some of them cater to the multi-cloud and hybrid cloud scenarios, some expose the function as a service interface, while some just focus on a better installation and support experience:

 	Google Cloud Run (https://cloud.google.com/run/)

 	VMware PKS (https://tanzu.vmware.com/kubernetes-grid)

 	Platform 9 PMK (https://platform9.com/managed-kubernetes/)

 	Giant Swarm (https://www.giantswarm.io/)

 	OpenShift (https://www.openshift.com/)

 	Rancher RKE (https://rancher.com/docs/rke/latest/en/)

 Upcoming trends

 Let's talk about some of technological trends in Kubernetes that will be important in the near future. Some of these trends are already there.

 Security

 Security is, of course, a paramount concern for large-scale systems. Kubernetes is primarily a platform for managing containerized workloads. Those containerized workloads are often run in a multi-tenant environment. The isolation between tenants is super important. Containers are lightweight and efficient because they share an OS and maintain their isolation through various mechanisms like namespace isolation, filesystem isolation, and cgroup resource isolation. In theory, this should be enough. In practice, the surface area is large and there were multiple breakouts of container isolation.

 To address this risk, multiple lightweight VMs were designed to add a hypervisor (machine-level virtualization) as an additional isolation level between the container and the OS kernel. The big cloud providers already support these technologies, and the Kubernetes CRI interface provides a streamlined way to take advantage of these more secure runtimes.

 For example, FireCracker (https://firecracker-microvm.github.io/) is integrated with containerd via firecracker-containerd (https://github.com/firecracker-microvm/firecracker-containerd). Google gVisor is another sandbox technology. It is a user space kernel that implements most of the Linux system calls and provides a buffer between the application and the host OS. It is also available through containerd via gvisor-containerd-shim (https://github.com/google/gvisor-containerd-shim).

 Networking

 Networking is another area that is an ongoing source of innovation. The Kubernetes CNI allows any number of innovative networking solutions to work behind a simple interface. A major theme is incorporating eBPF – a relatively new Linux kernel technology – into Kubernetes.

 eBPF stands for extended Berkeley Packet Filter. The core of eBPF is a mini-VM in the Linux kernel that executes special programs attached to kernel objects when certain events occur, such as a packet being transmitted or received. Originally, only sockets were supported, and the technology was called just BPF. Later, additional objects were added to the mix, and that's when the "e" for "extended" came along. eBPF's claim to fame is its performance due to the fact it runs highly-optimized, compiled BPF programs in the kernel and doesn't require extending the kernel with kernel modules.

 There are many applications for eBPF:

 	Dynamic network control: An iptables-based approach doesn't scale very well in a dynamic environment like a Kubernetes cluster where replacing iptables with BPF programs is both more performant and more manageable. Cillium (https://github.com/cilium/cilium) is focused on routing and filtering traffic using eBPF

 	Monitoring connections: Creating an up-to-date map of TCP connections between containers is possible by attaching a BPF program, kprobes, that tracks socket-level events. WdeaveScope (https://github.com/weaveworks/scope) utilizes this capability by running an agent on each node that collects this information, and then sends it to a server that provides a visual representation though a slick UI.

 	Restricting syscalls: The Linux kernel provides more than 300 system calls. In a security-sensitive container environment, it is highly desirable. The original seccomp (https://en.wikipedia.org/wiki/Seccomp) facility was pretty course-grained. In Linux 3.5, seccomp was extended to support BPF for advanced custom filters.

 	Raw performance: eBPF provides significant performance benefits, and projects like Calico (https://www.projectcalico.org/) take advantage and implement a faster data plane that uses less resources.

 Custom hardware and devices

 Kubernetes manages nodes, networking, and storage at a relatively high-level. However, there are many benefits for integrating specific hardware at a fine-grained level; for example, GPUs, high-performance network cards, FPGAs, InfiniBand adapters, and other compute, networking, and storage resources. This is where the device plugin (https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md) framework comes in. It is still in Beta (since Kubernetes 1.10) and there is ongoing innovation in this area. For example, monitoring device plugin resources is also in beta since Kubernetes 1.15. It is very interesting to see what devices will be harnessed with Kubernetes. The framework itself is following modern Kubernetes extensibility practices by utilizing gRPC.

 Service mesh

 The service mesh is arguably the most important trend over the last couple of years. We covered service meshes in depth in Chapter 14, Utilizing Service Meshes. The adoption is impressive, and I predict that most Kubernetes distributions will provide a default service mesh and allow easy integration with other service meshes. The benefits that service meshes provide are just too valuable, and it makes sense to provide a default platform that includes Kubernetes with an integrated service mesh. That said, Kubernetes itself will not absorb some service mesh and expose it through its API. This goes against the grain of keeping the core of Kubernetes small.

 Google Anthos (https://cloud.google.com/anthos/) is a good example where Kubernetes + Knative + Istio are combined to provide a unified platform that provides an opinionated best-practices bundle. It would take an organization a lot of time and resources to build on top of vanilla Kubernetes.

 Another push in this direction is the sidecar container KEP (https://github.com/kubernetes/enhancements/blob/master/keps/sig-apps/sidecarcontainers.md).

 The sidecar container pattern has been a staple of Kubernetes from the get-go. After all, pods can contain multiple containers. However, there was no notion of a main container and a sidecar container. All containers in the pod has the same status. Most service meshes use sidecar containers to intercept traffic and perform their jobs. Formalizing sidecar containers will help those efforts and push service meshes even further.

 It's not clear, at this stage, if Kubernetes and the service mesh will be hidden behind a simpler abstraction on most platforms or if they will be front and center.

 Serverless computing

 Serverless computing is another trend that is here to stay. We discussed it at length in Chapter 12, Serverless Computing on Kubernetes. Kubernetes and serverless can be combined on multiple levels. Kubernetes can utilize serverless cloud solutions like AWS Fargate and AKS Azure Container Instances (ACI) to save the cluster administrator from managing nodes. This approach also caters to integrating lightweight VMs transparently with Kubernetes, since the cloud platforms don't use naked Linux containers for their container-as-a-service platforms.

 Another avenue is to reverse the roles and expose containers as a service powered by Kubernetes under the covers. This is exactly what Google Cloud Run (https://cloud.google.com/run/) is doing. The lines blur here as there are multiple products from Google to manage containers and/or Kubernetes ranging from just GKE, through Anthos GKE (bring your own cluster to a GKE environment for your private data center), Anthos (managed Kubernetes + service mesh), and Anthos cloud run.

 Finally, there are function as a service and scale to zero projects running inside your Kubernetes cluster. I believe Knative will become the leader here, as it is already used by many frameworks and it is deployed heavily through various Google products.

 Kubernetes on the Edge

 Kubernetes is the poster boy of cloud native computing, but with the Internet of Things (IoT) revolution, there is more and more need to perform computation at the edge of the network. Sending all data to the backend for processing suffers from several drawbacks:

 	Latency

 	Need for enough bandwidth

 	Cost

 With edge locations collecting a lot of data via sensors, video cameras, and so on, the amount of edge data grows and it makes more sense to perform more and more sophisticated processing at the edge. Kubernetes grew out of Google's Borg, which was definitely not designed to run at the edge of the network. However, Kubernetes' design proved to be flexible enough to accommodate it.

 I expect that we will see more and more Kubernetes deployments at the edge of the network, which will lead to very interesting systems that are composed of many Kubernetes clusters that will need to be managed centrally.

 KubeEdge (https://kubeedge.io/en/) is an open source framework that is built on top of Kubernetes and Mosquito – an open source implementation of MQTT message broker – to provide a foundation for networking, application deployment, and metadata synchronization between the cloud and the edge.

 Native CI/CD

 For developers, one of the most important questions is the construction of a CI/CD pipeline. There are many options available, and choosing between them can be difficult. The CD foundation (https://cd.foundation/) is an open source foundation that was formed to standardize concepts like pipelines and workflows, as well as define industry specifications that will allow different tools and communities to interoperate better. The current projects are:

 	Jenkins (https://www.jenkins.io/)

 	Jenkins X (https://jenkins-x.io/)

 	Tekton (https://github.com/tektoncd/pipeline)

 	Spinnaker (https://www.spinnaker.io/)

 There is also an incubating project: Screwdriver.cd (https://screwdriver.cd/).

 One of my favorite native CD projects, Argo CD (https://github.com/argoproj/argo-cd), is not part of the CD foundation at the moment. I took action and opened a GitHub issue (https://github.com/argoproj/argo-cd/issues/3265) asking to submit argo-cd to the CDF.

 Another project to watch is CNB – Cloud Native Buildpacks (https://buildpacks.io/). The project takes a source and creates OCI (think Docker) images. It is important for Function as a Service (FaaS) frameworks and native in-cluster CI. It is also a CNCF sandbox project.

 Operators

 The Operator pattern emerged in 2016 from CoreOS (acquired by RedHat, acquired by IBM) and gained a lot of success in the community. An Operator is a combination of custom resources and a controller used to manage an application. At my current job, I write Operators to manage various aspects of infrastructure and it is a joy.

 It is already the established way to distribute non-trivial applications to Kubernetes clusters. Check out https://operatorhub.io/ for a huge list of existing operators. I expect this trend to continue.

 Summary

 In this chapter, we looked at the future of Kubernetes, and it looks great! The technical foundation, the community, the broad support, and the momentum are all very impressive. Kubernetes is still young, but the pace of innovation and stabilization is very encouraging. The modularization and extensibility principles of Kubernetes let it become the universal foundation for modern cloud-native applications.

 At this point, you should have a clear idea of where Kubernetes is right now and where it's going from here. You should be confident that Kubernetes is not just here to stay, but that it will be the leading container orchestration platform for many years to come. It will be able to integrate with any major offering and environment you can possibly imagine, from planet-scale public cloud platforms, private clouds, data centers, and edge locations and all the way down to your development laptop and Raspberry Pi.

