

Learn Docker – Fundamentals
of Docker 19.x
Second Edition

Build, test, ship, and run containers with Docker and
Kubernetes

Gabriel N. Schenker

BIRMINGHAM - MUMBAI

Learn Docker – Fundamentals of Docker
19.x
Second Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Content Development Editor: Ronn Kurien
Senior Editor: Richard Brookes-Bland
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Deepika Naik

First published: April 2018
Second edition: March 2020

Production reference: 1130320

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-747-2

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Gabriel N. Schenker has more than 25 years of experience as an independent consultant,
architect, leader, trainer, mentor, and developer. Currently, Gabriel works as Lead Solution
Architect at Techgroup Switzerland. Prior to that, Gabriel worked as Lead Curriculum
Developer at Docker and at Confluent. Gabriel has a Ph.D. in Physics, and he is a Docker
Captain, a Certified Docker Associate, a Certified Kafka Developer and Operator, and an
ASP Insider. When not working, Gabriel enjoys time with his wonderful wife Veronicah
and his children.

I want to give special thanks to my editors, Ronn Kurien and Suzanne Coutinho, who
patiently helped me to get this book done and get it done right.

About the reviewer
Francisco Javier Ramírez Urea is a technology enthusiast and professional, Docker Captain,
casual developer, open source advocate, a certified trainer and solutions architect at
HoplaSoftware, and a technical book writer and reviewer.

He is also a Kubernetes Certified Administrator, a Docker Certified Associate, a Docker
Certified Instructor, and a Docker MTA program Consultant, as well as a
Docker/Kubernetes and NGINX expert and a DevOps/CI-CD solutions integrator.

He currently works as a solutions architect focused on containers and microservices
technologies. He is passionate to teach his students everything he know. Continuous
learning is the main motivation of his career.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Motivation and Getting Started
Chapter 1: What Are Containers and Why Should I Use Them? 10

What are containers? 11
Why are containers important? 14
What's the benefit for me or for my company? 16
The Moby project 16
Docker products 17

Docker CE 17
Docker EE 18

Container architecture 18
Summary 19
Questions 20
Further reading 21

Chapter 2: Setting Up a Working Environment 22
Technical requirements 23
The Linux command shell 23
PowerShell for Windows 24
Using a package manager 24

Installing Homebrew on macOS 24
Installing Chocolatey on Windows 25

Installing Git 26
Choosing a code editor 27

Installing VS Code on macOS 27
Installing VS Code on Windows 28
Installing VS Code on Linux 28
Installing VS Code extensions 29

Installing Docker for Desktop 29
Installing Docker for Desktop on macOS 31
Installing Docker for Desktop on Windows 33
Installing Docker CE on Linux 34

Installing Docker Toolbox 34
Installing Docker Toolbox on macOS 35
Installing Docker Toolbox on Windows 36
Setting up Docker Toolbox 37

Installing Minikube 41

Table of Contents

[ii]

Installing Minikube on macOS and Windows 41
Testing Minikube and kubectl 41

Summary 43
Questions 43
Further reading 44

Section 2: Containerization, from Beginner to Black Belt

Chapter 3: Mastering Containers 46
Technical requirements 47
Running the first container 47
Starting, stopping, and removing containers 49

Running a random trivia question container 51
Listing containers 53
Stopping and starting containers 55
Removing containers 57

Inspecting containers 57
Exec into a running container 59
Attaching to a running container 60
Retrieving container logs 62

Logging drivers 63
Using a container-specific logging driver 64
Advanced topic – changing the default logging driver 65

Anatomy of containers 66
Architecture 67
Namespaces 67
Control groups (cgroups) 69
Union filesystem (Unionfs) 70
Container plumbing 70

runC 70
Containerd 71

Summary 71
Questions 71
Further reading 71

Chapter 4: Creating and Managing Container Images 73
What are images? 74

The layered filesystem 74
The writable container layer 76
Copy-on-write 77
Graph drivers 78

Creating images 78
Interactive image creation 78
Using Dockerfiles 82

Table of Contents

[iii]

The FROM keyword 83
The RUN keyword 84
The COPY and ADD keywords 85
The WORKDIR keyword 86
The CMD and ENTRYPOINT keywords 87
A complex Dockerfile 89
Building an image 90
Multi-step builds 94
Dockerfile best practices 96

Saving and loading images 98
Lift and shift: Containerizing a legacy app 99

Analysis of external dependencies 100
Source code and build instructions 100
Configuration 101
Secrets 101
Authoring the Dockerfile 102

The base image 102
Assembling the sources 102
Building the application 103
Defining the start command 103

Why bother? 104
Sharing or shipping images 105

Tagging an image 105
Image namespaces 105
Official images 108
Pushing images to a registry 108

Summary 109
Questions 109
Further reading 110

Chapter 5: Data Volumes and Configuration 111
Technical requirements 112
Creating and mounting data volumes 112

Modifying the container layer 112
Creating volumes 113
Mounting a volume 116
Removing volumes 118
Accessing volumes created with Docker for Desktop 119

Sharing data between containers 122
Using host volumes 124
Defining volumes in images 126
Configuring containers 129

Defining environment variables for containers 130
Using configuration files 131
Defining environment variables in container images 133
Environment variables at build time 134

Table of Contents

[iv]

Summary 135
Questions 135
Further reading 136

Chapter 6: Debugging Code Running in Containers 137
Technical requirements 138
Evolving and testing code running in a container 138

Mounting evolving code into the running container 142
Auto restarting code upon changes 145

Auto-restarting for Node.js 145
Auto-restarting for Python 147
Auto-restarting for .NET 150

Line-by-line code debugging inside a container 155
Debugging a Node.js application 156
Debugging a .NET application 161

Instrumenting your code to produce meaningful logging
information 165

Instrumenting a Python application 166
Instrumenting a .NET C# application 168

Using Jaeger to monitor and troubleshoot 172
Summary 177
Questions 177
Further reading 178

Chapter 7: Using Docker to Supercharge Automation 179
Technical requirements 180
Executing simple admin tasks in a container 180
Using test containers 183

Integration tests for a Node.js application 186
The Testcontainers project 196

Using Docker to power a CI/CD pipeline 203
Summary 217
Questions 218
Further reading 218

Chapter 8: Advanced Docker Usage Scenarios 219
Technical requirements 220
All of the tips and tricks of a Docker pro 220

Keeping your Docker environment clean 220
Running Docker in Docker 221
Formatting the output of common Docker commands 224
Filtering the output of common Docker commands 225
Optimizing your build process 225
Limiting resources consumed by a container 227
Read-only filesystem 228

Table of Contents

[v]

Avoid running a containerized app as root 228
Running your Terminal in a remote container and accessing it via
HTTPS 230
Running your development environment inside a container 234
Running your code editor in a remote container and accessing it via
HTTPS 239
Summary 243
Questions 243
Further reading 243

Section 3: Orchestration Fundamentals and Docker Swarm

Chapter 9: Distributed Application Architecture 245
Understanding the distributed application architecture 246

Defining the terminology 246
Patterns and best practices 248

Loosely coupled components 248
Stateful versus stateless 249
Service discovery 249
Routing 251
Load balancing 252
Defensive programming 253

Retries 253
Logging 253
Error handling 254

Redundancy 254
Health checks 255
Circuit breaker pattern 255

Running in production 257
Logging 257
Tracing 257
Monitoring 258
Application updates 258

Rolling updates 258
Blue-green deployments 259
Canary releases 260
Irreversible data changes 260
Rollback 261

Summary 262
Questions 262
Further reading 262

Chapter 10: Single-Host Networking 263
Technical requirements 264
Dissecting the container network model 264

Table of Contents

[vi]

Network firewalling 266
Working with the bridge network 267
The host and null network 277

The host network 277
The null network 278

Running in an existing network namespace 279
Managing container ports 281
HTTP-level routing using a reverse proxy 283

