

Vincent Sesto, Onur Yılmaz, Sathsara Sarathchandra, Aric Renzo,

and Engy Fouda

Learn how to use Docker containers effectively

to speed up the development process

The

DOCKEr
Workshop

The Docker Workshop
Copyright © 2020 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Vincent Sesto, Onur Yılmaz, Sathsara Sarathchandra, Aric Renzo,
and Engy Fouda

Reviewers: Ankit Mishra, Fiodar Sazanavets, Craig Newton, and Earl Waud

Managing Editors: Prachi Jain and Clara Joseph

Acquisitions Editors: Royluis Rodrigues, Sneha Shinde, Archie Vankar,
Karan Wadekar, and Alicia Wooding

Production Editor: Shantanu Zagade

Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: October 2020

Production reference: 2250221

ISBN: 978-1-83898-344-4

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Running My First Docker Container 1

Introduction .. 2

Advantages of Using Docker .. 5

Docker Engine .. 6

Running Docker Containers .. 8

Exercise 1.01: Running the hello-world Container 9

Managing Docker Containers .. 15

Exercise 1.02: Managing Container Life Cycles 16

Attaching to Containers Using the attach Command 26

Exercise 1.03: Attaching to an Ubuntu Container 27

Activity 1.01: Pulling and Running the PostgreSQL
Container Image from Docker Hub ... 30

Activity 1.02: Accessing the Panoramic Trekking App Database 31

Summary .. 32

Chapter 2: Getting Started with Dockerfiles 35

Introduction ... 36

What Is a Dockerfile? .. 37

Common Directives in Dockerfiles ... 38

The FROM Directive ... 38

The LABEL Directive ... 39

The RUN Directive .. 40

The CMD Directive ... 41

The ENTRYPOINT Directive ... 42

Exercise 2.01: Creating Our First Dockerfile ... 43

Building Docker Images ... 45

Exercise 2.02: Creating Our First Docker Image 50

Other Dockerfile Directives ... 53

The ENV Directive ... 54

The ARG Directive .. 55

Exercise 2.03: Using ENV and ARG Directives in a Dockerfile 55

The WORKDIR Directive ... 58

The COPY Directive .. 59

The ADD Directive .. 60

Exercise 2.04: Using the WORKDIR, COPY,
and ADD Directives in the Dockerfile .. 61

The USER Directive ... 64

Exercise 2.05: Using USER Directive in the Dockerfile 64

The VOLUME Directive .. 67

Exercise 2.06: Using VOLUME Directive in the Dockerfile 68

The EXPOSE Directive .. 72

The HEALTHCHECK Directive .. 72

Exercise 2.07: Using EXPOSE and HEALTHCHECK Directives
in the Dockerfile ... 74

The ONBUILD Directive ... 77

Exercise 2.08: Using ONBUILD Directive in the Dockerfile 78

Activity 2.01: Running a PHP Application on a Docker Container 83

Summary .. 84

Chapter 3: Managing Your Docker Images 87

Introduction ... 88

Docker Layers and Caching ... 88

Exercise 3.01: Working with Docker Image Layers 90

Exercise 3.02: Increasing Build Speed and Reducing Layers 97

Creating Base Docker Images ... 104

Exercise 3.03: Creating Your Base Docker Images 105

The Scratch Image ... 107

Exercise 3.04: Using the Scratch Image ... 107

Docker Image Naming and Tagging .. 110

Exercise 3.05: Tagging Docker Images ... 111

Using the latest Tag in Docker .. 113

Exercise 3.06: Issues When Using latest .. 113

Docker Image Tagging Policies ... 115

Exercise 3.07: Automating Your Image Tagging 116

Storing and Publishing Your Docker Images 120

Exercise 3.08: Transporting Docker Images Manually 121

Storing and Deleting Docker Images in Docker Hub 123

Exercise 3.09: Storing Docker Images in Docker Hub
and Deleting the Repository ... 123

The Docker Registry .. 128

Exercise 3.10: Creating a Local Docker Registry 129

Activity 3.01: Build Scripts Using Git Hash Versioning 131

Activity 3.02: Configuring Your Local Docker Registry Storage 132

Summary .. 133

Chapter 4: Multi-Stage Dockerfiles 135

Introduction ... 136

Normal Docker Builds .. 136

Exercise 4.01: Building a Docker Image with the Normal
Build Process .. 138

What Is the Builder Pattern? ... 141

Exercise 4.02: Building a Docker Image with the Builder Pattern 145

Introduction to Multi-Stage Dockerfiles ... 149

Exercise 4.03: Building a Docker Image with a Multi-Stage
Docker Build ... 153

Dockerfile Best Practices ... 156

Using an Appropriate Parent Image ... 156

Using a Non-Root User for Better Security ... 157

Using dockerignore .. 158

Minimizing Layers .. 159

Don't Install Unnecessary Tools ... 160

Activity 4.01: Deploying a Golang HTTP Server with
a Multi-Stage Docker Build ... 161

Summary .. 163

Chapter 5: Composing Environments with
Docker Compose 165

Introduction ... 166

Docker Compose CLI ... 167

Installing Docker Compose CLI in Linux .. 167

Docker Compose CLI Commands ... 168

Docker Compose File ... 170

Exercise 5.01: Getting Started with Docker Compose 175

Configuration of Services ... 179

Exercise 5.02: Configuring Services with Docker Compose 181

Service Dependency ... 183

Exercise 5.03: Service Dependency with Docker Compose 184

Activity 5.01: Installing WordPress Using Docker Compose 188

Activity 5.02: Installing the Panoramic Trekking App
Using Docker Compose ... 190

Summary .. 193

Chapter 6: Introduction to Docker Networking 195

Introduction ... 196

Exercise 6.01: Hands-On with Docker Networking 197

Native Docker DNS ... 210

Exercise 6.02: Working with Docker DNS .. 211

Native Docker Network Drivers .. 222

Exercise 6.03: Exploring Docker Networks ... 223

Docker Overlay Networking .. 242

Exercise 6.04: Defining Overlay Networks .. 242

Non-Native Docker Networks ... 252

Exercise 6.05: Installing and Configuring the Weave
Net Docker Network Driver .. 252

Activity 6.01: Leveraging Docker Network Drivers 258

Activity 6.02: Overlay Networking in Action ... 260

Summary .. 261

Chapter 7: Docker Storage 263

Introduction ... 264

The Container Life Cycle .. 265

Exercise 7.01: Transitioning through the Common States
for a Docker Container .. 267

Exercise 7.02: Checking the Container Size on Disk 272

Stateful versus Stateless Containers/Services 275

Exercise 7.03: Creating and Scaling a Stateless Service, NGINX 276

Exercise 7.04: Deploying a Stateful Service, MySQL 279

Docker Volumes and Stateful Persistence 282

Exercise 7.05: Managing a Volume outside the Container's
Scope and Mounting It to the Container ... 283

Exercise 7.06: Managing a Volume within the Container's Scope 286

Exercise 7.07: Running a PostgreSQL Container with a Volume 288

Exercise 7.08: Running a PostgreSQL Container without a Volume . 291

Miscellaneous Useful Docker Commands ... 293

Persistent and Ephemeral Volumes ... 294

Exercise 7.09: Sharing Volumes between Containers 295

Volumes versus Filesystem and Images .. 297

Exercise 7.10: Saving a File on a Volume and Committing
It to a New Image ... 298

Exercise 7.11: Saving a File in the New Image Filesystem 299

Activity 7.01: Storing Container Event (State) Data
on a PostgreSQL Database ... 301

Activity 7.02: Sharing NGINX Log Files with the Host 304

Summary .. 305

Chapter 8: CI/CD Pipeline 307

Introduction ... 308

What Is CI/CD? ... 308

Exercise 8.01: Installing Jenkins as a Container 310

Integrating GitHub and Jenkins ... 315

Exercise 8.02: Uploading the Code to GitHub 316

Exercise 8.03: Integrating GitHub and Jenkins 319

Integrating Jenkins and Docker Hub .. 331

Exercise 8.04: Integrating Jenkins and Docker Hub 331

Activity 8.01: Utilizing Jenkins and SonarQube 340

Activity 8.02: Utilizing Jenkins and SonarQube
in the Panoramic Trekking Application ... 341

Summary .. 343

Chapter 9: Docker Swarm 345

Introduction ... 346

How Docker Swarm Works? ... 347

Working with Docker Swarm ... 348

Exercise 9.01: Running Services with Docker Swarm 350

Troubleshooting Swarm Nodes ... 356

Deploying Swarm Deployments from Docker Compose 358

Swarm Service Rolling Updates ... 358

Exercise 9.02: Deploying Your Swarm from Docker Compose 359

Managing Secrets and Configurations with Docker Swarm 367

Exercise 9.03: Implementing Configurations and Secrets
in Your Swarm .. 369

Managing Swarm with Swarmpit .. 379

Exercise 9.04: Installing Swarmpit and Managing Your Stacks 380

Activity 9.01: Deploying the Panoramic Trekking App
to a Single-Node Docker Swarm .. 387

Activity 9.02: Performing an Update to the App While
the Swarm Is Running ... 388

Summary .. 389

Chapter 10: Kubernetes 391

Introduction ... 392

Kubernetes Design ... 393

Exercise 10.01: Starting a Local Kubernetes Cluster 396

The Kubernetes API and Access .. 400

Exercise 10.02: Accessing Kubernetes Clusters with kubectl 402

Kubernetes Resources ... 405

Pods ... 406

Deployments .. 407

Statefulsets ... 408

Services ... 410

Ingress ... 411

Horizontal Pod Autoscaling ... 412

RBAC Authorization ... 413

Exercise 10.03: Kubernetes Resources in Action 414

Kubernetes Package Manager: Helm ... 420

Exercise 10.04: Installing the MySQL Helm Chart 422

Activity 10.01: Installing the Panoramic Trekking App on Kubernetes
 426

Summary .. 428

Chapter 11: Docker Security 431

Introduction ... 432

Privileged and Root User Access in Containers 433

Exercise 11.01: Running Containers as the Root User 434

Runtime Privileges and Linux Capabilities ... 439

Signing and Verifying Docker Images ... 441

Exercise 11.02: Signing Docker Images and Utilizing DCT
on Your System .. 443

Docker Image Security Scans .. 447

Scanning Images Locally Using Anchore Security Scan 448

Exercise 11.03: Getting Started with Anchore Image Scanning 450

Utilizing SaaS Security Scans with Snyk ... 456

Exercise 11.04: Setting up a Snyk Security Scan 457

Using Container Security Profiles ... 461

Implementing AppArmor Security Profiles on Your Images 462

Exercise 11.05: Getting Started with AppArmor Security Profiles 464

seccomp for Linux Containers .. 469

Exercise 11.06: Getting Started with seccomp 470

Activity 11.01: Setting up a seccomp Profile for the
Panoramic Trekking App ... 473

Activity 11.02: Scanning Your Panoramic Trekking App
Images for Vulnerabilities ... 474

Summary .. 475

Chapter 12: Best Practices 477

Introduction ... 478

Working with Container Resources .. 478

Managing Container CPU Resources .. 480

Exercise 12.01: Understanding CPU Resources
on Your Docker Image ... 482

Managing Container Memory Resources ... 486

Exercise 12.02: Analyzing Memory Resources
on Your Docker Image ... 488

Managing the Container Disk's Read and Write Resources 491

Exercise 12.03: Understanding Disk Read and Write 492

Container Resources and Docker Compose 494

Best Practices in Docker .. 495

Running One Service per Container .. 496

Base Images .. 496

Installing Applications and Languages .. 497

Running Commands and Performing Tasks ... 498

Containers Need to Be Immutable and Stateless 498

Designing Applications to Be Highly Available and Scalable 499

Images and Containers Need to Be Tagged Appropriately 499

Configurations and Secrets .. 500

Making Your Images Minimal and Small ... 501

Enforcing Docker Best Practices in Your Code 502

Using Docker Linter for Your Images .. 502

Exercise 12.04: Linting Your Dockerfiles ... 504

Exercise 12.05: Validating Your docker-compose.yml File 508

Activity 12.01: Viewing the Resources Used by
the Panoramic Trekking App .. 512

Activity 12.02: Using hadolint to Improve
the Best Practices on Dockerfiles .. 513

Summary .. 514

Chapter 13: Monitoring Docker Metrics 517

Introduction ... 518

Monitoring Environment Metrics with Prometheus 519

Exercise 13.01: Installing and Running Prometheus 521

Monitoring Docker Containers with Prometheus 529

Exercise 13.02: Collecting Docker Metrics with Prometheus 531

Understanding the Prometheus Query Language 538

Counter ... 538

Gauges ... 539

Histograms .. 539

Summaries .. 540

Performing PromQL Queries ... 540

Exercise 13.03: Working with the PromQL Query Language 542

Using Prometheus Exporters .. 547

Exercise 13.04: Using Metrics Exporters with Your Applications 548

Extending Prometheus with Grafana ... 551

Exercise 13.05: Installing and Running Grafana on Your System 552

Activity 13.01: Creating a Grafana Dashboard to Monitor System
Memory ... 561

Activity 13.02: Configuring the Panoramic Trekking
App to Expose Metrics to Prometheus ... 563

Summary .. 565

Chapter 14: Collecting Container Logs 567

Introduction ... 568

Introducing Splunk ... 569

Basic Architecture of Splunk Installation .. 570

Installing and Running Splunk on Docker .. 572

Exercise 14.01: Running the Splunk Container and Starting
to Collect Data .. 574

Getting Container Logs into Splunk .. 586

Exercise 14.02: Creating an HTTP Event Collector
and Starting to Collect Docker Logs .. 588

Working with the Splunk Query Language 594

Exercise 14.03: Getting Familiar with the Splunk Query Language ... 595

Splunk App and Saved Searches ... 609

Exercise 14.04: Getting Familiar with Splunk Apps
and Saved Searches ... 609

Activity 14.01: Creating a docker-compose.yml File
for Your Splunk Installation ... 619

Activity 14.02: Creating a Splunk App to Monitor
the Panoramic Trekking App ... 621

Summary .. 623

Chapter 15: Extending Docker with Plugins 625

Introduction ... 626

Plugin Management ... 626

Plugin API ... 627

Authorization Plugins ... 628

Exercise 15.01: Read-Only Docker Daemon
with Authorization Plugins ... 629

Network Plugins .. 633

Exercise 15.02: Docker Network Plugins in Action 636

Volume Plugins .. 640

Exercise 15.03: Volume Plugins in Action .. 642

Activity 15.01: Installing WordPress with Network
and Volume Plugins ... 644

Summary .. 646

Appendix 649

Index 747

Preface

ii | Preface

About the Book
Docker containers are the future of highly scalable software systems and make it easy
to create, run, and deploy apps.

If you're looking to leverage them without getting overwhelmed by the technicalities,
add The Docker Workshop to your reading list!

With this book, you'll be able to jumpstart your knowledge and work with containers
and Docker using interactive activities.

The workshop starts with an overview of Docker containers, enabling you to
understand how they work. You'll run third-party Docker images and also create
your own images using Dockerfiles and multi-stage Dockerfiles. Next, you'll create
environments for Docker images, and expedite your deployment process with
continuous integration. Moving ahead, you'll tap into interesting topics and learn how
to implement production-ready environments using Docker Swarm. To further secure
Docker images and ensure that production environments are running at maximum
capacity, you'll apply best practices. Later, you'll gain the skills to successfully move
Docker containers from development to testing, and then into production. While
doing so, you'll learn how to troubleshoot issues, clear up resource bottlenecks and
optimize the performance of services.

By the end of this Docker book, you'll be well-versed with Docker fundamentals and
be able to use Docker containers in real-world use cases.

Audience

If you're a developer or a Docker beginner who wants to gain a practical
understanding of Docker containers, this book is the ideal guide. Experience in
running command shells and knowledge of either the IntelliJ, Atom, or VSCode
editor are required before you get started with this Docker containers book.

About the Chapters

Chapter 1, Running My First Docker Container, begins with a basic introduction to
Docker, providing a discussion of the background architecture, ecosystem,
and basic Docker commands.

Chapter 2, Getting Started with Dockerfiles, introduces you to the Dockerfile,
its background, and how to use the Dockerfile to create and run your first
Docker containers.

Chapter 3, Managing Your Docker Images, provides more details on Docker images,
image repositories, and publishing your own images.

About the Book | iii

Chapter 4, Multi-Stage Dockerfiles, shows you how to extend your Dockerfile further,
using a multi-stage Dockerfile in your project.

Chapter 5, Composing Environments with Docker Compose, introduces Docker Compose
and how you can use docker-compose files to generate entire working environments.

Chapter 6, Introduction to Docker Networking, explains why networking needs to be
approached differently in Docker and how you can implement communication
between services and host systems.

Chapter 7, Docker Storage, details the utilization of storage in your Docker containers
and environments.

Chapter 8, CI/CD Pipeline, describes the creation of a continuous integration/
continuous deployment pipeline using Jenkins.

Chapter 9, Docker Swarm, covers the orchestration of your Docker services
using Swarm.

Chapter 10, Kubernetes, takes your orchestration to the next level, introducing you to
Kubernetes and how to deploy your container images across a basic cluster.

Chapter 11, Docker Security, walks you through ways to make your Docker images
and containers as secure as possible, providing ways in which you can reduce risk
while using containers.

Chapter 12, Best Practices, provides information on how you can ensure that your
containers are running as efficiently as possible.

Chapter 13, Monitoring Docker Metrics, covers metrics collection for your running
Docker containers and how to implement Prometheus to help monitor these metrics.

Chapter 14, Collecting Container Logs, teaches you how to use Splunk to collect logs
from your running Docker containers, which will allow you to aggregate, search,
and display your logging details.

Chapter 15, Extending Docker with Plugins, covers the ways in which you can extend
Docker further by creating your own plugins to use with your Docker application.

Note

There is also a bonus chapter, What's Next for Docker available
at: http://packt.live/3tR0iMY.

http://packt.live/3tR0iMY

iv | Preface

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows:

"Create a file named docker-compose.yml in your current working directory."

A block of code, a terminal command, or text to create a YAML file is set as follows:

docker build -t test .

New important words are shown like this: "Docker provides an online repository to
store your images called Docker Hub."

Words that you see on the screen (for example, in menus or dialog boxes) appear in
the text like this: "On the left sidebar, click on Settings and then on Users."

Key parts of code snippets are highlighted as follows:

1 FROM alpine

2

3 RUN apk update

4 RUN apk add wget curl

5

6 RUN wget -O test.txt https://github.com/PacktWorkshops/
 The-Docker-Workshop/raw/master/Chapter3/Exercise3.02/
 100MB.bin

7

8 CMD mkdir /var/www/

9 CMD mkdir /var/www/html/

Long code snippets are truncated, and the corresponding names of the code files on
GitHub are placed at the top of the truncated code. The permalinks to the entire code
are placed below the code snippet. It should look as follows:

Dockerfile

7 # create root directory for our project in the container
7 RUN mkdir /service
9 RUN mkdir /service/static
10
11# Set the working directory to /service
12 WORKDIR /service

The complete code for this example can be found at https://packt.live/2E9OErr.

https://packt.live/2E9OErr

About the Book | v

Setting Up Your Environment

Before we explore the book in detail, we need to set up specific software and tools.
In the following section, we shall see how to do that.

Hardware Requirements

You need at least a dual-core CPU with virtualization support, 4 GB of memory,
and 20 GB of free disk space.

Operating System Requirements

The recommended operating system is Ubuntu 20.04 LTS. If you are using Mac
or Windows, you should be able to run the commands in this book, but it is not
guaranteed that they will all work as expected. We suggest you install a virtualized
environment on your system using an application such as VirtualBox or VMware.
We have also provided the instructions at the end of this section on how you can
set up dual boot on your Windows system to use Ubuntu.

Installation and Setup

This section lists installation instructions for Docker and Git as they are the main
requirements for this workshop. Installation instructions for any other software
that's used will be provided in the specific chapter that covers it. Since we are
recommending Ubuntu, we will use the APT package manager to install most
of the required software in Ubuntu.

Updating Your Package Lists

Before you use APT to install any packages in Ubuntu, make sure that your packages
are up to date. Use the following command:

sudo apt update

Furthermore, you may choose to upgrade any upgradable packages on your machine
by using the following command:

sudo apt upgrade

vi | Preface

Installing Git

The code bundle for this workshop is available on our GitHub repository. You can use
Git to clone the repository to get all the code files.

Use the following command to install Git on Ubuntu:

sudo apt install git-all

Docker

Docker is the default containerization engine used by this workshop. You will learn
more about the application as you move through the chapters.

Use the following command to install Docker on Ubuntu:

sudo apt install docker.io -y

When the installation is complete, you will need to make sure that the Docker
daemon is started and running on your system. Do this with the following command,
making sure that you are running this as an elevated user with the sudo command:

sudo systemctl start docker

Ensure that the Docker daemon starts the next time you start your system. Run the
following command to make sure that Docker starts each time you stop or restart the
system you are installing it on:

sudo systemctl enable docker

Verify the version of Docker you have installed by using the docker command with
the --version option. Run the following command:

docker –version

You should see a similar output to the following:

Docker version 19.03.8, build afacb8b7f0

There is a good chance that if you are not performing commands as the root user,
you will not be able to run the majority of the commands needed. If you run the
example following command, you may experience an access issue connecting to
the Docker daemon:

docker ps

About the Book | vii

If you are running the command as a user that does not have elevated privileges,
you may see the following error:

Got permission denied while trying to connect to the

Docker daemon socket at unix:///var/run/docker.sock: Get
http://%2Fvar%2Frun%2Fdocker.sock/v1.40/containers/json:
dial unix /var/run/docker.sock: connect: permission denied

To resolve this issue, add the current user to the Docker group that was created
when you installed the application. Use the following command to perform this
on your system:

sudo usermod -aG docker ${USER}

To activate these changes, you will need to either log out of your system and then
log back in, or perform the following command to create a new session for your
current user:

sudo su ${USER}

Run the docker ps command again to ensure that your changes were successful:

docker ps

If everything has worked correctly, you should see an output similar to the following,
showing that you have no Docker containers running on your system:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Dual-Booting Ubuntu for Windows Users

In this section, you will find instructions on how to dual-boot Ubuntu if you are
running Windows.

Note

Before installing any operating systems, it is highly recommended that you
back up your system state and all of your data.

viii | Preface

Resizing Partitions

If you have Windows set up on your machine, it is most likely that your hard disk is
completely utilized—that is, all of the available space is partitioned and formatted.
You will need to have some unallocated space on the hard disk, so resize a partition
with plenty of free space to make space for your Ubuntu partitions:

1. Open the Computer Management utility. Press Win + R and type
compmgmt.msc:

Figure 0.1: The Computer Management utility on Windows

About the Book | ix

2. On the left-hand pane, go to the Storage > Disk Management option,
as shown in the following screenshot:

Figure 0.2: Disk Management

You will see a summary of all your partitions in the lower half of the screen.
You can also see the drive letters associated with all the partitions and
information about the Windows boot drive. If you have a partition that has
plenty of free space (20 GB +) and is neither the boot drive (C:), nor the recovery
partition, nor the Extensible Firmware Interface (EFI) system partition, this will
be the ideal option to choose. If there is no such partition, then you can resize
the C: drive.

x | Preface

3. In this example, you will choose the D: drive. Right-click on any partition and
open Properties to check the free space available:

Figure 0.3: Checking the properties of the D: drive

Now, before you resize the partition, you need to ensure that there are no
errors on the filesystem or any hardware faults. Do this using the chkdsk
utility on Windows.

4. Open Command Prompt by pressing Win + R and typing cmd.exe. Now, run the
following command:

chkdsk D: /f

About the Book | xi

Replace the drive letter with the one that you want to use. You should see a
response similar to the following:

Figure 0.4: Scanning a drive for any filesystem errors

Note that in Figure 0.4, Windows reported that it had scanned the filesystem and
found no problems. If any problems are encountered for your case, you should
get them fixed first to prevent the loss of data.

xii | Preface

5. Now, return to the Computer Management window, right-click on the desired
drive, and then click on Shrink Volume, as shown in the following screenshot:

Figure 0.5: Opening the Shrink Volume dialog box

About the Book | xiii

6. In the prompt window, enter the amount of space that you want to shrink. In this
example, you are clearing approximately 25 GB of disk space by shrinking your
D: drive:

Figure 0.6: Clearing 25 GB by shrinking the existing volume

xiv | Preface

After you shrink your drive, you should be able to see unallocated space on
 your drive:

Figure 0.7: Unallocated space after shrinking the volume

Now you are ready to install Ubuntu. But first, you need to download it and create a
bootable USB, which is one of the most convenient installation mediums.

Creating a Bootable USB Drive to Install Ubuntu

You will need a flash drive with a minimum capacity of 4 GB to create a bootable USB
drive. Note that all the data on this will be erased:

1. Download the ISO image for Ubuntu Desktop from
https://releases.ubuntu.com/20.04/.

2. Next, burn the ISO image to a USB flash disk and create a bootable USB drive.
There are many tools available for this, and you can use any of them. In this
example, you will use Rufus, which is free and open source. You can get it from
https://www.fosshub.com/Rufus.html.

3. Once you have installed Rufus, plug in your USB flash disk and open Rufus.
Ensure that the proper Device option is selected, as shown in Figure 0.8.

https://releases.ubuntu.com/20.04/
https://www.fosshub.com/Rufus.html

About the Book | xv

4. Press the SELECT button under Boot selection and then open the Ubuntu
20.04 image that you have downloaded.

5. The choice for Partition scheme will depend on how your BIOS and your
disk drive are configured. GPT will be the best option for most modern systems,
while MBR will be compatible with older systems:

Figure 0.8: Configurations for Rufus

xvi | Preface

6. You may leave all other options on their defaults, and then press START.
After completion, close Rufus. You now have a bootable USB drive ready to
install Ubuntu.

Installing Ubuntu

Now, use the bootable USB drive to install Ubuntu:

1. To install Ubuntu, boot using the bootable installation media that you just
created. In most cases, you should be able to do that by simply having the USB
drive plugged in while starting up your machine. If you don't automatically boot
into the Ubuntu setup, go into your BIOS settings and ensure that your USB
device is at the highest boot priority and that Secure Boot is turned off. The
instructions for entering the BIOS setup are usually displayed on the splash
screen (the screen with your PC manufacturer logo when you start up your
computer) during POST checks. You may also have the option to enter a boot
menu while starting up. Usually, you have to hold down Delete, F1, F2, F12, or
some other key while your PC boots up. It depends on your motherboard's BIOS.

You should see a screen with a Try Ubuntu or Install Ubuntu option. If
you don't see this screen, and instead you see a shell with a message that begins
with Minimal BASH Like Line Editing is Supported..., then it is
likely that there may have been some data corruption while downloading the ISO
file or creating your bootable USB drive. Check the integrity of the downloaded
ISO file by calculating the MD5, SHA1, or SHA256 hash of your downloaded
file and comparing it to the ones you can find in the files named MD5SUMS,
SHA1SUMS, or SHA256SUMS on the Ubuntu download page mentioned earlier.
Then, repeat the steps in the previous section to reformat and recreate the
bootable USB drive.

If you have set the highest boot priority to the correct USB device in the BIOS and
you are still unable to boot using your USB device (your system may just ignore
it and boot into Windows instead), then you are most likely dealing with one or
both of the following issues:

- The USB drive was not properly configured to be recognized as a bootable
device or the GRUB bootloader was not properly set up. Verifying the integrity
of your downloaded image and recreating the bootable USB drive should fix this
in most cases.

- You have chosen the wrong Partition scheme option for your system
configuration. Try the other one and recreate the USB drive.

About the Book | xvii

2. Once you boot your machine using the USB drive, select Install Ubuntu.

3. Choose the language that you want and then press Continue.

4. On the next screen, choose the appropriate keyboard layout and continue to the
next screen.

5. On the next screen, select the Normal installation option.

Check the Download updates while installing Ubuntu and
Install third-party software for graphics and Wi-Fi
hardware and additional media formats options.

Then, continue to the next screen.

6. On the next screen, select Install Ubuntu alongside Windows Boot
Manager, and then click Install now. You will see a prompt describing the
changes that Ubuntu will make to your system, such as the new partitions that
will be created. Confirm the changes and proceed to the next screen.

7. On the next screen, choose your region and press Continue.

8. On the next screen, set your name (optional), username, computer name,
and password, and then press Continue.

The installation should now begin. It will take a while, depending on your system
configurations. Once the installation is complete, you will be prompted to restart
your computer. Unplug your USB drive, and then click Restart Now.

If you forget to remove your USB drive, you may boot back into the Ubuntu
installation. In that case, just exit the setup. If a live instance of Ubuntu has been
started up, restart your machine. Remember to remove the USB drive this time.

If, after restarting, you boot directly into Windows with no option to choose
the operating system, the likely issue is that the GRUB bootloader installed
by Ubuntu has not taken precedence over the Windows bootloader. In some
systems, the precedence/priority for bootloaders on your hard disk is set in the
BIOS. You will need to explore your BIOS settings menu to find the appropriate
setting. It may be named something similar to UEFI Hard Disk Drive
Priorities. Ensure that GRUB/Ubuntu is set to the highest priority.

After installing any operating system, it is a good idea to ensure that all of your
hardware components are working as expected.

xviii | Preface

Other Requirements

Docker Hub account: You can create a free Docker account at https://hub.docker.com/.

Accessing the Code Files

You can find the complete code files in our GitHub repository for this workshop,
at https://packt.live/2RC99QI.

After installing Git, you can clone the repository using the following command:

git clone https://github.com/PacktWorkshops/The-Docker-Workshop

cd The-Docker-Workshop

If you have any issues with or questions about installation, please email us at
workshops@packt.com.

https://hub.docker.com/
https://packt.live/2RC99QI

Overview

In this chapter, you will learn the basics of Docker and containerization,
and explore the benefits of migrating traditional multi-tier applications to
a fast and reliable containerized infrastructure. By the end of this chapter,
you will have a firm understanding of the benefits of running containerized
applications as well as the basics of running containers using the docker
run command. This chapter will not only introduce you to the fundamentals
of Docker but also provide a solid understanding of the Docker concepts
that will be built upon throughout this workshop.

Running My First Docker

Container

1

2 | Running My First Docker Container

Introduction
In recent years, technological innovations across all industries are rapidly increasing
the rate at which software products are delivered. Due to trends in technology, such
as agile development (a methodology for quickly writing software) and continuous
integration pipelines, which enable the rapid delivery of software, operations'
staff have recently struggled to build infrastructure quickly enough to quell the
increasing demand. In order to keep up, many organizations have opted to
migrate to cloud infrastructure.

Cloud infrastructure provides hosted virtualization, network, and storage solutions
that can be leveraged on a pay-as-you-go model. These providers allow any
organization or individual to sign up and receive access to infrastructure that would
traditionally require large amounts of space and expensive hardware to implement
on-site or in a data center. Cloud providers such as Amazon Web Services and Google
Cloud Platform provide easy-to-use APIs that allow for the creation of large fleets of
virtual machines (or VMs) almost instantly.

Deploying infrastructure to the cloud provided a solution to many of the dilemmas
that organizations were facing with traditional infrastructure solutions, but also
created additional problems related to managing costs in running these services at
scale. How do companies manage the on-going monthly and yearly expenditures of
running expensive servers 24 hours a day, 7 days a week?

VMs revolutionized infrastructure by leveraging hypervisors to create smaller servers
on top of larger hardware. The downside of virtualization was how resource-intensive
it was to run a VM. VMs themselves look, act, and feel like real bare metal hardware
since hypervisors such as Zen, KVM, and VMWare allocate resources to boot and
manage an entire operating system image. The dedicated resources associated with
VMs make them large and somewhat difficult to manage. Moving VMs between an
on-premises hypervisor and the cloud could potentially mean moving hundreds of
gigabytes worth of data per VM.

Introduction | 3

To provide a greater degree of automation, make better use of compute density,
and optimize their cloud presence, companies find themselves moving toward
containerization and microservices architectures as a solution. Containers provide
process-level isolation or running software services within isolated sections of the
kernel of the host operating system. Instead of running an entire operating system
kernel to provide isolation, containers can share the kernel of the host operating
system to run multiple software applications. This is accomplished in the Linux kernel
through features known as control groups (or cgroups) and namespace isolation.
On a single VM or bare metal machine, a user could potentially run hundreds
of containers that run individual software application instances on a single host
operating system.

This is in stark contrast to a traditional VM architecture. Generally, when we deploy
a VM, we purpose that machine to run a single server or a minor subset of services.
This creates a waste of valuable CPU cycles that could be allocated to other tasks and
serve other requests. We could, in theory, resolve this dilemma by installing multiple
services on a single VM. However, this can create a tremendous amount of confusion
regarding which machine is running which service. It also places the ownership
of hosting multiple software installations and backend dependencies in a single
operating system.

A containerized microservices approach solves this by allowing the container
runtime to schedule and run containers on the host operating system. The container
runtime does not care what application is running inside the container, but rather
that a container exists and can be downloaded and executed on the host operating
system. It doesn't matter if the application running inside the container is a Go
web API, a simple Python script, or a legacy Cobol application. Since the container
is in a standard format, the container runtime will download the container image
and execute the software within it. Throughout this book, we will study the Docker
container runtime and learn the basics of running containers both locally and at scale.

Docker is a container runtime that was developed in 2013 and designed to take
advantage of the process isolation features of the Linux kernel. What separated
Docker from other container runtime implementations is that Docker developed a
system to not only run containers but also to build and push containers to container
repositories. This innovation led to the concept of container immutability—only
changing containers by building and pushing new versions of the containers when
software changes occur.

4 | Running My First Docker Container

As seen in the following diagram (Figure 1.1), we have a series of containerized
applications deployed across two Docker servers. Between two server instances,
seven containerized applications have been deployed. Each container hosts its own
set of binaries, libraries, and self-contained dependencies. When Docker runs a
container, the container itself hosts everything that it requires to function properly.
It is even possible to deploy different versions of the same application framework
since each container exists in its own kernel space:

Figure 1.1: Seven containers running across two different container servers

In this chapter, you will get to know various advantages provided by Docker with the
help of containerization. You will also learn the basics of running containers using the
docker run command.

Advantages of Using Docker | 5

Advantages of Using Docker
In a traditional VM approach, code changes would require operations folk or a
configuration management tool to access that machine and install a new version of
the software. The principle of immutable containers means that when a code change
occurs, a new version of that container image will be built and created as a new
artifact. If this change needed to be rolled back, it would be as easy as downloading
and restarting the older version of the container image.

Leveraging a containerized approach also enables software development teams
to predictably and reliably test applications in various scenarios and multiple
environments locally. Since the Docker runtime environment provides a standard
execution environment, software developers can quickly recreate issues and debug
problems easily. Because of container immutability, developers can be assured that
the same code is running across all environments because the same Docker images
can be deployed in any environment. This means that configuration variables such
as invalid database connection strings, API credentials, or other environment-specific
variance are the primary source of failures. This eases the operational burden and
provides an unparalleled degree of efficiency and reusability.

Another advantage of using Docker is that containerized applications are traditionally
quite small and flexible compared to their traditional infrastructure counterparts.
Instead of providing a full operating system kernel and execution environment,
containers generally only provide the necessary libraries and packages that are
required to run an application.

When building Docker containers, developers are no longer at the mercy of
packages and tools installed on the host operating system, which may differ between
environments. They can pack inside a container image only the exact versions of
libraries and utilities that the application requires to run. When deployed onto a
production machine, developers and operations teams are no longer concerned
about what hardware or operating system version the container is running on, as
long as their container is running.

6 | Running My First Docker Container

For example, as of January 1, 2020, Python 2 is no longer supported. As a result, many
software repositories are phasing out Python 2 packages and runtimes. Leveraging
a containerized approach, you can continue to run legacy Python 2 applications
in a controlled, secure, and reliable fashion until the legacy applications can be
rewritten. This removes the fear of worrying about installing operating-system-level
patches, which may remove Python 2 support and break legacy application stacks.
These Python 2 containers can even run in parallel on Docker servers with Python 3
applications to provide precise testing as these applications are migrated to the new
modernized stacks.

Now that we have taken a look at what Docker is and how it works, we can start to
work with Docker to get an idea of how process isolation differs from virtualization
and other similar technologies.

Note

Before we can begin to run containers, you must first have a working
installation of Docker on your local development workstation. For details,
please review the Preface section of this book.

Docker Engine
Docker Engine is the interface that provides access to the process isolation features
of the Linux kernel. Since only Linux exposes the features that allow containers to
run, Windows and macOS hosts leverage a Linux VM in the background to make
container execution possible. For Windows and macOS users, Docker provides the
"Docker Desktop" suite of packages that deploy and run this VM in the background
for you. This allows Docker commands to be executed natively from the terminal or
PowerShell console of the macOS or Windows host. Linux hosts have the privilege of
directly executing the Docker Engine natively because modern versions of the Linux
kernel support cgroups and namespace isolation.

Docker Engine | 7

Note

Since Windows, macOS, and Linux have fundamentally different operating
system architectures in terms of networking and process management,
a few of the examples in this book (specifically in regard to networking)
are sometimes called out as having different behaviors depending on the
operating system that is running on your development workstation. These
differences are called out as they occur.

Docker Engine supports not only the execution of container images but also provides
built-in mechanisms to build and test container images from source code files known
as Dockerfiles. When container images are built, they can be pushed to container
image registries. An image registry is a repository of container images from which
other Docker hosts can download and execute container images. The Docker engine
supports running container images, building container images, and even hosting
container image registries when configured to run as such.

When a container is started, Docker will, by default, download the container image,
store it in its local container image cache, and finally execute the container's
entrypoint directive. The entrypoint directive is the command that will start
the primary process of the application. When this process stops or goes down, the
container will also cease to run.

Depending on the application running inside the container, the entrypoint
directive might be a long-running server daemon that is available all the time, or it
could be a short-lived script that will naturally stop when the execution is completed.
Alternatively, many containers execute entrypoint scripts that complete a series of
setup steps before starting the primary process, which could be long- or short-lived.

Before running any container, it is a best practice to first understand the type of
application that will be running inside the container and whether it will be a short-
lived execution or a long-running server daemon.

8 | Running My First Docker Container

Running Docker Containers
Best practices for building containers and microservices architecture dictate that a
container should only run a single process. Keeping this principle in mind, we can
design containers that are easy to build, troubleshoot, scale, and deploy.

The life cycle of a container is defined by the state of the container and the running
processes within it. A container can be in a running or stopped state based on actions
taken by the operator, the container orchestrator, or the state of the application
running inside the container itself. For example, an operator can manually stop
or start a container using the docker stop or docker start command-
line interface (CLI) interface commands. Docker itself may automatically stop or
restart a container if it detects that the container has entered an unhealthy state.
Furthermore, if the primary application running inside the container fails or stops, the
running container instance should also stop. Many container runtime platforms such
as Docker even provide automated mechanisms to restart containers that enter a
stopped state automatically. Many container platforms use this principle to build job
and task execution functionality.

Since containers terminate when the primary process within the container finishes,
containers are excellent platforms to execute scripts and other types of jobs that
have an indefinite lifespan. The following Figure 1.2 illustrates the life cycle of a
typical container:

Figure 1.2: The life cycle of a typical container

Running Docker Containers | 9

Once you have Docker downloaded and installed on your targeted operating system,
you can start running containers. The Docker CLI has an aptly named docker run
command specifically for starting and running Docker containers. As we learned
previously, containers provide isolation from the rest of the applications and
processes running on the system. Due to this fact, the life cycle of a Docker
container is determined by the primary process running inside that container.
When a container stops, Docker may attempt to restart the container to ensure
continuity of the application.

To see the running containers on our host system, we will also be leveraging the
docker ps command. The docker ps command is similar to the Unix-style ps
command that is used to show the running processes on a Linux or Unix-based
operating system.

Remember that when Docker first runs a container, if it does not have the container
image stored in its local cache, it will download the container image from a container
image registry. To view the container images that are stored locally, use the docker
images command.

The following exercise will demonstrate how to use the docker run, docker ps,
and docker images commands to start and view the status of a simple
hello-world container.

Exercise 1.01: Running the hello-world Container

A simple "Hello World" application is generally the first line of code a developer writes
when learning software development or starting a new programming language, and
containerization is no different. Docker has published a hello-world container
that is extremely small in size and simple to execute. This container demonstrates
the nature of containers running a single process with an indefinite lifespan.

In this exercise, you will use the docker run command to start the hello-world
container and the docker ps command to view the status of the container after
it has finished execution. This will provide a basic overview of running containers in
your local development environment:

1. Enter the docker run command in a Bash terminal or PowerShell window.
This instructs Docker to run a container called hello-world:

$ docker run hello-world

10 | Running My First Docker Container

Your shell should return output similar to the following:

Unable to find image 'hello-world: latest' locally

latest: Pulling from library/hello-world

0e03bdcc26d7: Pull complete

Digest: sha256:

8e3114318a995a1ee497790535e7b88365222a21771ae7e53687ad76563e8e76

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working

correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the

Docker Hub.

 (amd64)

 3. The Docker daemon created a new container from that image

which runs the executable that produces the output you are

currently reading.

4. The Docker daemon streamed that output to the Docker

client, which sent it to your terminal.

To try something more ambitious, you can run an Ubuntu

container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

What just happened? You told Docker to run the container, hello-world. So,
first, Docker will look in its local container cache for a container by that same
name. If it doesn't find one, it will look to a container registry on the internet
in an attempt to satisfy the command. By simply specifying the name of the
container, Docker will, by default, query Docker Hub for a published container
image by that name.

Running Docker Containers | 11

As you can see, it was able to find a container called the library/hello-
world and began the process of pulling in the container image layer by layer.
You will get a closer look into container images and layers in Chapter 2, Getting
Started with Dockerfiles. Once the image has fully downloaded, Docker runs the
image, which displays the Hello from Docker output. Since the primary
process of this image is simply to display that output, the container then stops
itself and ceases to run after the output displays.

2. Use the docker ps command to see what containers are running on your
system. In your Bash or PowerShell terminal, type the following command:

$ docker ps

This will return output similar to the following:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

The output of the docker ps command is empty because it only shows
currently running containers by default. This is similar to the Linux/Unix ps
command, which only shows the running processes.

3. Use the docker ps -a command to display all the containers, even the
stopped ones:

$ docker ps -a

In the output returned, you should see the hello-world container instance:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

24c4ce56c904 hello-world "/hello" About a minute ago

 Exited (0) About a minute ago inspiring_moser

As you can see, Docker gave the container a unique container ID. It also displays
the IMAGE that was run, the COMMAND within that image that was executed, the
TIME it was created, and the STATUS of the process running that container, as
well as a unique human-readable name. This particular container was created
approximately one minute ago, executed the program /hello, and ran
successfully. You can tell that the program ran and executed successfully
since it resulted in an Exited (0) code.

12 | Running My First Docker Container

4. You can query your system to see what container images Docker cached locally.
Execute the docker images command to view the local cache:

$ docker images

The returned output should display the locally cached container images:

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest bf756fb1ae65 3 months ago 13.3kB

The only image cached so far is the hello-world container image. This image
is running the latest version, which was created 3 months ago, and has a
size of 13.3 kilobytes. From the preceding output, you know that this Docker
image is incredibly slim and that developers haven't published a code change
for this image in 3 months. This output can be very helpful for troubleshooting
differences between software versions in the real world.

Since you simply told Docker to run the hello-world container without
specifying a version, Docker will pull the latest version by default. You can
specify different versions by specifying a tag in your docker run command.
For example, if the hello-world container image had a version 2.0, you
could run that version using the docker run hello-world:2.0 command.

Imagine for a minute that the container was a bit more complex than a simple
hello-world application. Imagine your colleague wrote software with the
requirement to download very specific versions of many third-party libraries. If
you run this application traditionally, you would have to download the runtime
environment for the language they develop in, plus all of the third-party libraries,
as well as detailed instructions on how to build and execute their code.

However, if they publish a Docker image of their code to an internal Docker
registry, all they have to provide to you is the docker run syntax for running
the container. Since you have Docker, the container image will run the same no
matter what your underlying platform is. The container image itself already has
the libraries and runtime details baked in.

5. If you execute the same docker run command over again, then, for each
docker run command a user inputs, a new container instance will be created.
It should be noted that one of the benefits of containerization is the ability
to easily run multiple instances of a software application. To see how Docker
handles multiple container instances, run the same docker run command
again to create another instance of the hello-world container:

$ docker run hello-world

Running Docker Containers | 13

You should see the following output:

Hello from Docker!

This message shows that your installation appears to be

working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from

 the Docker Hub.

 (amd64)

 3. The Docker daemon created a new container from that image

 which runs the executable that produces the output you

 are currently reading.

 4. The Docker daemon streamed that output to the Docker client,

 which sent it to your terminal.

To try something more ambitious, you can run an Ubuntu container

with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

Notice that, this time, Docker did not have to download the container image
from Docker Hub again. This is because you now have that container image
cached locally. Instead, Docker was able to directly run the container and
display the output to the screen. Let's see what your docker ps -a output
looks like now.

6. In your terminal, run the docker ps -a command again:

docker ps -a

14 | Running My First Docker Container

In the output, you should see that the second instance of this container image
has completed its execution and entered a stopped state, as indicated by
Exit (0) in the STATUS column of the output:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

e86277ca07f1 hello-world "/hello" 2 minutes ago

 Exited (0) 2 minutes ago awesome_euclid

24c4ce56c904 hello-world "/hello" 20 minutes ago

 Exited (0) 20 minutes ago inspiring_moser

You now have a second instance of this container showing in your output. Each
time you execute the docker run command, Docker will create a new instance
of that container with its attributes and data. You can run as many instances of
a container as your system resources will allow. You created one instance in this
example 20 minutes ago. The second instance you created 2 minutes ago.

7. Check the base image again by executing the docker images command
once more:

$ docker images

The returned output will show the single base image that Docker created two
running instances from:

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest bf756fb1ae65 3 months ago 13.3kB

In this exercise, you used docker run to start the hello-world container. To
accomplish this, Docker downloaded the image from the Docker Hub registry and
executed it in the Docker Engine. Once the base image was downloaded, you could
create as many instances of that container as you wanted using subsequent docker
run commands.

Docker container management is more complex than simply starting and viewing the
status of containers running in your development environment. Docker also supports
many other actions that help provide insight into the status of applications running
on Docker hosts. In the next section, we will learn how to manage Docker containers
using different commands.

Managing Docker Containers | 15

Managing Docker Containers
Throughout our container journey, we will be pulling, starting, stopping, and
removing containers from our local environment quite frequently. Prior to deploying
a container in a production environment, it is critical that we first run the container
locally to understand how it functions and what normal behavior looks like. This
includes starting containers, stopping containers, getting verbose details about how
the container is running, and, of course, accessing the container logs to view critical
details about the applications running inside the containers. These basic commands
are outlined as follows:

• docker pull: This command downloads a container image to the local cache

• docker stop: This command stops a running container instance

• docker start: This command starts a container instance that is no longer in a
running state

• docker restart: This command restarts a running container

• docker attach: This command allows users to gain access (or attach) to the
primary process of a running Docker container instance

• docker exec: This command executes a command inside a running container

• docker rm: This command deletes a stopped container

• docker rmi: This command deletes a container image

• docker inspect: This command shows verbose details about the state
of a container

Container life cycle management is a critical component of effective container
management in production environments. Knowing how to investigate
running containers is critical when looking to evaluate the health of your
containerized infrastructure.

In the following exercise, we are going to work with these commands individually to
get an in-depth understanding of how they work and how they can be leveraged to
provide visibility into the health of your containerized infrastructure.

16 | Running My First Docker Container

Exercise 1.02: Managing Container Life Cycles

When managing containers in both development and production environments, it is
critical to understand the status of container instances. Many developers use base
container images that contain a specific baseline configuration on top of which their
applications can be deployed. Ubuntu is a commonly used base image that users use
to package their applications.

Unlike the full operating system image, the Ubuntu base container image is quite slim
and intentionally leaves out a lot of packages the full operating system installation
has. Most base images do have package systems that will allow you to install any
missing packages.

Keep in mind that when building container images, you want to keep the base images
as slim as possible, only installing the most necessary packages. This ensures that
container images can quickly be pulled and started by Docker hosts.

In this exercise, you will work with the official Ubuntu base container image. This
image will be used to start container instances that will be used to test the various
container life cycle management commands, such as docker pull, docker
start, and docker stop. This container image is useful because the default base
image allows us to run container instances in long-running sessions to understand
how the container life cycle management commands function. In this exercise, you
will also pull the Ubuntu 18.04 container image and compare it with the Ubuntu
19.04 container image:

1. In a new terminal or PowerShell window, execute the docker pull command
to download the Ubuntu 18.04 container image:

$ docker pull ubuntu:18.04

You should see the following output indicating that Docker is downloading all the
layers of the base image:

5bed26d33875: Pull complete

f11b29a9c730: Pull complete

930bda195c84: Pull complete

78bf9a5ad49e: Pull complete

Digest: sha256:bec5a2727be7fff3d308193cfde3491f8fba1a2ba392

 b7546b43a051853a341d

Status: Downloaded newer image for ubuntu:18.04

docker.io/library/ubuntu:18.04

Managing Docker Containers | 17

2. Use the docker pull command to download the Ubuntu 19.04
base image:

$ docker pull ubuntu:19.04

You will see similar output as Docker downloads the Ubuntu 19.04
base image:

19.04: Pulling from library/ubuntu

4dc9c2fff018: Pull complete

0a4ccbb24215: Pull complete

c0f243bc6706: Pull complete

5ff1eaecba77: Pull complete

Digest: sha256:2adeae829bf27a3399a0e7db8ae38d5adb89bcaf1bbef

 378240bc0e6724e8344

Status: Downloaded newer image for ubuntu:19.04

docker.io/library/ubuntu:19.04

3. Use the docker images command to confirm that the container images are
downloaded to the local container cache:

$ docker images

The contents of the local container cache will display the Ubuntu 18.04 and
Ubuntu 19.04 base images, as well as our hello-world image from the
earlier exercise:

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu 18.04 4e5021d210f6 4 weeks ago 64.2MB

ubuntu 19.04 c88ac1f841b7 3 months ago 70MB

hello-world latest bf756fb1ae65 3 months ago 13.3kB

4. Before running these images, use the docker inspect command to get
verbose output about what makes up the container images and how they differ.
In your terminal, run the docker inspect command and use the image ID of
the Ubuntu 18.04 container image as the main argument:

$ docker inspect 4e5021d210f6

18 | Running My First Docker Container

The inspect output will contain a large list of all the attributes that define that
container. For example, you can see what environment variables are configured
within the container, whether the container has a hostname set when the image
was last updated, and a breakdown of all the layers that define that container.
This output contains critical debugging details that can prove valuable when
planning an upgrade. The following is the truncated output of the inspect
command. In the Ubuntu 18.04 image, the "Created" parameter should
provide the date and time the container image was built:

"Id": "4e5021d210f6d4a0717f4b643409eff23a4dc01c4140fa378b1b

 f0a4f8f4",

"Created": "2020-03-20T19:20:22.835345724Z",

"Path": "/bin/bash",

"Args": [],

5. Inspecting the Ubuntu 19.04 container, you can see that this parameter
is different. Run the docker inspect command in the Ubuntu 19.04
container image ID:

$ docker inspect c88ac1f841b7

In the displayed output, you will see that this container image was created on a
different date to the 18.04 container image:

"Id": "c88ac1f841b74e5021d210f6d4a0717f4b643409eff23a4dc0

 1c4140fa"

"Created": "2020-01-16T01:20:46.938732934Z",

"Path": "/bin/bash",

"Args": []

This could be critical if you knew that a security vulnerability might be present
in an Ubuntu base image. This information can also prove vital to helping you
determine which version of the container you want to run.

6. After inspecting both the container images, it will be clear that your best choice is
to stick with the Ubuntu Long Term Support 18.04 release. As you saw from the
preceding outputs, the 18.04 release is more up to date than the 19.04 release.
This is to be expected as Ubuntu will generally provide more stable updates to
the long-term support releases.

Managing Docker Containers | 19

7. Use the docker run command to start an instance of the Ubuntu
18.04 container:

$ docker run -d ubuntu:18.04

Notice that this time we are using the docker run command with the -d flag.
This tells Docker to run the container in daemon mode (or in the background).
If we omit the -d flag, the container will take over our current terminal until the
primary process inside the container terminates.

Note

A successful invocation of the docker run command will usually only
return the container ID as output. Some versions of Docker will not return
any output.

8. Check the status of the container using the docker ps -a command:

$ docker ps -a

This will reveal a similar output to the following:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

c139e44193de ubuntu:18.04 "/bin/bash" 6 seconds ago

 Exited (0) 4 seconds ago xenodochial_banzai

As you can see, your container is stopped and exited. This is because the primary
process inside the container is /bin/bash, which is a shell. The Bash shell
cannot run without being executed in an interactive mode since it expects text
input and output from a user.

9. Run the docker run command again, passing in the -i flag to make
the session interactive (expecting user input), and the -t flag to allocate a
pseudo-tty handler to the container. pseudo-tty handler will essentially link
the user's terminal to the interactive Bash shell running inside the container.
This will allow Bash to run properly since it will instruct the container to run in an
interactive mode, expecting user input. You can also give the container a human-
readable name by passing in the --name flag. Type the following command in
your Bash terminal:

$ docker run -i -t -d --name ubuntu1 ubuntu:18.04

20 | Running My First Docker Container

10. Execute the docker ps -a command again to check the status of the
container instance:

$ docker ps -a

You should now see the new instance running, as well as the instance that failed
to start moments ago:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

f087d0d92110 ubuntu:18.04 "/bin/bash" 4 seconds ago

 Up 2 seconds ubuntu1

c139e44193de ubuntu:18.04 "/bin/bash" 5 minutes ago

 Exited (0) 5 minutes ago xenodochial_banzai

11. You now have an Ubuntu container up and running. You can run commands
inside this container using the docker exec command. Run the exec
command to access a Bash shell, which will allow us to run commands inside the
container. Similar to docker run, pass in the -i and -t flags to make it an
interactive session. Also pass in the name or ID of the container, so that Docker
knows which container you are targeting. The final argument of docker exec
is always the command you wish to execute. In this case, it will be /bin/bash
to start a Bash shell inside the container instance:

docker exec -it ubuntu1 /bin/bash

You should immediately see your prompt change to a root shell. This indicates
that you have successfully launched a shell inside your Ubuntu container. The
hostname of the container, cfaa37795a7b, is taken from the first twelve
characters of the container ID. This allows the user to know for certain which
container are they accessing, as seen in the following example:

root@cfaa37795a7b:/#

12. From inside the container, you are very limited in terms of what tools you have
available. Unlike a VM image, container images are extremely minimal in terms
of the packages that come preinstalled. The echo command should be available,
however. Use echo to write a simple message to a text file:

root@cfaa37795a7b:/# echo "Hello world from ubuntu1" > hello-world.
txt

13. Run the exit command to exit from the Bash shell of the ubuntu1 container.
You should return to your normal terminal shell:

root@cfaa37795a7b:/# exit

Managing Docker Containers | 21

The command will return output like the following. Please note that the output
may vary for every user running the command:

user@developmentMachine:~/

14. Now create a second container called ubuntu2 that will also run in your Docker
environment using the Ubuntu 19.04 image:

$ docker run -i -t -d --name ubuntu2 ubuntu:19.04

15. Run docker exec to access a shell of this second container. Remember to use
the name or container ID of the new container you created. Likewise, access a
Bash shell inside this container, so the final argument will be /bin/bash:

$ docker exec -it ubuntu2 /bin/bash

You should observe your prompt change to a Bash root shell, similar to how it
did for the Ubuntu 18.04 container image:

root@875cad5c4dd8:/#

16. Run the echo command inside the ubuntu2 container instance to write a
similar hello-world-type greeting:

root@875cad5c4dd8:/# echo "Hello-world from ubuntu2!" > hello-world.
txt

17. Currently, you have two Ubuntu container instances running in your Docker
environment with two separate hello-world greeting messages in the
home directory of the root account. Use docker ps to see the two running
container images:

$ docker ps

The list of running containers should reflect the two Ubuntu containers, as well
as the time elapsed since they have been created:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

875cad5c4dd8 ubuntu:19.04 "/bin/bash" 3 minutes ago

 Up 3 minutes ubuntu2

cfaa37795a7b ubuntu:18.04 "/bin/bash" 15 minutes ago

 Up 15 minutes ubuntu1

22 | Running My First Docker Container

18. Instead of using docker exec to access a shell inside our containers, use it to
display the output of the hello-world.txt files you wrote by executing the
cat command inside the containers:

$ docker exec -it ubuntu1 cat hello-world.txt

The output will display the hello-world message you passed into the
container in the previous steps. Notice that as soon as the cat command was
completed and the output displayed, the user was moved back to the context of
your main terminal. This is because the docker exec session will only exist for
as long as the command the user is executing will run.

In the earlier example of the Bash shell, Bash will only exit if the user terminates
it by using the exit command. In this example, only the Hello world output
is displayed because the cat command displayed the output and exited, ending
the docker exec session:

Hello world from ubuntu1

You will observe the contents of the hello-world file displayed, followed by a
return to your main terminal session.

19. Run the same cat command in the ubuntu2 container instance:

$ docker exec -it ubuntu2 cat hello-world.txt

Similar to the first example, the ubuntu2 container instance will display the
contents of the hello-world.txt file provided previously:

Hello-world from ubuntu2!

As you can see, Docker was able to allocate an interactive session on both the
containers, execute the command, and return the output directly in our running
container instances.

20. In a similar manner to that you used to execute commands inside our running
containers, you can also stop, start, and restart them. Stop one of your container
instances using the docker stop command. In your terminal session, execute
the docker stop command, followed by the name or container ID of the
ubuntu2 container:

$ docker stop ubuntu2

This command should return no output.

Managing Docker Containers | 23

21. Use the docker ps command to view all running container instances:

$ docker ps

The output will display the ubuntu1 container up and running:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

cfaa37795a7b ubuntu:18.04 "/bin/bash" 26 minutes ago

 Up 26 minutes ubuntu1

22. Execute the docker ps -a command to view all container instances,
regardless of whether they are running, to see your container in a stopped state:

$ docker ps -a

The command will return the following output:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

875cad5c4dd8 ubuntu:19.04 "/bin/bash" 14 minutes ago

 Exited (0) 6 seconds ago ubuntu2

23. Use the docker start or docker restart command to restart the
container instance:

$ docker start ubuntu2

This command will return no output, although some versions of Docker may
display the container ID.

24. Verify that the container is running again by using the docker ps command:

$ docker ps

Notice that STATUS shows that this container has only been up for
a short period (1 second), although the container instance was
created 29 minutes ago:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

875cad5c4dd8 ubuntu:19.04 "/bin/bash" 17 minutes ago

 Up 1 second ubuntu2

cfaa37795a7b ubuntu:18.04 "/bin/bash" 29 minutes ago

 Up 29 minutes ubuntu1

24 | Running My First Docker Container

From this state, you can experiment with starting, stopping, or executing
commands inside these containers.

25. The final stage of the container management life cycle is cleaning up the
container instances you created. Use the docker stop command to stop
the ubuntu1 container instance:

$ docker stop ubuntu1

This command will return no output, although some versions of Docker may
return the container ID.

26. Perform the same docker stop command to stop the ubuntu2
container instance:

$ docker stop ubuntu2

27. When container instances are in a stopped state, use the docker rm command
to delete the container instances altogether. Use docker rm followed by the
name or container ID to delete the ubuntu1 container instance:

$ docker rm ubuntu1

This command will return no output, although some versions of Docker may
return the container ID.

Perform this same step on the ubuntu2 container instance:

$ docker rm ubuntu2

28. Execute docker ps -a to see all containers, even the ones in a stopped state.
You will find that the stopped containers no longer exist due to the fact they
have been deleted by our previous command. You may also delete the hello-
world container instances, as well. Delete the hello-world container using
the container ID captured from the docker ps -a output:

$ docker rm b291785f066c

Managing Docker Containers | 25

29. To completely reset the state of our Docker environment, delete the base
images you downloaded during this exercise as well. Use the docker images
command to view the cached base images:

$ docker images

The list of Docker images and all associated metadata in your local cache
will display:

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu 18.04 4e5021d210f6 4 weeks ago 64.2MB

ubuntu 19.04 c88ac1f841b7 3 months ago 70MB

hello-world latest bf756fb1ae65 3 months ago 13.3kB

30. Execute the docker rmi command followed by the image ID to delete the first
image ID:

$ docker rmi 4e5021d210f6

Similar to docker pull, the rmi command will delete each image and all
associated layers:

Untagged: ubuntu:18.04

Untagged: ubuntu@sha256:bec5a2727be7fff3d308193cfde3491f8fba1a2b

a392b7546b43a051853a341d

Deleted: sha256:4e5021d210f65ebe915670c7089120120bc0a303b9020859

2851708c1b8c04bd

Deleted: sha256:1d9112746e9d86157c23e426ce87cc2d7bced0ba2ec8ddbd

fbcc3093e0769472

Deleted: sha256:efcf4a93c18b5d01aa8e10a2e3b7e2b2eef0378336456d86

53e2d123d6232c1e

Deleted: sha256:1e1aa31289fdca521c403edd6b37317bf0a349a941c7f19b

6d9d311f59347502

Deleted: sha256:c8be1b8f4d60d99c281fc2db75e0f56df42a83ad2f0b0916

21ce19357e19d853

Perform this step for each image you wish to delete, substituting in the various
image IDs. For each base image you delete, you will see all of the image layers
get untagged and deleted along with it.

26 | Running My First Docker Container

It is important to periodically clean up your Docker environment as frequently
building and running containers can cause large amounts of hard disk usage over
time. Now that you know how to run and manage Docker containers in your local
development environment, you can use more advanced Docker commands to
understand how a container's primary process functions and how to troubleshoot
issues. In the next section, we will look at the docker attach command to directly
access the primary process of a container.

Note

To streamline the process of cleaning up your environment, Docker provides
a prune command that will automatically remove old containers and
base images:

$ docker system prune -fa

Executing this command will remove any container images that are not tied
to an existing running container, along with any other resources in your
Docker environment.

Attaching to Containers Using the attach Command
In the previous exercise, you saw how to use the docker exec command to
spin up a new shell session in a running container instance in which to execute
commands. The docker exec command is very good for quickly gaining access
to a containerized instance for debugging, troubleshooting, and understanding the
context the container is running in.

However, as covered earlier in the chapter, Docker containers run as per the life
of the primary process running inside the container. When this process exits, the
container will stop. If you wanted to access the primary process inside the container
directly (as opposed to a secondary shell session), then Docker provides the docker
attach command to attach to the primary running process inside the container.

When using docker attach, you are gaining access to the primary process
running in the container. If this process is interactive, such as a Bash or Bourne shell
session, you will be able to execute commands directly through a docker attach
session (similar to docker exec). However, if the primary process in your container
terminates, so will the entire container instance, since the Docker container life cycle
is dependent on the running state of the primary process.

Attaching to Containers Using the attach Command | 27

In the following exercise, you will use the docker attach command to directly
access the primary process of an Ubuntu container. By default, the primary process
of this container is /bin/bash.

Exercise 1.03: Attaching to an Ubuntu Container

The docker attach command is used to attach to a running container in the
context of the primary process. In this exercise, you will use the docker attach
command to attach to running containers and investigate the main container
entrypoint process directly:

1. Use the docker run command to start a new Ubuntu container instance. Run
this container in interactive mode (-i), allocate a TTY session (-t), and run it in
the background (-d). Call this container attach-example1:

docker run -itd --name attach-example1 ubuntu:latest

This will start a new Ubuntu container instance named attach-example1
using the latest version of the Ubuntu container image.

2. Use the docker ps command to check that this container is running in
our environment:

docker ps

The details of the running container instance will be displayed. Take note that
the primary process of this container is a Bash shell (/bin/bash):

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

90722712ae93 ubuntu:latest "/bin/bash" 18 seconds ago

 Up 16 seconds attach-example1

3. Run the docker attach command to attach to the primary process inside this
container, (/bin/bash). Use docker attach followed by the name or ID of
the container instance:

$ docker attach attach-example1

This should drop you into the primary Bash shell session of this container
instance. Note that your terminal session should change to a root shell
session, indicating you have successfully accessed the container instance:

root@90722712ae93:/#

28 | Running My First Docker Container

It should be noted here that using commands such as exit to terminate a
shell session will result in stopping the container instance because you are now
attached to the primary process of the container instance. By default, Docker
provides the shortcut key sequence of Ctrl + P and then Ctrl + Q to gracefully
detach from an attach session.

4. Use the keyboard combinations Ctrl + P and then Ctrl + Q to detach from this
session gracefully:

root@90722712ae93:/# CTRL-p CTRL-q

Note

You will not type the words CTRL-p CTRL-q; rather, you will press and
hold the Ctrl key, press the P key, and then release both keys. Then, press
and hold the Ctrl key again, press the Q key, and then again release
both keys.

Upon successful detachment of the container, the words read escape
sequence will be displayed before returning you to your main terminal or
PowerShell session:

root@90722712ae93:/# read escape sequence

5. Use docker ps to verify that the Ubuntu container is still running as expected:

$ docker ps

The attach-example1 container will be displayed, still running as expected:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

90722712ae93 ubuntu:latest "/bin/bash" 13 minutes ago

 Up 13 minutes attach-example1

6. Use the docker attach command to attach once more to the attach-
example1 container instance:

$ docker attach attach-example1

You should be put back into the Bash session of the primary process:

root@90722712ae93:/#

Attaching to Containers Using the attach Command | 29

7. Now, terminate the primary process of this container using the exit command.
In the Bash shell session, type the exit command:

root@90722712ae93:/# exit

The terminal session should have exited, returning you once more to your
primary terminal.

8. Use the docker ps command to observe that the attach-example1
container should no longer be running:

$ docker ps

This should return no running container instances:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

9. Use the docker ps -a command to view all the containers, even ones that
have been stopped or have exited:

$ docker ps -a

This should display the attach-example1 container in a stopped state:

CONTAINER ID IMAGE COMMAND

 CREATED STATUS PORTS NAMES

90722712ae93 ubuntu:latest "/bin/bash"

 20 minutes ago Exited (0) 3 minutes ago attach-example1

As you can see, the container has gracefully terminated (Exited (0))
approximately 3 minutes ago. The exit command gracefully terminates
a Bash shell session.

10. Use the docker system prune -fa command to clean up the stopped
container instances:

docker system prune -fa

This should remove all stopped container instances, including the
attach-example1 container instance, as seen in the following output:

Deleted Containers:

ry6v87v9a545hjn7535jk2kv9x8cv09wnkjnscas98v7a762nvnw7938798vnand

Deleted Images:

untagged: attach-example1

30 | Running My First Docker Container

In this exercise, we used the docker attach command to gain direct access to
the primary process of a running container. This differs from the docker exec
command we explored earlier in the chapter because docker exec executes a
new process inside a running container, whereas docker attach attaches to the
main process of a container directly. Careful attention must be paid, however, when
attaching to a container not to stop the container by terminating the main process.

In the next activity, we will put together the Docker management commands we
covered in this chapter to start putting together the building block containers that
will become the Panoramic Trekking microservices application stack.

Activity 1.01: Pulling and Running the PostgreSQL Container Image from Docker

Hub

Panoramic Trekking is the multi-tier web application that we will be building
throughout this book. Similar to any web application, it will consist of a web server
container (NGINX), a Python Django backend application, and a PostgreSQL database.
Before you can start deploying the web application or the frontend web server,
you must first deploy the backend database.

In this activity, you are asked to start a PostgreSQL version 12 database container
with default credentials.

Note

The official Postgres container image provides many environment
variable overrides you can leverage to configure the PostgreSQL
instance. Review the documentation for the container on Docker
Hub at https://hub.docker.com/_/postgres.

Perform the following steps:

1. Create a Postgres database container instance that will serve as the data tier of
our application stack.

2. Use environment variables to configure the container at runtime to use the
following database credentials:

username: panoramic

password: trekking

3. Verify whether the container is running and healthy.

https://hub.docker.com/_/postgres

Attaching to Containers Using the attach Command | 31

Expected Output:

The following output should be returned on running docker ps command:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

29f115af8cdd postgres:12 "docker-entrypoint.s…" 4 seconds ago

 Up 2 seconds 5432/tcp blissful_kapitsa

Note

The solution for this activity can be found via this link.

In the next activity, you will access the database that has just been set up in this
activity inside the container instance. You will also interact with the container to
fetch the list of databases running in the container.

Activity 1.02: Accessing the Panoramic Trekking App Database

This activity will involve accessing the database running inside the container
instance using the PSQL CLI utility. Once you have logged in using the credentials
(panoramic/trekking), you will query for the list of databases running in
the container.

Perform the following steps:

1. Log in to the Postgres database container using the PSQL command-line utility.

2. Once logged in to the database, return a list of databases in Postgres by default.

Note

If you are not familiar with the PSQL CLI, the following is a list of reference
commands to assist you with this activity:

Logging in: psql --username username --password

Listing the database: \l

Quitting the PSQL shell: \q

32 | Running My First Docker Container

Expected Output:

Figure 1.3: Expected output of Activity 1.02

Note

The solution for this activity can be found via this link.

Summary
In this chapter, you learned the fundamentals of containerization, the benefits of
running applications in containers, and the basic Docker life cycle commands to
manage containerized instances. You learned that containers serve as a universal
software deployment package that truly can be built once and run anywhere.
Because we are running Docker locally, we can know for certain that the same
container images running in our local environment can be deployed in production
and run with confidence.

Using commands such as docker run, docker start, docker exec,
docker ps, and docker stop, we have explored the basics of container life cycle
management through the Docker CLI. Through the various exercises, we launched
container instances from the same base image, configured them using docker
exec, and cleaned up the deployments using other basic container life cycle
commands such as docker rm and docker rmi.

Summary | 33

In the final portion of this chapter, we jumped in head-first, taking the first steps
toward running our Panoramic Trekking application by launching a PostgreSQL
database container instance. Using environment variables that we placed within the
docker run command, we created an instance configured with a default username
and password. We tested the configuration by executing the PSQL command-line tool
from inside the container and querying the database to see the schema.

Although this is only scratching the surface of what Docker is capable of, we
hope it was able to whet your appetite for the material that will be covered in the
upcoming chapters. In the next chapter, we will discuss building truly immutable
containers using Dockerfiles and the docker build command. Writing custom
Dockerfiles to build and deploy unique container images will demonstrate the
power of running containerized applications at scale.

Overview

In this chapter, you will study the form and function of a Dockerfile
and its directives, including FROM, LABEL, and CMD, with which you will
dockerize an application. The chapter will provide you with knowledge of
the layered filesystem of Docker images and the use of caching during the
Docker build process. By the end of this chapter, you will be able to write
a Dockerfile using the common directives and build custom Docker
images with the Dockerfile.

Getting Started with

Dockerfiles

2

36 | Getting Started with Dockerfiles

Introduction
In the previous chapter, we learned how to run our first Docker container by pulling a
pre-built Docker image from the Docker Hub. While it is useful to get pre-built Docker
images from Docker Hub, we must know how to create custom Docker images. This
is important for running our applications on Docker by installing new packages and
customizing the settings of the pre-built Docker images. In this chapter, we are going
to learn how to create our custom Docker image and run a Docker container based
on it.

This will be done using a text file called a Dockerfile. This file consists of
commands that can be executed by Docker to create a Docker image. Docker
images are created from a Dockerfile using the docker build (or docker
image build) command.

Note

Beginning with Docker 1.13, the Docker CLI syntax has been restructured
to the form of Docker COMMAND SUBCOMMAND. For example, the
docker build command was replaced by the docker image
build command. This restructuring was carried out to clean up the
Docker CLI syntax and gain a more consistent grouping of commands.
Currently, both syntaxes are supported, but the old syntax is expected to be
deprecated in the future.

A Docker image consists of multiple layers, each layer representing the commands
provided in the Dockerfile. These read-only layers are stacked on top of one
another to create the final Docker image. Docker images can be stored in a Docker
registry, such as Docker Hub, which is a place where you can store and distribute
Docker images.

A Docker container is a running instance of the Docker image. One or more Docker
containers can be created from a single Docker image using the docker run (or
docker container run) command. Once a Docker container is created from the
Docker image, a new writeable layer will be added on top of the read-only layers from
the Docker image. Docker containers can then be listed with the docker ps (or docker
container list) command:

What Is a Dockerfile? | 37

Figure 2.1: Image layers and a container layer

As illustrated in the preceding diagram, there can be one or more read-only layers
that make up the Docker image. These read-only layers are generated for each
command in the Dockerfile during the Docker image build process. Once a
Docker container is created from the image, a new read-write layer (known as the
Container layer) will be added on top of the image layers and will host all the
changes made on the running container.

In this chapter, we will write our first Dockerfile, build the Docker image from the
Dockerfile, and run a Docker container from our custom Docker image. Before we
can perform any of these tasks, however, we must first define a Dockerfile.

What Is a Dockerfile?
A Dockerfile is a text file that contains instructions on how to create a Docker
image. These commands are known as directives. A Dockerfile is a mechanism
that we use to create a custom Docker image as per our requirements.

The format of a Dockerfile is as follows:

This is a comment

DIRECTIVE argument

A Dockerfile can contain multiple lines of comments and directives. These lines
will be executed in order by the Docker Engine while building the Docker image.
Like programming languages, a Dockerfile can also contain comments.

38 | Getting Started with Dockerfiles

All statements starting with the # symbol will be treated as a comment. Currently,
Dockerfiles only support single-line comments. If you wish you write a multi-line
comment, you need to add the # symbol at the beginning of each line.

However, unlike most programming languages, instructions within the Dockerfile
are not case-sensitive. Even though the DIRECTIVE is case-insensitive, it is a best
practice to write all directives in uppercase to distinguish them from arguments.

In the next section, we will discuss the common directives that we can use in
Dockerfiles to create a custom Docker image.

Note

If you are using ubuntu versions later than 18.04, there will be
a prompt to enter time zone. Please suppress the prompt with
ARG DEBIAN_FRONTEND=non_interactive

Common Directives in Dockerfiles
As discussed in the previous section, a directive is a command that is used to
create a Docker image. In this section, we will be discussing the following five
Dockerfile directives:

1. The FROM directive

2. The LABEL directive

3. The RUN directive

4. The CMD directive

5. The ENTRYPOINT directive

The FROM Directive

A Dockerfile usually starts with the FROM directive. This is used to specify the
parent image of our custom Docker image. The parent image is the starting point of
our custom Docker image. All the customization that we do will be applied on top
of the parent image. The parent image can be an image from Docker Hub, such as
Ubuntu, CentOS, Nginx, and MySQL. The FROM directive takes a valid image name
and a tag as arguments. If the tag is not specified, the latest tag will be used.

Common Directives in Dockerfiles | 39

A FROM directive has the following format:

FROM <image>:<tag>

In the following FROM directive, we are using the ubuntu parent image with the
20.04 tag:

FROM ubuntu:20.04

Additionally, we can use the base image if we need to build a Docker image from
scratch. The base image, known as the scratch image, is an empty image mostly
used to build other parent images.

In the following FROM directive, we are using the scratch image to build our custom
Docker image from scratch:

FROM scratch

Now, let's understand what a LABEL directive is in the next section.

The LABEL Directive

A LABEL is a key-value pair that can be used to add metadata to a Docker image.
These labels can be used to organize the Docker images properly. An example
would be to add the name of the author of the Dockerfile or the version of
the Dockerfile.

A LABEL directive has the following format:

LABEL <key>=<value>

A Dockerfile can have multiple labels, adhering to the preceding key-value format:

LABEL maintainer=sathsara@mydomain.com

LABEL version=1.0

LABEL environment=dev

Or these labels can be included on a single line separated by spaces:

LABEL maintainer=sathsara@mydomain.com version=1.0 environment=dev

Labels on an existing Docker image can be viewed with the docker image
inspect command.

40 | Getting Started with Dockerfiles

The output should be like the following on running the docker image inspect
<image>:<tag> command:

...

...

"Labels": {

 "environment": "dev",

 "maintainer": "sathsara@mydomain.com",

 "version": "1.0"

}

...

...

As shown here, the docker image inspect command will output the key-value pairs
configured in the Dockerfile using the LABEL directive.

In the next section, we will learn how to execute commands during the image build
time using the RUN directive.

The RUN Directive

The RUN directive is used to execute commands during the image build time. This will
create a new layer on top of the existing layer, execute the specified command, and
commit the results to the newly created layer. The RUN directive can be used to install
the required packages, update the packages, create users and groups, and so on.

The RUN directive takes the following format:

RUN <command>

<command> specifies the shell command you want to execute as part of the image
build process. A Dockerfile can have multiple RUN directives adhering to the
preceding format.

In the following example, we are running two commands on top of the parent image.
The apt-get update is used to update the package repositories, and apt-get
install nginx -y is used to install the Nginx package:

RUN apt-get update

RUN apt-get install nginx -y

Common Directives in Dockerfiles | 41

Alternatively, you can add multiple shell commands to a single RUN directive by
separating them with the && symbol. In the following example, we have used the
same two commands, but this time in a single RUN directive, separated by an
&& symbol:

RUN apt-get update && apt-get install nginx -y

Now, let's move on to the next section where we will learn about the CMD directive.

The CMD Directive

A Docker container is normally expected to run one process. A CMD directive is used
to provide this default initialization command that will be executed when a container
is created from the Docker image. A Dockerfile can execute only one CMD
directive. If there is more than one CMD directive in the Dockerfile, Docker
will execute only the last one.

The CMD directive has the following format:

CMD ["executable","param1","param2","param3", ...]

For example, use the following command to echo "Hello World" as the output of a
Docker container:

CMD ["echo","Hello World"]

The preceding CMD directive will produce the following output when we run the
Docker container with the docker container run <image> command
(replace <image> with the name of the Docker image):

$ docker container run <image>

Hello World

However, if we send any command-line arguments with docker container
run <image>, these arguments will take precedence over the CMD command that
we defined. For example, if we execute the following command (replace <image>
with the name of the Docker image), the default "Hello World" output defined
with the CMD directive will be ignored. Instead, the container will output "Hello
Docker !!!":

$ docker container run <image> echo "Hello Docker !!!"

42 | Getting Started with Dockerfiles

As we discussed, both the RUN and CMD directives can be used to execute a shell
command. The main difference between these two directives is that the command
provided with the RUN directive will be executed during the image build process,
while the command provided with the CMD directive will be executed once a
container is launched from the built image.

Another notable difference between the RUN and CMD directives is that there can be
multiple RUN directives in a Dockerfile, but there can be only one CMD directive
(if there are multiple CMD directives, all others except the last one will be ignored).

As an example, we can use the RUN directive to install a software package during the
Docker image build process and the CMD directive to start the software package once
a container is launched from the built image.

In the next section, we will learn about the ENTRYPOINT directive, which provides
the same functionality as the CMD directive, except for overriding.

The ENTRYPOINT Directive

Similar to the CMD directive, the ENTRYPOINT directive is also used to provide this
default initialization command that will be executed when a container is created from
the Docker image. The difference between the CMD directive and the ENTRYPOINT
directive is that, unlike the CMD directive, we cannot override the ENTRYPOINT
command using the command-line parameters sent with the docker container
run command.

Note

The --entrypoint flag can be sent with the docker container
run command to override the default ENTRYPOINT of the image.

The ENTRYPOINT directive has the following format:

ENTRYPOINT ["executable","param1","param2","param3", ...]

Similar to the CMD directive, the ENTRYPOINT directive also allows us to provide
the default executable and the parameters. We can use the CMD directive with the
ENTRYPOINT directive to provide additional arguments to the executable.

Common Directives in Dockerfiles | 43

In the following example, we have used "echo" as the default command and
"Hello" as the default parameter using the ENTRYPOINT directive. We have
also provided "World" as the additional parameter using the CMD directive:

ENTRYPOINT ["echo","Hello"]

CMD ["World"]

The output of the echo command will differ based on how we execute the docker
container run command.

If we launch the Docker image without any command-line parameters, it will output
the message as Hello World:

$ docker container run <image>

Hello World

But if we launch the Docker image with additional command-line parameters
(for example, Docker), the output message will be Hello Docker:

$ docker container run <image> "Docker"

Hello Docker

Before discussing the Dockerfile directives any further, let's start by creating our
first Dockerfile in the next exercise.

Exercise 2.01: Creating Our First Dockerfile

In this exercise, you will create a Docker image that can print the arguments you
pass to the Docker image, preceded by the text You are reading. For example,
if you pass hello world, it will output You are reading hello world as
the output. If no argument is provided, The Docker Workshop will be used as the
standard value:

1. Create a new directory named custom-docker-image using the mkdir
command. This directory will be the context for your Docker image. Context
is the directory that contains all the files needed to successfully build an image:

$ mkdir custom-docker-image

2. Navigate to the newly created custom-docker-image directory using the cd
command as we will be creating all the files required during the build process
(including the Dockerfile) within this directory:

$ cd custom-docker-image

44 | Getting Started with Dockerfiles

3. Within the custom-docker-image directory, create a file named
Dockerfile using the touch command:

$ touch Dockerfile

4. Now, open the Dockerfile using your favorite text editor:

$ vim Dockerfile

5. Add the following content to the Dockerfile, save it, and exit from
the Dockerfile:

This is my first Docker image

FROM ubuntu

LABEL maintainer=sathsara@mydomain.com

RUN apt-get update

CMD ["The Docker Workshop"]

ENTRYPOINT ["echo", "You are reading"]

The Docker image will be based on the Ubuntu parent image. You then
use the LABEL directive to provide the email address of the author of the
Dockerfile. The next line executes the apt-get update command to
update the package list of Debian to the latest available version. Finally, you will
use the ENTRYPOINT and CMD directives to define the default executable and
parameters of the container.

We have provided echo as the default executable and You are reading
as the default parameter that cannot be overridden with command-line
parameters. Also, we have provided The Docker Workshop as an additional
parameter that can be overridden with command-line parameters with a
docker container run command.

In this exercise, we created our first Dockerfile using the common directives
that we learned in the previous sections. The next step of the process is to build the
Docker image from the Dockerfile. You can only run a Docker container after
building the Docker image from the Dockerfile. In the next section, we are going
to look at how to build a Docker image from the Dockerfile.

Building Docker Images | 45

Building Docker Images
In the last section, we learned how to create a Dockerfile. The next step of the
process is to build a Docker image using the Dockerfile.

A Docker image is the template used to build Docker containers. This is analogous
to how a house plan can be used to create multiple houses from the same design. If
you are familiar with object-oriented programming concepts, a Docker image and
a Docker container have the same relationship as a class and an object. A class in
object-oriented programming can be used to create multiple objects.

A Docker image is a binary file consisting of multiple layers based on the instructions
provided in the Dockerfile. These layers are stacked on top of one another, and
each layer is dependent on the previous layer. Each of the layers is a result of the
changes from the layer below it. All the layers of the Docker image are read-only.
Once we create a Docker container from a Docker image, a new writable layer will be
created on top of other read-only layers, which will contain all the modifications made
to the container filesystem:

Figure 2.2: Docker image layers

46 | Getting Started with Dockerfiles

As illustrated in the preceding image, the docker image build command will create a
Docker image from the Dockerfile. The layers of the Docker image will be mapped
to the directives provided in the Dockerfile.

This image build process is initiated by the Docker CLI and executed by the Docker
daemon. To generate a Docker image, the Docker daemon needs access to the
Dockerfile, source code (for example, index.html), and other files (for example,
properties files) that are referenced in the Dockerfile. These files are typically
stored in a directory that is known as the build context. This context will be specified
while executing the docker image build command. The entire context will be sent to
the Docker daemon during the image build process.

The docker image build command takes the following format:

$ docker image build <context>

We can execute the docker image build command from the folder that contains the
Dockerfile and the other files, as shown in the following example. Note that the
dot (.) at the end of the command is used to denote the current directory:

$ docker image build.

Let's see the Docker image build process for the following sample Dockerfile:

FROM ubuntu:latest

LABEL maintainer=sathsara@mydomain.com

CMD ["echo","Hello World"]

This Dockerfile uses the latest ubuntu images as the parent image. Then, the
LABEL directive is used to specify sathsara@mydomain.com as the maintainer.
Finally, the CMD directive is used to echo "Hello World" as the output of
the image.

Once we execute the docker image build command for the preceding Dockerfile,
we can see an output similar to the following on the console during the build process:

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM ubuntu:latest

latest: Pulling from library/ubuntu

2746a4a261c9: Pull complete

4c1d20cdee96: Pull complete

0d3160e1d0de: Pull complete

c8e37668deea: Pull complete

Digest: sha256:250cc6f3f3ffc5cdaa9d8f4946ac79821aafb4d3afc93928

 f0de9336eba21aa4

Building Docker Images | 47

Status: Downloaded newer image for ubuntu:latest

 ---> 549b9b86cb8d

Step 2/3 : LABEL maintainer=sathsara@mydomain.com

 ---> Running in a4a11e5e7c27

Removing intermediate container a4a11e5e7c27

 ---> e3add5272e35

Step 3/3 : CMD ["echo","Hello World"]

 ---> Running in aad8a56fcdc5

Removing intermediate container aad8a56fcdc5

 ---> dc3d4fd77861

Successfully built dc3d4fd77861

The first line of the output is Sending build context to Docker daemon,
which indicates that the building starts by sending the build context to the Docker
daemon. All the files available in the context will be sent recursively to the Docker
daemon (unless specifically asked to ignore certain files).

Next, there are steps mentioned as Step 1/3 and Step 2/3, which correspond
to the instructions in the Dockerfile. As the first step, the Docker daemon will
download the parent image. In the preceding output shown, Pulling from library/
ubuntu indicates this. For each line of the Dockerfile, a new intermediate
container will be created to execute the directive, and once this step is
completed, this intermediate container will be removed. The lines Running in
a4a11e5e7c27 and Removing intermediate container a4a11e5e7c27
are used to indicate this. Finally, the Successfully built dc3d4fd77861 line
is printed when the build is completed without any errors. This line prints the ID of
the newly built Docker image.

Now, we can list the available Docker images using the docker image
list command:

$ docker image list

This list contains the locally built Docker images and Docker images pulled from
remote Docker repositories:

REPOSITORY TAG IMAGE ID CREATED SIZE

<none> <none> dc3d4fd77861 3 minutes ago 64.2MB

ubuntu latest 549b9b86cb8d 5 days ago 64.2MB

48 | Getting Started with Dockerfiles

As shown in the preceding output, we can see two Docker images. The first Docker
image with the IMAGE ID of dc3d4fd77861 is the locally built Docker image during
the build process. We can see that this IMAGE ID is identical to the ID in the last line
of the docker image build command. The next image is the ubuntu image that
we used as the parent image of our custom image.

Now, let's build the Docker image again using the docker image
build command:

$ docker image build

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM ubuntu:latest

 ---> 549b9b86cb8d

Step 2/3 : LABEL maintainer=sathsara@mydomain.com

 ---> Using cache

 ---> e3add5272e35

Step 3/3 : CMD ["echo","Hello World"]

 ---> Using cache

 ---> dc3d4fd77861

Successfully built dc3d4fd77861

This time, the image build process was instantaneous. The reason for this is the
cache. Since we did not change any content of the Dockerfile, the Docker daemon
took advantage of the cache and reused the existing layers from the local image
cache to accelerate the build process. We can see that the cache was used this time
with the Using cache lines available in the preceding output.

The Docker daemon will perform a validation step before starting the build process
to make sure that the Dockerfile provided is syntactically correct. In the case
of an invalid syntax, the build process will fail with an error message from the
Docker daemon:

$ docker image build

Sending build context to Docker daemon 2.048kB

Error response from daemon: Dockerfile parse error line 5:

unknown instruction: INVALID

Now, let's revisit the locally available Docker images with the docker image
list command:

$ docker image list

Building Docker Images | 49

The command should return the following output:

REPOSITORY TAG IMAGE ID CREATED SIZE

<none> <none> dc3d4fd77861 3 minutes ago 64.2MB

ubuntu latest 549b9b86cb8d 5 days ago 64.2MB

Note that there was no name for our custom Docker image. This was because we
did not specify any repository or tag during the build process. We can tag an existing
image with the docker image tag command.

Let's tag our image with IMAGE ID dc3d4fd77861 as my-tagged-
image:v1.0:

$ docker image tag dc3d4fd77861 my-tagged-image:v1.0

Now, if we list our images again, we can see the Docker image name and the tag
under the REPOSITORY and TAG columns:

REPOSITORY TAG IMAGE ID CREATED SIZE

my-tagged-image v1.0 dc3d4fd77861 20 minutes ago 64.2MB

ubuntu latest 549b9b86cb8d 5 days ago 64.2MB

We can also tag an image during the build process by specifying the -t flag:

$ docker image build -t my-tagged-image:v2.0 .

The preceding command will print the following output:

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM ubuntu:latest

 ---> 549b9b86cb8d

Step 2/3 : LABEL maintainer=sathsara@mydomain.com

 ---> Using cache

 ---> e3add5272e35

Step 3/3 : CMD ["echo","Hello World"]

 ---> Using cache

 ---> dc3d4fd77861

Successfully built dc3d4fd77861

Successfully tagged my-tagged-image:v2.0

This time, in addition to the Successfully built dc3d4fd77861 line, we can
see a Successfully tagged my-tagged-image:v2.0 line, which indicates
the tagging on our Docker image.

50 | Getting Started with Dockerfiles

In this section, we learned how to build a Docker image from a Dockerfile. We
discussed the difference between a Dockerfile and a Docker image. Then, we
discussed how a Docker image is made up of multiple layers. We also experienced
how caching can accelerate the build process. Finally, we tagged the Docker images.

In the next exercise, we are going to build a Docker image from the Dockerfile
that we created in Exercise 2.01: Creating Our First Dockerfile.

Exercise 2.02: Creating Our First Docker Image

In this exercise, you will build the Docker image from the Dockerfile that you
created in Exercise 2.01: Creating Our First Dockerfile and run a Docker container
from the newly built image. First, you will run the Docker image without passing any
arguments, expecting You are reading The Docker Workshop as the output. Next, you
will run the Docker image with Docker Beginner's Guide as the argument and
expect You are reading Docker Beginner's Guide as the output:

1. First, make sure you are in the custom-docker-image directory created in
Exercise 2.01: Creating Our First Dockerfile. Confirm that the directory contains
the following Dockerfile created in Exercise 2.01: Creating Our First Dockerfile:

This is my first Docker image

FROM ubuntu

LABEL maintainer=sathsara@mydomain.com

RUN apt-get update

CMD ["The Docker Workshop"]

ENTRYPOINT ["echo", "You are reading"]

2. Build the Docker image with the docker image build command. This
command has the optional -t flag to specify the tag of the image. Tag your
image as welcome:1.0:

$ docker image build -t welcome:1.0 .

Note

Do not forget the dot (.) at the end of the preceding command, which is
used to denote the current directory as the build context.

Building Docker Images | 51

It can be seen from the following output that all five steps mentioned in the
Dockerfile are executed during the build process. The last two lines of the
output suggest that the image is successfully built and tagged:

Figure 2.3: Building the welcome:1.0 Docker image

3. Build this image again without changing the Dockerfile content:

$ docker image build -t welcome:2.0 .

52 | Getting Started with Dockerfiles

Note that this build process completed much quicker than the previous process
due to the cache being used:

Figure 2.4: Building the welcome:1.0 Docker image using the cache

4. Use the docker image list command to list all the Docker images available
on your computer:

$ docker image list

These images are available on your computer, either when you pull them from a
Docker registry, or when you build on your computer:

REPOSITORY TAG IMAGE ID CREATED SIZE

welcome 1.0 98f571a42e5c 23 minutes ago 91.9MB

welcome 2.0 98f571a42e5c 23 minutes ago 91.9MB

ubuntu latest 549b9b86cb8d 2 weeks ago 64.2MB

As you can see from the preceding output, there are three Docker images
available. The ubuntu image is pulled from the Docker Hub, and version (tag)
1.0 and 2.0 of the welcome images are built on your computer.

5. Execute the docker container run command to start a new container
from the Docker image that you built in step 1 (welcome:1.0):

$ docker container run welcome:1.0

Other Dockerfile Directives | 53

The output should be as follows:

You are reading The Docker Workshop

You receive the expected output of You are reading The Docker
Workshop. You are reading is due to the parameter provided with
the ENTRYPOINT directive, and The Docker Workshop comes from the
parameter provided with the CMD directive.

6. Finally, execute the docker container run command again, this time with
command-line arguments:

$ docker container run welcome:1.0 "Docker Beginner's Guide"

You will get the output You are reading Docker Beginner's Guide
because of the command-line argument, Docker Beginner's Guide, and
the You are reading argument provided in the ENTRYPOINT directive:

You are reading Docker Beginner's Guide

In this exercise, we learned how to build a custom Docker image using the
Dockerfile and run a Docker container from the image. In the next section,
we are going to learn other Docker directives that we can use in the Dockerfile.

Other Dockerfile Directives
In the section Common Directives in Dockerfile, we discussed the common directives
available for a Dockerfile. In that section, we discussed FROM, LABEL, RUN, CMD,
and ENTRYPOINT directives and how to use them to create a simple Dockerfile.

In this section, we will be discussing more advanced Dockerfile directives. These
directives can be used to create more advanced Docker images. For example, we
can use the VOLUME directive to bind the filesystem of the host machine to a Docker
container. This will allow us to persist the data generated and used by the Docker
container. Another example is the HEALTHCHECK directive, which allows us to define
health checks to evaluate the health status of Docker containers. We will look into the
following directives in this section:

1. The ENV directive

2. The ARG directive

3. The WORKDIR directive

4. The COPY directive

5. The ADD directive

54 | Getting Started with Dockerfiles

6. The USER directive

7. The VOLUME directive

8. The EXPOSE directive

9. The HEALTHCHECK directive

10. The ONBUILD directive

The ENV Directive

The ENV directive in Dockerfile is used to set environment variables.
Environment variables are used by applications and processes to get information
about the environment in which a process runs. One example would be the PATH
environment variable, which lists the directories to search for executable files.

Environment variables are defined as key-value pairs as per the following format:

ENV <key> <value>

The PATH environment variable is set with the following value:

$PATH:/usr/local/myapp/bin/

Hence, it can be set using the ENV directive as follows:

ENV PATH $PATH:/usr/local/myapp/bin/

We can set multiple environment variables in the same line separated by spaces.
However, in this form, the key and value should be separated by the equal to
(=) symbol:

ENV <key>=<value> <key>=<value> ...

In the following example, there are two environment variables configured. The PATH
environment variable is configured with the value of $PATH:/usr/local/myapp/
bin/, and the VERSION environment variable is configured with the value of 1.0.0:

ENV PATH=$PATH:/usr/local/myapp/bin/ VERSION=1.0.0

Once an environment variable is set with the ENV directive in the Dockerfile,
this variable is available in all subsequent Docker image layers. This variable is
even available in the Docker containers launched from this Docker image.

In the next section, we will look into the ARG directive.

Other Dockerfile Directives | 55

The ARG Directive

The ARG directive is used to define variables that the user can pass at build time.
ARG is the only directive that can precede the FROM directive in the Dockerfile.

Users can pass values using --build-arg <varname>=<value>, as shown here,
while building the Docker image:

$ docker image build -t <image>:<tag> --build-arg <varname>=<value> .

The ARG directive has the following format:

ARG <varname>

There can be multiple ARG directives in a Dockerfile, as follows:

ARG USER

ARG VERSION

The ARG directive can also have an optional default value defined. This default value
will be used if no value is passed at build time:

ARG USER=TestUser

ARG VERSION=1.0.0

Unlike the ENV variables, ARG variables are not accessible from the running
container. They are only available during the build process.

In the next exercise, we will use the knowledge gained so far to use ENV and ARG
directives in a Dockerfile.

Exercise 2.03: Using ENV and ARG Directives in a Dockerfile

Your manager has asked you to create a Dockerfile that will use ubuntu as the
parent image, but you should be able to change the ubuntu version at build time.
You will also need to specify the publisher's name and application directory as the
environment variables of the Docker image. You will use the ENV and ARG directives
in the Dockerfile to perform this exercise:

1. Create a new directory named env-arg-exercise using the
mkdir command:

mkdir env-arg-exercise

2. Navigate to the newly created env-arg-exercise directory using
the cd command:

cd env-arg-exercise

56 | Getting Started with Dockerfiles

3. Within the env-arg-exercise directory, create a file named Dockerfile:

touch Dockerfile

4. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

5. Add the following content to the Dockerfile. Then, save and exit from
the Dockerfile:

ENV and ARG example

ARG TAG=latest

FROM ubuntu:$TAG

LABEL maintainer=sathsara@mydomain.com

ENV PUBLISHER=packt APP_DIR=/usr/local/app/bin

CMD ["env"]

This Dockerfile first defined an argument named TAG with the default value
of the latest. The next line is the FROM directive, which will use the ubuntu parent
image with the TAG variable value sent with the build command (or the default
value if no value is sent with the build command). Then, the LABEL directive
sets the value for the maintainer. Next is the ENV directive, which defines the
environment variable of PUBLISHER with the value packt, and APP_DIR with
the value of /usr/local/app/bin. Finally, use the CMD directive to execute
the env command, which will print all the environment variables.

6. Now, build the Docker image:

$ docker image build -t env-arg --build-arg TAG=19.04 .

Note the env-arg --build-arg TAG=19.04 flag used to send the TAG
argument to the build process. The output should be as follows:

Other Dockerfile Directives | 57

Figure 2.5: Building the env-arg Docker image

Note that the 19.04 tag of the ubuntu image was used as the parent image.
This is because you sent the --build-arg flag with the value of
TAG=19.04 during the build process.

7. Now, execute the docker container run command to start a new
container from the Docker image that you built in the last step:

$ docker container run env-arg

58 | Getting Started with Dockerfiles

As we can see from the output, the PUBLISHER environment variable is
available with the value of packt, and the APP_DIR environment variable is
available with the value of /usr/local/app/bin:

Figure 2.6: Running the env-arg Docker container

In this exercise, we defined environment variables for a Docker image using the
ENV directive. We also experienced how to use ARG directives to pass values
during the Docker image build time. In the next section, we will be covering the
WORKDIR directive, which can be used to define the current working directory of
the Docker container.

The WORKDIR Directive

The WORKDIR directive is used to specify the current working directory of the Docker
container. Any subsequent ADD, CMD, COPY, ENTRYPOINT, and RUN directives will be
executed in this directory. The WORKDIR directive has the following format:

WORKDIR /path/to/workdir

If the specified directory does not exist, Docker will create this directory and make it
the current working directory, which means this directive executes both mkdir and
cd commands implicitly.

There can be multiple WORKDIR directives in the Dockerfile. If a relative path
is provided in a subsequent WORKDIR directive, that will be relative to the working
directory set by the previous WORKDIR directive:

WORKDIR /one

WORKDIR two

WORKDIR three

RUN pwd

In the preceding example, we are using the pwd command at the end of the
Dockerfile to print the current working directory. The output of the pwd
command will be /one/two/three.

Other Dockerfile Directives | 59

In the next section, we will discuss the COPY directive that is used to copy files from
the local filesystem to the Docker image filesystem.

The COPY Directive

During the Docker image build process, we may need to copy files from our local
filesystem to the Docker image filesystem. These files can be source code files
(for example, JavaScript files), configuration files (for example, properties files), or
artifacts (for example, JAR files). The COPY directive can be used to copy files and
folders from the local filesystem to the Docker image during the build process.
This directive takes two arguments. The first one is the source path from the local
filesystem, and the second one is the destination path on the image filesystem:

COPY <source> <destination>

In the following example, we are using the COPY directive to copy the index.html
file from the local filesystem to the /var/www/html/ directory of the Docker image:

COPY index.html /var/www/html/index.html

Wildcards can also be specified to copy all files that match the given pattern.
The following example will copy all files with the .html extension from the
current directory to the /var/www/html/ directory of the Docker image:

COPY *.html /var/www/html/

In addition to copying files, the --chown flag can be used with the COPY directive to
specify the user and group ownership of the files:

COPY --chown=myuser:mygroup *.html /var/www/html/

In the preceding example, in addition to copying all the HTML files from the current
directory to the /var/www/html/ directory, the --chown flag is used to set file
ownership, with the user as myuser and group as mygroup:

Note

The --chown flag is only supported from Docker version 17.09 and above.
For Docker versions below 17.09, you need to run the chown command
after the COPY command to change file ownership.

60 | Getting Started with Dockerfiles

In the next section, we will look at the ADD directive.

The ADD Directive

The ADD directive is also similar to the COPY directive, and has the following format:

ADD <source> <destination>

However, in addition to the functionality provided by the COPY directive, the ADD
directive also allows us to use a URL as the <source> parameter:

ADD http://sample.com/test.txt /tmp/test.txt

In the preceding example, the ADD directive will download the test.txt file from
http://sample.com and copy the file to the /tmp directory of the Docker
image filesystem.

Another feature of the ADD directive is automatically extracting the compressed
files. If we add a compressed file (gzip, bzip2, tar, and so on) to the <source>
parameter, the ADD directive will extract the archive and copy the content to the
image filesystem.

Imagine we have a compressed file named html.tar.gz that contains index.
html and contact.html files. The following command will extract the html.
tar.gz file and copy the index.html and contact.html files to the /var/
www/html directory:

ADD html.tar.gz /var/www/html

Since the COPY and ADD directives provide almost the same functionality, it is
recommended to always use the COPY directive unless you need the additional
functionality (add from a URL or extract a compressed file) provided by the ADD
directive. This is because the ADD directive provides additional functionality that can
behave unpredictably if used incorrectly (for example, copying files when you want to
extract, or extracting files when you want to copy).

In the next exercise, we are going to use the WORKDIR, COPY, and ADD directives to
copy files into the Docker image.