 That's it! This is the end of this book.

 Now, it's up to you to use what you've learned and build amazing things with Kubernetes!

 References

 	Kubernetes on GitHub: https://github.com/kubernetes/kubernetes

 	CNCF: https://cncf.io

 	CD foundation: https://cd.foundation/

 	FireCracker: https://firecracker-microvm.github.io/

 	gVisor: https://github.com/google/gvisor-containerd-shim

 	Cillium: https://github.com/cilium/cilium

 	Calico: https://www.projectcalico.org/

 	Google Anthos: https://cloud.google.com/anthos/

 	Google Cloud Run: https://cloud.google.com/run/

 	KubeEdge: https://kubeedge.io/en/

 	OperatorHub: https://operatorhub.io/

 Other Books You May Enjoy

 If you enjoyed this book, you may be interested in these other books by Packt:

 [image:]

 Python Automation Cookbook - Second Edition Jaime Buelta

 ISBN: 978-1-80020-708-0

 	Learn data wrangling with Python and Pandas for your data science and AI projects

 	Automate tasks such as text classification, email filtering, and web scraping with Python

 	Use Matplotlib to generate a variety of stunning graphs, charts, and maps Automate a range of report generation tasks, from sending SMS and email campaigns to creating templates, adding images in Word, and even encrypting PDFs

 	Master web scraping and web crawling of popular file formats and directories with tools like Beautiful Soup

 	Build cool projects such as a Telegram bot for your marketing campaign, a reader from a news RSS feed, and a machine learning model to classify emails to the correct department based on their content

 	Create fire-and-forget automation tasks by writing cron jobs, log files, and regexes with Python scripting

 [image:]

 IoT and Edge Computing for Architects - Second Edition
Perry Lea

 ISBN: 978-1-83921-480-6

 	Understand the role and scope of architecting a successful IoT deployment

 	Scan the landscape of IoT technologies, from sensors to the cloud and more

 	See the trade-offs in choices of protocols and communications in IoT deployments

 	Become familiar with the terminology needed to work in the IoT space

 	Broaden your skills in the multiple engineering domains necessary for the IoT architect

 	Implement best practices to ensure reliability, scalability, and security in your IoT infrastructure

 Leave a review - let other readers know what you think

 Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 Index

 A

 access control webhooks

 authentication webhook, using

 authorization webhook, using

 custom metrics, providing for horizontal pod autoscaling

 employing 573

 Kubernetes, extending with custom storage

 adapter pattern 15

 admission control webhook

 using

 advanced scheduling 151

 anti-affinity 155

 node affinity 155

 node selector 151

 pod affinity 155

 taints 152, 153

 tolerations 152, 153

 alerting 448

 AlertManager

 reference link 400

 alerts

 versus dashboards

 Alibaba ACK

 URL 579

 Alibaba Cloud

 Alibaba container service for Kubernetes (ACK)

 Amazon EBS 199, 200

 Amazon EFS 200, 201

 Amazon EKS

 URL 579

 Amazon Virtual Private Cloud (Amazon VPC) 61

 Amazon Web Services (AWS) 4

 ambassador pattern 15

 annotations 10

 Anthos

 reference link 582

 anti-affinity 155

 API builder alpha

 reference link 557

 APIs

 deprecating 92

 API server

 accessing 106

 admission control plugins, using 113, 114

 requests, authorizing 110, 112

 users, authenticating 107, 108

 AppArmor

 pod security 118, 119

 profiles, writing 119, 120

 requisites 118

 used, for protecting cluster 118

 AppDash

 reference link 478

 Application Container Image (ACI) 30

 application error reporting 447

 Argo CD

 URL 585

 Attribute-Based Access Control (ABAC) 112

 authentication webhook

 using

 authorization webhook

 using

 AutoContainerSource

 reference link 425

 autoscaling

 used, for performing rolling updates 255, 256, 258

 AWS App Mesh 490

 URL 490

 AWS EKS 61, 411, 412

 AWS Fargate 61

 AWS PrivateLink 61

 Azure 62

 Azure AKS 409, 410

 Azure Container Instances 409, 410

 Azure Container Instances (ACI) 409, 584

 Azure data disk 203, 204

 Azure file storage 204

 Azure Kubernetes Service (AKS) 4, 62, 277

 benefits 62

 B

 bane tool

 reference link 119

 bare-metal 579

 bare-metal cluster

 building, with KRIB

 building, with Kubespray

 building, with RKE

 creating, considerations

 creating, from scratch

 creating, process

 use cases

 virtual private cloud infrastructure, using

 blue-green deployments 89, 90

 Bookinfo 495

 installing 499, 500, 501, 503, 504

 Bootkube

 bridge plugin

 reviewing 361, 363

 bridges 325

 broker 426

 buildpacks

 URL

 build.sh script

 exploring 233

 built-in objects

 embedding

 Buoyant

 URL 489

 C

 cAdvisor 456

 Calico

 reference link 582

 Calico project 337

 canary deployments 90, 91

 Candy 546

 capacity planning 79, 80

 Cassandra 229

 configuration file 239, 240

 connecting 239

 custom seed provider 240

 headless service, creating 242

 Cassandra cluster

 executing, in Kubernetes 228

 reference link 228

 Cassandra Docker image 231, 232

 build.sh script, exploring 232

 run.sh script, exploring 234, 235, 236, 237, 239

 cattle versus pets 6

 cbr0 326

 CD foundation

 reference link 585

 centralized logging 451

 cluster-level central logging 453

 remote central logging 453

 sensitive log information, dealing with 454

 Ceph

 connecting, with CephFS 211

 connecting, with RBD 209, 210, 211

 using 209

 CephFS

 used, for connecting Ceph 211

 Ceph volumes

 in Kubernetes 205

 Certified Kubernetes Administrator (CKA)

 reference link 577

 Certified Kubernetes Application Developer (CKAD)

 reference link 577

 channels 426

 chart dependencies

 managing 308

 managing, with requirements.yaml 309

 special fields, utilizing in requirements.yaml 310, 311

 charts

 creating 306

 metadata files 308

 templates and values, using 311

 testing 314, 315

 troubleshooting 314, 315

 chart scope

 chart values

 Chart.yaml file 307

 appVersion field 307

 charts, deprecating 308

 version field 307

 CI/CD pipeline

 deploying, for Kubernetes

 Cillium

 reference link 581

 Citadel 494

 workflow, in Kubernetes 494, 495

 Classless Inter-Domain Routing (CIDR) 325

 client IP addresses

 preservation, specifying 347

 preserving 347

 cloud

 clusters 58

 cloud controller manager

 used, for extending Kubernetes 543

 Cloud Controller Manager (CCM) 543

 URL 543

 Cloud Native Buildpacks

 URL 585

 Cloud Native Computing Foundation (CNCF)

 certification 577

 community and education 578

 project curation 576, 577

 significance 576

 training 578

 URL 576

 cloud-provider interface 58

 cloud providers 62

 Chinese Alibaba Cloud

 Huawei

 IBM Kubernetes Service

 Oracle Container Service

 Tencent

 Cloud Run

 reference link 584

 cluster

 exploring, with Kubernetes dashboard 460

 cluster autoscaler 408

 installing 81, 83

 cluster autoscaler (CA) 80

 cluster capacity

 container-native solutions, considering 277

 elastic cloud resources, benefiting 274

 managing 270

 multiple node configurations, using 274

 node types, selecting 270, 271

 off cost and response time, trading 272, 274

 scalable storage solution, selecting 272

 selecting 270

 cluster federation 366, 367

 history, on Kubernetes 366

 cluster federation, use cases 368

 capacity overflow 368

 Geo-distributing high availability 369

 sensitive workloads 368, 369

 vendor lock-in, avoiding 369

 cluster-level central logging 453

 cluster management commands 136

 clusters 7

 CNCF landscape

 reference link 576

 CNCFs CloudEvents specification

 reference link 424

 CNI plugin 329, 330, 331

 skeleton, building 358, 359, 361

 writing 354

 compute resource quota 259

 condition field 310

 ConfigMap

 consuming, as environment variable 224, 225

 creating 224

 containerd 28

 container-native solutions

 considering 277

 container networking interface (CNI) 542

 Container Networking Interface (CNI) 327

 container runtime 328

 third-party plugin 328

 container orchestration 3

 container runtime 328

 container runtime interface (CRI) 25, 26, 27

 containers

 benefits 3, 4

 coupled connectivity, with data stores 323

 coupled connectivity, with queues 323

 in cloud 4

 interacting 322

 registration service 322

 self-registration 322

 ContainerSource

 reference link 425

 container storage interface (CSI) 542

 Container Storage Interface (CSI) 12, 218, 219

 continuous integration and deployment

 Contiv 332

 Contiv net plugin

 capabilities 332

 CoreV1API group

 dissecting 533, 534

 CRD components

 admission plugin 83

 recommender 83

 updater 83

 CRI-O 30

 cron jobs

 scheduling 168, 170

 cross-cluster scheduling 376

 curl 48

 custimization commands 136

 custom container runtimes

 used, for extending Kubernetes 545

 custom devices 582

 custom hardware 582

 custom metrics

 providing, for horizontal pod autoscaling

 custom metrics API

 reference link 252

 custom metrics API server

 reference link

 custom resources 545, 546

 custom printer columns, adding 555, 556

 finalizing 555

 integrating 549, 551

 unknown fields, dealing with 551, 553

 custom resources definitions (CRD) 546

 developing 546, 547, 549

 custom resources definitions (CRDs) 493

 custom scheduler

 pod, assigning 566

 preparing 565

 custom storage

 used, for extending Kubernetes

 D

 DaemonSet

 using, for redundant persistent storage 226

 DaemonSet pods

 sharing

 Dapper

 reference link 478

 dashboards

 versus alerts

 data

 migrating 91

 data-contract changes

 managing 91

 deployment

 updating 143

 deployment commands 136

 device plugins 543

 Digital Ocean

 URL 579

 Digital Rebar Provision (DRP)

 directed acyclic graph (DAG) 446

 direct logging approach 451

 directory structure

 configuring 159, 161

 distributed data-intensive apps 222

 distributed hash table (DHT) 206, 229

 distributed system design patterns 14

 adapter pattern 15

 ambassador pattern 15

 multi-node patterns 16

 sidecar pattern 15

 distributed tracing 446

 used, for detecting performance

 used, for detecting root cause

 with Jaeger 475, 476

 DNS Provider 390

 DNS records

 versus shared environment variables 223

 Docker 27, 28

 Docker networking

 versus Kubernetes networking model 320, 321

 Docker networking model

 versus Kubernetes networking model 321

 Domain Name System (DNS) 370

 durable node storage

 with local volumes 180, 181

 dynamic host path provisioner

 reference link 294

 E

 eksctl

 URL 61

 Elastic Block Store (EBS) 199

 elastic cloud resources

 benefiting 274

 cloud quotas 275

 instance autoscaling 274

 regions, managing 275

 Elastic container instances (ECIs)