Containerizing the monolith 284
Extracting the first microservice 287
Using Traefik to reroute traffic 288

Summary 290
Questions 290
Further reading 291

Chapter 11: Docker Compose 292
Technical requirements 293
Demystifying declarative versus imperative 293
Running a multi-service app 294

Building images with Docker Compose 295
Running an application with Docker Compose 298

Scaling a service 302
Building and pushing an application 304
Using Docker Compose overrides 306
Summary 308
Questions 308
Further reading 308

Chapter 12: Orchestrators 309
What are orchestrators and why do we need them? 309
The tasks of an orchestrator 311

Reconciling the desired state 311
Replicated and global services 312
Service discovery 313
Routing 314
Load balancing 314
Scaling 315
Self-healing 316
Zero downtime deployments 317
Affinity and location awareness 318
Security 319

Secure communication and cryptographic node identity 319
Secure networks and network policies 320
Role-based access control (RBAC) 320
Secrets 321

Table of Contents

[vii]

Content trust 322
Reverse uptime 322

Introspection 323
Overview of popular orchestrators 324

Kubernetes 324
Docker Swarm 325
Apache Mesos and Marathon 326
Amazon ECS 327
Microsoft ACS 328

Summary 328
Questions 329
Further reading 330

Chapter 13: Introduction to Docker Swarm 331
The Docker Swarm architecture 332
Swarm nodes 333

Swarm managers 334
Swarm workers 335

Stacks, services, and tasks 337
Services 338
Task 338
Stack 339

Multi-host networking 340
Creating a Docker Swarm 341

Creating a local single node swarm 342
Creating a local Swarm in VirtualBox or Hyper-V 344
Using Play with Docker to generate a Swarm 348
Creating a Docker Swarm in the cloud 352

Deploying a first application 358
Creating a service 358
Inspecting the service and its tasks 360
Logs of a service 362
Reconciling the desired state 363
Deleting a service or a stack 364
Deploying a multi-service stack 365

The swarm routing mesh 367
Summary 368
Questions 368
Further reading 369

Chapter 14: Zero-Downtime Deployments and Secrets 370
Technical requirements 371
Zero-downtime deployment 371

Popular deployment strategies 371
Rolling updates 371

Table of Contents

[viii]

Health checks 378
Rollback 383
Blue–green deployments 384
Canary releases 385

Storing configuration data in the swarm 386
Protecting sensitive data with Docker secrets 390

Creating secrets 391
Using a secret 392
Simulating secrets in a development environment 394
Secrets and legacy applications 395
Updating secrets 398

Summary 399
Questions 399
Further reading 400

Section 4: Docker, Kubernetes, and the Cloud
Chapter 15: Introduction to Kubernetes 402

Technical requirements 403
Kubernetes architecture 403
Kubernetes master nodes 406
Cluster nodes 407
Introduction to Minikube 409
Kubernetes support in Docker for Desktop 411
Introduction to pods 417

Comparing Docker container and Kubernetes pod networking 418
Sharing the network namespace 420
Pod life cycle 423
Pod specifications 424
Pods and volumes 426

Kubernetes ReplicaSet 428
ReplicaSet specification 429
Self-healing 431

Kubernetes deployment 432
Kubernetes service 433
Context-based routing 435
Comparing SwarmKit with Kubernetes 436
Summary 437
Questions 437
Further reading 439

Chapter 16: Deploying, Updating, and Securing an Application with
Kubernetes 440

Technical requirements 441
Deploying a first application 441

Table of Contents

[ix]

Deploying the web component 441
Deploying the database 445
Streamlining the deployment 449

Defining liveness and readiness 451
Kubernetes liveness probe 452
Kubernetes readiness probe 455
Kubernetes startup probe 456

Zero downtime deployments 457
Rolling updates 457
Blue-green deployment 461

Kubernetes secrets 466
Manually defining secrets 466
Creating secrets with kubectl 468
Using secrets in a pod 469
Secret values in environment variables 471

Summary 473
Questions 474
Further reading 474

Chapter 17: Monitoring and Troubleshooting an App Running in
Production 475

Technical requirements 475
Monitoring an individual service 476

Instrumenting a Node.js-based service 477
Instrumenting a .NET Core-based service 480

Using Prometheus to monitor a distributed application 483
Architecture 484
Deploying Prometheus to Kubernetes 484
Deploying our application services to Kubernetes 491
Deploying Grafana to Kubernetes 495

Troubleshooting a service running in production 499
The netshoot container 500

Summary 502
Questions 502
Further reading 503

Chapter 18: Running a Containerized App in the Cloud 504
Technical requirements 505
Deploying and using Docker EE on AWS 505

Provisioning the infrastructure 505
Installing Docker 507
Installing Docker UCP 508
Using remote admin for the UCP cluster 511
Deploying to Docker Swarm 512
Deploying to Kubernetes 514

Table of Contents

[x]

Exploring Microsoft's Azure Kubernetes Service (AKS) 515
Preparing the Azure CLI 516
Creating a container registry on Azure 518
Pushing our images to ACR 520
Creating a Kubernetes cluster 521
Deploying our application to the Kubernetes cluster 522

Understanding GKE 524
Summary 527
Questions 527
Further reading 528

Assessments 529

Other Books You May Enjoy 548

Index 551

Preface
Developers are faced with ever-increasing pressure to build, modify, test, and deploy
highly distributed applications in a high cadence. Operations engineers are looking for a
uniform deployment strategy that encompasses most or all of their ever-growing portfolio
of applications, and stakeholders want to keep their total cost of ownership low. Docker
containers combined with a container orchestrator such as Kubernetes help them all to
achieve these goals.

Docker containers accelerate and simplify the building, shipping, and running of highly
distributed applications. Containers turbo-charge CI/CD pipelines, and containerized
applications allow a company to standardize on one common deployment platform, such
as Kubernetes. Containerized applications are more secure and can be run on any platform
that's able to run containers, on premises or in the cloud.

Who this book is for
This book is targeted at system administrators, operations engineers, DevOps engineers,
and developers or stakeholders who are interested in getting started with Docker from
scratch.

What this book covers
Chapter 1, What Are Containers and Why Should I Use Them?, introduces the concept of
containers and why they are so extremely useful in the software industry.

Chapter 2, Setting Up a Working Environment, discusses in detail how to set up an ideal
environment for developers, DevOps, and operators that can be used when working with
Docker containers.

Chapter 3, Mastering Containers, explains how to start, stop, and remove containers. We
will also see how to inspect containers to retrieve additional metadata from them.
Furthermore, we'll see how to run additional processes, how to attach to the main process
in an already running container, and how to retrieve logging information from a container
that is produced by the processes running inside it. Finally, the chapter introduces the inner
workings of a container, including such things as Linux namespaces and groups.

Preface

[2]

Chapter 4, Creating and Managing Container Images, presents the different ways to create the
container images that serve as the templates for containers. It introduces the inner structure
of an image and how it is built. This chapter also explains how to lift and shift an existing
legacy application so that it can run in containers.

Chapter 5, Data Volumes and Configuration, introduces data volumes, which can be used by
stateful components running in containers. The chapter also shows how we can define
individual environment variables for the application running inside the container, as well
as how to use files containing whole sets of configuration settings.

Chapter 6, Debugging Code Running in Containers, discusses techniques commonly used to
allow a developer to evolve, modify, debug, and test their code while running in a
container. With these techniques at hand, the developer will enjoy a frictionless
development process for applications running in a container, similar to what they
experience when developing applications that run natively.

Chapter 7, Using Docker to Supercharge Automation, shows how we can use tools to perform
administrative tasks without having to install those tools on the host computer. We will
also see how to use containers that host and run test scripts or code used to test and
validate application services running in containers. Finally, this chapter guides us through
the task of building a simple Docker-based CI/CD pipeline.

Chapter 8, Advanced Docker Usage Scenarios, presents advanced tips, tricks, and concepts
that are useful when containerizing complex distributed applications, or when using
Docker to automate sophisticated tasks.