Other Dockerfile Directives | 61

Exercise 2.04: Using the WORKDIR, COPY, and ADD Directives in the Dockerfile

In this exercise, you will deploy your custom HTML file to the Apache web server. You
will use Ubuntu as the base image and install Apache on top of it. Then, you will copy
your custom index.html file to the Docker image and download the Docker logo (from
the https://www.docker.com website) to be used with the custom index.html file:

1. Create a new directory named workdir-copy-add-exercise using the
mkdir command:

mkdir workdir-copy-add-exercise

2. Navigate to the newly created workdir-copy-add-exercise directory:

cd workdir-copy-add-exercise

3. Within the workdir-copy-add-exercise directory, create a file named
index.html. This file will be copied to the Docker image during build time:

touch index.html

4. Now, open index.html using your favorite text editor:

vim index.html

5. Add the following content to the index.html file, save it, and exit from
index.html:

<html>

 <body>

 <h1>Welcome to The Docker Workshop</h1>

 </body>

</html>

This HTML file will output Welcome to The Docker Workshop as the
header of the page and logo.png (which we will download during the Docker
image build process) as an image. You have defined the size of the logo.png
image as a height of 350 and a width of 500.

62 | Getting Started with Dockerfiles

6. Within the workdir-copy-add-exercise directory, create a file named
Dockerfile:

touch Dockerfile

7. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

8. Add the following content to the Dockerfile, save it, and exit from the
Dockerfile:

WORKDIR, COPY and ADD example

FROM ubuntu:latest

RUN apt-get update && apt-get install apache2 -y

WORKDIR /var/www/html/

COPY index.html .

ADD https://www.docker.com/sites/default/files/d8/2019-07/
 Moby-logo.png ./logo.png
CMD ["ls"]

This Dockerfile first defines the ubuntu image as the parent image. The next
line is the RUN directive, which will execute apt-get update to update the
package list, and apt-get install apache2 -y to install the Apache HTTP
server. Then, you will set /var/www/html/ as the working directory. Next,
copy the index.html file that we created in step 3 to the Docker image. Then,
use the ADD directive to download the Docker logo from https://www.docker.com/
sites/default/files/d8/2019-07/Moby-logo.png to the Docker image. The final step is to
use the ls command to print the content of the /var/www/html/ directory.

9. Now, build the Docker image with the tag of workdir-copy-add:

$ docker image build -t workdir-copy-add .

You will observe that the image is successfully built and tagged as latest since
we did not explicitly tag our image:

https://www.docker.com/sites/default/files/d8/2019-07/Moby-logo.png
https://www.docker.com/sites/default/files/d8/2019-07/Moby-logo.png

Other Dockerfile Directives | 63

Figure 2.7: Building the Docker image using WORKDIR, COPY, and ADD directives

10. Execute the docker container run command to start a new container
from the Docker image that you built in the previous step:

$ docker container run workdir-copy-add

As we can see from the output, both the index.html and logo.png files are
available in the /var/www/html/ directory:

index.html

logo.png

In this exercise, we observed how the WORKDIR, ADD, and COPY directives work with
Docker. In the next section, we are going to discuss the USER directive.

64 | Getting Started with Dockerfiles

The USER Directive

Docker will use the root user as the default user of a Docker container. We can use
the USER directive to change this default behavior and specify a non-root user as the
default user of a Docker container. This is a great way to improve security by running
the Docker container as a non-privileged user. The username specified with the USER
directive will be used to run all subsequent RUN, CMD, and ENTRYPOINT directives in
the Dockerfile.

The USER directive takes the following format:

USER <user>

In addition to the username, we can also specify the optional group name to run the
Docker container:

USER <user>:<group>

We need to make sure that the <user> and <group> values are valid user and
group names. Otherwise, the Docker daemon will throw an error while trying to run
the container:

docker: Error response from daemon: unable to find user my_user:

 no matching entries in passwd file.

Now, let's try our hands at using the USER directive in the next exercise.

Exercise 2.05: Using USER Directive in the Dockerfile

Your manager has asked you to create a Docker image to run the Apache web server.
He has specifically requested that you use a non-root user while running the Docker
container due to security reasons. In this exercise, you will use the USER directive in
the Dockerfile to set the default user. You will be installing the Apache web server
and changing the user to www-data. Finally, you will execute the whoami command
to verify the current user by printing the username:

Note

The www-data user is the default user for the Apache web server
on Ubuntu.

Other Dockerfile Directives | 65

1. Create a new directory named user-exercise for this exercise:

mkdir user-exercise

2. Navigate to the newly created user-exercise directory:

cd user-exercise

3. Within the user-exercise directory, create a file named Dockerfile:

touch Dockerfile

4. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

5. Add the following content to the Dockerfile, save it, and exit from
the Dockerfile:

USER example

FROM ubuntu

RUN apt-get update && apt-get install apache2 -y

USER www-data

CMD ["whoami"]

This Dockerfile first defines the Ubuntu image as the parent image. The
next line is the RUN directive, which will execute apt-get update to update
the package list, and apt-get install apache2 -y to install the Apache
HTTP server. Next, you use the USER directive to change the current user to the
www-data user. Finally, you have the CMD directive, which executes the whoami
command, which will print the username of the current user.

6. Build the Docker image:

$ docker image build -t user .

66 | Getting Started with Dockerfiles

The output should be as follows:

Figure 2.8: Building the user Docker image

7. Now, execute the docker container run command to start a new container
from the Docker image that we built in the previous step:

$ docker container run user

As you can see from the following output, www-data is the current user
associated with the Docker container:

www-data

In this exercise, we implemented the USER directive in the Dockerfile to set the
www-data user as the default user of the Docker image.

In the next section, we will discuss the VOLUME directive.

Other Dockerfile Directives | 67

The VOLUME Directive

In Docker, the data (for example, files, executables) generated and used by Docker
containers will be stored within the container filesystem. When we delete the
container, all the data will be lost. To overcome this issue, Docker came up with
the concept of volumes. Volumes are used to persist the data and share the data
between containers. We can use the VOLUME directive within the Dockerfile
to create Docker volumes. Once a VOLUME is created in the Docker container, a
mapping directory will be created in the underlying host machine. All file changes to
the volume mount of the Docker container will be copied to the mapped directory of
the host machine.

The VOLUME directive generally takes a JSON array as the parameter:

VOLUME ["/path/to/volume"]

Or, we can specify a plain string with multiple paths:

VOLUME /path/to/volume1 /path/to/volume2

We can use the docker container inspect <container> command to view
the volumes available in a container. The output JSON of the docker container inspect
command will print the volume information similar to the following:

"Mounts": [

 {

 "Type": "volume",

 "Name": "77db32d66407a554bd0dbdf3950671b658b6233c509ea

ed9f5c2a589fea268fe",

 "Source": "/var/lib/docker/volumes/77db32d66407a554bd0

dbdf3950671b658b6233c509eaed9f5c2a589fea268fe/_data",

 "Destination": "/path/to/volume",

 "Driver": "local",

 "Mode": "",

 "RW": true,

 "Propagation": ""

 }

],

As per the preceding output, there is a unique name given to the volume by Docker.
Also, the source and destination paths of the volume are mentioned in the output.

68 | Getting Started with Dockerfiles

Additionally, we can execute the docker volume inspect <volume> command
to display detailed information pertaining to a volume:

[

 {

 "CreatedAt": "2019-12-28T12:52:52+05:30",

 "Driver": "local",

 "Labels": null,

 "Mountpoint": "/var/lib/docker/volumes/77db32d66407a554

bd0dbdf3950671b658b6233c509eaed9f5c2a589fea268fe/_data",

 "Name": "77db32d66407a554bd0dbdf3950671b658b6233c509eae

d9f5c2a589fea268fe",

 "Options": null,

 "Scope": "local"

 }

]

This is also similar to the previous output, with the same unique name and the mount
path of the volume.

In the next exercise, we will learn how to use the VOLUME directive in
a Dockerfile.

Exercise 2.06: Using VOLUME Directive in the Dockerfile

In this exercise, you will be setting a Docker container to run the Apache web server.
However, you do not want to lose the Apache log files in case of a Docker container
failure. As a solution, you have decided to persist in the log files by mounting the
Apache log path to the underlying Docker host:

1. Create a new directory named volume-exercise:

mkdir volume-exercise

2. Navigate to the newly created volume-exercise directory:

cd volume-exercise

3. Within the volume-exercise directory, create a file named Dockerfile:

touch Dockerfile

4. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

Other Dockerfile Directives | 69

5. Add the following content to the Dockerfile, save it, and exit from the
Dockerfile:

VOLUME example

FROM ubuntu

RUN apt-get update && apt-get install apache2 -y

VOLUME ["/var/log/apache2"]

This Dockerfile started by defining the Ubuntu image as the parent image.
Next, you will execute the apt-get update command to update the package
list, and the apt-get install apache2 -y command to install the Apache
web server. Finally, use the VOLUME directive to set up a mount point to the
/var/log/apache2 directory.

6. Now, build the Docker image:

$ docker image build -t volume .

The output should be as follows:

Figure 2.9: Building the volume Docker image

7. Execute the docker container run command to start a new container from the
Docker image that you built in the previous step. Note that you are using the
--interactive and --tty flags to open an interactive bash session so that
you can execute commands from the bash shell of the Docker container.
You have also used the --name flag to define the container name as
volume-container:

$ docker container run --interactive --tty --name volume-container
volume /bin/bash

70 | Getting Started with Dockerfiles

Your bash shell will be opened as follows:

root@bc61d46de960: /#

8. From the Docker container command line, change directory to the /var/log/
apache2/ directory:

cd /var/log/apache2/

This will produce the following output:

root@bc61d46de960: /var/log/apache2#

9. Now, list the available files in the directory:

ls -l

The output should be as follows:

Figure 2.10: Listing files of the /var/log/apache2 directory

These are the log files created by Apache while running the process. The same
files should be available once you check the host mount of this volume.

10. Now, exit the container to check the host filesystem:

exit

11. Inspect volume-container to view the mount information:

$ docker container inspect volume-container

Under the "Mounts" key, you can see the information relating to the mount:

Figure 2.11: Inspecting the Docker container

Other Dockerfile Directives | 71

12. Inspect the volume with the docker volume inspect <volume_name>
command. <volume_name> can be identified by the Name field of the
preceding output:

$ docker volume inspect
354d188e0761d82e1e7d9f3d5c6ee644782b7150f51cead8f140556e5d334bd5

You should get the output similar to the following:

Figure 2.12: Inspecting the Docker volume

We can see that the container is mounted to the host path of "/var/lib/
docker/volumes/354d188e0761d82e1e7d9f3d5c6ee644782b
7150f51cead8f140556e5d334bd5/_data", which is defined as the
Mountpoint field in the preceding output.

13. List the files available in the host file path. The host file path can be identified
with the "Mountpoint" field of the preceding output:

$ sudo ls -l /var/lib/docker/
volumes/354d188e0761d82e1e7d9f3d5c6ee644782b7150f51cead8f14
0556e5d334bd5/_data

In the following output, you can see that the log files in the /var/log/
apache2 directory of the container are mounted to the host:

Figure 2.13: Listing files in the mount point directory

In this exercise, we observed how to mount the log path of the Apache web server
to the host filesystem using the VOLUME directive. In the next section, we will learn
about the EXPOSE directive.

72 | Getting Started with Dockerfiles

The EXPOSE Directive

The EXPOSE directive is used to inform Docker that the container is listening on the
specified ports at runtime. We can use the EXPOSE directive to expose ports through
either TCP or UDP protocols. The EXPOSE directive has the following format:

EXPOSE <port>

However, the ports exposed with the EXPOSE directive will only be accessible from
within the other Docker containers. To expose these ports outside the Docker
container, we can publish the ports with the -p flag with the docker container
run command:

docker container run -p <host_port>:<container_port> <image>

As an example, imagine that we have two containers. One is a NodeJS web app
container that should be accessed from outside via port 80. The second one is
the MySQL container, which should be accessed from the node app container via
port 3306. In this scenario, we have to expose port 80 of the NodeJS app with the
EXPOSE directive and use the -p flag with the docker container run command
to expose it externally. However, for the MySQL container, we can only use the
EXPOSE directive without the -p flag when running the container, as 3306 should
only be accessible from the node app container.

So, in summary, the following statements define this directive:

• If we specify both the EXPOSE directive and -p flag, exposed ports will be
accessible from other containers as well as externally.

• If we specify EXPOSE without the -p flag, exposed ports will only be accessible
from other containers, but not externally.

You will learn about the HEALTHCHECK directive in the next section.

The HEALTHCHECK Directive

Health checks are used in Docker to check whether the containers are running
healthily. For example, we can use health checks to make sure the application is
running within the Docker container. Unless there is a health check specified, there
is no way for Docker to say whether a container is healthy. This is very important if
you are running Docker containers in production environments. The HEALTHCHECK
directive has the following format:

HEALTHCHECK [OPTIONS] CMD command

Other Dockerfile Directives | 73

There can be only one HEALTHCHECK directive in a Dockerfile. If there is more
than one HEALTHCHECK directive, only the last one will take effect.

As an example, we can use the following directive to ensure that the container can
receive traffic on the http://localhost/ endpoint:

HEALTHCHECK CMD curl -f http://localhost/ || exit 1

The exit code at the end of the preceding command is used to specify the health
status of the container. 0 and 1 are valid values for this field. 0 is used to denote a
healthy container, and 1 is used to denote an unhealthy container.

In addition to the command, we can specify a few other parameters with the
HEALTHCHECK directive, as follows:

• --interval: This specifies the period between each health check (the default
is 30s).

• --timeout: If no success response is received within this period, the health
check is considered failed (the default is 30s).

• --start-period: The duration to wait before running the first health check.
This is used to give a startup time for the container (the default is 0s).

• --retries: The container will be considered unhealthy if the health check
failed consecutively for the given number of retries (the default is 3).

In the following example, we have overridden the default values by providing our
custom values with the HEALTHCHECK directive:

HEALTHCHECK --interval=1m --timeout=2s --start-period=2m --retries=3 \
 CMD curl -f http://localhost/ || exit 1

We can check the health status of a container with the docker container list
command. This will list the health status under the STATUS column:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

d4e627acf6ec sample "apache2ctl -D FOREG…" About a minute ago

 Up About a minute (healthy) 0.0.0.0:80->80/tcp upbeat_banach

As soon as we start the container, the health status will be health: starting.
Following the successful execution of the HEALTHCHECK command, the status
will change to healthy.

In the next exercise, we are going to use the EXPOSE and HEALTHCHECK directives
to create a Docker container with the Apache web server and define health checks
for it.

74 | Getting Started with Dockerfiles

Exercise 2.07: Using EXPOSE and HEALTHCHECK Directives in the Dockerfile

Your manager has asked you to dockerize the Apache web server to access the
Apache home page from the web browser. Additionally, he has asked you to
configure health checks to determine the health status of the Apache web server.
In this exercise, you will use the EXPOSE and HEALTHCHECK directives to achieve
this goal:

1. Create a new directory named expose-healthcheck:

mkdir expose-healthcheck

2. Navigate to the newly created expose-healthcheck directory:

cd expose-healthcheck

3. Within the expose-healthcheck directory, create a file named
Dockerfile:

touch Dockerfile

4. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

5. Add the following content to the Dockerfile, save it, and exit from the
Dockerfile:

EXPOSE & HEALTHCHECK example

FROM ubuntu

RUN apt-get update && apt-get install apache2 curl -y

HEALTHCHECK CMD curl -f http://localhost/ || exit 1

EXPOSE 80

ENTRYPOINT ["apache2ctl", "-D", "FOREGROUND"]

This Dockerfile first defines the ubuntu image as the parent image.
Next, we execute the apt-get update command to update the package
list, and the apt-get install apache2 curl -y command to
install the Apache web server and curl tool. Curl is required to execute the
HEALTHCHECK command. Next, we define the HEALTHCHECK directive with
curl to the http://localhost/ endpoint. Then, we exposed port 80 of the
Apache web server so that we can access the home page from our web browser.
Finally, we start the Apache web server with the ENTRYPOINT directive.

Other Dockerfile Directives | 75

6. Now, build the Docker image:

$ docker image build -t expose-healthcheck.

You should get the following output:

Figure 2.14: Building the expose-healthcheck Docker image

7. Execute the docker container run command to start a new container from the
Docker image that you built in the previous step. Note that you are using the
-p flag to redirect port 80 of the host to port 80 of the container. Additionally,
you have used the --name flag to specify the container name as expose-
healthcheck-container, and the -d flag to run the container in detached
mode (this runs the container in the background):

$ docker container run -p 80:80 --name expose-healthcheck-container
-d expose-healthcheck

76 | Getting Started with Dockerfiles

8. List the running containers with the docker container list command:

$ docker container list

In the following output, you can see that the STATUS of the expose-
healthcheck-container is healthy:

Figure 2.15: List of running containers

9. Now, you should be able to view the Apache home page. Go to the
http://127.0.0.1 endpoint from your favorite web browser:

Figure 2.16: Apache home page

10. Now, clean up the container. First, stop the Docker container by using the
docker container stop command:

$ docker container stop expose-healthcheck-container

Other Dockerfile Directives | 77

11. Finally, remove the Docker container with the docker container rm
command:

$ docker container rm expose-healthcheck-container

In this exercise, you utilized the EXPOSE directive to expose an Apache web server as
a Docker container and used the HEALTHCHECK directive to define a health check to
verify the healthy status of the Docker container.

In the next section, we will learn about the ONBUILD directive.

The ONBUILD Directive

The ONBUILD directive is used in the Dockerfile to create a reusable Docker
image that will be used as the base for another Docker image. As an example, we can
create a Docker image that contains all the prerequisites, such as dependencies and
configurations, in order to run an application. Then, we can use this 'prerequisite'
image as the parent image to run the application.

While creating the prerequisite image, we can use the ONBUILD directive, which will
include the instructions that should only be executed when this image is used as the
parent image in another Dockerfile. ONBUILD instructions will not be executed
while building the Dockerfile that contains the ONBUILD directive, but only when
building the child image.

The ONBUILD directive takes the following format:

ONBUILD <instruction>

As an example, consider that we have the following ONBUILD instruction in the
Dockerfile of our custom base image:

ONBUILD ENTRYPOINT ["echo","Running ONBUILD directive"]

The "Running ONBUILD directive" value will not be printed if we create a
Docker container from our custom base image. However, the "Running ONBUILD
directive" value will be printed if we use our custom base image as the base for
our new child Docker image.

We can use the docker image inspect command for the parent image to list
the OnBuild triggers listed for the image:

$ docker image inspect <parent-image>

78 | Getting Started with Dockerfiles

The command will return output similar to the following:

...

"OnBuild": [

 "CMD [\"echo\",\"Running ONBUILD directive\"]"

]

...

In the next exercise, we will be using the ONBUILD directive to define a Docker image
to deploy the HTML files.

Exercise 2.08: Using ONBUILD Directive in the Dockerfile

You have been asked by your manager to create a Docker image that is capable of
running any HTML files provided by the software development team. In this exercise,
you will build a parent image with the Apache web server and use the ONBUILD
directive to copy the HTML files. The software development team can use this Docker
image as the parent image to deploy and test any HTML files created by them:

1. Create a new directory named onbuild-parent:

mkdir onbuild-parent

2. Navigate to the newly created onbuild-parent directory:

cd onbuild-parent

3. Within the onbuild-parent directory, create a file named Dockerfile:

touch Dockerfile

4. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

5. Add the following content to the Dockerfile, save it, and exit from
the Dockerfile:

ONBUILD example

FROM ubuntu

RUN apt-get update && apt-get install apache2 -y

ONBUILD COPY *.html /var/www/html

EXPOSE 80

ENTRYPOINT ["apache2ctl", "-D", "FOREGROUND"]

Other Dockerfile Directives | 79

This Dockerfile first defines the ubuntu image as the parent image.
It then executes the apt-get update command to update the package list,
and the apt-get install apache2 -y command to install the Apache
web server. The ONBUILD directive is used to provide a trigger to copy all HTML
files to the /var/www/html directory. The EXPOSE directive is used to expose
port 80 of the container and ENTRYPOINT to start the Apache web server using
the apache2ctl command.

6. Now, build the Docker image:

$ docker image build -t onbuild-parent .

The output should be as follows:

Figure 2.17: Building the onbuild-parent Docker image

7. Execute the docker container run command to start a new container
from the Docker image built in the previous step:

$ docker container run -p 80:80 --name onbuild-parent-container -d
onbuild-parent

In the preceding command, you have started the Docker container in detached
mode while exposing port 80 of the container.

80 | Getting Started with Dockerfiles

8. Now, you should be able to view the Apache home page. Go to the
http://127.0.0.1 endpoint from your favorite web browser.
Note that the default Apache home page is visible:

Figure 2.18: Apache home page

9. Now, clean up the container. Stop the Docker container by using the docker
container stop command:

$ docker container stop onbuild-parent-container

10. Remove the Docker container with the docker container rm command:

$ docker container rm onbuild-parent-container

11. Now, create another Docker image using onbuild-parent-container
as the parent image to deploy a custom HTML home page. First, change the
directory back to the previous directory:

cd ..

Other Dockerfile Directives | 81

12. Create a new directory named onbuild-child for this exercise:

mkdir onbuild-child

13. Navigate to the newly created onbuild-child directory:

cd onbuild-child

14. Within the onbuild-child directory, create a file named index.html. This
file will be copied to the Docker image by the ONBUILD command during build
time:

touch index.html

15. Now, open the index.html file using your favorite text editor:

vim index.html

16. Add the following content to the index.html file, save it, and exit from the
index.html file:

<html>

 <body>

 <h1>Learning Docker ONBUILD directive</h1>

 </body>

</html>

This is a simple HTML file that will output the Learning Docker ONBUILD
directive as the header of the page.

17. Within the onbuild-child directory, create a file named Dockerfile:

touch Dockerfile

18. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

19. Add the following content to the Dockerfile, save it, and exit from
the Dockerfile:

ONBUILD example

FROM onbuild-parent

This Dockerfile has only one directive. This will use the FROM directive to
utilize the onbuild-parent Docker image that you created previously as the
parent image.

82 | Getting Started with Dockerfiles

20. Now, build the Docker image:

$ docker image build -t onbuild-child .

Figure 2.19: Building the onbuild-child Docker image

21. Execute the docker container run command to start a new container
from the Docker image that you built in the previous step:

$ docker container run -p 80:80 --name onbuild-child-container -d
onbuild-child

In this command, you have started the Docker container from the
onbuild-child Docker image while exposing port 80 of the container.

22. You should be able to view the Apache home page. Go to the
http://127.0.0.1 endpoint from your favorite web browser:

Figure 2.20: Customized home page of the Apache web server

23. Now, clean up the container. First, stop the Docker container by using the
docker container stop command:

$ docker container stop onbuild-child-container

24. Finally, remove the Docker container with the docker container rm
command:

$ docker container rm onbuild-child-container

Other Dockerfile Directives | 83

In this exercise, we observed how we can use the ONBUILD directive to create a
reusable Docker image that is capable of running any HTML file provided to it. We
created the reusable Docker image named onbuild-parent with the Apache web
server, with port 80 exposed. This Dockerfile contains the ONBUILD directive to
copy the HTML files in the context of the Docker image. Then, we created the second
Docker image named onbuild-child, using onbuild-parent as the base
image, that provided a simple HTML file to be deployed to the Apache web server.

Now, let's test our knowledge that we have acquired in this chapter by dockerizing the
given PHP application using the Apache web server in the following activity.

Activity 2.01: Running a PHP Application on a Docker Container

Imagine that you want to deploy a PHP welcome page that will greet visitors
based on the date and time using the following logic. Your task is to dockerize the
PHP application given here, using the Apache web server installed on an Ubuntu
base image:

<?php

$hourOfDay = date('H');

if($hourOfDay < 12) {

 $message = "Good Morning";

} elseif($hourOfDay > 11 && $hourOfDay < 18) {

 $message = "Good Afternoon";

} elseif($hourOfDay > 17){

 $message = "Good Evening";

}

echo $message;

?>

This is a simple PHP file that will greet the user based on the following logic:

Figure 2.21: Logic of PHP application

84 | Getting Started with Dockerfiles

Execute the following steps to complete this activity:

1. Create a folder to store the activity files.

2. Create a welcome.php file with the code provided previously.

3. Create a Dockerfile and set up the application with PHP and Apache2 on an
Ubuntu base image.

4. Build and run the Docker image.

5. Once completed, stop and remove the Docker container.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, we discussed how we can use a Dockerfile to create our own
custom Docker images. First, we discussed what is a Dockerfile and the syntax of
a Dockerfile. We then discussed some common Docker directives, including the
FROM, LABEL, RUN, CMD, and ENTRYPOINT directives. Then, we created our first
Dockerfile with the common directives that we learned.

In the next section, we focused on building Docker images. We discussed multiple
areas in depth regarding Docker images, including the layered filesystem of Docker
images, the context in Docker builds, and the use of the cache during the Docker
build process. Then, we discussed more advanced Dockerfile directives, including
the ENV, ARG, WORKDIR, COPY, ADD, USER, VOLUME, EXPOSE, HEALTHCHECK,
and ONBUILD directives.

In the next chapter, we will discuss what a Docker registry is, look at private
and public Docker registries, and learn how we can publish Docker images to
Docker registries.

Overview

In this chapter, we will look into Docker layers and analyze how caching can
help to speed up an image build. We will also deep dive into Docker images
and set up Docker registries to increase the reusability of the images.

By the end of this chapter, you will be able to demonstrate how Docker uses
layers to build images and how image building can be sped up with caching.
You will work with image tags and set up a tagging policy for Docker
images. The chapter will enable you to utilize Docker Hub for your projects
and differentiate between public and private registries. It will also help you
to set up your own Docker Registry when working on your projects.

Managing Your Docker Images

3

88 | Managing Your Docker Images

Introduction
Our previous chapters have done a lot of work already with Docker images. As you've
seen, we've been able to take existing images, provided to the general public in
Docker Hub, and have then been able to run them or reuse them after building on
top of them for our purposes. The image itself helps us streamline our processes
and reduce the work we need to do.

In this chapter, we are going to take a more in-depth look at images and how to
work with them on your system. We'll learn how images can be better organized
and tagged, understand how different layers of images work, and set up registries
that are both public and private to further reuse the images we have created.

Docker images are perfect for application development as well. The image itself is a
self-contained version of the application, which includes everything it needs in order
to be run. This empowers developers to build an image on their local machine and
deploy it on a development or test environment to ensure it works well with the rest
of the application. If all goes well, they can then push the same image as a release
to the production environment for users to then consume. We need to also be
consistent when using our images, especially when we start to work within a
larger group of developers.

This chapter will also help you set up policies to have consistent tagging for
your services to help limit issues and make sure you can track down or roll back
when issues arise. Understanding how to distribute images for consumption and
collaboration is also something we will discuss further in the chapter. So, without
further delay, let's get started with the chapter and understand what layers and
caching in Docker are.

Docker Layers and Caching
A registry is a way to store and distribute your Docker images. When you pull a
Docker image from a registry, you might have noticed that the image is pulled in
pieces and not as a single image. The same thing happens when you build an image
on your system.

This is because Docker images consist of layers. When you create a new image
using a Dockerfile, it will create more layers on top of the existing image you've
built from. Each command you specify in the Dockerfile will create a new layer,
with each containing all of the filesystem changes that occur before the command
was performed and then after. When you run the image as a container from a
Dockerfile, you're creating readable and writable layers on top of an existing
group of read-only layers. This writable layer is known as the container layer.

Docker Layers and Caching | 89

As you'll see in the following exercises, when you build a container from a
Dockerfile, the output presented shows each command run in the Dockerfile.
It also shows the layers that are created by running each command, which is
represented by a randomly generated ID. Once the image has completed building,
you can then view the layers created during the build process using the docker
history command, including the image name or ID.

Note

When setting up your build environment and as you move further along
in the development process, remember that the more layers you have,
the larger your image will be. So, this extra storage and space can be
expensive in both build times and the amount of disk space used in your
development and production environments.

When building an image from a Dockerfile, layers are created when the RUN,
ADD, and COPY commands are used. All other commands in the Dockerfile create
intermediate layers. These intermediate layers are 0 B in size; therefore, they don't
increase the size of the Docker image.

When building our Docker images, we can use the docker history command
and the image name or ID to see the layers used to create the image. The output
will provide details on commands used to generate the layer as well as the size of
the layer:

docker history <image_name|image_id>

The docker image inspect command is useful in providing further details on
where the layers of our images are located:

docker image inspect <image_id>

Later in this part of the chapter, when we look at creating our base images, we will
use the docker image command, which is used in conjunction with a TAR file
version of the image we are creating. If we are able to access a running container or
virtual machine, we will be able to take a copy of the running system and place it in
a TAR archive. The output of the archive is then piped out to the docker import
command as demonstrated here:

cat <image_tar_file_name> | docker import - <new_image_name>

90 | Managing Your Docker Images

The next exercise will give you some hands-on experience of what we have learned so
far and how to work with Docker image layers.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

Exercise 3.01: Working with Docker Image Layers

In this exercise, you will work with some basic Dockerfiles to see how Docker
uses layers to build images. You will start by creating a Dockerfile and building a
new image. You will then rebuild the image to see the advantage of using caching and
how the build time is reduced due to its use:

1. Create a new file called Dockerfile with your favorite text editor and add in
the following details:

FROM alpine

RUN apk update

RUN apk add wget

2. Save the Dockerfile and then, from the command line, make sure you
are in the same directory as the Dockerfile you have created. Use the
docker build command to create the new image using the –t option to
name it basic-app:

docker build -t basic-app .

If the image has built successfully, you should see an output similar to the
following. We've highlighted each of the build steps in bold. Each step is built as
an intermediate layer and if it completes successfully, it is then transferred to a
read-only layer:

Sending build context to Docker daemon 4.096kB

Step 1/3 : FROM alpine

latest: Pulling from library/alpine

9d48c3bd43c5: Pull complete

Digest: sha256:72c42ed48c3a2db31b7dafe17d275b634664a

 708d901ec9fd57b1529280f01fb

Docker Layers and Caching | 91

Status: Downloaded newer image for alpine:latest

 ---> 961769676411

Step 2/3 : RUN apk update

 ---> Running in 4bf85f0c3676

fetch http://dl-cdn.alpinelinux.org/alpine/v3.10/main/

 x86_64/APKINDEX.tar.gz

fetch http://dl-cdn.alpinelinux.org/alpine/v3.10/community/

 x86_64/APKINDEX.tar.gz

v3.10.2-64-g631934be3a [http://dl-cdn.alpinelinux.org/alpine

 /v3.10/main]

v3.10.2-65-ge877e766a2 [http://dl-cdn.alpinelinux.org/alpine

 /v3.10/community]

OK: 10336 distinct packages available

Removing intermediate container 4bf85f0c3676

 ---> bcecd2429ac0

Step 3/3 : RUN apk add wget

 ---> Running in ce2a61d90f77

(1/1) Installing wget (1.20.3-r0)

Executing busybox-1.30.1-r2.trigger

OK: 6 MiB in 15 packages

Removing intermediate container ce2a61d90f77

 ---> a6d7e99283d9

Successfully built 0e86ae52098d

Successfully tagged basic-app:latest

3. Use the docker history command along with the image name of
basic-app to see the different layers of the image:

docker history basic-app

The history gives you creation details, including the size of each layer:

IMAGE CREATED CREATED BY

 SIZE

a6d7e99283d9 About a minute ago /bin/sh -c apk add wget

 476kB

bcecd2429ac0 About a minute ago /bin/sh -c apk update

 1.4MB

961769676411 5 weeks ago /bin/sh -c #(nop)

CMD ["/bin/sh"] 0B

<missing> 5 weeks ago /bin/sh -c #(nop)

ADD file:fe6407fb… 5.6MB

92 | Managing Your Docker Images

Note

The docker history command shows the layer of the original image
used as part of the Dockerfile FROM command as <missing>. It is
showing as missing in our output as it was created on a different system
and then pulled onto your system.

4. Run the build again without making any changes:

docker build -t basic-app .

This will show you the build is done using the layers stored in the Docker image
cache, thereby speeding up our build. Although this is only a small image,
a much larger image would show a significant increase:

Sending build context to Docker daemon 4.096kB

Step 1/3 : FROM alpine

 ---> 961769676411

Step 2/3 : RUN apk update

 ---> Using cache

 ---> bcecd2429ac0

Step 3/3 : RUN apk add wget

 ---> Using cache

 ---> a6d7e99283d9

Successfully built a6d7e99283d9

Successfully tagged basic-app:latest

5. Say you forgot to install the curl package as part of your image creation.
Add the following line to the Dockerfile from Step 1:

FROM alpine

RUN apk update

RUN apk add wget curl

6. Build the image again, and you'll now see the image created with a mix of cached
layers and new layers that need to be created:

docker build -t basic-app .

Docker Layers and Caching | 93

Step three of the output has been highlighted to show the change made in our
Dockerfile now being built:

Sending build context to Docker daemon 4.096kB

Step 1/3 : FROM alpine

 ---> 961769676411

Step 2/3 : RUN apk update

 ---> Using cache

 ---> cb8098d0c33d

Step 3/3 : RUN apk add wget curl

 ---> Running in b041735ff408

(1/5) Installing ca-certificates (20190108-r0)

(2/5) Installing nghttp2-libs (1.39.2-r0)

(3/5) Installing libcurl (7.66.0-r0)

(4/5) Installing curl (7.66.0-r0)

(5/5) Installing wget (1.20.3-r0)

Executing busybox-1.30.1-r2.trigger

Executing ca-certificates-20190108-r0.trigger

OK: 8 MiB in 19 packages

Removing intermediate container b041735ff408

 ---> c7918f4f95b9

Successfully built c7918f4f95b9

Successfully tagged basic-app:latest

7. Run the docker images command again:

docker images

You will now notice the image named and tagged as <none> to show we have
now created a dangling image:

REPOSITORY TAG IMAGE ID CREATED SIZE

basic-app latest c7918f4f95b9 25 seconds ago 8.8MB

<none> <none> 0e86ae52098d 2 minutes ago 7.48MB

Alpine latest 961769676411 5 weeks ago 5.58MB

94 | Managing Your Docker Images

Note

Dangling images, represented by <none> in our image list, are caused
when a layer has no relationship to any image on our system. These
dangling images no longer serve a purpose and will consume disk space on
your system. Our example dangling image is only 7.48 MB, which is small,
but this could add up over time.

8. Run the docker image inspect command using the image ID to see the
location of where the dangling images are located on our system:

docker image inspect 0e86ae52098d

The following output has been reduced from the actual output to only show the
directories of the image:

...

 "Data": {

 "LowerDir": "/var/lib/docker/overlay2/

 41230f31bb6e89b6c3d619cafc309ff3d4ca169f9576fb003cd60fd4ff

 4c2f1f/diff:/var/lib/docker/overlay2/

 b8b90262d0a039db8d63c003d96347efcfcf57117081730b17585e163f

 04518a/diff",

 "MergedDir": "/var/lib/docker/overlay2/

 c7ea9cb56c5bf515a1b329ca9fcb2614f4b7f1caff30624e9f6a219049

 32f585/

 merged",

 "UpperDir": "/var/lib/docker/overlay2/

 c7ea9cb56c5bf515a1b329ca9fcb2614f4b7f1caff30624e9f6a21904

 932f585/diff",

 "WorkDir": "/var/lib/docker/overlay2/

 c7ea9cb56c5bf515a1b329ca9fcb2614f4b7f1caff30624e9f6a21904

 932f585/work"

 },

...

Docker Layers and Caching | 95

All of our images are located in the same location as the dangling image.
As they are sharing the same directory, any dangling images would waste
space on our system.

9. Run the du command from the command line to see the total disk space being
used by our images:

du -sh /var/lib/docker/overlay2/

The command will return the total disk space used by your images

11M /var/lib/docker/overlay2/

Note

If you're using Docker Desktop, maybe on a Mac, you'll notice that you
won't be able to see the images as Docker is run on a virtual image on your
system, even though the docker image inspect command will show
the same location as we have above.

10. Run the docker images command again using the -a option:

docker images -a

It will also show the intermediate layers used when our image is being built:

REPOSITORY TAG IMAGE ID CREATED SIZE

basic-app latest c7918f4f95b9 25 seconds ago 8.8MB

<none> <none> 0e86ae52098d 2 minutes ago 7.48MB

<none> <none> 112a4b041305 11 minutes ago 7MB

Alpine latest 961769676411 5 weeks ago 5.58MB

96 | Managing Your Docker Images

11. Run the docker image prune command to remove all the dangling images.
You could remove all the dangling images one at a time using the docker rmi
command using the image ID, but the docker image prune command is an
easier way to do that:

docker image prune

You should get output like the following:

WARNING! This will remove all dangling images.

Are you sure you want to continue? [y/N] y

Deleted Images:

deleted: sha256:0dae3460f751d16f41954e0672b0c41295d46ee99d71

 d63e7c0c8521bd9e6493

deleted: sha256:d74fa92b37b74820ccccea601de61d45ccb3770255b9

 c7dd22edf16caabafc1c

Total reclaimed space: 476.4kB

12. Run the docker images command again:

docker images

You will see we no longer have the dangling image in our list of images:

REPOSITORY TAG IMAGE ID CREATED SIZE

basic-app latest c7918f4f95b9 25 seconds ago 8.8MB

Alpine latest 961769676411 5 weeks ago 5.58MB

13. Run the du command again over the image's directory:

du -sh /var/lib/docker/overlay2/

You should also observe a small decrease in size:

10M /var/lib/docker/overlay2/

This exercise has shown only smaller image sizes, but this is definitely something to
keep in mind when running production and development environments. This part of
the chapter has provided you with the foundations of how Docker uses layers and
caching as part of its build process.

For our next exercise, we will look further at our layers and caching to see how they
can be used to speed up the image build process.

Docker Layers and Caching | 97

Exercise 3.02: Increasing Build Speed and Reducing Layers

You have been working with smaller builds so far. However, as your applications
increase in size and functionality, you'll start to consider both the size and number of
layers of the Docker images you're creating and the speed at which you're creating
them. The goal of this exercise is to speed up the build times and reduce the size
of your images, as well as use the --cache-from option when building your
Docker images:

1. Create a new Dockerfile to demonstrate the change you are going to
make, but first, clear up all the images on your system. Run the docker rmi
command with the -f option to force any removals needed, and the command
in brackets will provide a list of all image IDs on your system. Use the -a option
to show all running and stopped containers and the -q option to only show the
container image hash value and nothing else:

docker rmi -f $(docker images -a -q)

The command should return output like the following:

Untagged: hello-world:latest

...

deleted: sha256:d74fa92b37b74820ccccea601de61d45ccb3770255

 b9c7dd22edf16caabafc1c

It can be observed that the hello-world: latest image is untagged
and the image with ID sha256:d74fa92b37b74820ccccea601
de61d45ccb3770255b9c7dd22edf16caabafc1c is removed.

Note

Please note that we can remove the images using both the rmi and
prune commands. Here, we have used the rmi command because
prune was not always available until recently.

98 | Managing Your Docker Images

2. Add the following code to your Dockerfile (which you created in
Exercise 3.01). It will simulate a simple web server, as well as print the
output of our Dockerfile during the build process:

1 FROM alpine

2

3 RUN apk update

4 RUN apk add wget curl

5

6 RUN wget -O test.txt https://github.com/PacktWorkshops/
 The-Docker-Workshop/blob/master/Chapter03/Exercise3.02/100MB.bin
7

8 CMD mkdir /var/www/

9 CMD mkdir /var/www/html/

10

11 WORKDIR /var/www/html/

12

13 COPY Dockerfile.tar.gz /tmp/

14 RUN tar -zxvf /tmp/Dockerfile.tar.gz -C /var/www/html/

15 RUN rm /tmp/Dockerfile.tar.gz

16

17 RUN cat Dockerfile

You'll notice line 6 of the Dockerfile is doing a fairly menial task (downloading
a 100 MB file, named 100MB.bin), which would not normally be performed
in a Dockerfile. We have added it in to represent a build task or something
similar that may be added during your build process, for example, downloading
content or building software from a file.

3. Download your base image using the docker pull command so that you can
start with the same image for each test we do:

docker pull alpine

4. Create a TAR file to be added to our image as we have instructed in line 13 of
our Dockerfile:

tar zcvf Dockerfile.tar.gz Dockerfile

Docker Layers and Caching | 99

5. Build a new image using the same name as basic-app. You will use the time
command at the start of the code to allow us to gauge the time it takes to build
our image:

time docker build -t basic-app .

The output will return the time taken to build the image:

...

real 4m36.810s

user 0m0.354s

sys 0m0.286s

6. Run the docker history command over the new basic-app image:

docker history basic-app

We have a few extra commands in our Dockerfile compared to the
previous exercise. So, there should be no surprise that we will see 12 layers
in our new image:

IMAGE CREATED CREATED BY SIZE

5b2e3b253899 2 minutes ago /bin/sh -c cat Dockerfile 0B

c4895671a177 2 minutes ago /bin/sh -c rm /tmp/Dockerfile.tar.gz 0B

aaf18a11ba25 2 minutes ago /bin/sh -c tar -zxvf /tmp/Dockfil… 283B

507161de132c 2 minutes ago /bin/sh -c #(nop) COPY file:e39f2a0… 283B

856689ad2bb6 2 minutes ago /bin/sh -c #(nop) WORKDIR /var/… 0B

206675d145d4 2 minutes ago /bin/sh -c #(nop) CMD ["/bin/sh"… 0B

c947946a36b2 2 minutes ago /bin/sh -c #(nop) CMD ["/bin/sh"… 0B

32b0abdaa0a9 2 minutes ago /bin/sh -c curl https://github.com… 105MB

e261358addb2 2 minutes ago /bin/sh -c apk add wget curl 1.8MB

b6f77a768f90 2 minutes ago /bin/sh -c apk update 1.4MB

961769676411 6 weeks ago /bin/sh -c #(nop) CMD ["/bin/sh"] 0B

<missing> 6 weeks ago /bin/sh -c #(nop) ADD file:fe3dc… 5.6MB

We can see that the RUN, COPY, and ADD commands in our Dockerfile are
creating layers of a particular size relevant to the commands being run or files
being added, and all the other commands in the Dockerfile are of size 0 B.

100 | Managing Your Docker Images

7. Reduce the number of layers in the image by combining the RUN commands
in lines 3 and 4 and combining the CMD commands in lines 8 and 9 of the
Dockerfile created in step 1 of this exercise. With these changes, our
Dockerfile should now look like the following:

1 FROM alpine

2

3 RUN apk update && apk add wget curl

4

5 RUN wget -O test.txt https://github.com/PacktWorkshops/
 The-Docker-Workshop/blob/master/Chapter03/Exercise3.02/100MB.bin
6

7 CMD mkdir -p /var/www/html/

8

9 WORKDIR /var/www/html/

10

11 COPY Dockerfile.tar.gz /tmp/

12 RUN tar -zxvf /tmp/Dockerfile.tar.gz -C /var/www/html/

13 RUN rm /tmp/Dockerfile.tar.gz

14

15 RUN cat Dockerfile

Running docker build again will reduce the number of layers for our
new image from 12 to 9 layers, as even though there is the same number
of commands being run, they are chained together in lines 3 and 7.

8. Lines 11, 12, and 13 of our Dockerfile are using the COPY and RUN
commands to copy and unzip our archived file, and then remove the
original unzipped file. Replace these lines with the ADD command without
needing to run the lines that unzip and remove the .tar file:

1 FROM alpine

2

3 RUN apk update && apk add wget curl

4

5 RUN wget -O test.txt https://github.com/PacktWorkshops/
 The-Docker-Workshop/blob/master/Chapter03/Exercise3.02/100MB.bin
6

7 CMD mkdir -p /var/www/html/

8

Docker Layers and Caching | 101

9 WORKDIR /var/www/html/

10

11 ADD Dockerfile.tar.gz /var/www/html/

12 RUN cat Dockerfile

9. Build the image again to reduce the number of layers in your new image from
9 to 8. If you have been watching the builds run, you will probably notice a lot
of the time the build run as part of lines 3 and 5 of our Dockerfile, where we
run apk update, then install wget and curl, and then grab content from a
website. Doing this once or twice will not be an issue, but if we create our base
image, which the Dockerfile can then run on, you will be able to remove
these lines completely from your Dockerfile.

10. Move into a new directory and create a new Dockerfile that will only pull the
base image and run the apk commands, as listed here:

1 FROM alpine

2

3 RUN apk update && apk add wget curl

4

5 RUN wget -O test.txt https://github.com/PacktWorkshops/
 The-Docker-Workshop/blob/master/Chapter03/Exercise3.02/100MB.bin

11. Build the new base image from the preceding Dockerfile and name it
basic-base:

docker build -t basic-base .

12. Remove line 3 from the original Dockerfile as it will no longer be needed.
Move into the project directory and update the image that is being used in the
FROM command to basic-base and remove the apk commands in line 3.
Our Dockerfile should now look like the following code:

1 FROM basic-base

2

3 CMD mkdir -p /var/www/html/

4

5 WORKDIR /var/www/html/

6

7 ADD Dockerfile.tar.gz /var/www/html/

8 RUN cat Dockerfile

102 | Managing Your Docker Images

13. Run the build again for our new Dockerfile. Using the time command again
with our build, we now see the build complete in just over 1 second:

time docker build -t basic-app .

If you've been watching the build, you'll notice that compared to our previous
builds, it runs a lot quicker:

...

real 0m1.810s

user 0m0.117s

sys 0m0.070s

Note

You will observe that the layers of the image will remain the same as
we are building the base image on our system, which performs the apk
commands. It's a great result still to speed up the build even though we are
not reducing the number of layers.

14. There is a different way we can use the basic-base image we used earlier.
Use the docker build command with the –cache-from option to specify
the cache layers that will be used when the image is built. Set out the FROM
command to still use the alpine image and use the –cache-from option that
follows to make sure the layers used to build basic-base are being used for
our current image:

docker build --cache-from basic-base -t basic-app .

We still have some more tasks before we complete this exercise. In the following
steps, we will look at committing changes to our image to see how it affects our
layers. This is not something we would use often but there are times when we
need to copy production data over to a development or test environment, and
one way to do this is by using a Docker image with the commit command, which
will make changes to the top writable layer of our running container.

15. Run basic-app in interactive shell mode to create some production data.
To do this, run the following docker run command with the -it option to
run in interactive mode and use the sh shell to access the running container:

docker run -it basic-app sh

/var/www/html #

Docker Layers and Caching | 103

16. Use the vi text editor to create a new text file called prod_test_data.txt:

vi prod_test_data.txt

17. Add the following line of text as some test data. The data in the text is not
important; it is just a sample to show we can then copy these changes to
another image:

18. This is a sample production piece of data. Exit out of the running container and
then check the container ID using the docker ps command with the -a option:

docker ps -a

You will get output like the following:

CONTAINER ID IMAGE COMMAND CREATED

ede3d51bba9e basic-app "sh" 4 minutes ago

19. Run the docker commit command with the container ID to create a new
image that will include all those changes. Make sure to add the name of the
new image. In this example, use basic-app-test:

docker commit ede3d51bba9e basic-app-test

You will get output like the following:

sha256:0717c29d29f877a7dafd6cb0555ff6131179b457

 e8b8c25d9d13c2a08aa1e3f4

20. Run the docker history command on the newly created image:

docker history basic-app-test

This should now show us an extra layer where we added the sample production
data, showing in our output as 72B in size:

IMAGE CREATED CREATED BY SIZE

0717c29d29f8 2 minutes ago sh 72B

302e01f9ba6a 2 minutes ago /bin/sh -c cat Dockerfile 0B

10b405ceda34 2 minutes ago /bin/sh -c #(nop) ADD file:e39f… 283B

397f533f4019 2 minutes ago /bin/sh -c #(nop) WORKDIR /var/… 0B

c8782986b276 2 minutes ago /bin/sh -c #(nop) CMD ["/bin/sh"… 0B

6dee05f36f95 2 minutes ago /bin/sh -c apk update && apk ad 3.2MB

961769676411 6 weeks ago /bin/sh -c #(nop) CMD ["/bin/sh"] 0B

<missing> 6 weeks ago /bin/sh -c #(nop) ADD file:fe3dc… 5.6MB

104 | Managing Your Docker Images

21. Now, run the newly created basic-app-test image and cat, the new file
we added:

docker run basic-app-test cat prod_test_data.txt

This should show us the output we added, showing we can reuse existing images
if needed:

This is a sample production piece of data

Note

As of the time of writing, the docker build command also allows a new
experimental feature using the –squash option. The option attempts to
merge all the layers into one layer during build time. We haven't covered
this feature as it is still in an experimental phase.

This exercise demonstrated how the build cache and image layers work to improve
the build time. We have started all our builds so far using an image we have pulled
down from Docker Hub, but there are options to start with an image you have
created yourself if you wish to control things even further. The next section will
help you to create your base Docker images.

Creating Base Docker Images
Creating your base Docker image is actually straightforward. Just as we used the
docker commit command previously to create an image from a running container,
we can also create an image from a system or server we have originally been running
our applications on. We need to remember that creating a base image still needs to
remain small and lightweight. It is not simply a matter of moving existing applications
running on existing servers over to Docker.

We could use the system we are specifically working on, but if you are using a
production server, the image could actually be pretty big. If you have a small virtual
machine you would think is perfect for a base image, you could use the following
steps to create a base image from it. Similar to the docker commit command,
this can be used for any system you can access.

Creating Base Docker Images | 105

Exercise 3.03: Creating Your Base Docker Images

The following exercise will use the basic-app image we are currently running and
show how easy it is to create a base image. These same steps would be used for
larger, more complex environments as well:

1. Execute the docker run command to run the container and log in at the
same time:

docker run -it basic-app sh

2. Run the tar command on the running container to create a backup of the
system. To limit the information you have in the new image, exclude the
.proc, .tmp, .mnt, .dev, and .sys directories, and create everything
under the basebackup.tar.gz file:

tar -czf basebackup.tar.gz --exclude=backup.tar.gz --exclude=proc
--exclude=tmp --exclude=mnt --exclude=dev --exclude=sys /

3. To ensure that you have data in your basebackup.tar.gz file, run the
du command to make sure it is of substantial size:

du -sh basebackup.tar.gz

The output returns the size of the basebackup.tar.gz file:

4.8M basebackup.tar.gz

4. Run the docker ps command to find the container ID that is currently holding
your new backup file, the .tar file:

docker ps

The command will return the container ID of the image:

CONTAINER ID IMAGE COMMAND CREATED

6da7a8c1371a basic-app "sh" About a minute ago

5. Copy the .tar file onto your development system with the docker cp
command, using the container ID of our running container and the location and
file you want to copy. The following command will do this with your container ID
and move it into your /tmp directory:

docker cp 6da7a8c1371a:/var/www/html/basebackup.tar.gz /tmp/

106 | Managing Your Docker Images

6. Create a new image using the docker import command. Simply pipe the
output of the basebackup.tar.gz file into the docker import command,
naming the new image in the process. In our example, call it mynew-base:

cat /tmp/basebackup.tar.gz | docker import - mynew-base

7. Use the docker images command with the name of your new image to verify
that it has been created in the previous step:

docker images mynew-base

You should get output like the following:

REPOSITORY TAG IMAGE ID CREATED SIZE

mynew-base latest 487e14fca064 11 seconds ago 8.79MB

8. Run the docker history command:

docker history mynew-base

You will see that we only have one layer in our new image:

IMAGE CREATED CREATED BY SIZE COMMENT

487e14fca064 37 seconds ago .79MB Imported from –

9. To test your new image, run the docker run command on the new image,
and list the files in your /var/www/html/ directory:

docker run mynew-base ls -l /var/www/html/

The command should return the similar output:

total 4

-rw-r--r-- 1 501 dialout 283 Oct 3 04:07 Dockerfile

It can be seen that the image has been successfully created and there are 24 files
in the /var/www/html/ directory.

This exercise has shown you how to create a base image from a running system or
environment, but if you're wanting to create a small base image, then the next section
will show you how to use the scratch image.

Creating Base Docker Images | 107

The Scratch Image

The scratch image is an image created by Docker specifically available for building
minimal images. If you have a binary application, written in Java, C++, and so on, as
well as compiled, that can be run by itself without any supporting applications, then
scratch will help you run that image with one of the smallest images you can create.

When we use the FROM scratch command in our Dockerfile, we are specifying
that we will be using Docker's reserved minimal image, which is named scratch for
building our new container image.

Exercise 3.04: Using the Scratch Image

In this exercise, you will create a small C application to run on the image. You don't
really need to know anything about the C language to complete this exercise. The
application will be installed on your scratch base image to ensure the image is as
small as possible. The application you create will show you how to create one of the
most minimal base images available:

1. Pull the scratch image using the docker pull command:

docker pull scratch

You'll notice you won't be able to pull the image and will receive an error:

Using default tag: latest

Error response from daemon: 'scratch' is a reserved name

2. Create a C program that you will build into the image to use in our
Dockerfile. Create a program file called test.c:

touch test.c

108 | Managing Your Docker Images

3. Open the file and add in the following code, which will simply count from 1 to 10
on the console:

#include <stdio.h>

int main()

{

 int i;

 for (i=1; i<=10; i++)

 {

 printf("%d\n", i);

 }

 return 0;

}

4. Build the image from the command line by running the following command to
build the C program:

g++ -o test -static test.c

Note

If you want to test it before you build it in your image, you can do so by
running ./test on the command line.

5. Create the Dockerfile. The Dockerfile will be pretty minimal but needs
to start with FROM scratch. The rest of the file will add the C program to your
image and then run it in line 4:

1 FROM scratch

2

3 ADD test /

4 CMD ["/test"]

6. Build a new image. In this instance, call the image scratchtest using the
following command:

docker build -t scratchtest .

7. Run the image from the command line:

docker run scratchtest

Creating Base Docker Images | 109

You will see the output of the test C file you created and compiled earlier in
this exercise:

1

2

3

4

5

6

7

8

9

10

8. Run the docker images command for your new image:

docker images scratchtest

This will show you some pretty impressive results as your image is only 913 kB
in size:

REPOSITORY TAG IMAGE ID CREATED SIZE

scratch latest 221adbe23c26 20 minutes ago 913kB

9. View the layers of the image using the docker history command:

docker history scratchtest

You will see a similar output to the following one and it has only two layers, the
original layer from scratch and the layer where we ADD the test C program:

IMAGE CREATED CREATED BY SIZE

221adbe23c26 23 minutes ago /bin/sh -c #(nop) CMD ["/test"] 0B

09b61a3a1043 23 minutes ago /bin/sh -c #(nop) ADD file:80933… 913kB

The scratch image we've created in this exercise goes part of the way to creating an
image that is both functional and minimal, and also demonstrates that if you think a
little about what you are trying to achieve, it will be easy to speed up your builds and
reduce the size of your images.

We will now take a break from working with building images and take a closer look at
naming and tagging our Docker images.

110 | Managing Your Docker Images

Docker Image Naming and Tagging
We've touched on tags, but as we work more closely with Docker images, it's probably
a good time to look at image tags in more depth. In simple terms, a tag is a label
on the Docker image and should provide the user of the image with some useful
information about the image or version of the image they are using.

Until now, we've been working with our images as if we're solo developers, but
when we start to work with a larger development team, a need arises to think a little
harder about how we'll be naming and tagging our images. The following section of
the chapter will add to your previous work and allow you to start putting together a
naming and tagging strategy for your projects and work.

There are two main methods for naming and tagging your Docker images. You can
use the docker tag command, or you can use the -t option when you build your
image from a Dockerfile. To use the docker tag command, you specify the
source repository name you will be using as the base and the target name and tag
you will be creating:

docker tag <source_repository_name>:<tag> <target_repository_name>:tag

When you name your image using the docker build command, the Dockerfile
used will create your source, and then use the -t option to name and tag your
images as follows:

docker build -t <target_repository_name>:tag Dockerfile

The repository name can sometimes be prefixed with a hostname, but this is
optional and will be used to let Docker know where the repository is located. We'll
demonstrate this later in this chapter when we create our own Docker Registry. If
you're pushing your images to Docker Hub, you also need to prefix your repository
name with your Docker Hub username, like this:

docker build -t <dockerhub_user>/<target_repository_name>:tag Dockerfile

Using more than two prefixes in your image name is only supported in local image
registries and is generally not used. The next exercise will guide you through the
process of tagging Docker images.

Docker Image Naming and Tagging | 111

Exercise 3.05: Tagging Docker Images

In the following exercise, you will work with a different image, using the lightweight
busybox image to demonstrate the process of tagging and start to implement tags
in your project. BusyBox is used to combine tiny versions of many common UNIX
utilities into a single small executable:

1. Run the docker rmi command to clear up the images you currently have on
your system, so you don't get confused with a large number of images around:

docker rmi -f $(docker images -a -q)

2. On the command line, run the docker pull command to download the latest
busybox container:

docker pull busybox

3. Run the docker images command:

docker images

This will give us the information we need to start putting some tag
commands together:

REPOSITORY TAG IMAGE ID CREATED SIZE

Busybox latest 19485c79a9bb 2 weeks ago 1.22MB

4. Name and tag the image using the tag command. You can either use the image
ID or repository name to tag the images. Start by using the image ID, but note
that on your system you'll have a different image ID. Name the repository
new_busybox and include the tag ver_1:

docker tag 19485c79a9bb new_busybox:ver_1

5. Use the repository name and image tag. Create a new repository using your
name and tag with a new version of ver_1.1 as follows:

docker tag new_busybox:ver_1 vince/busybox:ver_1.1

Note

We have used the author's name (vince) in this example.

112 | Managing Your Docker Images

6. Run the docker images command:

docker images

You should see a similar output to the one that follows. Of course, your image
IDs will be different, but the repository names and tags should be similar:

REPOSITORY TAG ID CREATED SIZE

Busybox latest 19485c79a9bb 2 weeks ago 1.22MB

new_busybox ver_1 19485c79a9bb 2 weeks ago 1.22MB

vince/busybox ver_1.1 19485c79a9bb 2 weeks ago 1.22MB

7. Create a basic image using a Dockerfile and the -t option of the docker
build command to name and tag the image. You've done this a few times
already in this chapter, so from the command line, run the following command
to create a basic Dockerfile, using the new_busybox image you named
earlier. Also include the tag for the image name, as Docker will try to use the
latest tag and, as this does not exist, it will fail:

echo "FROM new_busybox:ver_1" > Dockerfile

8. Run the docker build command to create the image while naming and
tagging it at the same time:

docker build -t built_image:ver_1.1.1 .

9. Run the docker images command:

docker images

You should now have four images available on your system. All have the same
container ID but will have different repository names and tagged versions:

REPOSITORY TAG ID CREATED SIZE

built_image ver_1.1.1 19485c79a9bb 2 weeks ago 1.22MB

Busybox latest 19485c79a9bb 2 weeks ago 1.22MB

new_busybox ver_1 19485c79a9bb 2 weeks ago 1.22MB

vince/busybox ver_1.1 19485c79a9bb 2 weeks ago 1.22MB

Tagging images with a proper version that is relevant to your organization or team
does not take too much time, especially with a little practice. This section of the
chapter has shown you how to tag your images so they are no longer tagged with the
default tag of the latest. You will see in the next section that using the latest tag
and hoping it will work correctly could actually cause you some extra issues.

Using the latest Tag in Docker | 113

Using the latest Tag in Docker
As we've been working with our tags, we've mentioned a few times not to use the
latest tag, which is provided by Docker as a default tag. As you will see shortly,
using the latest tag can cause a lot of issues, especially if you're deploying images
into production environments.

The first thing we need to realize is that latest is simply a tag, just as we were
using ver_1 in our previous example. It definitely does not mean the latest version
of our code either. It simply means the most recent build of our image, which did not
include a tag.

Using the latest will also cause a lot of issues in large teams, deploying to
environments multiple times a day. It also means you will have no history, which
makes rolling back bad changes difficult. So, remember that every time you build or
pull an image if you don't specify a tag, Docker will use the latest tag and will not
do anything to ensure the image is the most up-to-date version. In the next exercise,
we will check what issues can be caused when using the latest tag.

Exercise 3.06: Issues When Using latest

You may still be new to both using Docker and using tags, so you may not have
experienced any issues using the latest tag as yet. This exercise will give you
some clear ideas on how using the latest tag could cause problems with
your development process and provide you with reasons as to why you should
avoid it. You created a simple Dockerfile in the previous exercise using the
new_busybox:ver_1 image. In this exercise, you will extend this file further:

1. Open the Dockerfile and amend the file to now look like the following
file. It is a simple script that will create the version.sh script with simple
code to output the latest version of our service. The new file will be called
Dockerfile_ver1.

1 FROM new_busybox:ver_1

2

3 RUN echo "#!/bin/sh\n" > /version.sh

4 RUN echo "echo \"This is Version 1 of our service\""
 >> /version.sh
5

6 ENTRYPOINT ["sh", "/version.sh"]

114 | Managing Your Docker Images

2. Build the image and name it with your name and show the image is just a test:

docker build -t vince/test .

Note

We have used vince as the name here, but you can use any
desirable name.

3. Run the image using the docker run command:

docker run vince/test

You should now see the output of the versions.sh script:

This is Version 1 of our service

4. Use the docker tag command to tag this image as version1:

docker tag vince/test vince/test:version1

5. Open the Dockerfile and make the following change to line 4:

1 FROM new_busybox:ver_1

2

3 RUN echo "#!/bin/sh\n" > /version.sh

4 RUN echo "echo \"This is Version 2 of our service\""
 >> /version.sh
5

6 ENTRYPOINT ["sh", "/version.sh"]

6. Build your amended Dockerfile and tag it with version2:

docker build -t vince/test:version2 .

7. Run the amended image using the docker run command:

docker run vince/test

You should see your latest code changes as well:

This is Version 1 of our service

This isn't the version we were looking for, was it? Without using the correct tag,
Docker will run what is the most recent version of the image that was tagged
with the latest. This image was created in step 3.

Docker Image Tagging Policies | 115

8. Now, run both images with the latest and version2 tags:

docker run vince/test:latest

This is Version 1 of our service

We can now see the difference in the output:

docker run vince/test:version2

This is Version 2 of our service

As you may have already thought, you need to specify the version2 tag to
run the amended version of the code. You may have seen this coming but
remember this is going to make things more difficult to keep track of if you
have multiple developers pushing images to a shared registry. If your team is
using orchestration and using the latest version, you may end up with mixed
versions of your services running across your production environment.

These exercises have given you examples on how to use tags as well as showing
you what the consequences could be if you decide to only use the latest tag.
The following section will introduce tagging policies and how to implement
automated processes.

Docker Image Tagging Policies
As development teams increase in size and the projects they work on increase
in complexity, a standardized tagging policy for your team becomes even more
important. If your team is not getting its tagging correct, as we've demonstrated
in our previous sections, this can cause a lot of confusion and actually cause more
issues. It's a good habit to decide on a tagging policy early to make sure you don't
run into any of these issues.

In this section of the chapter, we are going to cover some of the different tagging
policies you could use within your team with some examples on how they can
also be implemented. There are rarely any right or wrong answers when it comes
to setting up your tagging policy, but it is necessary to make a decision early and
ensure everyone in the team is in agreement.

116 | Managing Your Docker Images

Semantic versioning is a versioning system that can also be used as part of your
tagging policy. If you're not familiar with semantic versioning, it is a trusted version
system that uses a three-component number in the format of major_version.
minor_version.patch. For example, if you saw the semantic version of an
application as 2.1.0, it would show version 2 as the major release version, 1 as the
minor release version, and 0 as there are no patches. Semantic versioning can be
easily automated, especially in an automated build environment. Another option
is to use a hash value, like the git commit hash for your code. This means you
can match the tag back to your repository, so anyone can see specifically the code
changes that have been made since the code was implemented. You could also use a
date value, which can once again be easily automated.

The common theme here is that our tagging policy should be automated to ensure it
is used, understood, and adhered to. In the following exercise, we are going to look
at using hash values as part of your tagging policy and we will then create a script to
build our Docker images and add semantic versioning to our tags.

Exercise 3.07: Automating Your Image Tagging

In this exercise, you are going to look at automating your image tagging to limit
the amount of individual intervention needed in tagging your Docker images.
This exercise uses the basic-base image again:

1. Create the basic-base image again by creating the following Dockerfile:

1 FROM alpine

2

3 RUN apk update && apk add wget curl

2. Build the new base image from the preceding Dockerfile and name it
basic-base:

docker build -t basic-base .

3. With the basic-base image created, set up the Dockerfile named
Dockerfile_ver1 to build a basic-app again. In this instance, return
to the previous Dockerfile as listed here:

1 FROM basic-base

2

3 CMD mkdir -p /var/www/html/

4

5 WORKDIR /var/www/html/

6

Docker Image Tagging Policies | 117

7 ADD Dockerfile.tar.gz /var/www/html/

8 RUN cat Dockerfile

4. If you've been using Git to track and commit the changes in your code, you can
tag your images with the commit hash from Git using the git log command.
So, build your new image, as you normally would, with the docker build
command, but in this instance, add the tag to provide the short commit hash
from git:

docker build -t basic-app:$(git log -1 --format=%h) .

...

Successfully tagged basic-app:503a2eb

Note

If you are new to using Git, it is a source control application that allows you
to track your changes and collaborate with other users on different coding
projects. If you have never used Git before, the following commands will
initialize your repository, add the Dockerfile to the repository, and
commit these changes, so we have a Git log present:

git init; git add Dockerfile; git commit –m
"initial commit"

5. Use your Dockerfile to add arguments when your image is being built.
Open the Dockerfile you've been using for your basic-app and add
in the following two lines to set variables as unknown, and then set LABEL
as the value offered at build time, using the git-commit build argument.
Your Dockerfile should now appear as follows:

1 FROM basic-base

2

3 ARG GIT_COMMIT=unknown

4 LABEL git-commit=$GIT_COMMIT

5

6 CMD mkdir -p /var/www/html/

7

8 WORKDIR /var/www/html/

9

10 ADD Dockerfile.tar.gz /var/www/html/

11 RUN cat Dockerfile

118 | Managing Your Docker Images

6. Build the image again using the --build-arg option with the GIT_COMMIT
argument, which is now equal to your git commit hash value:

docker build -t basic-app --build-arg GIT_COMMIT=$(git log -1
--format=%h) .

7. Run the docker inspect command searching for the "git-commit" label:

docker inspect -f '{{index .ContainerConfig.Labels "git-commit"}}'
basic-app

You can see the Git hash label you added at build time:

503a2eb

This is starting to move in the direction you need, but what if you need to use
semantic versioning as your team has decided this is the best option for your
development? The rest of this exercise will set up a build script to both build
and set the tag as the semantic version number.

8. Alongside your Dockerfile, create a version file simply named VERSION.
Set the new version as 1.0.0 for this build of basic-app:

echo "1.0.0" > VERSION

9. Make changes to the Dockerfile to remove the GIT_COMMIT details added
previously and add the VERSION file as part of your build. Adding it into the
image itself means users can always refer to the VERSION file if ever they
need to verify the image version number:

1 FROM basic-base

2

3 CMD mkdir -p /var/www/html/

4

5 WORKDIR /var/www/html/

6

7 ADD VERSION /var/www/html/

8 ADD Dockerfile.tar.gz /var/www/html/

9 RUN cat Dockerfile

10. Create a build script to both build and tag your image. Call this build.sh and it
will reside in the same directory as your Dockerfile and VERSION file:

touch build.sh

Docker Image Tagging Policies | 119

11. Add the following details to build.sh. Line 3 will be your Docker Hub
username, and line 4 is the name of the image or service you are building (in the
following example, basic-app). The script then grabs the version number from
your VERSION file and brings all your variables together to build your image
with a nice name and tag relevant to your new semantic version:

1 set -ex

2

3 USER=<your_user_name>

4 SERVICENAME=basic-app

5

6 version=`cat VERSION`

7 echo "version: $version"

8

9 docker build -t $USER/$SERVICENAME:$version .

12. Make sure the build script is set to run as an executable script using the chmod
command on the command line:

chmod +x build.sh

13. Run the build script from the command line. set -xe in line 1 of the script will
make sure all commands are output to the console and ensure that if any of
the commands cause an error, the script will stop. Run the build script now,
as follows:

./build.sh

Only the output of the build script is shown here as the rest of the build process
happens as normal:

++ USERNAME=vincesestodocker

++ IMAGE=basic-app

+++ cat VERSION

++ version=1.0.0

++ echo 'version: 1.0.0'

version: 1.0.0

++ docker build -t vincesestodocker/basic-app:1.0.0 .

120 | Managing Your Docker Images

14. View the image using the docker images command:

docker images vincesestodocker/basic-app

It should reflect the name and tags created as part of the build script:

REPOSITORY TAG IMAGE ID

 CREATED SIZE

vincesestodocker/basic-app 1.0.0 94d0d337a28c

 29 minutes ago 8.8MB

This exercise goes a long way in automating our tagging process, and it allows the
build script to be added to source control and run easily as part of a build pipeline.
It is just a start though, and you will see in the activities at the end of the chapter that
we will extend this build script further. For now, we have completed this section on
the tagging and naming of our images, and it fits in nicely with the next section,
which covers storing and publishing your Docker images.

Storing and Publishing Your Docker Images
Since the early days of Docker's history, one of its main attractions has been a central
website where users can download images, reuse and improve these images for their
purposes, and reupload them to grant access to other users. Docker Hub has grown
and although it has had some security issues, it is still usually the first place people
will look when they need new images or resources for their projects.

As a public repository, Docker Hub is still one of the first places people go to research
and use images needed to streamline or improve their new development project. It
is also an important place for companies and developers to host their open-source
images, available for the public to utilize. However, Docker Hub is not the only
solution for you to store and distribute your Docker images.

For development teams, a public repository on Docker Hub, although accessible
and highly available, may not be the best option. These days, your team may look to
store production images in a cloud-based registry solution such as Amazon Elastic
Container Registry, Google Container Registry, or, as you'll see later in this chapter,
another option would be to set up a local registry.

In this part of the chapter, we'll start by seeing how you can actually move
images from machine to machine and then take a closer look at using Docker Hub.
We'll see how to start moving our images across to Docker Hub as a publicly stored
image. We will then look at setting up a locally hosted Docker registry on your
development system.

Storing and Publishing Your Docker Images | 121

The docker save command will be used to save the images from the command
line. Here, we use the -o option to specify the output file and directory we are going
to save our image to:

docker save -o <output_file_and_Directory> <image_repo_name/image_
name:tag>

We will then be able to use the load command similar to the import command
when we created a new base image earlier in the chapter, specifying the file we
created previously:

docker load -i <output_file_and_Directory>

Keep in mind that not all images on Docker Hub should be treated the same way,
as it comes with a mixture of both official images that have been created by Docker
Inc. and community images created by Docker users. Official images are still open
source images and solutions available for you to add to your projects. Community
images are offered usually by companies or individuals wanting you to leverage
their technology.

Note

Use caution when sourcing images, even from Docker Hub. Try to limit
pulling images from sources that are not reputable and have not been
reviewed or downloaded by a large number of users as they could pose a
potential security risk.

Exercise 3.08: Transporting Docker Images Manually

Sometimes, whether there are issues with firewalls or other security measures on
your network, you may need to copy an image directly from one system to another.
Fortunately, Docker has a way of achieving this and, in this exercise, you will move an
image from one system to another without using a registry:

1. Run the docker save command with the -o option to save the image
you created in the last part of this chapter. The command needs the user
to specify both the filename and the directory. In the following example,
it is /tmp/basic-app.tar. Also specify the user, image name, and tag
of the image:

docker save -o /tmp/basic-app.tar vincesestodocker/basic-app:1.0.0

122 | Managing Your Docker Images

You should now see the packaged-up image in the /tmp directory. You are using
.tar as the extension of your filename as the save command creates a TAR file
of the image. You could actually use any name for the extension of the file.

2. Use the du command to verify that the basic-app.tar file has data in it:

du -sh /tmp/basic-app.tar

8.9M /tmp/basic-app.tar

3. You can now move the image as you need to, whether it be via rsync, scp, or
cp. As it is a TAR file, you could also compress the file as a ZIP file if you need to
save some space during the transfer. In this example, you will simply delete the
image from your current system. Run the docker rmi command with the ID of
the image you have just saved:

docker rmi -f 94d0d337a28c

4. Load the new image back as a Docker image using the docker load command
with the -i option, pointing to where the packaged image is located. In this case,
it is the /tmp directory:

docker load -i /tmp/basic-app.tar

You should get output like the following:

Loaded image: vincesestodocker/basic-app:1.0.0

5. Use the docker image command to bring up the image you have just loaded
into your local environment:

docker images vincesestodocker/basic-app

You should get output like the following:

REPOSITORY TAG IMAGE ID

 CREATED SIZE

vincesestodocker/basic-app 1.0.0 2056b6e48b1a

 29 minutes ago 8.8MB

This was just a simple exercise, but it hopefully served to show you that if there is
ever a situation where you are unable to connect to a registry, you are still able to
transport your Docker images. The next exercises are more focused on the usual
methods of storing, publishing, and distributing your Docker images.

Storing and Publishing Your Docker Images | 123

Storing and Deleting Docker Images in Docker Hub

Although you can work with Docker Hub without paying any money, you need to
know you will only get one private repository free of charge on your account. If
you want more, you'll need to pay for a monthly plan on Docker. If Docker Hub is
the solution your team has chosen to use, you will rarely need only one private
repository. If you decide a free account is for you, then you get an unlimited number
of free repositories.

Exercise 3.09: Storing Docker Images in Docker Hub and Deleting the Repository

In this exercise, you will create a new repository for the basic-app that you've been
working on and store the images in Docker Hub. Once you have pushed the images in
Docker Hub, you will also look at how you can delete the repository:

Note

The following exercise will need you to have your account on Docker Hub.
We will only be using free repositories, so you will not need to be on a paid
monthly plan, but if you haven't signed up for a free account on Docker Hub,
go to https://hub.docker.com/signup.

1. Log in to your Docker Hub account and, under the Repositories section,
you'll have the option Create Repository as a blue button on the right
of the screen. Click this button so that you can set up a repository for the
basic-app you have been working on:

Figure 3.1: Creating a repository in Docker Hub

https://hub.docker.com/signup

124 | Managing Your Docker Images

2. When creating a new repository, you'll be presented with a page like the one that
follows. Fill in the Name of the repository, which is usually the name of the image
or service you are storing (in this case, basic-app). You also have the option to
set the repository as Public or Private, and in this instance, select Public:

Figure 3.2: Repository creation screen of Docker Hub

3. Toward the bottom on the screen, there are also options to build your images.
Click the Create button at the bottom of the screen:

Figure 3.3: Repository creation screen of Docker Hub

Storing and Publishing Your Docker Images | 125

4. Once your new repository is created, it will provide details on how to
start pushing your images to your new repository. Tag your image with
<account_name>/<image_name>:tag to let Docker know where it
will be pushing the image and which repository Docker will be pushing it to:

docker tag basic-app vincesestodocker/basic-app:ver1

5. Now, Docker on your system knows where to push the image. Push the
image using the docker push <account_name>/<image_name>:tag
command:

docker push vincesestodocker/basic-app:ver1

denied: requested access to the resource is denied

You need to make sure you are logged in to Docker Hub from the command line
as well as the web interface.

6. Use the docker login command and enter the same credentials you were
using when you logged in to create the new repository:

docker login

Login with your Docker ID to push and pull images from Docker Hub. If
you don't have a Docker ID, head over to https://hub.docker.com to
create one.

Username: vincesestodocker

Password:

Login Succeeded

7. Now, push your image to your new repository, as you did in step 5 of this
exercise, which previously failed. It should give you a successful result:

docker push basic-app vincesestodocker/basic-app:ver1

126 | Managing Your Docker Images

8. Move back to the Docker Hub web interface and you should now see the image
version you have pushed, sitting in your newly created repository:

Figure 3.4: Your newly created Docker Hub repository with image

You now have a public repository available for anyone wanting to pull your
image down and reuse it for their purposes. If someone needed to use your
image, they would simply use the full name of the image, including tags with
the docker pull command or FROM command in a Dockerfile.

Storing and Publishing Your Docker Images | 127

9. You'll notice in the preceding image that, on the right-hand side of the screen,
there is the Public View button. This gives you an option to see specifically
what the public will see when they search for your image. Click the button and
you should see a similar screen to the following:

Figure 3.5: The public view of your Docker Hub repository

This is exactly what the public will see of your repository. It's now up to you
to make sure you have the overview up to date and ensure your image is
supported to make sure there are no problems with anyone wanting to use
your image.

128 | Managing Your Docker Images

10. Lastly, for this exercise, clean up the repository you've just created. If you are not
still in the web interface of your repository, move back onto the Docker Hub web
page and click the Settings tab at the top of the screen:

Figure 3.6: The Settings screen of the Docker Hub repository

11. Here you will have the option to make your repository private, but in this
exercise, you will delete the repository. Click the Delete Repository
option and confirm you now want to delete it.

As demonstrated in this exercise, Docker Hub provides you with an easy way to
distribute images to allow other users to collaborate or utilize the work you've already
done. A public repository is not always the best option for an enterprise, but just as
GitHub has allowed developers to distribute their code and collaborate with other
developers, Docker Hub can do the same for your Docker Images.

The Docker Registry
The Docker Registry is a service that hosts your images. Most of the time, registries
are private and only available for the team that has access to them. There are a lot of
great options available and one of those options is the registry image made available
and maintained by Docker.

The Docker Registry | 129

There are a few different reasons why you would want to be running your own
Docker registry. It could be due to security issues, or you don't want your latest work
publicly available. It could even be the simple convenience of having your registry
running on the system you're working on. In this part of the chapter, we'll set up a
registry on your working environment and start storing your images on the registry.

Note

Docker simplifies things for us as they have a registry image available on
Docker Hub to download and use for your projects. For more information on
the image we will be using, you can find it at the following location:

https://hub.docker.com/_/registry.

Exercise 3.10: Creating a Local Docker Registry

In this exercise, you will set up a Docker registry for your images and run them on
your system. You are not going to set up a registry available to your team, or the
outside world. You will set up a nice domain to use on your systems that reflect
the work you are doing. This will help you decide whether to then have this registry
available to your team or other users:

1. To set up your domain, add a domain for your local registry to your system
hosts file. On a Windows system, you will need to access the hosts file at
C:\Windows\System32\drivers\etc\hosts, while on a Linux or
Max, it will be /etc/hosts. Open the hosts file and add the following
line to the file:

127.0.0.1 dev.docker.local

This will allow you to use the dev.docker.local domain instead of using
localhost for your local registry.

2. Pull the latest registry image down from Docker Hub:

docker pull registry

https://hub.docker.com/_/registry

130 | Managing Your Docker Images

3. Use the following command to run the registry container. Provide the ports you
can access the registry with; in this case, use port 5000. You also need to use
the --restart=always option, which will make sure the container restarts if
Docker or your system needs to restart:

docker run -d -p 5000:5000 --restart=always --name registry registry

Note

In the following chapters, you will learn how to extend the file capacity
of your Docker container by mounting a directory from your host system
that will then run as part of your running container. To do this, you will use
the -v or --volume option as part of your docker run command,
providing the file and the mount point on the container. For example, you
could run the preceding command to mount a directory on your host system
as follows:

docker run -d -p 5000:5000 --restart=always
--volume <directory_name>:/var/lib/registry:rw
--name registry

4. Run the docker ps command to show the registry container running on
your system, which is ready to accept and store new images:

docker ps

The command will return the output like the following:

CONTAINER ID IMAGE COMMAND CREATED

41664c379bec registry "/entrypoint.sh /etc…" 58 seconds ago

5. Run the docker tag command to tag your existing images with the registry
hostname and port dev.docker.local:5000.

docker tag vincesestodocker/basic-app:ver1 dev.docker.local:5000/
basic-app:ver1

This will ensure that your basic-app image will be automatically pushed to the
local registry:

docker push dev.docker.local:5000/basic-app:ver1

The Docker Registry | 131

6. Delete the original images from the system you are currently working on using
the docker image remove command:

docker image remove dev.docker.local:5000/basic-app:ver1

7. Now, pull down the image from your local registry by including the registry
hostname and port dev.docker.local:5000 as part of the pull command:

docker pull dev.docker.local:5000/basic-app:ver1

This brings us to the end of this section where we have created our registry to
store our Docker images on our local system. The registry itself is simple and is
not really supported but does go a long way to help you understand how a registry
will work and how it can work with your team. If you are looking for a more robust
and supported image, Docker also provides Docker Trusted Registry, which is a
commercial offering by Docker.

It's time to test the knowledge acquired so far. In the next activity, we will modify the
build script for the PostgreSQL container image to use the Git commit hash instead
of semantic versioning.

Activity 3.01: Build Scripts Using Git Hash Versioning

Earlier in the chapter, you created a build script that automated the tagging and
versioning process of your images being built. In this activity, you will work further
with the Panoramic Trekking app and will be tasked with setting up a build script for
the PostgreSQL container image. You can use the previous build script you created
earlier, but you will need to modify the script to no longer use semantic versioning
and instead use the current Git commit hash. Also, make sure that your build script
pushed the built image onto your Docker registry.

The steps required for completion are as follows:

1. Ensure you have a running Dockerfile created for your PostgreSQL
container image.

2. Create your build script, which performs the following actions:

a) Sets the variables for your Docker registry, the service name being built,
and the Git hash version

b) Prints the Git hash version to the screen

c) Builds your PostgreSQL Docker images

d) Pushes your Docker image to your registry

132 | Managing Your Docker Images

3. Ensure that the build script runs and completes successfully.

Expected Output:

./BuildScript.sh

++ REGISTRY=dev.docker.local:5000

++ SERVICENAME=basic-app

+++ git log -1 --format=%h

++ GIT_VERSION=49d3a10

++ echo 'version: 49d3a10 '

version: 49d3a10

++ docker build -t dev.docker.local:5000/basic-app:49d3a10 .

Sending build context to Docker daemon 3.072kB

Step 1/1 : FROM postgres

 ---> 873ed24f782e

Successfully built 873ed24f782e

Successfully tagged dev.docker.local:5000/basic-app:49d3a10

++ docker push dev.docker.local:5000/basic-app:49d3a10

The push refers to repository [dev.docker.local:5000/basic-app]

Note

The solution for this activity can be found via this link.

In the next activity, you will configure your local Docker registry storage by changing
the docker run command to store it in a directory on your home directory.

Activity 3.02: Configuring Your Local Docker Registry Storage

During this chapter, you set up your registry and began using basic options to get it
running. The registry itself is storing images on the host filesystem. In this activity, you
want to change the docker run command to store it in a directory on your home
directory. You will create a directory called test_registry and run the Docker
command to store images in this test_registry directory in your home directory.

The steps required for completion are as follows:

1. Create a directory within your home directory to mount your local registry.

2. Run the local registry. This time mount the newly created volume as part of
the registry.

Summary | 133

3. Test your changes by pushing a new image to the local registry.

Hint

Use the -v or –volume option when you run your registry container.

Expected Output:

While listing all the files in the local directory, you will be able to see the
pushed images:

ls ~/test_registry/registry/docker/registry/v2/repositories/

basic-app

Note

The solution for this activity can be found via this link.

Summary
This chapter demonstrated how Docker allows users to work with images to package
their applications together with a working environment to be moved across different
working environments. You've seen how Docker uses layers and caching to improve
build speed and ensure you can also work with these layers to reserve resources or
disk space.

We also spent some time creating a base image with only one layer of our image.
We've explored tagging and tagging practices you can adopt in order to counter
issues associated with deploying and publishing your images. We also took a look
at different ways we can publish our images and share them with other users and
developers. We are only just getting started and still have a long way to go.

In the next chapter, we'll be working further with our Dockerfiles to learn
how multistage Dockerfiles work. We'll also find more ways in which we can
optimize our Docker images for better performance when they're released into a
production environment.

Overview

In this chapter, we will discuss a normal Docker build. You will review and
practice Dockerfile best practices and learn to create and optimize the
size of the Docker images using a builder pattern and
multi-stage Dockerfile.

Multi-Stage Dockerfiles

4

136 | Multi-Stage Dockerfiles

Introduction
In the previous chapter, we learned about Docker registries, including private and
public registries. We created our own private Docker registry to store the Docker
images. We also learned how to set up access and store our Docker images in
the Docker Hub. In this chapter, we will be discussing the concept of multi-stage
Dockerfiles.

Multi-stage Dockerfiles are a feature introduced in Docker version 17.05.
This feature is preferable when we want to optimize Docker image size while
running Docker images in production environments. To achieve this, a multi-stage
Dockerfile will create multiple intermediate Docker images during the build
process and selectively copy only essential artifacts from one stage to the other.

Before multi-stage Docker builds were introduced, the builder pattern was used to
optimize the Docker image size. Unlike multi-stage builds, the builder pattern needs
two Dockerfiles and a shell script to create efficient Docker images.

In this chapter, we will first examine normal Docker builds and the problems
associated with them. Next, we will learn how to use the builder pattern to optimize
the Docker image size and discuss the problems associated with the builder pattern.
Finally, we will learn to use multi-stage Dockerfiles to overcome the problems of
the builder pattern.

Normal Docker Builds
With Docker, we can use Dockerfiles to create custom Docker images. As we
discussed in Chapter 2, Getting Started with Dockerfiles, a Dockerfile is a text file
that contains instructions on how to create a Docker image. However, it is critical to
have minimal-sized Docker images when running them in production environments.
This allows developers to speed up their Docker containers' build and deployment
times. In this section, we will build a custom Docker image to observe the problems
associated with the normal Docker build process.

Consider an example where we build a simple Golang application. We are
going to deploy a hello world application written in Golang using the
following Dockerfile:

Start from latest golang parent image

FROM golang:latest

Set the working directory

WORKDIR /myapp

Normal Docker Builds | 137

Copy source file from current directory to container

COPY helloworld.go .

Build the application

RUN go build -o helloworld .

Run the application

ENTRYPOINT ["./helloworld"]

This Dockerfile starts with the latest Golang image as the parent image. This
parent image contains all the build tools required to build our Golang application.
Next, we will set the /myapp directory as the current working directory and copy the
helloworld.go source file from the host filesystem to the container filesystem.
Then, we will use the RUN directive to execute the go build command to build
the application. Finally, the ENTRYPOINT directive is used to run the helloworld
executable created in the previous step.

The following is the content of the helloworld.go file. This is a simple file that will
print the text "Hello World" when executed:

package main

import "fmt"

func main() {

 fmt.Println("Hello World")

}

Once the Dockerfile is ready, we can build the Docker image using the docker
image build command. This image will be tagged as helloworld:v1:

$ docker image build -t helloworld:v1 .

Now, observe the built image with the docker image ls command. You will get
an output similar to the following:

REPOSITORY TAG IMAGE ID CREATED SIZE

helloworld v1 23874f841e3e 10 seconds ago 805MB

138 | Multi-Stage Dockerfiles

Notice the image size. This build has resulted in a huge Docker image of 805 MB in
size. It is not efficient to have these large Docker images in production environments
as they will take a lot of time and bandwidth to be pushed and pulled over networks.
Small Docker images are much more efficient and can be pushed and pulled quickly
and deployed faster.

In addition to the size of the image, these Docker images can be vulnerable to attacks
since they contain build tools that can have potential security vulnerabilities.

Note

Potential security vulnerabilities may vary depending on what packages
are in the given Docker image. As an example, Java JDK has a number of
vulnerabilities. You can have a detailed look at the vulnerabilities related to
Java JDK at the following link:

https://www.cvedetails.com/vulnerability-list/vendor_id-93/product_id-19116/
Oracle-JDK.html.

To reduce the attack surface, it is recommended to have only the essential artifacts
(for example, compiled code) and runtimes when running Docker images in
production environments. As an example, with Golang, the Go compiler is
required to build the application, but not to run the application.

Ideally, you want a minimal-sized Docker image that only contains the runtime tools
and excludes all the build tools that we used to build the application.

We will now build such a Docker image using the normal build process in the
following exercise.

Exercise 4.01: Building a Docker Image with the Normal Build Process

Your manager has asked you to dockerize a simple Golang application. You are
provided with the Golang source code file, and your task is to compile and run this
file. In this exercise, you will build a Docker image using the normal build process.
You will then observe the image size of the final Docker image:

1. Create a new directory named normal-build for this exercise:

$ mkdir normal-build

2. Navigate to the newly created normal-build directory:

$ cd normal-build

https://www.cvedetails.com/vulnerability-list/vendor_id-93/product_id-19116/Oracle-JDK.html
https://www.cvedetails.com/vulnerability-list/vendor_id-93/product_id-19116/Oracle-JDK.html

Normal Docker Builds | 139

3. Within the normal-build directory, create a file named welcome.go.
This file will be copied to the Docker image during the build time:

$ touch welcome.go

4. Now, open the welcome.go file using your favorite text editor:

$ vim welcome.go

5. Add the following content to the welcome.go file, save it, and exit from the
welcome.go file:

package main

import "fmt"

func main() {

 fmt.Println("Welcome to multi-stage Docker builds")

}

This is a simple hello world application written in Golang. This will output
"Welcome to multi-stage Docker builds" on execution.

6. Within the normal-build directory, create a file named Dockerfile:

$ touch Dockerfile

7. Now, open the Dockerfile using your favorite text editor:

$ vim Dockerfile

8. Add the following content to the Dockerfile and save the file:

FROM golang:latest

WORKDIR /myapp

COPY welcome.go .

RUN go build -o welcome .

ENTRYPOINT ["./welcome"]

The Dockerfile starts with the FROM directive that specifies the latest Golang
image as the parent image. This will set the /myapp directory as the current
working directory of the Docker image. Then, the COPY directive will copy the
welcome.go source file that you created in step 3 to the Docker filesystem.
Next is the go build command, which will build the Golang code that you
created. Finally, the welcome code will be executed.

140 | Multi-Stage Dockerfiles

9. Now, build the Docker image:

$ docker build -t welcome:v1 .

You will see that the image is successfully built with the image ID as
b938bc11abf1 and tagged as welcome:v1:

Figure 4.1: Building the Docker image

10. Use the docker image ls command to list all the Docker images available on
your computer:

$ docker image ls

What Is the Builder Pattern? | 141

The command should return the following output:

Figure 4.2: Listing all Docker images

It can be observed in the preceding output that the image size of the
welcome:v1 image is 805MB.

In this section, we discussed how to use the normal Docker build process to build
a Docker image and observed its size. The result was a huge Docker image, over
800 MB in size. The main disadvantage of these large Docker images is that they
will take significant time to build, deploy, push, and pull over the networks. So, it is
recommended to create minimal-sized Docker images whenever possible. In the
next section, we will discuss how we can use the builder pattern to optimize the
image size.

What Is the Builder Pattern?
The builder pattern is a method used to create optimally sized Docker images.
It uses two Docker images and selectively copies essential artifacts from one to the
other. The first Docker image is known as the build image and is used as the
build environment to build the executables from the source code. This Docker image
contains compilers, build tools, and development dependencies required during the
build process.

The second Docker image is known as the runtime image and is used as the
runtime environment to run the executables created by the first Docker container.
This Docker image contains only the executables, the dependencies, and the runtime
tools. A shell script is used to copy the artifacts using the docker container
cp command.

142 | Multi-Stage Dockerfiles

The entire process of building the image using the builder pattern consists of the
following steps:

1. Create the Build Docker image.

2. Create a container from the Build Docker image.

3. Copy the artifacts from the Build Docker image to the local filesystem.

4. Build the Runtime Docker image using copied artifacts:

Figure 4.3: Building images using the builder pattern

As illustrated in the preceding image, the Build Dockerfile is used to create
the build container that will contain all the tools required to build the source code,
including compilers and build tools such as Maven, Gradle, and development
dependencies. Once the build container is created, the shell script will copy the
executables from the build container to the Docker host. Finally, the Runtime
container will be created with the executables copied from the Build container.

What Is the Builder Pattern? | 143

Now, observe how the builder pattern can be used to create minimal Docker
images. The following is the first Dockerfile used to create the Build Docker
container. This Dockerfile is named Dockerfile.build to distinguish it from the
Runtime Dockerfile:

Start from latest golang parent image

FROM golang:latest

Set the working directory

WORKDIR /myapp

Copy source file from current directory to container

COPY helloworld.go .

Build the application

RUN go build -o helloworld .

Run the application

ENTRYPOINT ["./helloworld"]

This is the same Dockerfile that we observed with the normal Docker builds.
This was used to create the helloworld executable from the helloworld.go
source file.

The following is the second Dockerfile used to build the Runtime
Docker container:

Start from latest alpine parent image

FROM alpine:latest

Set the working directory

WORKDIR /myapp

Copy helloworld app from current directory to container

COPY helloworld .

Run the application

ENTRYPOINT ["./helloworld"]

144 | Multi-Stage Dockerfiles

As opposed to the first Dockerfile, created from the golang parent image,
this second Dockerfile uses the alpine image as its parent image because
it is a minimal-sized Docker image, at only 5 MB. This image uses Alpine Linux, a
lightweight Linux distribution. Next, the /myapp directory is configured as the
working directory. Finally, the helloworld artifact is copied to the Docker
image, and the ENTRYPOINT directive is used to run the application.

This helloworld artifact is the result of the go build -o helloworld .
command executed in the first Dockerfile. We will be using a shell script to copy
this artifact from the build Docker container to the local filesystem, from where this
artifact will be copied to the runtime Docker image.

Consider the following shell script used to copy the build artifacts between
Docker containers:

#!/bin/sh

Build the builder Docker image

docker image build -t helloworld-build -f Dockerfile.build .

Create container from the build Docker image

docker container create --name helloworld-build-container
 helloworld-build

Copy build artifacts from build container to the local filesystem

docker container cp helloworld-build-container:/myapp/helloworld .

Build the runtime Docker image

docker image build -t helloworld .

Remove the build Docker container

docker container rm -f helloworld-build-container

Remove the copied artifact

rm helloworld

What Is the Builder Pattern? | 145

This shell script will first build the helloworld-build Docker image using the
Dockerfile.build file. The next step is to create a Docker container from the
helloworld-build image so that we can copy the helloworld artifact to the
Docker host. Once the container is created, we need to execute the command
to copy the helloworld artifact from the helloworld-build-container
to the current directory of the Docker host. Now, we can build the runtime
container with the docker image build command. Finally, we will execute
the necessary cleanup tasks by removing the intermediate artifacts, such as the
helloworld-build-container container and the helloworld executable.

Once we execute the shell script, we should be able to see two Docker images:

REPOSITORY TAG IMAGE ID CREATED SIZE

helloworld latest faff247e2b35 3 hours ago 7.6MB

helloworld-build latest f8c10c5bd28d 3 hours ago 805MB

Note the size difference between the two Docker images. The helloworld
Docker image is only 7.6 MB in size, which is a huge reduction from the
helloworld-build image at 805 MB.

As we can see, the builder pattern can drastically reduce the size of the Docker
images by copying only the essential artifacts to the final image. However,
the disadvantage with the builder pattern is that we need to maintain two
Dockerfiles and a shell script.

In the next exercise, we will gain hands-on experience in creating an optimized
Docker image using the builder pattern.

Exercise 4.02: Building a Docker Image with the Builder Pattern

In Exercise 4.01, Building a Docker Image with the Normal Build Process, you created
a Docker image to compile and run the Golang application. Now the application is
ready to go live, but the manager is not happy with the size of the Docker image.
You have been asked to create a minimal-sized Docker image to run the application.
In this exercise, you will optimize the Docker image using the builder pattern:

1. Create a new directory named builder-pattern for this exercise:

$ mkdir builder-pattern

2. Navigate to the newly created builder-pattern directory:

$ cd builder-pattern

146 | Multi-Stage Dockerfiles

3. Within the builder-pattern directory, create a file named welcome.go.
This file will be copied to the Docker image at build time:

$ touch welcome.go

4. Now, open the welcome.go file using your favorite text editor:

$ vim welcome.go

5. Add the following content to the welcome.go file, and then save and exit
this file:

package main

import "fmt"

func main() {

 fmt.Println("Welcome to multi-stage Docker builds")

}

This is a simple hello world application written in Golang. This will output
"Welcome to multi-stage Docker builds" once executed.

6. Within the builder-pattern directory, create a file named Dockerfile.
build. This file will contain all the instructions that you are going to use to
create the build Docker image:

$ touch Dockerfile.build

7. Now, open the Dockerfile.build using your favorite text editor:

$ vim Dockerfile.build

8. Add the following content to the Dockerfile.build file and save the file:

FROM golang:latest

WORKDIR /myapp

COPY welcome.go .

RUN go build -o welcome .

ENTRYPOINT ["./welcome"]

This has the same content that you created for the Dockerfile in Exercise 4.01,
Building a Docker Image with the Normal Build Process.

What Is the Builder Pattern? | 147

9. Next, create the Dockerfile for the runtime container. Within the
builder-pattern directory, create a file named Dockerfile. This
file will contain all the instructions that you are going to use to create the
runtime Docker image:

$ touch Dockerfile

10. Now, open the Dockerfile using your favorite text editor:

$ vim Dockerfile

11. Add the following content to the Dockerfile and save the file:

FROM scratch

WORKDIR /myapp

COPY welcome .

ENTRYPOINT ["./welcome"]

This Dockerfile uses the scratch image, which is the most minimal image
in Docker, as the parent. Then, it will configure the /myapp directory as the
working directory. Next, the welcome executable is copied from the Docker
host to the runtime Docker image. Finally, the ENTRYPOINT directive is used
to execute the welcome executable.

12. Create the shell script to copy the executables between Docker containers.
Within the builder-pattern directory, create a file named build.sh.
This file will contain the steps to coordinate the build process between the
two Docker containers:

$ touch build.sh

13. Now, open the build.sh file using your favorite text editor:

$ vim build.sh

14. Add the following content to the shell script and save the file:

#!/bin/sh

echo "Creating welcome builder image"

docker image build -t welcome-builder:v1 -f Dockerfile.build .

docker container create --name welcome-builder-container
 welcome-builder:v1

148 | Multi-Stage Dockerfiles

docker container cp welcome-builder-container:/myapp/welcome .

docker container rm -f welcome-builder-container

echo "Creating welcome runtime image"

docker image build -t welcome-runtime:v1 .

rm welcome

This shell script will first build the welcome-builder Docker image and create
a container from it. Then it will copy the compiled Golang executable from the
container to the local filesystem. Next, the welcome-builder-container
container is removed as it is an intermediate container. Finally, the welcome-
runtime image is built.

15. Add execution permissions to the build.sh shell script:

$ chmod +x build.sh

16. Now that you have the two Dockerfiles and the shell script, build the Docker
image by executing the build.sh shell script:

$./build.sh

The image will be successfully built and tagged as welcome-runtime:v1:

Figure 4.4: Building the Docker image

Introduction to Multi-Stage Dockerfiles | 149

17. Use the docker image ls command to list all the Docker images available on
your computer:

docker image ls

You should get the list of all the available Docker images as shown in the
following figure:

Figure 4.5: Listing all Docker images

As you can see from the preceding output, there are two Docker images
available. welcome-builder has all the builds tools and is 805 MB, while
welcome-runtime has a significantly lower image size of 2.01 MB.
golang:latest is the Docker image we used as the parent image
of welcome-builder.

In this exercise, you learned how to use the builder pattern to reduce the size of
the Docker image. However, using the builder pattern to optimize the size of the
Docker image means that we have to maintain two Dockerfiles and one shell
script. In the next section, let's observe how we can eliminate them by using a
multi-stage Dockerfile.

Introduction to Multi-Stage Dockerfiles
Multi-stage Dockerfiles are a feature that allows for a single Dockerfile to
contain multiple stages that can produce optimized Docker images. As we observed
with the builder pattern in the previous section, the stages will usually include a
builder state to build the executables from source code, and a runtime stage to run
the executables. Multi-stage Dockerfiles will use multiple FROM directives within
the Dockerfile for each stage, and each stage will start with a different base
image. Only the essential files will be copied selectively from one stage to the other.
Before multi-stage Dockerfiles, this was achieved with the builder pattern, as we
discussed in the previous section.

150 | Multi-Stage Dockerfiles

Multi-stage Docker builds allow us to create minimal-sized Docker images that
are similar to the builder pattern but eliminate the problems associated with it.
As we have seen in the previous example, the builder pattern needs to maintain
two Dockerfiles and a shell script. In contrast, multi-stage Docker builds will
need only one Dockerfile and do not require any shell script to copy the
executables between Docker containers. Also, the builder pattern requires that
you copy the executables to the Docker host before copying them to the final
Docker image. This is not required with the multi-stage Docker builds as we can
use the --from flag to copy the executables between Docker images without
copying them to the Docker host.

Now, let's observe the structure of a multi-stage Dockerfile:

Start from latest golang parent image

FROM golang:latest

Set the working directory

WORKDIR /myapp

Copy source file from current directory to container

COPY helloworld.go .

Build the application

RUN go build -o helloworld .

Start from latest alpine parent image

FROM alpine:latest

Set the working directory

WORKDIR /myapp

Copy helloworld app from current directory to container

COPY --from=0 /myapp/helloworld .

Run the application

ENTRYPOINT ["./helloworld"]

Introduction to Multi-Stage Dockerfiles | 151

The main difference between a normal Dockerfile and a multi-stage
Dockerfile is that a multi-stage Dockerfile will use multiple FROM directives
to build each phase. Each new phase will start with a new parent image and does
not contain anything from the previous image other than the selectively copied
executables. COPY --from=0 is used to copy the executable from the first stage
to the second stage.

Build the Docker image and tag the image as multi-stage:v1:

docker image build -t multi-stage:v1 .

Now, you can list the available Docker images:

REPOSITORY TAG IMAGE ID CREATED SIZE

multi-stage latest 75e1f4bcabd0 7 seconds ago 7.6MB

You can see that this has resulted in a Docker image of the same size that we
observed with the builder pattern.

Note

Multi-stage Dockerfiles reduce the number of Dockerfiles
required and eliminate the shell script without making any difference
to the size of the image.

By default, the stages in the multi-stage Dockerfile are referred to by an integer
number, starting with 0 from the first stage. These stages can be named to increase
readability and maintainability by adding AS <NAME> to the FROM directive.
The following is the improved version of the multi-stage Dockerfile that you
observed in the preceding code block:

Start from latest golang parent image

FROM golang:latest AS builder

Set the working directory

WORKDIR /myapp

Copy source file from current directory to container

COPY helloworld.go .