 Elastic Container Service (ECS) 59

 Elastic File System (EFS) 200

 Elastic Kubernetes Service (EKS) 4, 59, 277

 Elasticsearch, Kibana, and Fluentd (EFK) 523

 emptyDir

 using, for intra-pod communication 176, 177, 178

 enterprise storage

 integrating, into Kubernetes 214

 Envoy 489, 493

 URL 489

 error reports

 versus logs

 versus metrics

 etcd 21

 etcd3 282

 gRPC, using instead of REST 282

 leases, using instead of TTLs 282

 optimizations

 state storage 282

 watch implementation 282

 etcd cluster

 about 69

 creating 73, 74

 verifying 74

 etcd operator

 installing 71, 72, 73

 etcd-operator

 reference link 544

 event consumer 425

 event consumer, types

 Addressable consumer 425

 Callable consumer 425

 event delivery, modes

 fan-out delivery 427

 simple delivery 426

 event registry 426

 event source 425

 event types 426

 extended Berkeley Packet Filter (eBPF) 581

 applications 581

 external data stores

 accessing, via DNS 223

 accessing, via environment variables 223

 External DNS Controller 390

 external load balancer 345, 348

 client IP addresses, preserving 347

 configuring 346

 configuring, via kubectl command 346

 configuring, via service configuration file 346

 IP addresses, finding 346

 external service

 separating 144

 external services

 exposing 149, 150

 F

 fan-out delivery 427

 Fargate 411, 412

 limitations 414

 reference link 410

 federation API server 373

 federation controller manager 373

 Fiber Channel (FC) 189

 FireCracker

 reference link 581

 firecracker-containerd

 reference link 581

 Fission 435, 436

 experimenting 439, 440

 URL 435

 workflows 436, 438, 439

 Flannel 335, 336

 backends 336

 FlexVolume

 out-of-tree volume plugins, using 217, 218

 FlexVolume approach

 advantages 218

 Flocker

 as clustered container data volume manager 212, 214

 Fluentbit

 URL 456

 Fluentd

 URL 454

 using, for log collection 454

 Frakti

 Function as a Service (FaaS) 585

 functions

 using 312

 Functions as a Service (FaaS)