Chapter 9, Distributed Application Architecture, introduces the concept of a distributed
application architecture and discusses the various patterns and best practices that are
required to run a distributed application successfully. Finally, it discusses the additional
requirements that need to be fulfilled to run such an application in production.

Chapter 10, Single-Host Networking, presents the Docker container networking model and
its single-host implementation in the form of the bridge network. This chapter introduces
the concept of software-defined networks and explains how they are used to secure
containerized applications. It also discusses how container ports can be opened to the
public and thus make containerized components accessible from the outside world. Finally,
it introduces Traefik, a reverse proxy, to enable sophisticated HTTP application-level
routing between containers.

Chapter 11, Docker Compose, addresses the concept of an application consisting of multiple
services, each running in a container, and how Docker Compose allows us to easily build,
run, and scale such an application using a declarative approach.

Preface

[3]

Chapter 12, Orchestrators, presents the concept of orchestrators. It explains why
orchestrators are needed and how they work conceptually. The chapter will also provide an
overview of the most popular orchestrators and name a few of their pros and cons.

Chapter 13, Introduction to Docker Swarm, introduces Docker's native orchestrator,
SwarmKit. We will see all the concepts and objects SwarmKit uses to deploy and run a
distributed, resilient, robust, and highly available application in a cluster on premises or in
the cloud. The chapter also introduces how SwarmKit ensures secure applications using
software-defined networks to isolate containers and secrets to protect sensitive information.
Additionally, this chapter shows how to install a highly available Docker swarm in the
cloud. It introduces the routing mesh, which provides Layer 4 routing and load balancing.
Finally, it shows how to deploy an application consisting of multiple services onto the
swarm.

Chapter 14, Zero-Downtime Deployments and Secrets, explains how to deploy services or
applications onto a Docker swarm with zero downtime and automatic rollback capabilities.
It also introduces secrets as a means to protect sensitive information.

Chapter 15, Introduction to Kubernetes, introduces the current most popular container
orchestrator. It introduces the core Kubernetes objects that are used to define and run a
distributed, resilient, robust, and highly available application in a cluster. Finally, it
introduces MiniKube as a way to locally deploy a Kubernetes application, and also the
integration of Kubernetes with Docker for Mac and Docker for Windows.

Chapter 16, Deploying, Updating, and Securing an Application with Kubernetes, explains how
to deploy, update, and scale applications into a Kubernetes cluster. It also explains how to
instrument your application services with liveness and readiness probes to support
Kubernetes in its health and availability checking. Furthermore, the chapter explains how
zero-downtime deployments are achieved to enable disruption-free updates and rollbacks
of mission-critical applications. Finally, the chapter introduces Kubernetes secrets as a
means to configure services and protect sensitive data.

Chapter 17, Monitoring and Troubleshooting an App Running in Production, teaches different
techniques to monitor an individual service or a whole distributed application running on a
Kubernetes cluster. It also shows how to troubleshoot an application service that is running
in production without altering the cluster or the cluster nodes on which the service is
running.

Preface

[4]

Chapter 18, Running a Containerized App in the Cloud, provides an overview of some of the
most popular ways of running containerized applications in the cloud. We include self-
hosting and hosted solutions and discuss their pros and cons. Fully managed offerings of
vendors such as Microsoft Azure and Google Cloud Engine are briefly discussed.

To get the most out of this book
A solid understanding of distributed application architecture and an interest in accelerating
and simplifying the building, shipping, and running of highly distributed applications are
expected. No prior experience with Docker containers is required.

Access to a computer with Windows 10 Professional or macOS installed is highly
recommended. The computer should have at least 16 GB of memory.

Software/Hardware covered in the book OS Requirements
Docker for Desktop, Docker Toolbox, Visual Studio
Code, Powershell or Bash Terminal.

Windows 10 Pro/macOS/ Linux
minimum of 8GB RAM

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to copy/pasting of code.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[5]

7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.
x-Second-Edition. In case there's an update to the code, it will be updated on the existing
GitHub repository.

https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition

Preface

[6]

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781838827472_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The container runtime on a Docker host consists of containerd and runc."

A block of code is set as follows:

{
 "name": "api",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

ARG BASE_IMAGE_VERSION=12.7-stretch
FROM node:${BASE_IMAGE_VERSION}
WORKDIR /app
COPY packages.json .
RUN npm install
COPY . .
CMD npm start

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838827472_ColorImages.pdf

Preface

[7]

Any command-line input or output is written as follows:

$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/

Preface

[8]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Section 1: Motivation and

Getting Started
The objective of Part One is to introduce you to the concept of containers and explain why
they are so extremely useful in the software industry. You will also prepare your working
environment for the use of Docker.

This section comprises the following chapters:

Chapter 1, What Are Containers and Why Should I Use Them?
Chapter 2, Setting Up a Working Environment

1
What Are Containers and Why

Should I Use Them?
This first chapter will introduce you to the world of containers and their orchestration. This
book starts from the very beginning, in that it assumes that you have no prior knowledge of
containers, and will give you a very practical introduction to the topic.

In this chapter, we will focus on the software supply chain and the friction within it. Then,
we'll present containers, which are used to reduce this friction and add enterprise-grade
security on top of it. We'll also look into how containers and the ecosystem around them
are assembled. We'll specifically point out the distinction between the upstream Open
Source Software (OSS) components, united under the code name Moby, that form the
building blocks of the downstream products of Docker and other vendors.

The chapter covers the following topics:

What are containers?
Why are containers important?
What's the benefit for me or for my company?
The Moby project
Docker products
Container architecture

What Are Containers and Why Should I Use Them? Chapter 1

[11]

After completing this module, you will be able to do the following:

Explain what containers are, using an analogy such as physical containers, in a
few simple sentences to an interested layman
Justify why containers are so important using an analogy such as physical
containers versus traditional shipping or apartment homes versus single-family
homes, and so on, to an interested lay person
Name at least four upstream open source components that are used by Docker
products, such as Docker for Desktop
Identify at least three Docker products

What are containers?
A software container is a pretty abstract thing, so it might help if we start with an analogy
that should be pretty familiar to most of you. The analogy is a shipping container in the
transportation industry. Throughout history, people have been transporting goods from
one location to another by various means. Before the invention of the wheel, goods would
most probably have been transported in bags, baskets, or chests on the shoulders of the
humans themselves, or they might have used animals such as donkeys, camels, or
elephants to transport them.

With the invention of the wheel, transportation became a bit more efficient as humans built
roads that they could move their carts along. Many more goods could be transported at a
time. When the first steam-driven machines, and later gasoline-driven engines, were
introduced, transportation became even more powerful. We now transport huge amounts
of goods on trains, ships, and trucks. At the same time, the types of goods became more
and more diverse, and sometimes complex to handle.

In all these thousands of years, one thing didn't change, and that was the necessity to
unload goods at a target location and maybe load them onto another means
of transportation. Take, for example, a farmer bringing a cart full of apples to a central
train station where the apples are then loaded onto a train, together with all the apples
from many other farmers. Or think of a winemaker bringing his barrels of wine with a truck
to the port where they are unloaded, and then transferred to a ship that will transport them
overseas.

What Are Containers and Why Should I Use Them? Chapter 1

[12]

This unloading from one means of transportation and loading onto another means
of transportation was a really complex and tedious process. Every type of product was
packaged in its own way and thus had to be handled in its own particular way. Also, loose
goods faced the risk of being stolen by unethical workers or damaged in the process of
being handled.

Then, there came containers and they totally revolutionized the transportation industry. A
container is just a metallic box with standardized dimensions. The length, width,
and height of each container is the same. This is a very important point. Without the
World agreeing on a standard size, the whole container thing would not have been as
successful as it is now.