152 | Multi-Stage Dockerfiles

Build the application

RUN go build -o helloworld .

Start from latest alpine parent image

FROM alpine:latest AS runtime

Set the working directory

WORKDIR /myapp

Copy helloworld app from current directory to container

COPY --from=builder /myapp/helloworld .

Run the application

ENTRYPOINT ["./helloworld"]

In the preceding example, we named the first stage builder and second stage
runtime, as shown here:

FROM golang:latest AS builder

FROM alpine:latest AS runtime

Then, while copying the artifacts in the second stage, you used the name builder
for the --from flag:

COPY --from=builder /myapp/helloworld .

While building a multi-stage Dockerfile, there might be instances where you want
to build only up to a specific build stage. Consider that your Dockerfile has two
stages. The first one is to build the development stage and contains all the build and
debug tools, and the second is to build the production image that will contain only
the runtime tools. During the code development phase of the project, you might only
need to build up to the development stage to test and debug your code whenever
necessary. In this scenario, you can use the --target flag with the docker build
command to specify an intermediate stage as the final stage for the resulting image:

docker image build --target builder -t multi-stage-dev:v1 .

In the preceding example, you used --target builder to stop the build at the
builder stage.

In the next exercise, you will learn to use a multi-stage Dockerfile to create a
size-optimized Docker image.

Introduction to Multi-Stage Dockerfiles | 153

Exercise 4.03: Building a Docker Image with a Multi-Stage Docker Build

In Exercise 4.02, Building a Docker Image with the Builder Pattern, you used the builder
pattern to optimize the size of the Docker image. However, there is an operational
burden, as you need to manage two Dockerfiles and a shell script during the
Docker image build process. In this exercise, you are going to use a multi-stage
Dockerfile to eliminate this operational burden.

1. Create a new directory named multi-stage for this exercise:

mkdir multi-stage

2. Navigate to the newly created multi-stage directory:

cd multi-stage

3. Within the multi-stage directory, create a file named welcome.go. This file
will be copied to the Docker image during the build time:

$ touch welcome.go

4. Now, open the welcome.go file using your favorite text editor:

$ vim welcome.go

5. Add the following content to the welcome.go file, and then save and exit
this file:

package main

import "fmt"

func main() {

 fmt.Println("Welcome to multi-stage Docker builds")

}

This is a simple hello world application written in Golang. This will output
"Welcome to multi-stage Docker builds" once executed.

Within the multi-stage directory, create a file named Dockerfile. This file will
be the multi-stage Dockerfile:

touch Dockerfile

154 | Multi-Stage Dockerfiles

6. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

7. Add the following content to the Dockerfile and save the file:

FROM golang:latest AS builder

WORKDIR /myapp

COPY welcome.go .

RUN go build -o welcome .

FROM scratch

WORKDIR /myapp

COPY --from=builder /myapp/welcome .

ENTRYPOINT ["./welcome"]

This multi-stage Dockerfile uses the latest golang image as the parent
image and this stage is named builder. Next, the /myapp directory is
specified as the current working directory. Then, the COPY directive is used to
copy the welcome.go source file and the RUN directive is used to build the
Golang file.

The next stage of the Dockerfile uses the scratch image as the parent
image. This will set the /myapp directory as the current working directory of the
Docker image. Then, the COPY directive is used to copy the welcome executable
from the builder stage to this stage. Finally, ENTRYPOINT is used to run the
welcome executable.

8. Build the Docker image using the following command:

docker build -t welcome-optimized:v1 .

Introduction to Multi-Stage Dockerfiles | 155

The image will be successfully built and tagged as welcome-optimized:v1:

Figure 4.6: Building the Docker image

9. Use the docker image ls command to list all the Docker images available on
your computer. These images are available on your computer, either when you
pull them from Docker Registry or when you build them on your computer:

docker images

As you can see from the following output, the welcome-optimized image has
the same size as the welcome-runtime image that you built in Exercise 4.02,
Building a Docker Image with the Builder Pattern:

Figure 4.7: Listing all Docker images

156 | Multi-Stage Dockerfiles

In this exercise, you learned how to use multi-stage Dockerfiles to build
optimized Docker images. The following table presents a summary of the key
differences between the builder pattern and multi-stage Docker Builds:

Figure 4.8: Differences between the builder pattern and multi-stage Docker Builds

In the next section, we will review the best practices to follow when writing
a Dockerfile.

Dockerfile Best Practices
In the previous section, we discussed how we can build an efficient Docker image with
multi-stage Dockerfiles. In this section, we will cover other recommended best
practices for writing Dockerfiles. These best practices will ensure reduced build
time, reduced image size, increased security, and increased maintainability of the
Docker images produced.

Using an Appropriate Parent Image

Using the appropriate base image is one of the key recommendations when building
efficient Docker images.

It is always encouraged to use official images from the Docker Hub as the parent
image when you are building custom Docker images. These official images will ensure
that all best practices are followed, documentation is available, and security patches
are applied. For example, if you need the JDK (Java Development Kit) for your
application, you can use the openjdk official Docker image instead of using
the generic ubuntu image and installing the JDK on top of the ubuntu image:

Figure 4.9: Using appropriate parent images

Dockerfile Best Practices | 157

Secondly, avoid using the latest tag for the parent image when building Docker
images for production environments. The latest tag might get pointed to a newer
version of the image as the new versions are released to the Docker Hub, and the
newer version might not be backward compatible with your applications, leading to
failures in your production environments. Instead, the best practice is to always use a
specific versioned tag as the parent image:

Figure 4.10: Avoiding the use of the latest tag of the parent image

Finally, using the minimal version of the parent image is critical to getting a
minimal-sized Docker image. Most of the official Docker images in Docker Hub
have a minimal-sized image built around the Alpine Linux image. Also, in our
example, we can use the JRE (Java Runtime Environment) to run the
application instead of the JDK, which contains the build tools:

Figure 4.11: Using minimal-sized images

The openjdk:8-jre-alpine image will be only 84.9 MB in size, whereas
openjdk:8 will be 488 MB in size.

Using a Non-Root User for Better Security

By default, Docker containers run with the root (id = 0) user. This allows the
user to perform all the necessary administrative activities, such as changing system
configurations, installing packages, and binding to privileged ports. However, this is
high risk and is considered a bad security practice when running Docker containers
in production environments since hackers can gain root access to the Docker host by
hacking the applications running inside the Docker container.

Running containers as a non-root user is a recommended best practice to improve
the security of the Docker container. This will adhere to the principle of least privilege,
which ensures that the application has only the bare minimum privileges to perform
its tasks. There are two methods that we can use to run a container as a non-root
user: with the --user (or -u) flag, and with the USER directive.

158 | Multi-Stage Dockerfiles

Using the --user (or -u) flag with the docker run command is one method for
changing the default user while running a Docker container. Either the username or
the user ID can be specified with the --user (or -u) flag:

$ docker run --user=9999 ubuntu:focal

In the preceding command, we have specified the user ID as 9999. If we are
specifying the user as an ID, the corresponding user does not have to be available
in the Docker container.

Additionally, we can use the USER directive within the Dockerfile to define the
default user. However, this value can be overridden with the --user flag while
starting the Docker container:

FROM ubuntu:focal

RUN apt-get update

RUN useradd demo-user

USER demo-user

CMD whoami

In the preceding example, we have used the USER directive to set the default user to
demo-user. This means that any command after the USER directive will be executed
as a demo-user.

Using dockerignore

The .dockerignore file is a special text file within the Docker context that is used
to specify a list of files to be excluded from the Docker context while building the
Docker image. Once we execute the docker build command, the Docker client
will package the entire build context as a TAR archive and upload it to the Docker
daemon. When we execute the docker build command, the first line of the
output is Sending build context to Docker daemon, which indicates
that the Docker client is uploading the build context to the Docker daemon:

Sending build context to Docker daemon 18.6MB

Step 1/5 : FROM ubuntu:focal

Each time we build the Docker image, the build context will be sent to the Docker
daemon. As this will take time and bandwidth during the Docker image build process,
it is recommended to exclude all the files that are not needed in the final Docker
image. The .dockerignore file can be used to achieve this purpose. In addition
to saving time and bandwidth, the .dockerignore file is used to exclude the
confidential files, such as password files and key files from the build context.

Dockerfile Best Practices | 159

The .dockerignore file should be created in the root directory of the build
context. Before sending the build context to the Docker daemon, the Docker
client will look for the .dockerignore file in the root of the build context. If the
.dockerignore file exists, the Docker client will exclude all the files mentioned in
the .dockerignore file from the build context.

The following is the content of a sample .dockerignore file:

PASSWORDS.txt

tmp/

*.md

!README.md

In the preceding example, we have specifically excluded the PASSWORDS.txt file
and tmp directory from the build context, as well as all files with the .md extension
except for the README.md file.

Minimizing Layers

Each line in the Dockerfile will create a new layer that will take up space in
the Docker image. So, it is recommended to create as few layers as possible
when building the Docker image. To achieve this, combine the RUN directives
whenever possible.

As an example, consider the following Dockerfile, which will update the package
repository first and then install the redis-server and nginx packages:

FROM ubuntu:focal

RUN apt-get update

RUN apt-get install -y nginx

RUN apt-get install -y redis-server

This Dockerfile can be optimized by combining the three RUN directives:

FROM ubuntu:focal

RUN apt-get update \

 && apt-get install -y nginx redis-server

160 | Multi-Stage Dockerfiles

Don't Install Unnecessary Tools

Not installing unnecessary debugging tools (such as vim, curl, and telnet) and
removing unnecessary dependencies can help to create efficient Docker images that
are small in size. Some package managers such as apt will install recommended
and suggested packages automatically alongside required packages. We can
avoid this by specifying the no-install-recommends flag with the
apt-get install command:

FROM ubuntu:focal

RUN apt-get update \

 && apt-get install --no-install-recommends -y nginx

In the preceding example, we are installing the nginx package with the
no-install-recommends flag, which will help to reduce the final image
size by around 10 MB.

In addition to using the no-install-recommends flag, we can also remove the
cache of the apt package manager to further reduce the final Docker image size. This
can be achieved by running rm -rf /var/lib/apt/lists/* at the end of the
apt-get install command:

FROM ubuntu:focal

RUN apt-get update \

 && apt-get install --no-install-recommends -y nginx \

 && rm -rf /var/lib/apt/lists/*

In this section, we discussed the best practices when writing a Dockerfile.
Following these best practices will help to reduce build time, reduce the image
size, increase security, and increase the maintainability of the Docker image.

Now, let's test our knowledge by deploying a Golang HTTP server with a multi-stage
Docker build in the next activity.

Dockerfile Best Practices | 161

Activity 4.01: Deploying a Golang HTTP Server with a Multi-Stage Docker Build

Imagine that you have been tasked with deploying a Golang HTTP server to a Docker
container. Your manager has asked you to build a minimal-sized Docker image and
observe best practices while building the Dockerfile.

This Golang HTTP server will return different responses based on the invoke URL:

Figure 4.12: Responses based on the invoke URL

Your task is to dockerize the Golang application given in the following code block
using a multi-stage Dockerfile:

package main

import (

 "net/http"

 "fmt"

 "log"

 "os"

)

func main() {

 http.HandleFunc("/", defaultHandler)

 http.HandleFunc("/contact", contactHandler)

 http.HandleFunc("/login", loginHandler)

 port := os.Getenv("PORT")

 if port == "" {

 port = "8080"

 }

 log.Println("Service started on port " + port)

162 | Multi-Stage Dockerfiles

 err := http.ListenAndServe(":"+port, nil)

 if err != nil {

 log.Fatal("ListenAndServe: ", err)

 return

 }

}

func defaultHandler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "<h1>Home Page</h1>")

}

func contactHandler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "<h1>Contact Us</h1>")

}

func loginHandler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "<h1>Login Page</h1>")

}

Execute the following steps to complete this activity:

1. Create a folder to store the activity files.

2. Create a main.go file with the code provided in the preceding code block.

3. Create a multi-stage Dockerfile with two stages. The first stage will use the
golang image. This stage will build the Golang application using the go build
command. The second stage will use an alpine image. This stage will copy the
executable from the first stage and execute it.

4. Build and run the Docker image.

5. Once completed, stop and remove the Docker container.

Summary | 163

You should get the following output when you navigate to the URL
http://127.0.0.1:8080/:

Figure 4.13: Expected output of Activity 4.01

Note

The solution for this activity can be found via this link.

Summary
We started this chapter by defining a normal Docker build and creating a simple
Golang Docker image using the normal Docker build process. Then we observed the
size of the resulting Docker image and discussed how a minimal-sized Docker image
can speed up the build and deployment times for Docker containers and enhance
security by reducing the attack surface.

We then used the builder pattern to create minimal-sized Docker images, utilizing
two Dockerfiles and a shell script in this process to create the image. We
explored multi-stage Docker builds—a new feature introduced to Docker in version
17.05 that can help to eliminate the operational burden of having to maintain
two Dockerfiles and a shell script. Finally, we discussed the best practices for
writing Dockerfiles and how these best practices can ensure reduced build time,
reduced image size, and increased security, while increasing the maintainability of the
Docker image.

In the next chapter, we will cover docker-compose and how it can be used to
define and run multi-container Docker applications.

Overview

This chapter covers the creation and management of multi-container
applications using Docker Compose. You will learn how to create
Docker Compose files to define complex containerized applications and
how to run the Docker Compose CLI to manage the life cycle of multi-
container applications. This chapter will enable you to configure Docker
Compose applications with different methods and design applications with
dependencies on other applications.

Composing Environments with

Docker Compose

5

166 | Composing Environments with Docker Compose

Introduction
In the previous chapters, we discussed how to use Docker containers and
Dockerfiles to create containerized applications. As apps get more complicated,
the management of the containers and their configurations becomes more involved.

For example, imagine you are developing an online shop with frontend, backend,
payment, and ordering microservices. Each microservice is implemented with
the most appropriate programming language before being built, packaged, and
configured. Thus, complex applications are designed to run in separate containers
in the Docker ecosystem. Different containers require multiple Dockerfiles to
define Docker images.

They also need complex commands to configure, run, and troubleshoot applications.
All this can be achieved using Docker Compose, a tool for defining and managing
applications in multiple containers. Complex applications such as YAML files can
be configured and run with a single command in Docker Compose. It is suitable for
various environments, including development, testing, Continuous Integration (CI)
pipelines, and production.

The essential features of Docker Compose can be grouped into three categories:

• Isolation: Docker Compose allows you to run multiple instances of your complex
application in complete isolation. Although it seems like a trivial feature, it makes
it possible to run multiple copies of the same application stack on developer
machines, CI servers, or shared hosts. Therefore, sharing resources increases
utilization while decreasing operational complexity.

• Stateful data management: Docker Compose manages the volumes of your
containers so that they do not lose their data from previous runs. This feature
makes it easier to create and operate applications that store their state on disks,
such as databases.

• Iterative design: Docker Compose works with an explicitly defined configuration
that consists of multiple containers. The containers in the configuration can be
extended with new containers. For instance, imagine you have two containers
in your application. If you add a third container and run Docker Compose
commands, the first two containers will not be restarted or recreated.
Docker Compose will only create and join the newly added third container.

Docker Compose CLI | 167

These features make Compose an essential tool for creating and managing
applications as multiple containers in various platforms. In this chapter, you
will see how Docker Compose helps you to manage the complete life cycle of
complicated applications.

You will start by diving deep into Compose CLI and file anatomy. Following this,
you will learn how to configure applications with multiple techniques and how to
define service dependencies. Since Docker Compose is an essential tool for the
Docker environment, both technical and hands-on experience are vital to have in
your toolbox.

Docker Compose CLI
Docker Compose works with Docker Engine to create and manage multi-container
applications. To interact with Docker Engine, Compose uses a CLI tool named
docker-compose. On Mac and Windows systems, docker-compose is
already a part of Docker Desktop. However, on Linux systems, you need to
install the docker-compose CLI tool after installing Docker Engine. It is
packaged into a single executable, and you can install it with the following
commands on Linux systems.

Installing Docker Compose CLI in Linux

1. Download the binary to /usr/local/bin with the following command in
your Terminal:

sudo curl -L "https://github.com/docker/compose/releases/
download/1.25.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/
local/bin/docker-compose

2. Make the downloaded binary executable with the following command:

sudo chmod +x /usr/local/bin/docker-compose

168 | Composing Environments with Docker Compose

3. Test the CLI and installation with the following command in the Terminal on all
operating systems:

docker-compose version

If it is installed correctly, you will see the versions of the CLI and its dependencies
as follows. For instance, in the following output, the docker-compose CLI
has version 1.25.1-rc1 and its dependencies, docker-py, CPython, and
OpenSSL, are also listed with their versions:

Figure 5.1: docker-compose version output

Up until now, we have learned how to install the Docker Compose CLI in Linux. Now
we will look into the commands and subcommands that manage the complete life
cycle of multi-container applications.

Docker Compose CLI Commands

The docker-compose command is capable of managing the complete life cycle of
multi-containers applications. With the subcommands, it is possible to start, stop,
and recreate services. Also, it is possible to check the status of the running stacks
and get the logs. You will get hands-on experience with the essential commands
throughout this chapter. Likewise, a preview of all capabilities can be listed with
the following command:

docker-compose --help

Docker Compose CLI | 169

The output of the command should look like the following:

Figure 5.2: docker-compose commands

170 | Composing Environments with Docker Compose

There are three essential docker-compose commands that are used to manage
the life cycle of applications. The life cycle and commands can be illustrated
as follows:

Figure 5.3: docker-compose life cycle

• docker-compose up: This command creates and starts the containers
defined in the configuration. It is possible to build container images or use
pre-built images from the registry. In addition, it is possible to run the containers
in the background in detached mode with the -d or --detach flags. It is
convenient to use detached mode for long-running containers, such as web
servers, that we do not expect to stop in the short term. Additional options and
flags can be checked with the docker-compose up --help command.

• docker-compose ps: This command lists the containers and their
status information. It is helpful for troubleshooting and container health
checks. For instance, if you create a two-container application with a
backend and a frontend, you can check the status of each container with
the docker-compose ps command. It helps to find out whether your
backend or frontend is down, is not responding to their health checks,
or has failed to start due to misconfiguration.

• docker-compose down: This command stops and removes all the resources,
including containers, networks, images, and volumes.

Docker Compose File

Multi-container applications are run and defined using the docker-compose CLI.
By convention, the default name of these files is docker-compose.yaml. Docker
Compose is a powerful tool; however, its power depends on the configuration.
Therefore, knowing how to create docker-compose.yaml files is essential and
requires great attention.

Note

Docker Compose works with the docker-compose.yaml and
docker-compose.yml file extensions by default.

Docker Compose CLI | 171

docker-compose.yaml files consist of four main sections, as illustrated
in Figure 5.4:

Figure 5.4: The docker-compose file structure

• version: This section defines the syntax version for the docker-compose
file, and currently, the latest syntax version is 3.

• services: This section describes the Docker containers that will be built if
needed and will be started by docker-compose.

• networks: This section describes the networks that will be used by the services.

• volumes: This section describes the data volumes that will be mounted to the
containers in services.

For the services section, there are two essential options to create containers. The
first option is to build the container, and the second is to use Docker images from the
registry. When you are creating and testing containers locally, it is advisable to build
the images. On the other hand, it is faster and easier to use Docker images from the
registry for production and CI/CD systems.

172 | Composing Environments with Docker Compose

Imagine you want to build your server container by using a Dockerfile named
Dockerfile-server. Then, you need to put the file in the server folder with
the following folder structure:

Figure 5.5: Folder structure

The output of the tree command shows that there is a server folder containing
Dockerfile-server.

When the following content is defined in the docker-compose.yaml file in the
root directory, the server container will be built before running the service:

version: "3"

services:

 server:

 build:

 context: ./server

 dockerfile: Dockerfile-server

Similarly, if you want to use an image from the Docker registry, you can define a
service with only the image field:

version: "3"

services:

 server:

 image: nginx

Docker Compose creates a single network by default, and each container connects
to this network. In addition, containers can connect to other containers using
hostnames. For instance, let's assume you have the following docker-compose.
yaml file in the webapp folder:

version: "3"

services:

 server:

Docker Compose CLI | 173

 image: nginx

 db:

 image: postgres

 ports:

 - "8032:5432"

When you start docker-compose with this configuration, it first creates the
network with the name webapp_default. Following that, docker-compose
creates the server and db containers and joins the webapp_default network
with the names server and db, respectively.

In addition, the server container can connect to the database using its
container port and hostname as follows: postgres://db:5432. Similarly,
the database is reachable from the host machine by host port 8032 as follows:
postgres://localhost:8032. The network structure is presented in the
following diagram:

Figure 5.6: Networking structure

Within the docker-compose.yaml file, you can define custom networks
instead of using the default network. The network configuration enables
you to create sophisticated network technologies based on your custom network
drivers. Networking for Docker containers is comprehensively covered in
Chapter 6, Introduction to Docker Networking. Extending Docker Engine with
custom network drivers will be covered in the following chapters.

174 | Composing Environments with Docker Compose

Docker Compose also creates and manages volumes as a part of the
docker-compose.yaml file. Volumes provide persistency among
containers and are managed by Docker Engine. All service containers can
reuse volumes. In other words, data can be shared between the containers for
synchronization, data preparation, and backup operations. In Chapter 7, Docker
Storage, volumes for Docker will be presented in full detail.

With the following docker-compose.yaml file, docker-compose will create
a volume named data using the default volume plugin in Docker Engine. This
volume will be mounted to the /database path of the database container and
the /backup path of the backup container. This YAML file and its content create a
service stack that runs a database and continuously backs up without downtime:

version: "3"

services:

 database:

 image: my-db-service

 volumes:

 - data:/database

 backup:

 image: my-backup-service

 volumes:

 - data:/backup

volumes:

 data:

Note

The official reference documentation for Docker Compose files is available
at https://docs.docker.com/compose/compose-file/.

In the following exercise, a multi-container application with networking and volume
usage will be created with Docker Compose.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

https://docs.docker.com/compose/compose-file/

Docker Compose CLI | 175

Exercise 5.01: Getting Started with Docker Compose

Web servers in containers require operational tasks before starting, such as
configuration, file downloads, or dependency installations. With docker-compose,
it is possible to define those operations as multi-container applications and run
them with a single command. In this exercise, you will create a preparation container
to generate static files, such as index.html files. Then, the server container will
serve the static files, and it will be reachable from the host machine by the network
configuration. You will also manage the life cycle of the application using various
docker-compose commands.

To complete the exercise, execute the following steps:

1. Create a folder named server-with-compose and navigate into it using the
cd command:

mkdir server-with-compose

cd server-with-compose

2. Create a folder with the name init and navigate into it using the cd command:

mkdir init

cd init

3. Create a Bash script file with the following content and save it as prepare.sh:

#!/usr/bin/env sh

rm /data/index.html

echo "<h1>Welcome from Docker Compose!</h1>" >> /data/index.html

echo "" >> /data/index.html

This script generates a sample HTML page with the echo commands.

176 | Composing Environments with Docker Compose

4. Create a Dockerfile with the name Dockerfile and the following content:

FROM busybox

ADD prepare.sh /usr/bin/prepare.sh

RUN chmod +x /usr/bin/prepare.sh

ENTRYPOINT ["sh", "/usr/bin/prepare.sh"]

This Dockerfile is based on busybox, which is a tiny operating system
for space-efficient containers, and it adds the prepare.sh script into
the filesystem. In addition, it makes the file executable and set it as the
ENTRYPOINT command. The ENTRYPOINT command, in our case, the
prepare.sh script is initialized with the start of the Docker container.

5. Change the directory to the parent folder with the cd .. command and create
a docker-compose.yaml file with the following content:

version: "3"

services:

 init:

 build:

 context: ./init

 volumes:

 - static:/data

 server:

 image: nginx

 volumes:

 - static:/usr/share/nginx/html

 ports:

 - "8080:80"

volumes:

 static:

This docker-compose file creates one volume named static, and two
services with the names init and server. The volume is mounted to both
containers. In addition, the server has published port 8080, connecting to
container port 80.

Docker Compose CLI | 177

6. Start the application with the following command in detach mode to continue
using the Terminal:

docker-compose up --detach

The following image shows what happens when the preceding command
is executed:

Figure 5.7: Starting the application

The preceding command creates and starts the containers in detached mode.
It starts by creating the server-with-compose_default network and the
server-with-compose_static volume. Then, it builds the init container
using the Dockerfile from step 4, downloads the nginx Docker image for the
server, and starts the containers. Finally, it prints the names of the containers
and makes them run in the background.

178 | Composing Environments with Docker Compose

Note

You can disregard the warning about Swarm mode since we want to deploy
all containers to the same node.

7. Check the status of the application with the docker-compose ps command:

Figure 5.8: Application status

This output lists two containers. The init container exited successfully with
code 0, while the server container is Up and its port is available. This is the
expected output since the init container is designed to prepare the index.
html file and complete its operations, whereas the server container should
always be up and running.

8. Open http://localhost:8080 in the browser. The following figure shows
the output:

Figure 5.9: Server output

Configuration of Services | 179

Figure 5.9 shows the index.html page created by the init container.
In other words, it shows that docker-compose created the volume,
mounted it to the containers, and started them successfully.

9. Stop and remove all the resources with the following command if you do not
need the application up and running:

docker-compose down

The command will return output like the following:

Figure 5.10: Stopping the application

In this exercise, a multi-container application was created and configured
by docker-compose. Networking and volume options were stored in the
docker-compose.yaml file. In addition, CLI commands were shown in action
for creating applications, checking the status, and removing the applications.

In the following section, configuration options for applications in the Docker Compose
environment will be presented.

Configuration of Services
Cloud-native applications are expected to store their configuration in environment
variables. Environment variables are easy to change between different platforms
without source code changes. Environment variables are dynamic values that are
stored in Linux-based systems and used by applications. In other words, the
variables can be used to configure applications by changing their values.

For instance, assume your application uses a LOG_LEVEL environment variable
to configure what is logged. If you change the LOG_LEVEL environment variable
from INFO to DEBUG and restart your application, you would see more logs and be
able to troubleshoot problems more easily. In addition, you can deploy the same
application with different sets of environment variables to staging, testing, and
production. Likewise, the method of configuring services in Docker Compose is
to set environment variables for the containers.

180 | Composing Environments with Docker Compose

There are three methods of defining environment variables in Docker Compose,
with the following priority:

1. Using the Compose file

2. Using shell environment variables

3. Using the environment file

If the environment variables do not change very often but are required by the
containers, it is better to store them in docker-compose.yaml files. If there are
sensitive environment variables, such as passwords, it is recommended to pass them
via shell environment variables before calling the docker-compose CLI. However,
if the number of the variables is high and varies between the testing, staging, or
production systems, it is easier to collect them in .env files and pass them into
docker-compose.yaml files.

In the services part of the docker-compose.yaml file, environment
variables can be defined for each service. For example, the LOG_LEVEL and
METRICS_PORT environment variables are set in the Docker Compose file
as follows for the server service:

server:

 environment:

 - LOG_LEVEL=DEBUG

 - METRICS_PORT=8444

When the values are not set for the environment variables in the
docker-compose.yaml file, it is possible to get the values from the shell
by running a docker-compose command. For instance, the HOSTNAME
environment variable for the server service will be set straight from the shell:

server:

 environment:

 - HOSTNAME

When the shell running the docker-compose command has no value for
the HOSTNAME environment variable, the container will start with an empty
environment variable.

Configuration of Services | 181

In addition, it is possible to store the environment variables in .env files and
configure them in docker-compose.yaml files. An example database.env
file can be structured with key-value lists as follows:

DATABASE_ADDRESS=mysql://mysql:3535

DATABASE_NAME=db

In the docker-compose.yaml file, the environment variable file field is configured
under the corresponding service as follows:

server:

 env_file:

 - database.env

When Docker Compose creates the server service, it will set all the environment
variables listed in the database.env file to the container.

In the following exercise, you will configure an application using all three
configuration methods in Docker Compose.

Exercise 5.02: Configuring Services with Docker Compose

Services in Docker Compose are configured by environment variables. In this exercise,
you will create a Docker Compose application that is configured by different methods
of setting variables. In a file called print.env, you will define two environment
variables. In addition, you will create and configure one environment variable in the
docker-compose.yaml file and pass one environment variable from the Terminal
on the fly. You will see how four environment variables from different sources come
together in your container.

To complete the exercise, execute the following steps:

1. Create a folder named server-with-configuration and navigate into it
using the cd command:

mkdir server-with-configuration

cd server-with-configuration

2. Create an .env file with the name print.env and the following content:

ENV_FROM_ENV_FILE_1=HELLO

ENV_FROM_ENV_FILE_2=WORLD

In this file, two environment variables, ENV_FROM_ENV_FILE_1 and
ENV_FROM_ENV_FILE_2, are defined with their values.

182 | Composing Environments with Docker Compose

3. Create a file with the name docker-compose.yaml and the following content:

version: "3"

services:

 print:

 image: busybox

 command: sh -c 'sleep 5 && env'

 env_file:

 - print.env

 environment:

 - ENV_FROM_COMPOSE_FILE=HELLO

 - ENV_FROM_SHELL

In this file, a single-container application is defined, and the container runs
the env command to print the environment variables. It also uses the
environment file named print.env, and two additional environment
variables, ENV_FROM_COMPOSE_FILE and ENV_FROM_SHELL.

4. Export ENV_FROM_SHELL to the shell with the following command:

export ENV_FROM_SHELL=WORLD

5. Start the application with the docker-compose up command. The output
should look like the following:

Figure 5.11: Starting the application

Service Dependency | 183

The output is the result of the print container defined in the
docker-compose file. The container has one command to run, env,
and it prints the available environment variables. As expected, there are
two environment variables, ENV_FROM_ENV_FILE_1 and ENV_FROM_ENV_
FILE_2, with the corresponding values of HELLO and WORLD. In addition, the
environment variable defined in the docker-compose.yaml file in step 3 is
available with the name ENV_FROM_COMPOSE_FILE and the value HELLO.
Finally, the environment variable exported in step 4 is available with the name
ENV_FROM_SHELL and the value WORLD.

In this exercise, a Docker Compose application was created and configured with
different methods. Using Docker Compose files, environment definition files and
exported values can be used to deploy the same application to different platforms.

Since Docker Compose manages multi-container applications, there is a need
to define the interdependencies between them. The interdependencies of
the containers in the Docker Compose applications will be presented in the
following section.

Service Dependency
Docker Compose runs and manages multi-container applications defined
in docker-compose.yaml files. Although the containers are designed as
independent microservices, creating services that depend on each other is highly
expected. For instance, let's assume you have a two-tier application with database
and backend components, such as a PostgreSQL database and a Java backend. The
Java backend component requires PostgreSQL to be up and running since it should
connect to the database to run the business logic. Therefore, you could need to
define the dependency between the services of the multi-container applications.
With Docker Compose, it is possible to control the order of the startup and shutdown
of the services.

Say you have a three-container application with the following
docker-compose.yaml file:

version: "3"

services:

 init:

 image: busybox

 pre:

 image: busybox

 depends_on:

184 | Composing Environments with Docker Compose

 - "init"

 main:

 image: busybox

 depends_on:

 - "pre"

In this file, the main container depends on the pre container, whereas the pre
container depends on the init container. Docker Compose starts the containers
in the order of init, pre, and main, as illustrated in Figure 5.12. In addition, the
containers will be stopped in reverse order: main, pre, and then init:

Figure 5.12: Service startup order

In the following exercise, the order of containers will be used to fill the contents of a
file and then serve it with a web server.

Exercise 5.03: Service Dependency with Docker Compose

Services in Docker Compose can be configured to depend on other services. In this
exercise, you will create an application with four containers. The first three containers
will run consecutively to create a static file that will be served by the fourth container.

To complete the exercise, execute the following steps:

1. Create a folder named server-with-dependency and navigate into it using
the cd command:

mkdir server-with-dependency

cd server-with-dependency

2. Create a file with the name docker-compose.yaml and the following content:

version: "3"

services:

 clean:

 image: busybox

 command: "rm -rf /static/index.html"

 volumes:

Service Dependency | 185

 - static:/static

 init:

 image: busybox

 command: "sh -c 'echo This is from init container >>
 /static/index.html'"
 volumes:

 - static:/static

 depends_on:

 - "clean"

 pre:

 image: busybox

 command: "sh -c 'echo This is from pre container >>
 /static/index.html'"
 volumes:

 - static:/static

 depends_on:

 - "init"

 server:

 image: nginx

 volumes:

 - static:/usr/share/nginx/html

 ports:

 - "8080:80"

 depends_on:

 - "pre"

volumes:

 static:

This file consists of four services and one volume. The volume is named static,
and it is mounted to all services. The first three services take individual actions
on the static volume. The clean container removes the index.html file, and
then the init container starts filling index.html. Following that, the pre
container writes an additional line to the index.html file. Finally, the server
container serves the content in the static folder.

186 | Composing Environments with Docker Compose

3. Start the application with the docker-compose up command. The output
should look like the following:

 Figure 5.13: Starting the application

The output shows that Docker Compose creates the containers in the order of
clean, init, and then pre.

4. Open http://localhost:8080 in the browser:

Figure 5.14: Server output

The output from the server shows that the clean, init, and pre containers
work in the expected order.

Service Dependency | 187

5. Return to the Terminal in step 3 and use Ctrl + C to close the application
gracefully. You will see some HTTP request logs and, in the end, the
Stopping server-with-dependency_server_1 line:

Figure 5.15: Stopping the application

In this exercise, a Docker Compose application was created with interdependent
services. How Docker Compose starts and manages containers in a defined order
was shown. This is an essential feature of Docker Compose with which you can create
complex multi-container applications.

Now, let's test the knowledge we have gained so far in this chapter by implementing
the following activity. In the next activity, you will learn how to install WordPress using
Docker Compose.

188 | Composing Environments with Docker Compose

Activity 5.01: Installing WordPress Using Docker Compose

You are assigned to design and deploy a blog with its database as microservices
in Docker. You will be using WordPress since it is the most popular Content
Management System (CMS), used by more than one-third of all the websites on the
internet. Also, the development and testing teams require the installation of both
WordPress and the database multiple times on different platforms with isolation.
Therefore, you are required to design it as a Docker Compose application and
manage it with the docker-compose CLI.

Perform the following steps to complete this activity:

1. Start by creating a directory for your docker-compose.yaml file.

2. Create a service for the database using MySQL and a volume defined in the
docker-compose.yaml file. Ensure that the MYSQL_ROOT_PASSWORD,
MYSQL_DATABASE, MYSQL_USER, and MYSQL_PASSWORD environment
variables are set.

3. Create a service for WordPress defined in the docker-compose.yaml
file. Ensure that the WordPress containers start after the database. For the
configuration of WordPress, do not forget to set the WORDPRESS_DB_HOST,
WORDPRESS_DB_USER, WORDPRESS_DB_PASSWORD, and WORDPRESS_DB_
NAME environment variables in accordance with step 2. In addition, you need to
publish its port to be able to reach it from the browser.

4. Start the Docker Compose application in detached mode. Upon successful
deployment, you will have two containers running:

Figure 5.16: WordPress and database containers

Service Dependency | 189

You will then be able to reach the setup screen of WordPress in the browser:

Figure 5.17: WordPress setup screen

Note

The solution for this activity can be found via this link.

In the next activity, you will get hands-on experience installing the Panoramic
Trekking App using Docker Compose by creating a three-container Docker
application and managing it with the docker-compose CLI.

190 | Composing Environments with Docker Compose

Activity 5.02: Installing the Panoramic Trekking App Using Docker Compose

You are tasked with creating a deployment of the Panoramic Trekking App using
Docker Compose. You will take advantage of the three-tier architecture of the
Panoramic Trekking App and create a three-container Docker application, with
containers for the database, the web backend, and nginx. Therefore, you will design
it as a Docker Compose application and manage it with the docker-compose CLI.

Perform the following steps to complete this activity:

1. Create a directory for your docker-compose.yaml file.

2. Create a service for the database using PostgreSQL and a volume defined in
the docker-compose.yaml file. Ensure that the POSTGRES_PASSWORD
environment variable is set to docker. In addition, you need to create a db_
data volume in docker-compose.yaml and mount it to the /var/lib/
postgresql/data/ to store the database files.

3. Create a service for the Panoramic Trekking App defined in the docker-
compose.yaml file. Ensure that you are using the packtworkshops/
the-docker-workshop:chapter5-pta-web Docker image, which is
prebuilt and ready to use from the registry. In addition, since the application
is dependent on the database, you should configure the container to start
after the database. To store the static files, create a static_data volume
in docker-compose.yaml and mount it to /service/static/.

Finally, create a service for nginx and ensure that you are using the
packtworkshops/the-docker-workshop:chapter5-pta-nginx
Docker image from the registry. Ensure that the nginx container starts after
the Panoramic Trekking App container. You also need to mount the same
static_data volume to the /service/static/ location. Do not forget
to publish nginx port 80 to 8000 to reach from the browser.

4. Start the Docker Compose application in detached mode. Upon successful
deployment, you will have three containers running:

Figure 5.18: The application, database, and nginx containers

Service Dependency | 191

5. Go to the administration section of the Panoramic Trekking App in the browser
with the address http://0.0.0.0:8000/admin:

Figure 5.19: Admin setup logon

You can log in with the username admin and password changeme and add new
photos and countries:

Figure 5.20: Admin setup view

192 | Composing Environments with Docker Compose

6. Access the Panoramic Trekking App at the address
http://0.0.0.0:8000/photo_viewer in the browser:

Figure 5.21: Application view

Note

The solution for this activity can be found via this link.

Summary | 193

Summary
This chapter focused on using Docker Compose to design, create, and manage
multi-container applications. The complexity of containerized applications has
increased with the rise of the microservice architecture. Thus, it has become
difficult to create, manage, and troubleshoot multi-container applications without
the appropriate tooling. Docker Compose is the official tool in the Docker toolbox
for this purpose.

In this chapter, the main focus was to learn docker-compose comprehensively.
With this aim, the chapter started with the capabilities of the docker-compose CLI
with its commands and flags. Then, the anatomy of docker-compose.yaml files
was presented. The power of Docker Compose actually comes from the configuration
capabilities defined in the docker-compose.yaml files. Therefore, it is essential to
learn how to use these files to manage multi-container applications.

Following that, the configuration of services in Docker Compose was illustrated.
You have learned how to configure services for different environments and adapt
to changes in the future. We then moved on to service dependencies to learn how
to create more complex containerized applications.

Every exercise in this chapter aimed to show the capabilities of Docker, including
different CLI commands and YAML file sections. It is essential to get hands-on
experience of the CLI and the files needed to create multi-container applications
for use in testing and production environments.

In the next chapter, you will learn about networking in Docker. Networking
in containerized and scalable applications is one of the critical parts of the
infrastructure, as it glues together the distributed parts. That's why networking
in Docker consists of pluggable drivers and options to enhance the containerized
application development and management experience.

Overview

The goal of this chapter is to provide you with a concise overview of how
container networking works, how it differs from networking at the level of
the Docker host, and how containers can leverage Docker networking
to provide direct network connectivity to other containerized services.
By the end of this chapter, you will know how to deploy containers using
networking configurations such as bridge, overlay, macvlan, and
host. You will learn the benefits of different networking drivers and under
which circumstances you should choose certain network drivers. Finally,
we will look at containerized networking between hosts deployed in a
Docker swarm cluster.

Introduction to Docker

Networking

6

196 | Introduction to Docker Networking

Introduction
Throughout this workshop, we have looked at many aspects of containerization
and microservices architecture in relation to Docker. We have learned about how
encapsulating applications into microservices that perform discrete functions creates
an incredibly flexible architecture that enables rapid deployments and powerful
horizontal scaling. Perhaps one of the more interesting and complex topics as it
relates to containerization is networking. After all, in order to develop a flexible and
agile microservices architecture, proper networking considerations need to be made
to ensure reliable connectivity between container instances.

When referring to container networking, always try to keep in mind the difference
between networking on the container host (underlay networking) and networking
between containers on the same host or within different clusters (overlay
networking). Docker supports many different types of network configurations out
of the box that can be customized to suit the needs of your infrastructure and
deployment strategy.

For example, a container may have an IP address, unique to that container instance,
that exists on a virtual subnet between the container hosts. This type of networking
is typical of a Docker swarm clustered configuration in which network traffic gets
encrypted and passed over the host machine's network interfaces, only to be
decrypted on a different host and then passed to the receiving microservice. This
type of network configuration usually involves Docker maintaining a mapping of
container and service names to container IP addresses. This provides powerful
service discovery mechanisms that allow container networking even when containers
terminate and restart on different cluster hosts.

Alternatively, containers may run in a more simplistic host networking mode. In this
scenario, containers running in a cluster or a standalone host expose ports on the
host machine's network interfaces to send and receive network traffic. The containers
themselves may still have their IP addresses, which get mapped to physical network
interfaces on the hosts by Docker. This type of network configuration is useful when
your microservices need to communicate primarily with services that exist outside
your containerized infrastructure.

By default, Docker operates in a bridge network mode. A bridge network
creates a single network interface on the host that acts as a bridge to another
subnet configured on the host. All incoming (ingress) and outgoing (egress)
network traffic travel between the container subnet and the host using the
bridge network interface.

Introduction | 197

After installing Docker Engine in a Linux environment, if you run the ifconfig
command, Docker will create a new virtual bridged network interface called
docker0. This interface bridges a Docker private subnet that gets created by default
(usually 172.16.0.0/16) to the host machine's networking stack. If a container is
running in the default Docker network with an IP address of 172.17.8.1 and you
attempt to contact that IP address, the internal route tables will direct that traffic
through the docker0 bridge interface and pass the traffic to the IP address of
the container on the private subnet. Unless ports are published through Docker,
this container's IP address cannot be accessed by the outside world. Throughout
this chapter, we will dive deep into various network drivers and configuration options
provided by Docker.

In the next exercise, we will look at creating Docker containers in the default Docker
bridge network and how to expose container ports to the outside world.

Exercise 6.01: Hands-On with Docker Networking

By default, when you run a container in Docker, the container instance you create
will exist in a Docker network. Docker networks are collections of subnets, rules, and
metadata that Docker uses to allocate network resources to containers running in the
immediate Docker server or across servers in a Docker swarm cluster. The network
will provide the container with access to other containers in the same subnet, and
even outbound (egress) access to other external networks, including the internet.
Each Docker network is associated with a network driver that determines how the
network will function within the context of the system the containers are running on.

In this exercise, you will run Docker containers and use basic networking to run two
simple web servers (Apache2 and NGINX) that will expose ports in a few different
basic networking scenarios. You will then access the exposed ports of the container
to learn more about how Docker networking works at the most basic level. Launching
containers and exposing the service ports to make them available is one of the most
common networking scenarios when first starting with containerized infrastructure:

1. List the networks that are currently configured in your Docker environment
using the docker network ls command:

$ docker network ls

198 | Introduction to Docker Networking

The output displayed will show all the configured Docker networks available on
your system. It should resemble the following:

NETWORK ID NAME DRIVER SCOPE

0774bdf6228d bridge bridge local

f52b4a5440ad host host local

9bed60b88784 none null local

2. When creating a container using Docker without specifying a network or
networking driver, Docker will create the container using a bridge network.
This network exists behind a bridge network interface configured in your host
OS. Use ifconfig in a Linux or macOS Bash shell, or ipconfig in Windows
PowerShell, to see which interface the Docker bridge is configured as. It is
generally called docker0:

$ ifconfig

The output of this command will list all the network interfaces available in your
environment, as shown in the following figure:

Figure 6.1: Listing the available network interfaces

Introduction | 199

It can be observed in the preceding figure that the Docker bridge interface is
called docker0 and has an IP address of 172.17.0.1.

3. Use the docker run command to create a simple NGINX web server container,
using the latest image tag. Set the container to start in the background using
the -d flag and give it a human-readable name of webserver1 using the
--name flag:

$ docker run -d –-name webserver1 nginx:latest

If the command is successful, no output will be returned in the terminal session.

4. Execute the docker ps command to check whether the container is up
and running:

$ docker ps

As you can see, the webserver1 container is up and running as expected:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

0774bdf6228d nginx:latest "nginx -g 'daemon of…" 4 seconds ago

 Up 3 seconds 80/tcp webserver1

5. Execute the docker inspect command to check what networking
configuration this container has by default:

$ docker inspect webserver1

200 | Introduction to Docker Networking

Docker will return the verbose details about the running container in JSON
format. For this exercise, focus on the NetworkSettings block. Pay special
attention to the Gateway, IPAddress, Ports, and NetworkID parameters
underneath the networks sub-block:

Figure 6.2: Output of the docker inspect command

Introduction | 201

From this output, it can be concluded that this container lives in the default
Docker bridge network. Looking at the first 12 characters of NetworkID,
you will observe that it is the same identifier used in the output of the docker
network ls command, which was executed in step 1. It should also be noted
that the Gateway this container is configured to use is the IP address of the
docker0 bridge interface. Docker will use this interface as an egress point
to access networks in other subnets outside itself, as well as forwarding traffic
from our environment to the containers in the subnet. It can also be observed
that this container has a unique IP address within the Docker bridge network,
172.17.0.2 in this example. Our local machine has the ability to route to
this subnet since we have the docker0 bridge interface available to forward
traffic. Finally, it can be observed that the NGINX container is by default exposing
TCP port 80 for incoming traffic.

6. In a web browser, access the webserver1 container by IP address over
port 80. Enter the IP address of the webserver1 container in your favorite
web browser:

Figure 6.3: Accessing an NGINX web server container by IP address through
the default Docker bridge network

202 | Introduction to Docker Networking

7. Alternatively, use the curl command to see similar output, albeit in text format:

$ curl 172.17.0.2:80

The following HTML response indicates that you have received a response from
the running NGINX container:

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully

installed and working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

Introduction | 203

8. Accessing the IP address of a container in the local bridge subnet works well
for testing containers locally. To expose your service on the network to other
users or servers, use the -p flag in the docker run command. This will allow
you to map a port on the host to an exposed port on the container. This is
similar to port forwarding on a router or other network device. To expose a
container by the port to the outside world, use the docker run command
followed by the -d flag to start the container in the background. The -p flag
will enable you to specify a port on the host, separated by a colon and the port
on the container that you wish to expose. Also, give this container a unique
name, webserver2:

$ docker run -d -p 8080:80 –-name webserver2 nginx:latest

Upon successful container startup, your shell will not return anything.
However, certain versions of Docker may show the full container ID.

9. Run the docker ps command to check whether you have two NGINX
containers up and running:

$ docker ps

The two running containers, webserver1 and webserver2, will be displayed:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

b945fa75b59a nginx:latest "nginx -g 'daemon of…" 1 minute ago

 Up About a minute 0.0.0.0:8080->80/tcp webserver2

3267bf4322ed nginx:latest "nginx -g 'daemon of…" 2 minutes ago

 Up 2 minutes 80/tcp webserver1

In the PORTS column, you will see that Docker is now forwarding port 80 on the
webserver container to port 8080 on the host machine. That is deduced from
the 0.0.0.0:8080->80/tcp part of the output.

Note

It is important to remember that the host machine port is always to the left of
the colon, while the container port is to the right when specifying ports with
the -p flag.

204 | Introduction to Docker Networking

10. In your web browser, navigate to http://localhost:8080 to see the
running container instance you just spawned:

Figure 6.4: NGINX default page indicating that you have successfully forwarded
a port to your web server container

11. Now, you have two NGINX instances running in the same Docker environment
with slightly different networking configurations. The webserver1 instance
is running solely on the Docker network without any ports exposed. Inspect
the configuration of the webserver2 instance using the docker inspect
command followed by the container name or ID:

$ docker inspect webserver2

Introduction | 205

The NetworkSettings section at the bottom of the JSON output will resemble
the following. Pay close attention to the parameters (Gateway, IPAddress,
Ports, and NetworkID) underneath the networks sub-block:

Figure 6.5: Output from the docker inspect command

206 | Introduction to Docker Networking

As the docker inspect output displays, the webserver2 container has
an IP address of 172.17.0.3, whereas your webserver1 container has an
IP address of 172.17.0.1. The IP addresses in your local environment may
be slightly different depending on how Docker assigns the IP addresses to the
containers. Both the containers live on the same Docker network (bridge) and
have the same default gateway, which is the docker0 bridge interface on the
host machine.

12. Since both of these containers live on the same subnet, you can test
communication between the containers within the Docker bridge
network. Run the docker exec command to gain access to a shell
on the webserver1 container:

docker exec -it webserver1 /bin/bash

The prompt should noticeably change to a root prompt, indicating you are now
in a Bash shell on the webserver1 container:

root@3267bf4322ed:/#

13. At the root shell prompt, use the apt package manager to install the ping utility
in this container:

root@3267bf4322ed:/# apt-get update && apt-get install -y inetutils-
ping

The aptitude package manager will then install the ping utility in the
webserver1 container. Please note that the apt package manager will
install ping as well as other dependencies that are required to run the
ping command:

Introduction | 207

Figure 6.6: Installing the ping command inside a Docker container

14. Once the ping utility has successfully installed, use it to ping the IP address of
the other container:

root@3267bf4322ed:/# ping 172.17.0.3

The output should display ICMP response packets, indicating that the containers
can successfully ping each other through the Docker bridge network:

PING 172.17.0.1 (172.17.0.3): 56 data bytes

64 bytes from 172.17.0.3: icmp_seq=0 ttl=64 time=0.221 ms

64 bytes from 172.17.0.3: icmp_seq=1 ttl=64 time=0.207 ms

208 | Introduction to Docker Networking

15. You can also access the NGINX default web interface using the curl command.
Install curl using the apt package manager:

root@3267bf4322ed:/# apt-get install -y curl

The following output should display, indicating that the curl utility and all
required dependencies are being installed:

Figure 6.7: Installing the curl utility

16. After installing curl, use it to curl the IP address of webserver2:

root@3267bf4322ed:/# curl 172.17.0.3

You should see the Welcome to nginx! page displayed in HTML format,
indicating that you were able to successfully contact the IP address of the
webserver2 container through the Docker bridge network:

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

Introduction | 209

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully

installed and working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

Since you are using curl to navigate to the NGINX welcome page, it will render
on your terminal display in raw HTML format.

In this section, we have successfully spawned two NGINX web server instances in
the same Docker environment. We configured one instance to not expose any ports
outside the default Docker network, while we configured the second NGINX instance
to run on the same network but to expose port 80 to the host system on port 8080.
We saw how these containers could be accessed using a standard internet web
browser as well as by the curl utility in Linux.

During this exercise, we also saw how containers can use Docker networks to talk to
other containers directly. We used the webserver1 container to call the IP address
of the webserver2 container and display the output of the web page the container
was hosting.

In this exercise, we were also able to demonstrate network connectivity between
container instances using the native Docker bridge network. However, when we
deploy containers at scale, there is no easy way to know which IP address in the
Docker network belongs to which container.

210 | Introduction to Docker Networking

In the next section, we will look at native Docker DNS and learn how to use human-
readable DNS names to reliably send network traffic to other container instances.

Native Docker DNS
One of the biggest benefits of running a containerized infrastructure is the ability
to quickly and effortlessly scale your workloads horizontally. Having more than one
machine in a cluster with a shared overlay network between them means that you
can have many containers running across fleets of servers.

As we saw in the previous exercise, Docker gives us the power to allow containers to
directly talk to other containers in a cluster through the various network drivers that
Docker provides, such as bridge, macvlan, and overlay drivers. In the previous
example, we leveraged Docker bridge networking to allow containers to talk to
each other by their respective IP addresses. However, when your containers are
deployed on real servers, you can't normally rely on containers having consistent IP
addresses that they can use to talk to each other. Every time a new container instance
terminates or respawns, Docker will give that container a new IP address.

Similar to a traditional infrastructure scenario, we can leverage DNS within container
networks to give containers a reliable way to communicate with each other. By
assigning human-readable names to containers within Docker networks, users no
longer have to look up the IP address each time they want to initiate communication
between containers on a Docker network. Docker itself will keep track of the IP
addresses of the containers as they spawn and respawn.

In older legacy versions of Docker, simple DNS resolution was possible by establishing
links between containers using the --link flag in the docker run command.
Using linking, Docker would create an entry in the linked container's hosts file,
which would enable simple name resolution. However, as you will see in the
upcoming exercise, using links between containers can be slow, not scalable, and
prone to errors. Recent versions of Docker support a native DNS service between
containers running on the same Docker network. This allows containers to look up
the names of other containers running in the same Docker network. The only caveat
with this approach is that native Docker DNS doesn't work on the default Docker
bridge network; thus, other networks must first be created to build your
containers in.

Native Docker DNS | 211

For native Docker DNS to work, we must first create a new network using the docker
network create command. We can then create new containers in that network
using docker run with the --network-alias flag. In the following exercise, we
are going to use these commands to learn how native Docker DNS works to enable
scalable communication between container instances.

Exercise 6.02: Working with Docker DNS

In the following exercise, you will learn about name resolution between Docker
containers running on the same network. You will first enable simple name resolution
using the legacy link method. You will contrast this approach by using the newer and
more reliable native Docker DNS service:

1. First, create two Alpine Linux containers on the default Docker bridge network
that will communicate with each other using the --link flag. Alpine is a very
good base image for this exercise because it contains the ping utility by default.
This will enable you to quickly test the connectivity between containers in the
various scenarios. To get started, create a container called containerlink1 to
indicate that you have created this container using the legacy link method:

$ docker run -itd --name containerlink1 alpine:latest

This will start a container in the default Docker network called
containerlink1.

2. Start another container in the default Docker bridge network, called
containerlink2, which will create a link to containerlink1 to
enable rudimentary DNS:

$ docker run -itd --name containerlink2 --link containerlink1
alpine:latest

This will start a container in the default Docker network called
containerlink2.

3. Run the docker exec command to access a shell inside the
containerlink2 container. This will allow you to investigate how the link
functionality is working. Since this container is running Alpine Linux, you do not
have access to the Bash shell by default. Instead, access it using an sh shell:

$ docker exec -it containerlink2 /bin/sh

This should drop you into a root sh shell in the containerlink2 container.

212 | Introduction to Docker Networking

4. From the shell of the containerlink2 container, ping containerlink1:

/ # ping containerlink1

You will get a reply to the ping request:

PING container1 (172.17.0.2): 56 data bytes

64 bytes from 172.17.0.2: seq=0 ttl=64 time=0.307 ms

64 bytes from 172.17.0.2: seq=1 ttl=64 time=0.162 ms

64 bytes from 172.17.0.2: seq=2 ttl=64 time=0.177 ms

5. Use the cat utility to have a look at the /etc/hosts file of the
containerlink2 container. The hosts file is a list of routable
names to IP addresses that Docker can maintain and override:

/ # cat /etc/hosts

The output of the hosts file should display and resemble the following:

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.17.0.2 containerlink1 032f038abfba

172.17.0.3 9b62c4a57ce3

From the output of the hosts file of the containerlink2 container,
observe that Docker is adding an entry for the containerlink1 container
name as well as its container ID. This enables the containerlink2
container to know the name, and the container ID is mapped to the IP
address 172.17.0.2. Typing the exit command will terminate the sh
shell session and bring you back to your environment's main terminal.

6. Run docker exec to access an sh shell inside the
containerlink1 container:

$ docker exec -it containerlink1 /bin/sh

This should drop you into the shell of the containerlink1 container.

Native Docker DNS | 213

7. Ping the containerlink2 container using the ping utility:

/ # ping containerlink2

You should see the following output:

ping: bad address 'containerlink2'

It is not possible to ping the containerlink2 container since linking
containers only works unidirectionally. The containerlink1 container
has no idea that the containerlink2 container exists since no hosts file
entry has been created in the containerlink1 container instance.

Note

You can only link to running containers using the legacy link method
between containers. This means that the first container cannot link to
containers that get started later. This is one of the many reasons why
using links between containers is no longer a recommended approach.
We are covering the concept in this chapter to show you how the
functionality works.

8. Due to the limitations using the legacy link method, Docker also supports native
DNS using user-created Docker networks. To leverage this functionality, create
a Docker network called dnsnet and deploy two Alpine containers within that
network. First, use the docker network create command to create a new
Docker network using a 192.168.56.0/24 subnet and using the IP address
192.168.54.1 as the default gateway:

$ docker network create dnsnet --subnet 192.168.54.0/24 --gateway
192.168.54.1

214 | Introduction to Docker Networking

Depending on the version of Docker you are using, the successful execution of
this command may return the ID of the network you have created.

Note

Simply using the docker network create dnsnet command
will create a network with a Docker-allocated subnet and gateway. This
exercise demonstrates how to specify the subnet and gateway for your
Docker network. It should also be noted that if your computer is attached
to a subnet in the 192.168.54.0/24 subnet or a subnet that overlaps
that space, it may cause network connectivity issues. Please use a different
subnet for this exercise.

9. Use the docker network ls command to list the Docker networks available
in this environment:

$ docker network ls

The list of Docker networks should be returned, including the dnsnet network
you just created:

NETWORK ID NAME DRIVER SCOPE

ec5b91e88a6f bridge bridge local

c804e768413d dnsnet bridge local

f52b4a5440ad host host local

9bed60b88784 none null local

10. Run the docker network inspect command to view the configuration for
this network:

$ docker network inspect dnsnet

The details of the dnsnet network should be displayed. Pay close attention to
the Subnet and Gateway parameters. These are the same parameters that
you used to create a Docker network in Step 8:

Native Docker DNS | 215

Figure 6.8: Output from the docker network inspect command

11. Since this is a Docker bridge network, Docker will also create a corresponding
bridge network interface for this network. The IP address of the bridge
network interface will be the same IP address as the default gateway address
you specified when creating this network. Use the ifconfig command to view
the configured network interfaces on Linux or macOS. If you are using Windows,
use the ipconfig command:

$ ifconfig

216 | Introduction to Docker Networking

This should display the output of all available network interfaces, including the
newly created bridge interface:

Figure 6.9: Analyzing the bridge network interface for the newly created Docker network

12. Now that a new Docker network has been created, use the docker run
command to start a new container (alpinedns1) within this network. Use
the docker run command with the --network flag to specify the dnsnet
network that was just created, and the --network-alias flag to give your
container a custom DNS name:

$ docker run -itd --network dnsnet --network-alias alpinedns1 --name
alpinedns1 alpine:latest

Upon successful execution of the command, the full container ID should be
displayed before returning to a normal terminal prompt.

Native Docker DNS | 217

13. Start a second container (alpinedns2) using the same --network and
--network-alias settings:

$ docker run -itd --network dnsnet --network-alias alpinedns2 --name
alpinedns2 alpine:latest

Note

It is important to understand the difference between the –network-
alias flag and the --name flag. The --name flag is used to give the
container a human-readable name within the Docker API. This makes
it easy to start, stop, restart, and manage containers by name. The
--network-alias flag, however, is used to create a custom DNS
entry for the container.

14. Use the docker ps command to verify that the containers are running
as expected:

$ docker ps

The output will display the running container instances:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

69ecb9ad45e1 alpine:latest "/bin/sh" 4 seconds ago

 Up 2 seconds alpinedns2

9b57038fb9c8 alpine:latest "/bin/sh" 6 minutes ago

 Up 6 minutes alpinedns1

15. Use the docker inspect command to verify that the IP addresses of the
container instances are from within the subnet (192.168.54.0/24) that
was specified:

$ docker inspect alpinedns1

218 | Introduction to Docker Networking

The following output is truncated to show the relevant details:

Figure: 6.10: Output from the Networks section of the alpinedns1 container instance

It can be observed from the output that the alpinedns1 container was
deployed with an IP address of 192.168.54.2, which is a part of the subnet
that was defined during the creation of the Docker network.

16. Execute the docker network inspect command in a similar fashion for the
alpinedns2 container:

$ docker inspect alpinedns2

The output is again truncated to display the relevant networking details:

Figure 6.11: Output of the Networks section of the alpinedns2 container instance

Native Docker DNS | 219

It can be observed in the preceding output that the alpinedns2 container
has an IP address of 192.168.54.3, which is a different IP address within
the dnsnet subnet.

17. Run the docker exec command to access a shell in the
alpinedns1 container:

$ docker exec -it alpinedns1 /bin/sh

This should drop you into a root shell inside of the containers.

18. Once inside the alpinedns1 container, use the ping utility to ping the
alpinedns2 container:

/ # ping alpinedns2

The ping output should display successful network connectivity to the
alpinedns2 container instance:

PING alpinedns2 (192.168.54.3): 56 data bytes

64 bytes from 192.168.54.3: seq=0 ttl=64 time=0.278 ms

64 bytes from 192.168.54.3: seq=1 ttl=64 time=0.233 ms

19. Use the exit command to return to your primary terminal. Use the docker
exec command to gain access to a shell inside the alpinedns2 container:

$ docker exec -it alpinedns2 /bin/sh

This should drop you to a shell within the alpinedns2 container.

20. Use the ping utility to ping the alpinedns1 container by name:

$ ping alpinedns1

The output should display successful responses from the
alpinedns1 container:

PING alpinedns1 (192.168.54.2): 56 data bytes

64 bytes from 192.168.54.2: seq=0 ttl=64 time=0.115 ms

64 bytes from 192.168.54.2: seq=1 ttl=64 time=0.231 ms

Note

Docker DNS, as opposed to the legacy link method, allows bidirectional
communication between containers in the same Docker network.

220 | Introduction to Docker Networking

21. Use the cat utility inside any of the alpinedns containers to reveal that
Docker is using true DNS as opposed to /etc/hosts file entries inside
the container:

cat /etc/hosts

This will reveal the contents of the /etc/hosts file inside the
respective container:

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

192.168.54.2 9b57038fb9c8

Use the exit command to terminate the shell session inside of the
alpinedns2 container.

22. Clean up your environment by stopping all running containers using the docker
stop command:

$ docker stop containerlink1

$ docker stop containerlink2

$ docker stop alpinedns1

$ docker stop alpinedns2

23. Use the docker system prune -fa command to clean the remaining
stopped containers and networks:

$ docker system prune -fa

Successfully executing this command should clean up the dnsnet network as
well as the container instances and images:

Deleted Containers:

69ecb9ad45e16ef158539761edc95fc83b54bd2c0d2ef55abfba1a300f141c7c

9b57038fb9c8cf30aaebe6485e9d223041a9db4e94eb1be9392132bdef632067

Deleted Networks:

dnsnet

Native Docker DNS | 221

Deleted Images:

untagged: alpine:latest

untagged: alpine@sha256:9a839e63dad54c3a6d1834e29692c8492d93f90c

 59c978c1ed79109ea4fb9a54

deleted: sha256:f70734b6a266dcb5f44c383274821207885b549b75c8e119

 404917a61335981a

deleted: sha256:3e207b409db364b595ba862cdc12be96dcdad8e36c59a03b

 b3b61c946a5741a

Total reclaimed space: 42.12M

Each section of the system prune output will identify and remove Docker
resources that are no longer in use. In this case, it will remove the dnsnet
network since no container instances are currently deployed in this network.

In this exercise, you looked at the benefits of using name resolution to enable
communication between the containers over Docker networks. Using name
resolution is efficient since applications don't have to worry about the IP addresses
of the other running containers. Instead, communication can be initiated by simply
calling the other containers by name.

We first explored the legacy link method of name resolution, by which running
containers can establish a relationship, leveraging a unidirectional relationship using
entries in the container's hosts file. The second and more modern way to use DNS
between containers is by creating user-defined Docker networks that allow DNS
resolution bidirectionally. This will enable all containers on the network to resolve
all other containers by name or container ID without any additional configuration.

As we have seen in this section, Docker provides many unique ways to provide
reliable networking resources to container instances, such as enabling routing
between containers on the same Docker network and native DNS services between
containers. This is only scratching the surface of the network options that are
provided by Docker.

In the next section, we will learn about deploying containers using other types
of networking drivers to truly provide maximum flexibility when deploying
containerized infrastructure.

222 | Introduction to Docker Networking

Native Docker Network Drivers
Since Docker is one of the most broadly supported container platforms in recent
times, the Docker platform has been vetted across numerous production-level
networking scenarios. To support various types of applications, Docker provides
various network drivers that enable flexibility in how containers are created and
deployed. These network drivers allow containerized applications to run in
almost any networking configuration that is supported directly on bare metal
or virtualized servers.

For example, containers can be deployed that share the host server's networking
stack, or in a configuration that allows them to be assigned unique IP addresses from
the underlay network infrastructure. In this section, we are going to learn about the
basic Docker network drivers and how to leverage them to provide the maximum
compatibility for various types of network infrastructures:

• bridge: A bridge is the default network that Docker will run containers in.
If nothing is defined when launching a container instance, Docker will use the
subnet behind the docker0 interface, in which containers will be assigned an
IP address in the 172.17.0.0/16 subnet. In a bridge network, containers
have network connectivity to other containers in the bridge subnet as well
as outbound connectivity to the internet. So far, all containers we have created
in this chapter have been in bridge networks. Docker bridge networks are
generally used for simple TCP services that only expose simple ports or require
communication with other containers that exist on the same host.

• host: Containers running in the host networking mode have direct access to
the host machine's network stack. This means that any ports that are exposed to
the container are also exposed to the same ports on the host machine running
the containers. The container also has visibility of all physical and virtual network
interfaces running on the host. host networking is generally preferred when
running container instances that consume lots of bandwidth or leverage
multiple protocols.

• none: The none network provides no network connectivity to containers
deployed in this network. Container instances that are deployed in the none
network only have a loopback interface and no access to other network
resources at all. No driver operates this network. Containers deployed using
the none networking mode are usually applications that operate on storage
or disk workloads and don't require network connectivity. Containers that
are segregated from network connectivity for security purposes may also be
deployed using this network driver.

Native Docker Network Drivers | 223

• macvlan: macvlan networks created in Docker are used in scenarios in which
your containerized application requires a MAC address and direct network
connectivity to the underlay network. Using a macvlan network, Docker will
allocate a MAC address to your container instance via a physical interface on
the host machine. This makes your container appear as a physical host on the
deployed network segment. It should be noted that many cloud environments,
such as AWS, Azure, and many virtualization hypervisors, do not allow macvlan
networking to be configured on container instances. macvlan networks
allow Docker to assign containers IP addresses and MAC addresses from the
underlay networks based on a physical network interface attached to the host
machine. Using macvlan networking can easily lead to IP address exhaustion
or IP address conflicts if not configured correctly. macvlan container networks
are generally used in very specific network use cases, such as applications that
monitor network traffic modes or other network-intensive workloads.

No conversation on Docker networking would be complete without a brief overview
of Docker overlay networking. Overlay networking is how Docker handles
networking with a swarm cluster. When a Docker cluster is defined between nodes,
Docker will use the physical network linking the nodes together to define a logical
network between containers running on the nodes. This allows containers to talk
directly to each other between cluster nodes. In Exercise 6.03, Exploring Docker
Networks, we will look at the various types of Docker network drivers that are
supported in Docker by default, such as host, none, and macvlan. In Exercise
6.04, Defining Overlay Networks, we will then define a simple Docker swarm cluster
to discover how overlay networking works between Docker hosts configured in a
cluster mode.

Exercise 6.03: Exploring Docker Networks

In this exercise, we will look into the various types of Docker network drivers
that are supported in Docker by default, such as host, none, and macvlan.
We will start with the bridge network and then look into the none, host,
and macvlan networks:

1. First, you need to get an idea of how networking is set up in your Docker
environment. From a Bash or PowerShell terminal, use the ifconfig or
ipconfig command on Windows. This will display all the network interfaces
in your Docker environment:

$ ifconfig

224 | Introduction to Docker Networking

This will display all the network interfaces you have available. You should see
a bridge interface called docker0. This is the Docker bridge interface that
serves as the entrance (or ingress point) into the default Docker network:

Figure 6.12: Example ifconfig output from your Docker development environment

2. Use the docker network ls command to view the networks available in
your Docker environment:

$ docker network ls

This should list the three basic network types defined previously, displaying the
network ID, the name of the Docker network, and the driver associated with the
network type:

NETWORK ID NAME DRIVER SCOPE

50de4997649a bridge bridge local

f52b4a5440ad host host local

9bed60b88784 none null local

3. View the verbose details of these networks using the docker network
inspect command, followed by the ID or the name of the network you want to
inspect. In this step, you will view the verbose details of the bridge network:

$ docker network inspect bridge

Native Docker Network Drivers | 225

Docker will display the verbose output of the bridge network in JSON format:

Figure 6.13: Inspecting the default bridge network

226 | Introduction to Docker Networking

Some key parameters to note in this output are the Scope, Subnet, and
Gateway keywords. Based on this output, it can be observed that the scope of
this network is only the local host machine (Scope: Local). This indicates the
network is not shared between hosts in a Docker swarm cluster. The Subnet
value of this network under the Config section is 172.17.0.0/16, and the
Gateway address for the subnet is an IP address within the defined subnet
(172.17.0.1). It is critical that the Gateway value of a subnet is an IP address
within that subnet to enable containers deployed in that subnet to access other
networks outside the scope of that network. Finally, this network is tied to the
host interface, docker0, which will serve as the bridge interface for the
network. The output of the docker network inspect command can be
very helpful in getting a full understanding of how containers deployed in that
network are expected to behave.

4. View the verbose details of the host network using the docker network
inspect command:

$ docker network inspect host

This will display the details of the host network in JSON format:

Figure 6.14: docker network inspect output for the host network

Native Docker Network Drivers | 227

As you can see, there is not very much configuration present in the host
network. Since it uses the host networking driver, all the container's networking
will be shared with the host. Hence, this network configuration does not need
to define specific subnets, interfaces, or other metadata, as we have seen in the
default bridge network from before.

5. Investigate the none network next. Use the docker network inspect
command to view the details of the none network:

docker network inspect none

The details will be displayed in JSON format:

Figure 6.15: docker network inspect output for the none network

228 | Introduction to Docker Networking

Similar to the host network, the none network is mostly empty. Since
containers deployed in this network will have no network connectivity by
leveraging the null driver, there isn't much need for configuration.

Note

Be aware that the difference between the none and host networks lies
in the driver they use, despite the fact that the configurations are almost
identical. Containers launched in the none network have no network
connectivity at all, and no network interfaces are assigned to the container
instance. However, containers launched in the host network will share the
networking stack with the host system.

6. Now create a container in the none network to observe its operation. In your
terminal or PowerShell session, use the docker run command to start an
Alpine Linux container in the none network using the --network flag. Name
this container nonenet so we know that it is deployed in the none network:

$ docker run -itd --network none --name nonenet alpine:latest

This will pull and start an Alpine Linux Docker container in the none network.

7. Use the docker ps command to verify whether the container is up and
running as expected:

$ docker ps

The output should display the nonenet container as up and running:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

972a80984703 alpine:latest "/bin/sh" 9 seconds ago

 Up 7 seconds nonenet

8. Execute the docker inspect command, along with the container name,
nonenet, to get a deeper understanding of how this container is configured:

$ docker inspect nonenet

Native Docker Network Drivers | 229

The output of docker inspect will display the full container configuration in
JSON format. A truncated version highlighting the NetworkSettings section is
provided here. Pay close attention to the IPAddress and Gateway settings:

Figure 6.16: docker inspect output for the nonenet container

The docker inspect output will reveal that this container does not have an
IP address, nor does it have a gateway or any other networking settings.

9. Use the docker exec command to access an sh shell inside this container:

$ docker exec -it nonenet /bin/sh

Upon successful execution of this command, you will be dropped into a root
shell in the container instance:

/ #

230 | Introduction to Docker Networking

10. Execute the ip a command to view the network interfaces available in
the container:

/ $ ip a

This will display all network interfaces configured in this container:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

The only network interface available to this container is its LOOPBACK interface.
As this container is not configured with an IP address or default gateway,
common networking commands will not work.

11. Test the lack of network connectivity using the ping utility provided by default in
the Alpine Linux Docker image. Try to ping the Google DNS servers located at IP
address 8.8.8.8:

/ # ping 8.8.8.8

The output of the ping command should reveal that it has no
network connectivity:

PING 8.8.8.8 (8.8.8.8): 56 data bytes

ping: sendto: Network unreachable

Use the exit command to return to your main terminal session.

Now that you have taken a closer look at the none network, consider the host
networking driver. The host networking driver in Docker is unique since it
doesn't have any intermediate interfaces or create any extra subnets. Instead,
the host networking driver shares the networking stack with the host operating
system such that any network interfaces that are available to the host are also
available to containers running in host mode.

12. To get started with running a container in host mode, execute ifconfig
if you are running macOS or Linux, or use ipconfig if you are running on
Windows, to take inventory of the network interfaces that are available on the
host machine:

$ ifconfig

Native Docker Network Drivers | 231

This should output a list of network interfaces available on your host machine:

Figure 6.17: List of network interfaces configured on the host machine

In this example, the primary network interface of your host machine is enp1s0
with an IP address of 192.168.122.185.

Note

Some versions of Docker Desktop on macOS or Windows may not properly
be able to start and run containers in host network mode or using
macvlan network drivers, due to the dependencies on the Linux kernel
to provide many of these functionalities. When running these examples
on macOS or Windows, you may see the network details of the underlying
Linux virtual machine running Docker, as opposed to the network interfaces
available on your macOS or Windows host machine.

13. Use the docker run command to start an Alpine Linux container in the host
network. Name it hostnet1 to tell it apart from the other containers:

docker run -itd --network host --name hostnet1 alpine:latest

Docker will start this container in the background using the host network.

232 | Introduction to Docker Networking

14. Use the docker inspect command to look at the network configuration of
the hostnet1 container you just created:

$ docker inspect hostnet1

This will reveal the verbose configuration of the running container, including the
networking details, in JSON format:

Figure 6.18: docker inspect output for the hostnet1 container

It should be noted that the output of the NetworkSettings block will
look a lot like the containers you deployed in the none network. In the host
networking mode, Docker will not assign an IP address or gateway to the
container instance since it shares all network interfaces with the host
machine directly.

Native Docker Network Drivers | 233

15. Use docker exec to access an sh shell inside this container, providing the
name hostnet1:

$ docker exec -it hostnet1 /bin/sh

This should drop you into a root shell inside the hostnet1 container.

16. Inside the hostnet1 container, execute the ifconfig command to list which
network interfaces are available to it:

/ # ifconfig

The full list of network interfaces available inside of this container should
be displayed:

Figure 6.19: Displaying the available network interfaces inside the hostnet1 container

Note that this list of network interfaces is identical to that which you
encountered when querying the host machine directly. This is because this
container and the host machine are sharing the network directly. Anything
available to the host machine will also be available to containers running in
host network mode.

234 | Introduction to Docker Networking

17. Use the exit command to end the shell session and return to the terminal of
the host machine.

18. To understand more fully how the shared networking model works in Docker,
start an NGINX container in host network mode. The NGINX container
automatically exposes port 80, which we previously had to forward to a port on
the host machine. Use the docker run command to start an NGINX container
on the host machine:

$ docker run -itd --network host --name hostnet2 nginx:latest

This command will start an NGINX container in the host networking mode.

19. Navigate to http://localhost:80 using a web browser on the
host machine:

Figure 6.20: Accessing the NGINX default web page of a container
running in host networking mode

You should be able to see the NGINX default web page displayed in your web
browser. It should be noted that the docker run command did not explicitly
forward or expose any ports to the host machine. Since the container is running
in host networking mode, any ports that containers expose by default will be
available directly on the host machine.

Native Docker Network Drivers | 235

20. Use the docker run command to create another NGINX instance in the host
network mode. Call this container hostnet3 to differentiate it from the other
two container instances:

$ docker run -itd --network host --name hostnet3 nginx:latest

21. Now use the docker ps -a command to list all the containers, both in
running and stopped status:

$ docker ps -a

The list of running containers will be displayed:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

da56fcf81d02 nginx:latest "nginx -g 'daemon of…" 4 minutes ago

 Exited (1) 4 minutes ago hostnet3

5786dac6fd27 nginx:latest "nginx -g 'daemon of…" 37 minutes ago

 Up 37 minutes hostnet2

648b291846e7 alpine:latest "/bin/sh" 38 minutes ago

 Up 38 minutes hostnet

22. Based on the preceding output, you can see that the hostnet3 container exited
and is currently in a stopped state. To understand more fully why this is the case,
use the docker logs command to view the container logs:

$ docker logs hostnet3

The log output should be displayed as follows:

Figure 6.21: NGINX errors in the hostnet3 container

236 | Introduction to Docker Networking

Essentially, this second instance of an NGINX container was unable to start
properly because it was unable to bind to port 80 on the host machine. The
reason for this is that the hostnet2 container is already listening on that port.

Note

Note that containers running in host networking mode need to be
deployed with care and consideration. Without proper planning and
architecture, container sprawl can lead to a variety of port conflicts across
container instances that are running on the same machine.

23. The next type of native Docker network you will investigate is macvlan. In a
macvlan network, Docker will allocate a MAC address to a container instance
to make it appear as a physical host on a particular network segment. It can run
either in bridge mode, which uses a parent host network interface to gain
physical access to the underlay network, or in 802.1Q trunk mode, which
leverages a sub-interface that Docker creates on the fly.

24. To begin, create a new network utilizing the macvlan Docker network driver
by specifying a physical interface on your host machine as the parent interface
using the docker network create command.

25. Earlier in the ifconfig or ipconfig output, you saw that the enp1s0
interface is the primary network interface on the machine. Substitute the name
of the primary network interface of your machine. Since you are using the
primary network interface of the host machine as the parent, specify the same
subnet (or a smaller subnet within that space) for the network connectivity of our
containers. Use a 192.168.122.0/24 subnet here, since it is the same subnet
of the primary network interface. Likewise, you want to specify the same default
gateway as the parent interface. Use the same subnet and gateway of your
host machine:

$ docker network create -d macvlan --subnet=192.168.122.0/24
--gateway=192.168.122.1 -o parent=enp1s0 macvlan-net1

This command should create a network called macvlan-net1.

Native Docker Network Drivers | 237

26. Use the docker network ls command to confirm that the network has been
created and is using the macvlan network driver:

$ docker network ls

This command will output all the currently configured networks that are defined
in your environment. You should see the macvlan-net1 network:

NETWORK ID NAME DRIVER SCOPE

f4c9408f22e2 bridge bridge local

f52b4a5440ad host host local

b895c821b35f macvlan-net1 macvlan local

9bed60b88784 none null local

27. Now that the macvlan network has been defined in Docker, create a container
in this network and investigate the network connectivity from the host's
perspective. Use the docker run command to create another Alpine Linux
container named macvlan1 using the macvlan network macvlan-net1:

$ docker run -itd --name macvlan1 --network macvlan-net1
alpine:latest

This should start an Alpine Linux container instance called macvlan1 in
the background.

28. Use the docker ps -a command to check and make sure this container
instance is running:

$ docker ps -a

This should reveal that the container named macvlan1 is up and running
as expected:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

cd3c61276759 alpine:latest "/bin/sh" 3 seconds ago

 Up 1 second macvlan1

238 | Introduction to Docker Networking

29. Use the docker inspect command to investigate the networking
configuration of this container instance:

$ docker inspect macvlan1

The verbose output of the container configuration should be displayed.
The following output has been truncated to show only the network settings
section in JSON format:

Figure 6.22: The docker network inspect output of the macvlan1 network

From this output, you can see that this container instance (similar to containers
in other networking modes) has both an IP address and a default gateway. It
can also be concluded that this container also has an OSI Model Layer 2 MAC
address within the 192.168.122.0/24 network, based on the MacAddress
parameter under the Networks subsection. Other hosts within this network
segment would believe this machine is another physical node living in this
subnet, not a container hosted inside a node on the subnet.

Native Docker Network Drivers | 239

30. Use docker run to create a second container instance named macvlan2
inside the macvlan-net1 network:

$ docker run -itd --name macvlan2 --network macvlan-net1
alpine:latest

This should start another container instance within the
macvlan-net1 network.

31. Run the docker inspect command to see the MAC address of the
macvlan-net2 container instance:

$ docker inspect macvlan2

This will output the verbose configuration of the macvlan2 container instance
in JSON format, truncated here to only show the relevant networking settings:

Figure 6.23: docker inspect output for the macvlan2 container

240 | Introduction to Docker Networking

It can be seen in this output that the macvlan2 container has both a different
IP address and MAC address from the macvlan1 container instance. Docker
assigns different MAC addresses to ensure that Layer 2 conflicts do not arise
when many containers are using macvlan networks.

32. Run the docker exec command to access an sh shell inside this container:

$ docker exec -it macvlan1 /bin/sh

This should drop you into a root session inside the container.

33. Use the ifconfig command inside the container to observe that the MAC
address you saw in the docker inspect output on the macvlan1 container
is present as the MAC address of the container's primary network interface:

/ # ifconfig

In the details for the eth0 interface, look at the HWaddr parameter. You may
also note the IP address listed under the inet addr parameter, as well as
the number of bytes transmitted and received by this network interface – RX
bytes (bytes received) and TX bytes (bytes transmitted):

eth0 Link encap:Ethernet HWaddr 02:42:C0:A8:7A:02

 inet addr:192.168.122.2 Bcast:192.168.122.255

 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:353 errors:0 dropped:0 overruns:0 frame:0

 TX packets:188 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:1789983 (1.7 MiB) TX bytes:12688 (12.3 KiB)

34. Install the arping utility using the apk package manager available in the Alpine
Linux container. This is a tool used to send arp messages to a MAC address to
check Layer 2 connectivity:

/ # apk add arping

The arping utility should install inside the macvlan1 container:

fetch http://dl-cdn.alpinelinux.org/alpine/v3.11/main

/x86_64/APKINDEX.tar.gz

fetch http://dl-cdn.alpinelinux.org/alpine/v3.11/community

/x86_64/APKINDEX.tar.gz

(1/3) Installing libnet (1.1.6-r3)

(2/3) Installing libpcap (1.9.1-r0)

Native Docker Network Drivers | 241

(3/3) Installing arping (2.20-r0)

Executing busybox-1.31.1-r9.trigger

OK: 6 MiB in 17 packages

35. Specify the Layer 3 IP address of the macvlan2 container instance as the
primary argument to arping. Now, arping will automatically look up the
MAC address and check the Layer 2 connectivity to it:

/ # arping 192.168.122.3

The arping utility should report back the correct MAC address for
the macvlan2 container instance, indicating successful Layer 2
network connectivity:

ARPING 192.168.122.3

42 bytes from 02:42:c0:a8:7a:03 (192.168.122.3): index=0

time=8.563 usec

42 bytes from 02:42:c0:a8:7a:03 (192.168.122.3): index=1

time=18.889 usec

42 bytes from 02:42:c0:a8:7a:03 (192.168.122.3): index=2

time=15.917 use

type exit to return to the shell of your primary terminal.

36. Check the status of the containers using the docker ps -a command:

$ docker ps -a

The output of this command should show all the running and stopped container
instances in your environment.

37. Next, stop all running containers using docker stop, followed by the
container name or ID:

$ docker stop hostnet1

Repeat this step for all running containers in your environment.

38. Clean up the container images and unused networks using the docker
system prune command:

$ docker system prune -fa

This command will clean up all unused container images, networks, and volumes
remaining on your machine.

242 | Introduction to Docker Networking

In this exercise, we looked at the four default networking drivers available by default
in Docker: bridge, host, macvlan, and none. For each example, we explored how
the network functions, how containers deployed using these network drivers function
with the host machine, and how they function with other containers on the network.

The networking capability that Docker exposes by default can be leveraged to
deploy containers in very advanced networking configurations, as we have seen so
far. Docker also offers the ability to manage and coordinate container networking
between hosts in a clustered swarm configuration.

In the next section, we will look at creating networks that will create overlay networks
between Docker hosts to ensure direct connectivity between container instances.

Docker Overlay Networking
Overlay networks are logical networks that are created on top of a physical
(underlay) network for specific purposes. A Virtual Private Network (VPN), for
example, is a common type of overlay network that uses the internet to create a
link to another private network. Docker can create and manage overlay networks
between containers, which can be used for containerized applications to directly
talk to one another. When containers are deployed into an overlay network, it
does not matter which host in the cluster they are deployed on; they will have direct
connectivity to other containerized services that exist in the same overlay network
in the same way that they would if they existed on the same physical host.

Exercise 6.04: Defining Overlay Networks

Docker overlay networking is used to create mesh networks between machines in
a Docker swarm cluster. In this exercise, you will use two machines to create a basic
Docker swarm cluster. Ideally, these machines will exist on the same networking
segment to ensure direct network connectivity and fast network connectivity
between them. Furthermore, they should be running the same version of Docker
in a supported distribution of Linux, such as RedHat, CentOS, or Ubuntu.

You will define overlay networks that will span hosts in a Docker swarm cluster.
You will then ensure that containers deployed on separate hosts can talk to one
another via the overlay network:

Docker Overlay Networking | 243

Note

This exercise requires access to a secondary machine with Docker installed
on it. Usually, cloud-based virtual machines or machines deployed in
another hypervisor work best. Deploying a Docker swarm cluster on your
system using Docker Desktop could lead to networking issues or serious
performance degradation.

1. On the first machine, Machine1, run docker --version to find out which
version of Docker is currently running on it.

Machine1 ~$ docker --version

The version details of the Docker installation of
Machine1 will be displayed:

Docker version 19.03.6, build 369ce74a3c

Then, you can do the same for Machine2:

Machine2 ~$ docker --version

The version details of the Docker installation of
Machine2 will be displayed:

Docker version 19.03.6, build 369ce74a3c

Verify that the installed version of Docker is the same before moving forward.

Note

The Docker version may vary depending on your system.

2. On Machine1, run the docker swarm init command to initialize a Docker
swarm cluster:

Machine1 ~$ docker swarm init

This should print the command you can use on other nodes to join the Docker
swarm cluster, including the IP address and join token:

docker swarm join --token SWMTKN-1-57n212qtvfnpu0ab28tewiorf3j9fxzo9v
aa7drpare0ic6ohg-5epus8clyzd9xq7e7ze1y0p0n
192.168.122.185:2377

244 | Introduction to Docker Networking

3. On Machine2, run the docker swarm join command, which was provided
by Machine1, to join the Docker swarm cluster:

Machine2 ~$ docker swarm join --token SWMTKN-1-57n212qtvfnpu0
ab28tewiorf3j9fxzo9vaa7drpare0ic6ohg-5epus8clyzd9xq7e7ze1y0p0n
192.168.122.185:2377

Machine2 should successfully join the Docker swarm cluster:

This node joined a swarm as a worker.

4. Execute the docker info command on both nodes to ensure they have
successfully joined the swarm cluster:

Machine1:

Machine1 ~$ docker info

Machine2:

Machine2 ~$ docker info

The following output is a truncation of the swarm portion of the docker info
output. From these details, you will see that these Docker nodes are configured
in a swarm cluster and there are two nodes in the cluster with a single manager
node (Machine1). These parameters should be identical on both nodes, except
for the Is Manager parameter, for which Machine1 will be the manager. By
default, Docker will allocate a default subnet of 10.0.0.0/8 for the default
Docker swarm overlay network:

 swarm: active

 NodeID: oub9g5383ifyg7i52yq4zsu5a

 Is Manager: true

 ClusterID: x7chp0w3two04ltmkqjm32g1f

 Managers: 1

 Nodes: 2

 Default Address Pool: 10.0.0.0/8

 SubnetSize: 24

 Data Path Port: 4789

 Orchestration:

 Task History Retention Limit: 5

Docker Overlay Networking | 245

5. From the Machine1 box, create an overlay network using the docker
network create command. Since this is a network that will span more than
one node in a simple swarm cluster, specify the overlay driver as the network
driver. Call this network overlaynet1. Use a subnet and gateway that are not
yet in use by any networks on your Docker hosts to avoid subnet collisions. Use
172.45.0.0/16 and 172.45.0.1 as the gateway:

Machine1 ~$ docker network create overlaynet1 --driver overlay
--subnet 172.45.0.0/16 --gateway 172.45.0.1

The overlay network will be created.

6. Use the docker network ls command to verify whether the network was
created successfully and is using the correct overlay driver:

Machine1 ~$ docker network ls

A list of networks available on your Docker host will be displayed:

NETWORK ID NAME DRIVER SCOPE

54f2af38e6a8 bridge bridge local

df5ebd75303e docker_gwbridge bridge local

f52b4a5440ad host host local

8hm1ouvt4z7t ingress overlay swarm

9bed60b88784 none null local

60wqq8ewt8zq overlaynet1 overlay swarm

7. Use the docker service create command to create a service that will
span multiple nodes in the swarm cluster. Deploying containers as services
allow you to specify more than one replica of a container instance for horizontal
scaling or scaling container instances across nodes in a cluster for high
availability. To keep this example simple, create a single container service
of Alpine Linux. Name this service alpine-overlay1:

Machine1 ~$ docker service create -t --replicas 1 --network
overlaynet1 --name alpine-overlay1 alpine:latest

A text-based progress bar will display the progress of the alpine-overlay1
service deployment:

overall progress: 1 out of 1 tasks

1/1: running [===>]

verify: Service converged

246 | Introduction to Docker Networking

8. Repeat the same docker service create command, but now specify
alpine-overlay2 as the service name:

Machine1 ~$ docker service create -t --replicas 1 --network
overlaynet1 --name alpine-overlay2 alpine:latest

A text-based progress bar will again display the progress of the
service deployment:

overall progress: 1 out of 1 tasks

1/1: running [===>]

verify: Service converged

Note

More details on creating services in Docker swarm can be found in
Chapter 9, Docker Swarm. As the scope of this exercise is networking,
we will focus for now on the networking component.

9. From the Machine1 node, execute the docker ps command to see which
service is running on this node:

Machine1 ~$ docker ps

The running containers will be displayed. Docker will intelligently scale
containers between nodes in a Docker swarm cluster. In this example, the
container from the alpine-overlay1 service landed on Machine1.
Your environment may vary depending on how Docker deploys the services:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

4d0f5fa82add alpine:latest "/bin/sh" 59 seconds ago

 Up 57 seconds alpine-overlay1.1.

r0tlm8w0dtdfbjaqyhobza94p

10. Run the docker inspect command to view the verbose details of the
running container:

Machine1 ~$ docker inspect alpine-overlay1.1.r0tlm8w0dtdfbjaqyhobza
94p

Docker Overlay Networking | 247

The verbose details of the running container instance will be displayed.
The following output has been truncated to display the NetworkSettings
portion of the docker inspect output:

Figure 6.24: Inspecting the alpine-overlay1 container instance

Notice that the IP address of this container is as expected within the subnet you
have specified on Machine1.

248 | Introduction to Docker Networking

11. On the Machine2 instance, execute the docker network ls command to
view the Docker networks available on the host:

Machine2 ~$ docker network ls

A list of all available Docker networks will be displayed on the Docker host:

NETWORK ID NAME DRIVER SCOPE

8c7755be162f bridge bridge local

28055e8c63a0 docker_gwbridge bridge local

c62fb7ac090f host host local

8hm1ouvt4z7t ingress overlay swarm

6182d77a8f62 none null local

60wqq8ewt8zq overlaynet1 overlay swarm

Notice the overlaynet1 network defined on Machine1 is also available on
Machine2. This is because networks created using the overlay driver are
available to all hosts in the Docker swarm cluster. This enables containers to be
deployed using this network to run across all hosts in the cluster.

12. Use the docker ps command to list the running containers on this
Docker instance:

Machine2 ~$ docker ps

A list of all running containers will be displayed. In this example, the container in
the alpine-overlay2 service landed on the Machine2 cluster node:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

53747ca9af09 alpine:latest "/bin/sh" 33 minutes ago

 Up 33 minutes alpine-overlay2.1.ui9vh6zn1
8i48sxjbr8k23t71

Note

Which node the services land on in your example may differ from what
is displayed here. Docker makes decisions on how to deploy containers
based on various criteria, such as available CPU bandwidth, memory,
and scheduling restrictions placed on the deployed containers.

Docker Overlay Networking | 249

13. Use docker inspect to investigate the network configuration of this
container as well:

Machine2 ~$ docker inspect alpine-overlay2.1.ui9vh6zn18i48sxjbr8k
23t71

The verbose container configuration will be displayed. This output has
been truncated to display the NetworkSettings portion of the output
in JSON format:

Figure 6.25: docker inspect output of the alpine-overlay2 container instance

Note that this container also has an IP address within the overlaynet1
overlay network.

250 | Introduction to Docker Networking

14. Since both services are deployed within the same overlay network but exist
in two separate hosts, you can see that Docker is using the underlay network
to proxy the traffic for the overlay network. Check the network connectivity
between the services by attempting a ping from one service to the other. It
should be noted here that, similar to static containers deployed in the same
network, services deployed on the same network can resolve each other by
name using Docker DNS. Use the docker exec command on the Machine2
host to access an sh shell inside the alpine-overlay2 container:

Machine2 ~$ docker exec -it alpine-overlay2.1.ui9vh6zn18i48sxjbr8k
23t71 /bin/sh

This should drop you into a root shell on the alpine-overlay2 container
instance. Use the ping command to initiate network communication to the
alpine-overlay1 container:

/ # ping alpine-overlay1

PING alpine-overlay1 (172.45.0.10): 56 data bytes

64 bytes from 172.45.0.10: seq=0 ttl=64 time=0.314 ms

64 bytes from 172.45.0.10: seq=1 ttl=64 time=0.274 ms

64 bytes from 172.45.0.10: seq=2 ttl=64 time=0.138 ms

Notice that even though these containers are deployed across two separate
hosts, the containers can communicate with each other by name, using the
shared overlay network.

15. From the Machine1 box, you can attempt the same communication to the
alpine-overlay2 service container. Use the docker exec command to
access an sh shell on the Machine1 box:

Machine1 ~$ docker exec -it alpine-overlay1.1.r0tlm8w0dtdfbjaqyhobza
94p /bin/sh

This should drop you into a root shell inside the container. Use the ping
command to initiate communication to the alpine-overlay2
container instance:

/ # ping alpine-overlay2

PING alpine-overlay2 (172.45.0.13): 56 data bytes

64 bytes from 172.45.0.13: seq=0 ttl=64 time=0.441 ms

64 bytes from 172.45.0.13: seq=1 ttl=64 time=0.227 ms

64 bytes from 172.45.0.13: seq=2 ttl=64 time=0.282 ms

Docker Overlay Networking | 251

Notice again that, by using Docker DNS, the IP address of the
alpine-overlay2 container can be resolved between hosts
using the overlay networking driver.

16. Use the docker service rm command to delete both services from the
Machine1 node:

Machine1 ~$ docker service rm alpine-overlay1

Machine1 ~$ docker service rm alpine-overlay2

For each of these commands, the service name will appear briefly indicating the
command execution was successful. On both nodes, docker ps will display
that no containers are currently running.

17. Delete the overlaynet1 Docker network by using the docker rm command
and specifying the name overlaynet1:

Machine1 ~$ docker network rm overlaynet1

The overlaynet1 network will be deleted.

In this exercise, we looked at Docker overlay networking between two hosts in a
Docker swarm cluster. Overlay networking is enormously beneficial in a Docker
container cluster because it allows the horizontal scaling of containers between
nodes in a cluster. From a network perspective, these containers can directly talk to
one another by using a service mesh proxied over the physical network interfaces of
the host machines. This not only reduces latency but simplifies deployments by taking
advantage of many of Docker's features, such as DNS.

Now that we have looked at all the native Docker network types and examples of how
they function, we can look at another aspect of Docker networking that has recently
been gaining popularity. Since Docker networking is very modular, as we have seen,
Docker supports a plugin system that allows users to deploy and manage custom
network drivers.

In the next section, we will learn about how non-native Docker networks work by
installing a third-party network driver from Docker Hub.

252 | Introduction to Docker Networking

Non-Native Docker Networks
In the final section of this chapter, we will discuss non-native Docker networks.
Aside from the native Docker network drivers that are available, Docker also
supports custom networking drivers that can be written by users or downloaded
from third parties via Docker Hub. Custom third-party network drivers are useful in
circumstances that require very particular network configurations, or where container
networking is expected to behave in a certain way. For example, some network
drivers provide the ability for users to set custom policies regarding access to internet
resources, or other defining whitelists for communication between containerized
applications. This can be helpful from a security, policy, and auditing perspective.

In the following exercise, we will download and install the Weave Net driver and
create a network on a Docker host. Weave Net is a highly supported third-party
network driver that provides excellent visibility into container mesh networks,
allowing users to create complex service mesh infrastructures that can span
multi-cloud scenarios. We will install the Weave Net driver from Docker Hub
and configure a basic network in the simple swarm cluster we defined in the
previous exercise.

Exercise 6.05: Installing and Configuring the Weave Net Docker Network Driver

In this exercise, you will download and install the Weave Net Docker network driver
and deploy it within the Docker swarm cluster you created in the previous exercise.
Weave Net is one of the most common and flexible third-party Docker network
drivers available. Using Weave Net, very complex networking configurations
can be defined to enable maximum flexibility in your infrastructure:

1. Install the Weave Net driver from Docker Hub using the docker plugin
install command on the Machine1 node:

Machine1 ~$ docker plugin install store/weaveworks/net-plugin:2.5.2

This will prompt you to grant Weave Net permissions on the machine you
are installing it on. It is safe to grant the requested permissions as Weave
Net requires them to set up the network driver on the host operating
system properly:

Plugin "store/weaveworks/net-plugin:2.5.2" is requesting

the following privileges:

 - network: [host]

 - mount: [/proc/]

 - mount: [/var/run/docker.sock]

Non-Native Docker Networks | 253

 - mount: [/var/lib/]

 - mount: [/etc/]

 - mount: [/lib/modules/]

 - capabilities: [CAP_SYS_ADMIN CAP_NET_ADMIN CAP_SYS_MODULE]

Do you grant the above permissions? [y/N]

Answer the prompt by pressing the y key. The Weave Net plugin should be
installed successfully.

2. On the Machine2 node, run the same docker plugin install command.
All nodes in the Docker swarm cluster should have the plugin installed since all
nodes will be participating in the swarm mesh networking:

Machine2 ~$ docker plugin install store/weaveworks/net-plugin:2.5.2

The permissions prompt will be displayed. Respond with y when prompted to
continue the installation:

Plugin "store/weaveworks/net-plugin:2.5.2" is requesting

the following privileges:

 - network: [host]

 - mount: [/proc/]

 - mount: [/var/run/docker.sock]

 - mount: [/var/lib/]

 - mount: [/etc/]

 - mount: [/lib/modules/]

 - capabilities: [CAP_SYS_ADMIN CAP_NET_ADMIN CAP_SYS_MODULE]

Do you grant the above permissions? [y/N]

3. Create a network using the docker network create command on the
Machine1 node. Specify the Weave Net driver as the primary driver and the
network name as weavenet1. For the subnet and gateway parameters, use a
unique subnet that has not yet been used in the previous exercises:

Machine1 ~$ docker network create --driver=store/weaveworks/
net-plugin:2.5.2 --subnet 10.1.1.0/24 --gateway 10.1.1.1 weavenet1

This should create a network called weavenet1 in the Docker swarm cluster.

4. List the available networks in the Docker swarm cluster using the docker
network ls command:

Machine1 ~$ docker network ls

254 | Introduction to Docker Networking

The weavenet1 network should be displayed in the list:

NETWORK ID NAME DRIVER

 SCOPE

b3f000eb4699 bridge bridge

 local

df5ebd75303e docker_gwbridge bridge

 local

f52b4a5440ad host host

 local

8hm1ouvt4z7t ingress overlay

 swarm

9bed60b88784 none null

 local

q354wyn6yvh4 weavenet1 store/weaveworks/net-plugin:2.5.2

 swarm

5. Execute the docker network ls command on the Machine2 node to
ensure that the weavenet1 network is present on that machine as well:

Machine2 ~$ docker network ls

The weavenet1 network should be listed:

NETWORK ID NAME DRIVER

 SCOPE

b3f000eb4699 bridge bridge

 local

df5ebd75303e docker_gwbridge bridge

 local

f52b4a5440ad host host

 local

8hm1ouvt4z7t ingress overlay

 swarm

9bed60b88784 none null

 local

q354wyn6yvh4 weavenet1 store/weaveworks/net-plugin:2.5.2

 swarm

Non-Native Docker Networks | 255

6. On the Machine1 node, create a service called alpine-weavenet1 that uses
the weavenet1 network using the docker service create command:

Machine1 ~$ docker service create -t --replicas 1 --network weavenet1
--name alpine-weavenet1 alpine:latest

A text-based progress bar will display the deployment status of the service. It
should complete without any issues:

overall progress: 1 out of 1 tasks

1/1: running [===>]

verify: Service converged

7. Use the docker service create command again to create another
service in the weavenet1 network called alpine-weavenet2:

Machine1 ~$ docker service create -t --replicas 1 --network weavenet1
--name alpine-weavenet2 alpine:latest

A text-based progress bar will again display indicating the status of the
service creation:

overall progress: 1 out of 1 tasks

1/1: running [===>]

verify: Service converged

8. Run the docker ps command to validate that an Alpine container is
successfully running on each node in the cluster:

Machine1:

Machine1 ~$ docker ps

Machine2:

Machine2 ~$ docker ps

One of the service containers should be up and running on both machines:

Machine1:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

acc47f58d8b1 alpine:latest "/bin/sh" 7 minutes ago

 Up 7 minutes alpine-weavenet1.1.zo5folr5
yvu6v7cwqn23d2h97

256 | Introduction to Docker Networking

Machine2:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

da2a45d8c895 alpine:latest "/bin/sh" 4 minutes ago

 Up 4 minutes alpine-weavenet2.1.z8jpiup8yetj

rqca62ub0yz9k

9. Use the docker exec command to access an sh shell inside the
weavenet1.1 container instance. Make sure to run this command
on the node in the swarm cluster that is running this container:

Machine1 ~$ docker exec -it alpine-weavenet1.1.zo5folr5yvu6v7cwqn23
d2h97 /bin/sh

This should drop you into a root shell inside the container:

/ #

10. Use the ifconfig command to view the network interfaces present inside
this container:

/ # ifconfig

This will display a newly named network interface called ethwe0. A core part of
Weave Net's core networking policy is to create custom-named interfaces within
the container for easy identification and troubleshooting. It should be noted
this interface is assigned an IP address from the subnet that we provided as a
configuration parameter:

ethwe0 Link encap:Ethernet HWaddr AA:11:F2:2B:6D:BA

 inet addr:10.1.1.3 Bcast:10.1.1.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1376 Metric:1

 RX packets:37 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:4067 (3.9 KiB) TX bytes:0 (0.0 B)

11. From inside this container, ping the alpine-weavenet2 service by name,
using the ping utility:

ping alpine-weavenet2

Non-Native Docker Networks | 257

You should see responses coming from the resolved IP address of the
alpine-weavenet2 service:

64 bytes from 10.1.1.4: seq=0 ttl=64 time=3.430 ms

64 bytes from 10.1.1.4: seq=1 ttl=64 time=1.541 ms

64 bytes from 10.1.1.4: seq=2 ttl=64 time=1.363 ms

64 bytes from 10.1.1.4: seq=3 ttl=64 time=1.850 ms

Note

Due to recent updates in the Docker libnetwork stack in recent
versions of Docker and Docker Swarm, pinging the service by name:
alpine-weavenet2 may not work. To demonstrate the network is
working as intended, try pinging the name of the container directly instead:
alpine-weavenet2.1.z8jpiup8yetjrqca62ub0yz9k – Keep in
mind, the name of this container will be different in your lab environment.