 characteristics 408

 executing, on serverless computing 407

 G

 Galley 495

 Gardener

 extending 401, 402

 Gardener architecture 398

 clusters, monitoring 399, 400

 clusters, networking 399

 cluster state, managing 398

 control plane, managing 399

 gardenctl CLI 400

 infrastructure, preparing 399

 machine controller manager, using 399

 Gardener project

 conceptual model 397, 398

 terminology 396

 URL 396

 Gardener ring

 GCE persistent disk 202, 203

 generic commands 136

 Giant Swarm

 reference link 580

 gibibyte (GiB) 183

 GlusterFS

 endpoints, creating 206

 pods, creating 208

 using 206

 GlusterFS Kubernetes service

 adding 207

 GlusterFS volumes

 in Kubernetes 205

 Google Anthos for GKE

 reference link 579

 Google Cloud Platform (GCP) 4, 59

 Google Cloud Run 414

 reference link 580

 Google GKE

 URL 579

 Google Kubernetes Engine (GKE) 59, 277

 Google Kubernetes Engine on Coursera

 reference link 578

 Grafana

 reference link 400

 URL 472

 Grafana Loki

 reference link 475

 gvisor-containerd-shim

 reference link 581

 H

 HAProxy

 executing, in Kubernetes cluster 352

 NodePort, utilizing 351

 using, in load balancer provider 351

 Heapster 67, 456

 Helm 283

 chart, creating 306

 chart, customizing 298, 299, 300

 charts, finding 287, 288

 charts, managing 304

 installation link 71

 installation options 301

 installation status, checking 293, 294, 295, 296, 298

 installing 286

 package, installing on Kubernetes cluster 291

 release, deleting 303

 release, rolling back 301, 302

 release, upgrading 301, 302

 repositories, adding 288, 289, 290

 repositories, working with 303, 304

 use cases 284

 using 285

 Helm 2

 Tiller server, installing 286

 used, for installing riff

 Helm 2 architecture 284

 Helm 2 components 284

 Helm client 285

 Tiller server 284

 Helm 3 285

 Helm client

 installing 286

 hierarchical cluster structures

 with kustomization 158

 high availability 79, 80

 high availability, best practices

 about 66

 data, protecting 75

 etcd cluster 69

 Kubernetes cluster, creating 67, 68

 Kubernetes cluster state, protecting 69

 leader election, executing with Kubernetes 76, 77

 nodes performance, creating 68, 69

 staging environment, creating 77

 testing 78, 79

 high availability, concepts

 about 64

 hot swapping 64

 idempotency 66

 leader election 65

 redundancy 64

 self-healing 66

 smart load balancing 65

 High-Availability Proxy (HAProxy) 351

 reference link 351

 Higher-Order Behavior

 employing 390

 highly available (HA) clusters 45

 horizontal pod autoscaler (HPA) 80, 248

 autoscaling, with Kubectl 252, 253, 254

 custom metrics 252

 deploying 248, 249, 250

 host cluster

 configuring 380, 383

 registering, with Kubernetes federation 383

 HostPath

 using, for intra-node communication 178, 179, 180

 hot swapping 64

 httpie

 URL 530

 used, for filtering output 529, 531

 using 530

 Httpie

 installation link 48

 Huawei

 Hue

 advanced science

 utilizing, for education

 utilizing, in enterprise

 Hue components

 about 131

 authorizer 132

 external service 132

 generic actuator 132

 generic sensor 132

 identity 132

 user graph 131

 user learner 133

 user profile 131

 Hue microservices

 about 133

 data stores 134

 plugins 133

 queue-based interactions 134, 135

 serverless functions 134

 stateless microservices 134

 Hue platform

 designing 129

 evolving, with Kubernetes

 identity 130, 131

 managing, with Kubernetes 171

 notifications 130

 privacy 130, 131

 scope, defining 130

 security 130, 131

 smart reminders 130

 Hue-reminders service

 creating 146, 147

 Hue workflows

 automatic workflows 135

 budget-aware workflows 135

 human workflows 135

 planning 135

 Hyper Containers

 Frakti

 Stackube

 I

 IBM Cloud Kubernetes service

 URL 579

 IBM Kubernetes Service

 idempotency 66

 ingress 349

 Ingress 150

 Ingress DNS controller 390

 IngressDNSRecord 390

 init containers

 employing, for orderly pod bring-up 173

 inside-the-cluster-network components 171

 internal service

 deploying 145, 146

 separating 144

 Internet of Things (IoT) 584

 intra-node communication

 with HostPath 178, 179, 180

 intra-pod communication

 with emptyDir 176, 177, 178

 IP addresses 324

 IP Address Management (IPAM) 329

 Istio 490

 distributed tracing

 incorporating, into Kubernetes cluster 491

 installing 497, 498, 499

 logs 520, 522, 523

 metrics

 minikube cluster, preparing 495

 monitoring and observability 519

 policies 515, 516, 517

 security 508, 509

 traffic management 504, 505, 507, 508

 URL 490

 Istio architecture 491, 493

 Citadel 494

 Envoy 493

 Galley 495

 Mixer 494

 Pilot 493

 Istio authentication 510

 origin authentication 511

 transport authentication 510

 Istio authorization 511, 512, 513, 514

 istio-certs 510

 Istio identity 509

 Istio PKI 510

 J

 Jaeger 477

 distributed tracing 475, 476

 installing 480, 481, 482

 URL 477

 Jaeger agent 479

 Jaeger architecture 478, 479

 Jaeger client 479

 Jaeger collector 479

 Jaeger Query 479

 Java Management Extensions (JMX) 238

 Jenkins

 URL 585

 Jenkins X

 URL 585

 jobs

 cleaning up 168

 executing, in parallelism 167, 168

 launching 166

 jq

 URL 530

 used, for filtering output 529, 531

 using 530

 jsonpatch

 URL 388

 JSON Web Tokens (JWTs) 511

 K

 k3d 52

 installing 52

 used, for creating cluster 53, 55, 56

 used, for creating multi-node cluster 51

 versus Minikube 57, 58

 k3s 52

 k9s tools

 reference link 568

 Keepalived Virtual IP (Keepalived VIP) 353

 Kiali

 used, for visualizing service mesh

 KinD

 about 43

 echo service, deploying with 48

 installing 43

 used, for creating multi-node cluster 43, 44, 45, 46

 versus k3d 57

 versus Minikube 57

 Knative 415, 427

 installing 428, 429

 Knative, components

 Knative Eventing 415

 Knative Serving 415

 Knative Configuration object 420, 422

 Knative Eventing 415, 424

 architecture 426, 427

 Knative Eventing terminology

 broker 426

 channel 426

 defining 424

 event consumer 425

 event registry 426

 event source 425

 event types 426

 subscriptions 426

 trigger 426

 Knative, installing

 reference link 428

 Knative Revision object 424

 Knative Route object 419

 Knative service

 deploying 430

 invoking 431, 432

 scale-to-zero option, checking in 432, 434

 Knative Service object 416, 419

 Knative Serving 415

 Krew

 reference link 570

 used, for managing Kubectl plugins 570

 krew-plugin-template

 reference link 572

 KRIB

 reference link

 used, for building bare-metal cluster

 kubeadm

 reference link

 kubebuilder

 reference link 544, 556

 Kube controller manager 21

 kubectl 32

 reference link 33

 Kubectl

 executing, with Python subprocesses 538, 540, 541

 used, for autoscaling HPA 252, 254

 Kubectl commands

 overriding 572

 Kubectl effectively

 using 136

 Kubectl plugins 572

 creating 571, 572

 implementing 568

 managing, with Krew 570

 namespace, for Krew plugins 573

 naming 572

 shebangs 572

 writing 568

 Kubectl programmatically

 invoking 538

 kubectl resource, configuration files

 about 137

 ApiVersion 138

 container spec 138, 139

 kind 138

 metadata 138

 spec 138

 KubeEdge

 reference link 580, 585

 KubeFed control plane 373

 federation API server 373

 federation controller manager 373

 kubefedctl

 installing 378, 379, 380

 Kubeless 441

 implementing with 442

 working, with serverless framework

 Kubeless architecture 441

 Kubeless function 441

 Kubeless runtime 441

 Kubeless triggers 442

 Kubeless function 441

 Kubeless runtime 441

 Kubeless triggers 442

 Kubeless UI

 using

 kubelet 24

 Kubemark cluster

 comparing, to real-world cluster

 reference link

 setting up

 Kubemark tool

 Kubenet 324, 326

 MTU, setting 327

 requisites 326, 327

 kubens tool

 reference link

 kube-prometheus

 reference link 464

 Kubernetes 576

 API objects, serializing with protocol buffers 282

 API responsiveness, measuring

 capabilities 2

 centralized logging 451

 Ceph volumes in 205

 CI/CD pipeline, deploying for

 cluster federation, history 366

 component logs 449

 configuration and deployment challenges 100

 connecting 239

 container logs 448, 449

 cultural challenges 102

 end-to-end pod startup time, measuring

 enterprise storage, integrating 214

 etcd3 282

 extending, with cloud controller manager 543

 extending, with controller pattern 544

 extending, with custom container runtimes 545

 extending, with custom storage

 extending, with operator pattern 544

 extending, with plugins 542

 features 60

 Fluentd, using for log collection 454

 GlusterFS in 205

 image challenges 99, 100

 limits 278, 279

 logging with 448

 monitoring, with metrics server 457, 458

 network challenges 97, 98

 network policies, managing 122

 node challenges 96, 97

 on EC2 60

 organizational challenges 102

 overview 104

 performance and scalability, improving 279

 performance and scalability, measuring

 Platform as a Service (PaaS) 580

 pod and container challenges 101

 pod lifecycle event generator (PLEG) 279, 280

 pods security 116

 process challenges 102

 reads, caching in API server 279

 scheduling, extention 545

 secrets, storing in 126

 security challenges 96

 service accounts 104, 105

 service accounts, managing 106

 SLOs

 stateful applications 221

 stateless applications 221

 state, managing in 222

 state, managing outside 222, 223

 testing, at scale

 upcoming trends 580

 used, for collecting metrics 456, 457

 used, for evolving Hue platform

 used, for managing Hue platform 171

 using, to build Hue platform 136

 Kubernetes API

 accessing, via Python client 532, 533

 CoreV1API group, dissecting 533, 534

 exploring 526, 527

 exploring, with Postman 528

 extending 541, 542

 objects, creating 536, 537

 objects, listing 536

 objects, watching 537

 Python subprocesses, used for executing Kubectl 538, 540, 541

 used, for creating pod 531, 532

 working with 525

 Kubernetes APIs 16

 Resource Categories 17

 Kubernetes API server

 aggregating 556, 557

 Kubernetes architecture 7, 14

 distributed system design patterns 14

 Kubernetes Certified Service Provider (KCSP)

 reference link 577

 Kubernetes cli-runtime

 reference link 572

 Kubernetes cluster

 APIs, deprecating 92

 availability requisites 93

 bare-metal cluster

 best effort 93

 blue-green deployments 89, 90

 canary deployments 90, 91

 cost 92

 creating 67, 68

 data consistency

 data-contract changes, managing 91

 data, migrating 91

 design trade-offs 92

 HAProxy, executing in 352

 Helm package, installing on 291

 Istio, incorporating into 491

 live updates 83

 maintenance windows 94

 multi-node cluster 43

 overview 31

 performance 92

 quick recovery 94

 rolling updates 85, 86

 single-node cluster 32

 Site reliability engineering (SRE)