Now, with standardized containers, companies who want to have their goods
transported from A to B package those goods into these containers. Then, they call a
shipper, which comes with a standardized means for transportation. This can be a truck
that can load a container or a train whose wagons can each transport one or several
containers. Finally, we have ships that are specialized in transporting huge numbers of
containers. Shippers never need to unpack and repackage goods. For a shipper, a container
is just a black box, and they are not interested in what is in it, nor should they care in most
cases. It is just a big iron box with standard dimensions. Packaging goods into containers is
now fully delegated to the parties who want to have their goods shipped, and they should
know how to handle and package those goods.

Since all containers have the same agreed-upon shape and dimensions, shippers can
use standardized tools to handle containers; that is, cranes that unload containers, say from
a train or a truck, and load them onto a ship and vice versa. One type of crane is enough
to handle all the containers that come along over time. Also, the means of transportation
can be standardized, such as container ships, trucks, and trains.

Because of all this standardization, all the processes in and around shipping goods
could also be standardized and thus made much more efficient than they were before the
age of containers.

Now, you should have a good understanding of why shipping containers are so important
and why they revolutionized the whole transportation industry. I chose this analogy
purposefully, since the software containers that we are going to introduce here fulfill the
exact same role in the so-called software supply chain that shipping containers do in the
supply chain of physical goods.

What Are Containers and Why Should I Use Them? Chapter 1

[13]

In the old days, developers would develop a new application. Once that application
was completed in their eyes, they would hand that application over to the operations
engineers, who were then supposed to install it on the production servers and get it
running. If the operations engineers were lucky, they even got a somewhat
accurate document with installation instructions from the developers. So far, so good, and
life was easy.

But things get a bit out of hand when, in an enterprise, there are many teams of
developers that create quite different types of application, yet all of them need to be
installed on the same production servers and kept running there. Usually, each application
has some external dependencies, such as which framework it was built on, what libraries it
uses, and so on. Sometimes, two applications use the same framework but in different
versions that might or might not be compatible with each other. Our operations engineer's
life became much harder over time. They had to be really creative with how they could load
their ship, (their servers,) with different applications without breaking something.

Installing a new version of a certain application was now a complex project on its own,
and often needed months of planning and testing. In other words, there was a lot of friction
in the software supply chain. But these days, companies rely more and more on software,
and the release cycles need to become shorter and shorter. We cannot afford to just release
twice a year or so anymore. Applications need to be updated in a matter of weeks or
days, or sometimes even multiple times per day. Companies that do not comply risk going
out of business, due to the lack of agility. So, what's the solution?

One of the first approaches was to use virtual machines (VMs). Instead of running
multiple applications, all on the same server, companies would package and run a single
application on each VM. With this, all the compatibility problems were gone and life
seemed to be good again. Unfortunately, that happiness didn't last long. VMs are pretty
heavy beasts on their own since they all contain a full-blown operating system such as
Linux or Windows Server, and all that for just a single application. This is just as if you
were in the transportation industry and were using a whole ship just to transport a single
truckload of bananas. What a waste! That could never be profitable.

The ultimate solution to this problem was to provide something that is much more
lightweight than VMs, but is also able to perfectly encapsulate the goods it needs to
transport. Here, the goods are the actual application that has been written by our
developers, plus – and this is important – all the external dependencies of the application,
such as its framework, libraries, configurations, and more. This holy grail of a software
packaging mechanism was the Docker container.

What Are Containers and Why Should I Use Them? Chapter 1

[14]

Developers use Docker containers to package their applications, frameworks, and
libraries into them, and then they ship those containers to the testers or operations
engineers. To testers and operations engineers, a container is just a black box. It is
a standardized black box, though. All containers, no matter what application runs
inside them, can be treated equally. The engineers know that, if any container runs on their
servers, then any other containers should run too. And this is actually true, apart from
some edge cases, which always exist.

Thus, Docker containers are a means to package applications and their dependencies in
a standardized way. Docker then coined the phrase Build, ship, and run anywhere.

Why are containers important?
These days, the time between new releases of an application become shorter and
shorter, yet the software itself doesn't become any simpler. On the contrary, software
projects increase in complexity. Thus, we need a way to tame the beast and simplify the
software supply chain.

Also, every day, we hear that cyber-attacks are on the rise. Many well-known companies
are and have been affected by security breaches. Highly sensitive customer data gets stolen
during such events, such as social security numbers, credit card information, and more. But
not only customer data is compromised – sensitive company secrets are stolen too.

Containers can help in many ways. First of all, Gartner found that applications running in a
container are more secure than their counterparts not running in a container. Containers
use Linux security primitives such as Linux kernel namespaces to sandbox different
applications running on the same computers and control groups (cgroups) in order to
avoid the noisy-neighbor problem, where one bad application is using all the available
resources of a server and starving all other applications.

Due to the fact that container images are immutable, it is easy to have them scanned
for common vulnerabilities and exposures (CVEs), and in doing so, increase the overall
security of our applications.

Another way to make our software supply chain more secure is to have our containers use
a content trust. A content trust basically ensures that the author of a container image is who
they pretend to be and that the consumer of the container image has a guarantee that the
image has not been tampered with in transit. The latter is known as a man-in-the-
middle (MITM) attack.

What Are Containers and Why Should I Use Them? Chapter 1

[15]

Everything I have just said is, of course, technically also possible without using containers,
but since containers introduce a globally accepted standard, they make it so much easier
to implement these best practices and enforce them.

OK, but security is not the only reason why containers are important. There are other
reasons too.

One is the fact that containers make it easy to simulate a production-like environment, even
on a developer's laptop. If we can containerize any application, then we can also
containerize, say, a database such as Oracle or MS SQL Server. Now, everyone who has
ever had to install an Oracle database on a computer knows that this is not the easiest thing
to do, and it takes up a lot of precious space on your computer. You wouldn't want to do
that to your development laptop just to test whether the application you developed really
works end-to-end. With containers at hand, we can run a full-blown relational database in
a container as easily as saying 1, 2, 3. And when we're done with testing, we can just stop
and delete the container and the database will be gone, without leaving a trace on our
computer.

Since containers are very lean compared to VMs, it is not uncommon to have many
containers running at the same time on a developer's laptop without overwhelming the
laptop.

A third reason why containers are important is that operators can finally concentrate
on what they are really good at: provisioning the infrastructure and running and
monitoring applications in production. When the applications they have to run on a
production system are all containerized, then operators can start to standardize their
infrastructure. Every server becomes just another Docker host. No special libraries or
frameworks need to be installed on those servers, just an OS and a container runtime such
as Docker.

Also, operators do not have to have intimate knowledge of the internals of applications
anymore, since those applications run self-contained in containers that ought to look like
black boxes to them, similar to how shipping containers look to the personnel in the
transportation industry.

What Are Containers and Why Should I Use Them? Chapter 1

[16]

What's the benefit for me or for
my company?
Somebody once said that, today, every company of a certain size has to acknowledge
that they need to be a software company. In this sense, a modern bank is a software
company that happens to specialize in the business of finance. Software runs all businesses,
period. As every company becomes a software company, there is a need to establish a
software supply chain. For the company to remain competitive, their software supply chain
has to be secure and efficient. Efficiency can be achieved through thorough automation and
standardization. But in all three areas – security, automation, and standardization –
containers have been shown to shine. Large and well-known enterprises have reported that,
when containerizing existing legacy applications (many call them traditional applications)
and establishing a fully automated software supply chain based on containers, they can
reduce the cost for the maintenance of those mission-critical applications by a factor of 50%
to 60% and they can reduce the time between new releases of these traditional applications
by up to 90%.

That being said, the adoption of container technologies saves these companies a lot of
money, and at the same time it speeds up the development process and reduces the time to
market.

The Moby project
Originally, when Docker (the company) introduced Docker containers, everything was
open source. Docker didn't have any commercial products at this time. The Docker engine
that the company developed was a monolithic piece of software. It contained many logical
parts, such as the container runtime, a network library, a RESTful (REST) API, a
command-line interface, and much more.