12. Try pinging Google DNS servers (8.8.8.8) on the open internet from these
containers as well to ensure that these containers have internet access:

ping 8.8.8.8

You should see responses returning, indicating these containers have
internet access:

/ # ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8): 56 data bytes

64 bytes from 8.8.8.8: seq=0 ttl=51 time=13.224 ms

64 bytes from 8.8.8.8: seq=1 ttl=51 time=11.840 ms

type exit to quit the shell session in this container.

13. Use the docker service rm command to remove both services from the
Machine1 node:

Machine1 ~$ docker service rm alpine-weavenet1

Machine1 ~$ docker service rm alpine-weavenet2

This will delete both the services, stopping and removing the container instances.

258 | Introduction to Docker Networking

14. Delete the Weave Net network that was created by running the
following command:

Machine1 ~$ docker network rm weavenet1

The Weave Net network should be deleted and removed.

In the robust system of containerized networking concepts, Docker has a vast array
of networking drivers to cover almost any circumstance that your workloads demand.
However, for all the use cases that lie outside the default Docker networking drivers,
Docker supports third-party custom drivers for almost any networking conditions
that may arise. Third-party network drivers allow Docker to have flexible integrations
with various platforms and even across multiple cloud providers. In this exercise, we
looked at installing and configuring the Weave Net networking plugin and creating
simple services in a Docker swarm cluster to leverage this network.

In the following activity, you will apply what you have learned in this chapter,
using the various Docker network drivers, to deploy a multi-container
infrastructure solution. These containers will communicate using different
Docker networking drivers on the same hosts and even across multiple
hosts in a Docker swarm configuration.

Activity 6.01: Leveraging Docker Network Drivers

Earlier in the chapter, we looked at the various types of Docker network drivers
and how they all function in different ways to bring various degrees of networking
capability to deliver functionality in your container environment. In this activity, you
are going to deploy an example container from the Panoramic Trekking application
in a Docker bridge network. You will then deploy a secondary container in host
networking mode that will serve as a monitoring server and will be able to use curl
to verify that the application is running as expected.

Perform the following steps to complete this activity:

1. Create a custom Docker bridge network with a custom subnet and gateway IP.

2. Deploy an NGINX web server called webserver1 in that bridge network,
exposing forwarding port 80 on the container to port 8080 on the host.

3. Deploy an Alpine Linux container in host networking mode, which will serve as
a monitoring container.

4. Use the Alpine Linux container to curl the NGINX web server and get
a response.

Non-Native Docker Networks | 259

Expected output:

When you connect to both the forwarded port 8080 and the IP address of the
webserver1 container directly on port 80 upon completion of the activity, you
should get the following output:

Figure 6.26: Accessing the NGINX web server from the IP address of the container instance

Note

The solution for this activity can be found via this link.

In the next activity, we will look at how Docker overlay networking can be leveraged
to provide horizontal scalability for our Panoramic Trekking application. By deploying
Panoramic Trekking across multiple hosts, we can ensure reliability and durability,
and make use of system resources from more than one node in our environment.

260 | Introduction to Docker Networking

Activity 6.02: Overlay Networking in Action

In this chapter, you have seen how powerful overlay networking is when deploying
multiple containers between cluster hosts with direct network connectivity between
them. In this activity, you will revisit the two-node Docker swarm cluster and create
services from the Panoramic Trekking application that will connect using Docker
DNS between two hosts. In this scenario, different microservices will be running on
different Docker swarm hosts but will still be able to leverage the Docker overlay
network to directly communicate with each other.

To complete this activity successfully, perform the following steps:

1. A Docker overlay network using a custom subnet and gateway

2. One application Docker swarm service called trekking-app using an Alpine
Linux container

3. One database Docker swarm service called database-app using a
PostgreSQL 12 container (extra credit to supply default credentials)

4. Prove that the trekking-app service can communicate with the
database-app service using overlay networking

Expected Output:

The trekking-app service should be able to communicate with the
database-app service, which can be verified by ICMP replies such as the following:

PING database-app (10.2.0.5): 56 data bytes

64 bytes from 10.2.0.5: seq=0 ttl=64 time=0.261 ms

64 bytes from 10.2.0.5: seq=1 ttl=64 time=0.352 ms

64 bytes from 10.2.0.5: seq=2 ttl=64 time=0.198 ms

Note

The solution for this activity can be found via this link.

Summary | 261

Summary
In this chapter, we looked at the many facets of networking in relation to
microservices and Docker containers. Docker comes equipped with numerous
drivers and configuration options that users can use to tune the way their container
networking works in almost any environment. By deploying the correct networks
and the correct drivers, powerful service mesh networks can quickly be spun up to
enable container-to-container access without egressing any physical Docker hosts.
Containers can even be created that will bind to the host networking fabric to take
advantage of the underlying network infrastructure.

Quite arguably the most powerful network feature that can be enabled in Docker
is the ability to create networks across clusters of Docker hosts. This can allow us
to quickly create and deploy horizontal scaling applications between hosts for high
availability and redundancy. By leveraging the underlay network, overlay networks
within swarm clusters allow containers to directly contact containers running on
other cluster hosts by taking advantage of the powerful Docker DNS system.

In the next chapter, we will look at the next pillar of a powerful containerized
infrastructure: storage. By understanding how container storage can be utilized for
stateful applications, extremely powerful solutions can be architected that involve
not only containerized stateless applications, but containerized database services
that can be deployed, scaled, and optimized as easily as other containers across
your infrastructure.

Overview

In this chapter, you will learn how Docker manages data. It is crucial to
know where to store your data and how your services will access it. This
chapter will explore running stateless versus stateful Docker containers,
and will delve into the configuration setup options for storage for different
applications. By the end of the chapter, you will be able to distinguish
between the different storage types in Docker and identify the container's
life cycle and its various states. You will also learn how to create and
manage Docker volumes.

Docker Storage

7

264 | Docker Storage

Introduction
In previous chapters, you learned how to run a container from an image and how
to configure its networking. You also learned that you can pass various Docker
commands while crafting containers from the images. In this chapter, you will
learn how to control these containers after you have created them.

Assume that you have been assigned to build a web application for an e-store.
You will need a database to store the products catalog, clients' information, and
purchase transactions. To store these details, you need to configure the application's
storage settings.

There are two types of data storage in Docker. The first one is storage that is tightly
coupled to the container life cycle. If the container is removed, the files on that
storage type are also removed and cannot be retrieved. These files are stored in the
thin read/write layer inside the container itself. This type of storage is also known by
other terms, such as the local storage, the graphdriver storage, and the storage
driver. The first section of this chapter focuses on this type of storage. These files
could be of any type—for example, the files Docker created after installing a new
layer on top of the base image.

The second section of the chapter explores stateless and stateful services. Stateful
applications are the ones that need persistent storage, such as databases that persist
and outlive the container. In stateful services, the data can still be accessed even
when the container is removed.

The container stores the data on the host in two ways: through volumes and bind
mounts. Using a bind mount is not recommended because the bind mount binds an
existing file or directory on the host to a path inside the container. This bind adds a
burden in referencing by using the full or relative path on the host machine. However,
a new directory is created within Docker's storage directory on the host machine
when you use a volume, and Docker manages the directory's contents. We will focus
on using volumes in the third section of this chapter.

Before exploring different types of storage in Docker, let's first explore the container
life cycle.

The Container Life Cycle | 265

The Container Life Cycle
Containers are crafted from their base images. The container inherits the filesystem
of the image by creating a thin read/write layer on top of the image layers' stack.
The base images stay intact, and no changes are made to them. All your changes
happen in that top layer of the container. For example, say you create a container of
ubuntu: 14.08. This image does not have the wget package in it. When you install
the wget package, you actually install it on the top layer. So, you have a layer for the
base image, and on top of it, another layer for wget.

If you install the Apache server as well, it will be the third layer on top of both of the
previous layers. To save all your changes, you need to commit all these changes to a
new image because you cannot write over the base image. If you do not commit the
changes to a new image, these changes will be deleted with the container's removal.

The container undergoes many other states during its life cycle, so it is important to
look into all the states that a container can have during its life cycle. So, let's dive into
understanding the different container states:

Figure 7.1: Container life cycle

The different stages that a container undergoes are as follows:

• The container enters the CREATED status using the docker container run
subcommand, as shown in Figure 7.1.

• Inside every container, there is a main process running. When this process
begins running, the container's status changes to the UP status.

266 | Docker Storage

• The container's status changes to UP(PAUSED) by using the docker
container pause subcommand. The container freezes or suspends
but is still in the UP state and is not stopped or removed.

• To resume running the container, use the docker container unpause
subcommand. Here, the container's status will change to the UP status again.

• Use the docker container stop subcommand to stop the container
without removing it. The container's status changes to the EXITED status.

• The container will exit if you execute the docker container kill or
docker container stop subcommands. To kill the container, use the
docker container kill subcommand. The container status changes
to EXITED. However, to make the container exit, you should use docker
container stop subcommand and not docker container kill
subcommand. Do not kill your containers; always remove them because
removing the container triggers a grace shutdown to the container, giving
time, for example, to save the data to a database, which is a slower process.
However, killing does not do that and might cause data inconsistency.

• After stopping or killing the container, you can also resume running the
container. To start the container and return it to the UP status, use the docker
container start or docker container start -a subcommands.
docker container start -a is equal to running docker container
start and then docker container attach. You cannot attach local
standard input, output, and error streams to an exited container; the
container must be in the UP state first to attach local standard input,
output, and error streams.

• To restart a container, use the docker container restart subcommand.
The restart subcommand acts like executing docker container stop
followed by docker container start.

• Stopping or killing the container does not remove the container from the
system. To remove the container entirely, use the docker container rm
subcommand.

The Container Life Cycle | 267

Note

You can concatenate several Docker commands to each other – for
example, docker container rm -f $(docker container
ls -aq). The one that you want to execute first should be included in
the brackets.

In this case, docker container ls -aq tells Docker to list all the
containers, even the exited one, in quiet mode. The -a option denotes
displaying all the containers, whatever their states are. The -q option is
used for quiet mode, which means displaying the numeric IDs only and
not all the containers' details. The output of this command, docker
container ls -aq, will be the input of the docker container
rm -f command.

Understanding the Docker container life cycle events provides a good background as
to why some applications may or may not need persistent storage. Before moving
on to the different storage types present in Docker, let's execute the aforementioned
commands and explore the different container states in the following exercise.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

Exercise 7.01: Transitioning through the Common States for a Docker Container

Pinging www.google.com is a common practice to verify that the server or your cluster's
node is connected to the internet. In this exercise, you will transit through all the
states for a Docker container while checking whether the server or your cluster's
node is connected to the internet.

You will use two terminals in this exercise. One terminal will be used to run a
container to ping www.google.com, and the other one will be used to control this
running container by executing the previously mentioned commands.

268 | Docker Storage

To ping www.google.com, you will craft a container called testevents from the
ubuntu:14.04 image:

1. Open the first terminal and execute the docker container run command
to run a container. Use the --name option to give the container a specific
nickname—for example, testevents. Don't let the Docker host generate a
random name for your container. Use the ubuntu:14.04 image and the ping
google.com command to verify that the server is running on the container:

$docker container run --name testevents ubuntu:14.04 ping google.com

The output will be as follows:

PING google.com (172.217.165.142) 56(84) bytes of data.

64 bytes from lax30s03-in-f14.1e100.net (172.217.165.142):

icmp_seq=1 ttl=115 time=68.9 ms

64 bytes from lax30s03-in-f14.1e100.net (172.217.165.142):

icmp_seq=2 ttl=115 time=349 ms

64 bytes from lax30s03-in-f14.1e100.net (172.217.165.142):

icmp_seq=3 ttl=115 time=170 ms

As you can see in the preceding output, the pinging has started. You will find the
packets being transmitted to google.com.

2. Dedicate the first terminal to the pinging output. Now, control this container by
executing the commands in another terminal. In the second terminal, execute
docker container ls to list all the running containers:

$docker container ls

Look for the container with the name testevents. The status should be Up:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

10e235033813 ubuntu:14.04 "ping google.com" 10 seconds ago

 Up 5 seconds testevents

3. Now, run the docker container pause command in the second terminal
to pause the running container in the first terminal:

$docker container pause testevents

You will see that the pinging has stopped, and no packets are being
transmitted anymore.

The Container Life Cycle | 269

4. List the running containers again by using docker container ls in the
second terminal:

$docker container ls

As you can see in the following output, the status of testevents is
Up(Paused). This is because you ran the docker container pause
command previously:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

10e235033813 ubuntu:14.04 "ping google.com" 26 seconds ago

 Up 20 seconds (Paused) testevents

5. Use docker container unpause in the second terminal to start the paused
container and make it resume sending packets:

$docker container unpause testevents

You will find that the pinging resumes and new packets are transmitted in the
first terminal.

6. In the second terminal, run the docker container ls command again to
see the container's current status:

$docker container ls

You will see that the status of the testevents container is Up:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

10e235033813 ubuntu:14.04 "ping google.com" 43 seconds ago

 Up 37 seconds testevents

7. Now, run the docker container stop command to stop the container:

$docker container stop testevents

You will observe that the container exits and the shell prompt returns in the
first terminal:

64 bytes from lax30s03-in-f14.1e100.net (142.250.64.110):

icmp_seq = 42 ttl=115 time=19.8 ms

64 bytes from lax30s03-in-f14.1e100.net (142.250.64.110):

icmp_seq = 43 ttl=115 time=18.7 ms

270 | Docker Storage

8. Now, run the docker container ls command in any terminal:

$docker container ls

You will see that the testevents container is not in the list anymore because
the docker container ls subcommand displays the up-and-running
containers only:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

9. Run the docker container ls -a command to display all the containers:

$docker container ls -a

You can see that the status of the testevents container is now Exited:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

10e235033813 ubuntu:14.04 "ping google.com" 1 minute ago

 Exited (137) 13 seconds ago testevents

10. Use the docker container start command to start the container. Also,
add the -a option to attach local standard input, output, and error streams to
the container and see its output:

$docker container start -a testevents

As you can see in the following snippet, the pinging resumes and is executed in
the first terminal:

64 bytes from lax30s03-in-f14.1e100.net (142.250.64.110):

icmp_seq = 55 ttl=115 time=63.5 ms

64 bytes from lax30s03-in-f14.1e100.net (142.250.64.110):

icmp_seq = 56 ttl=115 time=22.2 ms

11. Run the docker ls command again in the second terminal:

$docker container ls

You will observe that testevents returns back to the list, its status is Up, and it
is running:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

10e235033813 ubuntu:14.04 "ping google.com" 43 seconds ago

 Up 37 seconds testevents

The Container Life Cycle | 271

12. Now, remove the testevents container using the rm command with the
-f option. The -f option is used to force-remove the container:

$docker container rm -f testevents

The first terminal stops executing the ping command and the second terminal
will return the name of the container:

testevents

13. Run the ls -a command to check whether the container is running or not:

$docker container ls -a

You will not find the testevents container in the list because we just removed
it from our system.

Now, you have seen all the various statuses of the container except CREATED.
This is typical, as you usually will not see the CREATED status. Inside every
container, there is a main process with a Process ID (PID) of 0 and Parent
Process ID (PPID) of 1. This process has a different ID outside the container.
When this process is killed or removed, the container is killed or removed as
well. Normally, when the main process runs, the state of the container changes
from CREATED to UP, and this indicates that the container has been created
successfully. If the main process fails, the container state does not change from
CREATED, and this is what you are going to set up:

14. Run the following command to see the CREATED status. Craft a container
named testcreate from the ubuntu:14.04 image using the docker
container run command:

$docker container run --name testcreate ubuntu:14.04 time

The time command will generate an error because there is no such command
inside ubuntu:14.04.

15. Now, list the running containers:

$docker container ls

You will see that the list is empty:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

16. Now, list all the containers by adding the -a option:

$docker container ls -a

272 | Docker Storage

Look in the list for the container named testcreate; you will observe that its
status is Created:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

C262e6718724 ubuntu:14.04 "time" 30 seconds ago

 Created testcreate

If a container is stuck in the CREATED state, this is an indication that an
error has been generated, and Docker was unable to get the container
up and running.

In this exercise, you explored the container life cycle and its different states. You also
learned how to start with attachment by using the docker container start
-a <container name or ID> command and how to stop the container using
docker container rm <container name or ID>. In the end, we discussed
how to force-remove running containers by using docker container rm -f
<container name or ID>. Then, we saw the rare case of CREATED, which is
shown only when the command generates an error and the container fails to start.

So far, we have focused on the container's statuses and not its size. In the next
exercise, we will learn how to determine the size of the memory occupied by
the container.

Exercise 7.02: Checking the Container Size on Disk

When you first craft a container, it has the same size as the base image with a top
read/write layer. With every layer that is added to the container, its size increases. In
this exercise, you will create a container that has ubuntu:14.04 as its base image.
Update and install wget on top of it to highlight the effect of state transition on
data retention:

1. Run the docker container run command with the -it option to create
a container named testsize. The -it option is used to have an interactive
terminal to run commands inside the running container:

$docker container run -it --name testsize ubuntu:14.04

The prompt will now look like root@<container ID>:/#, where the
container ID is a number that the Docker Engine generates. Therefore, you will
have a different number when you run this command on your machine. As
mentioned before, being inside a container means that the container will be in
the UP state.

The Container Life Cycle | 273

2. Dedicate the first terminal to the running container and execute the commands
in the second terminal. Having two terminals saves us from detaching the
container to run a command and then reattaching to the container to run
another command inside it.

Now, verify that the container initially has the size of the base image, which is
ubuntu:14.04. List the images using the docker image ls command in
the second terminal. Check the size of the ubuntu:14.04 image:

$docker image ls

As you can see in the following output, the size of the image is 188MB:

REPOSITORY TAG IMAGE ID CREATED

 SIZE

ubuntu 14.04 971bb3841501 23 months ago

 188MB

3. Now, check the size of the container by running the docker container ls
-s command to get the container's size:

$docker container ls -s

Look for the testsize container. You will observe that the size is 0B
(virtual 188MB):

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES SIZE

9f2d2d1ee3e0 ubuntu:14.04 "/bin/bash" 6 seconds ago

 Up 6 minutes testsize 0B (virtual 188MB)

The SIZE column indicates the size of the thin read/write layer of the container
only, while the virtual size indicates the size of the thin read/write layer and all
the previous layers encapsulated in the container. Thus, in this case, the thin
layer equals 0B, and the virtual size equals the image size.

4. Now, install the wget package. Run the apt-get update command in the
first terminal. A general recommendation, in Linux, is to run apt-get update
before installing any packages to update the latest versions of the packages that
are currently on your system:

root@9f2d2d1ee3e0: apt-get update

274 | Docker Storage

5. Run the following command when the container finishes updating to install the
wget package on top of the base image. The -y option is used to answer yes
automatically to all the installation questions:

root@9f2d2d1ee3e: apt-get install -y wget

6. When it finishes installing wget on top of ubuntu:14.04, recheck the
container's size by running the ls -s command in the second terminal:

$docker container ls -s

As you can see from the following snippet, the size of the testsize container is
27.8 MB (virtual 216 MB):

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES SIZE

9f2d2d1ee3e0 ubuntu:14.04 "/bin/bash" 9 seconds ago

 Up 9 minutes testsize 27.8MB (virtual 216MB)

Now, the thin layer equals 27.8MB, and the virtual size equals the size of all the
layers. In this exercise, the layers are the base image, with a size of 188 MB; the
update; and the wget layer, which has a size of 27.8 MB. Therefore, the total size
will be 216 MB after approximation.

In this exercise, you learned about the function of the -s option used with the
docker container ls subcommand. This option is used to display the size of
the base image and the size of the top writable layer. Knowing the size that every
container consumes is useful to avoid an out-of-disk-space exception. Moreover, it
can help us in troubleshooting and setting a maximum size for every container.

Note

Docker uses storage drivers to write in the writable layer. The storage
drivers differ depending on the operating system that you are using. To
find the updated list of storage drivers, check out https://docs.docker.com/
storage/storagedriver/select-storage-driver/.

To find out what driver your operating system is using, run the $docker
info command.

Stateful versus Stateless Containers/Services | 275

An understanding of Docker container life cycle events provides a good background
when studying why some applications may or may not need persistent storage
and outlines the default host storage area (filesystem location) for Docker before a
container is explicitly removed.

Now, let's delve into the stateful and stateless modes to decide which container
needs persistent storage.

Stateful versus Stateless Containers/Services
Containers and services can run in two modes: stateful and stateless. A stateless
service is the one that does not retain persistent data. This type is much easier to
scale and update than the stateful one. A stateful service requires persistent storage
(as in databases). Therefore, it is harder to dockerize because stateful services need
synchronization with the other components of the application.

Say you're dealing with an application that needs a certain file in order to work
correctly. If this file is saved inside a container, as in the stateful mode, when this
container is removed for whatever reason, the whole application crashes. However,
if this file is saved in a volume or an external database, any container will be able to
access it, and the application will work fine. Say business is booming and we need
to scale up the number of containers running to fulfill the clients' needs. All the
containers will be able to access the file, and scaling will be easy and smooth.

Apache and NGINX are examples of stateless services, while databases are examples
of stateful containers. The Docker Volumes and Stateful Persistence section will focus on
volumes that are needed for database images to operate properly.

In the following exercises, you will first create a stateless service and then a stateful
one. Both will use the Docker playground, which is a website that offers Docker
Engine in a matter of seconds. It is a free virtual machine in a browser, where
you can execute Docker commands and create clusters in swarm mode.

276 | Docker Storage

Exercise 7.03: Creating and Scaling a Stateless Service, NGINX

Usually, in web-based applications, there is a frontend and a backend. For example,
in the Panoramic Trekking application, you use NGINX in the frontend because
it can handle a high volume of connections and distribute the loads to the slower
database in the backend. Therefore, NGINX is used as the reverse proxy server and
load balancer.

In this exercise, you will focus on creating a stateless service, NGINX, solely, and see
how easy it is to scale it. You will initialize a swarm to create a cluster and scale NGINX
on it. You will use the Docker playground to work in swarm mode:

1. Connect to the Docker playground at https://labs.play-with-docker.com/,
as in Figure 7.2:

Figure 7.2: The Docker playground

2. Click on ADD NEW INSTANCE in the left menu to create a new node. Get the
node IP from the top node information section. Now, create a swarm using the
docker swarm init command with the –advertise-addr option to
specify the node IP. As in Figure 7.2, the Docker Engine generates a long token
to allow other nodes, whether managers or workers, to join the cluster:

$docker swarm init --advertise-addr <IP>

3. Use the docker service create command to create a service and
specify port 80 using the -p option. Set the number of replicas as 2 for the
--replicas option of the nginx:1.14.2 image:

$ docker service create -p 80 --replicas 2 nginx:1.14.2

Stateful versus Stateless Containers/Services | 277

The docker service create command creates two replica services from
the nginx:1.14.2 image at port 80 inside the container. The Docker daemon
chooses any available host port. In this case, it chooses port 30000, as shown at
the top of Figure 7.2.

4. To verify that the service has been created, list all of the available services using
the docker service ls command:

$docker service ls

As shown in the following output, the Docker daemon auto-generated a service
ID and assigned a name, amazing_hellman, to the service because you did
not specify one using the --name option:

ID NAME MODE REPLICAS IMAGE

 PORTS

xmnp23wc0m6c amazing_hellman replicated 2/2 nginx:1.14.2

 *:30000->80/tcp

Note

In a container, the Docker daemon assigns a random adjective_noun
name to the container.

5. Use the curl <IP:Port Number> Linux command to see the output of the
service and connect to it without using a browser:

$curl 192.168.0.223:3000

The output is an HTML version of the welcome page of NGINX. This indicates it
has been installed correctly:

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

278 | Docker Storage

</head>

</body>

<h1>Welcome to nginx!<h1>

<p>If you see this page, the nginx web server is successfully

installed and working. Further configuration is required. </p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

<html>

6. Assume that business is booming even more, and two replicas are not enough.
You need to scale it to five replicas instead of two. Use the docker service
scale <service name>=<number of replicas> subcommand:

$docker service scale amazing_hellman=5

You will get an output like the following:

amazing_hellman scaled to 5

overall progress: 5 out of 5 tasks

1/5: running

2/5: running

3/5: running

4/5: running

5/5: running

verify: Service converged

7. To verify that the Docker swarm replicated the service, use the docker
service ls subcommand one more time:

$docker service ls

The output shows that the number of replicas increased from 2 to 5 replicas:

ID NAME MODE REPLICAS IMAGE

 PORTS

xmnp23wc0m6c amazing_hellman replicated 5/5 nginx:1.14.2

 *:30000->80/tcp

Stateful versus Stateless Containers/Services | 279

8. Delete the service using the docker service rm subcommand:

$docker service rm amazing_hellman

The command will return the name of the service:

amazing_hellman

9. To verify that the service has been deleted, list the service one more time using
the docker service ls subcommand:

$docker service ls

The output will be an empty list:

ID NAME MODE REPLICAS IMAGE PORTS

In this exercise, you deployed a stateless service, NGINX, and scaled it using the
docker service scale command. You then used the Docker playground
(a free solution that you can use to create a cluster, and Swarm to initialize a swarm).

Note

This exercise uses Docker Swarm. To do the same using Kubernetes, you
can follow the steps at https://kubernetes.io/docs/tasks/run-application/run-
stateless-application-deployment/.

Now, we are done with the frontend example of NGINX. In the next exercise, you
will see how to create a stateful service that requires persistent data. We will use a
database service, MySQL, to complete the following exercise.

Exercise 7.04: Deploying a Stateful Service, MySQL

As mentioned previously, web-based applications have a frontend and a backend.
You have already seen an example of the frontend component in the previous
exercise. In this exercise, you will deploy a single stateful MySQL container to be
the database as a backend component.

To install MySQL, follow the steps at https://hub.docker.com/_/mysql in the via stack
deploy section. Select and copy the stack.yml file to memory:

1. Use an editor to paste the stack.yml file. You can use the vi or nano Linux
commands to open a text editor in Linux and paste the YAML file:

$vi stack.yml

280 | Docker Storage

Paste the following code:

Use root/example as user/password credentials

version: '3.1'

services:

 db:

 image: mysql

 command: --default-authentication-plugin=
 mysql_native_password
 restart: always

 environment:

 MYSQL_ROOT_PASSWORD: example

 adminer:

 image: adminer

 restart: always

 ports:

 - 8080:8080

In this YAML file, you have two services: db and adminer. The db service is
based on the mysql image, while the adminer image is the base image of the
adminer service. The adminer image is a database management tool. In the
db service, you enter the command and set the environment variable, which has
the database password with a policy to always restart if it fails for any reason.
Also, in the adminer service, the policy is set to always restart if it fails for
any reason.

2. Press the Esc key on the keyboard. Then, run the following command to quit and
save the code:

:wq

3. To verify that the file has saved correctly, use the cat Linux command to display
the stack.yml contents:

$cat stack.yml

The file will be displayed. If there is an error, repeat the previous steps.

Stateful versus Stateless Containers/Services | 281

4. If the code is correct, deploy the YML file by using the docker stack
deploy subcommand:

$docker stack deploy -c stack.yml mysql

You should see an output like the following:

Ignoring unsupported options: restart

Creating network mysql_default

Creating service mysql_db

Creating service mysql_adminer

To connect to the service, right-click on port 8080 at the top beside the node IP
in the Docker playground window and open it in a new window:

Figure 7.3: Connecting to the service

5. Use the docker stack ls subcommand to list the stacks:

$docker stack ls

You should see an output like the following:

NAME SERVICES ORCHESTRATOR

mysql 2 Swarm

282 | Docker Storage

6. Use the docker stack rm subcommand to remove the stack:

$docker stack rm mysql

When removing the stack, Docker will remove the two services: db and
adminer. It will also remove the network that it created by default to
connect all the services:

Removing service mysql_adminer

Removing service mysql_db

Removing network mysql_default

In this exercise, you deployed a stateful service, MySQL, and were able to access the
database service from the browser. Again, we used the Docker playground as our
platform to execute the exercise.

Note

Replicating MySQL is not an easy task. You cannot run multiple replicas on
one data folder as we did in Exercise 7.03, Creating and Scaling a Stateless
Service, NGINX. This way does not work because data consistency and
database locking and caching must be applied to ensure your data is
correct. Hence, MySQL uses a master and subordinate replication, where
you write to the master, and the data gets synchronized to the subordinates.
To find out more about MySQL replication, please visit https://dev.mysql.
com/doc/refman/8.0/en/replication.html.

We have learned that containers need persistent storage that outlives the container
life cycle but have not yet covered how to do that. In the next section, we will learn
about volumes to save persistent data.

Docker Volumes and Stateful Persistence
We can use volumes to save persistent data without relying on the containers. You
can think of a volume as a shared folder. In any instance, if you mount the volume
to any number of containers, the containers will be able to access the data in the
volume. There are two ways to create a volume:

• Create a volume as an independent entity outside any container by using the
docker volume create subcommand.

Docker Volumes and Stateful Persistence | 283

Creating a volume as an independent object from the container adds flexibility
to data management. These types of volumes are also called named volumes
because you specify a name for it, rather than leaving the Docker Engine to
generate an anonymous numeric one. Named volumes outlive all the containers
that are in the system and preserve its data.

Despite these volumes being mounted to containers, the volumes will not be
deleted even when all the containers in the system are deleted.

• Create a volume by using the --mount or -v or --volume options in the
docker container run subcommand. Docker creates an anonymous
volume for you. When the container is removed, the volume will not be
removed as well unless indicated explicitly by using the -v option to the
docker container rm subcommand or using a docker volume
rm subcommand.

The following exercise will provide an example of each method.

Exercise 7.05: Managing a Volume outside the Container's Scope and Mounting It

to the Container

In this exercise, you will create a volume that is not confined to a container. You will
start by creating a volume, mounting it to a container, and saving some data on it.
You will then delete the container and list the volume to check whether the volume
persists even when you do not have a container on your system:

1. Create a volume named vol1 using the docker volume create command:

$docker volume create vol1

The command will return the name of the volume, as shown:

vol1

2. List all the volumes using the docker volume ls command:

$docker volume ls

This will result in the following output:

DRIVER VOLUME NAME

Local vol1

284 | Docker Storage

3. Inspect the volume to get its mount point using the following command:

$docker volume inspect vol1

You should get an output like the following:

[

 {

 "CreatedAt": "2020-06-16T16:44:13-04:00",

 "Driver": "local",

 "Labels": {},

 "Mountpoint: "/var/lib/docker/volumes/vol1/_data",

 "Name": "vol1",

 "Options": {},

 "Scope": "local"

 }

]

The volume inspection shows the date and time of its creation, its mount path,
its name, and its scope.

4. Mount the volume to a container and modify its contents. Any data that is added
to vol1 will be copied to the volume inside the container:

$ docker container run -it -v vol1:/container_vol --name container1
ubuntu:14.04 bash

In the preceding command, you have crafted a container from the
ubuntu:14.04 image with the bash command. The bash command allows
you to enter the commands inside the container. The -it option is used to have
an interactive terminal. The -v option is for synchronizing the data between
vol1 at the host and container_vol inside the container. Use the --name
option to name the container container1.

5. The prompt changes, indicating that you are now inside the container. Write the
word hello in a file called new_file.txt onto the volume. The volume inside
the container is called container_vol. In this case, this volume is shared
between the host and the container. From the host, the volume is called vol1:

root@acc8900e4cf1:/# echo hello > /container_vol/new_file.txt

6. List the contents of the volume to verify that the file is saved:

root@acc8900e4cf1:/# ls /container_vol

Docker Volumes and Stateful Persistence | 285

7. Exit the container using the exit command:

root@acc8900e4cf1:/# exit

8. Check the contents of the new file from the host by running the
following command:

$ sudo ls /var/lib/docker/volumes/vol1/_data

The command will return the name of the new file:

new_file.txt

9. Verify that the word hello, as the content of the file, is saved as well by running
the following command:

$ sudo cat /var/lib/docker/volumes/vol1/_data/new_file.txt

10. Remove the container with the -v option to remove any volumes that are
created within the container's scope:

$docker container rm -v container1

The command will return the name of the container:

container1

11. Verify that the volume still exists by listing all the volumes:

$docker volume ls

The volume, vol1, is listed, indicating that the volume was created outside the
container, and even by using the -v option, it will not be removed when the
container is removed:

DRIVER VOLUME NAME

Local vol1

12. Now, remove the volume using the rm command:

$docker volume rm vol1

The command should return the name of the volume:

vol1

286 | Docker Storage

13. Verify that the volume is removed by listing the current list of volumes:

$docker volume ls

An empty list will be displayed, indicating that the volume has been removed:

DRIVER VOLUME NAME

In this exercise, you learned how to create volumes as independent objects in Docker
without being within the container's scope, and how to mount this volume to a
container. The volume was not removed when you removed the container because
the volume was created outside the container's scope. In the end, you learned how to
remove these types of volumes.

In the next exercise, we will create, manage, and remove an unnamed or anonymous
volume that is within the container's scope.

Exercise 7.06: Managing a Volume within the Container's Scope

You do not need to create the volume before running the container as in the previous
example. Docker will create an unnamed volume for you automatically. Again, the
volume will not be removed when the container is removed, unless you specify the
-v option in the docker container rm subcommand. In this exercise, you will
create an anonymous volume within the container's scope and then learn how to
remove it:

1. Create a container with an anonymous volume using the following command:

$docker container run -itd -v /newvol --name container2 ubuntu:14.04
bash

The command should return a long hex digit number, which is the volume ID.

2. List all the volumes:

$ docker volume ls

Observe that this time, VOLUME NAME is a long hex digit number and not a
name. This type of volume is called an anonymous volume and can be removed
by adding the -v option to the docker container rm subcommand:

DRIVER VOLUME NAME

Local 8f4087212f6537aafde7eaca4d9e4a446fe99933c3af3884d

0645b66b16fbfa4

Docker Volumes and Stateful Persistence | 287

3. Remove the container with the volume, this time. Use the -f option to
force remove the container since it is in detached mode and running in the
background. Add the v option (making this -fv) to remove the volume as well.
If this volume is not anonymous, and you named it, it will not be removed by
this option and you must use docker volume rm <volume name> to
remove it:

$docker container rm -fv container2

The command will return the name of the container.

4. Verify that the volume has been removed. Use the docker volume ls
subcommand, and you will observe that the list is empty:

$ docker volume ls

Compared to the previous exercise, the volume was removed when the container was
removed by using the -v option in the rm subcommand. Docker removed the volume
this time because the volume was initially created within the container's scope.

Note

1. If you are mounting a volume to a service and not to a container,
you cannot use the -v or --volume options. You must use
the --mount option.

2. To delete all the anonymous volumes that were not removed when
their containers were removed, you can use the docker volume
prune subcommand.

For further details, visit https://docs.docker.com/storage/volumes/.

Now, we are going to see some more examples of volumes being used with stateful
containers. Remember that using volumes with stateful containers as databases
is the best practice. Containers are ephemeral, while data on databases should be
saved as a persistent volume, where any new container can pick up and use the saved
data. Therefore, the volume must be named, and you should not leave Docker to
automatically generate an anonymous volume with a hex digit number as its name.

In the next exercise, you will run a PostgreSQL database container with a volume.

288 | Docker Storage

Exercise 7.07: Running a PostgreSQL Container with a Volume

Say you work in an organization where a PostgreSQL container with a database
volume is used and the container gets deleted due to some mishap. However, the
data persisted and outlived the container. In this exercise, you will run a PostgreSQL
container with a database volume:

1. Run a PostgreSQL container with a volume. Name the container db1. If you do
not have the image locally, Docker will pull the image for you. Create a container
called db1 from the postgress image. Use the -v option to share the db
volume at the host with /var/lib/postgresql/data inside the container
and the -e option to echo SQL to the standard output stream as well. Use the
POSTGRES_PASSWORD option to set the database password and the -d option
to run this container in detached mode:

$docker container run --name db1 -v db:/var/lib/postgresql/data -e
POSTGRES_PASSWORD=password -d postgres

2. Use the exec command to interact with the container from bash. The exec
command does not create a new process but rather replaces bash with the
command to be executed. Here, the prompt will change to posgres=# to
indicate that you are inside the db1 container:

$ docker container exec -it db1 psql -U postgres

The psql command allows you to interactively enter, edit, and execute SQL
commands. The -U option is used to enter the database's username, which
is postgres.

3. Create a table, PEOPLE, with two columns – Name and age:

CREATE TABLE PEOPLE(NAME TEXT, AGE int);

4. Insert some values into the PEOPLE table:

INSERT INTO PEOPLE VALUES('ENGY','41');

INSERT INTO PEOPLE VALUES('AREEJ','12');

5. Verify that the values are inserted correctly in the table:

SELECT * FROM PEOPLE;

Docker Volumes and Stateful Persistence | 289

The command will return two rows, which verifies that the data has been
inserted correctly:

Figure 7.4: Output of the SELECT statement

6. Exit the container to quit the database. The shell prompt will return:

\q

7. Verify that your volume is a named one and not anonymous using the volume
ls command:

$ docker volume ls

You should get an output like the following:

DRIVER VOLUME NAME

Local db

8. Remove the db1 container with the -v option:

$ docker container rm -fv db1

The command will return the name of the container:

db1

9. List the volumes:

$ docker volume ls

The list shows that the volume is still there and is not removed with
the container:

DRIVER VOLUME NAME

Local db

290 | Docker Storage

10. As in step 1, create a new container called db2 and mount the volume, db:

$docker container run --name db2 -v db:/var/lib/postgresql/data -e
POSTGRES_PASSWORD=password -d postgres

11. Run the exec command to execute the commands from bash and verify that
the data persists even when db1 is removed:

$ docker container exec -it db2 psql -U postgres

postgres=# SELECT * FROM PEOPLE;

The preceding commands will result in an output like the following:

Figure 7.5: Output of the SELECT statement

12. Exit the container to quit the database:

\q

13. Now, remove the db2 container using the following command:

$ docker container rm -f db2

The command will return the name of the container:

db2

14. Remove the db volume using the following command:

$ docker volume rm db

The command will return the name of the volume:

db

In this exercise, you used a named volume to save your database to keep the data
persistent. You saw that the data persisted even after you removed the container.
The new container was able to catch up and access the data that you saved in
your database.

Docker Volumes and Stateful Persistence | 291

In the next exercise, you will run a PostgreSQL database without a volume to compare
its effect with that of the previous exercise.

Exercise 7.08: Running a PostgreSQL Container without a Volume

In this exercise, you will run a default PostgreSQL container without a database
volume. You will then remove the container and its anonymous volume to check
whether the data persisted after the removal of the container:

1. Run a PostgreSQL container without a volume. Name the container db1:

$ docker container run --name db1 -e POSTGRES_PASSWORD=password -d
postgres

2. Run the exec command to execute the commands from bash. The prompt will
change to posgres=# to indicate that you are inside the db1 container:

$ docker container exec -it db1 psql -U postgres

3. Create a table, PEOPLE, with two columns – NAME and AGE:

CREATE TABLE PEOPlE(NAME TEXT, AGE int);

4. Insert some values in the PEOPLE table:

INSERT INTO PEOPLE VALUES('ENGY','41');

INSERT INTO PEOPLE VALUES('AREEJ','12');

5. Verify that the values are inserted correctly in the table:

SELECT * FROM PEOPLE;

The command will return two rows, which verifies that the data is
inserted correctly:

Figure 7.6: Output of the SELECT statement

292 | Docker Storage

6. Exit the container to quit the database. The shell prompt will return:

\q

7. List the volumes using the following command:

$ docker volume ls

Docker has created an anonymous volume for the db1 container, as evident
from the following output:

DRIVER VOLUME NAME

Local 6fd85fbb83aa8e2169979c99d580daf2888477c654c

62284cea15f2fc62a42c32

8. Remove the container with its anonymous volume using the following command:

$ docker container rm -fv db1

The command will return the name of the container:

db1

9. List the volumes using the docker volume ls command to verify that the
volume is removed:

$docker volume ls

You will observe that the list is empty:

DRIVER VOLUME NAME

As opposed to the previous exercise, this exercise used an anonymous volume
rather than a named one. Thus, the volume was within the container's scope and
was removed from the container.

We can therefore conclude that the best practice is to share the database on a named
volume to ensure that the data saved in the database will persist and outlive the
container's life.

Up to now, you have learned how to list the volumes and inspect them. But there
are other more powerful commands to get the information about your system and
Docker objects, including the volumes. These will be the subject of the next section.

Docker Volumes and Stateful Persistence | 293

Miscellaneous Useful Docker Commands

A lot of commands can be used to troubleshoot and inspect your system, some of
which are described as follows:

• Use the docker system df command to find out the size of all the Docker
objects in your system:

$docker system df

As shown in the following output, the number of images, containers, and
volumes are listed with their sizes:

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 6 2 1.261GB 47.9MB (75%)

Containers 11 2 27.78MB 27.78MB (99%)

Local Volumes 2 2 83.26MB OB (0%)

Build Cache 0B 0B

• You can get more detailed information about the Docker objects by adding the
-v option to the docker system df command:

$docker system df -v

It should return an output like the following:

Figure 7.7: Output of the docker system df -v command

294 | Docker Storage

• Run the docker volume ls subcommand to list all the volumes that you
have on your system:

$docker volume ls

Copy the name of the volume so that it can be used to get the name of the
container that uses it:

DRIVER VOLUME NAME

local a7675380798d169d4d969e133f9c3c8ac17e733239330397ed

ba9e0bc05e509fc

local db

Then, run the docker ps -a --filter volume=<Volume Name>
command to get the name of the container that is using the volume:

$docker ps -a --filter volume=db

You will get the details of the container, like the following:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

55c60ad38164 postgres "docker-entrypoint.s…" 2 hours ago

 Up 2 hours 5432/tcp db_with

So far, we have been sharing volumes between containers and the Docker host.
This sharing type is not the only type available in Docker. You can also share
volumes between containers. Let's see how to do that in the next section.

Persistent and Ephemeral Volumes
There are two types of volumes: persistent and ephemeral ones. What we have seen
so far is persistent volumes, which are between the host and the container. To share
the volume between containers, we use the --volumes-from option. This volume
exists only as long as it is being used by a container. When the last container using
the volume exits, the volume disappears. This type of volume can be passed from one
container to the next but is not saved. These volumes are called ephemeral volumes.

Volumes can be used to share log files between the host and the container or
between containers. It is much easier to share them on a volume with the host so
that even if the container was removed for an error, we can still track the error by
checking the log file on the host after the container's removal.

Persistent and Ephemeral Volumes | 295

Another common use of volumes in practical microservices applications is sharing
the code on a volume. The advantage of this practice is that you can achieve zero
downtime. The developer team can edit the code on the fly. The team can work on
adding new features or changing the interface. Docker monitors the update in the
code so that it executes the new code.

In the following exercise, we will explore the data container and learn some new
options to share volumes between containers.

Exercise 7.09: Sharing Volumes between Containers

Sometimes, you need a data container to share data between various containers,
each running a different operating system. It is useful to test the same data across
different platforms before sending the data to production. In this exercise, you
will use the data container, which will share volumes between containers using
--volume-from:

1. Create a container, c1, with a volume, newvol, that is not shared with the host:

$docker container run -v /newvol --name c1 -it ubuntu:14.04 bash

2. Move to the newvol volume:

cd newvol/

3. Save a file inside this volume:

echo hello > /newvol/file1.txt

4. Press the escape sequences, CTRL + P and then CTRL + Q, so that the container
runs in a detached mode in the background.

5. Create a second container, c2, that mounts the c1 container's volume using the
--volumes-from option:

$docker container run --name c2 --volumes-from c1 -it ubuntu:14.04
bash

6. Verify that c2 can access file1.txt, which you saved from c1, using the
ls command:

cd newvol/

ls

296 | Docker Storage

7. Add another file, file2.txt, inside c2:

echo hello2 > /newvol/file2.txt

8. Verify that c2 can access file1.txt and file2.txt, which you saved
from c1, using the ls command:

ls

You will see that both the files are listed:

file1.txt file2.txt

9. Attach the local standard input, output, and error streams to c1:

docker attach c1

10. Check that c1 can access the two files using the ls command:

ls

You will see that both the files are listed:

file1.txt file2.txt

11. Exit c1 using the following command:

exit

12. List the volumes using the following command:

$ docker volume ls

You will observe that the volume still exists even when you have exited c1:

DRIVER VOLUME NAME

local 2d438bd751d5b7ec078e9ff84a11dbc1f11d05ed0f82257c

4e8004ecc5d93350

13. Remove c1 with the -v option:

$ docker container rm -v c1

14. List the volumes again:

$ docker volume ls

Volumes versus Filesystem and Images | 297

You will find that the volume has not been removed with c1 because c2 is still
using it:

DRIVER VOLUME NAME

local 2d438bd751d5b7ec078e9ff84a11dbc1f11d05ed0f82257c

4e8004ecc5d93350

15. Now, remove c2 with the -v option to remove its volumes as well. You must use
the -f option as well to force-remove the container because it is up and running:

$ docker container rm -fv c2

16. List the volumes again:

$ docker volume ls

You will find that the volume list is empty now:

DRIVER VOLUME NAME

This verifies that the ephemeral volumes are removed when all the containers
using the volumes are removed.

In this exercise, you used the --volumes-from option to share volumes between
containers. Also, this exercise demonstrated that the best practice is to always
remove the container with the -v option. Docker will not remove the volume
as long as there is at least one container that is using that volume.

If we committed any of these two containers, c1 or c2, to a new image, the data
saved on the shared volume still will not be uploaded to that new image. The data on
any volume, even if the volume is shared between a container and host, will not be
uploaded to the new image.

In the next section, we will see how to engrave this data into the newly committed
image using the filesystem, rather than volumes.

Volumes versus Filesystem and Images
Note that volumes are not part of images, so the data saved on volumes won't be
uploaded or downloaded with images. The volumes will be engraved in the image,
but not its data. Therefore, if you want to save certain data in an image, save it as a
file, not as a volume.

The next exercise will demonstrate and clarify the different outputs between saving
data on volumes and when saving it on files.

298 | Docker Storage

Exercise 7.10: Saving a File on a Volume and Committing It to a New Image

In this exercise, you will run a container with a volume, save some data on the
volume, commit the container to a new image, and craft a new container based on
this new image. When you check the data from inside the container, you will not find
it. The data will be lost. This exercise will demonstrate how the data will be lost when
committing the container to a new image. Remember that the data on the volumes
will not be engraved in the new image:

1. Create a new container with a volume:

$docker container run --name c1 -v /newvol -it ubuntu:14.04 bash

2. Save a file inside this volume:

echo hello > /newvol/file.txt

cd newvol

3. Navigate to the newvol volume:

cd newvol

4. Verify that c1 can access file.txt using the ls command:

ls

You will see that the file is listed:

file.txt

5. View the content of the file using the cat command:

cat file.txt

This will result in the following output:

hello

6. Exit from the container using the following command:

exit

7. Commit this container to a new image called newimage:

$ docker container commit c1 newimage

Volumes versus Filesystem and Images | 299

8. Inspect the image to verify that the volume is engraved inside it:

$ docker image inspect newimage --format={{.ContainerConfig.Volumes}}

This will result in the following output:

map[/newvol:{}]

9. Craft a container based on the newimage image that you just created:

$ docker container run -it newimage

10. Navigate to newvol and list the files in the volume and its data. You will find
that the file and the word hello were not saved in the image:

cd newvol

ls

11. Exit the container using the following command:

exit

From this exercise, you learned that the data on a volume is not uploaded to the
image. To solve this issue, use the filesystem instead of a volume.

Assume that the word hello is important data we want to be saved in file.txt
inside the image so that we can access it when we craft a container from this image.
You will see how to do that in the next exercise.

Exercise 7.11: Saving a File in the New Image Filesystem

In this exercise, you will use the filesystem instead of a volume. You will create a
directory instead of a volume and save the data in this new directory. Then, you will
commit the container to a new image. When you craft a new container using this
image as its base image, you will find the directory in the container and the data
saved in it:

1. Remove any container that you might have from previous labs. You can
concatenate several Docker commands to each other:

$ docker container rm -f $(docker container ls -aq)

The command will return the IDs of the containers that will be removed.

2. Create a new container without a volume:

$ docker container run --name c1 -it ubuntu:14.04 bash

300 | Docker Storage

3. Create a folder named new using the mkdir command and open it using the
cd command:

mkdir new

cd new

4. Navigate to the new directory and save the word hello in a new file called
file.txt:

echo hello > file.txt

5. View the content of the file using the following command:

cat file.txt

The command should return hello:

hello

6. Exit c1 using the following command:

exit

7. Commit this container to a new image called newimage:

$ docker container commit c1 newimage

8. Craft a container based on the newimage image that you just created:

$ docker container run -it newimage

9. List the files using the ls command:

ls

You will find file.txt is saved this time:

bin boot dev etc home lib lib64 media mnt new opt

proc root run sbin srv sys tmp usr var

10. Navigate to the new directory and verify that the container can access
file.txt using the ls command:

cd new/

ls

Volumes versus Filesystem and Images | 301

You will see that the file is listed:

file.txt

11. Use the cat command to display the contents of file.txt:

cat file.txt

It will show that the word hello is saved:

hello

12. Exit from the container using the following command:

exit

In this exercise, you saw that data is uploaded to the image when the filesystem is
used, compared to the situation we saw when data was saved on volumes.

In the following activity, we will see how to save a container's statuses in a PostgreSQL
database. So, if the container crashes, we will be able to retrace what happened.
It will act as a black box. Moreover, you will query these events using SQL statements
in the following activity.

Activity 7.01: Storing Container Event (State) Data on a PostgreSQL Database

Logging and monitoring can be done in several ways in Docker. One of these methods
is to use the docker logs command, which fetches what happens inside the
individual container. Another is to use the docker events subcommand, which
fetches everything that happens inside the Docker daemon in real-time. This feature
is very powerful as it monitors all the objects' events that are sent to the Docker
server—not just the containers. The objects include containers, images, volumes,
networks, nodes, and so on. Storing these events in a database is useful because
they can be queried and analyzed to debug and troubleshoot any errors if generated.

In this activity, you will be required to store a sample of a container's events'
output to a PostgreSQL database in JSON format by using the docker events
--format '{{json .}}' command.

302 | Docker Storage

Perform the following steps to complete this activity:

1. Clean your host by removing any Docker objects.

2. Open two terminals: one to see docker events --format '{{json
.}}' in effect and the other to control the running container.

3. Click Ctrl + C in the docker events terminal to terminate it.

4. Understand the JSON output structure.

5. Run the PostgreSQL container.

6. Create a table.

7. Copy the docker events subcommand output from the first terminal.

8. Insert this JSON output into the PostgreSQL database.

9. Query the JSON data using the SQL SELECT statement with the following
SQL queries.

Query 1:

SELECT * FROM events WHERE info ->> 'status' = 'pull';

You should get the following output:

Figure 7.8: Output of Query 1

Volumes versus Filesystem and Images | 303

Query 2:

SELECT * FROM events WHERE info ->> 'status' = 'destroy';

You will get an output like the following:

Figure 7.9: Output of Query 2

Query 3:

SELECT info ->> 'id' as id FROM events WHERE info ->> status'
 = 'destroy';

The final output should be similar to the following:

Figure 7.10: Output of Query 3

304 | Docker Storage

Note

The solution for this activity can be found via this link.

In the next activity, we will look at another example of sharing the container's NGINX
log files, not just its events. You will also learn how to share log files between the
container and the host.

Activity 7.02: Sharing NGINX Log Files with the Host

As we mentioned before, it is useful to share the log files of an application to the host.
That way, if the container crashes, you can easily check its log files from outside the
container since you will not be able to extract them from the container. This practice
is useful with stateless and stateful containers.

In this activity, you will share the log files of a stateless container crafted from the
NGINX image with the host. Then, verify these files by accessing the NGINX log files
from the host.

Steps:

1. Verify that you do not have the /var/mylogs folder on your host.

2. Run a container based on the NGINX image. Specify the path of the shared
volumes on the host and inside the container in the run command. Inside the
container, NGINX uses the /var/log/nginx path for the log files. Specify the
path on the host as /var/mylogs.

3. Go to the path of /var/mylogs. List all the files in that directory. You should
find two files there:

access.log error.log

Note

The solution for this activity can be found via this link.

Summary | 305

Summary
This chapter covered the life cycle of Docker containers and various events.
It compared stateful and stateless applications and how each one saves its data.
If we need the data to be persistent, we should use volumes. The chapter covered
the creation and management of a volume. It further discussed the different
types of volumes, as well as the difference between the usage of volumes and
the filesystem, and how the data in both is affected when the container is
committed to a new image.

In the next chapter, you will learn about the concepts of continuous integration and
continuous delivery. You will learn how to integrate GitHub, Jenkins, Docker Hub,
and SonarQube to publish your images automatically to the registry to be ready
for production.

Overview

This chapter introduces Continuous Integration and Continuous
Delivery (CI/CD), the most crucial step before going to production. This is
the intermediate stage between development and production. This chapter
will demonstrate how Docker is a robust technology for CI and CD, and
how easily it integrates with other widely used platforms. By the end of the
chapter, you will be able to configure GitHub, Jenkins, and SonarQube and
incorporate them to publish your images for production automatically.

CI/CD Pipeline

8

308 | CI/CD Pipeline

Introduction
In previous chapters, you learned how to write docker-compose files and explored
the networking and storage of the Services. In this chapter, you will learn how to
integrate the various microservices of an application and test it as a whole.

CI/CD stands for Continuous Integration and Continuous Delivery. Sometimes,
CD is used for Continuous Deployment as well. Deployment here means making
an application publicly accessible from a specific URL through an automated pipeline
workflow, while delivery means making the application ready to be deployed. In this
chapter, we will focus on the concept of CI/CD.

This chapter discusses how Docker integrates into the CI/CD pipeline in step-by-step
exercises. You will also learn how to install and run Jenkins as a Docker container.
Jenkins is an open-source automation server. You can use it to build, test, deploy,
and facilitate CI/CD by automating parts of software development. The installation
of Jenkins is merely one Docker command. Installing Jenkins on Docker is more
robust than installing it as an application, and it won't be tightly coupled to a
specific operating system.

Note

If you do not have accounts on GitHub and Docker Hub, please create
them. You can do so for free at the following links: www.github.com and
http://hub.docker.com.

What Is CI/CD?
CI/CD is a method that helps application development teams to provide code changes
to users more frequently and reliably. CI/CD introduces automation into the stages of
code deployment.

When several developers collaborate and contribute to the same application
(each of them responsible for a certain microservice or fixing a specific bug), they
use a code version control provider to aggregate the application using the latest
code versions that the developers have uploaded and pushed. GitHub, Bitbucket,
and Assembla are examples of version control systems. The developers and testers
push the application code and Docker files to automation software to build, test, and
deploy the CI/CD pipeline. Jenkins, Circle CI, and GitLab CI/CD are examples of such
automation platforms.

http://www.github.com
http://hub.docker.com

What Is CI/CD? | 309

After passing the testing, a Docker image is built and published to your repository.
These repositories can be either Docker Hub, your company's Docker Trusted
Register (DTR), or Amazon Elastic Container Registry (ECR).

In this chapter, as in Figure 8.1, we will use a GitHub repository for the code version
control. Then, we will use Jenkins to build and publish the framework and Docker Hub
as a registry.

Figure 8.1: CI/CD pipeline

You must build the Docker image before the production stage since there is no
build keyword in the docker-stack.yml file that is used in production. The
image will then be deployed to production in an integrated and automated target
environment. In production, the operations (or DevOps) people configure the
orchestrators to pull the images from the registry. Kubernetes, Docker Swarm,
and Google Kubernetes Engine are examples of production orchestrators and
management services that can be used to pull images from the registry.

To summarize, we have three main steps:

1. Upload the code to GitHub.

2. Create a project in Jenkins and enter the GitHub and Docker Hub credentials.
Jenkins will automatically build the image and push it for you to the Docker Hub
account. When you push the code to GitHub, Jenkins automatically detects, tests,
and builds the image. If no errors are generated, Jenkins pushes the image to
the registry.

3. Verify that the image is on your Docker Hub account.

In the next exercise, you will install Jenkins as a container that will be used to build
the image. Jenkins is one of the most popular platforms for testing and is in great
demand in the market. Jenkins has several project types. In this chapter, we will use
the Freestyle project type.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

310 | CI/CD Pipeline

Exercise 8.01: Installing Jenkins as a Container

In this exercise, you will install Jenkins, finish its setup, and install the preliminary
plugins. You will install the Git and GitHub plugins that will be used throughout this
chapter. Perform the following steps to successfully install Jenkins as a container:

1. Run the following command to pull the Jenkins image:

$docker run -d -p 8080:8080 -v /var/run/docker.sock:/var/run/docker.
sock jenkinsci/blueocean

This results in an output similar to the following:

Figure 8.2: Output of the docker run command

Note

There are many Jenkins images on Docker Hub. Feel free to pull any of
them and play with the ports and shared volume, but pay attention to the
deprecated images as the Jenkins official image is now deprecated for
the Jenkins/Jenkins:lts image. So, read the documentation of
the images carefully. However, do not worry if one does not work. It might
not be your mistake. Look for another and follow the instructions of the
documentation carefully.

What Is CI/CD? | 311

2. Open the browser and connect to the Jenkins service at
http://localhost:8080.

If it gives you an error message stating it cannot reach the Docker daemon,
add Jenkins to the docker group using the following commands:

$ sudo groupadd docker

$ sudo usermod –aG docker jenkins

Note

If your machine's operating system is Windows, the localhost might not
be resolved. Run the ipconfig command in Windows PowerShell. In
the second section of the output, ipconfig displays the information of
the switch network. Copy the IPv4 address, and use it instead of the
localhost throughout the exercises.

You can also get the IP address from Control Panel > Network and
Sharing Center and then clicking on Details for your Ethernet or
Wi-Fi connection.

After installation, Jenkins will ask for an Administrator password to
unlock it:

Figure 8.3: Getting started with Jenkins

312 | CI/CD Pipeline

Jenkins autogenerates a password for you to use to unlock the application. In the
next step, you will see how to get this password.

3. Run the docker container ls command to get the list of the currently
running containers:

$ docker container ls

You will get the details of the container that is crafted from the
jekinsci/blueocean image:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS

9ed51541b036 jekinsci/blueocean "/sbin/tini../usr/.." 5 minutes ago

 Up 5 minutes 0.0.0.0:8080->8080/tcp, 5000/tcp

4. Copy the container ID and run the docker logs command:

$ docker logs 9ed51541b036

At the end of the log file, you will find six lines of asterisks. The password will be
in between them. Copy it and paste it in the browser:

Figure 8.4: Output of the docker logs command

What Is CI/CD? | 313

5. Select Install suggested plugins. Then, click Skip and continue
as admin. Click Save and Finish:

Figure 8.5: Installing plugins to customize Jenkins

In the suggested plugins, there are Git and GitHub plugins that Jenkins will install
automatically for you. You will need these plugins for all the coming exercises.

Note

In Exercise 8.04, Integrating Jenkins and Docker Hub, you will need to install
more plugins so Jenkins can push the image to the Docker Hub registry.
This will be discussed in detail later, as well as how to manage Jenkins
plugins in a step-by-step lab.

314 | CI/CD Pipeline

6. After installation, it will display Jenkins is ready!. Click Start
using Jenkins:

Figure 8.6: Setting up Jenkins

7. Click on Create a job to build the software project:

Figure 8.7: Welcome page of Jenkins

The preceding screenshot verifies that you have successfully installed Jenkins on
your system.

Integrating GitHub and Jenkins | 315

In the next sections, we will follow the CI/CD pipeline in this chapter. The first step
is uploading the code to GitHub and then integrating Jenkins with GitHub so that
Jenkins can pull the code and build the image automatically. The final step will be
to integrate Jenkins with the registry to push that image to the registry without any
manual interference.

Integrating GitHub and Jenkins
After installing Jenkins, we will create our first job and integrate it with GitHub. In this
section, as in Figure 8.8, we will focus solely on GitHub and Jenkins. Docker Hub will be
discussed a little later.

 Figure 8.8: Integrating GitHub and Jenkins

We will use a simple Python application to count the number of hits on a website.
Every time you refresh the page, the counter will increment, resulting in an increase
in the number of hits on the website.

Note

The code files for the Getting Started application can be found at the
following link: https://github.com/efoda/hit_counter.

The application consists of four files:

• app.py: This is the Python application code. It uses Redis to keep track of the
counts of the number of hits on a website.

• requirments.txt: This file contains the dependencies needed for the
application to work properly.

• Dockerfile: This builds the image with the required libraries
and dependencies.

https://github.com/efoda/hit_counter

316 | CI/CD Pipeline

• docker-compose.yml: It is essential to have the YAML file when two or more
containers are working together.

In this simple application, we also have two services, Web and Redis, as shown
in Figure 8.9:

Figure 8.9: The hit_counter application architecture

If you do not know how to upload this application to your GitHub account,
don't worry. The next exercise will guide you through this process.

Exercise 8.02: Uploading the Code to GitHub

You can use GitHub to save your code and projects. In this exercise, you will learn
how to download and upload the code to GitHub. You can do that by forking the code
on the GitHub website or pushing the code from Command Prompt. In this exercise,
you will do it from Command Prompt.

Perform the following steps to upload the code to GitHub:

1. On the GitHub website, create a new empty repository with the name
hit_counter. Open a terminal and clone the code by typing the
following command:

$ git clone https://github.com/efoda/hit_counter

This results in an output similar to the following:

Cloning into 'hit counter'...

remote: Enumerating objects: 38, done.

remote: Counting objects: 100% (38/38), done

Integrating GitHub and Jenkins | 317

remote: Compressing objects: 100% (35/35), done

remote: Total 38 (delta 16), reused 0 (delta 0), pack-reused 0

Receiving object: 100% (38/38), 8.98 KiB | 2.25 MiB/s, done.

Resolving deltas: 100% (16/16), done

2. Verify that the code is downloaded to your local machine by listing the
directories. Then, open the application directory:

$ cd hit_counter

~/hit_counter$ ls

You will find the application files downloaded to your local machine:

app.py docker-compose.yml Dockerfile README.md requirements.txt

3. Initialize and configure Git:

$ git init

You should get output similar to the following:

Reinitialized existing Git repository in

/home/docker/hit_counter/.git/

4. Enter your username and email:

$ git config user.email "<you@example.com>"

$ git config user.name "<Your Name>"

5. Specify the names of the Git accounts, origin and destination:

$ git remote add origin https://github.com/efoda/hit_counter.git

fatal: remote origin already exists.

$ git remote add destination https://github.com/<your Github
Username>/hit_counter.git

6. Add all the content in the current path:

$ git add .

You can also add a specific file instead of all the files by typing the
following command:

$ git add <filename>.<extension>

318 | CI/CD Pipeline

7. Specify a commit message:

$ git commit -m "first commit"

This results in an output similar to the following:

On branch master

Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

8. Push the code to your GitHub account:

$ git push -u destination master

It will ask you for your username and password. Once you've logged in, the files
will be uploaded to your GitHub repository:

Figure 8.10: Pushing the code to GitHub

9. Check your GitHub account. You will find the files are uploaded there.

Now that we have finished the first step in the CI/CD pipeline and have uploaded the
code to GitHub, we will integrate GitHub with Jenkins.

Note

Starting from this point and going forward, replace the GitHub username,
efoda, with your username.

Integrating GitHub and Jenkins | 319

Exercise 8.03: Integrating GitHub and Jenkins

You installed Jenkins as a container in Exercise 8.01, Installing Jenkins as a Container.
In this exercise, you will create a job in Jenkins and configure it with GitHub. You will
check Jenkins' Output Console to verify that it has built the image successfully.
You will then modify the Dockerfile on GitHub and ensure that Jenkins has
detected the change in the Dockerfile and rebuilt the image automatically:

1. Go back to Jenkins in the browser. Click on Create a job:

Figure 8.11: Creating a job in Jenkins

320 | CI/CD Pipeline

2. Fill in the Enter an item name textbox by providing the name of the project.
Click Freestyle project and then click OK:

Figure 8.12: Selecting Freestyle project

You will see six tabs: General, Source Code Management, Build
Triggers, Build Environment, Build, and Post-build Actions,
as in Figure 8.13.

3. In the General tab, select the Discard old builds option so that the old
builds do not eat up your disk space. Jenkins will do the housekeeping for you
as well:

Figure 8.13: Selecting the Discard old builds option

Integrating GitHub and Jenkins | 321

4. In the Source Code Management tab, select Git. In Repository URL,
enter https://github.com/<your GitHub username>/hit_
counter, as in Figure 8.14. If you do not have Git, check your plugins and
download the Git plugin. We will talk about managing plugins in Exercise 8.04,
Integrating Jenkins and Docker Hub:

Figure 8.14: Entering the GitHub repository URL

322 | CI/CD Pipeline

5. In the Build Triggers tab, select Poll SCM. This is where you specify
how often you want Jenkins to perform the tests. If you enter H/5 with four
asterisks and spaces in between each asterisk, this means that you want Jenkins
to perform the test every minute, as in Figure 8.16. If you enter it as H * * * *,
this means the polling will be done every hour. If you do it as H/15 * * * *,
the polling will be done every 15 minutes. Click your mouse outside the textbox.
If you entered the code correctly, Jenkins will show the message stating when it
will execute the next job. Otherwise, it will display an error in red.

Figure 8.15: Building triggers

6. Click the Build tab. Click Add build step. Select Execute shell,
as in Figure 8.17:

Integrating GitHub and Jenkins | 323

Figure 8.16: Selecting Execute shell

7. A textbox will be displayed. Write the following command:

docker build -t hit_counter .

Then click Save, as in Figure 8.17:

Figure 8.17: Entering the docker build command in the Execute shell command box

324 | CI/CD Pipeline

A screen similar to the following screenshot should appear:

Figure 8.18: Successful creation of the hit_count project

8. Before doing anything further in Jenkins, check the images that you currently
have in your host. In a terminal, run the docker images command to list
the images:

$docker images

If you cleaned your lab before this chapter, you will have only the
jenkinsci/blueocean image:

REPOSITORY TAG IMAGE ID CREATED

 SIZE

jenkinsci/blueocean latest e287a467e019 Less than a second ago

 562MB

Integrating GitHub and Jenkins | 325

9. Go back to Jenkins. Click on Build Now from the menu on the left.

Note

In case you get the Permission Denied error while connecting to the Docker
daemon, perform the following steps:

1. If not already exists, add a Jenkins user to the docker host:

$ sudo useradd jenkins

2. Add the Jenkins user to the docker group:

$ sudo usermod -aG docker jenkins

3. Obtain the docker group ID from /etc/group that is, 998:

$ sudo cat /etc/group | grep docker

4. Use docker exec command to create a bash shell in the running
Jenkins container:

$ docker container ls

$ docker exec -it -u root <CONTAINER NAME |
CONTAINER ID> /bin/bash

5. Edit the /etc/group file inside the Jenkins container:

vi /etc/group

6. Replace the docker group ID with the ID obtained from the host, and add
the Jenkins user to the docker group:

docker:x:998:jenkins

7. Save the /etc/group file and close the editor:

:wq

8. Exit from the Jenkins container:

exit

9. Stop the Jenkins container:

$ docker container ls

$ docker container stop <CONTAINER NAME | CONTAINER
ID>

326 | CI/CD Pipeline

Note

10. Restart the Jenkins container:

$ docker container ls

$ docker container start <CONTAINER NAME |
CONTAINER ID>

Now, the job will build successfully.

10. Click on Back to Dashboard. The following screen will appear. In the
bottom-left corner, you will see the Build Queue and Build Executor
Status fields. You can see that one build has started with #1 beside it, as in
Figure 8.19:

Figure 8.19: Checking the Build Queue

There is no success or failure of the build yet. When the build is done, its status
will be displayed on the screen. After some time, you will observe that two builds
have been done.

11. Click on the small arrow beside #2 under the Last Success field.
A drop-down menu will appear, as shown in the following figure. Select
Console Output to check what Jenkins did automatically for us, as
in Figure 8.20:

Integrating GitHub and Jenkins | 327

Figure 8.20: Selecting Console Output

In Console Output, you will find that Jenkins executed the docker build
command you entered in the Build step during project configuration:

Scroll down to the bottom of Console Output to see the result of the
execution. You will see that the image has been built successfully. You will
also find the image ID and tag:

Figure 8.21: Verifying that the image is built successfully

328 | CI/CD Pipeline

12. Verify the image ID and tag from the terminal. Re-run the docker
images command.

$docker images

You will find that the hit_counter image has been created for you. You will
also find the python:3.7-alpine image as this is the base image in the
Dockerfile and Jenkins has pulled it automatically:

REPOSITORY TAG IMAGE ID

 CREATED SIZE

jenkinsci/blueocean latest e287a467e019

 Less than a second ago 562MB

hit_counter latest bdaf6486f2ce

 3 minutes ago 227MB

python 3.7-alpine 6a5ca85ed89b

 2 weeks ago 72.5MB

With this step, you can confirm that Jenkins was able to pull the files from your
GitHub successfully.

13. Now, you will make the desired changes in the GitHub code. But first, verify that
you did not commit any changes to the code yet. Return to Jenkins, scroll up
and click Back to Project in the left-hand menu at the top. Then click on
Recent Changes, as in Figure 8.22:

Figure 8.22: Selecting Recent Changes

Integrating GitHub and Jenkins | 329

Jenkins will display that there are no changes in any of the builds, as you can see
in the following figure:

Figure 8.23: Verifying changes in the code

14. Go to GitHub and edit the Dockerfile by changing the base image's tag from
3.7-alpine to alpine only.

You can also do the same from the terminal as before by editing the file using
any text editor. Then run the git add and git push commands:

$ git add Dockerfile

$ git commit -m "editing the Dockerfile"

$ git push -u destination master

15. Scroll down and commit your changes to GitHub.

330 | CI/CD Pipeline

16. Return to Jenkins. Remove the hit_counter and python:3.7-alpine
images to make sure that Jenkins is not using previous local images:

$ docker rmi hit_counter python:3.7-alpine

17. Click Build Now again to start building the job instantly. Refresh the Recent
Changes page. It will display a message stating that a change has occurred.

If you click on the change that has occurred, it will forward you to GitHub,
showing you the differences between the old code and the new code.

18. Click back into the browser to return to Jenkins. Check Console Output again
to see the base image that Jenkins has used:

At the bottom, you will find that Jenkins built the image successfully.

19. Go to the terminal and check the images again:

$ docker images

You will find that hit_counter and python:alpine are on the list:

REPOSITORY TAG IMAGE ID

 CREATED SIZE

jenkinsci/blueocean latest e287a467e019

 Less than a second ago 562MB

hit_counter latest 6288f76c1f15

 3 minutes ago 234MB

<none> <none> 786bdbef6ea2

 10 minutes ago 934MB

python alpine 8ecf5a48c789

 2 weeks ago 78.9MB

20. Clean your lab for the next exercise by removing all the images listed except
jenkinsci/blueocean:

$ docker image rm hit_counter python:alpine 786

In this exercise, you learned how to integrate Jenkins with GitHub. Jenkins was able to
pull the code from GitHub automatically and build the image.

In the next section, you will learn how to push this image to your registry without
manual interference to complete your CI/CD pipeline.

Integrating Jenkins and Docker Hub | 331

Integrating Jenkins and Docker Hub
In this section, as in Figure 8.31, we will focus on the last step of our CI/CD pipeline,
which is integrating Jenkins with Docker Hub. As we mentioned before, there are
plenty of registries out there. We will use Docker Hub because it is free and easy to
use. At your workplace, your company will probably have a private local registry. You
will need to ask the operations or IT admins to create an account for you and grant
you some privileges so that you are able to access the registry and push your images
to it.

 Figure 8.24: Integrating Jenkins and Docker Hub

In the following exercise, you will learn how to integrate Jenkins with Docker Hub and
how to push the image that Jenkins built in the previous exercise.

Exercise 8.04: Integrating Jenkins and Docker Hub

In this exercise, you will integrate Jenkins with Docker Hub and push that image
to your repository. First, you will install the Docker, docker-build-step, and
Cloudbees Docker Build and Publish plugins so that Jenkins can connect
to Docker Hub. Then, you will learn how to enter your Docker Hub credentials in
Jenkins so that Jenkins can access your Docker Hub account automatically and push
your images to it. Finally, you will check your images in Docker Hub to verify that the
pipeline was executed correctly. At the end of this exercise, you will verify that the
image is successfully pushed to the repository by checking your Docker Hub account:

332 | CI/CD Pipeline

1. Click on Manage Jenkins in the left-hand menu to install the plugins:

Figure 8.25: Clicking on Manage Jenkins

2. Click on Plugin Manager. Four tabs will appear. Click on the Available tab
and select the Docker, docker-build-step, and Cloudbees Docker
Build and Publish plugins:

Figure 8.26: Installing the Docker, docker-build-step, and Cloudbees
Docker Build and Publish plugins

Integrating Jenkins and Docker Hub | 333

3. Click Install without restart. After installation, check Restart
Jenkins when installation is complete and no jobs
are running.

4. Jenkins will take an extended period of time to restart, depending upon
your disk space, memory, and internet connectivity speed. Wait until it
is done, and the dashboard is shown. Click on the project's name, that is,
hit_count:

Figure 8.27: Jenkins Dashboard showing the hit_count project

334 | CI/CD Pipeline

5. Click Configure in the left-hand menu to modify the project configurations:

Figure 8.28: The Configure option in the left-hand menu

6. Modify the details in the Build tab only. Click on it and select Add build
step. A larger menu than the one you saw before will show up. If you see
Docker Build and Publish in that menu, it verifies that your plugins
were installed successfully. Click Docker Build and Publish:

Figure 8.29: Selecting Docker Build and Publish from the menu

Integrating Jenkins and Docker Hub | 335

7. In Registry Credentials, click Add. Then select Jenkins from the
drop-down menu.

8. A pop-up box will appear. Enter your Docker Hub username and password.
Then, click Add:

Figure 8.30: Adding Jenkins credentials

336 | CI/CD Pipeline

9. Now, in Registry Credentials, click the first drop-down menu and select
the credentials that you entered in the previous step. Then, enter <your
Docker Hub username>/<image name> in the Repository Name
field. Remove the Execute Shell option that you entered in Exercise 8.02,
Uploading the Code to GitHub, by clicking the Red X at the top right. Now, you will
have only one build step, which is the Docker Build and Publish step.
Click Save to save the new configuration:

Figure 8.31: The Docker Build and Publish step

10. Click Build Now again in the left-hand menu and in the Build History
option, follow the progress of the image build. It will have the same name that
you specified in Repository Name in the previous step. Jenkins will add the
docker build step by itself because you chose it from the plugins. If the
image passed the build successfully, Jenkins will use your Docker credentials and
automatically connect to Docker Hub or any registry you specify in Repository
Name. Finally, Jenkins will push the new image automatically to your registry,
which is your Docker Hub registry in this exercise.

Integrating Jenkins and Docker Hub | 337

11. As a further check, while the image is being built and before it is done, go to the
terminal and list the images you have using the docker images command:

$ docker images

Because you cleaned your lab at the end of the last exercise, you should find the
jenkinsci/blueocean image only:

REPOSITORY TAG IMAGE ID

 CREATED SIZE

jenkinsci/blueocean latest e287a467e019

 Less than a second ago 562MB

Also, check your Docker Hub account to verify whether the hit_counter
image is built. You will not find the hit_counter image:

Figure 8.32: Checking your Docker Hub

338 | CI/CD Pipeline

12. If the job is successfully built, you will find a blue ball beside the image name. If it
is a red ball, this means that there was an error. Now, click on the arrow beside
the image name and select Console Output:

Figure 8.33: Selecting Console Output

As shown in the following image, you will find that Jenkins built the image
successfully and pushed it to your Docker Hub:

Figure 8.34: In Console Output, verify that Jenkins has built and pushed the image

Integrating Jenkins and Docker Hub | 339

13. Go back to the terminal and rerun the docker images command to list
the images:

$ docker images

You will find an image with <your Docker Hub Username>/hit_count:

REPOSITORY TAG IMAGE ID

 CREATED SIZE

jenkinsci/blueocean latest e287a467e019

 Less than a second ago 562MB

engyfouda/hit_count latest 65e2179392ca

 5 minutes ago 227MB

<none> <none> cf4adcf1ac88

 10 minutes ago 1.22MB

python 3.7alpine 6a5ca85ed89b

 2 weeks ago 72.5MB

14. In the browser, refresh the Docker Hub page. You will find your image at the top;
Jenkins pushed it for you automatically:

Figure 8.35: Verifying that Jenkins has pushed the image to your Docker Hub automatically

In this exercise, we finished the last phase of our CI/CD pipeline and integrated
Jenkins with Docker Hub. Jenkins pushed the image it built to Docker Hub. You also
verified that the image was pushed correctly by checking the Docker Hub account.

340 | CI/CD Pipeline

In the next activity, we will apply the same method of installing extra plugins to
integrate Jenkins with SonarQube. SonarQube is another powerful tool that can
analyze code and generate reports about its quality and detect bugs, code smells,
and security vulnerabilities in a vast number of programming languages.

Activity 8.01: Utilizing Jenkins and SonarQube

Usually, you will be asked to evaluate the quality of your code before submitting it
to testers. You can utilize Jenkins for further code inspection by generating reports
about debugging bugs, code smells, and security vulnerabilities by adding the
SonarQube plugin.

In this activity, we will utilize Jenkins and the SonarQube plugin for our hit_count
Python example.

Steps:

1. Install and run SonarQube in a container, as you did in Exercise 8.01, Installing
Jenkins as a Container. Use the default port 9000.

2. Install the SonarQube plugin in Jenkins. Log in to SonarQube using admin/
admin and generate the authentication token. Do not forget to copy the token
and keep it in a text file. You cannot retrieve the token after this step. If you lose
your token, remove the SonarQube container, re-craft it from the SonarQube
image as in step 1, and re-do the steps again.

3. Restart Jenkins.

4. In Jenkins, add SonarQube's authentication token to the Global
Credentials domain as secret text.

5. Integrate Jenkins with SonarQube by adjusting the Global System
Configuration and the Configure System options.

6. Modify the fields in the Build Environment tab by enabling the Prepare
SonarQube scanner environment.

7. Modify the Build step and add the Analysis Properties.

8. In the browser, go to the SonarQube window, and check its report.

Integrating Jenkins and Docker Hub | 341

 The output should be like the following:

Figure 8.36: The expected SonarQube output

Note

The solution for this activity can be found via this link.

In the next activity, you will integrate Jenkins and SonarQube with our Panoramic
Trekking application.

Activity 8.02: Utilizing Jenkins and SonarQube in the Panoramic Trekking

Application

The Panoramic Trekking Application also has a frontend and backend, like the
hit_counter application. In this activity, you will create a new project in Jenkins
that is linked to the Panoramic Trekking application on GitHub. Then, you will run
SonarQube to get a detailed report about its bugs and security vulnerabilities, if the
trekking application has any.

Follow these steps to complete the activity:

1. Create a new item called trekking in Jenkins.

2. Select it as a FREESTYLE project.

342 | CI/CD Pipeline

3. In the General tab, select Discard Old Builds.

4. In Source Code Management, select GIT. Then enter the URL
http://github.com/efoda/trekking_app.

5. In Build Triggers, select Poll SCM and set it to be analyzing and testing
every 15 minutes.

6. In the Build tab, enter the Analysis properties code.

7. Save and click Build Now.

8. Check the report in the SonarQube tab in the browser.

The output should look like the following at SonarQube:

Figure 8.37: Expected output of Activity 8.02

Note

The solution for this activity can be found via this link.

Summary | 343

Summary
This chapter has provided hands-on experience integrating your code using the
CI/CD pipeline. CI helps developers to integrate code into a shared and easily
accessible repository. CD helps developers to deliver the code stored in the repository
to production. The CI/CD approach also helps to keep the product up to date with
the latest technology and to provide the latest version to customers with a fast
turnaround for new features and bug fixes.

Once this chapter's defined three phases of the CI/CD pipeline are completed
successfully, you will only need to focus on editing your code on GitHub. Jenkins
will then be your automated assistant, and it will automatically handle the rest of
the phases for you and make the images available for production.

In the next chapter, you will learn about Docker swarm mode and how to perform
service discovery, clustering, scaling, and rolling updates.

Overview

In this chapter, you will work with Docker Swarm from the command line to
manage running nodes, deploy services, and perform rolling updates on
your services when needed. You will learn how to troubleshoot your Swarm
nodes and deploy entire stacks using your existing Docker Compose
files, as well as learning how you can use Swarm to manage your service
configuration and secrets. The final part of this chapter will provide you
with the knowledge you need to get started using Swarmpit, which is a
web-based interface for running and managing your Docker Swarm
services and clusters.

Docker Swarm

9

346 | Docker Swarm

Introduction
So far in this book, we've run our Docker containers and controlled the way they run
from the command line using direct commands such as docker run to launch
containers. Our next step is to automate things with the use of Docker Compose,
which allows an entire environment of containers to work together. Docker Swarm
is the next step in managing our Docker environments. Docker Swarm allows you
to orchestrate how your containers can scale and work together to provide a more
reliable service to your end-users.

Docker Swarm allows you to set up multiple servers running Docker Engine and
organize them as a cluster. Docker Swarm can then run commands to coordinate
your containers across the cluster instead of just one server. Swarm will configure
your cluster to make sure your services are balanced across your cluster, ensuring
higher reliability for your services. It will also decide for you which service will be
assigned to which server depending on the load across your cluster. Docker Swarm is
a step up in terms of managing the way you run your containers and is provided by
default with Docker.

Docker Swarm allows you to configure redundancy and failover for your services
while scaling the number of containers up and down depending on the load. You
can perform rolling updates across your services to reduce the chances of an outage,
meaning new versions of your container applications can be applied to the cluster
without these changes causing an outage for your customers. It will allow you to
orchestrate your container workloads through the swarm instead of manually
managing containers one by one.

Swarm also introduces some new terms and concepts when it comes to managing
your environment, defined in the following list:

• Swarm: Multiple Docker hosts run in swarm mode to act as managers and
workers. Having multiple nodes and workers is not compulsory as part of
Docker Swarm. You can run your services as a single node swarm, which is
the way we will be working in this chapter, even though a production cluster
may have multiple nodes available to make sure your services are as
fault-tolerant as possible.

• Task: The manager distributes the tasks to run inside the nodes. A task consists
of a Docker container and the commands that will run inside the container.

• Service: This defines the tasks to execute on the manager or worker. The
difference between services and a standalone container is that you can modify a
service's configuration without restarting the service.

How Docker Swarm Works? | 347

• Node: An individual system running Docker Engine and participating in the
swarm is a node. More than one node can run on a single physical computer
at one time through the use of virtualization.

Note

We will only be using one node on our system.

• Manager: The manager dispatches tasks to worker nodes. The manager carries
out orchestration and cluster management. It also hosts services on the cluster.

• Leader node: The manager node in the swarm elects a single primary leader
node to conduct the orchestration tasks across the cluster.

• Worker nodes: Worker nodes execute the tasks assigned by the manager node.

Now that you are familiar with the key terms, let's explore how Docker Swarm works
in the following section.

How Docker Swarm Works?
The swarm manager nodes handle cluster management, and the main objective is
to maintain a consistent state of both the swarm and the services running on it. This
includes ensuring that the cluster is running at all times and that services are run and
scheduled when needed.

As there are multiple managers running at the same time, this means there is fault
tolerance, especially in a production environment. That is, if one manager is shut
down, the cluster will still have another manager to coordinate services on the
cluster. The sole purpose of worker nodes is to run Docker containers. They require
at least one manager to function, but worker nodes can be promoted to being a
manager, if needed.

Services permit you to deploy an application image to a Docker swarm. These are the
containers to run and the commands to execute inside the running container. Service
options are provided when you create a service, where you can specify the ports the
application can publish on, CPU and memory restrictions, the rolling update policy,
and the number of replicas of an image that can run.

348 | Docker Swarm

The desired state is set for the service, and the manager's responsibility is to monitor
the service. If the service is not in the desired state, it will correct any issues. If a task
fails, the orchestrator simply removes the container related to the failed task and
replaces it.

Now that you know how Docker Swarm works, the next section will get you started
with the basic commands and guide you through a hands-on exercise to further
demonstrate its operation.

Working with Docker Swarm
The previous section of this chapter has shown you that Swarm uses similar concepts
to what you have already learned so far in this book. You'll see that the use of Swarm
takes the Docker commands you are so familiar with and expands them to allow you
to create your clusters, manage services, and configure your nodes. Docker Swarm
takes a lot of the hard work out of running your services, as Swarm will work out
where it is best to place your services, take care of scheduling your containers, and
decide which node it is best to place it on. For example, if there are already three
services running on one node and only one service on your second node, Swarm
will know that it should distribute the services evenly across your system.

By default, Docker Swarm is disabled, so to run Docker in swarm mode, you will need
to either join an existing cluster or create a new swarm. To create a new swarm and
activate it in your system, you use the swarm init command shown here:

docker swarm init

This will create a new single-node swarm cluster on the node you are currently
working on. Your system will become the manager node for the swarm you have
just created. When you run the init command, you'll also be provided with the
details on the commands needed to allow other nodes to join your swarm.

For a node to join a swarm, it requires a secret token, and the token for a worker
node is different from that of a manager node. The manager tokens need to be
strongly protected so you don't allow your swarm cluster to become vulnerable. Once
you have the token, IP address, and port of the swarm that your node needs to join,
you run a command similar to the one shown here, using the --token option:

docker swarm join --token <swarm_token> <ip_address>:<port>

Working with Docker Swarm | 349

If for some reason you need to change the tokens (possibly for security reasons), you
can run the join-token --rotate option to generate new tokens as shown here:

docker swarm join-token --rotate

From the swarm manager node, the following node ls command will allow you to
see the nodes available in your swarm and provide details on the status of the node,
whether it is a manager or a worker, and whether there are any issues with the node:

docker node ls

Once your swarm is available and ready to start hosting services, you can create a
service with the service create command, providing the name of the service,
the container image, and the commands needed for the service to run correctly—for
example, if you need to expose ports or mount volumes:

docker service create --name <service> <image> <command>

Changes can then be made to the service configuration, or you can change the way
the service is running by using the update command, as shown here:

docker service update <service> <changes>

Finally, if you need to remove or stop the service from running, you simply use the
service remove command:

docker service remove <service>

We've provided a lot of theory on Docker Swarm here, and we hope it has provided
you with a clear understanding of how it works and how you can use Swarm to
launch your services and scale to provide a stable service when there is high demand.
The following exercise will take what we have learned so far and show you how to
implement it in your projects.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

350 | Docker Swarm

Exercise 9.01: Running Services with Docker Swarm

This exercise is designed to help you become familiar with using the Docker Swarm
commands to manage your services and containers. In the exercise, you will activate
a cluster, set up a new service, test scaling up the service, and then remove the
service from the cluster using Docker Swarm:

1. Although Swarm is included by default with your Docker installation, you still
need to activate it on your system. Use the docker swarm init command
to put your local system into Docker Swarm mode:

docker swarm init

Your output might be a little different from what you see here, but as you can
see, once the swarm is created, the output provides details on how you can add
extra nodes to your cluster with the docker swarm join command:

Swarm initialized: current node (j2qxrpf0a1yhvcax6n2ajux69) is

now a manager.

To add a worker to this swarm, run the following command:

 docker swarm join --token SWMTKN-1-2w0fk5g2e18118zygvmvdxartd43n0
ky6cmywy0ucxj8j7net1-5v1xvrt7
1ag6ss7trl480e1k7 192.168.65.3:2377

To add a manager to this swarm, run 'docker swarm join-token

manager' and follow the instructions.

2. Now list the nodes you have in your cluster, using the node ls command:

docker node ls

You should have one node you are currently working on and its status should
be Ready:

ID HOSTNAME STATUS AVAILABILITY

 MANAGER STATUS

j2qx.. * docker-desktop Ready Active

 Leader

For clarity here, we have removed the Engine Version column from
our output.

Working with Docker Swarm | 351

3. From your node, check the status of your swarm using the docker info
command, providing further details of your Swarm cluster and how the node
is interacting with it. It will also give you extra information if you need to
troubleshoot issues later:

docker info

As you can see from the output, you get all the specific details of your Docker
Swarm cluster, including NodeID and ClusterID. If you don't have Swarm set
up correctly on your system, all you will see is an output of Swarm: inactive:

…

Swarm: active

 NodeID: j2qxrpf0a1yhvcax6n2ajux69

 Is Manager: true

 ClusterID: pyejfsj9avjn595voauu9pqjv

 Managers: 1

 Nodes: 1

 Default Address Pool: 10.0.0.0/8

 SubnetSize: 24

 Data Path Port: 4789

 Orchestration:

 Task History Retention Limit: 5

 Raft:

 Snapshot Interval: 10000

 Number of Old Snapshots to Retain: 0

 Heartbeat Tick: 1

 Election Tick: 10

 Dispatcher:

 Heartbeat Period: 5 seconds

 CA Configuration:

 Expiry Duration: 3 months

 Force Rotate: 0

4. Start your first service on your newly created swarm. Create a service named
web using the docker service create command and the --replicas
option to set two instances of the container running:

docker service create --replicas 2 -p 80:80 --name web nginx

352 | Docker Swarm

You will see that the two instances are successfully created:

uws28u6yny7ltvutq38166alf

overall progress: 2 out of 2 tasks

1/2: running [==>]

2/2: running [==>]

verify: Service converged

5. Similar to the docker ps command, you can see a listing of the services
running on your cluster with the docker service ls command. Execute the
docker service ls command to view the details of the web service created
in the step 4:

docker service ls

The command will return the details of the web service:

ID NAME MODE REPLICAS IMAGE

 PORTS

uws28u6yny7l web replicated 2/2 nginx:latest

 *:80->80/tcp

6. To view the containers currently running on your swarm, use the docker
service ps command with the name of your service, web:

docker service ps web

As you can see, you now have a list of the containers running our service:

ID NAME IMAGE NODE DESIRED

 CURRENT STATE

viyz web.1 nginx docker-desktop Running

 Running about a minute ago

mr4u web.2 nginx docker-desktop Running

 Running about a minute ago

Working with Docker Swarm | 353

7. The service will only run the default Welcome to nginx! page. Use the
node IP address to view the page. In this instance, it will be your localhost
IP, 0.0.0.0:

Figure 9.1: The nginx service from Docker Swarm

8. Scaling the number of containers running your service is easy with Docker
Swarm. Simply provide the scale option with the number of total containers
you want to have running, and the swarm will do the work for you. Perform the
command shown here to scale your running web containers to 3:

docker service scale web=3

The following output shows that the web service is now scaled to 3 containers:

web scaled to 3

overall progress: 3 out of 3 tasks

1/3: running [==>]

2/3: running [==>]

3/3: running [==>]

verify: Service converged

9. As in step 5 of this exercise, run the service ls command:

docker service ls

You should now see three web services running on your cluster:

ID NAME MODE REPLICAS IMAGE

 PORTS

uws28u6yny7l web replicated 3/3 nginx:latest

 *:80->80/tcp

354 | Docker Swarm

10. The following change is more suited to a cluster with more than one node, but
you can run it anyway to see what happens. Run the following node update
command to set the availability to drain and use your node ID number or
name. This will remove all the containers running on this node as it is no longer
available on your cluster. You will be provided with the node ID as an output:

docker node update --availability drain j2qxrpf0a1yhvcax6n2ajux69

11. If you were to run the docker service ps web command, you would see
each of your web services shut down while trying to start up new web services.
As you only have one node running, the services would be sitting in a pending
state with no suitable node error. Run the docker service ps
web command:

docker service ps web

The output has been reduced to only show the second, third, fifth, and sixth
columns, but you can see that the service is unable to start. The CURRENT
STATE column has both Pending and Shutdown states:

NAME IMAGE CURRENT STATE

 ERROR

web.1 nginx:latest Pending 2 minutes ago

 "no suitable node (1 node…"

_ web.1 nginx:latest Shutdown 2 minutes ago

web.2 nginx:latest Pending 2 minutes ago

 "no suitable node (1 node…"

_ web.2 nginx:latest Shutdown 2 minutes ago

web.3 nginx:latest Pending 2 minutes ago

 "no suitable node (1 node…"

_ web.3 nginx:latest Shutdown 2 minutes ago

12. Run the docker node ls command:

docker node ls

This shows that your node is ready but in an AVAILABILITY state of Drain:

ID HOSTNAME STATUS AVAILABILITY

 MANAGER STATUS

j2qx.. * docker-desktop Ready Drain

 Leader

Working with Docker Swarm | 355

13. Stop the service from running. Use the service rm command, followed by the
service name (in this instance, web) to stop the service from running:

docker service rm web

The only output shown will be the name of the service you are removing:

web

14. You don't want to leave your node in a Drain state as you want to keep using
it through the rest of the exercises. To get the node out of a Drain state and
prepare to start managing swarm, set the availability to active with the
following command using your node ID:

docker node update --availability active j2qxrpf0a1yhvcax6n2ajux69

The command will return the hash value of the node, which will be different for
every user.

15. Run the node ls command:

docker node ls

It will now show the availability of our node as Active and ready your services
to run again:

ID HOSTNAME STATUS AVAILABILITY

 MANAGER STATUS

j2qx.. * docker-desktop Ready Active

 Leader

16. Use the docker node inspect command with the --format option and
search for the ManagerStatus.Reachability status to ensure that your
node is reachable:

docker node inspect j2qxrpf0a1yhvcax6n2ajux69 --format "{{
.ManagerStatus.Reachability }}"

If the node is available and can be contacted, you should see a result
of reachable:

reachable

17. Search for Status.State to ensure that the node is ready:

docker node inspect j2qxrpf0a1yhvcax6n2ajux69 --format "{{ .Status.
State }}"

356 | Docker Swarm

This should produce ready:

ready

This exercise should have given you a good indication of how Docker Swarm is able
to simplify your work, especially when you start to think about deploying your work
into a production environment. We used the Docker Hub NGINX image, but we could
easily use any service we have created as a Docker image that is available to our
Swarm node.

The next section will take a quick sidestep to discuss some actions you need to take if
you find yourself in trouble with your Swarm nodes.

Troubleshooting Swarm Nodes
For the work we will be doing in this chapter, we will be using only a single-node
swarm to host our services. Docker Swarm has been providing production-level
environments for years now. However, this doesn't mean there will never be any
issues with your environment, especially when you start hosting services in a multi-
node swarm. If you need to troubleshoot any of the nodes running on your cluster,
there are a number of steps you can take to make sure you are correcting any issues
they may have:

• Reboot: Usually the easiest option is to either reboot or restart the node system
to see whether this resolves the issues you may be experiencing.

• Demote the node: If the node is a manager on your cluster, try demoting the
node using the node demote command:

docker node demote <node_id>

If this node is the leader, it will allow one of the other manager nodes to
become the leader of the swarm and hopefully resolve any issues you may
be experiencing.

• Remove the node from the cluster: Using the node rm command, you can
remove the node from the cluster:

docker node rm <node_id>

This can also be an issue if the node is not communicating correctly with the
rest of the swarm, and you may need to use the --force option to remove
the node from the cluster:

docker node rm --force <node_id>

Troubleshooting Swarm Nodes | 357

• Join back to the cluster: If the preceding has worked correctly, you may be
able to successfully join the node back onto the cluster with the swarm join
command. Remember to use the token that you used before when joining
the swarm:

docker node swarm join --token <token> <swarm_ip>:<port>

Note

If your services are still having issues running on Docker Swarm
and you have corrected all issues with the Swarm nodes, Swarm is
simply using Docker to run and deploy your services onto the nodes
in your environment. Any issues may come down to basic troubleshooting
with the container image you are trying to run on Swarm and not the Swarm
environment itself.

A cluster of managers is known as a quorum, and a majority of the managers need
to agree on the proposed updates to the swarm, such as adding new nodes or scaling
back the number of containers. As we saw in the previous section, you can monitor
swarm managers' or nodes' health by running the docker node ls command,
using the ID of the manager to then use the docker node inspect command
as shown here:

docker node inspect <node_id>

Note

One final note on your Swarm node is to remember to deploy services to
your nodes that have been created as Docker images. The container image
itself needs to be available for download from a central Docker Registry,
which is available for all the nodes to download from and not simply built
on one of the Swarm nodes.

Although we've taken a quick detour to discuss troubleshooting your Swarm nodes,
this should not be a major aspect of running services on Swarm. The next part of
this chapter moves a step further by showing you how you can use new or existing
docker-compose.yml files to automate the deployment of your services into
Docker Swarm.

358 | Docker Swarm

Deploying Swarm Deployments from Docker Compose
Deploying a complete environment is easy with Docker Swarm; you'll see that most
of the work is already done if you have been running your containers using Docker
Compose. This means you won't need to manually start services one by one in
Swarm as we did in the previous section of this chapter.

If you already have a docker-compose.yml file available to bring up your services
and applications, there is a good chance it will simply work without issues. Swarm
will use the stack deploy command to deploy all your services across the Swarm
nodes. All you need to do is provide the compose file and assign the stack a name:

docker stack deploy --compose-file <compose_file> <swarm_name>

The stack creation is quick and seamless, but a lot is happening in the background to
make sure all services are running correctly—including setting up networks between
all the services and starting up each of the services in the order needed. Running the
stack ps command with the swarm_name you provided at creation time will show
you whether all the services in your deployment are running:

docker stack ps <swarm_name>

And once you are finished using the services on your swarm or you need to clean
up everything that is deployed, you simply use the stack rm command, providing
the swarm_name you provided when you created the stack deployment. This will
automatically stop and clean up all the services running in your swarm and ready
them for you to reassign to other services:

docker stack rm <swarm_name>

Now, since we know the commands used to deploy, run, and manage our Swarm
stack, we can look at how to perform rolling updates for our services.

Swarm Service Rolling Updates
Swarm also has the ability to perform rolling updates on the services that are
running. This means if you have a new update to an application running on your
Swarm, you can create a new Docker image and update your service, and Swarm
will make sure the new image is up and running successfully before it brings down
the old version of your container image.

Swarm Service Rolling Updates | 359

Performing a rolling update on a service you have running in Swarm is simply a
matter of running the service update command. In the following command,
you can see both the new container image name and the service you want to
update. Swarm will handle the rest:

docker service update --image <image_name:tag> <service_name>

You'll get the chance very shortly to use all the commands we've explained here.
In the following example, you will create a small test application using Django and
PostgreSQL. The web application you will be setting up is very basic, so there is no
real need to have a prior understanding of the Django web framework. Simply follow
along and we will explain what is happening as we move through the exercise.

Exercise 9.02: Deploying Your Swarm from Docker Compose

In the following exercise, you will use docker-compose.yml to create a basic web
application using a PostgreSQL database and the Django web framework. You will
then use this compose file to deploy your services into your swarm without the
need to run your services manually:

1. First, create a directory to run your application in. Call the directory swarm and
move into the directory using the cd command:

mkdir swarm; cd swarm

2. Create a Dockerfile for your Django application in the new directory
and, using your text editor, enter the details in the following code block. The
Dockerfile will use the default Python3 image, set environment variables
relevant for Django, install relevant applications, and copy the code into the
current directory of the container image:

FROM python:3

ENV PYTHONUNBUFFERED 1

RUN mkdir /application

WORKDIR /application

COPY requirements.txt /application/

RUN pip install -r requirements.txt

COPY . /application/

360 | Docker Swarm

3. Create the requirements.txt file that your Dockerfile uses in the
previous step to install all the relevant applications needed for it to run. Add
in the following two lines with your text editor to install the version of Django
and Psycopg2 required by the Django application to communicate with the
PostgreSQL database:

1 Django>=2.0,<3.0

2 psycopg2>=2.7,<3.0

4. Create a docker-compose.yml file using your text editor. Add in the first
service for your database, as shown in the following code. The db service will use
the latest postgres image from Docker Hub, exposing port 5432, and also set
the environment variable for POSTGRES_PASSWORD:

1 version: '3.3'

2

3 services:

4 db:

5 image: postgres

6 ports:

7 - 5432:5432

8 environment:

9 - POSTGRES_PASSWORD=docker

5. The second half of the docker-compose.yml file builds and deploys your
web application. Build your Dockerfile in line 10, expose port 8000 to access
it from your web browser, and set the database password to match your db
service. You will also notice a Python command in line 13 that will start the
development web server for the Django application:

10 web:

11 build: .

12 image: swarm_web:latest

13 command: python manage.py runserver 0.0.0.0:8000

14 volumes:

15 - .:/application

16 ports:

17 - 8000:8000

18 environment:

19 - PGPASSWORD=docker

20 depends_on:

21 - db

Swarm Service Rolling Updates | 361

6. Run the following command to pull and build the db and web services in
your docker-compose.yml. The command will then run django-admin
startproject, which will create your basic Django project, named
chapter_nine:

docker-compose run web django-admin startproject chapter_nine .