 zero downtime

 Kubernetes cluster federation

 creating 380

 Higher-Order Behavior, employing 390

 managing 378

 overrides, using 388

 placement field, using to control 388, 389

 propagation failures, debugging 390

 Kubernetes, components

 master components 20

 node components 23

 Kubernetes, concepts 6

 annotations 10

 cluster 7

 labels 10

 label selectors 11

 master 9

 names 13

 namespaces 13, 14

 nodes 7

 pods 9

 replica sets 12

 replication controllers 12

 secrets 13

 services 11

 StatefulSet 12, 13

 volume 12

 Kubernetes contrib

 reference link 353

 Kubernetes dashboard

 used, for exploring cluster 460

 Kubernetes extensions patterns 542

 Kubernetes extensions points 542

 Kubernetes FaaS frameworks 434, 435

 Fission 435, 436

 Knative

 Kubeless 441

 riff

 Kubernetes federation

 API types, working with 385

 auto-scaling 377, 378

 basic concepts, defining 370

 basics, learning 370

 building blocks 370

 data access 377

 features 373

 namespace 387

 overview 374

 resources 385, 386

 resources status, checking 387

 unit of work 375

 used, for registering host cluster 383

 Kubernetes federation, elements

 policy 371

 scheduling 371

 status 371

 Kubernetes GitHub repository

 reference link 576

 Kubernetes incubator project

 reference link 182

 Kubernetes ingress 324

 Kubernetes networking model 318

 external access 319

 inter-pod communication (pod to pod) 318

 intra-pod communication (container to container) 318

 pod to service communication 319

 versus Docker networking 320, 321

 versus Docker networking model 321, 322

 Kubernetes networking solutions 332

 bridging, on bare metal clusters 332

 Calico project 337

 Contiv 332, 333

 Flannel 335, 336

 Open vSwitch (OVS) 333, 334, 335

 Romana 337, 339, 340

 Weave net 341

 Kubernetes network plugin 324

 bridges 325

 CIDRs 325

 Container Networking Interface (CNI) 327

 IP addresses 324

 Kubenet 326

 Linux networking 324

 maximum transmission unit (MTU) 326

 netmasks 325

 network namespaces 325

 pod networking 326

 ports 324

 routing 325

 subnets 325

 Virtual Ethernet (veth) devices 325

 Kubernetes network policy 342

 CNI plugin 342

 configuring 342

 design 341

 implementing 343

 using 341

 Kubernetes on Raspberry PI

 reference link 580

 Kubernetes plugins

 custom scheduler, writing 559

 writing 559

 Kubernetes runtimes 24

 container runtime interface (CRI) 25, 27

 CRI-O 30

 Docker 27, 28

 Hyper Containers

 rkt 30

 Kubernetes scheduler

 design 559, 560, 561

 Kubernetes services

 accessing, locally though proxy 48, 50

 kube scheduler 23

 Kubespray 67

 used, for building bare-metal cluster

 kube-state-metrics

 reference link 400

 Kuma 490

 URL 490

 kustomization

 applying 161, 162

 patching 163

 staging namespace, kustomizing 163, 164

 using, for hierarchical cluster structures 158

 kustomize

 basics 158

 URL 158

 L

 labels 10

 label selectors 11

 leader election 65

 limit ranges

 using, for default compute quotas 269, 270

 Linen CNI plugin

 reference link 333

 Linkerd 489

 Linkerd 2 489

 URL 489

 Linux networking 324

 liveness probe

 using, to ensure containers 171

 using, to manage dependencies 172

 load balancer provider

 with HAProxy 351

 load balancing options 343, 345

 external load balancer 345

 ingress 349

 local volumes

 using, for durable node storage 180, 181

 location affinity 375

 location affinity, requirements

 loosely coupled 376

 preferentially coupled 376

 strictly coupled 375

 strictly decoupled 376

 uniformly spread 376

 log aggregation 445, 448, 451

 log collection strategy

 direct logging approach 451

 node agent approach 452

 selecting 451

 sidecar container 452

 log format 445

 logging 444

 with Kubernetes 448

 logs

 versus error reports

 versus metrics

 logs, key attributes

 log aggregation 445

 log format 445

 log storage 445

 log storage 445

 long-running microservices

 deploying, in pods 139

 long-running processes

 deploying, with deployments 142

 long-running services

 characteristics 407

 executing, on serverless computing 406

 loopback plugin 354, 355, 357, 358

 reference link 355

 M

 macOS

 single-node cluster, creating 34, 35

 Maesh

 URL 490

 managed Kubernetes platforms 579

 master 9

 master components

 API server 449

 controller manager 449

 scheduler 449

 master components, Kubernetes

 API server 20

 cloud controller managers 21, 22

 DNS 23

 etcd 21

 Kube controller manager 21

 kube scheduler 23

 maximum transmission unit (MTU) 326

 MetalLB 353

 reference link 353

 metrics 445

 collecting, with Kubernetes 456, 457

 types

 versus error reports

 versus logs

 Microsoft AKS

 URL 579

 Minikube 33

 reference link 33

 used, for creating single-node cluster 32

 versus k3d 58

 versus KinD 57

 minikube cluster

 preparing, for Istio 495

 minions 7

 misc commands 136

 Mixer 494

 multi-cluster Ingress DNS

 utilizing 390

 multi-cluster scheduling

 utilizing 392, 394, 396

 multi-cluster Service DNS

 utilizing 391, 392

 multi-container pod challenges 101

 multi-node cluster

 creating, with k3d 51, 53, 55, 56

 creating, with KinD 43, 44, 45, 46

 multi-node patterns 16

 multiple node configurations

 using 274

 multi-user cluster

 executing

 namespace pitfalls, avoiding

 namespace, using for safe multi-tenancy

 use cases

 N

 names 13

 namespaces 13, 14

 using, to limit access 156, 158

 namespace-specific context

 using 263

 native CI/CD 585

 Network Address Translation (NAT) 318

 networking 581

 network namespaces 325

 network policies

 cross-namespace policies 126

 defining 123, 124, 125

 egress network policy, limiting to external networks 125

 managing 122

 networking solution, selecting 123

 secrets, using 126

 node affinity 155

 advantages 155

 node agent approach 452

 node components, Kubernetes

 kubelet 24

 proxy 23

 node-exporter

 reference link 400

 NodePort

 utilizing 351

 node-problem-detector

 reference link

 nodes 7

 node selector 151

 node types

 selecting 270, 272

 non-cluster components

 inside-the-cluster-network components 171

 mixing 170

 outside-the-cluster-network components 170

 Nuage networks VCS 335

 O

 object count quota 261

 objects

 creating 536, 537

 Kubectl programmatically, invoking 538

 listing 536

 watching 537

 observability 444

 alerting 448

 application error reporting 447

 dashboards 447

 distributed tracing 446

 logging 444

 metrics 445

 visualization 447

 octant tools

 reference link 568

 off cost and response time

 trading 272, 274

 OpenAPI 526

 OpenAPI V3

 reference link 547

 Open Container Initiative (OCI) 28

 Open Service Broker API

 reference link 557

 OpenShift

 reference link 580

 OpenStack

 reference link 579

 OpenTracing 476

 URL 476

 OpenTracing, concepts 477

 Span 477

 Trace 477

 Open Virtualization Network (OVN) 333

 Open Virtual Networking (OVN) 328

 reference link 333

 Open vSwitch (OVS) 328, 333

 key features 334, 335

 operator framework

 reference link 544

 operator pattern

 used, for extending Kubernetes 544

 Operator pattern 585

 Oracle Cloud

 URL 579

 Oracle Container Service

 origin authentication 511

 out-of-tree volume plugins

 using, with FlexVolume 217, 218

 outside-the-cluster-network components 170

 overrides

 using 388

 P

 performance

 detecting, with distributed tracing

 Persistent Volume Claim (PVC) 190

 persistent volume claims

 applying 226

 persistent volumes

 access mode 183

 capacity 183

 claims, creating 185, 187

 claims, mouting 188

 creating 182

 dynamically, provisioning 182

 externally, provisioning 182

 mount options 185

 overview 175, 176

 provisioning 181

 raw block volumes 189, 190

 reclaim policy 184

 statically, provisioning 182

 storage class 184, 191

 storage classes 192

 storage, demonstrating end to end 192, 194, 195, 196, 198, 199

 volume mode 183

 volume type 185

 personally identifiable information (PII) 454

 physical machines 3

 Pilot 493

 pipelines

 using 312

 placement field

 using, to control Kubernetes cluster federation 388, 389

 Platform 9 PMK

 reference link 580

 Platform as a Service (PaaS) 2

 plugins

 used, for extending Kubernetes 542

 pod

 assigning, to custom scheduler 566

 creating, via Kubernetes API 531, 532

 scheduling 563

 verifying, with correct scheduler 567

 pod affinity 155

 pod lifecycle event generator (PLEG) 280

 pod networking 326

 pod readiness 174

 pods 9

 creating 139, 140

 decorating, with labels 141

 endpoints 322

 interacting 322

 long-running microservices, deploying 139

 pod security

 with AppArmor 118, 119

 pod security policies (PSPs) 120, 121

 authorizing, via RBAC 121, 122

 pods security 116

 cluster, protecting with AppArmor 118

 ImagePullSecrets 116

 private image repository, using 116

 security context, specifying 117

 ports 324

 Postman

 output, filtering with httpie and jq 529, 531

 URL 528

 using, to explore Kubernetes API 528

 priority classes 262

 private clouds 579

 Prometheus 461

 alertmanger 469, 470, 472

 custom metrics, incorporating 469

 features 461

 installing 463, 464

 interacting 465

 kube-state-metrics, incorporating 465, 467

 Loki, considering 475

 metrics, visualizing with Grafana 472, 475

 node exporter, utilizing 467

 reference link 399

 URL 461

 Prometheus operator

 reference link 463

 propagation failures

 debugging 390

 protected health information (PHI) 454

 proxy

 setting up 526

 public cloud Kubernetes platforms 579

 public cloud storage, volume types 199

 Amazon EBS 199, 200

 Amazon EFS 200, 201

 Azure data disk 203, 204

 Azure file storage 205

 GCE persistent disk 202, 203

 public key infrastructure (PKI) 510

 Python client

 used, for accessing Kubernetes API 532, 533

 Python client library

 reference link 532

 Python subprocesses

 used, for executing Kubectl 538, 540, 541

 Q

 queues

 benefits 323

 downsides 323

 quotas

 creating 263, 265, 266, 268, 269

 limit ranges, using for default compute quotas 269, 270

 namespace-specific context, using 263

 scopes 262

 working with 263

 R

 Rados Block Device (RBD) 209

 used, for connecting Ceph 209, 210, 211

 Rancher k3S

 reference link 580

 Rancher Kubernetes Engine (RKE)

 reference link

 used, for building bare metal cluster

 Rancher RKE

 reference link 580

 raw block volumes 189

 defining, with FC provider 189

 readiness gates 174

 ReadOnlyMany (ROX) 193

 ReadWriteMany (RWX) 193

 ReadWriteOnce (RWO) 193

 real routable IP addresses, benefits

 performance 337

 scalability 337

 visibility 338

 reclaim policy

 delete 184

 recycle 184

 retain 184

 redundancy 64

 redundant in-memory state

 using 225

 redundant persistent storage

 DaemonSet, using 226

 remote central logging 453

 replica sets 12

 replication controllers 12

 Resource Categories 17

 clusters 20

 config and storage 19

 Discovery and Load Balancing 18, 19

 metadata 19

 workloads API 18

 resource quotas 262

 enabling 259

 requests and limits 263

 resource quotas, types 259

 compute resource quota 259

 object count quota 261

 storage resource quota 260

 riff

 installing, with Helm 2

 riff runtimes

 core runtime

 Knative runtime

 streaming runtime

 rkt 30

 app container 30

 role-based access control (RBAC) 61

 Role-Based Access Control (RBAC) 112

 rolling updates

 complex deployments 87

 performing, with autoscaling 255, 256, 258

 rolling updates 85, 86

 Romana 337, 338, 340

 Rook 215, 216

 root cause

 detecting, with distributed tracing

 routing 325

 runC 28

 run.sh script

 exploring 234, 235, 236, 237, 238

 S

 scalability 79, 80

 scalable storage solution

 categories 272

 selecting 272

 scarce resources

 handling, with limits and quotas 258, 259

 Screwdriver.cd

 URL 585

 seccomp

 reference link 581

 secrets 13

 creating 127

 decoding 128

 storing, in Kubernetes 126

 using 126

 using, in container 128

 security 580

 self-healing 66

 sensitive log information

 dealing with 454

 sentry chart

 reference link

 serverless computing 584

 about 405, 406

 FaaS, executing 407

 long-running services, executing 406

 serverless framework

 used, for working with Kubeless

 serverless Kubernetes

 AWS EKS 410, 412

 Azure AKS 409, 410

 Azure Container Instances 409, 410

 cluster autoscaler 408

 Fargate 410, 412

 Google Cloud Run 414

 in cloud 408

 service catalog

 reference link 557

 utilizing 557, 558, 559

 service-level agreements (SLAs)

 service-level indicators (SLIs)

 service-level objectives (SLOs)

 Service Level Objectives (SLOs)

 service load balancer 348

 service mesh 483, 484, 486, 487, 582

 AWS App Mesh 490

 control plane 489

 data plane 489

 Envoy 489

 Istio 490

 Kuma 490

 Linkerd 2 489

 Maesh 490

 selecting 489

 visualizing, with Kiali

 services 11

 settings commands 136

 shared environment variables

 versus DNS records 223

 sidecar container 452

 sidecar container KEP

 reference link 582

 sidecar pattern 15

 simple delivery 427

 single-node cluster

 checking 37, 38

 creating 35, 36

 creating, on macOS 34, 35

 creating, on Windows 33, 34

 creating, requisites 33

 creating, with Minikube 32

 examining, with dashboard 40, 43

 running 38, 39

 troubleshooting 36

 single point of failure (SPOF) 323

 Site reliability engineering (SRE)

 smart load balancing 65

 software-defined networking (SDN) 98

 Software-Defined Networking (SDN) 335

 Span 477

 SPIFEE

 URL 510

 Spinnaker

 URL 585

 Stackube

 reference link

 starter packs

 advantage 306

 stateful applications

 in Kubernetes 221

 StatefulSet 12, 13

 components 226, 227, 228

 used, to create Cassandra cluster 242

 using 226

 utilizing 226

 StatefulSet YAML file

 dissecting 242, 243, 244, 245, 246

 stateless applications

 in Kubernetes 221

 Storage Area Network (SAN) 214

 storage class 191, 192

 storage classes 192

 storage resource quota 260

 subprocess 538

 subscriptions 426

 T

 tags field 310

 taints 152, 153

 Tekton

 reference link 415

 URL 585

 templates files

 pipelines and functions, using 312

 writing 311, 312

 Tencent

 Tencent Kubernetes engine (TKE)