Other vendors or projects such as Red Hat or Kubernetes were using the Docker engine
in their own products, but most of the time, they were only using part of its functionality.
For example, Kubernetes did not use the Docker network library for the Docker engine
but provided its own way of networking. Red Hat, in turn, did not update the Docker
engine frequently and preferred to apply unofficial patches to older versions of the Docker
engine, yet they still called it the Docker engine.

What Are Containers and Why Should I Use Them? Chapter 1

[17]

Out of all these reasons, and many more, the idea emerged that Docker had to do
something to clearly separate the Docker open source part from the Docker commercial
part. Furthermore, the company wanted to prevent competitors from using and abusing
the name Docker for their own gains. This was the main reason why the Moby project
was born. It serves as an umbrella for most of the open source components Docker
developed and continues to develop. These open source projects do not carry the name
Docker in them anymore.

The Moby project provides components that are used for image management, secret
management, configuration management, and networking and provisioning, to name just a
few. Also, part of the Moby project is special Moby tools that are, for example, used to
assemble components into runnable artifacts.

Some components that technically belong to the Moby project have been donated by
Docker to the Cloud-Native Computing Foundation (CNCF) and thus do not appear in
the list of components anymore. The most prominent ones are notary, containerd, and
runc, where the first is used for content trust and the latter two form the container runtime.

Docker products
Docker currently separates its product lines into two segments. There is the Community
Edition (CE), which is closed-source yet completely free, and then there is the
Enterprise Edition (EE), which is also closed-source and needs to be licensed on a yearly
basis. These enterprise products are backed by 24/7 support and are supported by bug fixes.

Docker CE
Part of the Docker Community Edition are products such as the Docker Toolbox
and Docker for Desktop with its editions for Mac and Windows. All these products are
mainly targeted at developers.

Docker for Desktop is an easy-to-install desktop application that can be used to build,
debug, and test Dockerized applications or services on a macOS or Windows machine.
Docker for macOS and Docker for Windows are complete development environments that
are deeply integrated with their respective hypervisor framework, network, and filesystem.
These tools are the fastest and most reliable way to run Docker on a Mac or Windows.

Under the CE umbrella, there are also two products that are more geared toward
operations engineers. These products are Docker for Azure and Docker for AWS.

What Are Containers and Why Should I Use Them? Chapter 1

[18]

For example, with Docker for Azure, which is a native Azure application, you can set
up Docker in a few clicks, optimized for and integrated with underlying Azure
Infrastructure as a Service (IaaS) services. It helps operations engineers accelerate time to
productivity when building and running Docker applications in Azure.

Docker for AWS works very similarly but for Amazon's cloud.

Docker EE
The Docker Enterprise Edition consists of the Universal Control Plane (UCP) and
the Docker Trusted Registry (DTR), both of which run on top of Docker Swarm. Both are
swarm applications. Docker EE builds on top of the upstream components of the Moby
project and adds enterprise-grade features such as role-based access control (RBAC),
multi-tenancy, mixed clusters of Docker swarm and Kubernetes, web-based UI, and content
trust, as well as image scanning on top.

Container architecture
Now, let's discuss how a system that can run Docker containers is designed at a high
level. The following diagram illustrates what a computer that Docker has been installed on
looks like. Note that a computer that has Docker installed on it is often called a Docker host
because it can run or host Docker containers:

High-level architecture diagram of the Docker engine

What Are Containers and Why Should I Use Them? Chapter 1

[19]

In the preceding diagram, we can see three essential parts:

On the bottom, we have the Linux operating system
In the middle, in dark gray, we have the container runtime
On the top, we have the Docker engine

Containers are only possible due to the fact that the Linux OS provides some
primitives, such as namespaces, control groups, layer capabilities, and more, all of which
are leveraged in a very specific way by the container runtime and the Docker engine. Linux
kernel namespaces, such as process ID (pid) namespaces or network (net) namespaces,
allow Docker to encapsulate or sandbox processes that run inside the container. Control
Groups make sure that containers cannot suffer from the noisy-neighbor syndrome, where
a single application running in a container can consume most or all of the available
resources of the whole Docker host. Control Groups allow Docker to limit the resources,
such as CPU time or the amount of RAM, that each container is allocated.

The container runtime on a Docker host consists of containerd and runc. runc is the low-
level functionality of the container runtime, while containerd, which is based on
runc, provides higher-level functionality. Both are open source and have been donated
by Docker to the CNCF.

The container runtime is responsible for the whole life cycle of a container. It pulls a
container image (which is the template for a container) from a registry if necessary, creates
a container from that image, initializes and runs the container, and eventually stops
and removes the container from the system when asked.

The Docker engine provides additional functionality on top of the container runtime,
such as network libraries or support for plugins. It also provides a REST interface over
which all container operations can be automated. The Docker command-line interface that
we will use frequently in this book is one of the consumers of this REST interface.

Summary
In this chapter, we looked at how containers can massively reduce friction in the software
supply chain and, on top of that, make the supply chain much more secure.

In the next chapter, we will learn how to prepare our personal or working environment
such as that we can work efficiently and effectively with Docker. So, stay tuned.

What Are Containers and Why Should I Use Them? Chapter 1

[20]

Questions
Please answer the following questions to assess your learning progress:

Which statements are correct (multiple answers are possible)?1.

A. A container is kind of a lightweight VM
B. A container only runs on a Linux host
C. A container can only run one process
D. The main process in a container always has PID 1
E. A container is one or more processes encapsulated by Linux namespaces and
restricted by cgroups

In your own words, maybe by using analogies, explain what a container is.2.
Why are containers considered to be a game-changer in IT? Name three or3.
four reasons.
What does it mean when we claim: If a container runs on a given platform, then4.
it runs anywhere...? Name two to three reasons why this is true.
Docker containers are only really useful for modern greenfield applications5.
based on microservices. Please justify your answer.

A. True
B. False

How much does a typical enterprise save when containerizing its6.
legacy applications?

A. 20%
B. 33%
C. 50%
D. 75%

Which two core concepts of Linux are containers based on?7.

What Are Containers and Why Should I Use Them? Chapter 1

[21]

Further reading
The following is a list of links that lead to more detailed information regarding the topics
we discussed in this chapter:

Docker overview: https:/ /docs. docker. com/ engine/ docker- overview/

The Moby project: https:/ /mobyproject. org/

Docker products: https:/ /www. docker. com/ get- started

Cloud-Native Computing Foundation: https://www.cncf.io/
containerd – an industry-standard container runtime: https:/ /containerd. io/

https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://mobyproject.org/
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.cncf.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/
https://containerd.io/

2
Setting Up a Working

Environment
In the last chapter, we learned what Docker containers are and why they're important. We
learned what kinds of problems containers solve in a modern software supply chain.

In this chapter, we are going to prepare our personal or working environment to work
efficiently and effectively with Docker. We will discuss in detail how to set up an ideal
environment for developers, DevOps, and operators that can be used when working with
Docker containers.

This chapter covers the following topics:

The Linux command shell
PowerShell for Windows
Installing and using a package manager
Installing Git and cloning the code repository
Choosing and installing a code editor
Installing Docker for Desktop on macOS or Windows
Installing Docker Toolbox
Installing Minikube

Setting Up a Working Environment Chapter 2

[23]

Technical requirements
For this chapter, you will need a laptop or a workstation with either macOS or Windows,
preferably Windows 10 Professional, installed. You should also have free internet access to
download applications and permission to install those applications on your laptop.

It is also possible to follow along with this book if you have a Linux distribution as your
operating system, such as Ubuntu 18.04 or newer. I will try to indicate where commands
and samples differ significantly from the ones on macOS or Windows.