The command should return the following output, in which you see the
containers being pulled and built:

…

Status: Downloaded newer image for postgres:latest

Creating swarm_db_1 ... done

Building web

…

Successfully built 41ff06e17fe2

Successfully tagged swarm_web:latest

7. The startproject command you ran in the previous step should have
created some extra files and directories in your swarm directory. Run the ls
command to list all the files and directories in the swarm directory:

ls -l

You previously created the Dockerfile, docker-compose.yml file, and
requirements.txt file, but now the build of the container has added the
chapter_nine Django directory and the manage.py file:

-rw-r--r-- 1 user staff 175 3 Mar 13:45 Dockerfile

drwxr-xr-x 6 user staff 192 3 Mar 13:48 chapter_nine

-rw-r--r-- 1 user staff 304 3 Mar 13:46 docker-compose.yml

-rwxr-xr-x 1 user staff 634 3 Mar 13:48 manage.py

-rw-r--r-- 1 user staff 36 3 Mar 13:46 requirements.txt

8. To get your basic application running, you need to make some minor changes
to the Django project settings. Open the chapter_nine/settings.py file
with your text editor and locate the entry that starts with DATABASES. This
controls how Django will connect to your database, and by default, Django is
set up to work with an SQLite database. The DATABASES entry should look like
the following:

76 DATABASES = {

77 'default': {

78 'ENGINE': 'django.db.backends.sqlite3',

362 | Docker Swarm

79 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

80 }

81 }

You have a PostgreSQL database to deploy to Swarm as a part of our installation,
so edit the DATABASES settings with the following eight lines so that Django will
access this PostgreSQL database instead:

settings.py

76 DATABASES = {
77 'default': {
78 'ENGINE': 'django.db.backends.postgresql',
79 'NAME': 'postgres',
80 'USER': 'postgres',
81 'PASSWORD': 'docker',
82 'HOST': 'db',
83 'PORT': 5432,
84 }
85 }

The complete code for this step can be found at https://packt.live/2DWP9ov.

9. At line 28 of our settings.py file, we also need to add the IP address we
are going to use as the ALLOWED_HOSTS configuration. We will configure our
application to be accessible from the IP address 0.0.0.0. Make the relevant
changes to the settings file at line 28 so that it now looks like the code below:

 27

 28 ALLOWED_HOSTS = ["0.0.0.0"]

10. Now test to see whether your basic project is working as expected. From
the command line, deploy your services to Swarm with the stack deploy
command. In the following command, specify the docker-compose.yml file
to use with the --compose-file option and name the stack test_swarm:

docker stack deploy --compose-file docker-compose.yml test_swarm

The command should set up the swarm network, the database, and the
web services:

Creating network test_swarm_default

Creating service test_swarm_db

Creating service test_swarm_web

https://packt.live/2DWP9ov

Swarm Service Rolling Updates | 363

11. Run the docker service ls command, and you should be able to see the
status for both the test_swarm_db and test_swarm_web services:

docker service ls

As you can see in the following output, they are both showing a REPLICAS value
of 1/1:

ID NAME MODE REPLICAS IMAGE

 PORTS

dsr. test_swarm_db replicated 1/1 postgres

kq3. test_swarm_web replicated 1/1 swarm_web:latest

 *:8000.

12. If your work has been successful, test it by opening a web browser and going
to http://0.0.0.0:8000. If everything has worked, you should see the
following Django test page displayed on your web browser:

Figure 9.2: Deploying a service to Swarm with Docker Compose file

13. To view the stacks currently running on your system, use the
stack ls command:

docker stack ls

You should see the following output, which shows two services running under
the name of test_swarm:

NAME SERVICES ORCHESTRATOR

test_swarm 2 Swarm

364 | Docker Swarm

14. Use the stack ps command with the name of your swarm to view the services
running and check whether there are any issues:

docker stack ps test_swarm

The ID, DESIRED STATE, and ERROR columns are not included in the
following reduced output. Also, it can be seen that the test_swarm_web.1
and test_swarm_db.1 services are running:

NAME IMAGE NODE

 CURRENT STATE

test_swarm_web.1 swarm_web:latest docker-desktop

 Running

test_swarm_db.1 postgres:latest docker-desktop

 Running

15. Just as you were able to start up all your services at once with the deploy
command, you can stop the services all at once, as well. Use the stack rm
command with the name of your swarm to stop all of your services from
running and remove the stack:

docker stack rm test_swarm

Note that all the services are stopped in the following output:

Removing service test_swarm_db

Removing service test_swarm_web

Removing network test_swarm_default

16. You still want to perform some extra work on your swarm as part of this
exercise, but first, make a minor change to the compose file. Open the
docker-compose.yml file with your text editor and add the following lines to
your web service to now have two replica web services created when deployed
to the swarm:

22 deploy:

23 replicas: 2

The complete docker-compose.yml file should look like the following:

version: '3.3'

services:

 db:

 image: postgres

Swarm Service Rolling Updates | 365

 ports:

 - 5432:5432

 environment:

 - POSTGRES_PASSWORD=docker

 web:

 build: .

 image: swarm_web:latest

 command: python manage.py runserver 0.0.0.0:8000

 volumes:

 - .:/application

 ports:

 - 8000:8000

 environment:

 - PGPASSWORD=docker

 deploy:

 replicas: 2

 depends_on:

 - db

17. Deploy the swarm again with the changes you have made using the same
command, as you did earlier in step 8. Even if the test_swarm stack was
still running, it would note and make the relevant changes to the services:

docker stack deploy --compose-file docker-compose.yml test_swarm

18. Run the docker ps command as follows:

docker ps | awk '{print $1 "\t" $2 }'

Only the first two columns are printed in the output shown here. You can now
see that there are two swarm_web services running:

CONTAINER ID

2f6eb92414e6 swarm_web:latest

e9241c352e12 swarm_web:latest

d5e6ece8a9bf postgres:latest

19. To deploy a new version of the swarm_web service to your swarm without
stopping the services, first, build a new Docker image of our web service. Don't
make any changes to the image, but this time tag the image with the patch1 tag
to demonstrate a change while the service is running:

docker build . -t swarm_web:patch1

366 | Docker Swarm

20. To perform a rolling update, use the service update command, providing
details of the image you wish to update to and the service name. Run the
following command, which uses the image you have just created with the
patch1 tag, on the test_swarm_web service:

docker service update --image swarm_web:patch1 test_swarm_web

Swarm will manage the update to make sure one of the services is always
running before the update is applied to the rest of the images:

image swarm_web:patch1 could not be accessed on a registry

to record its digest. Each node will access

swarm_web:patch1 independently, possibly leading to different

nodes running different versions of the image.

test_swarm_web

overall progress: 2 out of 2 tasks

1/2: running [===>]

2/2: running [===>]

verify: Service converged

Note

You'll notice the output shows the image was not available on a repository.
As we only have one node running our swarm, the update will use the
image built on the node. In a real-world scenario, we would need to push
this image to a central repository that all our nodes have access to so they
can pull it.

21. Run the docker ps command given here, which pipes its output to an awk
command to only print the first two columns of CONTAINER and ID:

docker ps | awk '{print $1 "\t" $2 }'

The command will return the output such as the following:

CONTAINER ID

ef4107b35e09 swarm_web:patch1

d3b03d8219dd swarm_web:patch1

d5e6ece8a9bf postgres:latest

Managing Secrets and Configurations with Docker Swarm | 367

22. What if you wanted to control the way the rolling updates occur? Run the
following command to perform a new rolling update to your test_swarm_web
services. Revert the changes you made to deploy the image with the latest
tag, but this time, make sure there is a 30-second delay in performing the
update as this will give your web service extra time to start up before the
second update is run:

docker service update --update-delay 30s --image swarm_web:latest
test_swarm_web

23. Run the docker ps command again:

docker ps | awk '{print $1 "\t" $2 }'

Note that the containers are now running the swarm_web:latest image
again after you have performed the rolling update:

CONTAINER ID

414e62f6eb92 swarm_web:latest

352e12e9241c swarm_web:latest

d5e6ece8a9bf postgres:latest

By now, you should see the benefit of using a swarm, especially when we start
to scale out our applications using Docker Compose. In this exercise, we have
demonstrated how to easily deploy and manage a group of services onto your
swarm using Docker Compose and upgrade services with rolling updates.

The next section of this chapter will expand your knowledge further to show how
you can use Swarm to manage your configurations and secret values used within
your environment.

Managing Secrets and Configurations with Docker Swarm
So far in this chapter, we have observed Docker Swarm's proficiency at orchestrating
our services and applications. It also provides functionality to allow us to define
configurations within our environment and then use these values. Why do we
need this functionality, though?

Firstly, the way we have been storing details such as our secrets has not been very
secure, especially when we are typing them in plain text in our docker-compose.
yml file or including them as part of our built Docker image. For our secrets, Swarm
allows us to store encrypted values that are then used by our services.

368 | Docker Swarm

Secondly, by using these features, we can start to move away from setting up
configurations in our Dockerfile. This means we can create and build our
application as a container image. Then, we can run our application on any
environment, be it a development system on a laptop or a test environment.
We can also run the application on a production environment, where we assign
it with a separate configuration or secrets value to use in that environment.

Creating a Swarm config is simple, especially if you already have an existing
file to use. The following code shows how we can create a new config using the
config create command by providing our config_name and the name of our
configuration_file:

docker config create <config_name> <configuration_file>

This command creates a config stored as part of the swarm and is available to
all the nodes in your cluster. To view the available configs on your system and the
swarm, run the ls option with the config command:

docker config ls

You can also view the details in the configuration using the config inspect
command. Make sure you are using the --pretty option since the output is
presented as a long JSON output that would be almost unreadable without it:

docker config inspect --pretty <config_name>

Using secrets within Swarm provides a secure way to create and store sensitive
information in our environments, such as usernames and passwords, in an
encrypted state so it can then be used by our services.

To create a secret that is only holding a single value, such as a username or password,
we can simply create the secret from the command line, where we pipe the secret
value into the secret create command. The following sample command provides
an example of how to do this. Remember to name the secret when you create it:

echo "<secret_password>" | docker secret create <secret_name> –

You can make a secret from a file. For example, say you would like to set up a
certificates file as a secret. The following command shows how to do this using the
secret create command by providing the name of the secret and the name of
the file you need to create the secret from:

docker secret create <secret_name> <secret_file>

Managing Secrets and Configurations with Docker Swarm | 369

Once created, your secret will be available on all the nodes you have running
on your swarm. Just as you were able to view your config, you can use the
secret ls command to see a listing of all the available secrets in your swarm:

docker secret ls

We can see that Swarm provides us with flexible options to implement configurations
and secrets in our orchestration, instead of needing to have it set up as part of our
Docker images.

The following exercise will demonstrate how to use both configurations and secrets in
your current Docker Swarm environment.

Exercise 9.03: Implementing Configurations and Secrets in Your Swarm

In this exercise, you will expand your Docker Swarm environment further. You
will add a service to your environment that will help NGINX to route the requests
through the proxy, before moving into your web service. You will set this up using
traditional methods but then use the config and secret functions as part of your
environment to observe their operations within Swarm and help users deploy and
configure services more efficiently:

1. Currently, the web service is using the Django development web server via the
runserver command to provide web requests. NGINX will not be able to route
traffic requests through to this development server, and instead, you will need
to install the gunicorn application onto our Django web service for traffic to
be routed via NGINX. Start by opening your requirements.txt file with your
text editor and add the application as in the highlighted third line:

Django>=2.0,<3.0

psycopg2>=2.7,<3.0

gunicorn==19.9.0

Note

Gunicorn is short for Green Unicorn and is used as a Web Service
Gateway Interface (WSGI) for Python applications. Gunicorn is widely
used for production environments as it is seen to be one of the most stable
WSGI applications available.

370 | Docker Swarm

2. To run Gunicorn as part of your web application, adjust your
docker-compose.yml file. Open the docker-compose.yml file with
your text editor and change line 13 to run the gunicorn application, instead
of the Django manage.py runserver command. The following gunicorn
command runs the chapter_nine Django project via its WSGI service and
binds to IP address and port 0.0.0.0:8000:

12 image: swarm_web:latest

13 command: gunicorn chapter_nine.wsgi:application
 --bind 0.0.0.0:8000
14 volumes:

3. Rebuild your web service to make sure the Gunicorn application is installed
on the container and available to run. Run the docker-compose
build command:

docker-compose build

4. Gunicorn can also run without the need of the NGINX proxy, so test the changes
you have made by running the stack deploy command again. If you already
have your services deployed, don't worry, you can still run this command again.
It will simply make the relevant changes to your swarm and match the changes
in your docker-compose.yml:

docker stack deploy --compose-file docker-compose.yml test_swarm

The command will return the following output:

Ignoring unsupported options: build

Creating network test_swarm_default

Creating service test_swarm_web

Creating service test_swarm_db

5. To ensure the changes have taken effect, make sure you open your web browser
and verify that the Django test page is still being provided by your web service
before moving on to the next step. As per your changes, the page should still be
displayed at http://0.0.0.0:8000.

6. To start your implementation of NGINX, open the docker-compose.yml
file again and change lines 16 and 17 to expose port 8000 from the original
ports command:

10 web:

11 build: .

12 image: swarm_web:latest

Managing Secrets and Configurations with Docker Swarm | 371

13 command: gunicorn chapter_nine.wsgi:application
 --bind 0.0.0.0:8000
14 volumes:

15 - .:/application

16 ports:

17 - 8000:8000

18 environment:

19 - PGPASSWORD=docker

20 deploy:

21 replicas: 2

22 depends_on:

23 - db

7. Keeping the docker-compose.yml file open, add your nginx service at the
end of the compose file. All of the information here should be familiar to you by
now. Line 25 provides the location of a new NGINX directory, the Dockerfile
you will create shortly, and the name of the image to be used when the service is
deployed. Lines 27 and 28 expose port 1337 to port 80 and lines 29 and 30 show
that NGINX needs to depend on the web service to run:

24 nginx:

25 build: ./nginx

26 image: swarm_nginx:latest

27 ports:

28 - 1337:80

29 depends_on:

30 - web

8. Now, set up the NGINX Dockerfile and configurations for the service. Start by
creating a directory called nginx, as in the following command:

mkdir nginx

9. Create a new Dockerfile in the nginx directory, open the file with your
text editor, and add in the details shown here. The Dockerfile is created
from the latest nginx image available on Docker Hub. It removes the default
configuration nginx file in line 3 and then adds a new configuration that you
need to set up shortly:

FROM nginx

RUN rm /etc/nginx/conf.d/default.conf

COPY nginx.conf /etc/nginx/conf.d

372 | Docker Swarm

10. Create the nginx.conf file that the Dockerfile will use to create your new
image. Create a new file called nginx.conf in the nginx directory and use
your text editor to add the following configuration details:

upstream chapter_nine {

 server web:8000;

}

server {

 listen 80;

 location / {

 proxy_pass http://chapter_nine;

 proxy_set_header X-Forwarded-For
 $proxy_add_x_forwarded_for;
 proxy_set_header Host $host;

 proxy_redirect off;

 }

}

If you're unfamiliar with NGINX configurations, the preceding details are simply
looking for requests to the web service and will route requests through to the
chapter_nine Django application.

11. With all the details now in place, build your new image for the NGINX service
now set up in your docker-compose.yml file. Run the following command to
build the image:

docker-compose build

12. Run the stack deploy command again:

docker stack deploy --compose-file docker-compose.yml test_swarm

This time, you will notice that your output shows that the test_swarm_nginx
service has been created and should be running:

Creating network test_swarm_default

Creating service test_swarm_db

Creating service test_swarm_web

Creating service test_swarm_nginx

Managing Secrets and Configurations with Docker Swarm | 373

13. Verify that all the services are running as part of your swarm with the
stack ps command:

docker stack ps test_swarm

The resulting output has been reduced to show only four of the eight columns.
You can see that the test_swarm_nginx service is now running:

NAME IMAGE NODE

 DESIRED STATE

test_swarm_nginx.1 swarm_nginx:latest docker-desktop

 Running

test_swarm_web.1 swarm_web:latest docker-desktop

 Running

test_swarm_db.1 postgres:latest docker-desktop

 Running

test_swarm_web.2 swarm_web:latest docker-desktop

 Running

14. To prove that requests are routing through the NGINX proxy, use port 1337
instead of port 8000. Make sure that a web page is still being provided from
your web browser by using the new URL of http://0.0.0.0:1337.

15. This has been a great addition to the services running on Swarm but is not
using the correct configuration management features. You already have an
NGINX configuration created previously in this exercise. Create a Swarm
configuration by using the config create command with the name of the
new configuration and the file you are going to create the configuration from.
Run the following command to create the new configuration from your
nginx/nginx.conf file:

docker config create nginx_config nginx/nginx.conf

The output from the command will provide you with the created
configuration ID:

u125x6f6lhv1x6u0aemlt5w2i

16. Swarm also gives you a way to list all the configurations created as part of your
Swarm, using the config ls command. Make sure the new nginx_config
file has been created in the previous step and run the following command:

docker config ls

374 | Docker Swarm

nginx_config has been created in the following output:

ID NAME CREATED UPDATED

u125x6f6… nginx_config 19 seconds ago 19 seconds ago

17. View the full details of the configuration you have created using the
docker config inspect command. Run the following command
with the --pretty option to make sure the configuration output is in a
readable form:

docker config inspect --pretty nginx_config

The output should look similar to what you see here, showing details of the
NGINX configuration you have just created:

ID: u125x6f6lhv1x6u0aemlt5w2i

Name: nginx_config

Created at: 2020-03-04 19:55:52.168746807 +0000 utc

Updated at: 2020-03-04 19:55:52.168746807 +0000 utc

Data:

upstream chapter_nine {

 server web:8000;

}

server {

 listen 80;

 location / {

 proxy_pass http://chapter_nine;

 proxy_set_header X-Forwarded-For
 $proxy_add_x_forwarded_for;
 proxy_set_header Host $host;

 proxy_redirect off;

 }

}

Managing Secrets and Configurations with Docker Swarm | 375

18. As you have now set up the configuration in Swarm, make sure the configuration
is no longer built into the container image. Instead, it will be provided when the
Swarm is deployed. Open the Dockerfile in the nginx directory and remove
the fourth line of the Dockerfile. It should now look similar to the details
given here:

FROM nginx:1.17.4-alpine

RUN rm /etc/nginx/conf.d/default.conf

Note

Remember that the change we are making here will make sure that we don't
need to build a new NGINX image every time the configuration changes.
This means we can use the same image and deploy it to a development
swarm or a production swarm. All we would do is change the configuration
to make the environment. We do need to create the image that can use the
config we have created and stored in Swarm, though.

19. The previous step in this exercise made a change to the nginx Dockerfile,
so now rebuild the image to make sure it is up to date:

docker-compose build

20. Open the docker-compose.yml file with your text editor to update the
compose file so that our nginx service will now use the newly created Swarm
config. At the bottom of the nginx service, add in the configuration details
with the source name of the nginx_cof configuration you created earlier. Be
sure to add it to the running nginx service so it can be used by the container.
Then, set up a separate configuration for the file. Even though you have created
it manually in the previous steps, your swarm needs to know about it when it is
deployed. Add the following into your docker-compose.yml:

25 nginx:

26 build: ./nginx

27 image: swarm_nginx:latest

28 ports:

29 - 1337:80

30 depends_on:

31 - web

32 configs:

376 | Docker Swarm

33 - source: nginx_conf

34 target: /etc/nginx/conf.d/nginx.conf

35

36 configs:

37 nginx_conf:

38 file: nginx/nginx.conf

21. Deploy your swarm again:

docker stack deploy --compose-file docker-compose.yml test_swarm

In the following output, you should now see an extra line showing Creating
config test_swarm_nginx_conf:

Creating network test_swarm_default

Creating config test_swarm_nginx_conf

Creating service test_swarm_db

Creating service test_swarm_web

Creating service test_swarm_nginx

22. There is still more you can do to take advantage of Swarm, and one extra feature
not used yet is the secrets function. Just as you created a configuration earlier in
this exercise, you can create a secret with a similar command. The command
shown here first uses echo to output the password you want as your secret
value, and then, using the secret create command, it uses this output to
create the secret named pg_password. Run the following command to name
your new secret pg_password:

echo "docker" | docker secret create pg_password –

The command will output the ID of the secret created:

4i1cwxst1j9qoh2e6uq5fjb8c

23. View the secrets in your swarm using the secret ls command. Run this
command now:

docker secret ls

You can see that your secret has been created successfully with the name of
pg_password:

ID NAME CREATED

 UPDATED

4i1cwxst1j9qoh2e6uq5fjb8c pg_password 51 seconds ago

 51 seconds ago

Managing Secrets and Configurations with Docker Swarm | 377

24. Now, make the relevant changes to your docker-compose.yml file.
Previously, you simply entered the password you wanted for your postgres
user. As you can see in the following code, here, you will point the environment
variable to the secret you created earlier as /run/secrets/pg_password.
This means it will search through the available secrets in your swarm and assign
the secret stored in pg_password. You also need to refer to the secret in the
db service to allow it access. Open the file with your text editor and make the
following changes to the file:

4 db:

5 image: postgres

6 ports:

7 - 5432:5432

8 environment:

9 - POSTGRES_PASSWORD=/run/secrets/pg_password

10 secrets:

11 - pg_password

25. The web service uses the same secret to access the PostgreSQL database. Move
into the web service section of the docker-compose.yml and change line 21
to resemble the following, as it will now use the secret you have created:

20 environment:

21 - PGPASSWORD=/run/secrets/pg_password

22 deploy:

26. Finally, just as you have done with your configuration, define the secret at the
end of docker-compose.yml. Add in the following lines at the end of your
compose file:

41 secrets:

42 pg_password:

43 external: true

378 | Docker Swarm

27. Before deploying your changes, you have made a lot of changes to the compose
file, so your docker-compose.yml file should look similar to what is shown
in the following code block. You have three services running with the db, web,
and nginx services set up, and we now have one config instance and one
secret instance:

docker-compose.yml

version: '3.3'

services:
 db:
 image: postgres
 ports:
 - 5432:5432
 environment:
 - POSTGRES_PASSWORD=/run/secrets/pg_password
 secrets:
 - pg_password
 web:
 build: .
 image: swarm_web:latest
 command: gunicorn chapter_nine.wsgi:application --bind
 0.0.0.0:8000
 volumes:
 - .:/application
 ports:
 - 8000:8000

The complete code for this step can be found at https://packt.live/3miUJD8.

Note

There are a few changes to our service, and if there are any issues in
deploying the changes to Swarm, it may be worth deleting the services
and then re-deploying to make sure all the changes take effect correctly.

This is the final run of your Swarm deployment for this exercise:

docker stack deploy --compose-file docker-compose.yml test_swarm

28. Run the deployment and make sure the services are running and
deployed successfully:

Creating network test_swarm_default

Creating config test_swarm_nginx_conf

Creating service test_swarm_db

Creating service test_swarm_web

Creating service test_swarm_nginx

https://packt.live/3miUJD8

Managing Swarm with Swarmpit | 379

In this exercise, you have practiced using Swarm to deploy a complete set of services
using your docker-compose.yml file and have them running in a matter of
minutes. This part of the chapter has also demonstrated some extra functionality
of Swarm using config and secret instances to help us reduce the amount of
work needed to move services to different environments. Now that you know how
to manage Swarm from the command line, you can further explore Swarm cluster
management in the following section using a web interface with Swarmpit.

Managing Swarm with Swarmpit
The command line provides an efficient and useful way for users to control their
Swarm. This can get a little confusing for some users if your services and nodes
multiply as need increases. One way to help with managing and monitoring your
Swarm is by using a web interface such as the one provided by Swarmpit to help
you administer your different environments.

As you'll see shortly, Swarmpit provides an easy-to-use web interface that allows
you to manage most aspects of your Docker Swarm instances, including the stacks,
secrets, services, volumes networks, and configurations.

Note

This chapter will only touch on the use of Swarmpit, but if you would like
more information on the application, the following site should provide you
with further details: https://swarmpit.io.

Swarmpit is a simple-to-use installation Docker image that, when run on your
system, creates its swarm of services deployed in your environment to run the
management and web interface. Once installed, the web interface is accessible
from http://0.0.0.0:888.

To run the installer on your system to get Swarm running, execute the following
docker run command. With this, you name the container swampit-installer
and mount the container volume on /var/run/docker.sock so it can manage
other containers on our system, using the swarmpit/install:1.8 image:

docker run -it --rm --name swarmpit-installer --volume /var/run/
docker.sock:/var/run/docker.sock swarmpit/install:1.8

https://swarmpit.io

380 | Docker Swarm

The installer will set up a swarm with a database, an agent, a web application,
and the network to link it all together. It will also guide you through setting up an
administrative user to log on to the interface for the first time. Once you log in to
the web application, the interface is intuitive and easy to navigate.

The following exercise will show you how to install and run Swarmpit on your running
system and start to manage your installed services.

Exercise 9.04: Installing Swarmpit and Managing Your Stacks

In this exercise, you will install and run Swarmpit, briefly explore the web interface,
and begin managing your services from your web browser:

1. It's not completely necessary to do so, but if you have stopped your
test_swarm stack from running, start it up again. This will provide
you with some extra services to monitor from Swarmpit:

docker stack deploy --compose-file docker-compose.yml test_swarm

Note

If you are worried that there will be too many services running on your
system at once, feel free to skip this test_swarm stack restart.
The exercise can be performed as follows on the Swarmpit stack
that is created as part of the installation process.

2. Run the following docker run command:

docker run -it --rm --name swarmpit-installer --volume /var/run/
docker.sock:/var/run/docker.sock swarmpit/install:1.8

It pulls the install:1.8 image from the swarmpit repository and then runs
through the process of setting up your environment details, allowing the user to
make changes to the stack name, ports, administrator username, and password.
It then creates the relevant services needed to run the applications:

_____ ____ _ _ __ _ __ ___ _ __ (_) |_

/ __\ \ /\ / / _` | '__| '_ ` _ \| '_ \| | __|

__ \\ V V / (_| | | | | | | | | |_) | | |_

|___/ _/_/ __,_|_| |_| |_| |_| .__/|_|__|

 |_|

Welcome to Swarmpit

Version: 1.8

Managing Swarm with Swarmpit | 381

Branch: 1.8

…

Application setup

Enter stack name [swarmpit]:

Enter application port [888]:

Enter database volume driver [local]:

Enter admin username [admin]:

Enter admin password (min 8 characters long): ******

DONE.

Application deployment

Creating network swarmpit_net

Creating service swarmpit_influxdb

Creating service swarmpit_agent

Creating service swarmpit_app

Creating service swarmpit_db

DONE.

3. On the command line, run the stack ls command to ensure that you have the
Swarmpit swarm deployed to your node:

docker stack ls

The following output confirms that Swarmpit is deployed to our node:

NAME SERVICES ORCHESTRATOR

swarmpit 4 Swarm

test_swarm 3 Swarm

4. Use the service ls command to verify that the services needed by Swarmpit
are running:

docker service ls | grep swarmpit

For clarity, the output shown here only displays the first four columns.
The output also shows that the REPLICAS value for each service is 1/1:

ID NAME MODE REPLICAS

vi2qbwq5y9c6 swarmpit_agent global 1/1

4tpomyfw93wy swarmpit_app replicated 1/1

nuxi5egfa3my swarmpit_db replicated 1/1

do77ey8wz49a swarmpit_influxdb replicated 1/1

382 | Docker Swarm

It's time to log in to the Swarmpit web interface. Open your web browser and
use http://0.0.0.0:888 to open the Swarmpit login page and enter the
admin username and password you set during the installation process:

Figure 9.3: The Swarmpit login screen

5. Once you log in, you're presented with the Swarmpit welcome screen, showing
your dashboard of all your services running on the node, as well as details of the
resources being used on the node. The left of the screen provides a menu of all
the different aspects of the Swarm stack you can monitor and manage, including
the stacks themselves, Services, Tasks, Networks, Nodes, Volumes,
Secrets, Configs, and Users. Click on the Stacks option in the left-hand
menu and select the test_swarm stack:

Managing Swarm with Swarmpit | 383

Figure 9.4: The Swarmpit welcome dashboard

6. You should be presented with a screen similar to the following. The size of the
screen has been reduced for clarity, but as you can see, it provides all the details
of the interacting components of the stack—including the services available and
the secrets and configs being used. If you click on the menu next to the stack
name, as shown here, you can edit the stack. Click Edit Stack now:

Figure 9.5: Managing your swarm with Swarmpit

384 | Docker Swarm

7. Editing the stack brings up a page where you can make changes directly to the
stack as if you were making changes to docker-compose.yml. Move down to
the file, find the replicas entry for the web service, and change it to 3 from 2:

Figure 9.6: Editing your swarm with Swarmpit

8. Click on the Deploy button at the bottom of the screen. This will deploy the
changes to your test_swarm stack into the environment and return you to the
test_swarm stack screen, where you should now see 3/3 replicas of the web
service running:

Managing Swarm with Swarmpit | 385

Figure 9.7: Increased number of web services in Swarmpit

9. Notice that most of the options in Swarmpit are linked. On the test_swarm
stack page, if you click on the web service from the services panel, you will
open the Service page for the test_swarm_web service. If you click the
menu, you should see the following page:

Figure 9.8: Managing services with Swarmpit

10. Select Rollback Service from the menu, and you will see the number of
replicas of the test_swarm_web service roll back to two replicas.

386 | Docker Swarm

11. Finally, return to the Stacks menu and select the test_swarm again. With
the test_swarm stack open, you have the option to delete the stack by clicking
on the trash can icon toward the top of the screen. Confirm that you would like
to delete the stack, and this will bring test_swarm down again and it will no
longer be running on your node:

Figure 9.9: Deleting a web service in Swarmpit

Note

Note that Swarmpit will allow you to delete the swarmpit stack. You will
see an error, but when you try to reload the page, it will simply not come up
again as all the services will have been stopped from running.

Although this has been only a quick introduction to Swarmpit, using your prior
knowledge from this chapter, the interface will allow you to intuitively deploy and
make changes to your services and stacks. Almost anything that you can do from the
command line, you can also do from the Swarmpit web interface. This brings us to
the end of this exercise and the end of the chapter. The activities in the next section
of this chapter are designed to help expand your knowledge further.

Managing Swarm with Swarmpit | 387

Activity 9.01: Deploying the Panoramic Trekking App to a Single-Node Docker

Swarm

You are required to use Docker Swarm to deploy web and database services in the
Panoramic Trekking App. You will gather configurations to create a compose file for
the application and deploy them to a single node Swarm using a docker-compose.
yml file.

The steps you will need to take to complete this activity are as follows:

1. Gather all the applications and build the Docker images needed for the services
of your swarm.

2. Create a docker-compose.yml file that will allow the services to be deployed
to Docker Swarm.

3. Create any supporting images needed for the services to use once deployed.

4. Deploy your services onto Swarm and verify that all services are able to
run successfully.

Your running services should look similar to the output shown here:

ID NAME MODE REPLICAS

 IMAGE

k6kh… activity_swarm_db replicated 1/1

 postgres:latest

copa… activity_swarm_web replicated 1/1

 activity_web:latest

Note

The solution for this activity can be found via this link.

Continue with the next activity as this will work to solidify some of the information
you have already learned in this chapter.

388 | Docker Swarm

Activity 9.02: Performing an Update to the App While the Swarm Is Running

In this activity, you need to make a minor change to the Panoramic Trekking App that
will allow you to build a new image and deploy the image to the running Swarm. In
this activity, you will perform a rolling update to deploy these changes to your
Swarm cluster.

The steps you'll need to complete this activity are as follows:

1. If you do not have the Swarm from Activity 9.01, Deploying the Panoramic Trekking
App to a Single Node Docker Swarm still running, deploy the swarm again.

2. Make a minor change to the code in the Panoramic Trekking App—something
small that can be tested to verify that you have made a change in your
environment. The change you are making is not important, so it can be
something as basic as a configuration change. The main focus of this
activity is on performing the rolling update to the service.

3. Build a new image to be deployed into the running environment.

4. Perform an update to the environment and verify that the changes
were successful.

Note

The solution for this activity can be found via this link.

Summary | 389

Summary
This chapter has done a lot of work in moving our Docker environments from
manually starting single-image services to a more production-ready and complete
environment with Docker Swarm. We started this chapter with an in-depth discussion
of Docker Swarm and how you can manage your services and nodes from the
command line, providing a list of commands and their use, and later implementing
them as part of a new environment running a test Django web application.

We then expanded this application further with an NGINX proxy and utilized Swarm
functionality to store configuration and secrets data so they no longer need to be
included as part of our Docker image and can instead be included in the Swarm we
are deploying. We then showed you how to manage your swarm using your web
browser with Swarmpit, providing a rundown of the work we previously did on the
command line and making a lot of these changes from a web browser. Swarm is not
the only way you can orchestrate your environments when using Docker.

In the next chapter, we will introduce Kubernetes, which is another orchestration
tool used to manage Docker environments and applications. Here, you will see how
you can use Kubernetes as part of your projects to help reduce the time you are
managing services and improve the updating of your applications.

Overview

In this chapter, we will learn about Kubernetes, the most popular container
management system in the market. Starting with the basics, architecture,
and resources, you will create Kubernetes clusters and deploy real-life
applications in them.

By the end of the chapter, you will be able to identify the basics of
Kubernetes design and its relationship with Docker. You will create and
configure a local Kubernetes cluster, work with the Kubernetes API
using client tools, and use fundamental Kubernetes resources to run
containerized applications.

Kubernetes

10

392 | Kubernetes

Introduction
In the previous chapters, you ran multiple Docker containers with Docker Compose
and Docker Swarm. Microservices running in various containers help developers to
create scalable and reliable applications.

However, when multiple applications are spread over multiple servers across a data
center, or even across multiple data centers around the world, it becomes more
complex to manage the applications. There are many open-ended problems related
to the complexity of distributed applications, including, but not limited to, networking,
storage, and container management.

For instance, the networking of containers running on the same nodes, as well as
different nodes, should be configured. Similarly, the volumes of the containers that
contain the applications (which can be scaled up or down) should be managed with a
central controller. Fortunately, the management of the distributed containers has a
well-accepted and adopted solution: Kubernetes.

Kubernetes is an open-source container orchestration system for running scalable,
reliable, and robust containerized applications. It is possible to run Kubernetes on a
wide range of platforms, from a Raspberry Pi to a data center. Kubernetes makes it
possible to run containers with mounting volumes, inserting secrets, and configuring
the network interfaces. Also, it focuses on the life cycle of containers to provide
high-availability and scalability. With its inclusive approach, Kubernetes is the
leading container management system currently available on the market.

Kubernetes translates to the captain of the ship in Greek. With the Docker's analogy
to boats and containers, Kubernetes positions itself as the sailing master. The idea of
Kubernetes has roots in managing containers for Google Services such as Gmail or
Google Drive for over a decade. From 2014 to the present, Kubernetes has been an
open-source project, managed by Cloud Native Computing Foundation (CNCF).

One of the main advantages of Kubernetes comes from its community and
maintainers. It is one of the most active repositories on GitHub, with nearly 88,000
commits from more than 2,400 contributors. In addition, the repository has over
62,000 stars, which means more than 62,000 people have faith in the repository:

Kubernetes Design | 393

Figure 10.1: Kubernetes GitHub repository

In this chapter, you will explore Kubernetes' design and architecture, followed
by its API and access, and use the Kubernetes resources to create containerized
applications. Since Kubernetes is the leading container orchestration
tool, getting hands-on experience of it will help you get into the world of
containerized applications.

Kubernetes Design
Kubernetes focuses on the life cycle of containers, including configuration,
scheduling, health checks, and scaling. With Kubernetes, it is possible to install
various types of applications, including databases, content management systems,
queue managers, load balancers, and web servers.

For instance, imagine you are working at a new online food delivery chain, named
InstantPizza. You can deploy the backend of your mobile application in Kubernetes
and make it scalable to customer demand and usage. Similarly, you can implement
a message queue to communicate between the restaurants and customers, again
in Kubernetes. To store past orders and receipts, you can deploy a database in
Kubernetes with storage. Furthermore, you can use load balancers to implement
Blue/Green or A/B Deployment for your application.

394 | Kubernetes

In this section, the design and architecture of Kubernetes are discussed to illustrate
how it achieves scalability and reliability.

Note

Blue/green deployments focus on installing two identical versions
(called blue and green, respectively) of the same application and
instantly moving from blue to green to reduce downtime and risk.

A/B deployments focus on installing two versions of the application
(namely, A and B), and the user traffic is divided between the versions
for testing and experiments.

The design of Kubernetes concentrates on running on one or multiple
servers—namely, clusters. On the other hand, Kubernetes consists of
numerous components that should be distributed over a single cluster
in order to have reliable and scalable applications.

There are two groups of Kubernetes components—namely, the control plane
and the node. Although there are different naming conventions for the elements
that make up the Kubernetes landscape, such as master components instead of
the control plane, the main idea of grouping has not changed at all. Control plane
components are responsible for running the Kubernetes API, including the database,
controllers, and schedulers. There are four main components in the Kubernetes
control plane:

• kube-apiserver: This is the central API server that connects all the
components in the cluster.

• etcd: This is the database for Kubernetes resources, and the kube-
apiserver stores the state of the cluster on etcd.

• kube-scheduler: This is the scheduler that assigns containerized applications
to the nodes.

• kube-controller-manager: This is the controller that creates and manages
the Kubernetes resources in the cluster.

Kubernetes Design | 395

In servers with the role node, there are two Kubernetes components:

• kubelet: This is the Kubernetes client that lives on the nodes to create a bridge
between the Kubernetes API and container runtime, such as Docker.

• kube-proxy: This is a network proxy that runs on every node to allow network
communication regarding the workloads across the cluster.

The control plane and node components, along with their interactions, are illustrated
in the following diagram:

Figure 10.2: Kubernetes architecture

Kubernetes is designed to run on scalable cloud systems. However, there are many
tools to run Kubernetes clusters locally. minikube is the officially supported CLI tool
to create and manage local Kubernetes clusters. Its commands focus on life cycle
events and the troubleshooting of clusters, as follows:

• minikube start: Starts a local Kubernetes cluster

• minikube stop: Stops a running local Kubernetes cluster

• minikube delete: Deletes a local Kubernetes cluster

• minikube service: Fetches the URL(s) for the specified service
in the local cluster

• minikube ssh: Logs in or runs a command on a machine with SSH

396 | Kubernetes

In the following exercise, you will create a local Kubernetes cluster to check the
components discussed in this chapter. To create a local cluster, you will use
minikube as the official local Kubernetes solution and run its commands to
explore Kubernetes components.

Note

minikube runs the cluster on hypervisors, and you need to install a
hypervisor such as KVM, VirtualBox, VMware Fusion, Hyperkit, or Hyper-V
based on your operating system. You can check the official documentation
for more information at https://kubernetes.io/docs/tasks/tools/install-
minikube/#install-a-hypervisor.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

Exercise 10.01: Starting a Local Kubernetes Cluster

Kubernetes was initially designed to run on clusters with multiple servers. This is an
expected characteristic for a container orchestrator that runs scalable applications in
the cloud. However, there are many times that you need to run a Kubernetes cluster
locally, such as for development or testing. In this exercise, you will install a local
Kubernetes provider and then create a Kubernetes cluster. In the cluster, you will
check for the components discussed in this section.

 To complete this exercise, perform the following steps:

1. Download the latest version of the minikube executable for your operating
system and set the binary as executable for your local system by running the
following command in your terminal:

Linux

curl -Lo minikube https://storage.googleapis.com/minikube/releases/
latest/minikube-linux-amd64
MacOS

https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor
https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor

Kubernetes Design | 397

curl -Lo minikube https://storage.googleapis.com/minikube/releases/
latest/minikube-darwin-amd64
chmod +x minikube

sudo mv minikube /usr/local/bin

These preceding commands download the binary for Linux or Mac and make it
ready to use in the terminal:

Figure 10.3: Installation of minikube

2. Start a Kubernetes cluster with the following command in your terminal:

minikube start

The single preceding command executes multiple steps to create a cluster
successfully. You can check each stage and its output as follows:

Figure 10.4: Starting a new Kubernetes cluster

The output starts with printing out the version and the environment. Then, the
images for Kubernetes components are pulled and started. Finally, you have a
locally running Kubernetes cluster after a couple of minutes.

3. Connect to the cluster node started by minikube with the following command:

minikube ssh

398 | Kubernetes

With the ssh command, you can continue working on the node running in
the cluster:

Figure 10.5: Cluster node

4. Check for each control plane component with the following commands:

docker ps --filter „name=kube-apiserver" --filter „name=etcd" --filter
„name=kube-scheduler" --filter „name=kube-controller-manager" | grep
-v „pause"

This command checks for the Docker containers and filters with the control
plane component names. The following output does not contain the pause
container, which is responsible for the networking setup of the container
groups in Kubernetes, so as to make analysis easier:

Figure 10.6: Control plane components

The output shows that four control plane components are running in Docker
containers in the minikube node.

Kubernetes Design | 399

5. Check for the first node component, kube-proxy, with the following command:

docker ps --filter "name=kube-proxy" | grep -v "pause"

Similar to Step 4, this command lists a kube-proxy component, which is
running in a Docker container:

Figure 10.7: kube-proxy in minikube

It can be seen that the kube-proxy component running in the Docker
container has been up for 21 minutes.

6. Check for the second node component, kubelet, with the following command:

pgrep -l kubelet

This command lists the process with its ID running in minikube:

2554 kubelet

Since kubelet communicates between the container runtime and API server, it
is configured to run directly on the machine instead of inside a Docker container.

7. Disconnect from the minikube node connected in Step 3 with the
following command:

exit

You should have returned to your terminal and get output similar to
the following:

logout

In this exercise, you have installed a Kubernetes cluster and checked the architectural
components. In the next section, the Kubernetes API and access methods will be
presented to connect and consume the cluster created in this section.

400 | Kubernetes

The Kubernetes API and Access
The Kubernetes API is the fundamental building block of the Kubernetes system. It
is the home for all communication between the components in the cluster. External
communication, such as user commands, is also executed against the Kubernetes
API as REST API calls. The Kubernetes API is a resource-based interface over HTTP. In
other words, the API server is oriented to work with resources to create and manage
Kubernetes resources. In this section, you will connect to the API, and in the following
section, you will start working with Kubernetes resources, including, but not limited
to, Pods, Deployments, Statefulsets, and Services.

Kubernetes has an official command-line tool for client access, named kubectl.
If you want to access a Kubernetes cluster, you need to install the kubectl tool
and configure it to connect to your cluster. Then you can securely use the tool to
manage the life cycle of applications running the cluster. kubectl is capable of
essential create, read, update, and delete operations, as well as troubleshooting
and log retrieval.

For instance, you can install a containerized application with kubectl, scale it
to more replicas, check the logs, and finally delete it if you do not need it further.
Furthermore, kubectl has cluster management commands to check the status
of the cluster and servers. Therefore, kubectl is a vital command-line tool for
accessing Kubernetes clusters and managing the applications.

kubectl is the key to controlling Kubernetes clusters with its rich set of commands.
The essential basic and deployment-related commands can be listed as follows:

• kubectl create: This command creates a resource from a filename with the
-f flag or standard terminal input. It is helpful when creating resources for the
first time.

• kubectl apply: This command creates or updates the configuration to
a Kubernetes resource, similar to the create command. It is an essential
command if you are changing the resource configuration after the first creation.

• kubectl get: This command displays one or multiple resources from the
cluster with its name, labels, and further information.

The Kubernetes API and Access | 401

• kubectl edit: This command edits a Kubernetes resource directly in the
terminal with an editor such as vi.

• kubectl delete: This command deletes Kubernetes resources and passes
filenames, resource names, and label flags.

• kubectl scale: This command changes the number of resources of a
Kubernetes cluster.

Similarly, the cluster management and configuration commands required are listed
as follows:

• kubectl cluster-info: This command displays a summary of the cluster
with its API and DNS services.

• kubectl api-resources: This command lists the supported API resources
on the server. It is especially helpful if you work with different installations of
Kubernetes that support different sets of API resources.

• kubectl version: This command prints the client and server version
information. If you are working with multiple Kubernetes clusters with different
versions, it is a helpful command to catch version mismatches.

• kubectl config: This command configures kubectl to connect different
clusters to each other. kubectl is a CLI tool designed to work with multiple
clusters by changing its configuration.

In the following exercise, you will install and configure kubectl to connect to the
local Kubernetes cluster and start exploring the Kubernetes API with the help of its
rich set of commands.

402 | Kubernetes

Exercise 10.02: Accessing Kubernetes Clusters with kubectl

Kubernetes clusters are installed in cloud systems and can be accessed from various
locations. To access the clusters securely and reliably, you need a reliable client tool,
which is the official client tool of Kubernetes—namely, kubectl. In this exercise,
you will install, configure, and use kubectl to explore its capabilities along with the
Kubernetes API.

To complete this exercise, perform the following steps:

1. Download the latest version of the kubectl executable for your operating
system and set this as the executable for your local system by running the
following command in your terminal:

Linux

curl -LO https://storage.googleapis.com/kubernetes-release/
release/'curl -s https://storage.googleapis.com/kubernetes-release/
release/stable.txt'/bin/linux/amd64/kubectl

MacOS

curl -LO "https://storage.googleapis.com/kubernetes-release/
release/$(curl -s https://storage.googleapis.com/kubernetes-release/
release/stable.txt)/bin/darwin/amd64/kubectl"

chmod +x kubectl

sudo mv kubectl /usr/local/bin

These preceding commands download the binary for Linux or Mac and make it
ready to use in the terminal:

Figure 10.8: Installation of minikube

2. In your terminal, run the following command to configure kubectl to connect
to the minikube cluster and use it for further access:

kubectl config use-context minikube

The Kubernetes API and Access | 403

The use-context command configures the kubectl context to use the
minikube cluster. For the following steps, all commands will communicate
with the Kubernetes cluster running inside minikube:

Switched to context "minikube".

3. Check for the cluster and client version with the following command:

kubectl version --short

This command returns the human-readable client and server
version information:

Client Version: v1.17.2

Server Version: v1.17.0

4. Check for further information about the cluster with the following command:

kubectl cluster-info

This command shows a summary of Kubernetes components, including the
master and DNS:

Kubernetes master is running at https://192.168.64.5:8443

KubeDNS is running at https://192.168.64.5:8445/api/v1/

namespaces/kube-system/Services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use

'kubectl cluster-info dump'.

5. Get a list of the nodes in the cluster with the following command:

kubectl get nodes

Since the cluster is a minikube local cluster, there is only one node named
minikube with the master role:

NAME STATUS ROLES AGE VERSION

Minikube Ready master 41h v1.17.0

6. List the supported resources in the Kubernetes API with the following command:

kubectl api-resources --output="name"

404 | Kubernetes

This command lists the name field of the api-resources supported in the
Kubernetes API server. The long list shows how Kubernetes creates different
abstractions to run containerized applications:

Figure 10.9: Kubernetes resource listing

Kubernetes Resources | 405

The output lists the API resources available in the Kubernetes cluster we have
connected to. As you can see, there are tens of resources you can use and each
of them helps you to create cloud-native, scalable, and reliable applications.

In this exercise, you have connected to the Kubernetes cluster and checked the
functionalities of the client tool. kubectl is the most critical tool for accessing
and managing applications running in Kubernetes. By the end of this exercise, you
will have learned how to install, configure, and connect to a Kubernetes cluster.
In addition, you will have checked its version, the statuses of its nodes, and the
available API resources. Using kubectl effectively is an essential task in daily
life for developers interacting with Kubernetes.

In the following section, the primary Kubernetes resources (seen in part of the last
step in the previous exercise) will be presented.

Kubernetes Resources
Kubernetes provides a rich set of abstractions over containers to define cloud-native
applications. All these abstractions are designed as resources in the Kubernetes API
and are managed by the control plane. In other words, the applications are defined
as a set of resources in the control plane. At the same time, node components try to
achieve the state specified in the resources. If a Kubernetes resource is assigned to
a node, the node components focus on attaching the required volumes and network
interfaces to keep the application up and running.

Let's assume you will deploy the backend of the InstantPizza reservation system on
Kubernetes. The backend consists of a database and a web server for handling REST
operations. You will need to define a couple of resources in Kubernetes:

• A StatefulSet resource for the database

• A Service resource to connect to the database from other components such as
the web server

• A Deployment resource to deploy the web server in a scalable way

• A Service resource to enable outside connections to the web server

When these resources are defined in the control plane via kubectl, the node
components will create the required containers, networks, and storage in the cluster.

406 | Kubernetes

Each resource has distinctive characteristics and schema in the Kubernetes API. In this
section, you will learn about the fundamental Kubernetes resources, including Pods,
Deployments, StatefulSet, and Services. In addition, you will learn about more
complex Kubernetes resources such as Ingresses, Horizontal Pod Autoscaling,
and RBAC Authorization in Kubernetes.

Pods

The Pod is the fundamental building block of containerized applications in
Kubernetes. It consists of one or more containers that could share the network,
storage, and memory. Kubernetes schedules all the containers in a Pod into the
same node. Also, the containers in the Pod are scaled up or down together. The
relationship between containers, Pods, and nodes can be outlined as follows:

Figure 10.10: Containers, Pods, and nodes

It can be seen from the preceding diagram that a Pod can contain multiple containers.
All these containers share a common network, storage, and memory resources.

The Pod definition is straightforward, with four main sections:

apiVersion: v1

kind: Pod

metadata:

 name: server

spec:

Kubernetes Resources | 407

 containers:

 - name: main

 image: nginx

These four sections are required for all Kubernetes resources:

• apiVersion defines the versioned schema of this resource of an object.

• kind represents the REST resource name.

• metadata holds the information of the resource, such as names, labels,
and annotations.

• spec is the resource-specific part where resource-specific information is kept.

When the preceding server Pod is created in the Kubernetes API, the API will first
check whether the definition is correct according to the apiVersion=v1 and
kind=Pod schema. Then, the scheduler will assign the Pod to a node. Following that,
the kubelet in the node will create the nginx container for the main container.

Pods are the first abstraction of Kubernetes over containers, and they are the
building blocks of more complex resources. In the following section, we will use
resources such as Deployments and Statefulsets to encapsulate Pods to create
more sophisticated applications.

Deployments

Deployments are a Kubernetes resource that focuses on scalability and high
availability. Deployments encapsulate Pods to scale up, down, and roll out new
versions. In other words, you can define a three-replica web server Pod as a
Deployment. Deployment controllers in the control plane will guarantee the
number of replicas. Besides, when you update the Deployment to a newer
version, the controllers will gradually update the application instances.

The definitions of Deployments and Pods are similar, although labels and replicas are
added to the schema of Deployments:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: server

spec:

 replicas: 10

 selector:

 matchLabels:

408 | Kubernetes

 app: server

 template:

 metadata:

 labels:

 app: server

 spec:

 containers:

 - name: main

 image: nginx

 ports:

 - containerPort: 80

The Deployment server has 10 replicas of the Pod specification with the label
app:server. In addition, port 80 of the container is published for each main
container of the server instance. The Deployment controller will create or delete the
instances to match the 10 replicas of the defined Pod. In other words, if a node with
two running instances of the server Deployment goes offline, the controller will create
two additional Pods on the remaining nodes. This automation of Kubernetes allows
us to create scalable and highly available applications out of the box.

In the following section, Kubernetes resources for stateful applications, such as
databases and message queues, will be presented.

Statefulsets

Kubernetes supports running stateful applications that store their states on the disk
volumes with StatefulSet resources. StatefulSets make it possible to run database
applications or data analysis tools in Kubernetes with the same reliability and high
availability of temporary applications.

The definition of StatefulSets resembles the definition of Deployments, with volume
mount and claim additions:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: database

spec:

 selector:

 matchLabels:

 app: mysql

 serviceName: mysql

 replicas: 1

Kubernetes Resources | 409

 template:

 metadata:

 labels:

 app: mysql

 spec:

 containers:

 - name: mysql

 image: mysql:5.7

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: "root"

 ports:

 - name: mysql

 containerPort: 3306

 volumeMounts:

 - name: data

 mountPath: /var/lib/mysql

 subPath: mysql

 volumeClaimTemplates:

 - metadata:

 name: data

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 2Gi

The database resource defines a MySQL database with a disk volume of 2 GB.
When the server StatefulSet resource is created in the Kubernetes API,
cloud-controller-manager will create a volume and make it ready on
the scheduled node. While creating the volume, it uses the specification under
volumeClaimTemplates. Then, the node will mount the volume in the
container according to the volumeMounts section in spec.

In this resource definition, there is also an example of setting an environment
variable for MYSQL_ROOT_PASSWORD. Statefulsets are vital resources in
Kubernetes since they enable running stateful applications in the same cluster
with ephemeral workloads.

In the following resource, the Kubernetes solution for the connection between Pods
will be presented.

410 | Kubernetes

Services

Kubernetes clusters host multiple applications running in various nodes, and most of
the time, these applications need to communicate with each other. Assume you have
a three-instance Deployment of your backend and a two-instance Deployment of your
frontend application. Five Pods run, spread over the cluster with their IP addresses.
Since the frontend instances need to connect to the backend, the frontend instances
need to know the IP addresses of backend instances, as shown in Figure 10.11:

Figure 10.11: Frontend and backend instances

However, this is not a sustainable approach, with scaling up or down and the
prospect of numerous potential failures in the cluster. Kubernetes proposes Service
resources to define a set of Pods with labels and access them using the name of the
Service. For instance, the frontend applications can connect to a backend instance by
just using the address of backend-service, as illustrated in Figure 10.12:

Figure 10.12: Frontend and backend instances connected via backend-service

Kubernetes Resources | 411

The definition of the Service resource is reasonably straightforward, as shown here:

apiVersion: v1

kind: Service

metadata:

 name: my-db

spec:

 selector:

 app: mysql

 ports:

 - protocol: TCP

 port: 3306

 targetPort: 3306

When the my-db Service is created, all other Pods in the cluster will be able to
connect to the Pods with the label app:mysql at port 3306 via the address, my-db.
In the following resource, external access to the Services in the cluster by using the
Kubernetes Ingress resources will be presented.

Ingress

Kubernetes clusters are designed to serve applications in and outside the
cluster. Ingress resources are defined to expose Services to the outside world
with additional features such as external URLs and load balancing. Although the
Ingress resources are native Kubernetes objects, they require an Ingress controller
up and running in the cluster. In other words, Ingress controllers are not part of
the kube-controller-manager, and you need to install one in your cluster.
There are multiple implementations available on the market. However, Kubernetes
currently supports and maintains GCE and nginx controllers officially.

Note

A list of additional Ingress controllers is available in the official
documentation at the following link: https://kubernetes.io/docs/concepts/
Services-networking/Ingress-controllers.

https://kubernetes.io/docs/concepts/Services-networking/Ingress-controllers
https://kubernetes.io/docs/concepts/Services-networking/Ingress-controllers

412 | Kubernetes

An Ingress resource with a host URL of my-db.docker-workshop.io to connect
to port 3306 on the my-db Service looks like the following:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: my-db

spec:

 rules:

 - host: my-db.docker-workshop.io

 http:

 paths:

 - path: /

 backend:

 serviceName: my-db

 servicePort: 3306

Ingress resources are essential to open the Services to the outside world. However,
their configuration can be more complicated than it seems. The Ingress resources
could require individual annotations based on the Ingress controller running in
your cluster.

In the following resource, automatic scaling of the Pods with the help of the
Horizontal Pod Autoscaler will be covered.

Horizontal Pod Autoscaling

Kubernetes clusters provide a scalable and reliable containerized application
environment. However, it is cumbersome and unfeasible to manually track the
usage of applications and scale up or down when needed. Therefore, Kubernetes
provides the Horizontal Pod Autoscaler to scale the number of Pods according to
CPU utilization automatically.

Horizontal Pod Autoscalers are a Kubernetes resource with a target resource for
scaling and target metrics:

apiVersion: Autoscaling/v1

kind: HorizontalPodAutoscaler

metadata:

 name: server-scaler

spec:

 scaleTargetRef:

 apiVersion: apps/v1

Kubernetes Resources | 413

 kind: Deployment

 name: server

 minReplicas: 1

 maxReplicas: 10

 targetCPUUtilizationPercentage: 50

When the server-scaler resource is created, the Kubernetes control plane will
try to achieve the target CPU utilization of 50% by scaling up or down the Deployment
named as the server. In addition, the minimum and maximum numbers of replicas
are set to 1 and 10. This ensures that the Deployment is not scaled to 0 when it is
not used, nor scaled too high so that it consumes all the resources in the cluster.
Horizontal Pod Autoscaler resources are essential parts of Kubernetes for creating
scalable and reliable applications that are automatically managed.

In the following section, you will learn about authorization in Kubernetes.

RBAC Authorization

Kubernetes clusters are designed to connect and make changes to resources
securely. However, when the applications are running in a production environment,
it is critical to limit the scope of actions of the users.

Let's assume that you have conferred extensive powers on everyone in your project
group. In such circumstances, it will not be possible to protect your application
running in the cluster from deletion or misconfiguration. Kubernetes provides
Role-Based Access Control (RBAC) to manage users' access and abilities based on
the roles given to them. In other words, Kubernetes can limit the ability of users to
perform specific tasks on specific Kubernetes resources.

Let's start with the Role resource to define the capabilities:

kind: Role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 namespace: critical-project

 name: Pod-reader

rules:

 - apiGroups: [""]

 resources: ["Pods"]

 verbs: ["get", "watch", "list"]

414 | Kubernetes

The Pod-reader role defined in the preceding snippet is only allowed to get,
watch, and list the Pod resources in the critical-project namespace. When
the user only has the role Pod-reader, they will not be able to delete or modify the
resources in the critical-project namespace. Let's see how roles are assigned
to users using the RoleBinding resource:

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: read-Pods

 namespace: critical-project

subjects:

 - kind: User

 name: new-intern

roleRef:

 kind: Role

 name: Pod-reader

 apiGroup: rbac.authorization.k8s.io

The RoleBinding resource combines the Role resource with the subjects.
In read-Pods RoleBinding, the user new-intern is assigned to the
Pod-reader Role. When the read-Pods resource is created in the Kubernetes
API, it will not be possible for the new-intern user to modify or delete the Pods in
the critical-project namespace.

In the following exercise, you will see the Kubernetes resources in action using
kubectl and the local Kubernetes cluster.

Exercise 10.03: Kubernetes Resources in Action

Cloud-native containerized applications require multiple Kubernetes resources due
to their complex nature. In this exercise, you will create an instance of the popular
WordPress application on Kubernetes by using one Statefulset, one Deployment,
and two Service resources. In addition, you will check the status of the Pods and
connect to the Service using kubectl and minikube.

To complete this exercise, perform the following steps:

1. Create a StatefulSet definition in a file, named database.yaml, with the
following content:

apiVersion: apps/v1

kind: StatefulSet

Kubernetes Resources | 415

metadata:

 name: database

spec:

 selector:

 matchLabels:

 app: mysql

 serviceName: mysql

 replicas: 1

 template:

 metadata:

 labels:

 app: mysql

 spec:

 containers:

 - name: mysql

 image: mysql:5.7

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: "root"

 ports:

 - name: mysql

 containerPort: 3306

 volumeMounts:

 - name: data

 mountPath: /var/lib/mysql

 subPath: mysql

 volumeClaimTemplates:

 - metadata:

 name: data

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 2Gi

This StatefulSet resource defines a database to be used by WordPress in
the following steps. There is only one container named mysql with the Docker
image of mysql:5.7. There is one environment variable for the root password
and one port defined in the container specification. In addition, one volume is
claimed and attached to /var/lib/mysql in the preceding definition.

416 | Kubernetes

2. Deploy the StatefulSet to the cluster by running the following command in
your terminal:

kubectl apply -f database.yaml

This command will apply the definition in the database.yaml file since it is
passed with the -f flag:

StatefulSet.apps/database created

3. Create a database-service.yaml file in your local computer with the
following content:

apiVersion: v1

kind: Service

metadata:

 name: database-service

spec:

 selector:

 app: mysql

 ports:

 - protocol: TCP

 port: 3306

 targetPort: 3306

This Service resource defines a Service abstraction over database instances.
WordPress instances will connect to the database by using the specified Service.

4. Deploy the Service resource with the following command:

kubectl apply -f database-service.yaml

This command deploys the resource defined in the database-service.
yaml file:

Service/database-service created

5. Create a file with the name wordpress.yaml and the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: wordpress

 labels:

 app: wordpress

spec:

Kubernetes Resources | 417

 replicas: 3

 selector:

 matchLabels:

 app: wordpress

 template:

 metadata:

 labels:

 app: wordpress

 spec:

 containers:

 - image: wordpress:4.8-apache

 name: wordpress

 env:

 - name: WORDPRESS_DB_HOST

 value: database-Service

 - name: WORDPRESS_DB_PASSWORD

 value: root

 ports:

 - containerPort: 80

 name: wordpress

This Deployment resource defines a three-replica WordPress installation.
There is one container defined with the wordpress:4.8-apache image and
database-service is passed to the application as an environment variable.
With the help of this environment variable, WordPress connects to the database
deployed in Step 3. In addition, a container port is defined on port 80 so that we
can reach the application from the browser in the following steps.

6. Deploy the WordPress Deployment with the following command:

kubectl apply -f wordpress.yaml

This command deploys the resource defined in the wordpress.yaml file:

Deployment.apps/wordpress created

7. Create a wordpress-service.yaml file on your local computer with the
following content:

apiVersion: v1

kind: Service

metadata:

 name: wordpress-service

spec:

418 | Kubernetes

 type: LoadBalancer

 selector:

 app: wordpress

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

This Service resource defines a Service abstraction over the WordPress
instances. The Service will be used to connect to WordPress from the
outside world via port 80.

8. Deploy the Service resource with the following command:

kubectl apply -f wordpress-service.yaml

This command deploys the resource defined in the wordpress-service.
yaml file:

Service/wordpress-service created

9. Check the status of all running Pods with the following command:

kubectl get pods

This command lists all the Pods with their statuses, and there are one database
and three WordPress Pods with the Running status:

Figure 10.13: Pod listing

10. Get the URL of wordpress-service by running the following command:

minikube service wordpress-service --url

This command lists the URL of the Service, accessible from the host machine:

http://192.168.64.5:32765

Kubernetes Resources | 419

Open the URL in your browser to access the setup screen of WordPress:

Figure 10.14: WordPress setup screen

The setup screen indicates that the WordPress instances are running
and accessible via their Service. Furthermore, it shows that the
StatefulSet database is also running and accessible via its
Service by the WordPress instances.

420 | Kubernetes

In this exercise, you have used different Kubernetes resources to define and install a
complex application in Kubernetes. First, you deployed a Statefulset resource for
installing MySQL in the cluster. Then, you deployed a Service resource to reach the
database inside the cluster. Following that, you deployed a Deployment resource
to install the WordPress application. Similarly, you created another Service to
reach the WordPress application outside the cluster. You have created independently
scalable and reliable microservices using different Kubernetes resources and
connected them. Furthermore, you have learned how to check the status of Pods. In
the following section, you will learn about the Kubernetes package manager: Helm.

Kubernetes Package Manager: Helm
Kubernetes applications consist of multiple containers, volumes, and networking
resources due to the nature of cloud-native microservices architecture. The
microservice architecture divides large applications into smaller chunks and thus
results in numerous Kubernetes resources and a vast amount of configuration values.

Helm is the official Kubernetes package manager that collects the resources of
applications as templates and fills them with the values provided. The essential
advantage here is the accumulated community knowledge of installing the
applications with the best practices. You can install an app with the most popular
methods, even if you are working with it for the first time. Besides, working with
Helm charts augments the developer experience.

For instance, installing and managing complex applications in Kubernetes becomes
similar to downloading apps in Apple Store or Google Play Store, with fewer
commands and configurations. In Helm terminology, a collection of resources for a
single application is a chart. Charts can be used to deploy anything from a simple
pod to a full web app stack with HTTP servers, databases, caches, and such when you
work with the Helm package manager. The encapsulation of applications as charts
makes it easier to deploy complicated applications.

Kubernetes Package Manager: Helm | 421

In addition, Helm has a chart repository with popular and stable applications that are
packaged as charts and maintained by the Helm community. The stable Helm chart
repository has a high variety of applications, including databases such as MySQL,
PostgreSQL, CouchDB, and InfluxDB; CI/CD tools such as Jenkins, Concourse, and
Drone; or monitoring tools such as Grafana, Prometheus, Datadog, and Fluentd.
The chart repository not only makes it easier to install apps but also ensures that
you are deploying the application with the latest, well-accepted methods in the
Kubernetes community.

Helm is a client tool, with its latest version being Helm 3. You only need to install it
on your local system, configure it for the chart repository, and then you can start
deploying applications. Helm is a powerful package manager with its exhaustive
set of commands, including the following:

• helm repo: This command adds, lists, removes, updates, and indexes chart
repositories to the local Helm installation.

• helm search: This command searches for Helm charts in various repositories
using user-provided keywords or chart names.

• helm install: This command installs a Helm chart on the Kubernetes cluster.
It is also possible to set variables with a value file or command-line parameters.

• helm list or helm ls: These commands list the installed charts from
the cluster.

• helm uninstall: This command removes an installed chart from Kubernetes.

• helm upgrade: This command upgrades an installed chart with new values or
new chart versions on the cluster.

In the following exercise, you will install Helm, connect to a chart repository,
and install applications on the cluster.

422 | Kubernetes

Exercise 10.04: Installing the MySQL Helm Chart

Helm charts are installed and managed by the official client tool, helm. You need to
install the helm client tool locally to retrieve the charts from the chart repository and
then install applications on the clusters. In this exercise, you will start working with
Helm and install MySQL from its stable Helm chart.

To complete this exercise, perform the following steps:

1. Run the following command in your terminal to download the latest version of
the helm executable with the installation script:

curl https://raw.githubusercontent.com/helm/helm/master/scripts/
get-helm-3 | bash

The script downloads the appropriate binary of helm for your operating system
and makes it ready to use in the Terminal:

Figure 10.15: Installation of Helm

2. Add the chart repository to helm by running the following command in
your terminal:

helm repo add stable https://kubernetes-charts.storage.googleapis.
com/

This command adds the URL of the chart repository to the locally installed
helm instance:

"stable" has been added to your repositories

Kubernetes Package Manager: Helm | 423

3. List the charts in the stable repository from Step 2 with the
following command:

helm search repo stable

This command will list all the available charts in the repository:

Figure 10.16: Chart repository listing

424 | Kubernetes

4. Install the MySQL chart with the following command:

helm install database stable/mysql

This command will install the MySQL Helm chart from the stable repository
under the name database and print information on how to connect to
the database:

Figure 10.17: MySQL installation

The information in the output is valuable if you want to connect to the MySQL
installation using the mysql client inside or outside the cluster.

5. Check the status of the installation with the following command:

helm ls

Kubernetes Package Manager: Helm | 425

We can see that there is an installation of mysql-chart-1.6.2 with the
status deployed:

Figure 10.18: Helm installation status

You can also use the helm ls command to check the application and chart
versions, such as 5.7.28 and mysql-1.6.2.

6. Check for the Kubernetes resources related to the installation from Step 4 with
the following command:

kubectl get all -l release=database

This command lists all the resources with the label release = database:

Figure 10.19: Kubernetes resource listing

There are various resources listed since the installation of a production-grade
MySQL instance is not straightforward and consists of multiple resources.
Thanks to Helm, we do not need to configure each of these resources and
connect them. In addition, listing with the label release = database is
helpful to provide a troubleshooting overview when some parts of your Helm
installation fail.

In this exercise, you have installed and configured the Kubernetes package manager,
Helm, and installed applications using it. Helm is an essential tool if you are planning
to use Kubernetes for production and need to manage complex applications.

In the following activity, you will configure and deploy the Panoramic Trekking App to
the Kubernetes cluster.

426 | Kubernetes

Activity 10.01: Installing the Panoramic Trekking App on Kubernetes

You have been assigned to create a Deployment of the Panoramic Trekking App on
Kubernetes. You will take advantage of the three-tier architecture of the Panoramic
Trekking App with state-of-the-art Kubernetes resources. You will install the database
using Helm, and the backend with nginx using a Statefulset. Therefore, you will
design it as a Kubernetes application and manage it with kubectl and helm.

Perform the following steps to complete the exercise:

1. Install the database using the PostgreSQL Helm chart. Ensure that the
POSTGRES_PASSWORD environment variable is set to kubernetes.

2. Create a Statefulset with two containers for the Panoramic Trekking App backend
and nginx. Ensure that you are using the Docker images, packtworkshops/
the-docker-workshop:chapter10-pta-web and packtworkshops/
the-docker-workshop:chapter10-pta-nginx, for the containers. In
order to store the static files, you need to create a volumeClaimTemplate
section and mount it to the /Service/static/ paths of both containers.
Finally, do not forget to publish port 80 of the nginx container.

3. Create a Kubernetes Service for the Panoramic Trekking App to connect to the
Statefulset created in Step 2. Ensure that the type of Service is LoadBalancer.

4. With a successful deployment, obtain the IP of the Kubernetes Service created in
Step 3 and connect to the $SERVICE_IP/admin address in the browser:

Figure 10.20: Admin login

Kubernetes Package Manager: Helm | 427

5. Log in with the username admin and the password changeme and add new
photos and countries:

Figure 10.21: Admin setup

6. The Panoramic Trekking App will be available at the address
$SERVICE_IP/photo_viewer in the browser:

Figure 10.22: Application view

428 | Kubernetes

Note

The solution for this activity can be found via this link.

Summary
This chapter focused on using Kubernetes to design, create, and manage
containerized applications. Kubernetes is the up-and-coming container orchestrator
in the market, with a high adoption rate and an active community. In this chapter,
you have learned about its architecture and design, followed by the Kubernetes
API and its access methods, and dove into the vital Kubernetes resources to create
complex cloud-native applications.

Every exercise in this chapter aimed to illustrate the Kubernetes design approach and
its capabilities. With the Kubernetes resources and its official client tool, kubectl,
it is possible to configure, deploy, and manage containerized applications.

In the following chapter, you will learn about security in the Docker world. You will
learn the security concepts for container runtimes, container images, and Linux
environments, and how to securely run containers in Docker.

Overview

In this chapter, we will give you the information you need to make sure
your containers are secure and do not pose a security risk to the people
using the applications running on them. You will work with privileged and
non-privileged containers and learn why you should not be running your
containers under the root user. This chapter will help you verify whether
images are from a trusted source, using a signing key. You will also set up
a security scan for your Docker images, ensuring your images are safe for
use and distribution. You will work with AppArmor to further secure your
containers by using them and Security Computing Mode (seccomp) for
Linux to create and use seccomp profiles with your Docker images.

Docker Security

11

432 | Docker Security

Introduction
This chapter tries to tackle a subject that could have an entire book dedicated to it.
We attempt to go part of the way in educating you on how to approach security with
Docker. Previous chapters have given you a solid foundation in using Docker to build
your applications, and this chapter hopes to use that information to also provide
secure and stable containers for them to run on.

Docker and the microservices architecture allow us to start with a more secure
and robust environment to manage our services, but that doesn't mean we need
to completely forget about security. This chapter provides details on some of the
aspects we need to consider when we are creating and maintaining services across
our environments, as well as the ways in which you can start to implement these
procedures in your working systems.

Docker security should not be separated from your regular IT security process, as the
concepts will be the same. Docker has a different approach to handle these concepts,
but in general, a great place to start with Docker security is the following:

• Access control: Make sure that running containers cannot be accessed by an
attacker and that privileges are also limited.

• Updated and patched OS: We need to make sure we are using trusted sources
for our images. We also need to be able to scan our images to make sure any
introduced applications are not also introducing extra vulnerabilities.

• Data sensitivity: All sensitive information should remain inaccessible. This could
be passwords, personal information, or any other data you don't want to be
made available to anyone.

In this chapter, we will cover a lot of information that will encompass the preceding
points and more. We will start by considering the different access your Docker
containers might have when running and how you can start to limit what can be
performed by them. We will then look more closely at securing images, using signing
keys, and how we can verify that they are from a trusted source. We will also practice
scanning your images against known vulnerabilities to ensure that they are safe for
use. The last two sections of this chapter will focus on using both the AppArmor and
seccomp security profiles to further limit the capabilities and access your running
containers can have.

Privileged and Root User Access in Containers | 433

Note

When using secrets and passwords in your Docker images, orchestration
methods such as Swarm and Kubernetes offer secure ways to store
your secrets without needing to store them as plaintext configurations
for everyone to access. If you are not using one of these orchestration
methods, we will also provide some ideas on how to use secrets in your
images in the next chapter.

Privileged and Root User Access in Containers
One important way to improve the security of your containers is to reduce what an
attacker can do if they manage to gain access. The types of command the attacker
can run on the container are limited to the level of access the user who is running the
processes on the container has. So, if there are no root or elevated privileges on the
running container, this limits what the attacker can do. Another thing to remember is
that if a container is compromised and is running as the root user, this may also allow
the attacker to escape the container and access the host system running Docker.

Most processes running on the container are applications that don't need root access,
and this is the same as running processes on a server, where you would not run them
as root either. The applications running on the container should only have access to
what they need. The reason why root access is provided, especially in base images, is
because applications need to be installed on the container, but this should only be a
temporary measure, with your complete image running as another user.

To do this, when creating our image, we can set up a Dockerfile and create a user that
will run the processes on the container. The following line is the same as setting up a
user on a Linux command line, where we set up the group first and then assign the
user to this group:

RUN addgroup --gid <GID> <UID> && adduser <UID> -h <home_directory>
--disabled-password --uid <UID> --ingroup <UID> <user_name>

In the preceding command, we are also using the adduser option to set the home
directory and disable a login password.

434 | Docker Security

Note

addgroup and adduser are specific to Alpine-based images, which
are Linux-based images but use different packages and utilities to Debian-
based images. The reason why Alpine-based images use these packages is
that they opt for more lightweight utilities and applications. If you are using
Ubuntu-/Debian- or Red Hat-based images, you would need to instead use
the useradd and groupadd commands, with the relevant options for
those commands.

As you'll see in the upcoming exercise, we will then switch to the user we have
specifically created to create the processes we are going to run. It is optional what
you name the groups and users, but a lot of users prefer to use a four- or five-digit
number as this will not highlight any further privileges of this user to a potential
attacker and is usually standard practice for creating users and groups. In our
Dockerfile, before we create our processes, we include the USER directive and
include the user ID of the user we previously created:

USER <UID>

In this part of the chapter, we will introduce a new image and show the issues that
can arise if the processes on the container are being run by the root user. We'll
also show you how the root user in a container is the same as the root user on the
underlying host. We'll then change our image to show the benefit of removing root
access to the processes running on the container.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

Exercise 11.01: Running Containers as the Root User

Many issues can arise when we are running container processes with the root
user. This exercise will demonstrate specific security issues, such as changing the
access rights, killing processes, making changes to DNS, and how your images and
underlying operating system can be made vulnerable. You will observe that as the
root user, an attacker would also be able to use tools such as nmap to scan the
network for open ports and network targets.

Privileged and Root User Access in Containers | 435

You will also correct these issues, therefore limiting what an attacker can do on the
running container:

1. Create a new Dockerfile named Dockerfile_original with your favorite
text editor and enter the following code into the file. All of the commands are
currently being run as the root user in this step:

1 FROM alpine

2

3 RUN apk update

4 RUN apk add wget curl nmap libcap

5

6 RUN echo "#!/sh\n" > test_memory.sh

7 RUN echo "cat /proc/meminfo; mpstat; pmap -x 1"
 >> test_memory.sh
8 RUN chmod 755 test_memory.sh

9

10 CMD ["sh", "test_memory.sh"]

This will create a basic application that will run a small script called
test_memory.sh, which uses the meminfo, mpstat, and pmap
commands to provide details on the container's memory status. You'll also
notice that on line 4, we are installing some extra applications to view the
network processes with nmap and to allow us to view the user container
capabilities with the libcap library.

2. Build the security-app image and run the image in the same step:

docker build -t security-app . ; docker run –rm security-app

The output has been drastically reduced, and you should see the image build
and then the memory report run:

MemTotal: 2036900 kB

MemFree: 1243248 kB

MemAvailable: 1576432 kB

Buffers: 73240 kB

…

3. Use the whoami command to view the running user on the container:

docker run --rm security-app whoami

It should not be any surprise that the running user is the root user:

root

436 | Docker Security

4. Use the capsh –print command to see the processes that the user is able
to run on the container. As the root user, you should have a large number of
capabilities available:

docker run --rm -it security-app capsh –print

You'll notice that the user has access to changing the ownership of files
(cap_chown), killing processes (cap_kill), and making changes to DNS
(cap_net_bind_service), among other things. These are all high-level
processes that can cause a lot of issues in a running environment and should
not be available to the container:

Current: = cap_chown,cap_dac_override,cap_fowner,cap_fsetid,

cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,

cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,

cap_setfcap+eip

groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel),

11(floppy),20(dialout),26(tape),27(video)

5. As the root user, an attacker would also be able to use tools such as nmap,
which we installed earlier, to scan the network for open ports and network
targets. Run your container images again by passing the nmap command,
looking for the opened 443 port under localhost:

docker run --rm -it security-app sh -c 'nmap -sS -p 443 localhost'

The output of the command is as follows:

Starting Nmap 7.70 (https://nmap.org) at 2019-11-13 02:40 UTC

Nmap scan report for localhost (127.0.0.1)

Host is up (0.000062s latency).

Other addresses for localhost (not scanned): ::1

PORT STATE SERVICE

443/tcp closed https

Nmap done: 1 IP address (1 host up) scanned in 0.27 seconds

Note

The preceding nmap scan doesn't find any open networks, but it is an
elevated command that shouldn't be able to be run by any users. We will
demonstrate later in this exercise that a non-root user is not able to run
this command.

Privileged and Root User Access in Containers | 437

6. As previously mentioned, being the root user on your container is the same
as being the root user on the underlying host. This can be demonstrated by
mounting a file owned by the root onto the container. To do that, create a
secret file. Echo your secret password into the /tmp/secret.txt file:

echo "secret password" > /tmp/secret.txt

Change the ownership to make sure the root user owns it:

sudo chown root /tmp/secret.txt

7. Use the docker run command to mount the file on the running container and
check whether you are able to access it and view the data in the file. The user on
the container can access the file that the root user on the host system should
only have access to:

docker run -v /tmp/secret.txt:/tmp/secret.txt security-app sh -c 'cat
/tmp/secret.txt'

The output from the docker run command will be the words
"secret password"

secret password

However, the Docker container should not be able to expose this information.

8. To start making some simple changes to your container to stop this access
from happening again, open the Dockerfile again and add the highlighted code
(lines 6, 7, 8, and 9), keeping the previous lines of code as they are. These lines of
code will create a group, 10001, and a user, 20002. The user will be set up with
a home directory, which you will then move into and start working with the USER
directive in line 9:

1 FROM alpine

2

3 RUN apk update

4 RUN apk add wget curl nmap libcap

5

6 RUN addgroup --gid 10001 20002 && adduser 20002 -h
 /home/security_apps --disabled-password --uid 20002
 --ingroup 20002

7 WORKDIR /home/security_apps

8

9 USER 20002

438 | Docker Security

9. Make a change to line 15 to make sure the script is being run from the new
security_app directory, and then save the Dockerfile:

11 RUN echo "#!/sh\n" > test_memory.sh

12 RUN echo "cat /proc/meminfo; mpstat; pmap -x 1" >>
 test_memory.sh
13 RUN chmod 755 test_memory.sh

14

15 CMD ["sh", "/home/security_apps/test_memory.sh"]

The complete Dockerfile should look like the following:

FROM alpine

RUN apk update

RUN apk add wget curl nmap libcap

RUN addgroup --gid 10001 20002 && adduser 20002 -h
 /home/security_apps --disabled-password --uid 20002
 --ingroup 20002

WORKDIR /home/security_apps

USER 20002

RUN echo "#!/sh\n" > test_memory.sh

RUN echo "cat /proc/meminfo; mpstat; pmap -x 1" >>
 test_memory.sh
RUN chmod 755 test_memory.sh

CMD ["sh", "/home/security_apps/test_memory.sh"]

10. Build the image again and run it with the whoami command:

docker build -t security-app . ; docker run --rm security-app whoami

You will see a new user as 20002 and not the root user:

20002

11. Previously, you were able to run nmap from the container. Verify whether
the new user is stopped from accessing the nmap command now to scan for
network vulnerabilities:

docker run --rm -it security-app sh -c 'nmap -sS -p 443 localhost'

Privileged and Root User Access in Containers | 439

By running your image again with the nmap -sS command, you should now be
stopped from running the command since the 20002 user that the container is
running as does not have sufficient privileges to run the command:

You requested a scan type which requires root privileges.

QUITTING!

12. You have now drastically limited what can be done with the running container,
but are files that are owned by the host root user still accessible by the
security-app running container? Mount the file again and see whether
you can output the information on the file:

docker run -v /tmp/secret.txt:/tmp/secret.txt security-app sh -c 'cat
/tmp/secret.txt'

You should see Permission denied in your results, ensuring the container
no longer has access to the secret.txt file:

cat: can't open '/tmp/secret.txt': Permission denied

As we've been able to demonstrate in this exercise, removing your running
containers' access to the root user is a good first step in reducing what an attacker
can achieve if they manage to gain access to your running images. The next section
will take a quick look at the privileges and capabilities of running containers and how
they can be manipulated with docker run commands.

Runtime Privileges and Linux Capabilities

When running your containers, Docker provides a flag that overrides all the security
and user options. This is done by running your container with the ––privileged
option. Though you have seen what the user can achieve when the container is run
as the root user, we are running the container in an unprivileged state. Although the
––privileged option is provided, it should be used sparingly, and we should be
cautious if anyone is requesting to run your containers in this mode. There are some
specific circumstances—for example, if you needed to run Docker on Raspberry Pi
and needed to access the underlying architecture—in which you may want to add
capabilities to your user.

If you need to provide extra privileges to your container to run specific commands
and functions, Docker provides an easier way to do this, using the ––cap–add and
––cap–drop options. This means that instead of providing complete control with
the ––privileged option, you can use ––cap–add and ––cap–drop to limit
what can be achieved by the user.

440 | Docker Security

Both ––cap–add and ––cap–drop can be used simultaneously when running your
containers. For example, you may want to include ––cap–add=all and ––cap–
drop=chown.

Here's a short list of some of the capabilities available to both ––cap–add and
––cap–drop:

• setcap: Modify the process capabilities of your running system.

• mknod: Create special files on your running system using the mknod command.

• chown: Perform file ownership changes to a file's UID and GID values.

• kill: Bypass permissions for sending signals to stop processes.

• setgid/setuid: Change the process' UID and GID values.

• net_bind_service: Bind a socket to a domain port.

• sys_chroot: Change the root directory on the running system.

• setfcap: Set the capabilities of a file.

• sys_module: Load and unload kernel modules on the running system.

• sys_admin: Perform a range of administration operations.

• sys_time: Make changes and set the time to the system clock.

• net_admin: Perform a range of administration operations related
to networking.

• sys_boot: Reboot the system and load a new kernel on the system for
later execution.

To add extra capabilities, you simply need to include the capability, and if you are
adding or dropping the capabilities while performing your docker run command,
your command will be as follows:

docker run –-cap-add|--cap-drop <capability_name> <image_name>

Signing and Verifying Docker Images | 441

As you can see, the syntax uses ––cap–add to add a capability and ––cap–drop to
remove the capability.

Note

If you're interested in seeing the entire list of capabilities that you can add
and drop when running your containers, go to http://man7.org/linux/man-
pages/man7/capabilities.7.html.

We've taken a brief look at using privileges and capabilities. Later in this chapter, we
will get a chance to use the functionality when testing our security profiles. For now,
though, we are going to look at using digital signatures with our Docker images to
verify their authenticity.

Signing and Verifying Docker Images
Just as we can make sure that the applications we purchase and install on our
systems are from a trusted source, we can do the same with the Docker images we
use. Running an untrusted Docker image could become a huge risk and could cause
major issues in our system. This is why we should look to have specific proof of the
images we are using. An untrusted source could potentially add code to the running
image, which could expose your entire network to the attacker.

Fortunately, Docker has a way of digitally signing our images to ensure we're using
images from a verified vendor or provider. This will also ensure the image has not
been changed or corrupted since it was originally signed, ensuring some authenticity.
It shouldn't be the only way we trust our images. As you'll see later in this chapter,
once we have our image, we can then scan it to ensure we avoid installing an image
that may have security issues.

The way that Docker allows us to sign and verify images is by using Docker Content
Trust (DCT). DCT is provided as part of Docker Hub and allows you to use digital
signatures for all the data sent and received from your registries. The DCT is
associated with the image tag, so not all images need to be tagged, and as a result,
not all images will have a DCT associated with it. This will mean that anyone wanting
to publish an image can do so but is able to ensure the image is working correctly
before needing to sign it.

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

442 | Docker Security

DCT doesn't only stop with Docker Hub. If a user has enabled DCT on their
environment, they will only be able to pull, run, or build with images that are trusted,
as DCT ensures that a user will only be able to see signed images. DCT trust is
managed through the use of signing keys, which are created the first time you run
DCT. When a key set is created, it consists of three different types of keys:

• Offline keys: These are used to create tagging keys. They should be stored
carefully and are owned by the user creating the images. If these keys are lost or
compromised, it could cause a lot of issues for the publisher.

• Repository or tagging keys: These reside with the publisher and are associated
with the image repository. They are used when you are signing your trusted
images ready to be pushed to your repository.

• Server managed keys: These are also associated with the image repository and
are stored on the server.

Note

Make sure you keep your offline keys safe because if you lose your offline
key, it will cause a lot of problems as Docker Support will most likely need to
be involved to reset the repository state. It also requires manual intervention
from all consumers that have used signed images from the repository.

Just as we've seen in previous sections, Docker provides easy-to-use command-line
options to generate, load, and work with signing keys. If you have DCT enabled,
Docker will set up your keys and sign your images directly with them. If you'd like to
control things a little further, you can use the docker trust key generate
command to create your offline keys with the name you assign to them:

docker trust key generate <name>

Your keys will be stored in your home directory in the .docker/trust directory.
If you have a set of offline keys, you can use the docker trust key load
command with the keys and the name you created them with, as follows:

docker trust key load <pem_key_file> –name <name>

Once you have your key, or you load in your original keys, you can then start to sign
your images. You need to include the full registry name and the tag of the image
using the docker trust sign command:

docker trust sign <registry>/<repo>:<tag>

Signing and Verifying Docker Images | 443

Once you sign your images, or you have an image that you need to verify is signed,
you can use the docker trust inspect command to show the details of the
signing keys and the issuer:

docker trust inspect –pretty <registry>/<repo>:<tag>

Using DCT as part of your development process prevents users from using container
images from untrusted and unknown sources. We'll use the security app we've been
working on in the previous sections of this chapter to create and implement a DCT
signing key.

Exercise 11.02: Signing Docker Images and Utilizing DCT on Your System

In the following exercise, you will learn about using DCT and implementing
processes using signed images in your environment. You will begin by exporting the
DOCKER_CONTENT_TRUST environment variable to enable DCT on your system.
Moving on, you will learn how to sign the images and verify signed images:

1. Export the DOCKER_CONTENT_TRUST environment variable to your system to
enable DCT on your system. Also, make sure the variable is set to 1:

export DOCKER_CONTENT_TRUST=1

2. Now that DCT is enabled, you won't be able to pull or work with any Docker
images that do not have a signed key associated with them. We can test this
by pulling the security-app image from our Docker Hub repository:

docker pull vincesestodocker/security-app

As you can see from the error message, we weren't able to pull our latest image,
and that's good news because we hadn't pushed it originally using a signing key:

Using default tag: latest

Error: remote trust data does not exist for docker.io/
vincesestodocker/security-app: notary.docker.io does
not have trust data for docker.io/vincesestodocker/security-app

3. Push the image to your image repository:

docker push vincesestodocker/security-app

You should not be able to do this as there are no signing keys associated with
this local image either:

The push refers to repository

[docker.io/vincesestodocker/security-app]

No tag specified, skipping trust metadata push

444 | Docker Security

4. Tag your new image ready to be pushed to Docker Hub as trust1:

docker tag security-app:latest vincesestodocker/security-app:trust1

5. As mentioned earlier, a signing key will be associated automatically with the
image when we push it to our repository for the first time. Make sure to tag your
image, as this will stop DCT from recognizing that it needs to be signed. Push the
image to the repository again:

docker push vincesestodocker/security-app:trust1

The following lines will be printed after running the preceding command:

The push refers to repository

[docker.io/vincesestodocker/security-app]

eff6491f0d45: Layer already exists

307b7a157b2e: Layer already exists

03901b4a2ea8: Layer already exists

ver2: digest: sha256:7fab55c47c91d7e56f093314ff463b7f97968e

e0f80f5ee927430fc39f525f66 size: 949

Signing and pushing trust metadata

You are about to create a new root signing key passphrase.

This passphrase will be used to protect the most sensitive key

in your signing system. Please choose a long, complex passphrase

and be careful to keep the password and the key file itself

secure and backed up. It is highly recommended that you use a

password manager to generate the passphrase and keep it safe.

There will be no way to recover this key. You can find the key

in your config directory.

Enter passphrase for new root key with ID 66347fd:

Repeat passphrase for new root key with ID 66347fd:

Enter passphrase for new repository key with ID cf2042d:

Repeat passphrase for new repository key with ID cf2042d:

Finished initializing "docker.io/vincesestodocker/security-app"

Successfully signed docker.io/vincesestodocker/security-app:

trust1

The following output shows that as the image is being pushed to the registry, a
new signing key is created as part of the process, requesting the user to create a
new root key and repository key in the process.

Signing and Verifying Docker Images | 445

6. It's a lot more secure now. What about running the image on your system,
though? With DCT now enabled on our system, will there be any issues
running on our container image? Use the docker run command to run
the security-app image on your system:

docker run -it vincesestodocker/security-app sh

The command should return the following output:

docker: No valid trust data for latest.

See 'docker run --help'.

In the preceding output, we have deliberately not used the trust1 tag. As in
earlier chapters, Docker will try to run the image with the latest tag. As this
also doesn't have a signing key associated with it, you are not able to run it.

7. You can sign the image directly from your working system, and you can use the
keys created previously to sign subsequent tagged images. Tag your image with
the trust2 tag:

docker tag vincesestodocker/security-app:trust1 vincesestodocker/
security-app:trust2

8. Sign the newly tagged image with the signing key created earlier in this exercise.
Use the docker trust sign command with the image name and tag to sign
the image and layers of the image:

docker trust sign vincesestodocker/security-app:trust2

The command will automatically push the signed image to our Docker Hub
repository as well:

Signing and pushing trust data for local image

vincesestodocker/security-app:trust2, may overwrite remote

trust data

The push refers to repository

[docker.io/vincesestodocker/security-app]

015825f3a965: Layer already exists

2c32d3f8446b: Layer already exists

1bbb374ec935: Layer already exists

bcc0069f86e9: Layer already exists

e239574b2855: Layer already exists

f5e66f43d583: Layer already exists

77cae8ab23bf: Layer already exists

trust2: digest: sha256:a61f528324d8b63643f94465511132a38ff945083c

446 | Docker Security

3a2302fa5a9774ea366c49 size: 1779

Signing and pushing trust metadataEnter passphrase for

vincesestodocker key with ID f4b834e:

Successfully signed docker.io/vincesestodocker/security-app:

trust2

9. View the signing information using the docker trust command with the
inspect option:

docker trust inspect --pretty vincesestodocker/security-app:trust2

The output will give you details of the signer, the tagged image that is signed,
and other information on the image:

Signatures for vincesestodocker/security-app:trust2

SIGNED TAG DIGEST SIGNERS

trust2 d848a63170f405ad3… vincesestodocker

List of signers and their keys for vincesestodocker/security-app:

trust2

SIGNER KEYS

vincesestodocker f4b834e54c71

Administrative keys for vincesestodocker/security-app:trust2

 Repository Key:

 26866c7eba348164f7c9c4f4e53f04d7072fefa9b52d254c573e8b082

 f77c966

 Root Key:

 69bef52a24226ad6f5505fd3159f778d6761ac9ad37483f6bc88b1cb4

 7dda334

10. Use the docker trust revoke command to remove the signature of the
associated key:

docker trust revoke vincesestodocker/security-app:trust2

Enter passphrase for vincesestodocker key with ID f4b834e:

Successfully deleted signature for vincesestodocker/security-app:

trust2

Note

If you're using your own Docker registry, you may need to set up a Notary
server to allow DCT to work with your Docker registry. Products such as
Amazon's Elastic Container Registry and Docker Trusted Registry have
Notary built into their products.

Docker Image Security Scans | 447

As you can see, signing and verifying your Docker images using DCT makes it easy to
control the images you are using as part of your applications. Using signed images
from trusted sources is only part of the equation. In the next section, we'll use
Anchore and Snyk to start scanning our images for vulnerabilities.

Docker Image Security Scans
Security scans play an important part in not only ensuring the uptime of your
applications but also making sure you are not running outdated, unpatched, or
vulnerable container images. Security scans should be performed on all images used
by your team and in your environment. It doesn't matter if you have created them
from scratch and you trust them; it's still an important step in reducing the potential
risk within your environment. This section of the chapter will go through two options
for scanning images that can easily be adopted by your development teams.

By implementing a security scan of our Docker images, we hope to achieve
the following:

• We need to keep a database of known and up-to-date vulnerabilities or use an
application that will keep this database on our behalf.

• We scan our Docker images against this database of vulnerabilities, not only
verifying that the underlying operating system is safe and patched but also that
the open-source applications used by the container and the languages used by
our software implementation are safe.

• Once the security scan is complete, we need to be provided with a full report of
what has been scanned on our image, as well as report and alert any issues that
may have been highlighted during the scan.

• Finally, a security scan can then provide remediation of any issues found and
alerted on by updating the base image used in the Dockerfile or supporting the
applications used.

There are a lot of products on the market that can perform security scans for you,
both paid and open source. We are limited with our space in this chapter, so we've
chosen two services that we found to be both easy to use and that provide good
functionality. The first is Anchore, which is an open-source container analysis tool that
we'll install onto our system and run as a local tool to test our images. We will then
look at Snyk, which is an online SaaS product. There is a free version of Snyk available,
which is the version we will be using in this chapter to demonstrate how it works. It
provides decent functionality without needing to pay a monthly fee.

448 | Docker Security

Scanning Images Locally Using Anchore Security Scan
Anchore Container Analysis is an open-source static analysis tool that allows you to
scan your Docker images and provide a pass or fail result against a policy defined by
the user. The Anchore Engine allows the user to pull an image and without running
it, analyze the image's content, and evaluate whether the image is suitable for use.
Anchore uses a PostgreSQL database to store details of known vulnerabilities. You
can then use the command-line interface to scan images against the database.
Anchore also makes it very easy to get started, as we will see in the following exercise,
as it provides an easy-to-use docker-compose file to automate installation and get
you started as quickly as possible.

Note

If you're interested in learning more about Anchore, there is a large body of
documentation and information at https://docs.anchore.com/current/.

In the upcoming exercise, once our environment is up and running, you will interface
with Anchore using its API. The anchore-cli command comes with a number
of easy-to-use commands to check the system status and start to assess the
vulnerability of our images.

Once our system is up and running, we can use the system status command to
provide a list of all our services and ensure they are up and running:

anchore-cli system status

One of the first things you'll need to do once your system is up and running is to
verify that the feeds list is up to date. This will ensure that your database has been
populated with vulnerability feeds. This is achieved with the following system
feeds list command:

anchore-cli system feeds list

By default, anchore-cli will use Docker Hub as your image registry. If your
image is residing on a different registry, you will need to add the registry with the
anchore-cli registry add command and specify the registry name, as well as
include a username and password that Anchore can use:

anchore-cli registry add <registry> <user> <password>

https://docs.anchore.com/current/

Scanning Images Locally Using Anchore Security Scan | 449

To add an image to Anchore, you can use the image add command-line option,
including the Docker Hub location and the image name:

anchore-cli image add <repository_name>/<image_name>

If you then wish to scan the image for vulnerabilities, you can do so using the image
vuln option, including the image name you scanned in originally. We could also use
the os option for operating system-specific vulnerabilities and non-os for language-
related vulnerabilities. In the following example, we have used all to include both
the os and non-os options:

anchore-cli image vuln <repository_name>/<image_name> all

Then, to view the completed evaluation of the image and be provided with a pass or
fail on whether the image is safe for use, you use the evaluate check option of
the anchore-cli command:

anchore-cli evaluate check <repository_name>/<image_name>

With all that in mind, Anchore does provide a supported and paid version with an
easy-to-use web interface, but as you'll see in the following exercise, there is not a
lot of hard work required to get the Anchore application running and scanning on
your system.

Note

The previous exercise used DCT as part of the creation and signing of
containers. In the following exercise, the Anchore image needed for the
exercise uses the latest tag, so if you are still running DCT, you will need
to stop it before proceeding with the next exercise:

export DOCKER_CONTENT_TRUST=0

450 | Docker Security

Exercise 11.03: Getting Started with Anchore Image Scanning

In the following exercise, you will install Anchore onto your local system using
docker-compose and start to analyze the images you have been using as part of
this chapter:

1. Create and tag a new version of the security-app image that you have been
working on. Tag the image with the scan1 tag:

docker tag security-app:latest vincesestodocker/security-app:scan1 ;

Push it to the Docker Hub repository:

docker push vincesestodocker/security-app:scan1

2. Create a new directory called aevolume and move into that directory using the
following command. This is where we will perform our work:

mkdir aevolume; cd aevolume

3. Anchore provides you with everything you need to get started in an
easy-to-use docker-compose.yaml file to set up and run the Anchore
API. Pull the latest anchore-engine Docker Compose file using the
following command:

curl -O https://docs.anchore.com/current/docs/engine/quickstart/
docker-compose.yaml

4. Look through the docker-compose.yml file. Although it contains over 130
lines, there is nothing too complex in the file. The Compose file is setting up
the functionality for Anchore, including the PostgreSQL database, catalog, and
analyzer to query against; a simple queue and policy engine; and an API to run
commands and queries.

5. Pull the images needed by the docker-compose.yml file using the
docker-compose pull command, making sure you are in the same
directory as the Compose file:

docker-compose pull

The command will start pulling the database, catalog, analyzer, simple queue,
policy engine, and API:

Pulling anchore-db ... done

Pulling engine-catalog ... done

Pulling engine-analyzer ... done

Pulling engine-policy-engine ... done

Scanning Images Locally Using Anchore Security Scan | 451

Pulling engine-simpleq ... done

Pulling engine-api ... done

6. If all our images are now available, as seen in the preceding output,
there is nothing left to do other than running the Compose file using the
docker-compose up command. Use the -d option to have all of the
containers running in the background as daemons:

docker-compose up -d

The command should output the following:

Creating network "aevolume_default" with the default driver

Creating volume "aevolume_anchore-db-volume" with default driver

Creating volume "aevolume_anchore-scratch" with default driver

Creating aevolume_anchore-db_1 ... done

Creating aevolume_engine-catalog_1 ... done

Creating aevolume_engine-analyzer_1 ... done

Creating aevolume_engine-simpleq_1 ... done

Creating aevolume_engine-api_1 ... done

Creating aevolume_engine-policy-engine_1 ... done

7. Run the docker ps command to have the running containers on your
system that make up Anchore ready to start scanning our images. The IMAGE,
COMMAND, and CREATED columns are removed from the table for convenience:

docker-compose ps

All values in the output should show healthy for each of the Anchore
Engine containers:

CONTAINER ID STATUS PORTS

 NAMES

d48658f6aa77 (healthy) 8228/tcp

 aevolume_engine-analyzer_1

e4aec4e0b463 (healthy) 8228/tcp

 aevolume_engine-policy-engine_1

afb59721d890 (healthy) 8228->8228/tcp

 aevolume_engine-api_1

d61ff12e2376 (healthy) 8228/tcp

 aevolume_engine-simpleq_1

f5c29716aa40 (healthy) 8228/tcp

 aevolume_engine-catalog_1

452 | Docker Security

398fef820252 (healthy) 5432/tcp

 aevolume_anchore-db_1

8. Now that the environment is deployed onto your system, use the
docker-compose exec command to run the anchor-cli commands
mentioned earlier. Use the pip3 command to install the anchorecli
package onto your running system. The --version command has been
used to verify whether anchore-cli has installed successfully:

pip3 install anchorecli; anchore-cli --version

The command returns the version of anchor-cli:

anchore-cli, version 0.5.0

Note

The version may vary depending on your system.

9. You could now run your anchore-cli command, but you would need to
specify the URL (using --url) to your API and the username and password
(using --u and --p). Instead, export the values to your environment
with the following commands so that you don't need to use the extra
command-line options:

export ANCHORE_CLI_URL=http://localhost:8228/v1

export ANCHORE_CLI_USER=admin

export ANCHORE_CLI_PASS=foobar

Note

The preceding variables are the default values for the Compose file
provided by Anchore. If you decide to set up the environment running inside
your deployment environment, you will most likely change these to be
more secure.

10. With anchore-cli now installed and configured, use the anchore-cli
system status command to verify that the analyzer, queue, policy engine,
catalog, and API are all up and running:

anchore-cli system status

Scanning Images Locally Using Anchore Security Scan | 453

There may be instances where one or two of the services may be down,
which will mean you will most likely need to restart the container:

Service analyzer (anchore-quickstart, http://engine-analyzer:

8228): up

Service simplequeue (anchore-quickstart, http://engine-simpleq:

8228): up

Service policy_engine (anchore-quickstart, http://engine-policy-
engine:8228): up
Service catalog (anchore-quickstart, http://engine-catalog:

8228): up

Service apiext (anchore-quickstart, http://engine-api:8228):

up

Engine DB Version: 0.0.11

Engine Code Version: 0.5.1

Note

Engine DB Version and Engine Code Version may vary
depending on the system.