 Tencent TKE

 URL 579

 Terraform 399

 Tiller server

 installing, for Helm 2 286

 installing, in cluster 287

 Time to Live (TTL) 282

 Token Controller 106

 tolerations 152, 153

 tooling 578

 top-of-rack (ToR) 339

 Trace 477

 Traefic 353, 354

 Traefik

 URL 490

 transport authentication 510

 trigger 426

 triggers

 HTTP trigger 435

 Kubernetes watch trigger 435

 Message queue trigger 435

 Timer trigger 435

 troubleshooting commands 136

 troubleshooting problems

 daemons

 detecting, at node level

 staging environments, advantage

 U

 unique ID (UID) 9

 users

 authenticating 107, 108

 impersonating 110

 V

 values

 feeding, from file

 Velero 76

 reference link 76

 vertical pod autoscaler (VPA) 83

 considering 83

 limitations 83

 veth0 326

 VirtualBox

 reference link 33

 Virtual Ethernet (veth) devices 325

 Virtualized Cloud Services (VCS) 335

 virtual kubelet

 URL 410

 virtual machines 3

 virtual machines (VMs) 408

 virtual machine (VM) 78

 Virtual Redundancy Router Protocol (VRRP) 353

 VMware Kubernetes academy

 reference link 578

 VMware PKS

 reference link 580

 volume 12

 volume cloning 219

 volumes 176

 emptyDir, using for intra-pod communication 176, 177, 178

 HostPath, using for intra-node communication 178, 179, 180

 local volumes, using for durable node storage 180

 projecting 216

 volume snapshots 219

 W

 WdeaveScope

 reference link 581

 Weave net 341

 webhook admission controller

 configuring

 webhooks

 used, for extending Kubernetes 544

 Windows

 single-node cluster, creating 33, 34

 worker node components

 Kubelet 449

 Kube proxy 451

 workloads API 18

 Z

 zero downtime

 planning

 Zipkin

 URL 478

OEBPS/Images/B15559_025.png

OEBPS/Images/B15559_03_06.png
Senice. Podv10 Deployment

selector: Tabels:
‘app: awesome Podv10 3 app: awesome

Create canary deployment (service starts sending requests immediately)

Podv10 Deployment

labels:
Podv10 —ﬂ app: awesome

Senvice.

N

OEBPS/Images/B15559_02_14.png

OEBPS/Images/B15559_10_02.png
rpm-tz vnet 10.€

443

o

o)

[Cwpser |

LoadBalancers (dynamically added o senvce)

I
wottoer |
:

T

008

Master:0
host addr: 10.240.255.5.
Pod CIDR: 10.244.0.024

(Pua

Proxy
Implements Sene network: 10.0.0.016

ubel

:

.

“avalabilty set

Node 0
host addr: 10.240.0.4
pod CIDR: 10.244.1.024

Node-1
host addr: 10.240.0.5
pod CIDR: 10.244.2.0724

Proxy
Implements Senice network: 10.0.0.0/16

Proxy
Implements Senice network: 10.0.0.0/16

|

=

[

J[oocter

OEBPS/Images/Information_Box_Icon.png

OEBPS/Images/B15559_12_3.png

OEBPS/Images/B15559_11_02.png
Conbiures fecraton o singie AP e

Type Cluster
Configuration Configuration

=3

i Conoutes ocraton win
Federated Type [sstofrset cusers

Template Placement ‘ Overrides
Docaton of esowcs 0 bo dsrbusd Propagation
ior

Hoperovel APl and conoters:

g Yo—
o =

Scheduling

Cluster 1

Cluster N

OEBPS/Images/B15559_14.png

OEBPS/Images/B15559_13_02.png
Logging

Backend

OEBPS/Images/B15559_12_02.png
Virtual node architecture in AKS

0]

E

Application

architect

&

0

Infrastructure

architect

Pod

Pod

Pod

Pod

Pod

Aaur

 Container Instances (ACI)

Pod | Poa || Poe || Pod

OEBPS/Images/B15559_14_02.png
e o :

OEBPS/Images/B15559_14_10.png
Administrators

Authz puhc\esj

stio Config
(K8s AP server)

(ALY -—

Policies for Policies for
e Workioad B
O Proxy O Proxy

| |

© Workioad A © Workioad B

OEBPS/Images/B15559_08_06.png
API call latencies - 2000 node cluster

1000 .13 50
percentie
-3 90m
%0 percentie
s 3o
percentie
§
i
20

LIST nodes LIST repicationControllers
LIST pods:

AP1call

OEBPS/Images/B15559_13_09.png
Prometheus

O Enable query history

node_filesystem_files

node_filesystem_files s
Graph v node_filesystem_files
node_filesystem_files_free
node_filesystem_free_bytes
node_filesystem_
node_filesystem_
fom node_forks_total
node_intr_total
ipvs_connections_total

15.5M node_ipvs_incoming_bytes_total
node_ipvs_incoming_packets._total
node_ipvs_outgoing_bytes_total

15M node_ipvs_outgoing_packets_total
node_load1
{— node_load15
14.5M node_load5

node_memory_Active_anon_bytes
node_memory_Active_bytes

14M node_memory_Active_file_bytes
node_memory_AnonPages_bytes
node memorv Rounce bvtes

OEBPS/Images/B15559_12_09.png

OEBPS/Images/B15559_14_09.png
@ servicen

oioc 1L/
s @
HTTR gRPC, TGP
O ing meyﬁ—' 9
permeter s s
securty s
Doicies -

| Reporting

Local Authz WS/

miLs

- O progy EF—@——+ O eoessproy

s Perimeter

security
policies

Security policies can be
implemented at different
levels of granularity -
Service, Namespace, Mesh.

OEBPS/Images/B15559_12_10.png
Fisson CLI/ Ul Fision Funcion
AP1 Server Fision API/ Proxy
Event Sore e
Projecor Gontroter Scheduer

OEBPS/Images/B15559_13_10.png
11.5kBs

[P

3.502k8s

OEBPS/Images/B15559_10_10.png
Policy | Listener

Event streamed
to listener

Policy pushed
out to hosts

Agent

POST policy to endpoint

Pod 1 Pod1 Pod1

OEBPS/Images/B15559_02_12.png

OEBPS/Images/B15559_02_1.png

OEBPS/Images/B15559_10_04.png
Host

Pod

vethO

172.16.20.0/24

2 i

vethO

eth0

NAT/
Routing

Internet

KEY

D Host Network Namespace

D Pod Network Namespace

OEBPS/Images/B15559_01_04.png
tests

User acceptance

Automated
acceptance tests

Build & unit
tests

Version control

Delivery team

Foedback

OEBPS/Images/B15559_023.png

OEBPS/Images/B15559_09_02.png

OEBPS/Images/B15559_12_04.png
Pod
Spec

Kube-
scheduler

Admission
Controller

kubect!

Fargate Control Plane

Fargate Data Plane

OEBPS/Images/B15559_16_02.png
e €] __Q_ @ o o I_t_-— —A AVIspe ¢ BFEcmx &

O @ L) 5 DEBBO

= C% Astio A& Kong __@;

unkero

NTLX MK

TARY Tengine &

OEBPS/Images/B15559_14_17.png

OEBPS/Images/B15559_14_07.jpg
The Comedy of Errors

Summary: Wikipscia Summary: The Comedy of Erors s ono of William Shakespears's oarly plays. It his shortast and one of hie most farcical comedies, with a
major partof the humour coming from slapstick and mistaken identity, in addition to puns and word play.

Book Details Book Reviews
Type:
ook An extremely entertaining play by Shakespeare. The
Pages: slapstick humour is refreshing!
ot — Reviewert
Publishor: o
PublsherA
Language:
Englsn Absolutely fun and entertalning. The play lacks thematic
1SBN-10: depth when compared to other plays by Shakespeare.
1234567890)
1SBN-13: e

1231234567890

OEBPS/Images/B15559_02_021.png
kubernetes = Q Search + CREATE

Cluster Workloads

Namespaces
Workloads Statuses

Nodes
Persistent Volumes
Roles

Storage Classes

Namespace

default Deployments Pods Replica Sets
Overview
Deployments =
Workloads
Cron Jobs. Name S Labels Pods Age *
Daemon Sets @ echo runzecho 1/1 7 minutes
Deployments
Jobs _
Pods T
Pods
Replica Sets Name 3 Node Status & Restarts
Replication Controllers @ cchocorcht minkube Running O
Stateful Sets
Discovery and Load Balancing
Replica Sets =
Ingresses
Services Name % Labels Pods Age *
pod-templ...
Conflg end Storege @ cechosorzett 1 7 minutes
run: echo

Config Maps

OEBPS/Images/B15559_14_04.png

OEBPS/Images/B15559_13_07.png
«DNS.
« Kubernetes
; Consl oty
+ Custom integration
Pushgateway
Alertmanager
Promothous Server push alerts
pull metrics 4
| Retrieval Storage
|| i Web Ul
4 Grafana
AP dlionts

HDD/SSD

Prometheus Server

OEBPS/Images/B15559_11_07.png
T Gestonsr hrepaton ol
Nanespace sucturefor worker
forcuster nodes oad balancers, .