The Linux command shell
Docker containers were first developed on Linux for Linux. It is hence natural that the
primary command-line tool used to work with Docker, also called a shell, is a Unix shell;
remember, Linux derives from Unix. Most developers use the Bash shell. On some
lightweight Linux distributions, such as Alpine, Bash is not installed and consequently one
has to use the simpler Bourne shell, just called sh. Whenever we are working in a Linux
environment, such as inside a container or on a Linux VM, we will use
either /bin/bash or /bin/sh, depending on their availability.

Although Apple's macOS X is not a Linux OS, Linux and macOS X are both flavors of Unix
and hence support the same set of tools. Among those tools are the shells. So, when
working on macOS, you will probably be using the Bash shell.

In this book, we expect from you a familiarity with the most basic scripting commands in
Bash and PowerShell, if you are working on Windows. If you are an absolute beginner,
then we strongly recommend that you familiarize yourself with the following cheat sheets:

Linux Command Line Cheat Sheet by Dave Child at http:/ /bit. ly/ 2mTQr8l

PowerShell Basic Cheat Sheet at http:/ /bit. ly/2EPHxze

http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2mTQr8l
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze
http://bit.ly/2EPHxze

Setting Up a Working Environment Chapter 2

[24]

PowerShell for Windows
On a Windows computer, laptop, or server, we have multiple command-line tools
available. The most familiar is the command shell. It has been available on any Windows
computer for decades. It is a very simple shell. For more advanced scripting, Microsoft has
developed PowerShell. PowerShell is very powerful and very popular among engineers
working on Windows. On Windows 10, finally, we have the so-called Windows Subsystem
for Linux, which allows us to use any Linux tool, such as the Bash or Bourne shells. Apart
from this, there are also other tools that install a Bash shell on Windows, for example, the
Git Bash shell. In this book, all commands will use Bash syntax. Most of the commands also
run in PowerShell.

Our recommendation for you is hence to either use PowerShell or any other Bash tool to
work with Docker on Windows.

Using a package manager
The easiest way to install software on a macOS or Windows laptop is to use a good package
manager. On macOS, most people use Homebrew, and on Windows, Chocolatey is a good
choice. If you're using a Debian-based Linux distribution such as Ubuntu, then the package
manager of choice for most is apt, which is installed by default.

Installing Homebrew on macOS
Homebrew is the most popular package manager on macOS, and it is easy to use and very
versatile. Installing Homebrew on macOS is simple; just follow the instructions at https:/ /
brew.sh/:

In a nutshell, open a new Terminal window and execute the following command1.
to install Homebrew:

$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once the installation is finished, test whether Homebrew is working by2.
entering brew --version in the Terminal. You should see something like this:

$ brew --version
Homebrew 2.1.4
Homebrew/homebrew-core (git revision 77d1b; last commit 2019-06-07)

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Setting Up a Working Environment Chapter 2

[25]

Now, we are ready to use Homebrew to install tools and utilities. If we, for3.
example, want to install the Vi text editor, we can do so like this:

$ brew install vim

This will then download and install the editor for you.

Installing Chocolatey on Windows
Chocolatey is a popular package manager for Windows, built on PowerShell. To
install the Chocolatey package manager, please follow the instructions at https:/ /
chocolatey.org/ or open a new PowerShell window in admin mode and execute the
following command:

PS> Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object
System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))

It is important to run the preceding command as an administrator,
otherwise, the installation will not succeed.

Once Chocolatey is installed, test it with the choco --version command. You 1.
should see output similar to the following:

PS> choco --version
0.10.15

To install an application such as the Vi editor, use the following command:2.

PS> choco install -y vim

The -y parameter makes sure that the installation happens without asking for
reconfirmation.

Please note that once Chocolatey has installed an application, you need to
open a new PowerShell window to use that application.

https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/

Setting Up a Working Environment Chapter 2

[26]

Installing Git
We are using Git to clone the sample code accompanying this book from its GitHub
repository. If you already have Git installed on your computer, you can skip this section:

To install Git on your macOS, use the following command in a Terminal1.
window:

$ choco install git

To install Git on Windows, open a PowerShell window and use Chocolatey to2.
install it:

PS> choco install git -y

Finally, on your Debian or Ubuntu machine, open a Bash console and execute the3.
following command:

$ sudo apt update && sudo apt install -y git

Once Git is installed, verify that it is working. On all platforms, use the following:4.

$ git --version

This should output something along the lines of the following:

git version 2.16.3

Now that Git is working, we can clone the source code accompanying this book5.
from GitHub. Execute the following command:

$ cd ~
$ git clone
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-D
ocker-19.x-Second-Edition fod-solution

This will clone the content of the master branch into your local folder, ~/fod-
solution. This folder will now contain all of the sample solutions for the labs we
are going to do together in this book. Refer to these sample solutions if you get
stuck.

Now that we have installed the basics, let's continue with the code editor.

Setting Up a Working Environment Chapter 2

[27]

Choosing a code editor
Using a good code editor is essential to working productively with Docker. Of course,
which editor is the best is highly controversial and depends on your personal preference. A
lot of people use Vim, or others such as Emacs, Atom, Sublime, or Visual Studio
Code (VS Code), to just name a few. VS Code is a completely free and lightweight editor,
yet it is very powerful and is available for macOS, Windows, and Linux. According to Stack
Overflow, it is currently by far the most popular code editor. If you are not yet sold on
another editor, I highly recommend that you give VS Code a try.

But if you already have a favorite code editor, then please continue using it. As long as you
can edit text files, you're good to go. If your editor supports syntax highlighting for
Dockerfiles and JSON and YAML files, then even better. The only exception will be Chapter
6, Debugging Code Running in a Container. The examples presented in that chapter will be
heavily tailored toward VS Code.

Installing VS Code on macOS
Follow these steps for installation:

Open a new Terminal window and execute the following command:1.

$ brew cask install visual-studio-code

Once VS Code has been installed successfully, navigate to your home directory2.
(~) and create a folder, fundamentals-of-docker; then navigate into this new
folder:

$ mkdir ~/fundamentals-of-docker && cd ~/fundamentals-of-docker

Now open VS Code from within this folder:3.

$ code .

Don't forget the period (.) in the preceding command. VS will start and open the current
folder (~/fundamentals-of-docker) as the working folder.

Setting Up a Working Environment Chapter 2

[28]

Installing VS Code on Windows
Follow these steps for installation:

Open a new PowerShell window in admin mode and execute the following1.
command:

PS> choco install vscode -y

Close your PowerShell window and open a new one, to make sure VS Code is in2.
your path.
Now navigate to your home directory and create a folder, fundamentals-of-3.
docker; then navigate into this new folder:

PS> mkdir ~\fundamentals-of-docker; cd ~\fundamentals-of-docker

Finally open Visual Studio Code from within this folder:4.

PS> code .

Don't forget the period (.) in the preceding command. VS will start and open the current
folder (~\fundamentals-of-docker) as the working folder.

Installing VS Code on Linux
Follow these steps for installation:

On your Debian or Ubuntu-based Linux machine, open a Bash Terminal and1.
execute the following statement to install VS Code:

$ sudo snap install --classic code

If you're using a Linux distribution that's not based on Debian or Ubuntu, then2.
please follow the following link for more details: https:/ /code. visualstudio.
com/docs/ setup/ linux

Once VS Code has been installed successfully, navigate to your home directory3.
(~) and create a folder, fundamentals-of-docker; then navigate into this new
folder:

$ mkdir ~/fundamentals-of-docker && cd ~/fundamentals-of-docker

Now open Visual Studio Code from within this folder:4.

$ code .

https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux

Setting Up a Working Environment Chapter 2

[29]

Don't forget the period (.) in the preceding command. VS will start and open the current
folder (~/fundamentals-of-docker) as the working folder.