11. Use the anchore-cli system feeds list command to see all of the
vulnerabilities in your database:

anchore-cli system feeds list

The following output has been reduced as there is, as you can imagine, a large
number of vulnerabilities provided to the database:

Feed Group LastSync

 RecordCount

nvdv2 nvdv2:cves None

 0

vulnerabilities alpine:3. 2019-10-24T03:47:28.504381

 1485

vulnerabilities alpine:3.3 2019-10-24T03:47:36.658242

 457

vulnerabilities alpine:3.4 2019-10-24T03:47:51.594635

 681

vulnerabilities alpine:3.5 2019-10-24T03:48:03.442695

 875

vulnerabilities alpine:3.6 2019-10-24T03:48:19.384824

454 | Docker Security

 1051

vulnerabilities alpine:3.7 2019-10-24T03:48:36.626534

 1253

vulnerabilities alpine:3.8 None

 0

vulnerabilities alpine:3.9 None

 0

vulnerabilities amzn:2 None

 0

In the preceding output, you will notice that some of the vulnerability feeds are
showing None. This is because the database was only recently set up and has
not updated all of the vulnerabilities. Continue to display the feeds list as you
did in the previous step, and once all of the entries are showing a date in the
LastSync column, you will then be ready to start scanning images.

12. Once the feed has fully updated, add an image with the anchore-cli image
add command. Remember to use the full path, including the image repository
tags, as Anchore will use the image located on Docker Hub:

anchore-cli image add vincesestodocker/security-app:scan1

The command adds the image to the Anchore database, ready for it to
be scanned:

Image Digest: sha256:7fab55c47c91d7e56f093314ff463b7f97968ee0

f80f5ee927430

fc39f525f66

Parent Digest: sha256:7fab55c47c91d7e56f093314ff463b7f97968ee

0f80f5ee927430fc39f525f66

Analysis Status: not_analyzed

Image Type: docker

Analyzed At: None

Image ID: 8718859775e5d5057dd7a15d8236a1e983a9748b16443c99f8a

40a39a1e7e7e5

Dockerfile Mode: None

Distro: None

Distro Version: None

Size: None

Architecture: None

Layer Count: None

Full Tag: docker.io/vincesestodocker/security-app:scan1

Tag Detected At: 2019-10-24T03:51:18Z

Scanning Images Locally Using Anchore Security Scan | 455

When you add the image, you will notice that we have highlighted that the
output is showing not_analyzed. This will be queued for analysis and for
smaller images, which will be a quick process.

13. Monitor your image to see whether it has been analyzed using the
anchore-cli image list command:

anchore-cli image list

This will provide a list of all the images we have currently added and will give you
a status on whether they have been analyzed:

Full Tag Image Digest Analysis Status

security-app:scan1 sha256:a1bd1f6fec31… analyzed

14. Now that the image is added and analyzed, you can start to look through the
image and see what is included as part of the base image and what applications
are installed, including the version and license number. Use the image
content os command for anchore-cli. You can also use other content
types, including file for all the files on the image, npm for all the Node.js
modules, gem for the Ruby gems, java for the Java archives, and python for
the Python artifacts:

anchore-cli image content vincesestodocker/security-app:scan1 os

The command will return an output like the following:

Package Version License

alpine-baselayout 3.1.2 GPL-2.0-only

alpine-keys 2.1 MIT

apk-tools 2.10.4 GPL2

busybox 1.30.1 GPL-2.0

ca-certificates 20190108 MPL-2.0 GPL-2.0-or-later

ca-certificates-cacert 20190108 MPL-2.0 GPL-2.0-or-later

curl 7.66.0 MIT

libc-utils 0.7.1 BSD

libcrypto1.1 1.1.1c OpenSSL

libcurl 7.66.0 MIT

libssl1.1 1.1.1c OpenSSL

libtls-standalone 2.9.1 ISC

musl 1.1.22 MIT

musl-utils 1.1.22 MIT BSD GPL2+

nghttp2-libs 1.39.2 MIT

scanelf 1.2.3 GPL-2.0

456 | Docker Security

ssl_client 1.30.1 GPL-2.0

wget 1.20.3 GPL-3.0-or-later

zlib 1.2.11 zlib

15. Use the anchore-cli image vuln command and include the image you
want to scan to check for vulnerabilities. If there are no vulnerabilities present,
you should not see any output. We have used all in the following command
line to provide a report on both OS and non-OS vulnerabilities. We could also
have used os for operating system-specific vulnerabilities and non-os for
language-related vulnerabilities:

anchore-cli image vuln vincesestodocker/security-app:scan1 all

16. Perform an evaluation check of the image to provide us with a pass or fail
result for our image scan. Use the anchore-cli evaluate check
command to see whether the image is safe to use:

anchore-cli evaluate check vincesestodocker/security-app:scan1

From the output of the above command, it looks like our image

is safe with a pass result.Image Digest:
sha256:7fab55c47c91d7e56f093314ff463b7f97968ee0f80f5ee927430fc
39f525f66

Full Tag: docker.io/vincesestodocker/security-app:scan1

Status: pass

Last Eval: 2019-10-24T03:54:40Z

Policy ID: 2c53a13c-1765-11e8-82ef-23527761d060

All of the preceding exercises have gone a long way to establish whether or not our
image has any vulnerabilities and is safe to use. The following section will show you
an alternative to Anchore, which although it has a paid component, does still provide
a large amount of functionality by only accessing the free version.

Utilizing SaaS Security Scans with Snyk
Snyk is an online SaaS application that provides an easy-to-use interface that
allows you to scan your Docker images for vulnerabilities. Although Snyk is a paid
application, it does provide a free tier with a large amount of functionality to the
user. It provides unlimited tests to open source projects and allows GitHub and
GitLab integration, with remediation to open source projects and continuous
monitoring. You are limited to the amount of container vulnerability testing
that is allowed.

Utilizing SaaS Security Scans with Snyk | 457

The following exercise will run through using the web interface providing a guide
on how to register for an account and then add your container to be scanned for
security vulnerabilities.

Exercise 11.04: Setting up a Snyk Security Scan

In this exercise, you will use your web browser to work with Snyk to start
implementing security scans on our security-app image:

1. Create an account with Snyk if you have not used Snyk before or do not
have an account. You are not required to give any credit card details unless
you want to upgrade your account to the paid version, but in this exercise,
you will only need the free option. So, log in to Snyk or create an account at
https://app.snyk.io/signup.

2. You will be presented with a web page as in the following screenshot. Choose
the method by which you wish to create your account and follow the prompts
to continue:

Figure 11.1: Creating an account with Snyk

https://app.snyk.io/signup

458 | Docker Security

3. Once logged in, you will be presented with a page similar to the one in Figure
11.2, asking Where is the code you want to test?. Snyk not only
scans Docker images but also scans your code for vulnerabilities. You already
have your security-app image in Docker Hub, so click on the Docker Hub
button to start the process:

Figure 11.2: Starting security scans with Snyk

Note

If you are not presented with the preceding web page, you can go
to the following URL to add a new repository. Remember to change
<your_account_name> in the following URL to the account you
were assigned when you created your Snyk account:

https://app.snyk.io/org/<your_account_name>/add.

4. Authenticate with Docker Hub to allow it to view your available repositories.
When presented with the following page, enter your Docker Hub details and
click on Continue:

Utilizing SaaS Security Scans with Snyk | 459

Figure 11.3: Authenticating with Docker Hub in Snyk

5. Once authenticated, you will then be presented with a list of all your repositories
on Docker Hub, including the tags that are stored for each repository. In this
exercise, you only need to select one of your images and use the scan1 tag
created in this section. Select the security-app image with the scan1
tag. Once you are happy with your selection, click on the Add selected
repositories button in the top-right corner of the screen:

Figure 11.4: Selecting your Docker Hub repositories for Snyk to scan

460 | Docker Security

6. Snyk will run a scan over your image as soon as you have added it, and
depending on the size of the image, this should complete in a matter of seconds.
Click on the Projects tab at the top of the screen to see the results of your
scan, and click and select the repository and tag you would like to view:

Figure 11.5: Viewing your project reports in Snyk

After clicking on the repository name, you will be presented with a report of your
image scan, outlining details about the image, what base images are being used,
and whether there were any high, medium, or low issues found during the scan:

Figure 11.6: Image scan report page in Snyk

Using Container Security Profiles | 461

Snyk will scan your image daily and will alert you if it finds any issues. A weekly report
will be emailed to you unless there are any vulnerabilities found. If there are, you will
be notified as soon as possible.

With Snyk, you can scan your images for vulnerabilities with an easy-to-follow
interface. As an SaaS web-based application, it also means there is no need to
administer your applications and servers for security scanning. This is the end of the
section on security scanning our images, and we will now move on to using security
profiles with our images to help stop attackers from taking advantage of any images
that they may be able to access.

Using Container Security Profiles
Security profiles allow you to leverage existing security tools in Linux and implement
them across your Docker images. In the following sections, we will cover both
AppArmor and seccomp. These are the ways by which you can reduce the amount of
access that processes can gain when running on your Docker environments. They are
both simple to use and you'll find you will most likely be using them already in your
images. We will look at both of them separately but note that AppArmor and Security
Computing for Linux do overlap with their functionality. For the time being, all you
need to remember is that AppArmor stops applications from accessing files that they
shouldn't be accessing, while Security Computing for Linux will help stop any Linux
kernel vulnerabilities from being exploited.

By default, and especially if you have an up-to-date version of Docker running, you
may already have both running. You can verify this by running the docker info
command and looking for Security Options. The following is the output from a
system showing both features are available:

docker info

Security Options:

 apparmor

 seccomp

 Profile: default

The following sections will cover both AppArmor and Security Computing for Linux
and give you a clear view of how to implement and work with both on your system.

462 | Docker Security

Implementing AppArmor Security Profiles on Your Images

AppArmor stands for Application Armor and is a Linux Security module. The goal
of AppArmor is to protect the operating system from security threats, and it was
implemented as part of Docker version 1.13.0. It allows the user to load a security
profile to their running container and can be created to lock down the processes
available to the services on the container. The default included by Docker provides
moderate protection, while still allowing access to a large number of applications.

To help a user write a security profile, AppArmor provides a complain mode, which
allows almost any task to be run without it being restricted, but any breaches will be
logged to the audit log as an event. It also has an unconfined mode, which is the
same as complain mode but will not log any events.

Note

For more details on AppArmor, including documentation, use the following
link, which will take you to the AppArmor home page on GitLab:

https://gitlab.com/apparmor/apparmor/wikis/home.

AppArmor also comes with a set of commands to help users administer the
application, including compiling and loading policies into the kernel. The default
profile can be a little confusing for new users. The main rules you need to remember
are that a deny rule has precedence over allow and owner rules, which means that
allow rules will be overridden by a subsequent deny rule if they are both on the same
application. File operations are clearer with 'r' as read, 'w' as write, 'k' as lock,
'l' as link, and 'x' as execute.

We can start working with AppArmor as it provides some easy-to-use command-line
tools. The first one you will utilize is the aa-status command, which provides
the status of all the profiles running on your system. These are located in the
/etc/apparmor.d directory of your system:

aa-status

https://gitlab.com/apparmor/apparmor/wikis/home

Using Container Security Profiles | 463

If we have profiles installed on our system, we should at least have the
docker-default profile; it can be applied to our Docker containers with the
--security-opt option of the docker run command. In the following example,
you can see that we are setting the --security-opt value to the apparmor
profile, or you could use the unconfined profile, which means there is no profile
running with the image:

docker run --security-opt apparmor=<profile> <image_name>

To generate our profiles, we can use the aa-genprof command to gain further
insight into what needs to be set up as the profile. AppArmor will scan through the
logs when you perform some sample commands to then create a profile for you on
your system and place it in the default profiles directory:

aa-genprof <application>

Once you're happy with your profiles, they need to be loaded onto your system
before you can start to use them with your images. You use the apparmor_parser
command with the -r (replace, if already set up) and -W (write to cache) options. The
profiles can then be used with your running containers:

apparmor_parser -r -W <path_to_profile>

Lastly, if you wish to then remove a profile from AppArmor, you can use the
apparmor_parser command with the -R option to do so:

apparmor_parser -R <path_to_profile>

AppArmor seems complicated, but hopefully, with the following exercises, you should
become comfortable with the application and gain extra confidence in generating
your custom profiles.

464 | Docker Security

Exercise 11.05: Getting Started with AppArmor Security Profiles

The following exercise will introduce you to AppAmor security profiles and help you
implement new rules in your running Docker containers:

1. If you're running Docker Engine version 19 or greater, AppArmor should already
be set up as part of the application. Run the docker info command to verify
that it is running:

docker info

…

Security Options:

 apparmor

…

2. Previously in this chapter, we changed the user the container was running as
by creating the user 20002. We will stop this for the time being to demonstrate
how AppArmor works in this situation. Open the Dockerfile with your text
editor and this time, comment line 9 out as we have in the code below:

 8

 9 #USER 20002

3. Build the Dockerfile again and verify the user the image is once running as
the root user again:

docker build -t security-app . ; docker run --rm security-app whoami

The above commands will build Dockerfile and then return the output like
the following:

root

4. Use the AppArmor status command by running aa-status in the
command line:

aa-status

Note

If you are refused to run the aa-status command, use sudo.

Using Container Security Profiles | 465

This will show a similar output to the following and will provide the profiles
loaded and the types of profiles loaded. You'll notice that the output includes
all the AppArmor profiles running on the Linux system:

apparmor module is loaded.

15 profiles are loaded.

15 profiles are in enforce mode.

 /home/vinces/DockerWork/example.sh

 /sbin/dhclient

 /usr/bin/lxc-start

 /usr/lib/NetworkManager/nm-dhcp-client.action

 /usr/lib/NetworkManager/nm-dhcp-helper

 /usr/lib/connman/scripts/dhclient-script

 /usr/lib/lxd/lxd-bridge-proxy

 /usr/lib/snapd/snap-confine

 /usr/lib/snapd/snap-confine//mount-namespace-capture-helper

 /usr/sbin/tcpdump

 docker-default

 lxc-container-default

 lxc-container-default-cgns

 lxc-container-default-with-mounting

 lxc-container-default-with-nesting

0 profiles are in complain mode.

1 processes have profiles defined.

1 processes are in enforce mode.

 /sbin/dhclient (920)

0 processes are in complain mode.

0 processes are unconfined but have a profile defined.

5. Run the security-app container in the background to help us test AppArmor:

docker run -dit security-app sh

6. As we didn't specify a profile to use, AppArmor uses the docker-default
profile. Verify this by running aa-status again:

aa-status

You will see, toward the bottom of the output, that it now shows that two
processes are in enforce mode, one showing docker-default:

apparmor module is loaded.

…

2 processes are in enforce mode.

466 | Docker Security

 /sbin/dhclient (920)

 docker-default (9768)

0 processes are in complain mode.

0 processes are unconfined but have a profile defined.

7. Remove the current containers we have running so that you don't get confused
later in this exercise:

docker kill $(docker ps -a -q)

8. Start your container without using an AppArmor profile using the
-–security-opt Docker option, specifying apparmor=unconfined.
Also, use the –-cap-add SYS_ADMIN capability to make sure you have
full access to the running container:

docker run -dit --security-opt apparmor=unconfined --cap-add SYS_ADMIN
security-app sh

9. Access the container and see what type of commands you can run. Use the
docker exec command with CONTAINER ID to access the container, but
please note that your CONTAINER ID value will be different from the following:

docker exec -it db04693ddf1f sh

10. Test out the permissions you have by creating two directories and mounting
them as a bind mount with the following command:

mkdir 1; mkdir 2; mount --bind 1 2

ls -l

Being able to mount directories on the container is an elevated privilege, so if
you are able to do this, it will be clear that there is no profile stopping us, and
we have access to mount the filesystem like this:

total 8

drwxr-xr-x 2 root root 4096 Nov 4 04:08 1

drwxr-xr-x 2 root root 4096 Nov 4 04:08 2

11. Exit the container using the docker kill command. You should see whether
the default AppArmor profile will restrict access to these commands:

docker kill $(docker ps -a -q)

12. Create a new instance of the security-app image. In this instance, use the
–-cap-add SYS_ADMIN capability, as well, to allow the default AppArmor
profile to be loaded:

docker run -dit --cap-add SYS_ADMIN security-app sh

Using Container Security Profiles | 467

The command will return the random hash provided to the user when a new
container is created.

13. Test the changes by accessing the new running container using exec command,
and see whether you can perform a bind mount, as in the earlier step:

docker exec -it <new_container_ID> sh

mkdir 1; mkdir 2; mount --bind 1 2

You should hopefully see Permission denied:

mount: mounting 1 on 2 failed: Permission denied

14. Exit the container again. Delete the original container using the docker
kill command:

docker kill $(docker ps -a -q)

In the next part of this exercise, you will look to see whether you can implement
our custom profile for our Docker container.

15. Use AppArmor tools to gather information about the resource needed to be
tracked. Use the aa-genprof command to track details of the nmap command:

aa-genprof nmap

Note

If you don't have aa-genprof command installed, install it with the
following command and then again run the aa-genprof nmap
command:

sudo apt install apparmor - utils

We have reduced the output of the command, but if it's successful, you should
see an output showing it is profiling the /usr/bin/nmap command:

…

Profiling: /usr/bin/nmap

[(S)can system log for AppArmor events] / (F)inish

468 | Docker Security

Note

If nmap is not installed in your system, run the following commands:

sudo apt-get update

sudo apt-get install nmap

16. Run the nmap command in a separate terminal window to provide
aa-genprof with the details of the application. Use the -u root option as
part of the docker run command to run the security-app container as
the root user so that it will be able to run the nmap command:

docker run -it -u root security-app sh -c 'nmap -sS -p 443 localhost'

17. Move back to the terminal you have been running the aa-genprof command
from. Press S to scan the system logs for events. Once the scan finishes, press F
to finish the generation:

Reading log entries from /var/log/syslog.

Updating AppArmor profiles in /etc/apparmor.d.

All profiles are placed in the /etc/apparmor.d/ directory. If everything has
worked correctly, you should now see a file with a similar output to the following
in the /etc/apparmor.d/usr.bin.nmap file:

1 # Last Modified: Mon Nov 18 01:03:31 2019

2 #include <tunables/global>

3

4 /usr/bin/nmap {

5 #include <abstractions/base>

6

7 /usr/bin/nmap mr,

8

9 }

18. Use the apparmor_parser command to load the new file onto the system.
Use the -r option to replace the profile if it already exists and the -W option to
write it to the cache:

apparmor_parser -r -W /etc/apparmor.d/usr.bin.nmap

Using Container Security Profiles | 469

19. Run the aa-status command to verify that the profile is now available and to
see whether there is a new profile that is specifying nmap:

aa-status | grep nmap

Note that the profile is listed as the same name as the application, /usr/bin/
nmap, which is what you will need to use when running it with our container:

/usr/bin/nmap

20. Now, test your changes. Run the container with the -u root user. Also, use the
–-security-opt apparmor=/usr/bin/nmap option to run the container
with the newly created profile:

docker run -it -u root --security-opt apparmor=/usr/bin/nmap
security-app sh -c 'nmap -sS -p 443 localhost'

You should also see a result of Permission denied to show that the
AppArmor profile we have created is restricting the usage as we would hope:

sh: nmap: Permission denied

In this exercise, we demonstrated how you can start to work with AppArmor on your
system and also showed you how you can create your profiles. In the next section,
we will move on to a similar application, seccomp for Linux.

seccomp for Linux Containers

seccomp for Linux was added to the Linux kernel from version 3.17, and it provides
a way to restrict the system calls that Linux processes can issue. This feature can also
be used within our running Docker images to help reduce the processes available
to running containers, ensuring that if a container is ever accessed by an attacker or
infected with malicious code, the commands and processes available to the attacker
will be limited.

seccomp uses profiles to establish a whitelist of system calls that can be performed,
with the default profile providing a long list of system calls that can be performed,
and also disables approximately 44 system calls from running on your Docker
containers. You've most likely been using the default seccomp profile as you have
been working through the chapters in this book.

470 | Docker Security

Docker will be using the seccomp configurations from your host system, which
can be located by searching for the /boot/config file and checking that the
CONFIG_SECCOMP option is set to y:

cat /boot/config-'uname -r' | grep CONFIG_SECCOMP=

When running our containers, if we ever need to run the container with no seccomp
profile, we can use the -–security-opt option, followed by specifying that the
seccomp profile is unconfirmed. The following example provides the syntax for this:

docker run --security-opt seccomp=unconfined <image_name>

We can also create our custom profiles. In these instances, we specify the custom
profile file location as the value of seccomp, as you can see here:

docker run --security-opt seccomp=new_default.json <image_name>

Exercise 11.06: Getting Started with seccomp

In this exercise, you will use seccomp profiles in your current environment. You will
also create a custom profile to stop your Docker image from performing the change
ownership command against files:

1. Check whether your running Linux system has seccomp enabled. This will then
allow you to ensure that it is running for Docker as well:

cat /boot/config-'uname -r' | grep CONFIG_SECCOMP=

If you search for CONFIG_SECCOMP in your boot config directory, it should have
a value of y:

CONFIG_SECCOMP=y

2. Use the docker info command to ensure that Docker is using a profile:

docker info

In most instances, you will note that it is running the default profile:

…

Security Options:

 seccomp

 Profile: default

…

Using Container Security Profiles | 471

We have reduced the output of the docker info command, but if you look for
the Security Options heading, you should see seccomp on your system.
You would need to change the value for CONFIG_SECCOMP to n if you ever
wished to turn this off.

3. Run security-app to see whether it has also been running with a seccomp
profile. Also, search for the word Seccomp in the /proc/1/status file:

docker run -it security-app grep Seccomp /proc/1/status

A value of 2 will show that the container has been running with a Seccomp
profile all this time:

Seccomp: 2

4. There may be some situations where you want to run a container without
a seccomp profile. You may need to debug a container or the application
running on it. To run the container without using any seccomp profile, use
the –-security-opt option of the docker run command and specify that
seccomp will be unconfined. Do this now with your security-app container
to see the result:

docker run -it --security-opt seccomp=unconfined security-app grep
Seccomp /proc/1/status

A value of 0 will show that we have successfully switched off Seccomp:

Seccomp: 0

5. Creating custom profiles is also not very difficult, but it may require some
additional troubleshooting to fully understand the syntax. First, test the
security-app container to see whether we can use the chown command in
the command line. Your custom profile will then look to stop this command from
being available:

docker run -it security-app sh

6. The current seccomp profile running as the default should allow us to run the
chown command, so while you have access to the running container, test to see
whether you can create a new file and change the ownership using the chown
command. Run the long listing of the directory at the end to verify that the
change has taken place:

/# touch test.txt

/# chown 1001 test.txt

/# ls -l test.txt

472 | Docker Security

The commands should provide an output like the following:

-rw-r--r-- 1 1001 users 0 Oct 22 02:44 test.txt

7. Create your custom profile by modifying the default profile. Use the wget
command to download the custom profile from this book's official GitHub
account onto your system. Use the following command to rename the
downloaded custom profile new_default.json:

wget https://raw.githubusercontent.com/docker/docker/v1.12.3/profiles/
seccomp/default.json -O new_default.json

8. Open the new_default.json file with your text editor and, although there
will be a large list of configurations, search for the specific configurations that
control chown. At the time of writing, this was located on line 59 of the default
seccomp profile:

59 {

60 "name": "chown",

61 "action": "SCMP_ACT_ALLOW",

62 "args": []

63 },

The SCMP_ACT_ALLOW action allows the command to be run, but if you remove
lines 59 to 63 from the new_default.json file, this should now stop our
profile from allowing this command to be run. Delete the lines and save the file
ready for us to use.

9. As in step 4 of this exercise, use the –-security-opt option and specify the
image to now run using our edited new_default.json file:

docker run -it --security-opt seccomp=new_default.json security-app
sh

10. Perform the same test as in step 6 of this exercise, and if our changes
have worked, the seccomp profile should now stop us from running the
chown command:

/# touch test.txt

/# chown 1001 test.txt

chown: test.txt: Operation not permitted

Using Container Security Profiles | 473

With only a minimal amount of work, we've managed to create a policy to stop
malicious code or an attacker from changing the ownership of files in our container.
Although this is a very basic example, it gives you an idea of how you can start to
configure seccomp profiles to fine-tune them specifically for your needs.

Activity 11.01: Setting up a seccomp Profile for the Panoramic Trekking App

The Panoramic Trekking app is coming along nicely, but this chapter has shown
that you need to make sure that the actions a user can make on the container are
limited. If there is a way in which the container can be accessed by an attacker, you
need to set up some safeguard against that possible attacker. In this activity, you
will create a seccomp profile that you can use with the services in the app that will
stop a user from being able to make new directories, kill processes running on the
container, and lastly, find out more details about the running container by running
the uname command.

The steps required to complete this activity are as follows:

1. Obtain a copy of the default seccomp profile.

2. Locate the specific controls on the profile that will disable the mkdir, kill,
and uname commands.

3. Run the services of the Panoramic Trekking app and ensure that the new profile
is applied to the containers.

4. Access the container and verify that you are no longer able to perform the
mkdir, kill, and uname commands that have been blocked in the seccomp
profile. For example, if we perform the mkdir command on our new image with
the new profile added, we should see a similar output to the following:

$ mkdir test

mkdir: can't create directory 'test': Operation not permitted

Note

The solution for this activity can be found via this link.

474 | Docker Security

Activity 11.02: Scanning Your Panoramic Trekking App Images for

Vulnerabilities

We have been using base images for the Panoramic Trekking app that were provided
by other users or developers. In this activity, you will need to scan the images for
vulnerabilities and see whether they are safe for use.

The steps you'll need to take to complete this activity are as follows:

1. Decide on a service to use to scan your images.

2. Load your images into the service ready for scanning.

3. Scan the images and see whether any vulnerabilities are present on the images.

4. Verify whether the image is safe for use. You should be able to perform
an evaluation check in Anchore and see a pass status similar to the
following output:

Image Digest: sha256:57d8817bac132c2fded9127673dd5bc7c3a976546

36ce35d8f7a05cad37d37b7

Full Tag: docker.io/dockerrepo/postgres-app:sample_tag

Status: pass

Last Eval: 2019-11-23T06:15:32Z

Policy ID: 2c53a13c-1765-11e8-82ef-23527761d060

Note

The solution for this activity can be found via this link.

Summary | 475

Summary
This chapter has been all about security, limiting risk when we're working with Docker
and our container images, and how can we take our first steps with Docker security.
We looked at the potential risks of running container processes as the root user and
saw how we can make some minor changes to prevent these issues from arising if
attackers were to access the running container. We then looked closer at how we can
trust the images we are working with by using signing certificates for images and then
implementing security scans on our Docker images.

At the end of this chapter, we started working with security profiles. We used two of
the most common security profiles – AppArmor and seccomp – implementing both
on our Docker images and looking at the result of reducing specific access to the
containers. The next chapter will look at implementing best practices when running
and creating our Docker images.

Overview

In this chapter, you will learn some of the best practices to use when
working with Docker and your container images. This will enable you to
monitor and manage the resources used by your container and limit their
effect on your host system. You will analyze Docker's best practices and
learn why it's important to only be running one service per container,
ensuring that your containers are scalable and immutable and making
sure that your underlying applications start in a short amount of time.
This chapter will help you to enforce these best practices by linting
your Dockerfiles and docker-compose.yml files before your
applications and containers are running with the help of hadolint's
FROM:latest command and dcvalidator.

Best Practices

12

478 | Best Practices

Introduction
The previous chapter on security covered some best practices for Docker images and
services that have adhered to these best practices. We made sure that our images
and services were secure and that they limited what could be achieved if an attacker
was able to access the image. This chapter will not only take you through the best
practices in creating and running our Docker images, but will also focus on container
performance, configuring our services, and ensuring that the services running on
them are running as efficiently as possible.

We will start this chapter with an in-depth look at how you can both monitor and
configure the resources being used by your services, such as memory and CPU usage.
We will then take you through some important practices that you can implement in
your projects, looking at how you create your Docker images and the applications
that are running on them. Lastly, this chapter will give you some practical tools to use
to test your Dockerfiles and docker-compose.yml files, which will serve as a
way to ensure that you are following the mentioned practices.

This chapter shows how you can ensure that you optimize your services and
containers as much as possible to make sure that they run without issues from your
development environment through to production. The goal of this chapter is to make
sure that your services are starting up as quickly as possible and are processing as
efficiently as they can. The practices mentioned in this chapter also ensure reusability
(that is, they make sure that anyone who wants to reuse your images or code can do
so and can understand specifically what is happening at all times). To begin with, the
following section discusses how to work with container resources.

Working with Container Resources
One of the main benefits of moving to Docker from a traditional server environment
is that it enables us to heavily reduce the footprint of our services and applications,
even when moving to production. This doesn't mean we can simply run anything
on our container, expecting all the processes to simply complete their execution,
however. Just as we would need resources with a service running on a standalone
server, we need to ensure that the resources (such as CPU, memory, and disk input
and output) that are being used by our containers do not cause our production
environments or any other containers to crash. By monitoring the resources used
in our development system, we can help optimize processes and ensure that the
end-user is experiencing seamless operation when we move it into production.

Working with Container Resources | 479

By testing our services and monitoring resource usage, we will be able to understand
the resources required by the running applications and ensure that the hosts
running our Docker images have adequate resources to run our service. Lastly, as
you will see in the upcoming sections, we can also limit the amount of CPU and
memory resources the container can have access to. When developing our services
running on Docker, we need to be testing these services on our development
system to know exactly what will happen when they are moved into test and
production environments.

When we bring a number of different services (such as a database, web server, and
API gateway) together to create an application, some services are more important
than others, and in some circumstances, these services may need to have more
resources allocated to them. However, in Docker, the running container does not
have a real limit on the resources it can use by default.

In previous chapters, we learned about orchestration using Swarm and Kubernetes,
which helps in distributing resources across your system, but this part of the chapter
will teach you about some basic tools to test and monitor your resources with. We will
also look at the ways in which you can configure your containers to no longer use the
default resources available.

To help us in this part of the chapter, we are going to create a new image that will
only serve the purpose of demonstrating resource usage in our system. In the first
part of this section, we will create an image that will add an application called stress.
The main function of the stress application is to impose a heavy load on our system.
The image will allow us to view the resources being used on our host system and
then allow us to use different options when running the Docker image to limit the
resources being used.

Note

This section of the chapter will give you some brief guidelines on monitoring
the resources of our running Docker containers. This chapter will only cover
some simple concepts as we are going to be dedicating an entire chapter of
this book to providing in-depth details on monitoring your container metrics.

480 | Best Practices

To help us view the resources being consumed by our running containers, Docker
provides the stats command as a live stream of resources being consumed by our
running containers. If you wish to limit the data presented by the stream, especially
if you have a large number of containers running, you can specify to only provide
certain containers by specifying the name of the container or its ID:

docker stats <container_name|container_id>

The default output of the docker stats command will provide you with the name
and ID of the container, the percentage of host CPU and memory that the container
is using, the data that the container is sending and receiving, and the amount of data
both read and written from the host's storage:

NAME CONTAINER CPU %

docker-stress c8cf5ad9b6eb 400.43%

The following section will highlight how we can use the docker stats command to
monitor our resources. We will also provide format controls to the stats command
to provide only the information we need.

Managing Container CPU Resources
This section of the chapter will show you how to set limits on the amount of CPU
being used by the container, as a container running without limits can use up all the
available CPU resources on a host server. We will be looking at optimizing our running
Docker container, but the actual issue with a large amount of CPU being used usually
lies with the underlying infrastructure or the applications running on the container.

When we discuss CPU resources, we usually refer to a single physical computer chip.
These days, a CPU will most likely have more than one core, with more cores meaning
more processes. But this doesn't mean we have unlimited resources. When we
display the CPU percentage being used, unless you have a system that only has one
CPU with one core, you will most likely see more than 100% of the CPU being used.
For example, if you have four cores in the CPU of your system, and your container is
utilizing all of the CPU, you will see a value of 400%

We can modify the docker stats command running on our system to only provide
the CPU usage details by providing the --format option. This option allows us
to specify the output format we require, as we may only require one or two of the
metrics provided by the stats command. The following example configures the
output of the stats command to be displayed in a table format, only presenting
the container's name, its ID, and the percentage of CPU being used:

docker stats --format "table {{.Name}}\t{{.Container}}\t{{.CPUPerc}}"

Managing Container CPU Resources | 481

This command, if we have no Docker images running, will provide a table with the
following three columns:

NAME CONTAINER CPU %

To control the number of cores being used on the CPU by our running container, we
can use the --cpus option with our docker run command. The following syntax
shows us running the image, but limiting the number of cores the image will have
access to by using the --cpus option:

docker run --cpus 2 <docker-image>

A better option is not to set the number of cores a container can use, but instead how
much of the total it can share. Docker provides the --cpushares, or -c, option to
set a priority to how much of the processing power a container can use. By using this
option, it means we don't need to know how many cores the host machine has before
running the container. It also means that we can transfer the running container
to different host systems without needing to change the command the image is
run with.

By default, Docker will allocate 1,024 shares to every running container. If you set
the --cpushares value to 256, it would have a quarter of the processing shares of
other running containers:

docker run --cpushares 256 <docker-image>

Note

If no other containers are running on your system, even if you have set the
--cpushares value to 256, the container will then be allowed to use up
the remaining processing power.

Even though your application may be running fine, it's always good practice to see
how it will work when you reduce the amount of CPU it has available to it, as well as
seeing how much it will consume while it is running normally.

In the next exercise, we will use the stress application to monitor the resource
usage on the system.

482 | Best Practices

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

Exercise 12.01: Understanding CPU Resources on Your Docker Image

In this exercise, you will first create a new Docker image that will help you generate
some resources on your system. We will demonstrate how to use the stress
application installed on the image. The application will allow you to start monitoring
resource usage on your system, as well as allowing you to change the number of CPU
resources being used by the image:

1. Create a new Dockerfile and open your favorite text editor to enter the
following details. You will be creating the image using Ubuntu as a base because
the stress application is not yet provided as a package to be easily installed on
an Alpine base image:

FROM ubuntu

RUN apt-get update && apt-get install stress

CMD stress $var

2. Build the new image and tag it as docker-stress using the -t option of the
docker build command:

docker build -t docker-stress .

3. Stop and remove all the other containers first before running the new
docker-stress image to make sure that the results are not confused
by other containers running on our system:

docker rm -f $(docker -a -q)

4. On line 3 of the Dockerfile, you'll notice that the CMD instruction is running
the stress application following the $var variable. This will allow you to add
command-line options directly to the stress application running on the container
via environment variables, without having to build a new image every time you
want to change the functionality. Test this out by running your image and using
the -e option to add environment variables. Add var="--cpu 4 --timeout
20" as a command-line option to the stress command:

docker run --rm -it -e var="--cpu 4 --timeout 20" docker-stress

Managing Container CPU Resources | 483

The docker run command has added the var="--cpu 4 --timeout
20" variable, which will specifically run the stress command with these
command-line options. The --cpu option is stating that four CPUs or cores of
the system will be used, and the --timeout option will allow the stress test to
run for the designated number of seconds specified – in this case, 20:

stress: info: [6] dispatching hogs: 4 cpu, 0 io, 0 vm, 0 hdd

stress: info: [6] successful run completed in 20s

Note

If we need to run the stress command continuously without stopping, we
will simply not include the --timeout option. Our examples all include the
timeout option as we don't want to forget and continuously use resources
on a running host system.

5. Run the docker stats command to see what effect this has on your
host system. Limit the output provided to only give CPU usage by using the
--format option:

docker stats --format "table {{.Name}}\t{{.Container}}\t{{.CPUPerc}}"

Unless you have a container running on your system, you should only see the
table headings, similar to the output provided here:

NAME CONTAINER CPU %

6. While the stats command is running, move into a new terminal window and
run the docker-stress container again, as in step 4 of this exercise. Use the
--name option to make sure you are viewing the correct image when using the
docker stress command:

docker run --rm -it -e var="--cpu 4 --timeout 20" --name docker-
stress docker-stress

484 | Best Practices

7. Move back to the terminal running docker stats. You should now see some
output presented on your table. Your output will be different from the following
as you may have a different number of cores running on your system. The
following output is showing that 400% of our CPU percentage is being used.
The system on which the command is run has six cores. It shows that the stress
application is using 100% of four of the cores available:

NAME CONTAINER CPU %

docker-stress c8cf5ad9b6eb 400.43%

8. Once again, run the docker-stress container, this time with 8 set for the
--cpu option:

docker run --rm -it -e var="--cpu 8 --timeout 20" --name docker-
stress docker-stress

As you can see in the following stats output, we have hit the limit where your
Docker container is using almost 100% of all six cores on our system, leaving a
small amount for processing power for minor processes on our system:

NAME CONTAINER CPU %

docker-stress 8946da6ffa90 599.44%

9. Manage the number of cores that your docker-stress image can have access
to by using the --cpus option and specifying the number of cores you want
to allow the image to use. In the following command, 2 is set as the number of
cores our container is allowed to use:

docker run --rm -it -e var="--cpu 8 --timeout 20" --cpus 2 --name
docker-stress docker-stress

10. Move back to the terminal running docker stats. You will see that the CPU
percentage being used does not exceed much more than 200%, showing that
Docker is restricting resource usage to only two of the cores available on
our system:

NAME CONTAINER CPU %

docker-stress 79b32c67cbe3 208.91%

So far, you have only been running one container on our system at a time.
The next section of this exercise will allow you to run two containers in
detached mode. Here, you will test using the --cpu-shares option on
one of your running containers to limit the number of cores it can use.

Managing Container CPU Resources | 485

11. If you don't have docker stats running in a terminal window, do so by
starting it up as you have done previously to allow us to monitor the processes
that are running:

docker stats --format "table {{.Name}}\t{{.Container}}\t{{.CPUPerc}}"

12. Access another terminal window and start up two docker-stress containers
– docker-stress1 and docker-stress2. The first will use a --timeout
value of 60 to have the stress application running for 60 seconds, but here, limit
the --cpu-shares value to 512:

docker run --rm -dit -e var="--cpu 8 --timeout 60" --cpu-shares 512
--name docker-stress1 docker-stress

The container's ID will be returned as follows:

5f617e5abebabcbc4250380b2591c692a30b3daf481b6c8d7ab8a0d1840d395f

The second container will not be limited but will have a --timeout value of
only 30, so it should complete first:

docker run --rm -dit -e var="--cpu 8 --timeout 30" --name docker-
stress2 docker-stress2

The container's ID will be returned as follows:

83712c28866dd289937a9c5fe4ea6c48a6863a7930ff663f3c251145e2fbb97a

13. Move back to our terminal running docker stats. You'll see two
containers running. In the following output, we can see the containers
named docker-stress1 and docker-stress2. The docker-stress1
container has been set to have only 512 CPU shares while other containers are
running. It can also be observed that it is only using half the amount of CPU
resources as our second container named docker-stress2:

NAME CONTAINER CPU %

docker-stress1 5f617e5abeba 190.25%

docker-stress2 83712c28866d 401.49%

14. When your second container completes the CPU percentage for the
docker-stress1 container, it is then allowed to move up to using
almost all six cores available on the running system:

NAME CONTAINER CPU %

stoic_keldysh 5f617e5abeba 598.66%

486 | Best Practices

CPU resources play an important part in making sure that your applications are
running at their best. This exercise has shown you how easy it is to monitor and
configure your container's processing power while it is still on your system before
deploying it into a production environment. The next section will move on to
performing similar monitoring and configuration changes on our container's memory.

Managing Container Memory Resources
Just as we can monitor and control the CPU resources our container is using on our
system, we can also do the same with the memory being used. As with CPU, the
running container is able to use all of the host's memory with the default settings
provided by Docker, and in some cases can cause the system to become unstable if
it is not limited. If the host systems kernel detects that there is not enough memory
available, it will show an out-of-memory exception and start to kill off the processes
on the system to help free up memory.

The good news is that the Docker daemon has a high priority on your system, so the
kernel will first kill off running containers before it stops the Docker daemon from
running. This means that your system should be able to recover if the high memory
usage is being caused by a container application.

Note

If your running containers are being shut down, you will also need to make
sure you have tested your application to ensure that you are limiting the
impact it is having on your running processes.

Once again, the docker stats command gives us quite a bit of information on
memory usage. It will output the percentage of the memory the container is using as
well as the current memory being used compared with the total amount of memory
it is able to use. As we did previously, we can restrict the output presented with the
--format option. In the following command, we are reducing the output provided
by only displaying the container name and ID, as well as the memory percentage
and memory usage, via the .Name, .Container, .MemPerc, and .MemUsage
attributes, respectively:

docker stats --format "table {{.Name}}\t{{.Container}}\t{{.MemPerc}}\t{{.
MemUsage}}"

Managing Container Memory Resources | 487

With no containers running, the preceding command will show the following output:

NAME CONTAINER MEM % MEM USAGE / LIMIT

If we want to limit or control the amount of memory being used by our running
container, there are a few options available to us. One of the options available is the
--memory, or -m, option, which will set a limit for the amount of memory a running
container can use. In the following example, we have used a syntax of --memory
512MB to limit the amount of memory available to the image to 512MB:

docker run --memory 512MB <docker-image>

If the host system that the container is running on is also using swap space as part
of its available memory, you can also assign memory from that container to be run
as swap. This is simply done by using the --memory-swap option. This can only
be used in conjunction with the --memory option, as we have demonstrated in the
following example. We have set the --memory-swap option as 1024MB, which is
the total amount of memory available to the container of both memory and swap
memory. So, in our example, there will be a further 512MB available in the swap:

docker run --memory 512MB --memory-swap 1024MB <docker-image>

You need to remember, though, that swap memory will be assigned to disk, so as a
consequence, it will be slower and less responsive than RAM.

Note

The --memory-swap option needs to be set to a number higher than the
--memory option. If it is set to the same number, you will not be able to
assign any memory from that running container to swap.

Another option available, and only to be used if you need to ensure the availability of
the running container at all times, is the --oom-kill-disable option. This option
stops the kernel from killing the running container if the host system runs too low
on memory. This should only be used together with the --memory option to ensure
that you set a limit to the memory available to the container. Without a limit, the
--oom-kill-disable option could easily use all the memory on the host system:

docker run --memory 512MB --oom-kill-disable <docker-image>

488 | Best Practices

Even though your applications will be well designed, the preceding configurations
give you some options to control the amount of memory being used by your
running containers.

The next section will provide you with hands-on experience in analyzing the memory
resources on your Docker image.

Exercise 12.02: Analyzing Memory Resources on Your Docker Image

This exercise will help you analyze how memory is used by your active
containers while running on your host system. Once again, you will be using the
docker-stress image created earlier, but this time with options to only use
memory on the running container. This command will allow us to implement
some of the memory-limiting options available to ensure our running containers
do not bring down our running host system:

1. Run the docker stats command to display the relevant information you
need for the percentage memory and memory usage values:

docker stats --format "table {{.Name}}\t{{.Container}}\t{{.
MemPerc}}\t{{.MemUsage}}"

This command will provide an output like the following:

NAME CONTAINER MEM % MEM USAGE / LIMIT

2. Open a new terminal window to run the stress command again. Your
docker-stress image will only utilize CPU when you use the --cpu option.
Use the --vm option in the following command to start up the number of
workers you wish to spawn to consume memory. By default, each of them
will consume 256MB:

docker run --rm -it -e var="--vm 2 --timeout 20" --name docker-stress
docker-stress

When you move back to monitor the running container, the memory used only
reached about 20% of the limit. This may be different for different systems.
As only two workers are running to consume 256 MB each, you should only
see it reach around 500 MB of memory usage:

NAME CONTAINER MEM % MEM USAGE / LIMIT

docker-stress b8af08e4d79d 20.89% 415.4MiB / 1.943GiB

Managing Container Memory Resources | 489

3. The stress application also has the --vm-bytes option to control the number
of bytes that each worker being spawned up will consume. Enter the following
command, which has set each worker to 128MB. It should show a lower usage
when you monitor it:

docker run --rm -it -e var="--vm 2 --vm-bytes 128MB --timeout 20"
--name stocker-stress docker-stress

As you can see, the stress application struggles to push the memory usage up
very far at all. If you wanted to use all 8 GB of RAM you have available on your
system, you could use --vm 8 --vm-bytes of 1,024 MB:

NAME CONTAINER MEM % MEM USAGE / LIMIT

docker-stress ad7630ed97b0 0.04% 904KiB / 1.943GiB

4. Reduce the amount of memory available to the docker-stress image with
the --memory option. In the following command, you will see that we have set
the available memory of the running container to be limited to 512MB:

docker run --rm -it -e var="--vm 2 --timeout 20" --memory 512MB
--name docker-stress docker-stress

5. Move back to the terminal running docker stats, and you will see that the
percentage of memory used spikes to almost 100%. This isn't a bad thing as it
is only a small percentage of the memory allocated to your running container.
In this instance, it is 512 MB, which is only a quarter of what it was previously:

NAME CONTAINER MEM % MEM USAGE / LIMIT

docker-stress bd84cf27e480 88.11% 451.1MiB / 512MiB

6. Run more than one container at a time and see how our stats command
responds. Use the -d option as part of the docker run commands to run
the container as a daemon in the background of your host system. Both of the
docker-stress containers are now going to use six workers each, but our
first image, which we will name docker-stress1, is limited to 512MB of
memory, while our second image, named docker-stress2, which is only
running for 20 seconds, will have an unlimited amount of memory:

docker run --rm -dit -e var="--vm 6 --timeout 60" --memory 512MB
--name docker-stress1 docker-stress

ca05e244d03009531a6a67045a5b1edbef09778737cab2aec7fa92eeaaa0c487

490 | Best Practices

docker run --rm -dit -e var="--vm 6 --timeout 20" --name docker-
stress2 docker-stress

6d9cbb966b776bb162a47f5e5ff3d88daee9b0304daa668fca5ff7ae1ee887ea

7. Move back to the terminal running docker stats. You can see that only one
container, the docker-stress1 container, is limited to 512 MB, while the
docker-stress2 image is allowed to run on a lot more memory:

NAME CONTAINER MEM % MEM USAGE / LIMIT

docker-stress1 ca05e244d030 37.10% 190MiB / 512MiB

docker-stress2 6d9cbb966b77 31.03% 617.3MiB / 1.943GiB

If you wait a few moments, the docker-stress1 image will be left to run on
its own:

NAME CONTAINER MEM % MEM USAGE / LIMIT

docker-stress1 ca05e244d030 16.17% 82.77MiB / 512MiB

Note

One option we haven't covered here is the --memory-reservation
option. This is also used with the --memory option and needs to be set
lower than the memory option. It is a soft limit that is activated when the
memory on the host system is running low, but it is not guaranteed that the
limit will be enforced.

This part of the chapter has helped to identify how you can run your containers and
monitor usage so that when they are moved into production, they are not stopping
the host system by using up all the available memory. You should now be able to
identify how much memory your image is using and also limit the amount available
if there are issues with long-running or memory-intensive processes. In the next
section, we will look at how our container consumes the device's read and write
resources on our host system disks.

Managing the Container Disk's Read and Write Resources | 491

Managing the Container Disk's Read and Write Resources
The CPU and memory consumed by a running container are usually the biggest
culprits for an environment running poorly, but there could also be an issue with
your running containers trying to read or write too much to the host's disk drive.
This would most likely have less impact than CPU or memory issues, but if there was
a large amount of data being transferred to the host system's drives, it could still
cause contention and slow your services down.

Fortunately, Docker also provides us with a way to control the amount of reading and
writing that our running containers can perform. Just as we've seen previously, we
can use a number of options with our docker run command to limit the amount
of data we are either reading or writing to our device disks.

The docker stats command also allows us to see the data being transferred to
and from our running container. It has a dedicated column that can be added to our
table using the BlockIO value in our docker stats command, which represents
the read and writes to our host disk drive or directories:

docker stats --format "table {{.Name}}\t{{.Container}}\t{{.BlockIO}}"

If we don't have any running containers on our system, the preceding command
should provide us with the following output:

NAME CONTAINER BLOCK I/O

If we ever need to limit the amount of data that a running container can move to our
host system's disk storage, we can start by using the --blkio-weight option with
our docker run command. This option stands for Block Input Output Weight and
allows us to set a relative weight for the container to be between 10 and 1000 and is
relative to all the other containers running on your system. All containers will be set
with the same proportion of bandwidth, which is 500. If a value of 0 is provided to any
container, this option will be switched off:

docker run --blkio-weight <value> <docker-image>

492 | Best Practices

The next option we have available to use is --device-write-bps, which will limit
the specific write bandwidth available to the device specified with a bytes-per-second
value. The specific device is relative to the device the container is using on the host
system. This option also has an iops (Input/Output) per seconds option
that can also be used. The following syntax provides the basic usage of the option
where the limit value is a numeric value set as MB:

docker run --device-write-bps <device>:<limit> <docker-image>

Just as there is a way to limit write processes to the host system's disk, there is also
an option to limit the read throughput available. Once again, it also has an iops
(Input/Output) per seconds option that can be used and will limit the
amount of data that can be read from your running container. The following example
uses the --device-read-bps option as part of the docker run command:

docker run --device-read-bps <device>:<limit> <docker-image>

If you're adhering to container best practices, overconsumption of disk input or
output should not be too much of an issue. There is no reason to assume that this
will not cause you any problems, though. Just as you have worked with both CPU and
memory, your disk input and output should be tested on your running containers
before your services are implemented in production.

Exercise 12.03: Understanding Disk Read and Write

This exercise will allow you to become familiar with viewing the disk read and write
of your running container. It will allow you to start running your containers by
configuring limits for the disk usage speeds with the options available at runtime:

1. Open a new terminal window and run the following command:

docker stats --format "table {{.Name}}\t{{.Container}}\t{{.BlockIO}}"

The docker stats command with the BlockIO option helps us monitor the
levels of input and output moving from our container to the host system's disk.

2. Start the container to access it from the bash command line. Perform some tests
directly on a running docker-stress image. The stress application does give
you some options to manipulate the disk utilization on your container and the
host system, but it is limited to the only disk writes:

docker run -it --rm --name docker-stress docker-stress /bin/bash

Managing the Container Disk's Read and Write Resources | 493

3. Unlike the CPU and memory usage, the block input and output show the total
amount used by the container, so it will not be dynamic and change as the
running container performs more changes. Move back to your terminal running
docker stats. You should see 0B for both input and output:

NAME CONTAINER BLOCK I/O

docker-stress 0b52a034f814 0B / 0B

4. You will be using the bash shell in this instance as it gives access to the time
command to see how long each of these processes take. Use the dd command,
which is a Unix command used to make copies of filesystems and backups. In
the following option, create a copy of our /dev/zero directory, using the if
(input file) option, and output it to the disk.out file with the of (output file)
option. The bs option is the block size or the amount of data it should read at
a time and count is the total amount of blocks to read. Finally, set the oflag
value to direct, which means the copy will avoid the buffer cache, so you are
seeing a true value of disk reads and writes:

time dd if=/dev/zero of=disk.out bs=1M count=10 oflag=direct

10+0 records in

10+0 records out

10485760 bytes (10 MB, 10 MiB) copied, 0.0087094 s, 1.2 GB/s

real 0m0.010s

user 0m0.000s

sys 0m0.007s

5. Move back into the terminal running your docker stats command. You
will see just over 10 MB of data sent to the host system's disk. Unlike CPU and
memory, you do not see this data value go down after the transfer has occurred:

NAME CONTAINER BLOCK I/O

docker-stress 0b52a034f814 0B / 10.5MB

You'll also notice that the command in step 4 was almost instantly completed,
with the time command showing it took only 0.01s in real-time to complete.
You will see what happens if you restrict the amount of data that can be written
to disk, but first, exit out of the running container so that it no longer exists on
our system.

494 | Best Practices

6. To start our docker-stress container up again, set the --device-write-
bps option to 1MB per second on the /dev/sda device drive:

docker run -it --rm --device-write-bps /dev/sda:1mb --name docker-
stress docker-stress /bin/bash

7. Run the dd command again, preceded by the time command, to test how long
it takes. You should see that the command takes a lot longer than what it did in
step 4. The dd command is once again set to copy 1MB blocks, 10 times:

time dd if=/dev/zero of=test.out bs=1M count=10 oflag=direct

Because the container is limited to only write 1 MB per second, this command
takes 10 seconds, as displayed in the following output:

10+0 records in

10+0 records out

10485760 bytes (10 MB, 10 MiB) copied, 10.0043 s, 1.0 MB/s

real 0m10.006s

user 0m0.000s

sys 0m0.004s

We've been able to easily see how our running container can affect the underlying
host system, specifically when using disk read and write. We have also been able to
see how we can easily limit the amount of data that can be written to our device,
so there is less contention between running containers. In the next section, we
are going to quickly answer the question of what you need to do if you are using
docker-compose and look at limiting the number of resources being used by
your containers.

Container Resources and Docker Compose
Orchestrators such as Kubernetes and Swarm go a long way in controlling and
running your resources and spinning up new hosts if there are extra resources
needed. But what do you do if you are running docker-compose in your system or
a test environment? Fortunately, the previously mentioned resource configurations
work nicely with docker-compose as well.

Within our docker-compose.yml file, under our service, we can use the
resources option under the deploy configurations and specify our resource
limits for our service. Just as we have been using options such as --cpus,
--cpu_shares, and --memory, we would use the same options in our
docker-compose.yml file as cpus, cpu_shares, and memory.

Best Practices in Docker | 495

The example compose file in the following code block is deploying the
docker-stress image we have been using in this chapter. If we look at line 8,
we can see the deploy statement, followed by the resources statement. This is
where we can set our limits for our container. Just as we have in the previous section,
we have set cpus to 2 on line 11 and memory to 256MB on line 12:

1 version: '3'

2 services:

3 app:

4 container_name: docker-stress

5 build: .

6 environment:

7 var: "--cpu 2 --vm 6 --timeout 20"

8 deploy:

9 resources:

10 limits:

11 cpus: '2'

12 memory: 256M

Even though we have only just touched on this subject, the previous sections covering
resource usage should guide you on how you should be allocating resources in your
docker-compose.yml files. This brings us to the end of this section on resource
usage of our Docker containers. From here, we will move on to look at the best
practices for creating our Dockerfiles and how we can start to use different
applications to ensure that we are adhering to these best practices.

Best Practices in Docker
As our containers and services grow in size and complexity, it is important to make
sure we are keeping true to the best practices when creating our Docker images.
This is also true for the applications we run on our Docker images. Later in this
chapter, we will look to lint our Dockerfiles and docker-compose.yml files,
which will analyze our files for errors and best practices, and this will give you a
clearer understanding. In the meantime, let's look into some of the more important
best practices to keep in mind when you are creating your Docker images and how
your applications should be working with them.

496 | Best Practices

Note

This chapter may cover some points from previous chapters, but we will
be able to give you more information and clarity on why we are using
these practices.

In the following section, we will run through some of the more common best
practices you should be following when creating your services and containers.

Running One Service per Container

In modern microservice architecture, we need to remember that only one service
should be installed in each container. The container's main process is set by the
ENTRYPOINT or CMD instruction at the end of the Dockerfile.

The service you have installed in your container could quite easily run multiple
processes of itself, but to get the full benefit of Docker and microservices, you should
only be running one service per container. To break this down further, your container
should only have a single responsibility, and if it is responsible for doing more than
one thing, then it should be broken out into different services.

By limiting what each container can do, we effectively reduce the resources being
used by the image and potentially reduce the size of the image. As we saw in the
previous chapter, this will also reduce the chances of an attacker being able to
perform anything they shouldn't if they gain access to a running container. It also
means that if the container stops working for some reason, there is a limited effect on
the rest of the applications running on the environment and the service will have an
easier time recovering.

Base Images

When we start with a base image for our container, one of the first things we need
to do is to make sure we are starting with an up-to-date image. Do a little research
as well to make sure you are not using an image that has a lot of extra applications
installed that are not needed. You may find that a base image supported by a specific
language that your application uses or a specific focus will limit the size of the image
needed, limiting what you need to install when you are creating your image.

Best Practices in Docker | 497

This is why we are using a PostgreSQL-supported Docker image instead of installing
the application on the image during build time. The PostgreSQL-supported image
ensures that it is secure and running at the latest version and makes sure we are not
running applications on the image that are not needed.

When specifying our base image for our Dockerfile, we need to make sure we
are also specifying a specific version and not letting Docker simply use the latest
image. Also, make sure you are not pulling an image from a repository or registry that
is not from a reputable or trusted provider.

If you've been working with Docker for a little while, you may have come across the
MAINTAINER instruction where you specify the author of the generated image.
This has now been deprecated, but you can still provide these details using a LABEL
directive instead, as we have in the following syntax:

LABEL maintainer="myemailaddress@emaildomain.com"

Installing Applications and Languages

When you are installing applications on your images, always remember that there
is no need to be performing apt-get update or dist-upgrade. You should
be looking at a different image if you need to be upgrading the image version this
way. If you are installing applications using apt-get or apk, make sure you are
specifying the specific version you need as you don't want to install a version that is
new or untested.

When you are installing packages, make sure you are using the -y switch to make
sure the build does not stop and ask for a user prompt. Alternatively, you should
also use --no-install-recommends as you don't want to install a large group of
applications that your package manager has recommended and that you won't need.
Also, if you using a Debian-based container, make sure that you are using apt-get
or apt-cache, as the apt command has been specifically made for user interaction
and not for a scripted installation.

If you are installing applications from other forms, such as building the application
from code, make sure you are cleaning up the installation files to once again reduce
the size of the image you are creating. Again, if you are using apt-get, you should
also remove the lists in /var/lib/apt/lists/ to clean up installation files and
reduce the size of your container image.

498 | Best Practices

Running Commands and Performing Tasks

As our image is being created, we usually need to perform some tasks within
our Dockerfile to set up the environment ready for our services to be run.
Always make sure you are not using the sudo command as this could cause some
unexpected results. If you need to be running commands as root, your base image
will most likely be running as the root user; just make sure you create a separate
user to run your application and services and that the container has changed to the
required user before it has completed building.

Make sure you are moving to different directories using WORKDIR, instead of running
instructions that specify a long path, as this could be hard for users to read. Use
JSON notation for the CMD and ENTRYPOINT arguments and always make sure
you only have one CMD or ENTRYPOINT instruction.

Containers Need to Be Immutable and Stateless

We need to ensure that our containers and the services running on them are
immutable. We must not treat containers like traditional servers, especially a server
where you would update applications on a running container. You should be able to
update your container from code and deploy it without needing to access it at all.

When we say immutable, we mean the container will not be modified at all during
its life, with no updates, patches, or config changes being made. Any changes to
your code or updates should be implemented by building the new image and then
deploying it into your environment. This makes deployments safer as if you have any
issues with your upgrade, you simply redeploy the old version of the image. It also
means you have the same image running across all of your environments, making
sure your environments are as identical as possible.

When we talk about a container needing to be stateless, this means that any data
needed to run the container should be running outside of the container. File stores
should also be outside the container, possibly on cloud storage or using a mounted
volume. Removing data from the container means the container can be cleanly shut
down and destroyed at any time, without fearing data loss. When a new container is
created to replace the old one, it simply connects to the original data store.

Best Practices in Docker | 499

Designing Applications to Be Highly Available and Scalable

Using containers in a microservices architecture is designed to allow your application
to scale to multiple instances. So, when developing your applications on your Docker
container, you should expect that there could be situations where many instances
of your application could be deployed concurrently, scaling both up and down when
needed. There should also be no issue with your services running and completing
when there is a heavier-than-normal load on the container.

When your services need to scale due to increased requests, how much time your
applications need to start becomes an important issue. Before deploying your
services into a production environment, you need to make sure the startup time is
quick to make sure the system will be able to scale more efficiently without causing
any delay in service to your users. To ensure that your services adhere to the
industry's best practices, your services should be starting in less than 10 seconds,
but less than 20 seconds is also acceptable.

As we saw in the previous section, improving the application startup time is not
simply a matter of providing more CPU and memory resources. We need to make
sure that the applications on our containers run efficiently and, once again, if they are
taking too long to start and run specific processes, you may be performing too many
tasks in one application.

Images and Containers Need to Be Tagged Appropriately

We covered this topic in detail in Chapter 3, Managing Your Docker Images, and made
it clear that we need to think about how we name and tag our images, especially
when we start working with larger development teams. To allow all users the ability
to understand what the image does and gain an understanding of what version is
deployed into an environment, a relevant tagging and naming strategy needs to be
decided and agreed upon before the bulk of the work is started by your team.

Image and container names need to be relevant to the applications they are running,
as ambiguous names can cause confusion. An agreed standard for versioning must
also be put in place to make sure any user can identify what version is running in a
certain environment and what version is the most recent and stable release. As we
mentioned in Chapter 3, Managing Your Docker Images, try not to use latest, and
instead opt for either a semantic versioning system or Git repository commit hash,
where users can then refer to either documentation or a build environment to ensure
that they have the most up-to-date version of their image.

500 | Best Practices

Configurations and Secrets

Environment variables and secrets should never be built into your Docker image. By
doing this, you are going against the rule of reusable images. Building images with
your secret credentials is also a security risk because they will be stored in one of the
image layers, and so anyone able to pull the image will be able to see the credentials.

When setting up the configuration for your application, it may need to change from
environment to environment, so it is important to remember that you will need to
be able to dynamically change these configurations when needed. This could include
specific configurations for the language your application is written in or even the
database that the application needs to connect to. We mentioned earlier that if you
are configuring your application as part of your Dockerfile, this will then make
it difficult to change and you may need to create a specific Dockerfile for each
environment you wish to deploy your image to.

One way to configure your images, as we have seen with the docker-stress
image, is to use an environment variable that is set on the command line when we
run the image. The entry point or command should contain default values if variables
have not been provided. This will mean the container will still start up and run even if
the extra variables have not been provided:

docker run -e var="<variable_name>" <image_name>

By doing this, we have made our configuration more dynamic, but this could limit
your configuration when you have a larger or more complex configuration. The
environment variables can easily be transferred from your docker run command
to docker-compose to then be used in Swarm or Kubernetes.

For larger configurations, you may want to mount a configuration file via a Docker
volume. This can mean you will be able to set up a configuration file and run it on
your system to test easily, and then if you need to move to an orchestration system
such as Kubernetes or Swarm, or an external configuration management solution,
you will be able to easily convert this into a configuration map.

If we wanted to implement this with the docker-stress image we have been using
in this chapter, it could be modified to use a configuration file to mount the values we
would like to run. In the following example, we have modified the Dockerfile to
set up line 3 to run a script that will instead run the stress command for us:

1 FROM ubuntu

2 RUN apt-get update && apt-get install stress

3 CMD ["sh","/tmp/stress_test.sh"]

Best Practices in Docker | 501

This means we can build the Docker image and have it ready and available for us to
use whenever we need it. We would just need a script that we would mount in the
/tmp directory to be run. We could use the following example:

1 #!/bin/bash

2

3 /usr/bin/stress --cpu 8 --timeout 20 --vm 6 --timeout 60

This illustrates the idea of moving our values from environment variables to a file.
To run both the container and the stress application, we would then perform the
following, knowing that if we wanted to change the variables being used by the
stress command, we would only need to make a minor change to the file we
are mounting:

docker run --rm -it -v ${PWD}/stress_test.sh:/tmp/stress_test.sh docker-
stress

Note

The first thing you are going to think when you read through this list of best
practices is that we have gone against a lot of this, but please remember
that we have done this in a lot of instances to demonstrate a process
or idea.

Making Your Images Minimal and Small

Chapter 3, Managing Your Docker Images, also saw us do some work on making our
images as small as we possibly could. We saw that by reducing the size of our images,
the images can be built faster. They can also then be pulled faster and run on our
systems. Any unnecessary software or applications installed on our containers can
take up extra space and resources on our host system and could slow our services
down as a result.

Using an application such as Anchore Engine as we did in Chapter 11, Docker Security,
showed that we can audit our images to view their contents, as well as the
applications installed on them. This is an easy way to make sure we are
reducing the sizes of our images and making them as minimal as possible.

You now have an idea of the best practices you should be using in your container
images and services. The following section of this chapter will help you enforce some
of these best practices by using applications to verify that your Dockerfiles and
docker-compose.yml are created as they should be.

502 | Best Practices

Enforcing Docker Best Practices in Your Code
Just as we look to make our coding easier when we are developing applications,
we can use external service and tests to make sure our Docker images are adhering
to the best practices. In the following sections of this chapter, we are going to use
three tools to make sure that our Dockerfiles and docker-compose.yml files
are adhering to the best practices, as well as making sure we are not introducing
potential issues when our Docker images are built.

The tools included will be straightforward to use and provide powerful functionality.
We will start by using hadolint to lint our Dockerfiles directly on our system,
which will run as a separate Docker image that we feed our Dockerfiles into. We
then take a look at FROM:latest, which is an online service that provides some
basic functionality in helping us pinpoint issues with our Dockerfiles. Lastly, we
then look at Docker Compose Validator (DCValidator), which will perform a similar
function, but in this case, we will lint our docker-compose.yml files to help
pinpoint potential issues.

By using these tools before we build and deploy our images, we hope to reduce
our build times for our Docker images, reduce the number of errors we introduce,
potentially reduce the size of our Docker images, and help us learn more about and
enforce Docker best practices.

Using Docker Linter for Your Images

The GitHub repository containing all the code for this book also includes tests that
will compare against the built Docker image. A linter, on the other hand, will analyze
your code and look for potential errors before the image is built. In this section of the
chapter, we are looking for potential issues with our Dockerfiles, specifically using
an application called hadolint.

The name hadolint is short for Haskell Dockerfile Linter and comes with its own
Docker image that allows you to pull the image and then send your Dockerfile to
the running image for it to be tested. Even if your Dockerfile is relatively small and
builds and runs without any issues, hadolint will usually offer a lot of suggestions
and point out flaws in your Dockerfile, as well as potential issues that might break
in the future.

Enforcing Docker Best Practices in Your Code | 503

To run hadolint over your Dockerfiles, you need to have the hadolint
Docker image on your system. As you know by now, this is simply a matter of running
the docker pull command with the name and repository of the required image.
In this instance, both the repository and image are called hadolint:

docker pull hadolint/hadolint

To then use the application, you simply run the hadolint image and point
your Dockerfile to it using the less than (<) symbol, as we've done in the
following example:

docker run hadolint/hadolint < Dockerfile

If you are lucky enough to not have any issues with your Dockerfile, you should
not see any output from the preceding command. If there is ever a situation where
you need to ignore a specific warning, you can do so by using the --ignore option,
followed by the specific rule ID that has been triggering the warning:

docker run hadolint/hadolint hadolint --ignore <hadolint_rule_id> - <
Dockerfile

If you need to have a few warnings ignored, it may get a little complicated trying to
implement this in the command line, so hadolint also has the option to set up a
configuration file. The hadolint configuration file is limited to ignoring warnings
and providing a list of trusted repositories. You can also set up a configuration
file with a list of your ignored warnings listed in the YAML format. hadolint will
then need to have this file mounted on the running image for it to be used by the
application as it will look for a .hadolint.yml configuration file location in the
application's home directory:

docker run --rm -i -v ${PWD}/.hadolint.yml:/.hadolint.yaml hadolint/
hadolint < Dockerfile

hadolint is one of the better applications for linting your Dockerfiles and can
easily be automated as part of a build and deployment pipelines. As an alternative,
we are also going to look at an online application called FROM:latest. This
application is a web-based service that does not provide the same functionality as
hadolint but does allow you to easily copy and paste your Dockerfile code into
the online editor and receive feedback on whether the Dockerfile adheres to the
best practices.

504 | Best Practices

Exercise 12.04: Linting Your Dockerfiles

This exercise will help you understand how to access and run hadolint on your
system to help you enforce best practices on your Dockerfiles. We will also
use an online Dockerfile linter called FROM:latest to compare the warnings
we receive:

1. Pull the image from the hadolint repository with the following docker
pull command:

docker pull hadolint/hadolint

2. You have a Dockerfile ready to go with the docker-stress image
you used to test and manage your resources earlier in this chapter. Run the
hadolint image to lint this Dockerfile, or any other Dockerfile,
and send it to the Dockerfile using the less than (<) symbol, as in the
following command:

docker run --rm -i hadolint/hadolint < Dockerfile

As you can see from the following output, even though our docker-stress
image was relatively small, hadolint has given quite a few different ways
where we can improve the performance and help our image adhere to the
best practices:

/dev/stdin:1 DL3006 Always tag the version of an image explicitly

/dev/stdin:2 DL3008 Pin versions in apt get install. Instead of

'apt-get install <package>' use 'apt-get install

<package>=<version>'

/dev/stdin:2 DL3009 Delete the apt-get lists after installing

something

/dev/stdin:2 DL3015 Avoid additional packages by specifying

'--no-install-recommends'

/dev/stdin:2 DL3014 Use the '-y' switch to avoid manual input

'apt-get -y install <package>'

/dev/stdin:3 DL3025 Use arguments JSON notation for CMD

and ENTRYPOINT arguments

Note

If your Dockerfile runs successfully through hadolint and there
are no issues found, there will be no output presented to the user on the
command line.

Enforcing Docker Best Practices in Your Code | 505

3. hadolint also gives you the option to suppress different checks with the
--ignore option. In the following command, we have chosen to ignore the
DL3008 warning, where it is suggesting that you pin the applications you are
installing to a specific version number. Execute the docker run command
to suppress the DL3008 warning. Note that you need to provide the full
hadolint command after specifying the image name you are running,
as well as an extra dash (-) before you provide the Dockerfile:

docker run --rm -i hadolint/hadolint hadolint --ignore DL3008 - <
Dockerfile

You should get output like the following:

/dev/stdin:1 DL3006 Always tag the version of an image explicitly

/dev/stdin:2 DL3009 Delete the apt-get lists after installing

something

/dev/stdin:2 DL3015 Avoid additional packages by specifying

'--no-install-recommends'

/dev/stdin:2 DL3014 Use the '-y' switch to avoid manual input

'apt-get -y install <package>'

/dev/stdin:3 DL3025 Use arguments JSON notation for CMD and

ENTRYPOINT arguments

4. hadolint also allows you to create a configuration file to add any warnings to
be ignored, as well as specifying them on the command line. Create a file named
.hadolint.yml using the touch command:

touch .hadolint.yml

5. Open the configuration file with your text editor and enter in and any of the
warnings you wish to ignore that you have received under the ignored field. As
you can see, you can also add in a trustedRegistries field, where you can
list all the registries you will be pulling images from. Note that hadolint will
provide an extra warning if your image is not from one of the registries listed in
the configuration file:

ignored:

 - DL3006

 - DL3008

 - DL3009

 - DL3015

506 | Best Practices

 - DL3014

trustedRegistries:

 - docker.io

6. hadolint will look for your configuration file in the user's home directory.
As you are running hadolint as a Docker image, mount the file from the
current location onto the home directory on the running image when we
execute the docker run command with the -v option:

docker run --rm -i -v ${PWD}/.hadolint.yml:/.hadolint.yaml hadolint/
hadolint < Dockerfile

The command will give an output as follows:

/dev/stdin:3 DL3025 Use arguments JSON notation for CMD and
ENTRYPOINT arguments

Note

The source code repository for hadolint provides a list of all the
warnings as well as details on how to resolve them in your Dockerfile.
If you have not done so already, feel free to look through the Hadolint wiki
page at https://github.com/hadolint/hadolint/wiki.

7. Finally, hadolint also allows you the option to output the results of your check
in JSON format. Once again, we need to add some extra values to the command
line. In the command line, add the extra command-line options of hadolint
-f json just before you have added and parsed your Dockerfile across
to hadolint. In the following command, you will also need to have the jq
package installed:

docker run --rm -i -v ${PWD}/.hadolint.yml:/.hadolint.yaml hadolint/
hadolint hadolint -f json - < Dockerfile | jq

You should get output like the following:

[

 {

 "line": 3,

 "code": "DL3025",

 "message": "Use arguments JSON notation for CMD and ENTRYPOINT
arguments",
 "column": 1,

 "file": "/dev/stdin",

https://github.com/hadolint/hadolint/wiki

Enforcing Docker Best Practices in Your Code | 507

 "level": "warning"

 }

]

Note

hadolint can easily be integrated into your build pipelines to have your
Dockerfiles linted before they are built. If you are interested in installing
the hadolint application directly onto your system instead of using the
Docker image, you can do so by cloning the following GitHub repository
https://github.com/hadolint/hadolint.

hadolint is not the only application that you can use to ensure your
Dockerfiles are adhering to best practices. The next steps in this exercise
will look at an online service named FROM:latest to also help enforce best
practices on your Dockerfiles.

8. To use FROM:latest, open your favorite web browser and enter the
following URL:

https://www.fromlatest.io

When the web page loads, you should see a page similar to the one in the
following screenshot. On the left-hand side of the web page, you should see
a sample Dockerfile entered, and on the right-hand side of the web page,
you should see a list of potential issues or ways to optimize your Dockerfile.
Each of the items listed on the right-hand side has a dropdown to provide more
details to the user:

Figure 12.1: A screenshot of the FROM:latest website with a sample Dockerfile entered

https://github.com/hadolint/hadolint

508 | Best Practices

9. As in the previous part of this exercise, we will use the Dockerfile from
our docker-stress image. To use this with FROM:latest, copy the
following lines of code into the left-hand side of the web page over the
sample Dockerfile provided by the site:

FROM ubuntu

RUN apt-get update && apt-get install stress

CMD stress $var

As soon as you post the Dockerfile code into the web page, the page will
start to analyze the commands. As you can see from the following screenshot,
it will provide details on how to resolve potential issues and optimize the
Dockerfile to have the image build quicker:

Figure 12.2: The Dockerfile entered for our docker-stress image

Both hadolint and FROM latest provide easy-to-use options to help you make
sure your Dockerfiles are adhering to best practices. The next exercise will look at
a similar way to check your docker-compose.yml files to make sure that they will
also run without issues and are not introducing any bad practices.

Exercise 12.05: Validating Your docker-compose.yml File

Docker already has a tool to validate your docker-compose.yml files, but the
built-in validator does not pick up all issues in your docker-compose files, including
typos, the same ports being assigned to different services, or duplicate keys. We
can use dcvalidator to look for issues such as typos, duplicate keys, and ports
assigned to numbers services.

Enforcing Docker Best Practices in Your Code | 509

To perform the following exercise, you will need to have both Git and a recent version
of Python 3 installed on your system. You won't be walked through how to perform
the installation, but these items are required before starting:

1. To get started with the dcvalidator, clone the GitHub repository for the
project. If you have not done so already, you will need to run the following
command to clone the repository:

git clone https://github.com/serviceprototypinglab/dcvalidator.git

2. The command-line application only needs Python 3 to run, but you will
need to make sure all the dependencies are installed first, so change to
the dcvalidator directory of the repository you have just cloned:

cd dcvalidator

3. Installing the dependencies for the dcvalidator is easy, and your system will
most likely have most of them installed on it already. To install the dependencies,
run the pip3 install command from the dcvalidator directory using the
-r option to use the requirments.txt file in the server directory:

pip3 install -r server/requirments.txt

4. Create a docker-compose file from scratch that will use some of the images
you have already created in this chapter. Create a docker-compose.yml file
by using the touch command:

touch docker-compose.yml

5. Open your favorite text editor to edit the docker-compose file. Make sure
you also include the mistakes we have purposely added to the file to make sure
the dcvalidator picks up these errors, and we will use the docker-stress
image we created earlier in this chapter. Make sure you copy this file word
for word as we are trying to make sure we force some errors in our
docker-compose.yml file:

version: '3'

services:

 app:

 container_name: docker-stress-20

 build: .

 environment:

 var: "--cpu 2 --vm 6 --timeout 20"

 ports:

 - 80:8080

510 | Best Practices

 - 80:8080

 dns: 8.8.8

 deploy:

 resources:

 limits:

 cpus: '0.50'

 memory: 50M

 app2:

 container_name: docker-stress-30

 build: .

 environment:

 var: "--cpu 2 --vm 6 --timeout 30"

 dxeploy:

 resources:

 limits:

 cpus: '0.50'

 memory: 50M

6. Run the validator-cli.py script with the -f option to parse the specific file
we want to validate – in the following command line, the docker-compose.
yml file. The -fi option then allows you to specify the filters available to
validate over our compose file. In the following code, we are using all the
filters available at this point for validator-cli:

python3 validator-cli.py -f docker-compose.yml -fi 'Duplicate
Keys,Duplicate ports,Typing mistakes,DNS,Duplicate expose'

You should get output like the following:

Warning: no kafka support

loading compose files....

checking consistency...

syntax is ok

= type: docker-compose

- service:app

Duplicate ports in service app port 80

=================== ERROR ===================

Under service: app

The DNS is not appropriate!

===

- service:app2

Enforcing Docker Best Practices in Your Code | 511

=================== ERROR ===================

I can not find 'dxeploy' tag under 'app2' service.

Maybe you can use:

deploy

===

services: 2

labels:

time: 0.0s

As expected, there are quite a few errors that validator-cli.py has been
able to find. It has shown that you have duplicate ports assigned in your app
service, and the DNS you have set up is also incorrect. App2 is showing some
spelling mistakes and suggesting we could use a different value instead.

Note

At this point, you need to specify the filters you would like your docker-
compose.yml file to be validated against, but this will change with the
coming releases.

7. You'll remember that we used a docker-compose file to install the Anchore
image scanner. When you have the URL location of the compose file, use the
-u option to pass the URL for the file to be validated. In this instance, it is on the
Packt GitHub account:

python3 validator-cli.py -u https://github.com/PacktWorkshops/
The-Docker-Workshop/blob/master/Chapter11/Exercise11.03/
docker-compose.yaml -fi 'Duplicate Keys,Duplicate ports,Typing
mistakes,DNS,Duplicate expose'

As you can see in the following code block, dcvalidator does not pick up any
errors in the docker-compose.yml file:

Warning: no kafka support

discard cache...

loading compose files....

checking consistency...

syntax is ok

= type: docker-compose=

- service:engine-api

- service:engine-catalog

- service:engine-simpleq

512 | Best Practices

- service:engine-policy-engine

- service:engine-analyzer

- service:anchore-db

services: 6

labels:

time: 0.6s

As you can see, the Docker Compose validator is fairly basic, but it can pick up a
few errors in our docker-compose.yml file that we may have missed. This could
especially be the case if we have a larger file; there is a possibility that we could
have missed a few minor errors before trying to deploy our environment. This has
brought us to the end of this part of the chapter where we have been using some
automated processes and applications to validate and lint our Dockerfiles and
docker-compose.yml file.

Now, let's move on to the activities, which will help you test your understanding of
the chapter. In the following activity, you will view the resources used by one of the
services running on the Panoramic Trekking App.

Activity 12.01: Viewing the Resources Used by the Panoramic Trekking App

Earlier in this chapter, we looked at how our running container consumed resources
on our host system. In this activity, you will choose one of the services running on the
Panoramic Trekking App, run the container with its default configurations, and see
what CPU and memory resources it uses. Then, run the container again with changes
to the CPU and memory configurations to see how this affects the resource usage:

The general set of steps you'll need to complete this activity runs as follows:

1. Decide on a service in the Panoramic Trekking App that you would like to test.

2. Create a set of tests that you can use to then measure the resource usage of
the service.

3. Start your service and monitor the resource usage using the tests you created in
the previous step.

4. Stop your service from running and run it again, this time with changes to the
CPU and memory configurations.

5. Monitor the resource usage again using the tests you created in step 2 and
compare the changes in resource usage.

Enforcing Docker Best Practices in Your Code | 513

Note

The solution for this activity can be found via this link.

The next activity will help you use hadolint on your Dockerfiles to improve the
best practices.

Activity 12.02: Using hadolint to Improve the Best Practices on Dockerfiles

hadolint provides a great way to enforce best practices when you are creating
your Docker images. In this activity, you will once again use the Dockerfile from
the docker-stress image to see whether you can use the recommendations from
hadolint to improve the Dockerfile so that it adheres to best practices as much
as possible.

The steps you'll need to complete this activity are as follows:

1. Ensure you have the hadolint image available and running on your system.

2. Run the hadolint image over the Dockerfile for the docker-stress
image and record the results.

3. Make the recommended changes to the Dockerfile from the previous step.

4. Test the Dockerfile again.

You should get the following output on the successful completion of the activity:

Figure 12.3: Expected output of Activity 12.02

Note

The solution for this activity can be found via this link.

514 | Best Practices

Summary
This chapter has seen us go through a lot of theory as well as some in-depth work on
exercises. We started the chapter by looking at how our running Docker containers
utilize the host system's CPU, memory, and disk resources. We looked at the ways
in which we can monitor how these resources are consumed by our containers and
configure our running containers to reduce the number of resources used.

We then looked at the Docker best practices, working through a number of different
topics, including utilizing base images, installing programs and cleanup, developing
your underlying application for scalability, and configuring your applications and
images. We then introduced some tools to help you enforce these best practices,
including hadolint and FROM:latest to help you lint your Dockerfiles,
and dcvalidator to check over your docker-compose.yml files.

The next chapter takes our monitoring skills up another level as we introduce using
Prometheus to monitor our container metrics and resources.

Overview

This chapter will provide you with the skills needed to set up a monitoring
environment for your system to start collecting container and resource
metrics. By the end of this chapter, you will be able to devise a monitoring
strategy for your metrics and determine what you need to think about before
you start development on your project. You will also implement a basic
Prometheus configuration on your system. The chapter will extend your
knowledge of Prometheus by exploring the user interface, the PromQL
query language, configuration options, and the collection of your Docker
and application metrics. It will also enhance your visualizations
and dashboarding with the inclusion of Grafana as part of your
Prometheus installation.

Monitoring Docker Metrics

13

518 | Monitoring Docker Metrics

Introduction
In the previous chapter of this book, we spent some time investigating how our
containers use resources on their host system. We did this to ensure our applications
and containers were running as efficiently as possible, but when we start to move our
applications and containers into a larger production environment, using command-
line tools such as docker stats will start to become cumbersome. You'll notice
that as the number of your containers increases, it becomes difficult to understand
the metrics by only using the stats command. As you'll see in the following pages,
with a little bit of planning and configuration, setting up monitoring for our container
environment will allow us to easily keep track of how our containers and system are
functioning and ensure uptime for our production services.

As we move into more agile development processes, the development of applications
needs to incorporate the monitoring of our applications. Having a clear plan
to monitor our applications at the start of the project will allow developers to
incorporate monitoring tools as part of their development process. This means that
it is important to have a clear understanding of how we're planning to collect and
monitor our applications even before we create them.

In addition to applications and services, it is also important to monitor the
infrastructure, orchestration, and containers that run in our environments so
that we have a complete view of everything that is happening in our environment.

Some things you will need to consider when you establish your metrics monitoring
policy are as follows:

• Applications and Services: This includes third-party applications on which your
code may be relying that don't reside on your hardware. It would also include
the orchestration services your applications are running on.

• Hardware: It is sometimes good to step back and make sure you take note of all
the hardware your services rely on as well, including databases, API gateways,
and servers.

• Services to Monitor and Alert: As your applications grow, you may not only
want to monitor a specific service or web page; you may also want to ensure that
users are able to perform all the transactions. This could increase the complexity
of your alerting and monitoring system.

• Dashboarding and Reporting: Dashboards and reports can provide a lot of
useful information to non-technical users.

Monitoring Environment Metrics with Prometheus | 519

• What Application Fits Your Needs: If you are working for a larger company,
they will most likely have a list of applications you can choose from. It should
not be one size fits all though. The application you decide to use to monitor your
environment should be fit for purpose and agreed upon by everyone involved in
the project.

This is where Prometheus comes in. In this chapter, we will use Prometheus as a
monitoring solution as it is widely adopted, open-source, and free to use. There are a
number of other free and enterprise applications available in the market that provide
similar monitoring, including self-hosted applications such as Nagios and SCOM,
through to newer subscription-based services, including New Relic, Sumo Logic,
and Datadog. Prometheus was built from a specific need to monitor services on the
cloud. It provides class-leading functionality that is ahead of the other major players
in the market.

Some of the other applications also provide log collection and aggregation, but we
have assigned this to a separate application and will be dedicating our next chapter
to log management for our Docker environment. Prometheus is only focused on
metrics collection and monitoring, and as there are suitable free and open-source
alternatives in log management, it has not moved to incorporate log management as
part of its focus.

Monitoring Environment Metrics with Prometheus
Prometheus was originally created and developed by SoundCloud as they
needed a way to monitor their highly dynamic container environments and were
not satisfied with the current tooling at the time because they felt it didn't fit their
needs. Prometheus was developed as a way for SoundCloud to monitor not only
their containers but also the underlying hosting hardware and orchestration running
their services.

Its initial creation was back in 2012, and since then, the project has been free and
open source and part of the Cloud Native Computing Foundation. It has also been
widely adopted by companies across the globe needing to gain more insight into
how their cloud environments are performing.

Prometheus works by gathering metrics of interest from our system and stores these
in its local on-disk, time-series database. It does this by scraping an HTTP endpoint
provided by the service or application you are collecting data from.

520 | Monitoring Docker Metrics

The endpoint can either be written into the application to provide a basic web
interface providing metrics related to the application or service, or it can be provided
by an exporter that will take data from the service or application and then expose it in
a form that is understandable to Prometheus.

Note

This chapter mentions the HTTP endpoint on a number of occasions, and
this may lead to confusion. You will see later in this chapter that the HTTP
endpoint is a very basic HTTP web page provided by the service or an
application. As you'll see shortly, this HTTP web page provides a list of all
the metrics the service exposes to Prometheus and also provides a metrics
value that is stored in the Prometheus time-series database.

Prometheus includes a number of components:

• Prometheus: The Prometheus application performs the scraping and collecting
of metrics and stores them in its time-series database.

• Grafana: The Prometheus binary also includes a basic web interface to help
you start to query the database. In most cases, Grafana will also be added
to the environment to allow a more visually appealing interface. It will allow
dashboards to be created and stored to allow metric monitoring in a much
easier manner.

• Exporters: Exporters provide Prometheus with the metrics endpoints needed
to collect data from the different applications and services. In this chapter, we
will enable the Docker daemon to export data and install cAdvisor to provide
metrics on the specific containers running on our system.

• AlertManager: Although not covered in this chapter, AlertManager will
usually be installed with Prometheus to trigger an alert when services are
down or other alerts that are triggered in your environment.

Prometheus also provides a web-based expression browser to allow you to then
view and aggregate the time-series metrics you have collected using the functional
PromQL query language. This means you are able to view your data as you collect it.
The expression browser is a little limited but can be integrated with Grafana to allow
you to create dashboards, monitoring services, and AlertManager to allow you to
trigger alerts and be notified when needed.

Monitoring Environment Metrics with Prometheus | 521

Prometheus is easy to install and configure (as you'll see shortly) and collects data on
itself to allow you to start testing your application.

Due to the rate of adoption and popularity of Prometheus, many companies have
created exporters for their applications and services. We will be giving you some
examples of the exporters available throughout this chapter.

It's now time to get your hands dirty. In the following exercise, you will download and
run the Prometheus binary on your own system to start monitoring the services.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

Exercise 13.01: Installing and Running Prometheus

In this exercise, you will download and unpack the Prometheus binary, start the
application, and explore the web interface and some basic configurations of
Prometheus. You will also practice monitoring metrics, such as the total HTTP
requests made to the Prometheus interface.

Note

As of the time of writing this book, the latest version of Prometheus is
version 2.15.1. The latest version of the application can be found at the
following URL: https://prometheus.io/download/.

1. Locate the latest version of Prometheus to install. Use the wget command
to bring the compressed archive onto your system. The URL you use in your
command may differ from the one here, depending on your operating system
and the version of Prometheus you are using:

wget https://github.com/prometheus/prometheus/releases/download/
v2.15.1/prometheus-2.15.1.<operating-system>-amd64.tar.gz

2. Uncompress the Prometheus archive you downloaded in the previous step using
the tar command. The following command uses the zxvf options to unzip the
file, and then extract the archive and files, with verbose output:

tar zxvf prometheus-2.15.1.<operating-system>-amd64.tar.gz

522 | Monitoring Docker Metrics

3. The archive provides a fully created Prometheus binary application ready to
be started up. Move into the application directory to look through some of the
import files included in the directory:

cd prometheus-2.15.1.<operating-system>-amd64

4. List the files in the application directory using the ls command to look into the
important files in our application:

ls

Make note of the output as it should look similar to the following, with the
prometheus.yml file being our configuration file. The prometheus file
is the application binary and the tsdb and data directories are where our
time-series database data is stored:

LICENSE console_libraries data prometheus.yml tsdb

NOTICE consoles prometheus promtool

In the preceding directory listing, take note that the console_libraries and
consoles directories include the binaries provided to view the Prometheus
web interface we will work in shortly. The promtool directory includes tools
you can use to work with Prometheus, including a configuration check tool to
make sure your prometheus.yml file is valid.

5. If there is no issue with your binary and the application is ready to run, you
should be able to verify the version of Prometheus. Run the application from
the command line using the --version option:

./prometheus --version

The output should look like the following:

prometheus, version 2.15.1 (branch: HEAD, revision:
8744510c6391d3ef46d8294a7e1f46e57407ab13)
 build user: root@4b1e33c71b9d

 build date: 20191225-01:12:19

 go version: go1.13.5

6. You won't be making any changes to your configuration file, but before you
get started, make sure it has valid information for Prometheus. Run the cat
command to view the content of the file:

cat prometheus.yml

Monitoring Environment Metrics with Prometheus | 523

The number of lines in the output has been reduced here. As you can see
from the following output, your global scrap_interval parameter and
evaluation_interval parameter is set to 15 seconds:

my global config

global:

 scrape_interval: 15s # Set the scrape interval to every

15 seconds. Default is every 1 minute.

 evaluation_interval: 15s # Evaluate rules every 15 seconds.

The default is every 1 minute.

 # scrape_timeout is set to the global default (10s).

…

If you have a moment to look over the prometheus.yml configuration file,
you will notice that it is separated into four main sections:

global: This controls the server's global configurations. The configurations
include scrape_interval, to know how often it will scrape the target, and
evaluation_interval, to control how often it will evaluate rules to create
time-series data and generate rules.

alerting: By default, the configuration file will also have alerting set up
via AlertManager.

rule_files: This is where Prometheus will locate additional rules to load as
part of its metric gathering. rule_files points to a location where the rules
are stored.

scrape_configs: These are the resources Prometheus will monitor.
Any additional targets we wish to monitor will be added to this section of
the configuration file.

7. Starting Prometheus is simply a matter of running the binary and specifying
the configuration file you would like it to use with the --config.file
command-line option. Run the following command to start Prometheus:

./prometheus --config.file=prometheus.yml

After a few seconds, you should hopefully see the message that the "Server
is ready to receive web requests.":

…

msg="Server is ready to receive web requests."

524 | Monitoring Docker Metrics

8. Enter the URL http://localhost:9090. Prometheus provides an easy-to-
use web interface. If the application has started up correctly, you should now be
able to open a web browser on your system. You should have the expression
browser presented to you, similar to the following screenshot.
Although the expression browser doesn't look very impressive, it does have
some good functionality out of the box. It is set up in three distinct sections.

The Main Menu: The main menu across the top of the screen, with a black
background, allows you to view extra configuration details via the Status
drop-down menu, shows you the alert history with the Alerts option, and
brings you back to the main expression browser screen with the Prometheus
and Graph options.

The Expression Editor: This is the top textbox where we can enter our PromQL
queries or select a metric from the drop-down list. You then click on the
Execute button to start displaying data.

The Graph and Console Display: Once you decide what data you wish to
query, it will be displayed in both the Console tab in a table format and in a
time-series graph format in the Graph tab, with the option to add more graphs
down the web page using the Add Graph button:

Figure 13.1: Loading the expression browser for the first time

Monitoring Environment Metrics with Prometheus | 525

9. Click the Status drop-down menu. You'll get to see the following image with
useful information, including Runtime & Build Information to display
details of the version running, Command-Line Flags to run the application
with, Configuration, which displays the current config file running,
and Rules for alerting rules. The final two options in the drop-down menu
show Targets, which you are currently scraping data from, and Service
Discovery, which is showing automatic services that are being monitored:

Figure 13.2: Status drop-down menu

526 | Monitoring Docker Metrics

10. From the Status menu, select the Targets option and you will be able
to see what Prometheus is scraping data from. You can also get the same
result by going to the URL HTTP:localhost:9090/targets. You should
see a screenshot similar to the following, as Prometheus is currently only
monitoring itself:

Figure 13.3: The Prometheus Targets page

11. Click the target endpoint. You will be able to see the metrics exposed by the
target. You can now see how Prometheus makes use of its pull architecture
to scrape data from its targets. Click the link or open a browser and enter the
URL http://localhost:9090/metrics to see the Prometheus metrics
endpoint. You should see something similar to the following, showing all the
metrics points Prometheus is exposing to then be scraped by itself:

HELP go_gc_duration_seconds A summary of the GC invocation

durations.

TYPE go_gc_duration_seconds summary

go_gc_duration_seconds{quantile="0"} 9.268e-06

go_gc_duration_seconds{quantile="0.25"} 1.1883e-05

go_gc_duration_seconds{quantile="0.5"} 1.5802e-05

go_gc_duration_seconds{quantile="0.75"} 2.6047e-05

go_gc_duration_seconds{quantile="1"} 0.000478339

go_gc_duration_seconds_sum 0.002706392

…

Monitoring Environment Metrics with Prometheus | 527

12. Return to the expression browser by either clicking the back button or by
entering the URL http://localhost:9090/graph. Click the drop-down
list next to the Execute button to see all the metric points available:

Figure 13.4: Prometheus metrics available from the expression browser

528 | Monitoring Docker Metrics

13. From the drop-down list or in the query editor, add the prometheus_
http_requests_total metrics to view all the HTTP requests made to the
Prometheus application. Your output may differ from the following. Click the
Execute button and click the Graphs tab to see a visual view of our data:

Figure 13.5: Prometheus HTTP requests graph displayed from the expression browser

Don't worry if you are still a little confused about what we have achieved so far.
In a short period, we've set up Prometheus and started collecting data on it. Even
though we have only been collecting data on Prometheus itself, we have been able
to demonstrate how we can now quickly and easily visualize the HTTP requests being
performed by the application. The next section will show you how to start to capture
data from Docker and your running containers by making small changes to your
Prometheus configurations.

Monitoring Docker Containers with Prometheus | 529

Monitoring Docker Containers with Prometheus
Prometheus monitoring is a great way to understand what the application is
capable of, but it doesn't do much more to help us with monitoring Docker and the
containers that we have running on our system. Fortunately, there are two ways
we can collect data to give us greater insights into our running containers. We can
expose metrics using the Docker daemon to Prometheus and can also install some
extra applications, such as cAdvisor, to collect further metrics on the containers
running on our system.

With some minor changes to the Docker configurations, we are able to expose
metrics to Prometheus to allow it to collect specific data of the Docker daemon
running on our system. This will go part of the way to collecting the metrics but will
not give us the metrics of the actual running containers. This is where we will then
need to install cAdvisor, which was created by Google specifically to collect our
running container metrics.

Note

If we needed to gather more metrics on the underlying hardware, Docker
and our containers are running on, we could also gather further metrics
using node_exporter. We will not be covering node_exporter
in this chapter but supporting documentation can be found at the
following URL:

https://github.com/prometheus/node_exporter.

With Docker already running on your host system, setting it up to allow Prometheus
to connect metrics from it is a matter of adding a configuration change to the /etc/
docker/daemon.json file. In most instances, the file will most likely be blank. If
you already have details in the file, you will simply add lines 2 and 3 from the following
example to your configuration file. Line 2 enables this experimental feature to
expose metrics for Prometheus to collect, and line 3 sets up the IP address and port
for these data points to be exposed to:

1 {

2 "experimental": true,

3 "metrics-addr": "0.0.0.0:9191"

4 }

530 | Monitoring Docker Metrics

Due to a change in configuration, the Docker daemon on your system will need to
be restarted for it to take effect. But once that occurs, you should then have metrics
available at the specified IP address and port you added to the daemon.json file.
In our instance above, this will be at http://0.0.0.0:9191.

To install cAdvisor, Google has provided an easy-to-use Docker image that can be
pulled from Google's Cloud Registry and run on your environment.

To run cAdvisor, you will run the image mounting all the directories that are
relevant to the Docker daemon and running containers. You also need to make sure
that you expose the port the metrics will be available on. By default, cAdvisor is
configured to expose metrics on port 8080, which you will not be able to change
unless you make changes to the underlying image of cAdvisor.

The following docker run command mounts the volumes on the container,
such as /var/lib/docker and /var/run, exposes port 8080 to the host
system, and finally uses the latest cadvisor image available from Google:

docker run \

 --volume=<host_directory>:<container_directory> \

 --publish=8080:8080 \

 --detach=true \

 --name=cadvisor \

 gcr.io/google-containers/cadvisor:latest

Note

Making changes to the underlying image of cAdvisor is not something
we will cover in this chapter, but you will need to refer to the cAdvisor
documentation and make specific changes to the cAdvisor code.

The cAdvisor image will also provide a useful web interface to view these
metrics. cAdvisor does not hold any historical data, so you need to collect
the data with Prometheus.

Monitoring Docker Containers with Prometheus | 531

Once the Docker daemon and cAdvisor have data available for Prometheus to
collect, we need to ensure we have a scheduled configuration to have the data
added to the time-series database. The prometheus.yml configuration file in
the application directory allows us to do this. You simply add a configuration to the
scrape_configs section of the file. As you can see from the following example,
you need to add a job_name parameter and provide details of where the metrics
are being provided as a targets entry:

 - job_name: '<scrap_job_name>'

 static_configs:

 - targets: ['<ip_address>:<port>']

Once the targets are available to Prometheus, you can then start searching for data.
Now that we've provided a breakdown of how you can start to collect Docker metrics
using Prometheus, the following exercise will show you how to perform this on your
running system.

Exercise 13.02: Collecting Docker Metrics with Prometheus

In this exercise, you will configure Prometheus to start collecting data from our
Docker daemon. This will allow you to see what resources are specifically being used
by the Docker daemon itself. You will also run the cAdvisor Docker image to start
collecting specific metrics on your running containers:

1. To start collecting data from the Docker daemon, you first need to enable this
functionality on your system. Start by opening the /etc/docker/daemon.
json file with your text editor and add in the following details:

1 {

2 "experimental": true,

3 "metrics-addr": "0.0.0.0:9191"

4 }

The changes you've made to the configuration file will expose the Docker
daemon metrics to allow Prometheus to scrape and store these values.
To enable this change, save the Docker configuration file and restart the
Docker daemon.

532 | Monitoring Docker Metrics

2. Verify this has worked by opening your web browser and using the URL
and port number you have set up in your configuration. Enter the URL
http://0.0.0.0:9191/metrics, and you should see a list of
metrics being exposed to allow Prometheus to scrape:

HELP builder_builds_failed_total Number of failed image builds

TYPE builder_builds_failed_total counter

builder_builds_failed_total{reason="build_canceled"} 0

builder_builds_failed_total{reason="build_target_not_reachable

_error"} 0

builder_builds_failed_total{reason="command_not_supported_

error"} 0

builder_builds_failed_total{reason="dockerfile_empty_error"} 0

builder_builds_failed_total{reason="dockerfile_syntax_error"} 0

builder_builds_failed_total{reason="error_processing_commands_

error"} 0

builder_builds_failed_total{reason="missing_onbuild_arguments_

error"} 0

builder_builds_failed_total{reason="unknown_instruction_error"} 0

…

3. You now need to let Prometheus know where it can find the metrics Docker is
exposing to it. You do this through the prometheus.yml file in the application
directory. Before you do this though, you will need to stop the Prometheus
service from running, so the additions to the configuration file will take effect.
Open the terminal Prometheus is running on and press Ctrl + C. You should see
an output similar to the following when you do this successfully:

level=info ts=2020-04-28T04:49:39.435Z caller=main.go:718

msg="Notifier manager stopped"

level=info ts=2020-04-28T04:49:39.436Z caller=main.go:730

msg="See you next time!"

4. Open the prometheus.yml configuration file in the application directory with
your text editor. Move to the end of the file in the scrape_configs section
and add lines 21 to 34. The additional lines will tell Prometheus that it can now
obtain metrics from the Docker daemon that has been exposed on IP address
0.0.0.0 and port 9191:

Monitoring Docker Containers with Prometheus | 533

prometheus.yml

21 scrape_configs:
22 # The job name is added as a label 'job=<job_name>' to any
 timeseries scraped from this config.
23 - job_name: 'prometheus'
24
25 # metrics_path defaults to '/metrics'
26 # scheme defaults to 'http'.
27
28 static_configs:
29 - targets: ['localhost:9090']
30
31 - job_name: 'docker_daemon'
32 static_configs:
33 - targets: ['0.0.0.0:9191']
34

The complete code for this step can be found at https://packt.live/33satLe.

5. Save the changes you have made to the prometheus.yml file and start the
Prometheus application again from the command line as shown here:

./prometheus --config.file=prometheus.yml

6. If you move back to the expression browser for Prometheus, you can
once again verify it is now configured to collect data from the Docker
daemon. Either select Targets from the Status menu or use the URL
http://localhost:9090/targets, which should now include the
docker_daemon job we specified in our configuration file:

Figure 13.6: Prometheus Targets now with docker_daemon

534 | Monitoring Docker Metrics

7. Verify that you are collecting data by searching engine_daemon_engine_
cpus_cpus. This value should be the same as the number of CPUs or cores
available on your host system. Enter this into the Prometheus expression
browser and click the Execute button:

Figure 13.7: docker_daemon CPUs available on the host system

8. The Docker daemon is limited to the amount of data it can expose to
Prometheus. Set up the cAdvisor image to collect details about your running
containers. Run this as a container made available by Google with the following
docker run command on the command line. The docker run command
uses the cadvisor:latest image stored in the Google Container Registry,
similar to Docker Hub. There is no need to log in to this registry; the image will
automatically be pulled to your system:

docker run \

 --volume=/:/rootfs:ro \

 --volume=/var/run:/var/run:ro \

 --volume=/sys:/sys:ro \

 --volume=/var/lib/docker/:/var/lib/docker:ro \

 --volume=/dev/disk/:/dev/disk:ro \

 --publish=8080:8080 \

 --detach=true \

Monitoring Docker Containers with Prometheus | 535

 --name=cadvisor \

 gcr.io/google-containers/cadvisor:latest

9. cAdvisor comes with a web interface that will give you some basic
functionality, but as it does not store historical data, you will be collecting the
data and storing it on Prometheus. For now, open another web browser session
and enter the URL http://0.0.0.0:8080 and you should see a web page
similar to the following:

Figure 13.8: The cAdvisor welcome page

10. Enter the URL http://0.0.0.0:8080/metrics to view all the data that
cAdvisor is displaying on the web interface.

Note

When changes are being made to the Prometheus configuration file, the
application will need to be restarted for the changes to take effect. In the
exercises we have been performing, we have been achieving this by
stopping the service instead to achieve the same result.