5 Deploymentofsddors|
into duster (e,

oo

S Deploymertof e
components ntocster

Backupscrat /
Sacupentry GO

(CNIplugin, kube-prony)

OEBPS/Images/B15559_03_04.png
Update deployment image v 1.1

Spec:
replicas: 2
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
type: RollingUpdate

OEBPS/Images/B15559_08_08.png
Pod startup latency

3 W 50th percentile
W 90th percentile
W 99th percentile

seconds

OEBPS/Images/B15559_02_.png

OEBPS/Images/B15559_13_12.png

OEBPS/Images/B15559_03_01.png
worker node

worker node

 control plane node

controller-manager

© control plane node |

]
i
|
|

 control plane node |

controller-manager

controller-manager

scheduler

scheduler scheduler

OEBPS/Images/B15559_13_06.png
© kobernetes

_— [| [.

—_— 1 i

= € i

o " -

L= P —— — s o o AAALL PN 2nee i

= e

oy — e . s N o . en
i

s —

- D VSR e 2 cheng WEEN

e &

e Pyp— S e — . ey e i

OEBPS/Images/B15559_15_05.png
<> ‘Open Servis Brokor API Service Broker A
List Senvices
Provision Instance
Bind Instance

Managed Service 1

Managed Service 2

<—» Managed Service N

Secret:
Connection Credentials
Bind Instance Service Detai's

Service Broker Z

Kubernetes

OEBPS/Images/B15559_04_01.png
b s ®

2

Authentication Authorization Admission
Control
Pod
(Kubernetes e
Senvice Account) APl Server.

OEBPS/Images/B15559_10_06.png
Container Orchestrator

Host
Container Runtime
CNI Library
| CNIAPI
Flax daemon Linen CNI Plugin =
L 4
Container

ovsdb

[vswitchd

OEBPS/Images/B15559_14_06.png
Requests

OEBPS/Images/B15559_12_22.png

OEBPS/Images/B15559_13_15.png

OEBPS/Images/B15559_13_13.png
L\

java ' node

clcl ']

R4

Spans 1 Control
1 flow

Control flow poll
(sampling, etc.)

OEBPS/Images/B15559_11_05.png
Cluster 1

ServiceDNSRecord
Object

Service DNS
Controller

Update siaus.
Cluster N

DNS
Endpoint
Controller

weinnio External s
DNS DNS Provider

Controller

DNSEndpoint
Object

OEBPS/Images/B15559_12_05.png
routes traffic to

Configuration

Revision
records
history
of
Revision [+

Revision

OEBPS/Images/B15559_08_01.png

OEBPS/Images/B15559_02_02.png

OEBPS/Images/B15559_06_02.png
Gluster Volume

Storage Node Storage Node Storage Node

OEBPS/Images/B15559_01_02.png
CRI
protobuf

_ //_.,‘ﬁ
client '

OEBPS/Images/B15559_07_01.png

OEBPS/Images/B15559_14_14.png

OEBPS/Images/Image1045.png

OEBPS/Images/B15559_15_03.png
Kubernetes
Master

kube-controller-
‘manager

cloud-controller:
manager

kube-apiserver

Kube-scheduler

—;—v[Kubelet)

(apetet)

(sauperet)

Miniows

—E—D(kuhe»))mxy] (Ciube-proxy) (Ciube-proxy)
Kubernetes

OEBPS/Images/B15559_02_04.png

OEBPS/Images/B15559_08_03.png
®

Azure Monitor

|

AKS production cluster

Performance

o e e dd
Loo >

ol
@

Availability Reliabilty

Azure Container
Instances (ACI)

Elasticity

Serveriess
Kubernetes

Nointesiructure
tomanige

Stots i seconds

OEBPS/Images/B15559_14_08.png
Book Reviews

An extremely entertaining play by Shakespeare. The slapstick humour is refreshing!

— Reviewer1

Y Sk Sk kK

Absolutely fun and entertaining. The play lacks thematic depth when compared to other
plays by Shakespeare.

— Reviewer2

Kk kKA

OEBPS/Images/B15559_12_11.png
®Kubeless

cuwsTERURL

http://localhost:8080

Functions yeah T——

1 dof yeoh(event, context Runtime: python3.7
@yeah 2 ortntceventy

5 printCeontert)
X

Peturn "1t narks in tre " o Edit

, Request
poST
Yoo oS ONT ec20112 san00) Gz
ghme. Thesici wres/1.10 ~ habe-prebe/i 17" JSON © Text
T —

ChezzyPyserver())

(Casta’s ur', Cavens-id's “wibatiendssa,
nasasace s i komelee dors extineions’t Response
('request: <LocalRaguest: bo

heeps/ /loceIhost 8060/} tworks inthe Ul
(" tunction-nane's <tunction yosh

‘eaory-1ini

OEBPS/Images/B15559_13_04.png
my-pod
i Logging

@anvunwiner >~ Backend - Y
N);

OEBPS/Images/B15559_12_24.png

OEBPS/Images/B15559_12_0.png

OEBPS/Images/B15559_06_04.png
FLOCKER
CONTROL SERVICE

Data Cent

Volume
= Container

Shared Storag

FLOCKER AGENT FLOCKER AGENT
DOCKER DAEM DOCKER DAEMON

—

OEBPS/Images/B15559_021.png

OEBPS/Images/B15559_12_07.png
Simple Delivery (o)

(3 event types
G S

OEBPS/Images/B15559_10_08.png
Only routes for prefix
groups need to be
announced to core

10.1.0.0/10 . ToR-1 routers

10.1.64.0/10 - ToR-2 1

Rack 1: L2 domain Rack 2: L2 domain

10.1.1.16/28 10.1.64.32/28 . Host C
10.1.4.64/28 10.1.64.16/28 — Host D
10.1.0.16/28

default ~ core

ToRs have routes to all
address blocks within

Host A Host C ‘ the L2 domain
routes 10.1.0.16/28 . Host B routes 10.1.64.16/28 . Host D
default — ToR-1 default — ToR-2
[GgR | Hostshaveroutestoal
Host B blocks n the L2 domain, Plus | | HOStD
L |
routes 10.1.1.16/28 . Host A routes 10.1.64.32/28 - Host C
10.1.4.64/28 - Host A default - ToR-2
default ~ ToR-1

OEBPS/Images/B15559_14_12.png

OEBPS/Images/B15559_02_E.png

OEBPS/Images/B15559_11_03.png

OEBPS/Images/B15559_10_12.png

OEBPS/Images/B15559_08_05.png
miiseconds

API call latencies - 2000 node cluster

e .3 son
percentie
_-soon
120 percentile
-390
percentie

™

w0

w«:ﬁ?@“’ v"’ w“’@ jv,«»@ o

APY call

OEBPS/Images/B15559_11_01.png
Cluster/Data Center/Availability Zone

containers
containers

containers

Control Plane Servers

OEBPS/Images/B15559_12_01.png
DNS name label: myapp . eastus . azurecontainer. io
1 Public IP address: 40.85.154.240
Ports exposed: 80

Port: 5800

myacr.azurecr.io/app1 myacr.azurecr.io/sidecarv1

Mounted at
/data/appdata

Mounted at
/data/logs

myContainerGroup

Virtual machine

OEBPS/Images/B15559_02_E0.png

OEBPS/Images/B15559_06_05.png
Kubelet

DaemonSet Pod

StatefulSet (replica:1)
(Ensures no more than 1 instance running at a time)

——

EmptyDir Volume

Kube
Controller
Manager

APl
Server

OEBPS/Images/B15559_02_05.png

OEBPS/Images/B15559_12_2.png

OEBPS/Images/B15559_026.png

OEBPS/Images/B15559_03_05.png
Podv 1.0

Senvice selector: Deployment labels:
deployment: blue Pod v 1.0 deployment: blue
Create green deployment
Podv1.0
Depicyment labals:
Senice selector: / deployment: blue
daployment: blue Y Podv1.0
Diepioyment labels:
deployment: green
Updata servica selactor to graen
Ry Deployment labels:
e deployment: blue

Deployment labels:
deployment: green

OEBPS/Images/B15559_15_01.png
localhost8080/apis/o @

GET focalhost8080/apis/batchivi
Headers
ey
|
Body o
pretty 150N
1-¢
2 Ckind': “APIResourcelist’,
3 opiversion’: 1",
4 “groupversion”: "batch/vi”,
5. “resources™: [
6- t
7 “nane”: “jobs”,
8
9
10
11-
12
13
1
1
16
17
18
19
2

value

Postman

No Environment

rorems m s

Cookies Code

Description BulkEdit Presets v

5 2000K Time: 16ms Szs: 4708

s v

OEBPS/Images/B15559_10_01.png

OEBPS/Images/B15559_13_01.png
D (Backend) E

OEBPS/Images/B15559_14_01.png

OEBPS/Images/cover.png
EXPERT INSIGHT

Mastering
Kubernetes

Level up your container orchestration skills with £
Kubernetes to build, run, secure, and observe 7
large-scale distributed apps

Third Edition ‘a9

Gigi Sayfan Packt>

OEBPS/Images/B15559_16_01.png
LATE MAJORITY
GRADUATED “CONSERVATIVES"

THE CHASM

m INNOVATORS

“TECHIES"

SANDBOX

EARLY ADOPTERS EARLY MAJORITY LAGGARDS
“VISIONARIES" "PRAGMATISTS" “SKEPTICS"

OEBPS/Images/B15559_12_010.png

OEBPS/Images/B15559_14_03.png
Pod Pod Pod Pod
f I I [‘1\,
Mesh proxy || kube-proxy kube-proxy | Mesh proxy

kublet kublet
Mesh Controller
Kubernetes API
Server

OEBPS/Images/B15559_03_03.png
Betcd

OEBPS/Images/B15559_11_08.png
Ring Cluster A

Worker Nodes of A

(seed cluster for B)

Ring Cluster B

(seed cluster for C)

Ring Cluster C (seed cluster for A)

‘Worker Nodes of C

'
Control Pane of A i

Worker Nodes of B

OEBPS/Images/B15559_13_08.png

OEBPS/Images/B15559_13_11.png
B a

=

Find dashboards by name
General

CoreDNS.

eted

Kubernetes / API server

Kubernetes / Compute Resources / Cluster

Kubernetes / Compute Resources / Namespace (Pods)

Kuberetes / Compute Resources / Namespace (Workloads)

Kubernetes / Compute Resources / Node (Pods)
Kubenetes / Compute Resources / Pod
Kuberetes / Compute Resources / Workload
Kubernetes / Controller Manager

Kubernetes / Kubelet

Kubernetes / Networking / Cluster

Kubernetes / Networking / Namespace (Pods)
Kubernetes / Networking / Namespace (Workioad)
Kuberetes / Networking / Pod

Kubernetes / Networking / Workload
Kubernetes / Persistent Volumes.