Installing VS Code extensions
Extensions are what make VS Code such a versatile editor. On all three platforms, macOS,
Windows, and Linux, you can install VS Code extensions the same way:

Open a Bash console (or PowerShell in Windows) and execute the following1.
group of commands to install the most essential extensions we are going to use in
the upcoming examples in this book:

code --install-extension vscjava.vscode-java-pack
code --install-extension ms-vscode.csharp
code --install-extension ms-python.python
code --install-extension ms-azuretools.vscode-docker
code --install-extension eamodio.gitlens

We are installing extensions that enable us to work with Java, C#, .NET, and
Python much more productively. We're also installing an extension built to
enhance our experience with Docker.

After the preceding extensions have been installed successfully, restart VS Code2.
to activate the extensions. You can now click the extensions icon in the activity
pane on the left-hand side of VS Code to see all of the installed extensions.

Next, let's install Docker for Desktop.

Installing Docker for Desktop
If you are using macOS or have Windows 10 Professional installed on your laptop, then we
strongly recommend that you install Docker for Desktop. This platform gives you the best
experience when working with containers.

Docker for Desktop is not supported on Linux at this time. Please refer to
the Installing Docker CE on Linux section for more details.

Setting Up a Working Environment Chapter 2

[30]

Note that older versions of Windows or Windows 10 Home edition cannot
run Docker for Windows. Docker for Windows uses Hyper-V to run
containers transparently in a VM but Hyper-V is not available on older
versions of Windows; nor is it available in the Home edition of Windows
10. In this case, we recommend that you use Docker Toolbox instead,
which we will describe in the next section.

 Follow these steps:

No matter what OS you're using, navigate to the Docker start page at https:/ /1.
www.docker. com/ get- started.
On the right-hand side of the loaded page, you'll find a big blue button saying2.
Download Desktop and Take a Tutorial. Click this button and follow the
instructions. You will be redirected to Docker Hub. If you don't have an account
on Docker Hub yet, then create one. It is absolutely free, but you need an account
to download the software. Otherwise, just log in.
Once you're logged in, look out for this on the page:3.

Download Docker Desktop on Docker Hub

https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started

Setting Up a Working Environment Chapter 2

[31]

Click the blue Download Docker Desktop button. You should then see a screen4.
like the following:

Download screen for Docker for Desktop for macOS

Note that if you're on a Windows PC, the blue button will say Download
Docker Desktop for Windows instead.

Installing Docker for Desktop on macOS
Follow these steps for installation:

Once you have successfully installed Docker for Desktop for macOS, please open1.
a Terminal window and execute the following command:

$ docker version

Setting Up a Working Environment Chapter 2

[32]

You should see something like this:

Docker version on Docker for Desktop

To see whether you can run containers, enter the following command into the2.
terminal window and hit Enter:

$ docker run hello-world

Setting Up a Working Environment Chapter 2

[33]

If all goes well, your output should look something like the following:

Running Hello-World on Docker for Desktop for macOS

Next, we will install Docker on Windows.

Installing Docker for Desktop on Windows
Follow these steps for installation:

Once you have successfully installed Docker for Desktop for Windows, please1.
open a PowerShell window and execute the following command:

PS> docker --version
Docker version 19.03.5, build 633a0ea

Setting Up a Working Environment Chapter 2

[34]

To see whether you can run containers, enter the following command into the2.
PowerShell window and hit Enter:

PS> docker run hello-world

If all goes well, your output should look similar to the preceding figure.

Installing Docker CE on Linux
As mentioned earlier, Docker for Desktop is only available for macOS and Windows 10 Pro.
If you're using a Linux machine, then you can use the Docker Community Edition (CE),
which consists of Docker Engine, plus a few additional tools, such as the Docker Command
Line Interface (CLI) and docker-compose.

Please follow the instructions at the following link to install Docker CE for your particular
Linux distribution—in this case, Ubuntu: https:/ /docs. docker. com/install/ linux/
docker-ce/ubuntu/ .

Installing Docker Toolbox
Docker Toolbox has been available for developers for a few years. It precedes newer tools
such as Docker for Desktop. The Toolbox allows a user to work very elegantly with
containers on any macOS or Windows computer. Containers must run on a Linux host.
Neither Windows nor macOS can run containers natively. Hence, we need to run a Linux
VM on our laptop, where we can then run our containers. Docker Toolbox installs
VirtualBox on our laptop, which is used to run the Linux VMs we need.

As a Windows user, you might already be aware that there are so-called
Windows containers that run natively on Windows, and you are right.
Microsoft has ported Docker Engine to Windows and it is possible to run
Windows containers directly on Windows Server 2016 or newer, without
the need for a VM. So, now we have two flavors of containers, Linux
containers and Windows containers. The former only runs on a Linux host
and the latter only runs on a Windows server. In this book, we are
exclusively discussing Linux containers, but most of the things we'll learn
also apply to Windows containers.

If you are interested in Windows containers, we strongly recommend the
book Docker on Windows, Second Edition: https:/ /www. packtpub. com/
virtualization- and- cloud/ docker- windows- second- edition.

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-windows-second-edition

Setting Up a Working Environment Chapter 2

[35]

Let's start by installing the Docker Toolbox on a macOS.

Installing Docker Toolbox on macOS
Follow these steps for installation:

Open a new Terminal window and use Homebrew to install the toolbox:1.

$ brew cask install docker-toolbox

You should see something like this:

Installing Docker Toolbox on macOS

Setting Up a Working Environment Chapter 2

[36]

To verify that Docker Toolbox has been installed successfully, try to access2.
docker-machine and docker-compose, two tools that are part of the
installation:

$ docker-machine --version
docker-machine version 0.15.0, build b48dc28d
$ docker-compose --version
docker-compose version 1.22.0, build f46880f

Next, we will install Docker Toolbox on Windows.

Installing Docker Toolbox on Windows
Open a new Powershell window in admin mode and use Chocolatey to install Docker
Toolbox:

PS> choco install docker-toolbox -y

The output should look similar to this:

Installing Docker Toolbox on Windows 10

We will now be setting up Docker Toolbox.

Setting Up a Working Environment Chapter 2

[37]

Setting up Docker Toolbox
Follow these steps for setup:

Let's use docker-machine to set up our environment. First, we list all Docker-1.
ready VMs we have currently defined on our system. If you have just installed
Docker Toolbox, you should see the following output:

List of all Docker-ready VMs

OK, we can see that there is a single VM called default installed, but it is2.
currently in the STATE of stopped. Let's use docker-machine to start this VM
so we can work with it:

$ docker-machine start default

This produces the following output:

Starting the default VM in Docker Toolbox

If we now list the VMs again, we should see this:

Listing the running VMs in Docker Toolbox

Setting Up a Working Environment Chapter 2

[38]

The IP address used might be different in your case, but it will definitely be in
the 192.168.0.0/24 range. We can also see that the VM has Docker
version 18.06.1-ce installed.

If, for some reason, you don't have a default VM or you have accidentally deleted3.
it, you can create it using the following command:

$ docker-machine create --driver virtualbox default

This will generate the following output:

Creating a new default VM in Docker Toolbox

If you carefully analyze the preceding output, you will see that docker-machine
automatically downloaded the newest ISO file for the VM from Docker. It
realized that my current version was outdated and replaced it with version
v18.09.6.

Setting Up a Working Environment Chapter 2

[39]

To see how to connect your Docker client to the Docker Engine running on this4.
virtual machine, run the following command:

$ docker-machine env default

This outputs the following:

export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.100:2376"
export
DOCKER_CERT_PATH="/Users/gabriel/.docker/machine/machines/default"
export DOCKER_MACHINE_NAME="default"
Run this command to configure your shell:
eval $(docker-machine env default)

We can execute the command listed on the last line in the preceding code snippet5.
to configure our Docker CLI to use Docker running on the default VM:

$ eval $(docker-machine env default)

And now we can execute the first Docker command:6.

$ docker version

This should result in the following output:

Output of docker version

Setting Up a Working Environment Chapter 2

[40]

We have two parts here, the client and the server part. The client is the CLI
running directly on your macOS or Windows laptop, while the server part is
running on the default VM in VirtualBox.

Now, let's try to run a container:7.