536 | Monitoring Docker Metrics

11. As you did with the Docker daemon, configure Prometheus to periodically scrape
data from the metrics endpoint. Stop the Prometheus application running and,
once again, open the prometheus.yml configuration file with your text editor.
At the bottom of the configuration, add in another configuration for cAdvisor
with the following details:

prometheus.yml

35 - job_name: 'cadvisor'
36 scrape_interval: 5s
37 static_configs:
38 - targets: ['0.0.0.0:8080']

The complete code for this step can be found at https://packt.live/33BuFub.

12. Save your configuration changes once again and run the Prometheus application
from the command line, as shown here:

./prometheus --config.file=prometheus.yml

If you now view the Targets available on the Prometheus web interface, you
should see something similar to the following, showing cAdvisor also available
on our interface:

Figure 13.9: Prometheus Targets page with cAdvisor added

Monitoring Docker Containers with Prometheus | 537

13. With the Targets page of Prometheus showing that cAdvisor is now
available and connected, it verifies that Prometheus is now collecting metrics
data from cAdvisor. You can also test this from the expression browser to
verify it is working as it should. Move into the expression browser by selecting
Graphs or Prometheus from the top menu. When the page loads, add the
following PromQL query to the query editor and click the Execute button:

(time() - process_start_time_
seconds{instance="0.0.0.0:8080",job="cadvisor"})

Note

We are starting to use some more advanced PromQL queries, and it may
look a little confusing. The next part of this chapter is dedicated to providing
you with a better understanding of the PromQL query language.

The query is using the process_start_time_seconds metric,
specifically for the cAdvisor application and the time() function to
add the total seconds. You should see a result similar to the following on
the expression browser:

Figure 13.10: cAdvisor uptime from the expression browser

538 | Monitoring Docker Metrics

With this exercise, we now have a running instance of Prometheus and are collecting
data from the Docker daemon. We have also set up cAdvisor to give us some
further information on the running container instances. The next part of this chapter
will discuss the PromQL query language in greater depth to help you become more
comfortable querying the metrics available from Prometheus.

Understanding the Prometheus Query Language
As we've seen in the previous parts of this chapter, Prometheus provides its own
query language called PromQL. It allows you to search, view, and aggregate the time-
series data stored in the Prometheus database. This section helps you understand
the query language further. There are four core metric types in Prometheus, and we
will start by describing each.

Counter

A counter counts elements over time; for example, this could be the number of visits
to your website. The count will only go up or it will reset when a service or application
is restarted. They are suited to counting the number of certain events at a point in
time. Each time the counter changes, the number will also be reflected in the data
you collect.

Counters usually end with the _total suffix. But due to the nature of counters,
each time a service is restarted, the counter will be set back to 0. Using the rate()
or irate() functions in our query, we will be able to view our metric rate over
time and disregard any time the counter is reset to 0. The rate() and irate()
functions both take in a range of values using the square brackets [] where you
specify a time value, such as [1m].

If you are interested in examples of counters in the data we are collecting,
open the metrics page for the data being collected for cAdvisor at the URL
http://0.0.0.0:8080/metrics. One of the first metrics provided is
container_cpu_system_seconds_total. If we look through the
metrics page, we will see the information provided on the metric value
and the type as listed here:

HELP container_cpu_system_seconds_total Cumulative system cpu time

consumed in seconds.

TYPE container_cpu_system_seconds_total counter

container_cpu_system_seconds_total{id="/",image="",name=""}

195.86 1579481501131

…

Understanding the Prometheus Query Language | 539

Now, we will look into the second metric type available in Prometheus, in other
words, gauges.

Gauges

Gauges are designed to handle values that may decrease over time and are designed
for any metric exposing the current state of something. Just like a thermometer or
fuel gauge, you would be able to see the current state value. Gauges are restricted in
their functionality because not all the data will be collected as there may be missing
values between time points. Therefore, they are less reliable than a counter, and so
counters are still used for time-series representations of data.

If we once again move to the metrics page for cAdvisor, you can see some
of our metrics being displayed as a gauge. One of the first metrics we see is
container_cpu_load_average_10s, which is provided as a gauge,
similar to the following values:

HELP container_cpu_load_average_10s Value of container cpu load

average over the last 10 seconds.

TYPE container_cpu_load_average_10s gauge

container_cpu_load_average_10s{id="/",image="",name=""} 0

1579481501131

…

The next section will take you through histograms, the third type of metric available
in Prometheus.

Histograms

Histograms are a lot more complex than gauges and counters and provide additional
information, like the sum of an observation. They are used to provide a distribution of
a set of data. Histograms use sampling and can be used to estimate quantiles on the
Prometheus server.

Histograms are less common than gauges and counters and do not seem to be set up
for cAdvisor, but we can see some available in our Docker daemon metrics. Move
to the URL http://0.0.0.0:9191/metrics and you'll be able to see that one
of the first histogram metrics listed is engine_daemon_container_actions_
seconds. This is the number of seconds the Docker daemon takes to process
each action:

HELP engine_daemon_container_actions_seconds The number of seconds

it takes to process each container action

540 | Monitoring Docker Metrics

TYPE engine_daemon_container_actions_seconds histogram

engine_daemon_container_actions_seconds_bucket{action="changes",

le="0.005"} 1

…

The next section will now cover the fourth metric type available, in other
words, summaries.

Summaries

Summaries are an extension of histograms and are calculated on the client-side.
They have the advantage of being more accurate, but they can be expensive for
the client, too. We can see an example of a summary in the Docker daemon
metrics where http_request_duration_microseconds is listed here:

HELP http_request_duration_microseconds The HTTP request latencies in
microseconds.
TYPE http_request_duration_microseconds summary

http_request_duration_microseconds{handler="prometheus",quantile=

"0.5"} 3861.5

…

Now, since we've explained the type of metrics available in PromQL, we can take a
further look at how these metrics can be implemented as a part of our queries.

Performing PromQL Queries
Running queries on the expression browser is easy, but you may not always
get the information you need. By simply adding the metric name, such as
countainer_cpu_system_seconds_total, we can get quite a few
responses. Though, the amount depends on the number of containers we have
on our system along with the returning values for each of the filesystems that are
running on our host system. To limit the number of responses provided in our result,
we can search for specific text using curly braces { }.

Consider the following examples. The following command provides the full name of
the "cadvisor" container we wish to view:

container_cpu_system_seconds_total{ name="cadvisor"}

The following example uses a regular expression compatible with GO. The command
looks for any names that start with ca and have further characters afterward:

container_cpu_system_seconds_total{ name=~"ca.+"}

Performing PromQL Queries | 541

The following code snippet is searching for any containers that do not have the name
value as blank by using the not equal to (!=) value:

container_cpu_system_seconds_total{ name!=""}

If we placed any of these metrics searches in the expression browser and created a
graph, what you would notice is that the graph would simply climb in a linear fashion
over time. As we mentioned earlier, this is because the metric container_cpu_
system_seconds_total is a counter and will only ever increase over time or be
set back to zero. With the use of functions, we can calculate more useful time-series
data. The following example uses the rate() function to calculate the per-second
rate for the matching time-series data. We have used [1m], which represents 1
minute. The higher the number, the smoother the graph will be:

rate(container_cpu_system_seconds_total{name="cadvisor"}[1m])

The rate function can only be used for a counter metric. If we had more than
one container running, we could then use the sum() function to add all the values
together and provide a graph by container name using the (name) function as we
have here:

sum(rate(container_cpu_system_seconds_total[1m])) by (name)

Note

If you would like to see a list of all the functions available in PromQL,
go to the following link provided by the official Prometheus documentation:

https://prometheus.io/docs/prometheus/latest/querying/functions/.

PromQL also lets us perform arithmetic from our queries. In the following example,
we are using the process_start_time_seconds metric and searching for the
Prometheus instance. We can subtract this time from the time() function, which
gives us the current date and time in epoch time:

(time() - process_start_time_
seconds{instance="localhost:9090",job="prometheus"})

Note

Epoch time is the number of seconds from January 1, 1970, and is
represented by a number; for example, 1578897429 is converted to
6:37 a.m. (GMT) on January 13, 2020.

542 | Monitoring Docker Metrics

We're hoping this primer in PromQL has given you some more insight into using
the query language within your projects. The following exercise will help enforce
what we have learned by specifically working further with monitoring our running
Docker containers.

Exercise 13.03: Working with the PromQL Query Language

In the following exercise, we will introduce a new Docker image onto your system to
help you demonstrate some of the available metrics specific to Docker while using
Prometheus. The exercise will reinforce what you have learned so far about the
PromQL query language with a tangible use case of gathering and displaying
metrics data for a basic website:

1. Open a new terminal and create a new directory, calling it web-nginx:

mkdir web-nginx; cd web-nginx

2. Create a new file in the web-nginx directory and call it index.html.
Open the new file with your text editor and add the following HTML code:

<!DOCTYPE html>

<html lang="en">

<head>

</head>

<body>

 <h1>

 Hello Prometheus

 </h1>

</body>

</html>

3. Run a new Docker container with the following command. By now, you should
be familiar with the syntax, but the following command will pull the latest nginx
image, name it web-nginx, and expose port 80 so that you can then view the
mounted index.html file you created in the previous step:

docker run --name web-nginx --rm -v ${PWD}/index.html:/usr/share/
nginx/html/index.html -p 80:80 -d nginx

Performing PromQL Queries | 543

4. Open a web browser and access http://0.0.0.0. The only thing you should
see is the greeting Hello Prometheus:

Figure 13.11: Sample web page

5. If Prometheus is not running on your system, open a new terminal and, from the
Prometheus application directory, start the application from the command line:

./prometheus --config.file=prometheus.yml

Note

We will not show screenshots of all the PromQL queries that we perform in
this part of the chapter as we don't want to waste too much space. But the
queries should all be valid for the running containers and system we have
set up.

6. The bulk of the cAdvisor metrics now available in Prometheus will start
with the word container. Use the count() function with the metric
container_memory_usage_bytes to see the count of the current
memory usage in bytes:

count(container_memory_usage_bytes)

The preceding query provides the 28 results on the system on which it
is running.

544 | Monitoring Docker Metrics

7. To limit the information you are looking for, either use the curly brackets to
search or, as in the following command, use not search (!=) for specific image
names. Currently, you only have two containers running with image names,
cAdvisor and web-nginx. By using the scalar() function, you can count
the number of containers you have running on your system over time. Click the
Execute button after entering the following query:

scalar(count(container_memory_usage_bytes{image!=""}) > 0)

8. Click the Graphs tab, and you should now have a plotted graph of the preceding
query. The graph should be like the following image in which you started up a
third image web-nginx container to show how the Prometheus expression
browser displays this type of data. Remember that you are only seeing one line
in the graph as this is the memory used by the two containers on our system and
there is not a separate memory usage value for both:

Figure 13.12: cAdvisor metrics from the expression browser

Performing PromQL Queries | 545

9. Use the container_start_time_seconds metric to get the Unix
timestamp of when the container started up:

container_start_time_seconds{name="web-nginx"}

You will see something like 1578364679, which is the number of seconds past
epoch time, which is 1 January 1970.

10. Use the time() function to get the current time and then subtract
container_start_time_seconds from this value to show how many
seconds the container has been running for:

(time() - container_start_time_seconds{name="web-nginx"})

11. Monitor HTTP requests on your application via Prometheus'
prometheus_http_request_duration_seconds_count
metric. Use the rate() function to plot a graph of the duration of
each HTTP request to Prometheus:

rate(prometheus_http_request_duration_seconds_count[1m])

Note

It would be great to be using the web-nginx container to view its
HTTP request time and latency, but the container has not been set up to
provide this information to Prometheus yet. We will address this shortly in
the chapter.

12. Use an arithmetic operator to divide prometheus_http_request_
duration_seconds_sum by prometheus_http_request_duration_
seconds_count, which will then provide the HTTP latency of the requests
made:

rate(prometheus_http_request_duration_seconds_sum[1m]) /
rate(prometheus_http_request_duration_seconds_count[1m])

13. Run the following command using the container_memory_usage_bytes
metric to see the memory being used by each of the running containers on your
system. In this query, we are using the sum by (name) command to add the
values per container name:

sum by (name) (container_memory_usage_bytes{name!=""})

546 | Monitoring Docker Metrics

If you execute the preceding query, you'll see the graph in the
expression browser showing the memory used by the web-nginx
and cAdvisor containers:

Figure 13.13: Memory of both the containers running on our system

This section has helped you gain a little more familiarity with the PromQL query
language and put together your queries to start viewing your metrics from the
expression browser. The following section will provide details on how you can start
to collect metrics from the apps and services you have created in Docker using
exporters to expose data in a Prometheus-friendly way.

Using Prometheus Exporters | 547

Using Prometheus Exporters
In this chapter, we have configured application metrics to provide data for
Prometheus to scrape and collect, so why do we need to worry about exporters? As
you have seen, Docker and cAdvisor have nicely exposed data endpoints from
which Prometheus can gather metrics. But these have limited functionality. As we
have seen from our new web-nginx site, there is no relevant data exposed by
the web page running on our image. We can use exporters to help gather metrics
from the application or service, and then provide data in a way that Prometheus can
understand and gather.

Although this may seem to be a major flaw in how Prometheus works, due to the
increase in the use of Prometheus and the fact that it is open-source, vendors and
third-party providers are now providing exporters to help you get your metrics from
the application.

This means that, by installing a specific library or using a prebuilt Docker image
to run your application, you can expose your metrics data for collection. As an
example, the web-nginx application we created earlier in this chapter is running
on NGINK. To get metrics on our web application, we could simply install the
ngx_stub_status_prometheus library onto our NGINX instance that is
running our web application. Or better still, we can find a Docker image that
someone has already built to run our web application.

Note

This section of the chapter has focused on NGINX Exporter, but exporters
for a large number of applications can be found in their supporting
documentation or with the Prometheus documentation.

In the following exercise, we will use our nginx container as an example and use an
exporter with our web-nginx container to expose metrics available to Prometheus
to collect.

548 | Monitoring Docker Metrics

Exercise 13.04: Using Metrics Exporters with Your Applications

So far, we've used an nginx container to provide a basic web page, but we do
not have specific metrics available for our web page. In this exercise, you will
use a different NGINX image, built with a metrics exporter that can be exposed
to Prometheus:

1. If the web-nginx container is still running, stop the container with the
following command:

docker kill web-nginx

2. Within Docker Hub, you have an image called mhowlett/ngx-stud-
status-prometheus, which already has the ngx_stub_status_
prometheus library installed. The library will allow you to set up an HTTP
endpoint to provide metrics to Prometheus from your nginx container.
Pull this image down onto your working environment:

docker pull mhowlett/ngx-stub-status-prometheus

3. In the previous exercise, you used the default NGINX configuration on
the container to run your web application. To expose the metrics to
Prometheus, you will need to create your configuration to override the
default configuration and provide your metrics as an available HTTP endpoint.
Create a file named nginx.conf in your working directory and add the
following configuration details:

daemon off;

events {

}

http {

 server {

 listen 80;

 location / {

 index index.html;

 }

 location /metrics {

 stub_status_prometheus;

 }

Using Prometheus Exporters | 549

 }

}

The preceding configuration will ensure that your server is still available on port
80 in line 8. Line 11 will ensure that your current index.html page is provided,
and line 14 will then set up a subdomain of /metrics to provide the details
available from the ngx_stub_status_prometheus library.

4. Provide the mount point for the index.html file to start up the web-nginx
container and mount the nginx.conf configuration you created in the
previous step using the following command:

docker run --name web-nginx --rm -v ${PWD}/index.html:/usr/html/
index.html -v ${PWD}/nginx.conf:/etc/nginx/nginx.conf -p 80:80 -d
mhowlett/ngx-stub-status-prometheus

5. Your web-nginx application should be running again, and you should be able
to see it from your web browser. Enter the URL http://0.0.0.0/metrics
to see the metrics endpoint. The results in your web browser window should
look similar to the following information:

HELP nginx_active_connections_current Current number of

active connections

TYPE nginx_active_connections_current gauge

nginx_active_connections_current 2

HELP nginx_connections_current Number of connections currently

being processed by nginx

TYPE nginx_connections_current gauge

nginx_connections_current{state="reading"} 0

nginx_connections_current{state="writing"} 1

nginx_connections_current{state="waiting"} 1

…

6. You still need to let Prometheus know that it needs to collect the data from the
new endpoint. So, stop Prometheus from running. Move into the application
directory again, and with your text editor, add the following target to the end of
the prometheus.yml configuration file:

prometheus.yml

40 - job_name: 'web-nginx'
41 scrape_interval: 5s
42 static_configs:
43 - targets: ['0.0.0.0:80']

The complete code for this step can be found at https://packt.live/3hzbQgj.

550 | Monitoring Docker Metrics

7. Save the changes to the configuration and start Prometheus running again:

./prometheus --config.file=prometheus.yml

8. Confirm whether Prometheus is configured to collect data from the new metrics
endpoint you have just created. Open your web browser and enter the URL
http://0.0.0.0:9090/targets:

Figure 13.14: Targets page showing web-nginx

In this exercise, you learned to add an exporter to an application running on your
environment. We first expanded on our previous web-nginx application to allow
it to display more than one HTTP endpoint. We then used a Docker image that
included the ngx_stub_status_prometheus library to allow us to display our
web-nginx statistics. We then configured Prometheus to gather these details from
the endpoint provided.

In the following section, we will set up Grafana to allow us to view our data a lot more
closely and provide user-friendly dashboards for the data we are collecting.

Extending Prometheus with Grafana | 551

Extending Prometheus with Grafana
The Prometheus web interface provides a functional expression browser that allows
us to search and view the data in our time-series database with limited installation.
It provides a graphical interface but doesn't allow us to save any of our searches
or visualizations. The Prometheus web interface is also limited as it cannot group
queries in dashboards. Also, there are not many visualizations that are provided by
the interface. This is where we can expand our collected data further with the use of
an application such as Grafana.

Grafana allows us to connect directly with the Prometheus time-series database and
perform queries and create visually appealing dashboards. Grafana can run as a
standalone application on a server. We can preconfigure the Grafana Docker image to
deploy onto our system, configured with a connection to our Prometheus database,
and with a basic dashboard already set up to monitor our running containers.

The following screen, Grafana Home Dashboard, is presented when you first log in to
Grafana. You can always return to this page by clicking on the Grafana icon at the top
left of the screen. This is the main work area where you can start to build dashboards,
configure your environment, and add users' plugins:

Figure 13.15: Grafana Home Dashboard

552 | Monitoring Docker Metrics

The left side of the screen is a handy menu that will help you configure Grafana
further. The plus symbol will allow you to add new dashboards and data sources
to your installation, while the dashboard icon (four squares) organizes all your
dashboards into one area to search and view. Underneath the dashboard icon is
the explore button, which provides an expression browser just like Prometheus
has in order to run PromQL queries, while the alerts icon (bell) takes you to the
window where you can configure alerts to trigger after different events occur.
The configuration icon takes you to the screen where you can configure how
Grafana operates, while the server admin icon allows you to manage who can
access your Grafana web interface and what privileges they can have.

Feel free to explore the interface further when you install Grafana in the next
exercise, but we will be working to automate the process as much as possible
to avoid making any changes to your working environment.

Exercise 13.05: Installing and Running Grafana on Your System

In this exercise, you will set up Grafana on your system and allow the application to
start using the data you have stored in your Prometheus database. You will install
Grafana using its Docker image, provide a brief explanation of the interface, and
begin to set up basic dashboards:

1. If Prometheus is not running, start it up again. Also, make sure that your
containers, cAdvisor, and the test NGINX server (web-nginx) are running:

./prometheus --config.file=prometheus.yml

2. Open the /etc/hosts file of your system and add a domain name to the host
IP of 127.0.0.1. Unfortunately, you will not be able to use the localhost IP
address you have been using to access Prometheus to automatically provision a
data source for Grafana. IP addresses such as 127.0.0.1, 0.0.0.0, or using
localhost will not be recognized as a data source for Grafana. Depending on
your system, you may have a number of different entries already added to the
hosts file. You will usually have the IP address of 127.0.0.1 listed as one of
the first IP addresses that will reference the domain of localhost and amend
prometheus to this line, as we have in the following output:

1 127.0.0.1 localhost prometheus

3. Save the hosts file. Open your web browser and enter the URL
http://prometheus:9090. The Prometheus expression browser
should now be displayed. You no longer need to provide the system
IP address.

Extending Prometheus with Grafana | 553

4. To automatically provision your Grafana image, you will need to mount a
provisioning directory from your host system. Create a provisioning
directory and ensure this directory includes extra directories for dashboards,
datasources, plugins and notifiers, as in the following command:

mkdir -p provisioning/dashboards provisioning/datasources
provisioning/plugins provisioning/notifiers

5. Create a file called automatic_data.yml in the provisioning/
datasources directory. Open the file with your text editor and enter the
following details to tell Grafana what data it will use to provide dashboards
and visualizations. The following details simply name the data source, provide
the type of data, and where to find the data. In this instance, this is your new
Prometheus domain name:

apiVersion: 1

datasources:

- name: Prometheus

 type: prometheus

 url: http://prometheus:9090

 access: direct

6. Now, create a file, automatic_dashboard.yml, in the provisioning/
dashboards directory. Open the file with your text editor and add the following
details. This simply provides the location of where future dashboards can be
stored on startup:

apiVersion: 1

providers:

- name: 'Prometheus'

 orgId: 1

 folder: ''

 type: file

 disableDeletion: false

 editable: true

 options:

 path: /etc/grafana/provisioning/dashboards

554 | Monitoring Docker Metrics

You've done enough to start up our Grafana Docker image. You are using the
supported Grafana image provided as grafana/grafana.

Note

We don't have any code to add as a dashboard as yet, but in the following
steps, you will create a basic dashboard that will be automatically
provisioned later in this exercise. If you wanted to, you could also search
the internet for existing dashboards that Grafana users have created and
provision them instead.

7. Run the following command to pull and start up the Grafana image. It mounts
your provisioning directory to the /etc/grafana/provisioning directory
on your Docker image using the -v option. It also uses the -e option to set
the administration password to secret using the GF_SECURITY_ADMIN_
PASSWORD environment variable, which will mean you won't need to reset the
administration password each time you log in to a newly started container.
Finally, you also use -p to expose port 3000 of your image to port 3000 of
our system:

docker run --rm -d --name grafana -p 3000:3000 -e "GF_SECURITY_ADMIN_
PASSWORD=secret" -v ${PWD}/provisioning:/etc/grafana/provisioning
grafana/grafana

Note

Although using a Grafana Docker image is convenient, you will lose all your
changes and dashboards each time the image restarts. That is why we will
provision the installation while demonstrating how to use Grafana at the
same time.

Extending Prometheus with Grafana | 555

8. You have started up the image on port 3000, so you should now be able to open
a web browser. Enter the URL http://0.0.0.0:3000 in your web browser.
It should display the welcome page for Grafana. To log in to the application,
use the default administrator account that has a username of admin and
the password we specified as the GF_SECURITY_ADMIN_PASSWORD
environment variable:

Figure 13.16: The Grafana login screen

556 | Monitoring Docker Metrics

9. When you log in, you'll be presented with the Grafana Home Dashboard.
Click the plus symbol on the left of the screen and select Dashboard to
add a new dashboard:

Figure 13.17: The Grafana welcome screen

Note

Your Grafana interface will most likely be displayed in the dark default
theme. We have changed ours to the light theme to make it easier to read.
To change this preference on your own Grafana application, you can click
the user icon at the bottom left of the screen, select Preferences, and
then search for UI Theme.

Extending Prometheus with Grafana | 557

10. Click on the Add new panel button.

11. To add a new query using Prometheus data, select Prometheus as the data
source from the drop-down list:

Figure 13.18: Creating our first dashboard in Grafana

12. In the metrics section, add the PromQL query sum (rate (container_
cpu_usage_seconds_total{image!=""}[1m])) by (name). The
query will provide the details of all the containers running on your system. It
will also provide the CPU usage of each overtime. Depending on the amount
of data you have, you may want to set Relative time to 15m in the Query
options drop down menu.

558 | Monitoring Docker Metrics

This example uses 15m to make sure you have enough data for the graph,
but this time range could be set to whatever you wish:

Figure 13.19: Adding dashboard metrics

13. Select the Show options button to add a title to your dashboard panel. In the
following image, the title of your panel is set as CPU Container Usage:

Figure 13.20: Adding a dashboard title

Extending Prometheus with Grafana | 559

14. Click the save icon at the top of the screen. This will give you the option to name
the dashboard— Container Monitoring in this instance. When you click
Save, you will then be taken to your completed dashboard screen, similar to the
one here:

Figure 13.21: Dashboard screen

15. At the top of the dashboard screen, to the left of the save icon, you will
have the option to export your dashboard in JSON format. If you do this,
you can use this JSON file to add to your provisioning directory. It will help
you install the dashboard into your Grafana image when you run it. Select
Export and save the file to the /tmp directory where the name of the
file will default to something similar to the name of the dashboard and the
timestamp data. In this example, it saved the JSON file as Container
Monitoring-1579130313205.json. Also make sure the Export for
sharing externally option is not turned on, as shown in the image below:

Figure 13.22: Exporting your dashboard as JSON

560 | Monitoring Docker Metrics

16. To add the dashboard to your provisioning file, you need to first stop
the Grafana image from running. Do this with the following docker
kill command:

docker kill grafana

17. Add the dashboard file you saved in Step 15 to the provisioning/
dashboards directory and name the file ContainerMonitoring.json
as a part of the copy, shown in the following command:

cp /tmp/ContainerMonitoring-1579130313205.json provisioning/
dashboards/ContainerMonitoring.json

18. Start the Grafana image again and log in to the application using the default
administration password:

docker run --rm -d --name grafana -p 3000:3000 -e "GF_SECURITY_ADMIN_
PASSWORD=secret" -v ${PWD}/provisioning:/etc/grafana/provisioning
grafana/grafana

Note

By provisioning the dashboard and data sources in this manner, this means
you will no longer be able to create dashboards from the Grafana web
interface. When you create a dashboard from now on, you will be presented
with an option to save the dashboard as a JSON file, as we did during the
exporting of our dashboard.

19. Log in to the home dashboard now. You should see the Container
Monitoring dashboard available as a recently accessed dashboard,
but if you click the home icon at the top of the screen, it will also show it
available in the General folder of your Grafana installation:

Extending Prometheus with Grafana | 561

Figure 13.23: Container monitoring dashboard available and provisioned

We have now set up a fully functional dashboard that loads automatically when we
run our Grafana Docker image. As you can see, Grafana provides a professional user
interface to help us monitor the resource usage of our running containers.

This has brought us to the end of this section, where we've shown you how you
can collect your metrics using Prometheus to help monitor how your container
applications are running. The following activities will use the knowledge you have
learned in the previous sections to expand your installation and monitoring further.

Activity 13.01: Creating a Grafana Dashboard to Monitor System Memory

In previous exercises, you've set up a quick dashboard to monitor the system CPU
being used by our Docker containers. As you saw in the previous chapter, it's also
important to monitor the system memory being used by our running containers
as well. In this activity, you are asked to create a Grafana dashboard that will
monitor the system memory being used by our running containers and add it
to our Container Monitoring dashboard, ensuring it can be provisioned
when our Grafana image is started up:

562 | Monitoring Docker Metrics

The steps you'll need to complete this activity are as follows:

1. Ensure your environment is being monitored by Prometheus and that Grafana
is installed on your system. Make sure you use Grafana to search over the
time-series data stored on Prometheus.

2. Create a PromQL query to monitor the container memory being used by your
running Docker containers.

3. Save the new dashboard panel on your Container Monitoring dashboard.

4. Ensure that the new and improved Container Monitoring dashboard is
now available and provisioned when you start up your Grafana container.

Expected Output:

You should see the newly created Memory Container usage panel on the top of
the dashboard when you start the Grafana container:

Figure 13.24: New dashboard panel displaying memory usage

Extending Prometheus with Grafana | 563

Note

The solution for this activity can be found via this link.

The next activity will make sure you are comfortable using exporters and adding new
targets to Prometheus to start tracking extra metrics in your panoramic trekking app.

Activity 13.02: Configuring the Panoramic Trekking App to Expose Metrics to

Prometheus

Your metrics monitoring environment is starting to look pretty good, but there are
some applications in your panoramic trekking app that could be providing extra
details and metrics to monitor—for example, the PostgreSQL application running
on your database. Choose one of the applications in the panoramic trekking app to
expose metrics to your Prometheus environment:

The steps you'll have to take in order to complete this activity are as follows:

1. Ensure Prometheus is running on your system and collecting metrics.

2. Choose a service or application running as part of the panoramic trekking
app and research how you can expose metrics for Prometheus to collect.

3. Implement your changes to your application or service.

4. Test your changes and verify that the metrics are available to be collected.

5. Configure a new target on Prometheus to collect the new panoramic
trekking app metrics.

6. Verify that you are able to query your new metrics on Prometheus.

564 | Monitoring Docker Metrics

Upon successful completion of the activity, you should see the postgres-web
target displayed on the Prometheus Targets page:

Figure 13.25: New postgres-web Targets page displayed on Prometheus

Note

The solution for this activity can be found via this link.

Summary | 565

Summary
In this chapter, we took a long look at metrics and monitoring our container
applications and services. We started with a discussion on why you need to have a
clear strategy on your metric monitoring and why you need to make a lot of decisions
before your project even starts development. We then introduced Prometheus and
gave an overview of its history, how it works, and why it has grown in popularity
over a very short period. It was then time to get back working again and we installed
Prometheus onto our system, became familiar with using the web interface, started
to gather metrics from Docker (with some minor changes), and by using cAdvisor,
collected metrics on the running containers.

The query language used by Prometheus can sometimes be a little confusing, so
we took some time to explore PromQL before looking at using exporters to collect
even more metrics. We finished up this chapter by integrating Grafana into our
environment, displaying our times-series data from Prometheus, and creating
useful dashboards and visualizations on the data we are collecting.

Our next chapter is going to continue the monitoring theme with the collection
and monitoring of log data from our running containers.

Overview

In the previous chapter, we made sure we were collecting metrics data for
our running Docker containers and services. This chapter builds on this and
dedicates itself to collecting and monitoring the logs for Docker containers
and the applications running on them. It will start with a discussion of
why we need to have a clear log monitoring strategy for our development
projects and discuss some of the things we need to remember. We will then
introduce the main player in our log monitoring strategy – that is, Splunk –
to collect, visualize, and monitor our logs. We'll install Splunk, forward log
data from our system and running containers, and use the Splunk query
language to set up monitoring dashboards that work with the log data we've
collected. By the end of this chapter, you will have the skills to set up a
centralized log monitoring service for your Docker container project.

Collecting Container Logs

14

568 | Collecting Container Logs

Introduction
Whenever something goes wrong with our running applications or service, the first
thing we usually look for in our application logs is a clue as to what is causing the
issue. So, it becomes important to understand how you'll be collecting logs and
monitoring log events for your project.

As we implement a microservice architecture with Docker, it becomes more
important to ensure we are able to see the logs our applications and containers
are generating. As the number of containers and services grows, trying to access
each running container individually becomes increasingly unwieldy as a means of
troubleshooting any issues that arise. For scalable applications, where they scale up
and down depending on demand, it may become increasingly difficult to track log
errors across multiple containers.

Ensuring we have a proper log monitoring strategy in place will help us troubleshoot
our applications and ensure our services are running at their optimum efficiency. It
will also help us to lessen the amount of time we spend searching through our logs.

There are a few things you will need to consider when building a log monitoring
strategy for your project:

• Your application will be using a framework to handle logs. Sometimes,
this can cause an overhead on the container, so make sure you are testing
your containers to ensure they are able to run without any issues with this
logging framework.

• Containers are transient, so the logs will be lost each time the container is shut
down. You must either forward the logs to a logging service or store the logs in
a data volume to make sure you can troubleshoot any issues that may arise.

• Docker contains a logging driver that's used to forward log events to a Syslog
instance running on the host. Unless you are using the Enterprise version of
Docker, the log command will not work (though it will for JSON) if you are
using a specific logging driver.

• Log aggregation applications will usually charge you for the amount of data
they are ingesting in their service. And, if you have a service deployed on your
environment, you will also need to think about storage requirements – especially
how long you plan to keep your logs.

Introducing Splunk | 569

• You will need to consider how your development environment will operate
compared to your production environment. For example, there is no need to
keep logs in your development environment for a long period, but production
may have a requirement for you to keep them for a while.

• You may not just need application data. You may need to collect logs for your
application, the container the application is running on, and the underlying
host and operating system on which both the application and the container
are running.

There are many applications we could use as part of our log monitoring strategy,
including Splunk, Sumo Logic, Nagios Logs, Data Dog, and Elasticsearch. In this
chapter, we have decided to use Splunk as our log monitoring application. It is one of
the oldest applications and has a large community of support and documentation. It
is also the best when it comes to working with data and creating visualizations.

You'll see in the following sections how easy it is to get the application up,
running, and configured so that you can start monitoring your system logs
and our container applications.

Introducing Splunk
Long before Docker's rise in popularity, Splunk was established in 2003 to help
companies discover some patterns and information from the bulk of data provided
by the growing number of applications and services in their environments. Splunk
is a software application that allows you to gather your logs and data from your
applications and hardware systems. It then lets you analyze and visualize the data
you have collected, usually in one central location.

Splunk allows you to enter your data in different formats, and in a lot of situations,
Splunk will be able to recognize the data format it is in. You can then use this data to
help troubleshoot your applications, create monitoring dashboards, and create alerts
on specific events when they occur.

Note

In this chapter, we'll only be touching the surface of what Splunk can do, but
if you're interested, there are a lot of valuable resources that will show you
how to gain operational intelligence from your data, and even use Splunk to
create machine learning and predictive intelligence models.

570 | Collecting Container Logs

Splunk provides a number of different products to suit your needs, including Splunk
Cloud for users and companies wanting to opt for a cloud log monitoring solution.

For our log monitoring strategy, we will be using Splunk Enterprise. It is easy to install
and comes with a large number of features. When using Splunk, you might already
know that license costs are charged by the amount of log data you send to Splunk,
which is then indexed. Splunk Enterprise allows you to index up to 500 MB of data
per day for free on a trial basis. After 60 days, you can either upgrade your license or
continue to work on a free license, which will continue to allow you to log 500 MB of
data per day. There is a developer license available to users, which can be applied for
and allows users to log 10 GB of data per day.

To get started with Splunk, we first need to understand its basic architecture. This will
be discussed in the following section.

Basic Architecture of Splunk Installation

By discussing the architecture of Splunk, you will get an idea of how each part works
and familiarize yourself with some of the terms that we will be using in this chapter:

• Indexers: For larger Splunk installations, it is recommended that you have
dedicated and replicated indexers set up as part of your environment. The role
of the indexer is to index your date – that is, organize the log data you have sent
to Splunk. It also adds metadata and extra information to help speed up the
searching process. The indexers will then store your log data, which is ready to
be used and queried upon by the search head.

• Search head: This is the main web interface where you perform search queries
and administer your Splunk installation. The search head will connect with the
indexers to query data that has been collected and stored on them. In larger
installations, you may even have numerous search heads to allow a larger
number of queries and reporting to take place.

• Data forwarders: These are usually installed on a system you would like to
collect logs on. It is a small application that is configured to collect logs on your
system and then push the data to your Splunk indexer.

Introducing Splunk | 571

In the following section, we will be using the official Splunk Docker image, where we
will be running both the search head and indexer on the active container. We will
continue to use Docker for our Splunk environment as it also provides indexers and
data forwarders as supported Docker images. These allow you to test and sandbox
an installation before you move forward with an installation.

Note

Please note that we are using the Splunk Docker image for simplicity. It will
allow us to remove the application, if needed. It is easy and straightforward
to install the application and run it on your system if you prefer this option.

Another important feature of Splunk is that it includes a large app ecosystem
provided by both Splunk and other third-party providers. These apps are usually
created to help users monitor services where logs are forwarded to Splunk and then
a third-party app will be installed on the search head. This will provide dashboards
and monitoring tools specifically for these logs. For example, you can forward
your logs from a Cisco device and then install a Cisco-provided Splunk app to start
monitoring your Cisco devices as soon as you start indexing data. You can create
your own Splunk app, but to have it listed as an officially provided app, it needs to be
certified by Splunk.

Note

For a complete list of both the free and paid Splunk apps that
are available, Splunk has set up their SplunkBase to allow users
to search for and download the available apps from the following
URL: https://splunkbase.splunk.com/apps/.

This has been a quick introduction to Splunk and should have helped you understand
some of the work we are going to be doing in the following sections. The best way to
get you familiar with Splunk, though, is to get the container running on your system
so that you can start to work with it.

https://splunkbase.splunk.com/apps/

572 | Collecting Container Logs

Installing and Running Splunk on Docker
As part of this chapter, we'll use the official Splunk Docker image to install it on our
system. Even though installing Splunk directly on your host system is not a difficult
process, installing Splunk as a container image will help extend our knowledge of
Docker and push our skills further.

Our Splunk installation will run both a search head and indexer on the same
container since the amount of data we'll be monitoring will be minimal. However, if
you were to use Splunk in a production environment with multiple users accessing
the data, you may need to look at installing dedicated indexers, as well as one or
more dedicated search heads.

Note

We will be using Splunk Enterprise Version 8.0.2 in this chapter. The
majority of the work that will be performed in this chapter will not be too
advanced and, as a result, should be compatible with the subsequent
version of Splunk in the future.

Before we start to work with Splunk, let's run through the three main directories used
by the Splunk application. Although we'll only be performing basic configurations and
changes, the following details will be beneficial in understanding how the directories
in the application are organized and, as you'll see, will help you with your Docker
container setup.

In the main Splunk application directory, usually installed as /opt/splunk/,
 you will see three main directories, as explained here:

• etc directory: This is where all the configuration information is held for our
Splunk installation. We will create a directory and mount the etc directory
as part of our running container to make sure any changes we make to the
configuration is kept and not destroyed when we turn off our application. This
will include user access, software settings and saved searches, dashboards, and
the Splunk app.

• bin directory: This is where all of Splunk's application and binary files are
stored. You won't need to access this directory or make changes to files in this
directory at this point, but it is something you may need to investigate further.

Installing and Running Splunk on Docker | 573

• var directory: Splunk's indexed data and application logs are stored in this
directory. When we first start working with Splunk, we won't bother keeping the
data we are storing in the var directory. But when we have ironed out all the
bugs with our deployment, we will mount the var directory to keep our indexed
data and make sure we can continue to search against it, even if our Splunk
container stops running.

Note

To download some of the applications and content used in this chapter, you
will need to sign up for an account on splunk.com to gain access to it. There
is no obligation to purchase anything or provide credit card details when
you sign up as it is just a means Splunk uses to track who is using
their application.

To run our Splunk container, we will pull the official image from Docker Hub and then
run a command similar to the following:

docker run --rm -d -p <port:port> -e "SPLUNK_START_ARGS=--accept-license"
-e "SPLUNK_PASSWORD=<admin-password>" splunk/splunk:latest

As you can see from the preceding command, we need to expose the relevant ports
needed for accessing different parts of our installation. You'll also note that there are
two environment variables we need to specify as part of our running container. The
first is SPLUNK_START_ARGS, which we have set to --accept-license, which
you'd normally accept when you install Splunk on a running server. Secondly, we
need to provide a value for the SPLUNK_PASSWORD environment variable. This is the
password used by the Administrator account, and it is the account you will use when
you first log in to Splunk.

We've provided a large amount of theory to get you ready for the next part of this
chapter. It's time to put this theory into practice and get our Splunk installation
running so that we can start collecting logs from our host system. In the following
exercise, we will install a Splunk data forwarder on our running host system to collect
logs to be forwarded to our Splunk indexer.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

http://splunk.com

574 | Collecting Container Logs

Exercise 14.01: Running the Splunk Container and Starting to Collect Data

In this exercise, you will get Splunk running using the official Splunk Docker image
available on Docker Hub. You will make some basic configuration changes to help
administer user access to the application on the image, and then you will install
a forwarder on your system so that you can start to consume logs in your
Splunk installation:

1. Create a new directory called chapter14:

mkdir chapter14; cd chapter14/

2. Pull the latest supported image from Docker Hub that has been created by
Splunk using the docker pull command. The repository is simply listed as
splunk/splunk:

docker pull splunk/splunk:latest

3. Run the Splunk image on your system with the docker run command. Use the
--rm option to make sure the container is removed fully when it is killed, the
-d option to have the container running as a daemon in the background of your
system, and the -p option to expose port 8000 on your host machine so that
you can view the applications on our web browser. Lastly, use the -e option to
provide environment variables to the system when you start up the container:

docker run --rm -d -p 8000:8000 -e "SPLUNK_START_ARGS=--accept-
license" -e "SPLUNK_PASSWORD=changeme" --name splunk splunk/
splunk:latest

In the preceding command, you are exposing port 8000 for the web interface,
accepting the Splunk license with one environment variable, and also setting an
administration password as changeme. The command is also running in the
background as a daemon with -d.

4. Splunk will take 1 or 2 minutes to start up. Use the docker logs command to
view the progress of the application:

docker logs splunk

When you see a similar line to the following showing Ansible playbook
complete, you should be ready to log in:

…

Ansible playbook complete, will begin streaming

Installing and Running Splunk on Docker | 575

5. Enter the URL http://0.0.0.0:8000 to access the web interface
of our Splunk installation. You should see something similar to the following.
To log in, use admin as the username and the password we set with the
SPLUNK_PASSWORD environment variable while running the image.
In this case, you will use changeme:

Figure 14.1: The Splunk web login page

Once you've logged in, you will be presented with the Splunk home screen, which
should look similar to the following. The home screen is divided into separate
sections, as outlined here:

Figure 14.2: The Splunk welcome screen

576 | Collecting Container Logs

The home screen can be broken down into the following sections:

- Splunk>: This is the icon at the top-left of the screen. It will bring you back to
your home screen at any time if you simply click on the icon.

- Apps Menu: This runs along the left-hand side of the screen and allows you to
install and configure Splunk apps.

- Menu Bar: This runs along the top of the screen and contains different options,
depending on the level of privileges you have with your account. As you have
logged in as the Administrator account, you get the full range of options. This
allows us to configure and manage how Splunk is run and how it is administered.
The main configuration option in the menu bar is Settings. It provides a
large drop-down list that lets you control the majority of the aspects of how
Splunk is run.

- Main Workspace: The main workspace fills the rest of the page and is where
you can start to search your data, set up dashboards, and start to visualize your
data. You can set a home dashboard so that each time you log in or click on the
Splunk> icon, you will also be presented with this dashboard. We will set the
home dashboard later in this chapter to show you how it is done.

6. You can start to make changes to our Splunk configurations, but if the container
stops running for some reason, all our changes will be lost. Instead, create a
directory where you can store all the relevant configuration information needed
for your Splunk environment. Stop the Splunk server you currently have running
with the following command:

docker kill splunk

7. Create a directory that can be mounted on the Splunk host. Call it testSplunk
for this purpose:

mkdir -p ${PWD}/testsplunk

Installing and Running Splunk on Docker | 577

8. Run the Splunk container again, this time using the -v option to mount the
directory you created in the previous step to the /opt/splunk/etc directory
on your container. Expose the extra port of 9997 in order to forward data to our
Splunk installation later in this exercise:

docker run --rm -d -p 8000:8000 -p 9997:9997 -e 'SPLUNK_START_ARGS=--
accept-license' -e 'SPLUNK_PASSWORD=changeme' -v ${PWD}/testsplunk:/
opt/splunk/etc/ --name splunk splunk/splunk

9. Once Splunk has started up again, log back into your Splunk web interface as the
Administrator account.

10. Add a new user to your system to make sure you are saving the relevant
configuration details in your mounted directory through the Settings
menu at the top of the screen. Click on the Settings menu:

Figure 14.3: The Splunk settings menu

11. With the Settings menu open, move to the bottom section and click on
Users in the Users and Authentication section. You should see a list
of all the users that have been created on your installation of Splunk. Only the
admin account will be listed in there so far. To create a new user, click on the
New User button at the top of the screen.

578 | Collecting Container Logs

12. You'll be presented with a web form where you can add your new user account
details. Fill in the details for the new user. Once you're happy with the details
you've added, click on the Save button at the bottom of the screen:

Figure 14.4: Creating new users on Splunk

13. To make sure you are now keeping this data on your mounted directory, move
back to your terminal to see whether the new user is stored in your mounted
directory. Simply list the directories in the testsplunk/users directory using
the following command:

ls testsplunk/users/

Installing and Running Splunk on Docker | 579

You should see that a directory has been set up for the new account you created
in the previous step; in this case, vincesesto:

admin splunk-system-user users.ini

users.ini.default vincesesto

14. It's time to start sending data to the Splunk instance running on your system.
Before you start collecting data from your running Docker containers, install
a forwarder on your running system, and start forwarding logs from there.
To access the forwarder specific to your system, go to the following URL and
download the forwarder specific to your operating system: https://www.splunk.
com/en_us/download/universal-forwarder.html.

15. Follow the prompts to accept the license so that you can use the application.
Also, accept the default options presented in the installation program:

Figure 14.5: Splunk forwarder installation program

https://www.splunk.com/en_us/download/universal-forwarder.html
https://www.splunk.com/en_us/download/universal-forwarder.html

580 | Collecting Container Logs

16. The forwarder will usually start automatically. Verify that the forwarder is
running by accessing your terminal and changing to the installation directory
on your system using the cd command. For the Splunk forwarder, the binary
and application files will be located in the /opt/splunkforwarder/bin/
directory:

cd /opt/Splunkforwarder/bin/

17. In the bin directory, check the status of the forwarder by running the
./splunk status command, as follows:

./splunk status

If it is running, you should see something similar to the following output:

splunkd is running (PID: 2076).

splunk helpers are running (PIDs: 2078).

18. If the forwarder did not start when the installation took place, run it from the
bin directory with the start option using the following command:

./splunk start

The output provided will show the Splunk daemon and services starting up. It will
also show the Process ID (PID) of the services that are running on the system:

splunkd is running (PID: 2076).

splunk helpers are running (PIDs: 2078).

Splunk> Be an IT superhero. Go home early.

...

Starting splunk server daemon (splunkd)...Done

Installing and Running Splunk on Docker | 581

19. You need to let the Splunk forwarder know where it needs to send its data. In
step 8 of this exercise, we made sure we ran our Splunk container with port
9997 exposed for this specific reason. Use the ./splunk command to tell
the forwarder to send the data to our Splunk container running on IP address
0.0.0.0 on port 9997 using the Administrator username and password for
our Splunk instance:

./splunk add forward-server 0.0.0.0:9997 -auth admin:changeme

The command should return an output similar to the following:

Added forwarding to: 0.0.0.0:9997.

20. Finally, to complete the setup of your Splunk forwarder, nominate some
log files to forward to our Splunk container. Use the ./splunk command
on the forwarder to monitor the files in the /var/log directory of our system
and send them to the Splunk container to be indexed so that we can start
viewing them:

./splunk add monitor /var/log/

21. After a few minutes, if everything has worked as it should, you should have
some log events ready to be viewed on your Splunk container. Move back to
your web browser and enter the following URL to open a Splunk search page:
http://0.0.0.0:8000/en-US/app/search/search.

Note

The following step uses a very basic Splunk search query to search over all
the data on your installation. If you have not worked with the Splunk query
language previously, don't worry; we'll spend an entire section, Working with
the Splunk Query Language, explaining the query language in more depth.

582 | Collecting Container Logs

22. Perform a basic search by simply adding an asterisk (*) as a search query, as
shown in the following screenshot. If everything has worked as it should, you
should start to see log events in the results area of the search page:

Figure 14.6: Splunk search window with data displayed from our forwarder

23. For the final part of this exercise, you will practice the easiest way to upload
data to Splunk, which is by simply uploading the file directly to your running
system. Download the sample data file named weblog.csv from https://packt.
live/3hFbh4C and place it in your /tmp directory.

24. Move back to your Splunk web interface and click on the Settings menu
option. Select Add Data from the right-hand side of the menu options, as
shown in the following screenshot:

https://packt.live/3hFbh4C
https://packt.live/3hFbh4C

Installing and Running Splunk on Docker | 583

Figure 14.7: Importing files directly into Splunk

25. Click Upload files from my computer toward the bottom of the screen:

Figure 14.8: Uploading files on Splunk

584 | Collecting Container Logs

26. The next screen will allow you to select the source file from your machine. Select
the weblog.csv file you downloaded earlier in this exercise. Click the Next
button at the top of the screen when you have selected the file.

27. Set Source Type to choose or accept in what format Splunk has viewed your
data. In this instance, it should have recognized your data as a .csv file. Click
the Next button.

28. The Input Settings page lets you set the name of your host but leave the
index as the default. Click the Review button:

Figure 14.9: Input settings page

Installing and Running Splunk on Docker | 585

29. Click the Submit button if all the entries look correct. Then, click Start
Searching, where you should see your search screen, along with the
sample web log data available and ready to be searched. It should look
similar to the following:

Figure 14.10: Searching imported files in Splunk

In a short amount of time, we have set up a Splunk search head and indexer on our
system and installed a Splunk forwarder to send logs into the indexer and search
head. We also manually added log data to our index so that we could view it.

The next part of this chapter will focus on getting your Docker container logs into the
new Splunk container we have running.

586 | Collecting Container Logs

Getting Container Logs into Splunk
Our log monitoring environment is starting to take shape, but we need to get our
Docker container logs into the application to make it worth the work. We have set up
our Splunk forwarder to send logs from our system to the /var/log directory. Up
until now, we have learned that we can simply mount the log file of our container and
use the Splunk forwarder to send logs to the Splunk indexer. This is one way to do
this, but Docker provides an easier option for sending logs to Splunk.

Docker provides a log driver specific to Splunk that will send our container logs via
our network to an HTTP Event Collector on our Splunk installation. We'll need to open
a new port to expose the Event Collector as Splunk uses port 8088 to collect data in
this method. So far, we've exposed ports 8000 and 9997 on our Splunk installation.
Before we proceed with the rest of this chapter, let's look at all the available ports and
how they function on Splunk:

• 8000: You've been using this port for the web application, and this is the
dedicated default web port used to access Splunk in your browser.

• 9997: This port is the default port used by Splunk forwarders to forward data to
the indexer. We exposed this port in the previous section of this chapter to make
sure we're able to collect logs from our running system.

• 8089: Splunk comes with an API that runs by default as part of the search head.
Port 8089 is where the API manager sits to interface with the API running on
your instance.

• 8088: Port 8088 needs to be exposed to allow information to be forwarded
to the Event Collector that's been set up on your system. In the upcoming
exercise, we'll use this port to start sending Docker container logs to an HTTP
Event Collector.

• 8080: If we had a larger Splunk installation with dedicated indexers, port 8080
is used for indexers to communicate among themselves and allow replication
among these indexers.

Getting Container Logs into Splunk | 587

Note

The web interface for Splunk runs by default on port 8000, but this may
clash with our Panoramic Trekking App if you are hosting the application on
the same port. If this does cause any issues, feel free to expose the port on
the Splunk container to something different, such as port 8080, as you will
still be able to access the web interface and it will not cause any issues with
our services using that port.

Once an HTTP Event Collector has been set up on Splunk, forwarding logs
to Splunk is simply a matter of adding the correct options to our docker run
command. The following sample command uses --log-driver=splunk to
signal to the running container to use the Splunk log driver.

It then needs to include further --log-opt options to make sure the logs are
forwarded correctly. The first is splunk-url, which is the URL your system is
currently being hosted on. As we don't have DNS set up, we can simply use the IP
address we are using to host our Splunk instance, along with the port of 8088. The
second is splunk-token. This is the token that's assigned by Splunk when you
create the HTTP Event Collector:

docker run --log-driver=splunk \

--log-opt splunk-url=<splunk-url>:8088 \

--log-opt splunk-token=<event-collector-token> \

<docker-image>

There is the option to add Splunk logging driver details to your Docker configuration
file. Here, you will need to add the following details to your daemon.json file in the
/etc/docker configuration file. This will only work if you have Splunk as a separate
application and not a Docker instance on your system. As we have set up our Splunk
instance as a Docker container, this option will not work. This is because the Docker
daemon will need to restart and connect to splunk-url listed in the configuration.
Of course, without the Docker daemon running, splunk-url will never be available:

{

 "log-driver": "splunk",

 "log-opts": {

 "splunk-token": "<splunk-token>",

 "splunk-url": "<splunk-url>::8088"

 }

}

588 | Collecting Container Logs

In the following exercise, we are going to extend our Splunk installation to open ports
specific for our HTTP Event Collector, which we'll also create. We will then start
to send logs from our containers into Splunk, ready for us to start viewing them.

Exercise 14.02: Creating an HTTP Event Collector and Starting to Collect

Docker Logs

In this exercise, you will create an HTTP Event Collector for your Splunk
installation and use the Docker log driver to forward your logs to your Event
Collector. You will use the random-logger Docker image, which is provided
by the chentex repository and available for use on Docker Hub, to generate
some logs in your system and demonstrate the use of Splunk further:

1. Start the Splunk image again, this time with port 8088 exposed to all our Docker
containers to push their logs to it:

docker run --rm -d -p 8000:8000 -p 9997:9997 -p 8088:8088 \

 -e 'SPLUNK_START_ARGS=--accept-license' \

 -e 'SPLUNK_PASSWORD=changeme' \

 -v ${PWD}/testsplunk:/opt/splunk/etc/ \

 --name splunk splunk/splunk:latest

2. Wait for Splunk to start up again and log back into the web interface with the
Administrator account.

3. Go to the Settings menu and select Data Inputs to create a new HTTP
Event Collector. Select HTTP Event Collector from the options list.

4. Click on the Global Settings button on the HTTP Event Collector
page. You will be presented with a page similar to the following. On this page,
click on the Enabled button, next to All Tokens, and make sure Enable
SLL is not selected as you will not be using SSL in this exercise. This will make
things a little easier for you. When you're happy with the details on the screen,
click the Save button to save your configurations:

Getting Container Logs into Splunk | 589

Figure 14.11: Enabling HTTP Event Collector on your system

5. When you return to the HTTP Event Collector page, click the New Token
button at the top-right of the screen. You'll be presented with a screen similar to
the following. This is where you'll set up your new Event Collector so that you can
collect your Docker container logs:

Figure 14.12: Naming your HTTP Event Collector on Splunk

The preceding screen is where you set the name of your new Event Collector.
Enter the name Docker Logs and, for the rest of the entries, accept the
defaults by leaving them blank. Click the Next button at the top of the screen.

590 | Collecting Container Logs

6. Accept the default values for the Input Settings and Review pages
until you see a page similar to the following, in which a new HTTP Event
Collector has been created with a token available. The token is displayed
as 5c051cdb-b1c6-482f-973f-2a8de0d92ed8. Yours will be different
as Splunk provides a unique token to allow for the secure transfer of data
from sources that are trusted by the user. Use this token to allow your Docker
containers to start logging data in your Splunk installation:

Figure 14.13: Completed HTTP Event Collector on Splunk

7. Use the hello-world Docker image to make sure you can send data to
Splunk. In this instance, add four extra command-line options as part of your
docker run command. Specify --log-driver as splunk. Provide the log
options as the splunk-url of our system, including port 8088, splunk-
token, which you created in the previous step, and, finally, state splunk-
=insecureipverify as true. This final option will limit the work required
in setting up your Splunk installation so that you won't need to organize the SSL
certificates that will be used with our Splunk server:

docker run --log-driver=splunk \

--log-opt splunk-url=http://127.0.0.1:8088 \

--log-opt splunk-token=5c051cdb-b1c6-482f-973f-2a8de0d92ed8 \

--log-opt splunk-insecureskipverify=true \

hello-world

The commands should return an output similar to the following:

Hello from Docker!

This message shows that your installation appears to be

Getting Container Logs into Splunk | 591

working correctly.

…

8. Return to the Splunk web interface and click the Start Searching button. If
you have already moved on from the previous screen, go to the Splunk search
page at http://0.0.0.0:8000/en-US/app/search/search. In the
search query box, enter source="http:Docker Logs", as shown in the
following screenshot. If everything has worked well, you should also see data
entries being provided by the hello-world image:

Figure 14.14: Starting to collect docker logs with Splunk

9. The previous step has shown that the Splunk installation is now able to collect
Docker log data, but you will need to create a new volume to store your index
data so that it is not destroyed every time you stop Splunk from running. Move
back into your terminal and kill the running splunk container:

docker kill splunk

592 | Collecting Container Logs

10. In the same directory where you created the original testsplunk directory,
create a new directory so that we can mount our Splunk index data. In this
instance, name it testsplunkindex:

mkdir testsplunkindex

11. From your working directory, start the Splunk image again. Mount the new
directory you just created in order to store your index data:

docker run --rm -d -p 8000:8000 -p 9997:9997 -p 8088:8088 \

 -e 'SPLUNK_START_ARGS=--accept-license' \

 -e 'SPLUNK_PASSWORD=changeme' \

 -v ${PWD}/testsplunk:/opt/splunk/etc/ \

 -v ${PWD}/testsplunkindex:/opt/splunk/var/ \

 --name splunk splunk/splunk:latest

12. Use the random-logger Docker image to generate some logs in your system.
In the following command, there's an added tag log option. This will mean that
each log event that's generated and sent to Splunk will also include this tag as
metadata, which can help you search for data when you are searching in Splunk.
By using the {{.Name}} and {{.FullID}} options, these details will be
automatically added, just like the container name and ID number will be
added as your tag when the container is created:

docker run --rm -d --log-driver=splunk \

--log-opt splunk-url=http://127.0.0.1:8088 \

--log-opt splunk-token=5c051cdb-b1c6-482f-973f-2a8de0d92ed8 \

--log-opt splunk-insecureskipverify=true \

--log-opt tag="{{.Name}}/{{.FullID}}" \

--name log-generator chentex/random-logger:latest

Note

If your Splunk instance is not running correctly or you have not configured
something correctly, the log-generator container will fail to connect or
run. You will see an error similar to the following:

docker: Error response from daemon: failed to
initialize logging driver:

Getting Container Logs into Splunk | 593

13. Once this is running, move back to the Splunk search page on the web interface
and in this instance, include the tag you created in the previous step. The
following query will ensure that only new data that has been provided by the
log-generator image will display in our Splunk output:

source="http:docker logs" AND "log-generator/"

Your Splunk search should result in something similar to the following. Here, you
can see the logs that have been generated by the log-generator image. You
can see that it is logging at random times and that each entry is now tagged with
the name and instance ID of your container:

Figure 14.15: Splunk search result

Our Splunk installation is coming along nicely as we've now been able to configure
the application to include an HTTP Event Collector and have started collecting
logs from the log-generator Docker image. Even if we stop our Splunk instance,
they should still be available for us to search and extract useful information.

The following section will provide a more in-depth demonstration of how to use the
Splunk query language.

594 | Collecting Container Logs

Working with the Splunk Query Language
The Splunk query language can be a little difficult to pick up, but once you do,
you'll find it helpful to interpret, analyze, and present your data from your Splunk
environment. The best way to get comfortable with the query language is to simply
dive in.

The following list describes a few things to take into account when working with the
query language:

• Narrow your search: The larger the amount of data you want to search over,
the longer your query will take to return a result. If you know the time frame or a
source, such as the one we created for docker logs, the query will return the
result faster.

• Use simple search terms: If you have an idea of what will be included in your
log (for example, ERROR or DEBUG), this is a great place to start with your search
terms as it will also help limit the amount of data you are receiving. This is
another reason why we used a tag in the previous section when adding logs to
our Splunk instance.

• Chain search terms: We can use AND to group search terms. We can also use
OR to search for logs with more than one search term use.

• Add wildcards to search multiple terms: The query language also has the
option to use wildcards, such as an asterisk. If you used the ERR* query, for
example, it would search for not only ERROR but also ERR and ERRORS.

• Extracted fields provide more details: Splunk will do its best to find and locate
fields in the log events, especially if your logs are in a known log format such as
Apache log file format or a recognizable format such as CSV or JSON logs. If you
are creating logs for your application, Splunk will do an amazing job of extracting
fields if you present your data as key-value pairs.

• Add functions to a group and visualize data: Adding functions to your search
terms can help you transform and present your data. They are usually added to
your search term with a pipe (|) character. The following exercise will use the
stats, chart, and timechart functions to help aggregate search results
and calculate statistics such as average, count, and sum. As an example,
if we are using a search term such as ERR*, we can then pipe this to the
stats command to count the number of times we see an error event:
ERR* | stats count

Working with the Splunk Query Language | 595

Splunk also provides handy tips when you are entering your query. Once you have
the basics down, it will help you provide additional functionality to your data.

In the following exercise, you will find that, even when Splunk cannot find your
extracted fields, you can create your own so that you can analyze your data.

Exercise 14.03: Getting Familiar with the Splunk Query Language

In this exercise, you will run through a series of tasks that demonstrate the basic
functionality of the query language and help you become more familiar with using it.
This will help you examine and visualize your own data:

1. Make sure your Splunk container is running and that the log-generator
container is sending data to Splunk.

2. When you log in to Splunk, from the home page, click Search & Reporting
app from the left-hand side menu or go to the URL http://0.0.0.0:8000/
en-US/app/search/search to bring up the search page.

3. When you get to the search page, you will see a textbox that says enter
search here. Start with a simple term such as the word ERROR, as shown
in the following screenshot, and press Enter to have Splunk run the query:

Figure 14.16: Splunk search page

596 | Collecting Container Logs

If you were to only enter the term ERR* with an asterisk (*) at the end
of the term, this should also give results similar to the ones shown in the
preceding screenshot.

4. Chain search terms together using AND to make sure our log events include
multiple values. Enter a search similar to sourcetype=htt* AND ERR* to
search for all HTTP Event Collector logs that are also showing ERR values in
their logs:

Figure 14.17: Chaining search terms together

Working with the Splunk Query Language | 597

5. The searches you enter will most likely default to searching through all the data
since your installation. Looking through all your data could result in a very time-
consuming search. Narrow this down by entering a time range to search over.
Click the drop-down menu to the right of the query textbox to limit the data
your search is run over. Limit the search to Last 24 hours:

Figure 14.18: Limiting searches with time ranges

598 | Collecting Container Logs

6. Look through the extracted fields on the left-hand side of the results page.
You'll notice that there are two sections. The first is SELECTED FIELDS, which
includes data specific to your search. The second is INTERESTING FIELDS.
This data is still relevant and part of your data but not specifically related to
your search query:

Figure 14.19: Extracted fields

7. To create the fields to be listed, click the Extract Your Own Fields link.
The following steps will walk through the process of creating new fields relevant
to the data the log-generator container is providing.

8. You'll be taken to a new page where you'll be presented with sample data from
the httpevent source type you have recently been searching on. First, you'll
need to select a sample event. Select the first line that is similar to the one listed
here. Click the Next button at the top of the screen to move on to the next step:

{"line":"2020-02-19T03:58:12+0000 ERROR something happened in this
execution.","source":"stdout","tag":"log-generator/3eae26b23d667bb122
95aaccbdf919c9370ffa50da9e401d0940365db6605e3"}

9. You'll then be asked to choose the method you want to use in order to extract
fields. If you are working with files that have a clear delimiter, such as a .SSV
file, use the Delimiters method. In this instance, though, you are going to use
the Regular Expression method. Click Regular Expression and then
click the Next button:

Working with the Splunk Query Language | 599

Figure 14.20: Field extraction method

10. You should now have one line of data where you can start to select fields to
extract. All the log data provided by the log-generator container is the
same, so this line will serve as a template for all the events Splunk receives.
As shown in the following screenshot, click ERROR, and when you're provided
with the opportunity to enter a field name, enter level, and then select the
Add Extraction button. Select the line of text after ERROR. In this example,
it is something happened in this execution. Add a field name of
message. Click the Add Extraction button. Then, click the Next button
when you have selected all the relevant fields:

Figure 14.21: Field extraction in Splunk

600 | Collecting Container Logs

11. You should now be able to see all the events with the new fields you have
highlighted. Click the Next button:

Figure 14.22: Events with the new fields

12. Finally, you'll be presented with a screen similar to the following. In the
Permissions section, click the All apps button to allow this field extraction
to occur across your entire Splunk installation, not limiting it to one app or the
owner. If you're happy with the extractions name and other options, click the
Finish button at the top of the screen:

Figure 14.23: Field extraction in Splunk completed

Working with the Splunk Query Language | 601

13. Move back into your search page and add sourcetype=httpevent to the
search query. Once it loads, look through the extracted fields. You should now
have the level and message fields you added as INTERESTING FIELDS. If
you click on the level field, you will get a breakdown of the number of events
received, similar to what's shown in the following screenshot:

Figure 14.24: Displaying field breakdown in the search results

602 | Collecting Container Logs

14. Use the stats function to count the number of events for each error level in
your logs. Do this by using the sourcetype=httpevent | stats count
by level search query for the results of your search from the previous step
and pipe the values of the stats function to count by level:

Figure 14.25: Using the stats function

15. The stats function gives you some nice information, but if you want to see the
data presented over a period of time, use the timechart function. Run the
sourcetype=httpevent | timechart span=1m count by level
query to give the result over a range of time. If you perform your search over the
past 15 minutes, the preceding query should give you a breakdown of data by
each minute. Click the Visualization tab under the search query textbox.
You will be presented with a graph representing the results of our search:

Working with the Splunk Query Language | 603

Figure 14.26: Creating visualizations from search results

You can use the span option in your query to group your data by minute (1m),
hour (5), day (1d), and so on.

604 | Collecting Container Logs

16. In the preceding screenshot, where it mentions the chart type (Column Chart),
you can change the type you currently have displayed. Click the Column Chart
text. It will let you select from a few different types of charts. In this instance, use
the line chart:

Figure 14.27: Selecting the chart type

Note

In the following steps, you are going to create a dashboard for your data
visualization. Dashboards are a way to display your data to users without
them needing to know anything specific about Splunk or the data involved.
It is perfect for non-technical users as you simply provide a URL to the
dashboard so that the user will simply load the dashboard to see the
information they need. Dashboards are also perfect for searches you
need to perform on a regular basis so as to limit the amount of work you
need to do.

Working with the Splunk Query Language | 605

17. When you are happy with the chart, click the Save As button at the top
of the screen and select the Dashboard Panel. You'll be presented with
a form similar to the one shown in the following screenshot. Create a new
dashboard called Log Container Dashboard that is Shared in
App (the current search app) with the specific panel you have just created,
named Error Level:

Figure 14.28: Creating dashboards from search results

606 | Collecting Container Logs

18. Click the Save button to create the new dashboard. You'll be given the
opportunity to view your dashboard when you click save. But if you need to view
the dashboard at a later stage, go to the app you've created the dashboard in (in
this case, the Search & Reporting app) and click the Dashboards menu
at the top of the screen. You will be presented with the available dashboards.
This is where you can click the relevant one. You'll notice you have two other
dashboards available that have been provided by default as part of your
Splunk installation:

Figure 14.29: Dashboards in Splunk

19. Open the Log Container dashboard you just created and click the Edit
button at the top of the screen. This will let you add a new panel to your
dashboard without you needing to move back to the search window.

20. When you click on the Edit button, you'll be given extra options to make
changes to the look and feel of your dashboard. Click the Add Panel
button now.

21. When you select Add Panel, you'll be presented with some extra selections
on the right-hand side of the screen. Click the New menu option and then select
Single Value.

Working with the Splunk Query Language | 607

22. Name the panel Total Errors and add sourcetype=httpevent AND
ERROR | stats count as the search string. The screen where you can add
the new dashboard panel should look similar to the following. It should provide
details regarding the Content Title and Search String:

Figure 14.30: Adding panels to your Splunk dashboard

23. Click the Add to Dashboard button to add the new panel to the bottom of
the dashboard as a single value panel.

24. While the dashboard is in edit mode, you can move and resize the panels if
needed and add extra headings or details. When you are happy with your new
panel, click the Save button at the top-right of the screen.

608 | Collecting Container Logs

Your dashboard should hopefully look similar to the following:

Figure 14.31: Adding new panels to your dashboards

Finally, your dashboard panel has some extra functions, which you can find by
clicking on the ellipses button at the top-right of the screen. If you are unhappy
with your dashboard, you can delete it from here.

25. Click the Set as Home Dashboard Panel option, which is available under
the ellipses button. This will take you back to the Splunk home screen, where
your Log Container Dashboard is now available and will be the first thing
you see when you log in to Splunk:

Figure 14.32: Log Container Dashboard

Splunk App and Saved Searches | 609

This exercise has shown you how to perform basic queries, chain them together
with functions, and start to create visualizations, dashboards, and panels. Although
we've only spent a brief amount of time on this subject, it should give you a lot more
confidence to work further with your Splunk queries.

In the next section, we will look at what Splunk apps are and how they can help to
separate your data, searches, reports, and dashboards into different areas.

Splunk App and Saved Searches
Splunk apps are a way for you to separate your data, searches, reports, and
dashboards into separate areas where you can then configure who can access what.
Splunk provides a large ecosystem to help third-party developers and companies
provide these apps to the general public.

We mentioned earlier in this chapter that Splunk also provides "SplunkBase" for
approved apps that have been certified for users by Splunk, such as apps for Cisco
Network Devices. It doesn't need to be an approved app for it to be available for use
on your system. Splunk allows you to create apps of your own, and if you need to,
you can distribute them in a packaged file across to users who wish to use them. The
whole point of Splunk apps, dashboards, and saved searches is to reduce the amount
of work that is duplicated, as well as providing information to non-technical users
when needed.

The following exercise will provide you with some hands-on experience in terms of
working with Splunk apps.

Exercise 14.04: Getting Familiar with Splunk Apps and Saved Searches

In this exercise, you will install new apps from SplunkBase and modify them to suit
your needs. This exercise will also show you how to save your searches for future use:

1. Make sure your Splunk container is running and that the log-generator
container is sending data to Splunk.

2. When you are logged back in to Splunk, click the cog icon next to the word
Apps in the Apps menu. When you are taken to the Apps page, you should see
something similar to the following. The page contains a list of all Splunk apps
currently installed on your system. You'll notice that some are enabled, while
some are disabled.

610 | Collecting Container Logs

You also have the option to browse more apps from the Splunk app base, install
an app from a file, or create your own Splunk app:

Figure 14.33: Working with the Apps page in Splunk

3. Click the Browse more apps button at the top of the screen.

4. You'll be taken to a page that provides a list of all the Splunk apps available to
your system. Some of them are paid, but the majority of them are free to use
and install. You can also search by name, category, and support level. Enter
Departures Board Viz in the search box at the top of the screen and
click Enter:

Figure 14.34: Departures Board Viz app

Splunk App and Saved Searches | 611

Note

This section uses the Departures Board Viz app as an example
because it is easy to use and install, with minimal changes needed. Each
app should give you some details on the type of information it uses and how
to start working with the data needed. You'll notice there are hundreds of
apps to choose from, so you're sure to find something that suits your needs.

5. You need to have registered with Splunk to be able to install and use the apps
available. Click the Install button for the Departures Board Viz app
and follow the prompts to sign in, if needed:

Figure 14.35: Installing the Departures Board Viz app

612 | Collecting Container Logs

6. If the installation was successful, you should be given the prompt to either open
the app you have just installed or return to the Splunk home page. Return to the
home page to see the changes you have made.

7. From the home page, you should now see that the new app, called Departures
Board Viz, has been installed. This is simply a visualization extension. Click the
Departures Board Vis button on the home screen to open the app:

Figure 14.36: Opening the Departures Board Viz app

8. When you open the app, it will take you to the About page. This is simply a
dashboard that provides details of the app and how to use it with your data.
Click the Edit button at the top of the screen to continue:

Figure 14.37: The About page of the Departures Board Viz app

Splunk App and Saved Searches | 613

9. Click Edit Search to add a new search that displays data specific to you.

10. Remove the default search string and place the sourcetype=httpevent
| stats count by level | sort - count | head 1 | fields
level search query in the textbox. The query will look through your
log-generator data and provide a count of each level. Then, sort the results
from the highest to lowest order (sort - count) and provide the level with
the top value (head 1 | fields level):

Figure 14.38: Adding a new search query

614 | Collecting Container Logs

11. Click the Save button to save the changes you've made to the visualization.
Instead of a city name that is provided by default by Departures Board
Viz, you should see the top error level provided in our data. As shown in the
following screenshot, the top error being reported in our logs is INFO:

Figure 14.39: Editing Splunk apps in Splunk

12. Now that you've added a Splunk app, you will create a very basic app of your
own to modify your environment further. Move back to the home screen and,
once again, click on the cog next to the Apps menu.

Splunk App and Saved Searches | 615

13. On the Apps page, click on the Create app button on the right-hand side of
the screen:

Figure 14.40: Splunk apps

616 | Collecting Container Logs

14. When you create an app of your own, you'll be presented with a form similar to
the one shown here. You are going to create a test app for your Splunk install. Fill
in the form using the information provided in the following screenshot, but make
sure you add values for Name and Folder Name. The version is also a required
field and needs to be in the form of major_version.minor_version.
patch_version. Add the version number as 1.0.0. The following example
has also selected the sample_app option instead of the barebones template.
This means the app will be filled with sample dashboards and reports that you
can modify for the data you are working on. You won't be working with any of
these sample dashboards and reports, so you can choose either. The Upload
asset option is only needed if you have a pre-created Splunk app available,
but in our instance, it can be left blank:

Figure 14.41: Creating a Splunk app

Splunk App and Saved Searches | 617

15. Click the Save button to create your new app and then move back to the home
screen of your installation. You'll notice that you now have an app listed on your
home screen called Test Splunk App. Click on your new app to open it up:

Figure 14.42: Test Splunk app on the home screen

16. The app won't look any different to the Search & Reporting app, but if
you click the Reports or Dashboards tab at the top of the screen, you
will notice that there will be some sample reports and dashboards in place. For
the time being, though, create a report you can refer to at a later date. Start by
making sure you are in the Search tab of your app.

17. Enter sourcetype=httpevent earliest=-7d | timechart span=1d
count by level into the query bar. You'll notice we have set the value to
earliest=-7d, which automatically selects the previous 7 days of data so that
you do not need to specify the time range for your search. It will then create a
time chart of your data, totaling the values by each day.

618 | Collecting Container Logs

18. Click the Save As button at the top of the screen and select Report from
the drop-down menu. You'll be presented with the following form so that you
can save your report. Simply name the report and provide a description before
clicking on the Save button at the bottom of the screen:

Figure 14.43: Creating saved reports in your Splunk app

19. When you click Save, you'll be given the option to view your new report.
It should look similar to the following:

Figure 14.44: Daily Error Levels report in Splunk

Splunk App and Saved Searches | 619

If you ever need to refer to this report again, you can click on the Reports tab
of your new Splunk app, and it will be listed with the sample reports that were
provided when the app was first created. The following screenshot shows the
Reports tab of your app with the sample reports listed, but you also have the
Daily Errors report you just created, which has been added to the top of
the list:

Figure 14.45: Reports page

This brings us to the end of this exercise, in which we have installed third-party
Splunk apps and created our own. This also brings us to the end of this chapter.
However, before you move on to the next chapter, make sure you work through
the activities provided next to reaffirm everything you've learned in this chapter.

Activity 14.01: Creating a docker-compose.yml File for Your Splunk Installation

So far, you have been running Splunk on a Docker container by simply using the
docker run command. It's time to use the knowledge you have gained in the
previous sections of this book to create a docker-compose.yml file so that you
can install and run our Splunk environment on your system when needed. As part of
this activity, add one of the containers being run as a part of the Panoramic Trekking
App. Also, ensure that you can view logs from the selected service.

620 | Collecting Container Logs

Perform the following steps to complete this activity:

1. Decide how you would like your Splunk installation to look once it is running
as part of your Docker Compose file. This will include mounting directories
and ports that need to be exposed as part of the installation.

2. Create your docker-compose.yml file and run Docker Compose.
Make sure it starts up your Splunk installation as per your requirements
in the previous step.

3. Once the Splunk installation is up and running, start up a service from the
Panoramic Trekking App and make sure you can send log data to your
Splunk setup.

Expected Output:

This should result in a screen similar to the following:

Figure 14.46: Expected output for Activity 14.01

Splunk App and Saved Searches | 621

Note

The solution for this activity can be found via this link.

The next activity will allow you to create a Splunk app and dashboard for the new
data being logged in Splunk.

Activity 14.02: Creating a Splunk App to Monitor the Panoramic Trekking App

In the previous activity, you made sure one of the services that had been set up as
part of the Panoramic Trekking App was logging data with your Splunk environment.
In this activity, you are required to create a new Splunk app within your installation
to specifically monitor your services and create a dashboard relevant to the service
logging data into Splunk.

The steps you'll need to follow in order to complete this activity are as follows:

1. Ensure your Splunk installation is running and that at least one service from the
Panoramic Trekking App is logging data into Splunk.

2. Create a new Splunk app and name it something relevant to monitoring
the Panoramic Trekking App. Make sure you can view it from the Splunk
home screen.

3. Create a dashboard relevant to the services you're monitoring and add some
visualizations to help you monitor your service.

622 | Collecting Container Logs

Expected Output:

A dashboard similar to the following should be displayed upon successful completion
of this activity:

Figure 14.47: Expected solution for Activity 14.02

Note

The solution for this activity can be found via this link.

Summary | 623

Summary
This chapter taught you how applications such as Splunk can help you monitor
and troubleshoot your applications by aggregating your container logs into one
central area. We started this chapter with a discussion on the importance of a log
management strategy when working with Docker, and then introduced Splunk by
discussing its architecture, as well as some of the finer points on how to run
the application.

We worked directly with Splunk, running the Docker container image, and started to
forward logs from our running system. We then used the Splunk log driver to send
our container logs directly to our Splunk container, mounting important directories
to make sure our data was saved and available even after we stopped our container
from running. Finally, we took a closer look at the Splunk query language, with which
we created dashboards and saved searches and considered the advantages of the
Splunk app ecosystem.

The next chapter will introduce Docker plugins and teach you how to utilize them to
help extend your containers and the services running on them.

Overview

In this chapter, you will learn how to extend the capabilities of Docker
Engine by creating and installing plugins. You will see how to implement
your advanced and custom requirements while using Docker containers.
By the end of the chapter, you will be able to identify the basics of extending
Docker. You will also be able to install and configure different Docker
plugins. Moving ahead, you will work with the Docker plugin API to develop
custom plugins and use various Docker plugins to extend the capabilities of
volumes, networking, and authorization in Docker.

Extending Docker with

Plugins

15

626 | Extending Docker with Plugins

Introduction
In previous chapters, you ran multiple Docker containers with Docker Compose and
Docker Swarm. In addition, you monitored the metrics from containers and collected
the logs. Docker allows you to manage the complete life cycle of containers, including
networking, volumes, and process isolations. If you want to customize the operations
of Docker to work with your custom storage, network provider, or authentication
server, you need to extend the capabilities of Docker.

For instance, if you have a custom cloud-based storage system and you want to
mount it to your Docker containers, you can implement a storage plugin. Similarly,
you can authenticate your users from your enterprise user management system
using authorization plugins and allow them to work with Docker containers.

In this chapter, you will learn how to extend Docker with its plugins. You will start with
plugin management and APIs, followed by the most advanced and requested plugin
types: authorization, network, and volume. The next section will cover the installation
and operation of plugins in Docker.

Plugin Management
Plugins in Docker are external processes that run independently of Docker Engine.
This means that Docker Engine does not rely on plugins and vice versa. We just
need to inform Docker Engine about the plugin location and its capabilities.
Docker provides the following CLI commands to manage the life cycle of plugins:

• docker plugin create: This command creates a new plugin and
its configuration.

• docker plugin enable/disable: These commands enable or disable
a plugin.

• docker plugin install: This command installs a plugin.

• docker plugin upgrade: This command upgrades an existing plugin to a
newer version.

• docker plugin rm: This command removes plugins by removing their
information from Docker Engine.

• docker plugin ls: This command lists the installed plugins.

• docker plugin inspect: This command displays detailed information
on plugins.

Plugin API | 627

In the following section, you will learn how plugins are implemented in Docker with
the plugin API.

Plugin API
Docker maintains a plugin API to help the community write their plugins. This means
that anyone can develop new plugins as long as they implement it in accordance with
the plugin API. This approach makes Docker an open and extensible platform. The
plugin API is a Remote Procedure Call (RPC)-style JSON API that works over HTTP.
Docker Engine sends HTTP POST requests to the plugin and uses the responses to
continue its operations.

Docker also provides an official open-source SDK for creating new plugins and helper
packages to extend Docker Engine. The helper packages are boilerplate templates
if you want to easily create and run new plugins. Currently, there are only helper
packages in Go since Go is the main implementation language of Docker Engine itself.
It is located at https://github.com/docker/go-plugins-helpers and provides helpers for
every kind of plugin supported by Docker:

Figure 15.1: Go plugin helpers

https://github.com/docker/go-plugins-helpers

628 | Extending Docker with Plugins

You can check each folder listed in the repository to create and run different types of
plugins easily. In this chapter, you will explore the supported plugin types—namely,
authorization, network, and volume plugins—through several practical exercises.
The plugins enable Docker Engine to implement custom business requirements by
providing additional functionalities along with the default Docker functionalities.

Authorization Plugins
Docker authorization is based on two modes: all kinds of actions are enabled
or all kinds of actions are disabled. In other words, if a user can access the
Docker daemon, they can run any command and consume the API or Docker client
commands. If you need more granular access control methods, you need to use
authorization plugins in Docker. Authorization plugins enhance authentication and
permission for Docker Engine operations. They enable more granular access to
control who can take specific actions on Docker Engine.

Authorization plugins approve or deny the requests forwarded by Docker daemons
using the request context. Therefore, the plugins should implement the following
two methods:

• AuthZReq: This method is called before the Docker daemon processes
the request.

• AuthZRes: This method is called before the response is returned from the
Docker daemon to the client.

In the following exercise, you will learn how to configure and install an authorization
plugin. You will install the policy-based authorization plugin created and maintained
by Open Policy Agent (https://www.openpolicyagent.org/). Policy-based access is based
on the idea of granting access to the users based on some rules, namely policies. The
source code of the plugin is available on GitHub at https://github.com/open-policy-agent/
opa-docker-authz, and it works with policy files similar to the following:

package docker.authz

allow {

 input.Method = "GET"

}

https://www.openpolicyagent.org/
https://github.com/open-policy-agent/opa-docker-authz
https://github.com/open-policy-agent/opa-docker-authz

Authorization Plugins | 629

The policy files are stored in the host system where the Docker daemon can read. For
instance, the policy file shown here only allows GET as the method of the request. It
actually makes the Docker daemon read-only by disallowing any other methods, such
as POST, DELETE, or UPDATE. In the following exercise, you will use a policy file and
configure the Docker daemon to communicate with the authorization plugin and limit
some requests.

Note

Plugins and the commands in the following exercises work best in
Linux environments, considering the installation and the configuration
of the Docker daemon. If you are using a custom or toolbox Docker
installation, you may want to complete the exercises in this chapter
using a virtual machine.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

Exercise 15.01: Read-Only Docker Daemon with Authorization Plugins

In this exercise, you are required to create a read-only Docker daemon. This is a
common approach if you want to limit the access and changes to your production
environment. To achieve this, you will install and configure the plugin with a
policy file.

To complete the exercise, perform the following steps:

1. Create a file located at /etc/docker/policies/authz.rego by running
the following commands:

mkdir -p /etc/docker/policies

touch /etc/docker/policies/authz.rego

ls /etc/docker/policies

These commands create a file located at /etc/docker/policies:

authz.rego

630 | Extending Docker with Plugins

2. Open the file with an editor and insert the following data:

package docker.authz

allow {

 input.Method = "GET"

}

You can write the content into the file with the following commands:

cat > /etc/docker/policies/authz.rego << EOF

package docker.authz

allow {

 input.Method = "GET"

}

EOF

cat /etc/docker/policies/authz.rego

Note

The cat command is used to make the file content editable in the terminal.
Unless you are running Ubuntu in headless mode, you may skip using
CLI-based commands to edit the content of files.

The policy file only allows GET methods in the Docker daemon; in other words,
it makes the Docker daemon read-only.

3. Install the plugin by running the following command in your terminal and enter y
when it prompts for permissions:

docker plugin install --alias opa-docker-authz:readonly \

openpolicyagent/opa-docker-authz-v2:0.5 \

opa-args="-policy-file /opa/policies/authz.rego"

This command installs the plugin located at openpolicyagent/
opa-docker-authz-v2:0.5 with the alias opa-docker-
authz:readonly. In addition, the policy file from Step 1 is passed
as opa-args:

Authorization Plugins | 631

Figure 15.2: Plugin installation

4. Check for the installed plugins using the following command:

docker plugin ls

This command lists the plugins:

Figure 15.3: Plugin listing

5. Edit the Docker daemon configuration at /etc/docker/daemon.json with
the following edition:

{

 "authorization-plugins": ["opa-docker-authz:readonly"]

}

You can check the contents of the file with the cat /etc/docker/daemon.
json command.

6. Reload the Docker daemon with the following command:

sudo kill -HUP $(pidof dockerd)

This command kills the process of dockerd by getting its process ID with the
pidof command. In addition, it sends the HUP signal, which is the signal sent
to Linux processes to update their configuration. In short, you are reloading
the Docker daemon with the new authorization plugin configuration. Run the
following listing command to check whether the listing action is allowed:

docker ps

632 | Extending Docker with Plugins

This command lists the running containers, and it shows that the listing action
is allowed:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

7. Run the following command to check whether creating new containers
is permitted:

docker run ubuntu

This command creates and runs a container; however, since the action is not
read-only, it is not allowed:

Error response from daemon: authorization denied by plugin

opa-docker-authz:readonly: request rejected by administrative policy.

See 'docker run –-help'.

8. Check for the logs of the Docker daemon for any plugin-related lines:

journalctl -u docker | grep plugin | grep "OPA policy decision"

Note

journalctl is a command-line tool for displaying logs from systemd
processes. systemd processes store the logs in binary format.
journalctl is required to read the log texts.

The following output shows that the tested actions in Step 7 and Step 8 passed
through the authorization plugin with the "Returning OPA policy
decision: true" and "Returning OPA policy decision: false"
lines. It shows that our plugin has allowed the first action and declined the
second one:

Figure 15.4: Plugin logs

Network Plugins | 633

9. Stop using the plugin by removing the authorization-plugins part from /
etc/docker/daemon.json and reload the Docker daemon similar to what
was done in Step 6:

cat > /etc/docker/daemon.json << EOF

{}

EOF

cat /etc/docker/daemon.json

sudo kill -HUP $(pidof dockerd)

10. Disable and remove the plugin with the following commands:

docker plugin disable opa-docker-authz:readonly

docker plugin rm opa-docker-authz:readonly

These commands disable and remove the plugin from Docker by returning the
names of the plugins.

In this exercise, you have configured and installed an authorization plugin into
Docker. In the next section, you will learn more about networking plugins in Docker.

Network Plugins
Docker supports a wide range of networking technologies with the help of Docker
networking plugins. Although it supports container-to-container and host-to-
container networking with full functionality, the plugins enable us to extend
networking to further technologies. The networking plugins implement a remote
driver as a part of different network topologies, such as virtual extensible LAN
(vxlan) and MAC virtual LAN (macvlan). You can install and enable networking
plugins with the Docker plugin commands. Also, you need to specify the name of the
network driver with --driver flags. For instance, if you have installed an enabled
my-new-network-technology driver and want your new network to be a part of
it, you need to set a driver flag:

docker network create --driver my-new-network-technology mynet

634 | Extending Docker with Plugins

This command creates a network named mynet, and the my-new-network-
technology plugin manages all networking operations.

The community and third-party companies develop networking plugins. However,
there are currently only two certified networking plugins in Docker Hub – Weave Net
and Infoblox IPAM Plugin:

Figure 15.5: Networking plugins in Docker Hub

Infoblox IPAM Plugin focuses on providing IP address management services, such as
writing DNS records and configuring DHCP settings. Weave Net focuses on creating
resilient networking for Docker containers with encryption, service discovery, and
multicast networking.

Network Plugins | 635

The official SDK provided in go-plugin-helpers has Go handlers to create
network extensions for Docker. The Driver interface is defined as follows:

// Driver represent the interface a driver must fulfill.

type Driver interface {

 GetCapabilities() (*CapabilitiesResponse, error)

 CreateNetwork(*CreateNetworkRequest) error

 AllocateNetwork(*AllocateNetworkRequest)
 (*AllocateNetworkResponse, error)
 DeleteNetwork(*DeleteNetworkRequest) error

 FreeNetwork(*FreeNetworkRequest) error

 CreateEndpoint(*CreateEndpointRequest)
 (*CreateEndpointResponse, error)
 DeleteEndpoint(*DeleteEndpointRequest) error

 EndpointInfo(*InfoRequest) (*InfoResponse, error)

 Join(*JoinRequest) (*JoinResponse, error)

 Leave(*LeaveRequest) error

 DiscoverNew(*DiscoveryNotification) error

 DiscoverDelete(*DiscoveryNotification) error

 ProgramExternalConnectivity(*ProgramExternalConnectivityRequest)
 error
 RevokeExternalConnectivity(*RevokeExternalConnectivityRequest)
 error
}

Note

The complete code is available at https://github.com/docker/go-plugins-
helpers/blob/master/network/api.go.

When you check the interface functions, the networking plugins should provide
operations for networking, endpoints, and external connectivity. For instance, a
network plugin should implement a network life cycle with the CreateNetwork,
AllocateneNetwork, DeleteNetwork, and FreeNetwork functions.

https://github.com/docker/go-plugins-helpers/blob/master/network/api.go
https://github.com/docker/go-plugins-helpers/blob/master/network/api.go

636 | Extending Docker with Plugins

Similarly, the endpoint life cycle should be implemented by the CreateEndpoint,
DeleteEndpoint, and EndpointInfo functions. In addition, there are
some extension integration and management functions to implement, including
GetCapabilities, Leave, and Join. The services also need their specific
request and response types to work in a managed plugin environment.

In the following exercise, you will create a new network using the Weave Net plugin
and let containers connect using the new network.

Exercise 15.02: Docker Network Plugins in Action

Docker network plugins take over the network operations for specific network
instances and implement custom technologies. In this exercise, you will install
and configure a network plugin to create a Docker network. You will then create a
three-replica application of a Docker image and use the plugin to connect these
three instances. You can use the Weave Net plugin to achieve this goal.

To complete the exercise, perform the following steps:

1. Initialize a Docker swarm (if you have not enabled one before) by running the
following command in the terminal:

docker swarm init

This command creates a Docker swarm to deploy multiple instances of
the application:

Figure 15.6: Swarm initialization

Network Plugins | 637

2. Install the Weave Net plugin by running the following command:

docker plugin install --grant-all-permissions \

store/weaveworks/net-plugin:2.5.2

This command installs the plugin from the store and grants all permissions:

Figure 15.7: Plugin installation

3. Create a new network using the driver with the following command:

docker network create \

--driver=store/weaveworks/net-plugin:2.5.2 \

weave-custom-net

This command creates a new network named weave-custom-net using the
driver provided with the plugin:

Figure 15.8: Creating the network

Following the successful creation of the network, a randomly generated network
name will be printed as shown in the preceding code.

4. Create a three-replica application with the following command:

docker service create --network=weave-custom-net \

--replicas=3 \

--name=workshop \

-p 80:80 \

onuryilmaz/hello-plain-text

638 | Extending Docker with Plugins

This command creates three replicas of the onuryilmaz/hello-plain-
text image and uses the weave-custom-net network to connect the
instances. In addition, it uses the name workshop and publishes to the port 80:

Figure 15.9: Application creation

5. Get the names of the containers by running the following commands:

FIRST_CONTAINER=$(docker ps --format "{{.Names}}" |grep "workshop.1")

echo $FIRST_CONTAINER

SECOND_CONTAINER=$(docker ps --format "{{.Names}}" |grep
"workshop.2")
echo $SECOND_CONTAINER

THIRD_CONTAINER=$(docker ps --format "{{.Names}}" |grep "workshop.3")

echo $THIRD_CONTAINER

These commands list the running Docker container names and filter by
workshop instances. You will need the name of the containers to test the
connection between them:

Figure 15.10: Container names

Network Plugins | 639

6. Run the following command to connect the first container to the second one:

docker exec -it $FIRST_CONTAINER sh -c "curl $SECOND_CONTAINER"

This command connects the first and second containers using the
curl command:

Figure 15.11: Connection between containers

The preceding command is running inside the first container and the curl
command reaches the second container. The output shows the server and the
request information.

7. Similar to Step 6, connect the first container to the third one:

docker exec -it $FIRST_CONTAINER sh -c "curl $THIRD_CONTAINER"

As expected, different server names and addresses are retrieved in Step 6
and Step 7:

Figure 15.12: Connection between containers

This shows that the containers created using the custom Weave Net network are
working as expected.

8. You can delete the application and network with the following commands:

docker service rm workshop

docker network rm weave-custom-net

In this exercise, you have installed and used a networking plugin in Docker. Besides
that, you have created a containerized application that connects using a custom
network driver. In the next section, you will learn more about the volume plugins
in Docker.

640 | Extending Docker with Plugins

Volume Plugins
Docker volumes are mounted to containers to allow stateful applications to run in
containers. By default, volumes are created in the filesystem of the host machine
and managed by Docker. In addition, while creating a volume, it is possible to specify
a volume driver. For instance, you can mount volumes over network or storage
providers such as Google, Azure, or AWS. You can also run your database locally in
Docker containers while the data volumes are persistent in AWS storage services. This
way, your data volumes can be reused in the future with other database instances
running in any other location. To use different volume drivers, you need to enhance
Docker with volume plugins.

Docker volume plugins control the life cycle of volumes, including the Create,
Mount, Unmount, Path, and Remove functions. In the plugin SDK, the volume
driver interface is defined as follows:

// Driver represent the interface a driver must fulfill.

type Driver interface {

 Create(*CreateRequest) error

 List() (*ListResponse, error)

 Get(*GetRequest) (*GetResponse, error)

 Remove(*RemoveRequest) error

 Path(*PathRequest) (*PathResponse, error)

 Mount(*MountRequest) (*MountResponse, error)

 Unmount(*UnmountRequest) error

 Capabilities() *CapabilitiesResponse

}

Note

The complete driver code is available at https://github.com/docker/go-
plugins-helpers/blob/master/volume/api.go.

The functions of the driver interface show that volume drivers focus on basic
operations, such as Create, List, Get, and Remove operations, of the volumes.
The plugins are responsible for mounting and unmounting volumes to and from
containers. If you want to create a new volume driver, you need to implement this
interface with the corresponding request and response types.

https://github.com/docker/go-plugins-helpers/blob/master/volume/api.go
https://github.com/docker/go-plugins-helpers/blob/master/volume/api.go

Volume Plugins | 641

There are numerous volume plugins already available from Docker Hub and the
open-source community. For instance, there are currently 18 volume plugins
categorized and verified on Docker Hub:

Figure 15.13: Volume plugins in Docker Hub

Most of the plugins focus on providing storage from different sources, such as cloud
providers and storage technologies. Based on your business requirements and
technology stack, you may consider volume plugins in your Docker setup.

In the following exercise, you will create volumes in remote systems using SSH
connections and volumes in containers. For the volumes created and used over SSH
connections, you will use the open-source docker-volume-sshfs plugin
available at https://github.com/vieux/docker-volume-sshfs.

https://github.com/vieux/docker-volume-sshfs

642 | Extending Docker with Plugins

Exercise 15.03: Volume Plugins in Action

Docker volume plugins manage the life cycle of volumes by providing storage from
different providers and technologies. In this exercise, you will install and configure a
volume plugin to create volumes over an SSH connection. Following the successful
creation of the volumes, you will use them in containers and ensure that the files are
persisted. You can use the docker-volume-sshfs plugin to achieve this goal.

To complete the exercise, perform the following steps:

1. Install the docker-volume-sshfs plugin by running the following command
in your terminal:

docker plugin install --grant-all-permissions vieux/sshfs

This command installs the plugin by granting all the permissions:

Figure 15.14: Plugin installation

2. Create a Docker container with an SSH connection to provide volumes to other
containers with the following command:

docker run -d -p 2222:22 \

--name volume_provider \

rastasheep/ubuntu-sshd:14.04

This command creates and runs an sshd container named
volume_provider. Port 2222 is published and will be used to
connect to this container in the following steps.

You should get an output like the following:

87eecaca6a1ea41e682e300d077548a4f902fdda21acc218a51253a883f725d

Volume Plugins | 643

3. Create a new volume, named volume-over-ssh, by running the
following command:

docker volume create -d vieux/sshfs \

--name volume-over-ssh \

-o sshcmd=root@localhost:/tmp \

-o password=root \

-o port=2222

This command creates a new volume using the vieux/sshfs driver
and the ssh connection specified with sshcmd and the password and
port parameters:

volume-over-ssh

4. Create a new file and save it in the volume created in Step 3 by running the
following command:

docker run --rm -v volume-over-ssh:/data busybox \

sh -c "touch /data/test.txt && echo 'Hello from Docker Workshop' >> /
data/test.txt"

This command runs a container by mounting volume-over-ssh. It then
creates a file and writes into it.

5. Check the contents of the file created in Step 4 by running the
following command:

docker run --rm -v volume-over-ssh:/data busybox \

cat /data/test.txt

This command runs a container by mounting the same volume and reads the file
from it:

Hello from Docker Workshop

6. (Optional) Delete the volume by running the following command:

docker volume rm volume-over-ssh

In this exercise, you have installed and used a volume plugin in Docker. Furthermore,
you have created a volume and used it from multiple containers for writing
and reading.

644 | Extending Docker with Plugins

In the next activity, you will install WordPress in Docker using networking and
volume plugins.

Activity 15.01: Installing WordPress with Network and Volume Plugins

You are tasked with designing and deploying a blog and its database as microservices
in Docker using networking and volume plugins. You will be using WordPress since
it is the most popular Content Management System (CMS), being used by more
than one-third of all websites on the internet. The storage team requires you to use
volumes over SSH for the WordPress content. In addition, the network team wants
you to use Weave Net for networking between the containers. With these tools, you
will create networks and volumes using Docker plugins and use them for WordPress
and its database:

1. Create a Docker network (namely, wp-network) using the Weave Net plugin.

2. Create a volume with the name wp-content, using the vieux/sshfs driver.

3. Create a container with the name mysql to run the mysql:5.7 image. Ensure
that the MYSQL_ROOT_PASSWORD, MYSQL_DATABASE, MYSQL_USER, and
MYSQL_PASSWORD environment variables are set. In addition, the container
should use wp-network from Step 1.

4. Create a container with the name wordpress and use the volume from
Step 2 mounted at /var/www/html/wp-content. For the configuration of
WordPress, do not forget to set the WORDPRESS_DB_HOST, WORDPRESS_DB_
USER, WORDPRESS_DB_PASSWORD, and WORDPRESS_DB_NAME environment
variables in accordance with Step 3. In addition, you need to publish port 80 to
port 8080, reachable from the browser.

You should have the wordpress and mysql containers running:

Figure 15.15: The WordPress and database containers

Volume Plugins | 645

In addition, you should be able to reach the WordPress setup screen in
the browser:

Figure 15.16: WordPress setup screen

Note

The solution for this activity can be found via this link.

646 | Extending Docker with Plugins

Summary
This chapter focused on extending Docker with plugins. Docker operations can be
enhanced by custom storage, network, or authorization methods by installing and
using the Docker plugins. You first considered plugin management in Docker and the
plugin API. With the plugin API, you are free to extend Docker by writing new plugins
and make Docker work for you.

The chapter then covered authorization plugins and how the Docker daemon
is configured to work with the plugins. If you are using Docker in production or
enterprise environments, authorization plugins are essential tools to control who
can access your containers. You then explored network plugins and how they extend
communication between containers.

Although basic networking is already covered by Docker, we looked at how
networking plugins are the gateway to new networking capabilities. This led to the
final section, in which volume plugins were presented to show how custom storage
options are enabled in Docker. If your business environment or technology stack
requires you to extend Docker's capabilities, it is essential to learn the plugins and
how to use them.

The end of this chapter also brings us to the end of this book. You began this journey
all the way back in the first chapter learning the basics of Docker and running your
very first containers on your system and look at how far you have come. Just in the
course of this book, you have worked with Dockerfiles to create your images and
learned how to publish these images using a public repository such as Docker Hub
or to store your images on a repository running on your system. You have learned to
use multi-stage Dockerfiles and implement your services using docker-compose. You
have even mastered the finer details of networking and container storage, as well as
the implementation of CI/CD pipelines as part of your projects and testing as part of
your Docker image builds.

You practiced orchestrating your Docker environments using applications such as
Docker Swarm and Kubernetes, before taking a closer look at Docker security and
container best practices. Your journey then continued with real-world monitoring
of your service metrics and container logs, before finishing up with Docker plugins
to help extend your container service functionality. We've covered a lot of work to
improve your skills and knowledge of Docker. Hopefully, it has taken your experience
with the application to the next level. Please refer to the interactive version to learn
how to troubleshoot and report issues when things do go wrong. You will also get to
know about the current state of Docker Enterprise and the next big moves that will be
made when it comes to the usage and development of Docker.