Kuberetes / Pods

Kubenetes / Proxy

Kubernetes / Scheduler

Kubernetes / Statefulsets

Nodes

Prometheus.

USE Method / Cluster

OEBPS/Images/B15559_08_07.png
seconds

Pod startup latency

3 . son
ol
-
35 ol
- ootn
o
.
7
PO o
a2t an® Fole

OEBPS/Images/B15559_09_021.png

OEBPS/Images/Image1052.png
Packh

OEBPS/Images/B15559_01_03.png
Same Docker Ul and commands

Docker Engine User interacts with Docker Engine
containerd Engine communicates with containerd

containerd spins up runc or other “OCI”
“complaint” runtime to run containers

OEBPS/Images/B15559_024.png

OEBPS/Images/B15559_02_13.png

OEBPS/Images/B15559_12_21.png

OEBPS/Images/B15559_02_0.png

OEBPS/Images/9781800207080-original_2.jpg
I Python
Automation
Cookbook

| seconeaton

‘ Snime Busita

OEBPS/Images/B15559_12_4.png

OEBPS/Images/B15559_10_03.png
Host running Docker

eth0: 172.17.0.2 eth0: 172.17.0.3

(" veth5998047] (__ veth220960a)

——

docker0: 172.17.42.1

168.1.22

Rest of the network - —

OEBPS/Images/B15559_12_03.png
Amazon ECS Amazon EKS
ECS Container Kubernetes Worker
Instances Nodes
Customer VPC Fargate VPC Customer VPC

OEBPS/Images/B15559_14_16.png
= gkiali

Shomhstofor fopn =

N/A

OEBPS/Images/B15559_11_06.png
Garden Cluster

Seed Cluster

Shoot Cluster

[Garden cluster

Seed Cluster Z

[Shoot Cluster

[Seed CusteraPiis | [Shoot Gt

e A]

| Shoot ciservenie |

‘Worker

Taas

Target 1225

OEBPS/Images/B15559_13_14.png
C O localhost:8080/search

Search 3>

Service (O

Operation (0

Tags

Lookback

Last Hour

Min Duration

Max Duration

Limit Results

20

OEBPS/Images/B15559_06_01.png
Container 1

Docker host Container 2

OEBPS/Images/B15559_12_06.png
subscriber

Service
(1argetable)

OEBPS/Images/B15559_01_01.png
hubect (ser conmronds)

Pod

=)

[}

Maste companents
Colocated, o proa cros macnes,
6 e by chitr 7.

OEBPS/Images/B15559_02_01.png

OEBPS/Images/B15559_15_06.png
Human User

Pod
(kubernetes
Service Account)

Authentication Authorization Admission
Control

Kubernetes
4P server

OEBPS/Images/B15559_14_13.png
istio_build
istio_double_request_count

istio_mcp_clients_total
istio_mcp_message_sizes_bytes_bucket
istio_mcp_message_sizes_bytes_count
istio_mcp_message._sizes_bytes_sum
istio_mcp_reconnections
istio_mcp_recv._failures_total
istio_mcp_request_acks_total
istio_request_bytes_bucket
istio_request_bytes_count
istio_request_bytes_sum
istio_request_duration_seconds_bucket
istio_request_duration_seconds_count
istio_request_duration_seconds_sum
istio_response_bytes_bucket
istio_response_bytes_count
istio_response_bytes_sum
istio_tcp_connections_closed._total
istio_tcp_connections_opened_total
istio_tcp_received_bytes_total
istio_tcp_sent_bytes_total

OEBPS/Images/B15559_10_05.png
Loopback Bridge MACvian IPvian Third-Party
Plugin Plugin Plugin Plugin Plugin Plugin

OEBPS/Images/B15559_14_15.png
| e

« [sio-ingressgateway: productpage.bookinto.sve.cluster.
local:

© 080/productpage
Sorv s Oporaton v om sz s = oo
o nysssuoney
- o .
| ookt e —
otalls bookinfo.svc.clustorlocal:9080/ Ra— 2 -
o—— Py
reviows.bookinfo.sve.clustor ocal 9080/ s soois sssom .
SIS —
Rp— —_—

OEBPS/Images/B15559_02_11.png

OEBPS/Images/B15559_09_01.png
v I sentry

>

>

v

[aggregations

[alerts

W charts

> [postgresql

> [redis

i templates

£} .helmignore

£ Chartyaml

B requirements.lock
£ requirements.yaml
£ values.yaml

OEBPS/Images/B15559_03_02.png
worker node | | worker node worker node | | worker node | | worker node

i
|
control plane node |

controller-manager

controller-manager .| controller-manager

T
i
i

scheduler P scheduler scheduler
HE
i
T

external etcd cluster

OEBPS/Images/B15559_13_05.png
Node A Node B

‘ <Pod1> ‘ < Pod 2 > <Pod1> ‘ <Pod2 >
<logs1> <logs2 > <logs1> < logs 2 >
stdout/stderr stdout/stderr stdout/stderr stdout/stderr

~N, /

\

| < Fluentd agent > |

‘ < Fluentd agent > ‘

/

‘ Centralized Log Management system ‘

OEBPS/Images/B15559_02.png

OEBPS/Images/B15559_14_05.png
gRPC or TCP --
with or without

HTTP/1.1, HTTP/2,

mTLS
O Proxy

Policy checks,
telemetry

Configuration
data

Configuration
data to proxies |

TLS certificates
to provies

’ Citadel

Control Plane

OEBPS/Images/B15559_12_23.png

OEBPS/Images/B15559_06_03.png
RADOS

A reliable, autonomous, distributed object store comprised of self-healing, seif-managing, intelligent storage

nodes

RADOSGW

A bucket-based REST A reliable and fully

gateway, compatible vith | distributed block device,

S3and Swift with a Linux kemel client
and a QEMU/KVM driver

CEPHFS

A POSIX-compliant
distributed filesystem,
with a Linux kemel client
and support for FUSE

OEBPS/Images/B15559_12_1.png

OEBPS/Images/B15559_12_25.png

OEBPS/Images/B15559_13_03.png
log-file.log
r N

-—
L / logrotate

YT

(" Logging
N Backend -

N J
RN

logging-agent-pod

N

)

OEBPS/Images/B15559_10_09.png
10.1.0.0/10 . ToR-1
10.1.64.0/10 - ToR-2

routes 10.1.1.16/28 - Host A routes 10.1.64.32/28 . Host C
10.1.4.64/28 - Host A 10.1.64.16/28 - Host D
10.1.0.16/28 - Host B

default ~ core
default - core

—
i Every host is in its
block 10.1.1.16/28 ‘own network
segment
block 10..1.4.64/28 g
‘ routes default . ToR-1 ‘ | routes default ~ Tor-2

Host B Hosts only need the

block 10.1.0.16/28 a default route
to the ToR

‘ routes defaule ~ Tor-1 ‘ | Toutes default ~ Tor-2

OEBPS/Images/B15559_12_08.png
Complex Processing

[sore @D T2 e]

ASubscrip!inn - - Service

OEBPS/Images/B15559_022.png

OEBPS/Images/B15559_02_03.png

OEBPS/Images/B15559_08_02.png
1. CPU Load Average > 80% —

2. Add 2 ECS instances—/

OEBPS/Images/lightbulb.png

OEBPS/Images/B15559_11_04.png
IngressDNSRecord
Object

DNS
Endpoint
Controller

DNSEndpoint
Object

Ingress DNS
Controller

Controller

Cluster 1

Cluster N

DNS Provider

OEBPS/Images/B15559_15_02.png
Kubemetes
Control Plane

kubelet

Webhook
Backend

Kubernetes Node

kubelet

Binary
Plugin

Kubernetes Node

kubelet

Controller

Kubernetes Node

OEBPS/Images/B15559_14_11.png
opertr

Attribute Machine

OEBPS/Images/B15559_10_11.png
kubectl, clients,etc.

Worker Node #1

Master Node #1

apiserver -@

o
eted {0} 4 scheduler @
A

podmaster@ < - i controller o
' manager !
kubelet

OEBPS/Images/B15559_10_13.png
Frontend

Test Instance
(External IP)

HAProxy

Server
(External IP)

E013) Load Balancer
(intemal IP)

Apache
Server
(Internal IP)

Apache
Server
(Internal IP)

Apache
Server
(Intemal IP)

OEBPS/Images/9781839214806-original.jpg
loT and Edge
Computmg for

OEBPS/Images/B15559_15_04.png
CRI

5 protobuf
client

OEBPS/Images/B15559_08_04.png
Node Vertical Scaling: CPU Utilization for 120 Pods

. Avg CPU
1 95% CPU

2
F]
g
3
=

(lower is better)

OEBPS/Images/B15559_10_07.png
—
— NP U O -
§g AT TR
e K 8
=
J—
-
.
-
I - | 7%+
3 g
g
i o 1928
Pod e o
‘Backend Sendce2 _ -
-
[t o } 1017 s

si|g|=|8

Pajoad

‘source: 102.168.0.100
dost: 192.168.0.200

source: 101.15.2
Gest 101203

OEBPS/Images/B15559_12_091.png
Message Queue

Pulisher —@)-> ! Subscribe Topic | | Response Topic | |

00 ¢

MQTrigger (Consumer)

b4