Appendix

650 | Appendix

Chapter 1: Running My First Docker Container

Activity 1.01: Pulling and Running the PostgreSQL Container Image from Docker

Hub

Solution:

1. To start the Postgres Docker container, first determine what environment
variables are required to set the default username and password credentials
for the database. Reading through the official Docker Hub page, you can see
that you have configuration options for the POSTGRES_USER and POSTGRES_
PASSWORD environment variables. Pass the environment variables using the -e
flag. The final command to start our Postgres Docker container will be as follows:

docker run -itd -e "POSTGRES_USER=panoramic" -e "POSTGRES_
PASSWORD=trekking" postgres:12

Running this command will start the container.

2. Execute the docker ps command to verify that it is running and healthy:

$ docker ps

The command should return output like the following:

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

29f115af8cdd postgres:12 "docker-entrypoint.s…" 4 seconds ago

 Up 2 seconds 5432/tcp blissful_kapitsa

It can be seen from the preceding output that the container with the ID
29f115af8cdd is up and running.

In this activity, you have successfully started a PostgreSQL version 12 container that is
part of the Panoramic Trekking App, which will be built over the course of this book.

Chapter 1: Running My First Docker Container | 651

Activity 1.02: Accessing the Panoramic Trekking App Database

Solution:

1. Log in to the database instance using docker exec to start the PSQL
shell inside the container, passing in the --username flag and leaving the
--password flag empty:

$ docker exec -it <containerID> psql --username panoramic --password

This should prompt you for the password and start a PSQL shell.

2. Use the \l command to list all the databases:

psql (12.2 (Debian 12.2-2.pgdg100+1))

Type "help" for help.

panoramic=# \l

A list of databases running in the container will be returned:

Figure 1.4: List of databases

3. Finally, use the \q shortcut to exit from the shell.

4. Use the docker stop and docker rm commands to stop and clean up the
container instance.

In this activity, you accessed the database running in the container by logging in
using the credentials that were set up in Activity 1.01, Pulling and Running the
PostgreSQL Container Image from Docker Hub. You also listed the databases running
in the container. The activity gave you hands-on experience of how to access the
database running in any container using a PSQL shell.

652 | Appendix

Chapter 2: Getting Started with Dockerfiles

Activity 2.01: Running a PHP Application on a Docker Container

Solution:

1. Create a new directory named activity-02-01 for this activity:

mkdir activity-02-01

2. Navigate to the newly created activity-02-01 directory:

cd activity-02-01

3. Within the activity-02-01 directory, create a file named welcome.php:

touch welcome.php

4. Now, open welcome.php using your favorite text editor:

vim welcome.php

5. Create the welcome.php file with the content provided at the beginning of the
activity, and then save and exit from the welcome.php file:

<?php

$hourOfDay = date('H');

if($hourOfDay < 12) {

 $message = «Good Morning»;

} elseif($hourOfDay > 11 && $hourOfDay < 18) {

 $message = «Good Afternoon»;

} elseif($hourOfDay > 17){

 $message = «Good Evening»;

}

echo $message;

?>

6. Within the activity-02-01 directory, create a file named Dockerfile:

touch Dockerfile

Chapter 2: Getting Started with Dockerfiles | 653

7. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

8. Add the following content to the Dockerfile, and then save and exit from
the Dockerfile:

Start with Ubuntu base image

FROM ubuntu:18.04

Set labels

LABEL maintainer=sathsara

LABEL version=1.0

Set environment variables

ENV DEBIAN_FRONTEND=noninteractive

Install Apache, PHP, and other packages

RUN apt-get update && \

 apt-get -y install apache2 \

 php \

 curl

Copy all php files to the Docker image

COPY *.php /var/www/html

Set working directory

WORKDIR /var/www/html

Create health check

HEALTHCHECK --interval=5s --timeout=3s --retries=3 CMD curl -f
 http://localhost || exit 1

Expose Apache

EXPOSE 80

Start Apache

ENTRYPOINT ["apache2ctl", "-D", "FOREGROUND"]

654 | Appendix

We are starting this Dockerfile using the ubuntu base image followed by
setting a couple of labels. Next, the DEBIAN_FRONTEND environment variable
is set to noninteractive to make the package installations non-interactive.
Then, the apache2, php, and curl packages are installed, and PHP files are
copied to the /var/www/html directory. Next, the health check is configured
and port 80 is exposed. Finally, the apache2ctl command is used to start the
Apache web server.

9. Now, build the Docker image:

$ docker image build -t activity-02-01 .

You should get the following output after running the build command:

Figure 2.22: Building the activity-02-01 Docker image

10. Execute the docker container run command to start a new container
from the Docker image that you built in the previous step:

$ docker container run -p 80:80 --name activity-02-01-container -d
activity-02-01

Chapter 2: Getting Started with Dockerfiles | 655

Since you are starting the Docker container in detached mode (with the -d flag),
the preceding command will output the ID of the resulting Docker container.

11. Now, you should be able to view the Apache home page. Go to the
http://127.0.0.1/welcome.php endpoint from your favorite
web browser:

Figure 2.23: PHP application page

Note that the default Apache home page is visible. In the preceding output,
you received the output as Good Morning. This output may differ, appearing
as either Good Afternoon or Good Evening based on the time you run
this container.

12. Now, clean up the container. First, stop the Docker container with the docker
container stop command:

$ docker container stop activity-02-01-container

13. Finally, remove the Docker container with the docker container
rm command:

$ docker container rm activity-02-01-container

In this activity, we learned how to use the Dockerfile directives that we have
learned so far in this chapter to dockerize a sample PHP application. We used
multiple Dockerfile directives, including FROM, LABEL, ENV, RUN, COPY,
WORKDIR, HEALTHCHECK, EXPOSE, and ENTRYPOINT.

656 | Appendix

Chapter 3: Managing Your Docker Images

Activity 3.01: Build Scripts Using Git Hash Versioning

Solution:

There are a variety of ways you could complete this activity. Here is one example:

1. Create a new build script. The first line, showing the set –ex command, prints
each step to the screen and will fail the script if any of the steps fail. Lines 3 and 4
set the variables for your registry and service names:

1 set -ex

2

3 REGISTRY=dev.docker.local:5000

4 SERVICENAME=postgresql

2. In line 6, set the GIT_VERSION variable to point to your short Git commit hash.
The build script then prints this value to the screen in line 7:

6 GIT_VERSION=`git log -1 --format=%h`

7 echo "version: $GIT_VERSION "

3. Use the docker build command in line 9 to create your new image and
add the docker push command in line 11 to push the image to your local
Docker registry:

9 docker build -t $REGISTRY/$SERVICENAME:$GIT_VERSION .

10

11 docker push $REGISTRY/$SERVICENAME:$GIT_VERSION

The script file will look like the following:

1 set -ex

2

3 REGISTRY=dev.docker.local:5000

4 SERVICENAME= postgresql

5

6 GIT_VERSION=`git log -1 --format=%h`

Chapter 3: Managing Your Docker Images | 657

7 echo "version: $GIT_VERSION "

8

9 docker build -t $REGISTRY/$SERVICENAME:$GIT_VERSION .

10

11 docker push $REGISTRY/$SERVICENAME:$GIT_VERSION

4. Run the following command to ensure that the script has been built and
runs successfully:

./build.sh

You should get output like the following:

./BuildScript.sh

++ REGISTRY=dev.docker.local:5000

++ SERVICENAME=basic-app

+++ git log -1 --format=%h

++ GIT_VERSION=49d3a10

++ echo 'version: 49d3a10 '

version: 49d3a10

++ docker build -t dev.docker.local:5000/basic-app:49d3a10 .

Sending build context to Docker daemon 3.072kB

Step 1/1 : FROM postgres

 ---> 873ed24f782e

Successfully built 873ed24f782e

Successfully tagged dev.docker.local:5000/basic-app:49d3a10

++ docker push dev.docker.local:5000/basic-app:49d3a10

The push refers to repository [dev.docker.local:5000/basic-app]

658 | Appendix

Activity 3.02: Configuring Your Local Docker Registry Storage

Solution:

The following steps describe one of the ways of achieving the goal of the activity:

1. Create the test_registry directory in your home directory:

mkdir /home/vincesesto/test_registry/

2. Run the local registry, but in this instance, include the -v option, which connects
the directory you created in the preceding step to the container directory of /
var/lib/registry. Also, use the :rw option to make sure you can both read
and write to the directory:

docker run -d -p 5000:5000 --restart=always --name registry -v /home/
vincesesto/test_registry/registry:/var/lib/registry:rw registry

3. Now, push the image to your newly mounted registry as you normally would:

docker push dev.docker.local:5000/basic-app:ver1

4. To verify that the images are now being stored in your newly mounted
directory, list the files in the registry/docker/registry/v2/
repositories/ directory.

ls ~/test_registry/registry/docker/registry/v2/repositories/

You should see the new images you have just pushed in the previous step:

basic-app

This activity has allowed us to start working with some more advanced Docker
options. Don't worry, there will be further chapters dedicated to helping you
understand volume mounts and storage when running your containers.

Chapter 4: Multi-Stage Dockerfiles | 659

Chapter 4: Multi-Stage Dockerfiles

Activity 4.01: Deploying a Golang HTTP Server with a Multi-Stage Docker Build

Solution:

1. Create a new directory named activity-04-01 for this activity:

mkdir activity-04-01

2. Navigate to the newly created activity-04-01 directory:

cd activity-04-01

3. Within the activity-04-01 directory, create a file named main.go:

$ touch main.go

4. Now, open the main.go file using your favorite text editor:

$ vim main.go

5. Add the following content to the main.go file, and then save and exit this file:

package main

import (

 "net/http"

 "fmt"

 "log"

 "os"

)

func main() {

 http.HandleFunc("/", defaultHandler)

 http.HandleFunc("/contact", contactHandler)

 http.HandleFunc("/login", loginHandler)

 port := os.Getenv("PORT")

 if port == "" {

 port = "8080"

 }

660 | Appendix

 log.Println("Service started on port " + port)

 err := http.ListenAndServe(":"+port, nil)

 if err != nil {

 log.Fatal("ListenAndServe: ", err)

 return

 }

}

func defaultHandler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "<h1>Home Page</h1>")

}

func contactHandler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "<h1>Contact Us</h1>")

}

func loginHandler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintf(w, "<h1>Login Page</h1>")

}

6. Within the activity-04-01 directory, create a file named Dockerfile. This
file will be the multi-stage Dockerfile:

touch Dockerfile

7. Now, open the Dockerfile using your favorite text editor:

vim Dockerfile

8. Add the following content to the Dockerfile and save the file:

FROM golang:1.14.2-alpine AS builder

WORKDIR /myapp

COPY main.go .

RUN go build -o main .

FROM alpine:latest AS runtime

WORKDIR /myapp

COPY --from=builder /myapp/main .

ENTRYPOINT ["./main"]

EXPOSE 8080

Chapter 4: Multi-Stage Dockerfiles | 661

This Dockerfile has two stages, named builder and runtime. The builder
stage uses the Golang Docker image as the parent and is responsible for creating
the executable from the Golang source file. The runtime stage uses the alpine
Docker image as the parent image and executes the executable file copied from
the builder stage.

9. Now, build the Docker image with the docker build command:

docker build -t activity-04-01:v1 .

You should get the following output:

Figure 4.14: Building the Docker image

10. Use the docker image ls command to list all the Docker images available on
your computer. Verify the size of the image:

docker images

662 | Appendix

The command will return the list of all available Docker images:

Figure 4.15: Listing all Docker images

In the preceding output, you can see that the size of the optimized Docker image
named activity-04-01 is 13.1 MB, while the parent image used at the
builder stage (the Golang image) was 370 MB in size.

11. Execute the docker container run command to start a new container
from the Docker image that you built in the previous step:

$ docker container run -p 8080:8080 --name activity-04-01-container
activity-04-01:v1

You should get an output similar to the following:

2020/08/30 05:14:10 Service started on port 8080

12. View the application at the following URL in your favorite web browser:

http://127.0.0.1:8080/

The following image shows the home page when we navigate to the URL
http://127.0.0.1:8080/:

Figure 4.16: Golang application – Home Page

Chapter 4: Multi-Stage Dockerfiles | 663

13. Now, browse to the following URL on your favorite web browser:

http://127.0.0.1:8080/contact

The following image shows the contact page when we navigate to the URL
http://127.0.0.1:8080/contact:

Figure 4.17: Golang application – Contact Us page

14. Now, enter the following URL in your favorite web browser:

http://127.0.0.1:8080/login

The following image shows the login page when we navigate to the URL
http://127.0.0.1:8080/login:

Figure 4.18: Golang application – Login Page

In this activity, we learned how to deploy a Golang HTTP server that can return
different responses based on the invoke URL. We used the multi-stage Docker
builds in this activity to create a minimal-sized Docker image.

664 | Appendix

Chapter 5: Composing Environments with Docker Compose

Activity 5.01: Installing WordPress Using Docker Compose

Solution:

It is possible to create a database and install WordPress with the following steps:

1. Create the required directory and navigate into it using cd command:

mkdir wordpress

cd wordpress

2. Create a docker-compose.yaml file with the following content:

version: "3"

services:

 database:

 image: mysql:5.7

 volumes:

 - data:/var/lib/mysql

 restart: always

 environment:

 MYSQL_ROOT_PASSWORD: root

 MYSQL_DATABASE: db

 MYSQL_USER: user

 MYSQL_PASSWORD: password

 wordpress:

 depends_on:

 - database

 image: wordpress:latest

 ports:

 - "8080:80"

 restart: always

Chapter 5: Composing Environments with Docker Compose | 665

 environment:

 WORDPRESS_DB_HOST: database:3306

 WORDPRESS_DB_USER: user

 WORDPRESS_DB_PASSWORD: password

 WORDPRESS_DB_NAME: db

volumes:

 data: {}

3. Start the application with the docker-compose up --detach command:

Figure 5.22: Start of the application

4. Check for the running containers with the docker-compose ps command.
You should get the following output:

Figure 5.23: WordPress and database containers

666 | Appendix

5. Open http://localhost:8080 in your browser to check the WordPress
setup screen:

Figure 5.24: WordPress setup screen

In this activity, you have created a deployment for a real-life application using
Docker Compose. The application consists of a database container and a WordPress
container. Both container services are configured using environment variables,
connected via Docker Compose networking and volumes.

Chapter 5: Composing Environments with Docker Compose | 667

Activity 5.02: Installing the Panoramic Trekking App Using Docker Compose

Solution:

It is possible to create the database and Panoramic Trekking App with the
following steps:

1. Create the required directory and change into it:

mkdir pta-compose

cd pta-compose

2. Create a docker-compose.yaml file with the following content:

version: "3"

services:

 db:

 image: postgres

 volumes:

 - db_data:/var/lib/postgresql/data/

 environment:

 - POSTGRES_PASSWORD=docker

 web:

 image: packtworkshops/the-docker-workshop:chapter5-pta-web

 volumes:

 - static_data:/service/static

 depends_on:

 - db

 nginx:

 image: packtworkshops/the-docker-workshop:chapter5-pta-nginx

 volumes:

 - static_data:/service/static

 ports:

 - 8000:80

 depends_on:

668 | Appendix

 - web

volumes:

 db_data:

 static_data:

3. Start the application with the docker-compose up --detach command.
You should get output similar to the following:

Figure 5.25: Start of the application

Note

You can also use docker-compose up -d command to start the
application.

4. Check for the running containers with the docker-compose ps command.
You should get output similar to the following:

Figure 5.26 Application, database, and nginx containers

5. Open the administration section of the Panoramic Trekking App in the browser
with the address of http://0.0.0.0:8000/admin:

Chapter 5: Composing Environments with Docker Compose | 669

Figure 5.27: Admin setup logon

Note

You can also run firefox http://0.0.0.0:8000/admin
command to open the administration section of the Panoramic
Trekking App.

Log in with the username admin and password changeme and add new photos
and countries. The following screen will appear:

Figure 5.28: Admin setup view

670 | Appendix

6. Open the Panoramic Trekking App at the address http://0.0.0.0:8000/
photo_viewer in the browser:

Figure 5.29: Application view

In this activity, you have created a three-tier application using Docker Compose,
with tiers for a PostgreSQL database, a backend, and a proxy service. All services
are configured and connected using Docker Compose with its networking and
storage capabilities.

Chapter 6: Introduction to Docker Networking | 671

Chapter 6: Introduction to Docker Networking

Activity 6.01: Leveraging Docker Network Drivers

Solution:

The following is the most common way to complete this activity according to
best practices:

1. Use the docker network create command to create a network for
the NGINX web server. Call it webservernet and give it a subnet of
192.168.1.0/24 and a gateway of 192.168.1.1:

$ docker network create webservernet --subnet=192.168.1.0/24
--gateway=192.168.1.1

This should create the bridge network, webservernet.

2. Use the docker run command to create an NGINX web server. Use the -p flag
to forward port 8080 on the host to port 80 on the container instance:

$ docker run -itd -p 8080:80 --name webserver1 --network webservernet
nginx:latest

This will start the webserver1 container in the webservernet network.

3. Use the docker run command to start an Alpine Linux container named
monitor in host networking mode. This way, you will know that the container
has access to the host ports of the main system as well as access to the bridge
network IP address:

$ docker run -itd --name monitor --network host alpine:latest

This will start an Alpine Linux container instance in host networking mode.

4. Use docker inspect to find the IP address of the webserver1 container:

$ docker inspect webserver1

672 | Appendix

The verbose details of the container will be displayed in JSON format; get the IP
address from the IPAddress parameter:

Figure 6.27: Inspecting the webserver1 container instance

5. Access an sh shell inside the monitoring container using the docker
exec command:

$ docker exec -it monitor /bin/sh

This should drop you into a root shell.

6. Use the apk install command to install the curl command inside
this container:

/ # apk add curl

This should install the curl utility:

fetch http://dl-cdn.alpinelinux.org/alpine/v3.11/main

/x86_64/APKINDEX.tar.gz

fetch http://dl-cdn.alpinelinux.org/alpine/v3.11/community

/x86_64/APKINDEX.tar.gz

(1/4) Installing ca-certificates (20191127-r1)

(2/4) Installing nghttp2-libs (1.40.0-r0)

(3/4) Installing libcurl (7.67.0-r0)

(4/4) Installing curl (7.67.0-r0)

Executing busybox-1.31.1-r9.trigger

Executing ca-certificates-20191127-r1.trigger

OK: 7 MiB in 18 packages

Chapter 6: Introduction to Docker Networking | 673

7. Use the curl command to validate connectivity works at the host level,
by calling port 8080 on the host machine:

/ # curl -v http://localhost:8080

You should receive a 200 OK response from NGINX, indicating successful
connectivity at the host level:

Figure 6.28: Accessing the webserver1 container from the exposed ports on the host

8. Likewise, use the curl command to access the IP address of the container in
the Docker bridge network directly over port 80:

/ # curl -v 192.168.1.2:80

674 | Appendix

You should similarly receive another 200 OK response, indicating a
successful connection:

Figure 6.29: Accessing the NGINX web server from the IP
address of the container instance

In this activity, we were able to illustrate the connectivity between containers using
different Docker networking drivers. This scenario applies to real-world production
infrastructure because, when deploying a containerized solution, engineers will
strive to deploy an infrastructure that is as immutable as possible. With the ability
to deploy containers in Docker that exactly mimic the networking at the host level,
infrastructure can be designed that requires very minimal configuration on the host
OS. This makes it very easy to deploy and scale the host that Docker is deployed on.
Packages such as curl and other monitoring tools can be deployed into containers
that run on the Docker hosts instead of being installed on the hosts themselves. This
guarantees ease of deployment and maintenance, as well as increasing the speed at
which additional hosts can be deployed to meet increasing demand.

Chapter 6: Introduction to Docker Networking | 675

Activity 6.02: Overlay Networking in Action

Solution:

1. Create a Docker overlay network called panoramic-net on Machine1 in
the Docker swarm cluster, using the docker network create command,
by passing the custom subnet, gateway, and overlay network driver:

$ docker network create panoramic-net --subnet=10.2.0.0/16
--gateway=10.2.0.1 --driver overlay

2. Use the docker service create command on Machine1 to create a
service named trekking-app in the panoramic-net network:

$ docker service create -t --name trekking-app --replicas=1 --network
panoramic-net alpine:latest

This will start a service called trekking-app in the panoramic-net
overlay network.

3. Use the docker service create command on Machine1 to create a
service named database-app in the panoramic-net network. Set default
credentials and specify the postgres:12 version of the Docker image:

$ docker service create -t --name database-app --replicas=1
--network panoramic-net -e "POSTGRES_USER=panoramic" -e "POSTGRES_
PASSWORD=trekking" postgres:12

4. Use docker exec to access an sh shell inside the trekking-app
service container:

$ docker exec -it trekking-app.1.qhpwxol00geedkfa9p6qswmyv /bin/sh

This should drop you into a root shell inside the trekking-app
container instance.

5. Use the ping command to validate network connectivity to the
database-app service:

/ # ping database-app

The ICMP replies should indicate the connectivity is successful:

PING database-app (10.2.0.5): 56 data bytes

64 bytes from 10.2.0.5: seq=0 ttl=64 time=0.261 ms

64 bytes from 10.2.0.5: seq=1 ttl=64 time=0.352 ms

64 bytes from 10.2.0.5: seq=2 ttl=64 time=0.198 ms

676 | Appendix

In this activity, we leveraged a custom Docker overlay network across a Docker
swarm cluster to illustrate connectivity between two Docker swarm services using
Docker DNS. In a real-world multi-tier application, many microservices can be
deployed in large Docker swarm clusters that use an overlay network mesh
to directly talk to each other. Understanding how overlay networking works in
tandem with Docker DNS is vital to achieving efficient scalability as your containerized
infrastructure continues to grow.

Chapter 7: Docker Storage | 677

Chapter 7: Docker Storage

Activity 7.01: Storing Container Event (State) Data on a PostgreSQL Database

Solution:

1. Run the following commands to remove all the objects in your host:

$ docker container rm -fv $(docker container ls -aq)

$docker image rm $(docker image ls -q)

2. Get the volume names, and then remove all the volumes using the
following commands:

$docker volume ls

$docker volume rm <volume names separated by spaces>

3. Get the network names and then remove all the networks using the
following commands:

$docker network ls

$docker network rm <network names separated by spaces>

4. Open two terminals, one dedicated to seeing docker events --format
'{{json .}}' in effect. The other one should be opened to execute the
previously mentioned high-level steps.

5. In the first terminal, run the following command:

docker events --format '{{json .}}'.

678 | Appendix

You should get an output like the following:

Figure 7.11: Output of the docker events command

6. Run the following command to start the ubuntu container in the
second terminal:

$docker run -d ubuntu:14.04

Chapter 7: Docker Storage | 679

You should get an output like the following:

Figure 7.12: Output of the docker run command

7. Create a volume named vol1 using the following command in the
second terminal:

$docker volume create vol1

8. Create a network named net1 using the following command in the
second terminal:

$docker network create net1

9. Remove the container using the following command:

$docker container rm -fv <container ID>

10. Remove the volume and the network using the following commands:

$docker volume rm vol1

$docker network rm net1

11. Click Ctrl + C in the docker events terminal to terminate it.

12. Check the following two examples to understand the JSON output:

Example 1:

{"status":"create","id":"43903b966123a7c491b50116b40827daa03

da5d350f8fef2a690fc4024547ce2","from":"ubuntu:14.04","Type":

"container","Action":"create","Actor":{"ID":"43903b966123a7c

491b50116b40827daa03da5d350f8fef2a690fc4024547ce2","Attributes":

{"image":"ubuntu:14.04","name":"upbeat_johnson"}},"scope":"local",

"time":1592516703,"timeNano":1592516703507582404}

680 | Appendix

Example 2:

{"Type":"network","Action":"connect","Actor":{"ID":"52855e1561

8e37b7ecc0bb26bc42847af07cae65ddd3b68a029e40006364a9bd",

"Attributes":{"container":"43903b966123a7c491b50116b40827daa03d

a5d350f8fef2a690fc4024547ce2","name":"bridge","type":"bridge"}},

"scope":"local","time":1592516703,"timeNano":1592516703911851347}

You will find that there are different attributes and structures depending on
the object.

13. Run a PostgreSQL container with a volume. Name the container db1:

$docker container run --name db1 -v db:/var/lib/postgresql/data -e
POSTGRES_PASSWORD=password -d postgres

14. Run the exec command so that bash is replaced with the command to be
executed. The shell will change to posgres=# to indicate that you are inside
the container:

$ docker container exec -it db1 psql -U postgres

15. Create a table with two columns: ID of the serial type and info of the
json type:

CREATE TABLE events (ID serial NOT NULL PRIMARY KEY, info json NOT
NULL);

16. Insert the first row of the JSON output from the first example into the table:

INSERT INTO events (info) VALUES
('{"status":"create","id":"43903b966123a7c491b50116b40827daa03da
5d350f8fef2a690fc4024547ce2","from":"ubuntu:14.04","Type":
"container","Action":"create","Actor":{"ID":"43903b966123a7c49
1b50116b40827daa03da5d350f8fef2a690fc4024547ce2","Attributes":
{"image":"ubuntu:14.04","name":"upbeat_johnson"}},"scope":
"local","time":1592516703,"timeNano":1592516703507582404}');

Chapter 7: Docker Storage | 681

17. Verify that the row is saved in the database by typing the following
SQL statement:

select * from events;

You should get an output like the following:

Figure 7.13: Verifying that the row is saved in the database

18. Insert Docker events into the events table using the SQL insert command.

Note

Please refer to the events.txt file at https://packt.live/2ZKfGgB to insert
Docker events using the insert command.

https://packt.live/2ZKfGgB

682 | Appendix

You should get an output like the following:

Figure 7.14: Inserting multiple rows in the database

From this output, it is clear that 11 events have been inserted successfully into
the PostgreSQL database.

19. Run the following three queries one by one.

Query 1:

SELECT * FROM events WHERE info ->> 'status' = 'pull';

Chapter 7: Docker Storage | 683

The output will be as in the following:

Figure 7.15: Output of Query 1

Query 2:

SELECT * FROM events WHERE info ->> 'status' = 'destroy';

The output will be as in the following:

Figure 7.16: Output of Query 2

684 | Appendix

Query 3:

SELECT info ->> 'id' as id FROM events WHERE info ->> 'status'=
 'destroy';

The output will be as in the following:

Figure 7.17: Output of Query 3

In this activity, you learned how to log and monitor a container and query the
container's events using SQL statements, as well as how to get a JSON output of
the events and save in a PostgreSQL database. You also studied the JSON output
structure and learned how to query it.

Activity 7.02: Sharing NGINX Log Files with the Host

Solution:

1. Verify that you do not have the /var/mylogs folder on your host by running
the following command:

$cd /var/mylogs

You should get an output like the following:

Bash: cd: /var/mylogs: No such file or directory

2. Run a container based on the NGINX image. Specify the path of the shared
volumes on the host and inside the container in the run command. Inside the
container, NGINX uses the /var/log/nginx path for the log files. Specify the
path on the host as /var/mylogs:

$docker container run -d -v /var/mylogs:/var/log/nginx nginx

Chapter 7: Docker Storage | 685

The Docker Engine will pull the image automatically if you do not have it locally:

Figure 7.18: Output of the docker run command

3. Go to the path of /var/mylogs. List all the files in that directory:

$cd /var/mylogs

$ls

You should find two files there:

access.log error.log

4. (Optional) If no errors were generated, the two files will be empty. You check
the contents by using the cat Linux command or by using the tail Linux
command. As we used the cat command before, let's use the tail command
for this example:

$tail -f *.log

You should get an output like the following:

==> access.log <==

==> error.log <==

As this NGINX server did not generate any errors or was not accessed, the
files are currently empty. However, if NGINX crashes at any instant, the errors
generated will be saved in error.log.

In this activity, you learned how to share the log files of a container to the host.
You used the NGINX server, so if it crashes, you can trackback what happened
from its log files.

686 | Appendix

Chapter 8: Service Discovery

Activity 8.01: Utilizing Jenkins and SonarQube

Solution:

1. Install SonarQube and run it as a container using the following command:

docker run -d --name sonarqube -p 9000:9000 -p 9092:9092 sonarqube

You should get the container ID as the output:

4346a99b506b1bec8000e429471dabac57e3f565b154ee921284ec685497bfae

2. Log in to SonarQube by using admin/admin credentials:

Figure 8.38: Log in to SonarQube

After the successful login, a screen similar to the following should appear:

Chapter 8: Service Discovery | 687

Figure 8.39: The SonarQube dashboard

3. At the top right, click on the user. A drop-down menu will appear.
Click on My Account:

4. Scroll down and click on Generate under Security to generate a token.
You must copy it now because you will not be able to access it later:

Figure 8.40: Generating the token

688 | Appendix

5. In Jenkins, click on Manage Jenkins > Plugin Manager. Search for Sonar
in the Available list. Install the SonarQube Scanner plugin.

Figure 8.41: Installing the SonarQube Scanner plugin

6. Verify that the installation is correct by clicking on the hit_count project and
then clicking the Configure option. Click on Add build step and then
Execute SonarQube Scanner on the Build tab, as in Figure 8.43:

Figure 8.42: Selecting Execute SonarQube Scanner

Chapter 8: Service Discovery | 689

7. However, the new box will generate errors, like the one shown in the following
screenshot. To rectify that, integrate SonarQube and Jenkins through the
system configuration and global tool configuration options:

Figure 8.43: Errors generated since SonarQube is not configured yet

8. In Jenkins, click on Manage Jenkins. Click the Global Tool
Configuration option and then click Add SonarQube Scanner:

Figure 8.44: Adding SonarQube Scanner on the Global Tool Configuration page

690 | Appendix

9. Enter the name SonarQube Scanner. Check Install automatically.
Under Install from Maven Central, in Version, select SonarQube
Scanner 3.2.0.1227. Click on Add Installer. In the Label field, enter
SonarQube. In the Download URL for binary archive field, enter the
link https://binaries.sonarsource.com/Distribution/sonar-
scanner-cli/sonar-scanner-cli-3.2.0.1227-linux.zip.

Click on Save.

Figure 8.45: Adding details for SonarQube Scanner

You are now done with the Global Tool Configuration option, so it is
time to go to the Configure System option.

10. In Manage Jenkins, click Configure System:

Chapter 8: Service Discovery | 691

Figure 8.46: Click on Configure System on the Manage Jenkins page

11. You cannot enter the system configuration right now as it asks for Server
Authentication Token. When you click the Add button, it will do nothing.
Enter the token as secret text in the following steps, and then return to
Manage Jenkins:

Figure 8.47: Inserting the SonarQube token in Jenkins configuration

692 | Appendix

12. Click on Manage Credentials:

Figure 8.48: The Manage Jenkins page

13. Click on Jenkins:

Figure 8.49: The Jenkins Credentials page

Chapter 8: Service Discovery | 693

14. Click on Global credentials (unrestricted):

Figure 8.50: The Global credentials (unrestricted) domain

15. Click on adding some credentials:

Figure 8.51: Adding some credentials

694 | Appendix

16. In the Kind drop-down menu, click on Secret text:

Figure 8.52: Selecting Secret text for Kind

17. In the Secret textbox, paste the token that you copied in Step 5 in this activity.
In the ID field, enter SonarQubeToken. Click OK:

Figure 8.53: Adding the token to the Secret textbox

Chapter 8: Service Discovery | 695

SonarQubeToken will be saved in the Global credentials option.
You will see a screen similar to the following:

Figure 8.54: SonarQubeToken saved in the Global credentials

18. Return to Manage Jenkins. Click Configuration System and then
Refresh. Now, in the Server Authentication Token drop-down
menu, you will find SonarQubeToken. Check Enable injection of
SonarQube server configuration as build environment
variables. Enter SonarQube in the Name field. Enter http://<your
IP>:9000 in the Server URL field. Then click Save:

You can run the ifconfig command to fetch your IP. You will find the IP in the
en0 section of the output:

$ ifconfig

This is the last step in integrating Jenkins with SonarQube. Let's return to
the project.

19. In Build Environment, check Prepare SonarQube Scanner
environment. Set Server authentication token to
SonarQubeToken:

696 | Appendix

20. Now, click on the project name and then Configure. In the Build step, enter
the following code in the Analysis Properties field:

sonar.projectKey=hit_count

sonar.projectName=hit_count

sonar.projectVersion=1.0

sonar.sources=.

sonar.language=py

sonar.sourceEncoding=UTF-8

Test Results

sonar.python.xunit.reportPath=nosetests.xml

Coverage

sonar.python.coverage.reportPath=coverage.xml

Linter (https://docs.sonarqube.org/display/PLUG/Pylint+Report)

#sonar.python.pylint=/usr/local/bin/pylint

#sonar.python.pylint_config=.pylintrc

#sonar.python.pylint.reportPath=pylint-report.txt

Click Save.

21. After saving, you will find the SonarQube logo showing on the project page,
as in Figure 8.55. Click on Build Now:

Figure 8.55: The SonarQube option showing on our project's dashboard

Chapter 8: Service Discovery | 697

22. In Build History, click on Console Output. You should get the screen
similar to the following:

Figure 8.56: Console Output

23. Check the report on SonarQube. In the browser, type http://<ip>:9000
or http://localhost:9000. You will find that Jenkins added your
hit_count project automatically to SonarQube:

24. Click hit_count. You will find a detailed report. Whenever Jenkins builds the
project, SonarQube will analyze the code automatically

In this activity, you learned how to integrate Jenkins with SonarQube and install
the required plugins, which you verified by checking SonarQube in the browser.
You also applied SonarQube to your simple web application, hit_counter.

Activity 8.02: Utilizing Jenkins and SonarQube in the Panoramic Trekking

Application

Solution:

1. Create a new item named trekking in Jenkins. Select it as a FREESTYLE
project. Click OK.

2. In the General tab, select Discard old builds.

698 | Appendix

3. In the Source Code Management tab, select GIT. Then enter the URL
http://github.com/efoda/trekking_app:

Figure 8.57: Inserting the GitHub URL

4. In Build Triggers, select Poll SCM and enter H/15 * * * *:

Figure 8.58: Inserting the scheduling code

Chapter 8: Service Discovery | 699

5. In the Build Environment tab, select Prepare SonarQube Scanner
environment. Select the Server authentication token from the
drop-down menu:

Figure 8.59: Selecting SonarQubeToken as the Server authentication token

6. In the Build tab, enter the following code in Analysis properties:

sonar.projectKey=trekking

sonar.projectName=trekking

sonar.projectVersion=1.0

sonar.sources=.

sonar.language=py

sonar.sourceEncoding=UTF-8

Test Results

sonar.python.xunit.reportPath=nosetests.xml

Coverage

sonar.python.coverage.reportPath=coverage.xml

Linter (https://docs.sonarqube.org/display/PLUG/Pylint+Report)

#sonar.python.pylint=/usr/local/bin/pylint

#sonar.python.pylint_config=.pylintrc

#sonar.python.pylint.reportPath=pylint-report.txt

Click Save.

700 | Appendix

7. Select Build Now. When the build is done successfully, select Console
Output. The following output will indicate that it finished successfully:

Figure 8.60: Verifying Jenkins has built the image successfully

8. Switch to the SonarQube tab in the browser and check the output.
The following report indicates that the trekking app has two bugs and
zero security vulnerabilities:

Figure 8.61: Report shown in the SonarQube browser tab

Chapter 8: Service Discovery | 701

If you click on New Code, it will be blank as you built the project only once.
When Jenkins builds it another time, you will find a comparison between the
two builds.

9. If you want to edit the project's code, fork the GitHub code to your account
and edit the code to fix the bugs and the vulnerabilities. Edit the project's
configuration to have your GitHub code instead of the code provided in the
Source Code tab.

In this activity, you integrated Jenkins with SonarQube and applied it to the Panoramic
Trekking application. At the end of the activity, you inspected the reports that
SonarQube generated showing the bugs and the vulnerabilities in the code.

702 | Appendix

Chapter 9: Docker Swarm

Activity 9.01: Deploying the Panoramic Trekking App to a Single-Node Docker

Swarm

Solution:

There are a number of ways in which you can perform this activity. These steps are
one way to do it:

1. Create a directory for the application. In this instance, you will create a directory
called Activity1 and move into the new directory using the cd command:

mkdir Activity1; cd Activity1

2. Clone the application from its GitHub repository to ensure that you will have all
the relevant information and applications needed for the Panoramic Trekking
App services you want to deploy to your swarm:

git clone https://github.com/vincesesto/trekking_app.git

3. You won't need any of the supporting directories for NGINX, but ensure
that your web service and database running are listed here, including the
panoramic_trekking_app and photo_viewer directories and the
Dockerfile, entrypoint.sh, manage.py, and requirements.txt
scripts and files:

ls -l

The command should return output similar to the following:

-rw-r--r-- 1 vinces staff 533 12 Mar 15:02 Dockerfile

-rwxr-xr-x 1 vinces staff 1077 12 Mar 15:02 entrypoint.sh

-rwxr-xr-x 1 vinces staff 642 12 Mar 15:02 manage.py

drwxr-xr-x 9 vinces staff 288 12 Mar 15:02

panoramic_trekking_app

drwxr-xr-x 12 vinces staff 384 12 Mar 15:02 photo_viewer

-rw-r--r-- 1 vinces staff 105 12 Mar 15:02 requirements.txt

Chapter 9: Docker Swarm | 703

4. Create the .env.dev file in the directory and add in the following details
for panoramic_trekking_app to use in its settings.py file. These
environment variables will set up the database name, user, password, and
other database settings:

SQL_ENGINE=django.db.backends.postgresql

SQL_DATABASE=pta_database

SQL_USER=pta_user

SQL_PASSWORD=pta_password

SQL_HOST=db

SQL_PORT=5432

PGPASSWORD=docker

5. Create a new docker-compose.yml file and open it with your text editor and
add in the following details:

version: '3.3'

services:

 web:

 build: .

 image: activity_web:latest

 command: python manage.py runserver 0.0.0.0:8000

 volumes:

 - static_volume:/service/static

 ports:

 - 8000:8000

 environment:

 - PGPASSWORD=docker

 env_file:

 - ./.env.dev

 depends_on:

 - db

 db:

 image: postgres

 volumes:

 - postgres_data:/var/lib/postgresql/data/

 environment:

 - POSTGRES_PASSWORD=docker

 ports:

704 | Appendix

 - 5432:5432

volumes:

 postgres_data:

 static_volume:

As you can see from the highlighted line in the docker-compose.yml file,
the web service relies on the activity_web:latest Docker image.

6. Run the following docker build command to build the image and tag
it appropriately:

docker build -t activity_web:latest .

7. It's now time to deploy the stack to Swarm. Run the following stack deploy
command using the docker-compose.yml file you have created:

docker stack deploy --compose-file docker-compose.yml activity_swarm

Once the network has been created, you should see the activity_swarm_
web and activity_swarm_db services made available:

Creating network activity_swarm_default

Creating service activity_swarm_web

Creating service activity_swarm_db

8. Run the service ls command:

docker service ls

Verify that all the services have started successfully and are showing 1/1
replicas, as we have here:

ID NAME MODE REPLICAS

 IMAGE

k6kh… activity_swarm_db replicated 1/1

 postgres:latest

copa… activity_swarm_web replicated 1/1

 activity_web:latest

Chapter 9: Docker Swarm | 705

9. Finally, open your web browser and verify that you are able to
access the site from http://localhost:8000/admin/ and
http://localhost:8000/photo_viewer/.

The Panoramic Trekking App is created and set up in a similar way to some of the
other services you have already completed in this chapter.

Activity 9.02: Performing an Update to the App While the Swarm Is Running

Solution:

There are a number of ways in which we can perform this activity. The following steps
detail one way to do this:

1. If you do not have a Swarm running, deploy the docker-compose.yml file
you created in Activity 9.01, Deploying the Panoramic Trekking App to a Single-Node
Docker Swarm:

docker stack deploy --compose-file docker-compose.yml activity_swarm

As you can see, all three services are now running:

Creating network activity_swarm_default

Creating service activity_swarm_web

Creating service activity_swarm_db

2. In the same directory where you have performed the stack deploy
command, open the photo_viewer/templates/photo_index.html
file with your text editor and change line four to match the following details,
basically adding the word Patch to the main heading:

photo_index.html

1 {% extends "base.html" %}
2 {% load static %}
3 {% block page_content %}
4 <h1>Patch Panoramic Trekking App - Photo Viewer</h1>

You can find the complete code here https://packt.live/3ceYnta.

3. Build a new image, this time tagging the image as patch_1 with the
following command:

docker build -t activity_web:patch_1 .

https://packt.live/3ceYnta

706 | Appendix

4. Deploy the patch to your Swarm web service using the service update
command. Provide the image name and the service the update is going to be
applied to as well:

docker service update --image activity_web:patch_1 activity_swarm_web

The output should look like the following:

…

activity_swarm_web

overall progress: 1 out of 1 tasks

1/1: running [=======================================>]

verify: Service converged

5. List the services running and verify that the new image is running as part of the
activity_swarm_web service:

docker service ls

As you can see from the output, the web service is no longer tagged with the
latest tag. It is now displaying the patch_1 image tag:

ID NAME MODE REPLICAS

 IMAGE

k6kh… activity_swarm_db replicated 1/1

 postgres:latest

cu5p… activity_swarm_web replicated 1/1

 activity_web:patch_1

6. Verify that the changes have been applied to the image by accessing
http://localhost:8000/photo_viewer/ and seeing that the
heading now shows Patch Panoramic Trekking App:

Figure 9.10: Patch version of the Panoramic Trekking App

In this activity, you made a minor change to the Panoramic Trekking App so that a
rolling update can be made to the service. You then deployed the image into the
running environment and performed a rolling update to verify that the changes
were successful. The change in the heading showed that the rolling update was
performed successfully.

Chapter 10: Kubernetes | 707

Chapter 10: Kubernetes

Activity 10.01: Installing the Panoramic Trekking App on Kubernetes

Solution:

It is possible to create the database and Panoramic Trekking App with the
following steps:

1. Install the database with the following helm command:

helm install database stable/postgresql --set
postgresqlPassword=kubernetes

This will install multiple Kubernetes resources for PostgreSQL and show a
summary as follows:

Figure 10.23: Database installation

708 | Appendix

This output first lists Helm chart-related information such as name, deployment
time, status, and revision, followed by information related to the PostgreSQL
instance and how to access it. This is a widely accepted method in Helm charts to
give such information following the installation of a chart. Otherwise, it would be
difficult to learn how to connect to the applications installed by Helm.

2. Create a statefulset.yaml file with the following content:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: panoramic-trekking-app

spec:

 serviceName: panoramic-trekking-app

 replicas: 1

 selector:

 matchLabels:

 app: panoramic-trekking-app

 template:

 metadata:

 labels:

 app: panoramic-trekking-app

 spec:

 containers:

 - name: nginx

 image: packtworkshops/the-docker-workshop:
 chapter10-pta-nginx
 ports:

 - containerPort: 80

 name: web

 volumeMounts:

 - name: static

 mountPath: /service/static

 - name: pta

 image: packtworkshops/the-docker-workshop:
 chapter10-pta-web
 volumeMounts:

 - name: static

 mountPath: /service/static

 volumeClaimTemplates:

 - metadata:

 name: static

Chapter 10: Kubernetes | 709

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 1Gi

This file creates a Statefulset with the name panoramic-trekking-app.
There are two containers defined in the spec section with the names nginx
and pta. In addition, a volume claim is defined with the name static and is
mounted to both the containers.

3. Deploy the panoramic-trekking-app StatefulSet with the
following command:

kubectl apply -f statefulset.yaml

This will create a StatefulSet for our application:

StatefulSet.apps/panoramic-trekking-app created

4. Create a service.yaml file with the following content:

apiVersion: v1

kind: Service

metadata:

 name: panoramic-trekking-app

 labels:

 app: panoramic-trekking-app

spec:

 ports:

 - port: 80

 name: web

 type: LoadBalancer

 selector:

 app: panoramic-trekking-app

This Service definition has a LoadBalancer type to access the Pods with the
label app: panoramic-trekking-app. Port 80 will be made available to
access the web port of the Pods.

710 | Appendix

5. Deploy the panoramic-trekking-app Service with the following command:

kubectl apply -f service.yaml

This will create a Service resource as follows:

Service/panoramic-trekking-app created

6. Get the IP of the Service with the following command:

minikube service panoramic-trekking-app --url

http://192.168.64.14:32009

Store the IP to access the Panoramic Trekking App in the following steps.

7. Open the administration section of the Panoramic Trekking App in the browser
with http://$SERVICE_IP/admin:

Figure 10.24: Admin login view

Chapter 10: Kubernetes | 711

8. Log in with the username admin and the password changeme and add new
photos and countries:

Figure 10.25: Admin setup view

712 | Appendix

9. Open the Panoramic Trekking App at http://$SERVICE_IP/photo_
viewer in the browser:

Figure 10.26: Application view

The Photo Viewer application shows that the photos and countries have been
retrieved from the database. It also indicates that the application is set up
correctly and is running flawlessly.

In this activity, you have deployed the Panoramic Trekking App to a Kubernetes
cluster. You started with a database using its Helm chart and then created
Kubernetes resources for the application. Finally, you accessed the app from the
browser and tested it with the addition of new photos. By the end of this activity,
you have discovered how to deploy a database by using its official Helm chart,
created a series of Kubernetes resources to connect to the database and deploy your
application, and gathered information from the cluster to access the application.
The steps in the activity covered the life cycle of a containerized application being
deployed in a Kubernetes cluster.

Chapter 11: Docker Security | 713

Chapter 11: Docker Security

Activity 11.01: Setting up a seccomp Profile for the Panoramic Trekking App

Solution:

There are a number of ways in which you can create a seccomp profile that will stop
users from performing the mkdir, kill, and uname commands. These steps show
one way that this can be done:

1. If you don’t already have postgres image locally, execute the
following command:

docker pull postgres

2. Use the wget command on your system to obtain a copy of the default
seccomp profile. Name the file you are downloading as activity1.json:

wget https://raw.githubusercontent.com/docker/docker/v1.12.3/profiles/
seccomp/default.json - O activity1.json

3. Remove the following three commands from the profile to allow us to further
lock down our image. Open the activity1.json file with your favorite text
editor and remove the following lines from the file. You should look to remove
lines 1500 to 1504 to remove the uname command, 669 to 673 to remove the
mkdir command, and lines 579 to 583 to remove the kill command from
being available:

1500 {

1501 "name": "uname",

1502 "action": "SCMP_ACT_ALLOW",

1503 "args": []

1504 },

669 {

670 "name": "mkdir",

671 "action": "SCMP_ACT_ALLOW",

672 "args": []

673 },

579 {

580 "name": "kill",

581 "action": "SCMP_ACT_ALLOW",

714 | Appendix

582 "args": []

583 },

You can find the modified activity1.json file at the following
link: https://packt.live/32BI3PK.

4. Test the new profile with the postgres image by assigning a new profile as it is
running, using the –-security-opt seccomp=activity1.json option
when we are running the image:

docker run --rm -it --security-opt seccomp=activity1.json postgres sh

5. As you are now logged on to the running container, test the new permissions of
the profile you have now assigned to the container. Perform a mkdir command
to create a new directory on the system:

~ $ mkdir test

The command should show an Operation not permitted output:

mkdir: can't create directory 'test': Operation not permitted

6. To test that you are no longer able to kill the running processes, you need to
start something up. Start the top process and run it in the background. Do this
by typing top into the command line and then adding &, before pressing Enter
to run the process in the background. The following command then provides the
process command (ps) to see what processes are running on the container:

~ $ top & ps

As you can see from the following output, the top process is running as PID 8:

PID USER TIME COMMAND

 1 20002 0:00 sh

 8 20002 0:00 top

10 20002 0:00 ps

[1]+ Stopped (tty output) top

Note

The ps and top commands aren't available in a container based on
postgres image. However, this doesn't cause any issues, as running
kill command with any random pid number is sufficient to demonstrate
that the command is not permitted to run.

https://packt.live/32BI3PK

Chapter 11: Docker Security | 715

7. Kill the top process by using the kill -9 command followed by the PID
number of the process you want to kill. The kill -9 command will try to
force the command to stop:

~ $ kill -9 8

You should see Operation not permitted:

sh: can't kill pid 8: Operation not permitted

8. Test the uname command. This is a little different from the other commands:

~ $ uname

You will get an Operation not permitted output:

Operation not permitted

This has been a good activity to show that there is still a lot we can do to limit what
can be done to our images if they are accessed by an attacker.

Activity 11.02: Scanning Your Panoramic Trekking App Images for

Vulnerabilities

Solution:

There are a number of ways in which we can scan our images for vulnerabilities.
The following steps are one way to do this, using Anchore to verify whether the
postgres-app image is safe for use by our application:

1. Tag the image and push it to your Docker Hub repository. In this case, tag the
postgres-app image with our repository name and tag it as activity2.
We are also pushing it to our Docker Hub repository:

docker tag postgres <your repository namespace>/postgres-
app:activity2 ; docker push <your repository name>/postgres-
app:activity2

2. You should still have the docker-compose.yaml file you were using originally
in this chapter. If you don't have Anchore running already, run the docker-
compose command and export the ANCHORE_CLI_URL, ANCHORE_CLI_URL,
and ANCHORE_CLI_URL variables, as you did previously, to allow us to run the
anchore-cli commands:

docker-compose up -d

716 | Appendix

3. Check the status of the Anchore application by running the anchore-cli
system status command:

anchore-cli system status

4. Use the feeds list command to check whether the feeds lists are
all updated:

anchore-cli system feeds list

5. Once all the feeds have been updated, add the postgres-app image that
we've pushed to Docker Hub. Use the image add command provided by
anchore-cli, and provide the repository, image, and tag of the image we
want to scan. This will add the image to our Anchore database, ready for it to
be scanned:

anchore-cli image add <your repository namespace>/postgres-
app:activity2

6. Use the image list command to allow us to verify that our image has been
analyzed. Once it is complete, you should see the word analyzed displayed in
the Analysis Status column:

anchore-cli image list

7. Use the image vuln command with our image name to see a list of all the
vulnerabilities found on our postgres-app image. This image is a lot larger
and a lot more complex than the images we have tested previously, so there is a
long list of vulnerabilities found when we use the all option. Fortunately, most
of the vulnerabilities present either Negligible or Unknown. Run the image
vuln command and pipe out the results to the wc -l command:

anchore-cli image vuln <your repository namespace>/postgres-
app:activity2 all | wc -l

This will give us a count of the numbers of vulnerabilities found. There are over
100 values in this case:

108

Chapter 11: Docker Security | 717

8. Finally, use the evaluate check command to see whether the vulnerabilities
found will give us a pass or fail:

anchore-cli evaluate check <your repository namespace>/postgres-
app:activity2

Fortunately, as you can see from the following output, we have a pass:

Image Digest: sha256:57d8817bac132c2fded9127673dd5bc7c3a97654

636ce35d8f7a05cad37d37b7

Full Tag: docker.io/vincesestodocker/postgres-app:activity2

Status: pass

Last Eval: 2019-11-23T06:15:32Z

Policy ID: 2c53a13c-1765-11e8-82ef-23527761d060

As the image is provided by a large organization, it is in their best interests to make
sure it is safe for you to use, but as it is so easy to scan the images, we should be still
scanning them to verify that they are 100% safe for use.

718 | Appendix

Chapter 12: Best Practices

Activity 12.01: Viewing the Resources Used by the Panoramic Trekking App

Solution:

There are a number of ways in which we perform the first activity in this chapter.
The following steps are one way to do this by using the docker stats command
to view the resources being used by a service in the Panoramic Trekking App. For this
example, we are going to use the postgresql-app service, which is running as
part of the Panoramic Trekking App:

1. Create a script that will create a new table and fill it with random values.
The following script does exactly what we want in this situation as we want
to create a long processing query and see how it affects the resources on our
container. Add in the following details and save the file as resource_test.
sql using your favorite editor:

1 CREATE TABLE test_data

2 (

3 random_value NUMERIC NOT NULL,

4 row1 NUMERIC NOT NULL,

5 row2 NUMERIC NOT NULL

6);

7

8 INSERT INTO test_data

9 SELECT random_value.*,

10 gen.* ,

11 CEIL(RANDOM()*100)

12 FROM GENERATE_SERIES(1, 300) random_value,

13 GENERATE_SERIES(1, 900000) gen

14 WHERE gen <= random_value * 300;

Lines 1 to 6 create the new table and set up the three different rows it includes,
while lines 8 to 14 run through a new table, populating it with random values.

2. If you have not got a copy of the PostgreSQL Docker image already, pull
the image from the supported PostgreSQL Docker Hub repository using the
following command:

docker pull postgres

Chapter 12: Best Practices | 719

3. Move into a new terminal window and run the docker stats command
to view the CPU percentage being used, as well as the memory and memory
percentage being used:

docker stats --format "table {{.Name}}\t{{.CPUPerc}}\t{{.
MemPerc}}\t{{.MemUsage}}"

In the following command, we are not displaying the container ID as we wanted
to limit the amount of data showing on our output:

NAME CPU % MEM % MEM USAGE / LIMIT

4. To simply test this image, you don't need to have the running container mounted
on a specific volume to use the data you have previously used for this image.
Move into a different terminal to the one monitoring your CPU and memory.
Start the container and name it postgres-test and ensure that the database
is accessible from your host system by exposing the ports needed to run a psql
command. We have also specified a temporary password of docker in this
instance using the environment variable (-e) option:

docker run --rm --name postgres-test -v ${PWD}/resource_test.sql:/
resource_test.sql -e POSTGRES_PASSWORD=docker -d -p 5432:5432
postgres

5. Before you run your test script, move to the terminal where you are monitoring
the CPU and memory usage. You can see that our container is already using
some of the resources without even really doing anything:

NAME CPU % MEM % MEM USAGE / LIMIT

postgres-test 0.09% 0.47% 9.273MiB / 1.943GiB

6. Enter the terminal inside your container using the following command:

docker exec -it postgres-test /bin/bash

7. Use the psql command to send the postgres-test container command to
create a new database called resource_test:

psql -h localhost -U postgres -d postgres -c 'create database
resource_test;'

Password for user postgres:

CREATE DATABASE

720 | Appendix

8. Run the script you created earlier. Make sure you include the time command
before you run the script as this will allow you to see the time it takes
to complete:

time psql -h localhost -U postgres -d resource_test -a -f resource_
test.sql

We have reduced the output of the command in the following code block. It took
50 seconds to fill up the resource_database tables with data:

Password for user postgres:

…

INSERT 0 13545000

real 0m50.446s

user 0m0.003s

sys 0m0.008s

9. Move to the terminal where your docker stats command is running.
You will see an output depending on the number of cores your system is
running and the memory it has available. The script being run doesn't seem
to be very memory-intensive, but it is pushing up the CPU available to the
container to 100%:

NAME CPU % MEM % MEM USAGE / LIMIT

postgres-test 100.66% 2.73% 54.36MiB / 1.943GiB

10. Before you can run the container with the changes to the CPU and memory
configuration, delete the running container to make sure you have a fresh
database running by using the following command:

docker kill postgres-test

11. Run the container again. In this instance, you will limit the CPU available to
only half of one core on the host system, and as the test was not too memory-
intensive, set the memory limit to 256MB:

docker run --rm --name postgres-test -e POSTGRES_PASSWORD=docker -d
-p 5432:5432 --cpus 0.5 --memory 256MB postgres

Chapter 12: Best Practices | 721

12. Enter the container using the exec command:

docker exec -it postgres-test /bin/bash

13. Again, before running your tests, create the resource_test database:

psql -h localhost -U postgres -d postgres -c 'create database
resource_test;'

Password for user postgres:

CREATE DATABASE

14. Now, to see what changes have been made to our resources, limit what can
be used by the container. Run the resource_test.sql script again and by
limiting the resources, specifically the CPU, we can see that it now takes more
than 1 minute to complete:

time psql -h localhost -U postgres -d resource_test -a -f resource_
test.sql

Password for user postgres:

…

INSERT 0 13545000

real 1m54.484s

user 0m0.003s

sys 0m0.005s

15. Move to the terminal where your docker stats command is running. It
should also look different as the percentage of CPU available to be used will be
halved. The change you have made to the CPU slows the running of the script
and, as a result, seems to reduce the memory being used as well:

NAME CPU % MEM % MEM USAGE / LIMIT

postgres-test 48.52% 13.38% 34.25MiB / 256MiB

This activity gave you a good indication of the balancing act you sometimes need to
perform when you are monitoring and configuring your container resources. It does
clarify that you need to be aware of the tasks your services are performing, as well as
how changes to configurations will then affect how your services will operate.

722 | Appendix

Activity 12.02: Using hadolint to Improve the Best Practices on Dockerfiles

Solution

There are a number of ways in which we can perform this activity. The following steps
show one way to do this:

1. Pull the image from the hadolint repository with the following docker
pull command:

docker pull hadolint/hadolint

2. Use hadolint to lint the docker-stress Dockerfile we have been using
throughout this chapter and document the warnings presented:

docker run --rm -i hadolint/hadolint < Dockerfile

You will get warnings such as the following:

/dev/stdin:1 DL3006 Always tag the version of an image explicitly

/dev/stdin:2 DL3008 Pin versions in apt get install. Instead of

'apt-get install <package>' use 'apt-get install

<package>=<version>'

/dev/stdin:2 DL3009 Delete the apt-get lists after installing

something

/dev/stdin:2 DL3015 Avoid additional packages by specifying

'--no-install-recommends'

/dev/stdin:2 DL3014 Use the '-y' switch to avoid manual input

'apt-get -y install <package>'

/dev/stdin:3 DL3025 Use arguments JSON notation for CMD

and ENTRYPOINT arguments

There are no real changes from when you originally tested the image. However,
there are only three lines of code in the Dockerfile, so see whether you can
reduce the number of warnings being presented by hadolint.

3. As mentioned earlier in this chapter, the hadolint wiki page will provide you
with details on how to resolve each of the warnings presented. However, if you
move through each line, you should be able to resolve all these warnings. The
first one presented, DL3006, asks to tag the version of the Docker image you
are using, which is a new version of the Ubuntu image. Change line 1 of your
Dockerfile to now include the 18.08 image version, as shown:

1 FROM ubuntu:18.08

Chapter 12: Best Practices | 723

4. The next four warnings are all related to the second line of our Dockerfile.
DL3008 asks to pin the version of the application being installed. In the
following case, pin the stress application to version 1.0.3. DL3009 states that
you should delete any lists. This is where we have added lines 4 and 5 in the
following code. DL3015 states that you should also use --no-install-
recommends, making sure you don't install applications you don't need. Lastly,
DL3014 is suggesting you include the -y option to make sure you are not
prompted to verify the installation of your application. Edit the Dockerfile to
look as follows:

2 RUN apt-get update \

3 && apt-get install -y stress=1.0.4 --no-install-recommends \

4 && apt-get clean \

5 && rm -rf /var/lib/apt/lists/*

5. DL3025 is your last warning and states that you need to have your CMD
instruction in JSON format. This could cause issues as you are trying to use
environment variables with your stress application. To clear up this warning,
run the stress command with the sh -c option. This should still allow you
to run the command with environment variables:

6 CMD ["sh", "-c", "stress ${var}"]

Your complete Dockerfile, now adhering to the best practices, should look
as follows:

FROM ubuntu:18.04

RUN apt-get update \

 && apt-get install -y stress=1.0.4 --no-install-recommends \

 && apt-get clean \

 && rm -rf /var/lib/apt/lists/*

CMD ["sh", "-c", "stress ${var}"]

6. Now, lint the Dockerfile again using hadolint, with no more
warnings presented:

docker run --rm -i hadolint/hadolint < Dockerfile

724 | Appendix

7. If you want to be 100% sure that the Dockerfile is looking as good as it can
be, perform one final test. Open FROM:latest in your browser and you will
see the Dockerfile with the latest changes showing No problems or
suggestions found!:

Figure 12.4: The docker-stress Dockerfile now adhering to the best practices

Your Dockerfiles may be a lot larger than the ones presented in this chapter,
but as you can see, a systematic line-by-line approach will help you correct any issues
that your Dockerfiles may have. Using applications such as hadolint and FROM
latest, with their suggestions on how to resolve warnings, will familiarize you with
the best practices as you go along. This brings us to the end of our activities and this
chapter, but there is still more interesting content to go, so don't stop now.

Chapter 13: Monitoring Docker Metrics | 725

Chapter 13: Monitoring Docker Metrics

Activity 13.01: Creating a Grafana Dashboard to Monitor System Memory

Solution:

There are a number of ways in which you can perform this activity. The following
steps are one such method:

1. Make sure that Prometheus is running and collecting data, Docker and
cAdvisor are configured to expose metrics, and Grafana is running and
configured with Prometheus as a data source.

2. Open the Grafana web interface and the Container Monitoring dashboard
you created in Exercise 13.05: Installing and Running Grafana on Your System

3. There is an Add panel option at the top of the dashboard and to the right
of the dashboard name. Click the Add panel icon to add in your new
dashboard panel:

Figure 13.26: Adding a new panel to the container monitoring dashboard

4. Select Prometheus from the drop-down list as the data source we will be using
to produce the new dashboard panel.

726 | Appendix

5. In the metrics section, add the following PromQL query, container_
memory_usage_bytes, searching only for entries that have a name value.
Then, sum by each name to provide a line graph for each container:

sum by (name) (container_memory_usage_bytes{name!=""})

6. Depending on the amount of data you have available in your time-series
database, adjust the relative time if needed. Perhaps set the relative time
to 15m. The previous three steps are captured in the following diagram:

Figure 13.27: Adding a new panel to the Container Monitoring dashboard

7. Select Show options and add the title of Memory Container Usage.

Chapter 13: Monitoring Docker Metrics | 727

8. If you click on Save, you will notice that you cannot save the panel as the
dashboard has been provisioned on startup. You can export the JSON, which
you can then add to your provisioning directory. Click the Share Dashboard
button and export the JSON. Select Save JSON to file and store the
dashboard file in the /tmp directory:

Figure 13.28: Warning that we cannot save the new dashboard

9. Stop your Grafana container from running so that you can add to the
provisioning file in your environment. Do this with the following docker
kill command:

docker kill grafana

10. You already have a file named ContainerMonitoring.json in the
provisioning/dashboards directory. Copy the JSON file you have
just created from your tmp directory and replace the original file in the
provisioning/dashboards directory:

cp /tmp/ContainerMonitoring-1579130313205.json provisioning/
dashboards/ContainerMonitoring.json

11. Start the Grafana image again and log in to the application using the default
administration password:

docker run --rm -d --name grafana -p 3000:3000 -e "GF_SECURITY_ADMIN_
PASSWORD=secret" -v ${PWD}/provisioning:/etc/grafana/provisioning
grafana/Grafana

728 | Appendix

12. Log in to Grafana one more time and move to the Container Monitoring
dashboard you have been provisioning. You should now see the newly created
Memory Container usage panel at the top of our dashboard, similar to the
following screenshot:

Figure 13.29: New dashboard panel displaying memory usage

This should now make it a lot easier to monitor the memory and CPU usage of
containers running on your system. The dashboard provides an easier interface than
looking through the docker stats command, especially when you start to run a
few more containers on your system.

Chapter 13: Monitoring Docker Metrics | 729

Activity 13.02: Configuring the Panoramic Trekking App to Expose Metrics to

Prometheus

Solution:

There are a number of ways in which we can perform this activity. Here, we have
chosen to add an exporter to the PostgreSQL container we have running as part of
the panoramic trekking app:

1. If you don't have the panoramic trekking app running, make sure that at least
the PostgreSQL container is running so that you can complete this activity. You
won't need to have Prometheus running yet as you will need to make some
changes to the configuration file first. Run the following command to verify that
the PostgreSQL database is running:

docker run --rm -d --name postgres-test -e POSTGRES_PASSWORD=docker
-p 5432:5432 postgres

To gather further metrics from your PostgreSQL container, you can locate an
exporter already created by the user albertodonato on GitHub. Using one
that someone has already created makes it a lot easier than having to create
your own. Documentation and details can be found at the following
URL: https://github.com/albertodonato/query-exporter.

2. The aforementioned GitHub account has a good breakdown of how to set up
the configuration and metrics. Set up a basic configuration file to get started.
Find the IP address that the PostgreSQL container is running on by running the
following docker inspect command. This gives you the internal IP address
your container is running on. You'll also need to substitute the container name
you have running for <container_name>:

docker inspect --format '{{ .NetworkSettings.IPAddress }}'
<container_name>

Your IP address might be different to the one here:

172.17.0.3

3. For this exporter, you need to set up some extra configurations to feed into the
exporter. To start with, create a configuration file named psql_exporter_
config.yml in your working directory and open the file with your text editor.

https://github.com/albertodonato/query-exporter

730 | Appendix

4. Enter the first four lines into your configuration file below. This is how the
exporter connects to the database. You will need to provide the password with
which the database can be accessed and the IP address that you obtained in the
previous step or if a domain is assigned to the database:

1 databases:

2 pg:

3 dsn: postgresql+psycopg2://postgres:<password>@<ip|domain>/
 postgres
4

5. Add your first metric to the configuration file. Enter the following lines to add
your metric name, type of gauge, description, and a label:

5 metrics:

6 pg_process:

7 type: gauge

8 description: Number of PostgreSQL processes with their
 states
9 labels: [state]

10

6. Set up a database query to gather the metric details you want for the pg_
process gauge. Line 13 shows that you want to create a database query with
lines 14 and 15, assigning the results to the metric you created earlier. Lines 16 to
23 are the query we want to run on our database in order to create a gauge for
the number of processes running on the database:

psql_exporter_config.yml

11 queries:
12 process_stats:
13 databases: [pg]
14 metrics:
15 - pg_process
16 sql: >
17 SELECT
18 state,
19 COUNT(*) AS pg_process
20 FROM pg_stat_activity
21 WHERE state IS NOT NULL
22 GROUP BY state
23 FROM pg_stat_database

You can find the complete code here https://packt.live/32C47K3.

https://packt.live/32C47K3

Chapter 13: Monitoring Docker Metrics | 731

7. Save the configuration file and run the exporter from the command line. The
exporter will expose its metrics on port 9560. Mount the configuration file
you created earlier in this activity. You are also getting the latest version of the
adonato/query-exporter image:

docker run -p 9560:9560/tcp -v --name postgres-exporter ${PWD}/psql_
exporter_config.yml:/psql_exporter_config.yml --rm -itd adonato/query-
exporter:latest -- /psql_exporter_config.yml

8. Open a web browser and use the URL http://0.0.0.0:9560/metrics to
view the new metrics you have set up for the PostgreSQL container running as
part of the panoramic trekking app:

HELP database_errors_total Number of database errors

TYPE database_errors_total counter

HELP queries_total Number of database queries

TYPE queries_total counter

queries_total{database="pg",status="success"} 10.0

queries_total{database="pg",status="error"} 1.0

TYPE queries_created gauge

queries_created{database="pg",status="success"}

1.5795789188074727e+09

queries_created{database="pg",status="error"}

1.57957891880902e+09

HELP pg_process Number of PostgreSQL processes with their states

TYPE pg_process gauge

pg_process{database="pg",state="active"} 1.0

9. Move into the directory where you have Prometheus installed, open the
prometheus.yml file with your text editor, and add in the exporter
details to allow Prometheus to start collecting the data:

45 - job_name: 'postgres-web'

46 scrape_interval: 5s

47 static_configs:

48 - targets: ['0.0.0.0:9560']

732 | Appendix

10. Save the changes you've made to the prometheus.yml file and start the
Prometheus application again from the command line, as shown here:

./prometheus --config.file=prometheus.yml

11. If everything has worked as it should, you should now see the postgres-web
target displayed on the Prometheus Targets page, as demonstrated here:

Figure 13.30: New postgres-web Targets page displayed on Prometheus

That brings us to the end of the activities and the end of this chapter. The activities
should have helped to solidify the knowledge learned earlier on and provided you
with experience in gathering metrics for your applications and running systems and
displaying them in a more user-friendly fashion.

Chapter 14: Collecting Container Logs | 733

Chapter 14: Collecting Container Logs

Activity 14.01: Creating a docker-compose.yml File for Your Splunk Installation

Solution:

There are a number of ways in which we can perform this activity. The following steps
outline one possible method.

Here, you will set up a docker-compose.yml file that will at least run your Splunk
container the same way it has been running throughout this chapter. You will set up
two volumes in order to mount the /opt/splunk/etc directory, as well as the
/opt/splunk/var directory. You need to expose ports 8000, 9997, and 8088
to allow access to your web interface and allow data to be forwarded to the Splunk
instance. Finally, you will need to set up some environment variables that will accept
the Splunk license and add the Administrator password. Let's get started:

1. Create a new file called docker-compose.yml and open it with your favorite
text editor.

2. Start with the version of Docker Compose you prefer and create the volumes
you are going to use in order to mount the var and ext directories:

1 version: '3'

2

3 volumes:

4 testsplunk:

5 testsplunkindex:

6

3. Set up the service for the Splunk installation, using splunk as the hostname
and splunk/splunk as the image you have been using as your installation.
Also, set up the environment variables for SPLUNK_START_ARGS and
SPLUNK_PASSWORD, as shown here:

7 services:

8 splunk:

9 hostname: splunk

10 image: splunk/splunk

11 environment:

12 SPLUNK_START_ARGS: --accept-license

13 SPLUNK_PASSWORD: changeme

734 | Appendix

4. Finally, mount the volumes and expose the ports your installation will need to
access the web interface and forward data from a forwarder and the containers:

14 volumes:

15 - ./testsplunk:/opt/splunk/etc

16 - ./testsplunkindex:/opt/splunk/var

17 ports:

18 - "8000:8000"

19 - "9997:9997"

20 - "8088:8088"

5. Run the docker-compose up command to make sure it is all working
correctly. Use the -d option to make sure it is running as a daemon in the
background of our system:

docker-compose up -d

The command should return an output similar to the following:

Creating network "chapter14_default" with the default driver

Creating chapter14_splunk_1 ... done

6. Once your Splunk installation is running again, it's time to get one of your
services from the Panoramic Trekking App running so that you can forward logs
to Splunk to be indexed. When using the docker run command, add the log
driver details, as you did previously in this chapter, and make sure you include
the correct token for your HTTP Event Collector:

docker run --rm -d --name postgres-test \

-e POSTGRES_PASSWORD=docker -p 5432:5432 \

--log-driver=splunk \

--log-opt splunk-url=http://127.0.0.1:8088 \

--log-opt splunk-token=5c051cdb-b1c6-482f-973f-2a8de0d92ed8 \

--log-opt splunk-insecureskipverify=true \

--log-opt tag="{{.Name}}/{{.FullID}}" \

postgres -c log_statement=all

Note

Observe that we are using -c log_statement=all in the docker
run command as this will make sure all of our PostgreSQL queries will be
logged and sent to Splunk.

Chapter 14: Collecting Container Logs | 735

7. Log in to the Splunk web interface and access the Search & Reporting
app. Enter the source="http:docker logs" AND postgres-test
query into the interface and press Enter. Since you have tagged our container,
you should see your containers tagged with the name and full ID, so adding
postgres-test to your search will make sure only your PostgreSQL logs
are visible:

Figure 14.48: PostgreSQL logs displaying in Splunk

As you can see from the preceding screenshot, our logs are flowing through
Splunk successfully. Make note of the tag that was added to the log entries,
as shown in the preceding screenshot.

This activity taught us how to implement the logging procedures in our development
projects using Docker Compose.

736 | Appendix

Activity 14.02: Creating a Splunk App to Monitor the Panoramic Trekking App

Solution:

There are a number of ways in which you can perform this activity. The following
steps are one way to do this. Here, you will add an exporter to the PostgreSQL
container you have running as part of the Panoramic Trekking App:

1. Make sure Splunk is running and that the service you have been monitoring
has been running for a little while to make sure you are collecting some logs for
this activity.

2. Log in to the Splunk web interface. From the Splunk home screen, click on the
cog icon next to the Apps menu; you will be presented with the Apps page for
your Splunk environment:

Figure 14.49: Apps page of the Splunk environment

Chapter 14: Collecting Container Logs | 737

3. Click the Create app button and fill in the form. It will be similar to the
following, in which Name is set to Panoramic Trekking App, Folder
name is set to panoramic_trekking_app, and Version is set to 1.0.0.
Click Save to create the new app:

Figure 14.50: Creating your new app in Splunk

738 | Appendix

4. Return to the Splunk home page and make sure your Panoramic Trekking
App is visible from the Apps menu. Click Panoramic Trekking App to bring
up the Search & Reporting page so that you can start querying your data:

Figure 14.51: Selecting Panoramic Trekking App

5. Type source="http:docker logs" AND postgres-test AND
INSERT AND is_superuser | stats count into the query bar and
press Enter. The search will look for any Super Users that were created as
part of the application. When your data comes up, click the Visualization
tab and change it to display a single-value visualization:

Figure 14.52: Entering a query in the query bar

Chapter 14: Collecting Container Logs | 739

6. Click the Save As button at the top of the screen and select the Dashboards
panel. When you are presented with this screen, select the panel to be added to
a new dashboard and give it the name PTA Monitoring. Also, give the panel
the title Super User Access and click Save:

Figure 14.53: Adding details to the dashboard panel

740 | Appendix

7. When you are presented with your new dashboard, click the Edit
and Add panel buttons. Select New and then Single Value as the
visualization type. Set Content Title to Database Creation. Add
the source="http:docker logs" AND postgres-test AND
CREATE DATABASE | stats count source string and click Save. This
will search through your logs to show if anyone has created any databases on
the PostgreSQL database, which should only happen when the app is set up
and created:

Figure 14.54: Editing the dashboard panel

8. Again, click the New Panel button and select New and then Column Chart
from the visualizations. Add a Content Title of App Usage, add the
source="http:docker logs" AND postgres-test AND SELECT
AND photo_viewer_photo earliest=-60m | timechart span=1m
count search query, and click Save. This search will provide you with a count
over time of people who are using the app to view your photos.

Chapter 14: Collecting Container Logs | 741

9. Feel free to move the panels around the dashboard. When you are happy with
the changes, click the Save button. Your dashboard should look similar to
the following:

Figure 14.55: New dashboard panel used to monitor PostgreSQL usage

This activity helped you gather log data for your Panoramic Trekking App and
display it in a more user-friendly fashion using Splunk.

742 | Appendix

Chapter 15: Extending Docker with Plugins

Activity 15.01: Installing WordPress with Network and Volume Plugins

Solution:

It is possible to create containers for the database and the WordPress blog using
volume and networking plugins with the following steps:

1. Create a network with the following command:

docker network create \

--driver=store/weaveworks/net-plugin:2.5.2 \

--attachable \

wp-network

This command creates a network using the Weave Net plugin, specified with the
driver flag. In addition, the volume is specified as attachable, which means
you can connect to Docker containers in the future. Finally, the name of the
container will be wp-network. You should get output like the following:

mk0pmhpb2gx3f6s00o57j2vd

2. Create a volume with the following command:

docker volume create -d vieux/sshfs \

--name wp-content \

-o sshcmd=root@localhost:/tmp \

-o password=root \

-o port=2222

This command creates a volume over SSH using the vieux/sshfs plugin.
The name of the volume is wp-content and additional options are passed
for the ssh command, port, and password:

wp-content

3. Create the mysql container with the following command:

docker run --name mysql -d \

-e MYSQL_ROOT_PASSWORD=wordpress \

-e MYSQL_DATABASE=wordpress \

-e MYSQL_USER=wordpress \

-e MYSQL_PASSWORD=wordpress \

--network=wp-network \

mysql:5.7

Chapter 15: Extending Docker with Plugins | 743

This command runs the mysql container in detached mode, with the
environment variables and the wp-network connection.

4. Create the wordpress container with the following command:

docker run --name wordpress -d \

-v wp-content:/var/www/html/wp-content \

-e WORDPRESS_DB_HOST=mysql:3306 \

-e WORDPRESS_DB_USER=wordpress \

-e WORDPRESS_DB_PASSWORD=wordpress \

-e WORDPRESS_DB_NAME=wordpress \

--network=wp-network \

-p 8080:80 \

wordpress

This command runs the wordpress container in detached mode with the
environment variables and the wp-network connection. In addition, port 80
of the container is available at port 8080 of the host system.

With the successful start, you will have two containers running for mysql
and wordpress:

docker ps

Figure 15.17: The WordPress and database containers

744 | Appendix

5. Open http://localhost:8080 in your browser to check the WordPress
setup screen:

Figure 15.18: WordPress setup screen

The WordPress setup screen verifies that WordPress is installed using the
network and volume plugins.

In this activity, you have created a custom network using the Weave Net plugin and a
custom volume using the sshfs plugin. You created a database container that uses
the custom network and a WordPress container that uses the custom network and
the custom volume. With a successful setup, your Docker containers connect with
each other over custom networking and use the volume over SSH. With this activity,
you have used Docker extensions for a real-life application. You can now confidently
extend Docker with your custom business requirements and technologies.

Index

A
access: 2, 5-6, 15,

20-22, 26-27,
30-31, 46, 74, 89,
102, 104, 120, 125,
128-130, 136, 157,
192, 197, 201, 206,
208, 211-212, 219,
222, 226, 229, 233,
236, 240, 243,
250, 252, 256-257,
261, 263, 275,
282, 290, 295-296,
298-300, 304, 331,
360, 362, 366,
377, 393, 399-400,
402, 410-411, 413,
419, 428, 432-434,
436-437, 439,
461-462, 466, 471,
473, 475, 478-479,
481, 484-485,
492-493, 496, 498,
504, 543, 552-553,
568, 572-575, 579,
586-587, 609,
628-629, 646

addgroup: 433-434,
437-438

adduser: 433-434,
437-438

--alias: 630
alpine: 90-93, 95-96,

98, 100-102, 116,
143-144, 150, 152,
157, 162, 211, 213,
216-217, 221, 228,
230-231, 235, 237,
239-240, 245-246,

248, 255-256, 258,
260, 329-330,
339, 435, 437-438,
453-454, 482

anchor-cli: 452
anchore: 447-452, 454,

456, 474, 501, 511
anchore-db:

450-452, 512
apache: 61-62, 64-65,

68-71, 73-74,
76-80, 82-84, 197,
265, 275, 594

apiext: 453
apigroup: 414
apigroups: 413
apiversion: 406-408,

411-414,
416-417, 553

apkindex: 91, 240
apk-tools: 455
appamor: 464
apparmor: 431-432,

461-469, 475
apt-cache: 497
apt-get: 40-41, 44,

50, 62, 65, 69, 74,
78-79, 158-160,
206, 208, 273-274,
468, 482, 497, 500,
504-505, 508

B
basic-app: 90-93,

95-96, 99, 102-103,
105, 116-125,
130-133

basic-base: 101-102,
116-118

binary: 45, 107, 167,
396-397, 402,
422, 520-523,
572, 580, 632

--bind: 370-371,
378, 466-467

blockio: 491-492
bridge: 195-199,

201, 203, 206-211,
214-216, 222-227,
236-237, 242, 245,
248, 254, 258, 395

builder: 135-136,
141-145, 147,
149-156, 163, 532

building: 3, 5, 7-8,
16, 26, 30, 33, 37,
44-45, 47, 51-52,
55, 57, 63, 66,
69, 75, 77, 79, 82,
84, 87-90, 97-98,
102, 107, 109,
119, 138, 140,
142, 145-146, 148,
152-153, 155-159,
161, 322, 330,
361, 400, 406-407,
497-498, 500, 568

busybox: 111-114,
176, 182-185,
455, 643

C
cache-from: 102
cadvisor: 520,

529-531, 534-541,
543-544, 546-547,
552, 565

--cap-add: 466
--cap-drop: 440
cgroups: 3, 6
--chown: 59
chroot: 436, 440
cluster: 195-197,

210, 223, 226,
242-246, 248,
251-253, 255-256,
258, 260-261,
267, 276, 279,
346-348, 350-354,
356-357, 368, 379,
388, 391, 394-403,
405, 409-414, 416,
420-421, 424-425

clusterid: 244, 351
commit: 40, 102-104,

116-118, 131,
265, 298-300, 318,
328-329, 499

config: 226, 317,
368-369, 373-376,
378-379, 401-402,
444, 470-471, 498,
523, 525, 533

--config: 523, 533,
536, 543, 550, 552

counter: 133, 315-317,
321, 323, 328, 330,
337, 341, 532,
538-539, 541

cpuperc: 480, 483, 485
--cpus: 481, 484, 494
cpython: 168

D
databases: 31, 166,

264, 275, 287,
361-362, 393, 408,
420-421, 518

debian: 38, 44
debugging: 18,

26, 160, 340
--detach: 170, 177,

530, 534
devops: 309
dhclient: 465-466
dialout: 106, 436
django: 30, 359-363,

369-370, 372, 389
dl-cdn: 91, 240
dnsnet: 213-214,

216-217, 219-221
dockerfile: 35-48,

50-51, 53-56, 58,
61-62, 64-69, 73-74,
77-79, 81, 83-84,
88-90, 92-93,
97-103, 106-108,
110, 112-114,
116-118, 126, 131,
135-137, 139,
142-147, 149-154,
156, 158-162,
172, 176-177,
315, 317, 319,
328-329, 359-361,
368, 371-372, 375,
433-435, 437-438,
447, 454, 464,
482, 496-498, 500,
502-508, 513, 532

dockerhub: 110
dockerize: 35, 74, 83,

138, 161, 275
docker-py: 168
dockerrepo: 474

E
egress: 196-197, 201
elseif: 83
endpoint: 73-74,

76, 80, 82,
519-520, 526, 536,
548-550, 636

engine: 6-7, 14, 37,
167, 173-174, 197,
272, 275-276, 283,
309, 346-347,
350, 361-362,
448, 450-453,
464, 501, 534,
539-540, 625-628

engine-api: 451,
453, 511

entrypoint: 7, 27,
38, 42-44, 50, 53,
58, 64, 74, 77-79,
84, 113-114, 130,
137, 139, 143-144,
146-147, 150, 152,
154, 176, 496,
498, 504-506

env-arg: 56-58
--exclude: 105

F
filesystem: 35, 45, 53,

59-60, 67, 70-71, 84,
88, 132, 137, 139,
142, 144, 148, 176,
265, 275, 297, 299,
301, 305, 466, 640

--filter: 294, 398-399
--force: 356
--format: 117-118, 132,

299, 301-302, 355,
480, 483, 485-486,
488, 491-492, 638

forwarder: 573-574,
579-582, 585-586

fowner: 436
fprintf: 162
framework: 4,

309, 359, 568
--from: 150-152, 154
fromlatest: 507

G
gateway: 200-201,

205-206, 213-215,
226, 229-230, 232,
236, 238, 245,
253, 258, 260,
369, 479, 646

--gateway: 213,
236, 245, 253

getenv: 161
get-helm-: 422
getrequest: 640
git-commit: 117-118
global: 340, 381,

468, 523, 588

golang: 136-139,
143-146, 148-154,
160-163

google: 2, 120, 230,
257, 267-270,
309, 392, 420,
529-530, 534, 640

googleapis: 396-397,
402, 422

grafana: 421, 517,
520, 550-557,
559-562, 565

H
handlefunc: 161
helloworld: 137,

143-145, 150-152
--help: 168, 170, 445
histogram: 539-540
hostnet: 231-236, 241
hyperkit: 396
hyper-v: 396
hypervisor: 2, 243, 396

I
ifconfig: 197-198, 215,

223-224, 230, 233,
236, 240, 256

--ignore: 503, 505
--image: 359, 366-367
immutable: 5, 33,

477, 498
impact: 486, 491
ingress: 196, 224, 245,

248, 254, 411-412
--ingroup: 433,

437-438

interface: 6, 8,
125-126, 128,
196-199, 201, 206,
208, 215-216,
222-224, 226,
230-231, 236, 240,
256, 295, 345,
369, 379-380, 382,
386, 400, 448-449,
456-457, 461, 517,
520-522, 524, 530,
535-536, 551-552,
556, 560-561, 565,
570, 574-575, 577,
582, 586-588, 591,
593, 635, 640

--interval: 73
ipconfig: 198, 215,

223, 230, 236, 311

J
javascript: 59
jenkins: 305, 307-315,

318-322, 324-333,
335-336, 338-341,
343, 421

jenkinsci: 310, 324,
328, 330, 337, 339

join-token: 349-350
journalctl: 632

K
kubectl: 400-403,

405, 414, 416-418,
425-426, 428

kubedns: 403
kube-dns: 403

kubelet: 395, 399, 407
kube-proxy: 395, 399
kubernetes: 279,

309, 389, 391-414,
420-421, 425-426,
428, 433, 479,
494, 500, 646

L
lastsync: 453-454
latencies: 540
latency: 251, 436, 545
libcap: 435, 437-438
libcrypto: 455
libcurl: 93, 455
libc-utils: 455
libnet: 240
libnetwork: 257
libpcap: 240
libraries: 4-5, 12,

315, 522
library: 10-11,

16-17, 46-47, 90,
435, 547-550

libssl: 455
license: 455, 522,

570, 574, 579
--link: 210-211
--log-opt: 587, 590, 592

M
macaddress: 238
--memory: 487,

489-490, 494
memperc: 486, 488
memtotal: 435

memusage: 486, 488
--mount: 283, 287
mountpath: 409, 415
mountpoint: 68,

71, 284
mydomain: 39-40,

44, 46-50, 56
mygroup: 59
mylogs: 304
mynew-base: 106
mysql-: 425
myuser: 59

N
net-plugin:

252-254, 637
network: 2, 121,

172-173, 175, 177,
195-198, 201,
203-204, 206-211,
213-216, 218-228,
230-242, 244-245,
248-258, 260-261,
281-282, 311, 362,
364, 370, 372,
376, 378, 380-381,
392, 395, 405-406,
434-436, 438,
441, 451, 586,
609, 626, 628,
633-640, 644, 646

--network: 216-217,
228, 231, 234-235,
237, 239, 245-246,
255, 637

networkid:
200-201, 205

nodeid: 244, 351
nodejs: 72

O
openjdk: 156-157
openssl: 168, 455

P
panoramic: 30-31,

33, 131, 189-192,
258-260, 276, 341,
387-388, 425-427,
473-474, 512, 563,
587, 619-621

postgres: 30-31, 132,
173, 190, 288,
290-291, 294,
360-367, 373,
377-378, 387, 426

postgresql: 30, 33,
131, 183, 190, 260,
287-288, 290-291,
301-302, 359-360,
362, 377, 421, 426,
448, 450, 563

profile: 461-463,
465-473

prometheus: 421,
514, 517, 519-524,
526-545, 547-553,
557, 561-565

python: 3, 6, 30, 315,
328, 330, 339-340,
359-360, 365, 369,
455, 509-511

R
redhat: 242
redirect: 75, 372, 374
registries: 7, 84,

87-88, 110, 128,
136, 331, 441, 505

registry: 7, 9-10, 12,
14, 36, 52, 84,
87-88, 110, 115,
120-122, 128-133,
136, 155, 170-172,
190, 305, 309,
313, 315, 330-331,
335-336, 357, 366,
442-444, 446, 448,
497, 530, 534

replica: 245, 277, 364
replicas: 276-279,

282, 347, 352-353,
363-365, 371, 381,
384-385, 387, 400,
407-408, 413,
415, 417, 638

--replicas: 245-246,
255, 276, 351, 637

--restart: 130
--retries: 73
--rotate: 349

S
scratch: 39, 106-109,

147, 154, 447, 509
seccomp: 431-432,

461, 469-473, 475
setcap: 440
setfcap: 436, 440
setgid: 436, 440

setpcap: 436
setuid: 436, 440
several: 267, 299,

301, 308-309, 628
--short: 403
socket: 440
sonarqube: 305,

307, 340-342
sourcetype: 596,

601-602, 607,
613, 617

splunk: 567,
569-595, 599-600,
604, 606-612,
614-621, 623

splunkbase: 571, 609
splunkd: 580
splunk-url: 587,

590, 592
stateful: 166, 261,

263-264, 275, 279,
282, 287, 304-305,
408-409, 640

stateless: 261,
263-264, 275-276,
279, 282,
304-305, 498

static: 175-177,
184-185, 190, 250,
426, 448, 531,
533, 536, 549

subcommand: 36,
265-266, 270,
274, 278-279,
281-283, 286-287,
294, 301-302

subdomain: 549
subnet: 196-197,

201, 203, 206,
213-214, 217-219,

222, 226, 236, 238,
244-245, 247, 253,
256, 258, 260

--subnet: 213,
236, 245, 253

subnetsize: 244, 351
subpath: 409, 415
subsection: 238
subset: 3
swarmpit: 345,

379-386, 389
syslog: 468, 568

T
--target: 152
tcpdump: 465
testcreate: 271-272
testevents: 268-271
testsize: 272-274
testsplunk: 576-578,

588, 592
testuser: 55
--timeout: 73, 482-485,

488-490, 495,
501, 509-510

timeseries: 533
timestamp: 545, 559
--token: 243-244,

348, 350, 357
trekking: 30-31, 33,

131, 189-192,
258-260, 276,
341-342, 387-388,
425-427, 473-474,
512, 563, 587,
619-621

U
ubuntu: 10, 13, 16-25,

27-29, 38-39, 44,
46-50, 52, 55-57,
61-62, 64-65, 69, 74,
78-79, 83-84, 156,
158-160, 242, 265,
268-274, 284, 286,
295, 298-299, 482,
500, 508, 630, 632

--user: 157-158
useradd: 158, 325, 434
usermod: 311, 325
--username: 31

V
--version: 243,

452, 522
visibility: 15, 222, 252
--vm-bytes: 489
--volume: 130, 283,

287, 379-380,
530, 534

W
weavenet:

253-256, 258
weaveworks:

252-254, 637
webapp: 172-173
weblog: 582, 584
web-nginx: 542,

544-550, 552

webserver: 199, 201,
203-204, 206,
208-209, 258-259

whoami: 64-65, 158,
435, 438, 464

wildcards: 59, 594
wordpress: 187-189,

414-420, 644-645
workdir: 53, 58, 60-63,

84, 94, 98-101,
103, 116-118, 136,
139, 143, 146-147,
150-152, 154, 359,
437-438, 498

wp-content: 644
wp-network: 644
writable: 45, 88,

102, 274

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Running My First Docker Container
	Introduction
	Advantages of Using Docker
	Docker Engine
	Running Docker Containers
	Exercise 1.01: Running the hello-world Container

	Managing Docker Containers
	Exercise 1.02: Managing Container Life Cycles

	Attaching to Containers Using the attach Command
	Exercise 1.03: Attaching to an Ubuntu Container
	Activity 1.01: Pulling and Running the PostgreSQL Container Image from Docker Hub
	Activity 1.02: Accessing the Panoramic Trekking App Database

	Summary

	Chapter 2: Getting Started with Dockerfiles
	Introduction
	What Is a Dockerfile?
	Common Directives in Dockerfiles
	The FROM Directive
	The LABEL Directive
	The RUN Directive
	The CMD Directive
	The ENTRYPOINT Directive
	Exercise 2.01: Creating Our First Dockerfile

	Building Docker Images
	Exercise 2.02: Creating Our First Docker Image

	Other Dockerfile Directives
	The ENV Directive
	The ARG Directive
	Exercise 2.03: Using ENV and ARG Directives in a Dockerfile
	The WORKDIR Directive
	The COPY Directive
	The ADD Directive
	Exercise 2.04: Using the WORKDIR, COPY, and ADD Directives in the Dockerfile
	The USER Directive
	Exercise 2.05: Using USER Directive in the Dockerfile
	The VOLUME Directive
	Exercise 2.06: Using VOLUME Directive in the Dockerfile
	The EXPOSE Directive
	The HEALTHCHECK Directive
	Exercise 2.07: Using EXPOSE and HEALTHCHECK Directives in the Dockerfile
	The ONBUILD Directive
	Exercise 2.08: Using ONBUILD Directive in the Dockerfile
	Activity 2.01: Running a PHP Application on a Docker Container

	Summary

	Chapter 3: Managing Your Docker Images
	Introduction
	Docker Layers and Caching
	Exercise 3.01: Working with Docker Image Layers
	Exercise 3.02: Increasing Build Speed and Reducing Layers

	Creating Base Docker Images
	Exercise 3.03: Creating Your Base Docker Images
	The Scratch Image
	Exercise 3.04: Using the Scratch Image

	Docker Image Naming and Tagging
	Exercise 3.05: Tagging Docker Images

	Using the latest Tag in Docker
	Exercise 3.06: Issues When Using latest

	Docker Image Tagging Policies
	Exercise 3.07: Automating Your Image Tagging

	Storing and Publishing Your Docker Images
	Exercise 3.08: Transporting Docker Images Manually
	Storing and Deleting Docker Images in Docker Hub
	Exercise 3.09: Storing Docker Images in Docker Hub and Deleting the Repository

	The Docker Registry
	Exercise 3.10: Creating a Local Docker Registry
	Activity 3.01: Build Scripts Using Git Hash Versioning
	Activity 3.02: Configuring Your Local Docker Registry Storage

	Summary

	Chapter 4: Multi-Stage Dockerfiles
	Introduction
	Normal Docker Builds
	Exercise 4.01: Building a Docker Image with the Normal Build Process

	What Is the Builder Pattern?
	Exercise 4.02: Building a Docker Image with the Builder Pattern

	Introduction to Multi-Stage Dockerfiles
	Exercise 4.03: Building a Docker Image with a Multi-Stage Docker Build

	Dockerfile Best Practices
	Using an Appropriate Parent Image
	Using a Non-Root User for Better Security
	Using dockerignore
	Minimizing Layers
	Don't Install Unnecessary Tools
	Activity 4.01: Deploying a Golang HTTP Server with a Multi-Stage Docker Build

	Summary

	Chapter 5: Composing Environments with Docker Compose
	Introduction
	Docker Compose CLI
	Installing Docker Compose CLI in Linux
	Docker Compose CLI Commands
	Docker Compose File
	Exercise 5.01: Getting Started with Docker Compose

	Configuration of Services
	Exercise 5.02: Configuring Services with Docker Compose

	Service Dependency
	Exercise 5.03: Service Dependency with Docker Compose
	Activity 5.01: Installing WordPress Using Docker Compose
	Activity 5.02: Installing the Panoramic Trekking App Using Docker Compose

	Summary

	Chapter 6: Introduction to Docker Networking
	Introduction
	Exercise 6.01: Hands-On with Docker Networking

	Native Docker DNS
	Exercise 6.02: Working with Docker DNS

	Native Docker Network Drivers
	Exercise 6.03: Exploring Docker Networks

	Docker Overlay Networking
	Exercise 6.04: Defining Overlay Networks

	Non-Native Docker Networks
	Exercise 6.05: Installing and Configuring the Weave Net Docker Network Driver
	Activity 6.01: Leveraging Docker Network Drivers
	Activity 6.02: Overlay Networking in Action

	Summary

	Chapter 7: Docker Storage
	Introduction
	The Container Life Cycle
	Exercise 7.01: Transitioning through the Common States for a Docker Container
	Exercise 7.02: Checking the Container Size on Disk

	Stateful versus Stateless Containers/Services
	Exercise 7.03: Creating and Scaling a Stateless Service, NGINX
	Exercise 7.04: Deploying a Stateful Service, MySQL

	Docker Volumes and Stateful Persistence
	Exercise 7.05: Managing a Volume outside the Container's Scope and Mounting It to the Container
	Exercise 7.06: Managing a Volume within the Container's Scope
	Exercise 7.07: Running a PostgreSQL Container with a Volume
	Exercise 7.08: Running a PostgreSQL Container without a Volume
	Miscellaneous Useful Docker Commands

	Persistent and Ephemeral Volumes
	Exercise 7.09: Sharing Volumes between Containers

	Volumes versus Filesystem and Images
	Exercise 7.10: Saving a File on a Volume and Committing It to a New Image
	Exercise 7.11: Saving a File in the New Image Filesystem
	Activity 7.01: Storing Container Event (State) Data on a PostgreSQL Database
	Activity 7.02: Sharing NGINX Log Files with the Host

	Summary

	Chapter 8: CI/CD Pipeline
	Introduction
	What Is CI/CD?
	Exercise 8.01: Installing Jenkins as a Container

	Integrating GitHub and Jenkins
	Exercise 8.02: Uploading the Code to GitHub
	Exercise 8.03: Integrating GitHub and Jenkins

	Integrating Jenkins and Docker Hub
	Exercise 8.04: Integrating Jenkins and Docker Hub
	Activity 8.01: Utilizing Jenkins and SonarQube
	Activity 8.02: Utilizing Jenkins and SonarQube in the Panoramic Trekking Application

	Summary

	Chapter 9: Docker Swarm
	Introduction
	How Docker Swarm Works?
	Working with Docker Swarm
	Exercise 9.01: Running Services with Docker Swarm

	Troubleshooting Swarm Nodes
	Deploying Swarm Deployments from Docker Compose
	Swarm Service Rolling Updates
	Exercise 9.02: Deploying Your Swarm from Docker Compose

	Managing Secrets and Configurations with Docker Swarm
	Exercise 9.03: Implementing Configurations and Secrets in Your Swarm

	Managing Swarm with Swarmpit
	Exercise 9.04: Installing Swarmpit and Managing Your Stacks
	Activity 9.01: Deploying the Panoramic Trekking App to a Single-Node Docker Swarm
	Activity 9.02: Performing an Update to the App While the Swarm Is Running

	Summary

	Chapter 10: Kubernetes
	Introduction
	Kubernetes Design
	Exercise 10.01: Starting a Local Kubernetes Cluster

	The Kubernetes API and Access
	Exercise 10.02: Accessing Kubernetes Clusters with kubectl

	Kubernetes Resources
	Pods
	Deployments
	Statefulsets
	Services
	Ingress
	Horizontal Pod Autoscaling
	RBAC Authorization
	Exercise 10.03: Kubernetes Resources in Action

	Kubernetes Package Manager: Helm
	Exercise 10.04: Installing the MySQL Helm Chart
	Activity 10.01: Installing the Panoramic Trekking App on Kubernetes

	Summary

	Chapter 11: Docker Security
	Introduction
	Privileged and Root User Access in Containers
	Exercise 11.01: Running Containers as the Root User
	Runtime Privileges and Linux Capabilities

	Signing and Verifying Docker Images
	Exercise 11.02: Signing Docker Images and Utilizing DCT on Your System

	Docker Image Security Scans
	Scanning Images Locally Using Anchore Security Scan
	Exercise 11.03: Getting Started with Anchore Image Scanning

	Utilizing SaaS Security Scans with Snyk
	Exercise 11.04: Setting up a Snyk Security Scan

	Using Container Security Profiles
	Implementing AppArmor Security Profiles on Your Images
	Exercise 11.05: Getting Started with AppArmor Security Profiles
	seccomp for Linux Containers
	Exercise 11.06: Getting Started with seccomp
	Activity 11.01: Setting up a seccomp Profile for the Panoramic Trekking App
	Activity 11.02: Scanning Your Panoramic Trekking App Images for Vulnerabilities

	Summary

	Chapter 12: Best Practices
	Introduction
	Working with Container Resources
	Managing Container CPU Resources
	Exercise 12.01: Understanding CPU Resources on Your Docker Image

	Managing Container Memory Resources
	Exercise 12.02: Analyzing Memory Resources on Your Docker Image

	Managing the Container Disk's Read and Write Resources
	Exercise 12.03: Understanding Disk Read and Write

	Container Resources and Docker Compose
	Best Practices in Docker
	Running One Service per Container
	Base Images
	Installing Applications and Languages
	Running Commands and Performing Tasks
	Containers Need to Be Immutable and Stateless
	Designing Applications to Be Highly Available and Scalable
	Images and Containers Need to Be Tagged Appropriately
	Configurations and Secrets
	Making Your Images Minimal and Small

	Enforcing Docker Best Practices in Your Code
	Using Docker Linter for Your Images
	Exercise 12.04: Linting Your Dockerfiles
	Exercise 12.05: Validating Your docker-compose.yml File
	Activity 12.01: Viewing the Resources Used by the Panoramic Trekking App
	Activity 12.02: Using hadolint to Improve the Best Practices on Dockerfiles

	Summary

	Chapter 13: Monitoring Docker Metrics
	Introduction
	Monitoring Environment Metrics with Prometheus
	Exercise 13.01: Installing and Running Prometheus

	Monitoring Docker Containers with Prometheus
	Exercise 13.02: Collecting Docker Metrics with Prometheus

	Understanding the Prometheus Query Language
	Counter
	Gauges
	Histograms
	Summaries

	Performing PromQL Queries
	Exercise 13.03: Working with the PromQL Query Language

	Using Prometheus Exporters
	Exercise 13.04: Using Metrics Exporters with Your Applications

	Extending Prometheus with Grafana
	Exercise 13.05: Installing and Running Grafana on Your System
	Activity 13.01: Creating a Grafana Dashboard to Monitor System Memory
	Activity 13.02: Configuring the Panoramic Trekking App to Expose Metrics to Prometheus

	Summary

	Chapter 14: Collecting Container Logs
	Introduction
	Introducing Splunk
	Basic Architecture of Splunk Installation

	Installing and Running Splunk on Docker
	Exercise 14.01: Running the Splunk Container and Starting to Collect Data

	Getting Container Logs into Splunk
	Exercise 14.02: Creating an HTTP Event Collector and Starting to Collect Docker Logs

	Working with the Splunk Query Language
	Exercise 14.03: Getting Familiar with the Splunk Query Language

	Splunk App and Saved Searches
	Exercise 14.04: Getting Familiar with Splunk Apps and Saved Searches
	Activity 14.01: Creating a docker-compose.yml File for Your Splunk Installation
	Activity 14.02: Creating a Splunk App to Monitor the Panoramic Trekking App

	Summary

	Chapter 15: Extending Docker with Plugins
	Introduction
	Plugin Management
	Plugin API
	Authorization Plugins
	Exercise 15.01: Read-Only Docker Daemon with Authorization Plugins

	Network Plugins
	Exercise 15.02: Docker Network Plugins in Action

	Volume Plugins
	Exercise 15.03: Volume Plugins in Action
	Activity 15.01: Installing WordPress with Network and Volume Plugins

	Summary

	Appendix
	Index