$ docker run hello-world

This will produce the following output:

The preceding output confirms that Docker Toolbox is working as expected and
can run containers.

Docker Toolbox is a great addition even when you normally use Docker
for Desktop for your development with Docker. Docker Toolbox allows
you to create multiple Docker hosts (or VMs) in VirtualBox and connect
them to a cluster, on top of which you can run Docker Swarm or
Kubernetes.

Setting Up a Working Environment Chapter 2

[41]

Installing Minikube
If you cannot use Docker for Desktop or, for some reason, you only have access to an older
version of the tool that does not yet support Kubernetes, then it is a good idea to install
Minikube. Minikube provisions a single-node Kubernetes cluster on your workstation and
is accessible through kubectl, which is the command-line tool used to work with
Kubernetes.

Installing Minikube on macOS and Windows
To install Minikube for macOS or Windows, navigate to the following link: https:/ /
kubernetes.io/docs/ tasks/ tools/ install- minikube/ .

Follow the instructions carefully. If you have Docker Toolbox installed, then you already
have a hypervisor on your system since the Docker Toolbox installer also installed
VirtualBox. Otherwise, I recommend that you install VirtualBox first.

If you have Docker for macOS or Windows installed, then you already
have kubectl installed with it, so you can skip that step too. Otherwise, follow the
instructions on the site.

Testing Minikube and kubectl
Once Minikube is successfully installed on your workstation, open a Terminal and test the
installation. First, we need to start Minikube. Enter minikube start at the command line.
This command may take a few minutes or so to complete. The output should look similar to
the following:

Starting Minikube

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Setting Up a Working Environment Chapter 2

[42]

Note, your output may look slightly different. In my case, I am running
Minikube on a Windows 10 Pro computer. On a Mac notifications are
quite different, but this doesn't matter here.

Now, enter kubectl version and hit Enter to see something like the following screenshot:

Determining the version of the Kubernetes client and server

If the preceding command fails, for example, by timing out, then it could be that
your kubectl is not configured for the right context. kubectl can be used to work with
many different Kubernetes clusters. Each cluster is called a context. To find out which
context kubectl is currently configured for, use the following command:

$ kubectl config current-context
minikube

The answer should be minikube, as shown in the preceding output. If this is not the case,
use kubectl config get-contexts to list all contexts that are defined on your system
and then set the current context to minikube, as follows:

$ kubectl config use-context minikube

The configuration for kubectl, where it stores the contexts, is normally found
in ~/.kube/config, but this can be overridden by defining an environment variable
called KUBECONFIG. You might need to unset this variable if it is set on your computer.

For more in-depth information about how to configure and use Kubernetes contexts,
consult the link at https:/ /kubernetes. io/ docs/ concepts/ configuration/ organize-
cluster-access-kubeconfig/ .

Assuming Minikube and kubectl work as expected, we can now use kubectl to get
information about the Kubernetes cluster. Enter the following command:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready master 47d v1.17.3

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Setting Up a Working Environment Chapter 2

[43]

Evidently, we have a cluster of one node, which in my case has Kubernetes v1.17.3
installed on it.

Summary
In this chapter, we set up and configured our personal or working environment so that we
can productively work with Docker containers. This equally applies for developers,
DevOps, and operations engineers. In that context, we make sure that we use a good editor,
have Docker for macOS or Docker for Windows installed, and can use docker-machine to
create VMs in VirtualBox or Hyper-V, which we can then use to run and test containers.

In the next chapter, we're going to learn all of the important facts about containers. For
example, we will explore how we can run, stop, list, and delete containers, but more than
that, we will also dive deep into the anatomy of containers.

Questions
Based on your reading of this chapter, please answer the following questions:

What is docker-machine used for? Name three to four scenarios.1.
With Docker for Windows, you can develop and run Linux containers.2.

A. True
B. False

Why are good scripting skills (such as Bash or PowerShell) essential for the3.
productive use of containers?
Name three to four Linux distributions on which Docker is certified to run.4.
Name all of the Windows versions on which you can run Windows containers.5.

Setting Up a Working Environment Chapter 2

[44]

Further reading
Consider the following links for further reading:

Chocolatey - The Package Manager for Windows at https:/ /chocolatey. org/

Install Docker Toolbox on Windows: https:/ /dockr. ly/ 2nuZUkU

Run Docker on Hyper-V with Docker Machine at http:/ /bit. ly/ 2HGMPiI

Developing inside a Container at https:/ /code. visualstudio. com/ docs/ remote/
containers

https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://chocolatey.org/
https://dockr.ly/2nuZUkU
https://dockr.ly/2nuZUkU
https://dockr.ly/2nuZUkU
https://dockr.ly/2nuZUkU
https://dockr.ly/2nuZUkU
https://dockr.ly/2nuZUkU
https://dockr.ly/2nuZUkU
https://dockr.ly/2nuZUkU
https://dockr.ly/2nuZUkU
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
http://bit.ly/2HGMPiI
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers

2
Section 2: Containerization,
from Beginner to Black Belt

In this section, you will master all the essential aspects of building, shipping, and running a
single container.

This section comprises the following chapters:

Chapter 3, Mastering Containers
Chapter 4, Creating and Managing Container Images
Chapter 5, Data Volumes and Configuration
Chapter 6, Debugging Code Running in Containers
Chapter 7, Using Docker to Supercharge Automation
Chapter 8, Advanced Docker Usage Scenarios

3
Mastering Containers

In the previous chapter, you learned how to optimally prepare your working environment
for the productive and frictionless use of Docker. In this chapter, we are going to get our
hands dirty and learn everything that is important to know when working with containers.
Here are the topics we're going to cover in this chapter:

Running the first container
Starting, stopping, and removing containers
Inspecting containers
Exec into a running container
Attaching to a running container
Retrieving container logs
Anatomy of containers

After finishing this chapter, you will be able to do the following things:

Run, stop, and delete a container based on an existing image, such as Nginx,
BusyBox, or Alpine.
List all containers on the system.
Inspect the metadata of a running or stopped container.
Retrieve the logs produced by an application running inside a container.
Run a process such as /bin/sh in an already-running container.
Attach a Terminal to an already-running container.
Explain in your own words to an interested lay person the underpinnings of a
container.

Mastering Containers Chapter 3

[47]

Technical requirements
For this chapter, you should have installed Docker for Desktop on your macOS or
Windows PC. If you are on an older version of Windows or are using Windows 10 Home
Edition, then you should have Docker Toolbox installed and ready to use. On macOS, use
the Terminal application, and on Windows, a PowerShell or Bash console, to try out the
commands you will be learning.

Running the first container
Before we start, we want to make sure that Docker is installed correctly on your system and
ready to accept your commands. Open a new Terminal window and type in the following
command:

$ docker version

If you are using Docker Toolbox then use the Docker Quickstart Terminal
that has been installed with the Toolbox, instead of the Terminal on
macOS or Powershell on Windows.

If everything works correctly, you should see the version of Docker client and server
installed on your laptop output in the Terminal. At the time of writing, it looks like this
(shortened for readability):

Client: Docker Engine - Community
 Version: 19.03.0-beta3
 API version: 1.40
 Go version: go1.12.4
 Git commit: c55e026
 Built: Thu Apr 25 19:05:38 2019
 OS/Arch: darwin/amd64
 Experimental: false

Server: Docker Engine - Community
 Engine:
 Version: 19.03.0-beta3
 API version: 1.40 (minimum version 1.12)
 Go version: go1.12.4
 Git commit: c55e026
 Built: Thu Apr 25 19:13:00 2019
 OS/Arch: linux/amd64
 ...

Mastering Containers Chapter 3

[48]

You can see that I have beta3 of version 19.03.0 installed on my macOS.

If this doesn't work for you, then something with your installation is not right. Please make
sure that you have followed the instructions in the previous chapter on how to install
Docker for Desktop or Docker Toolbox on your system.

So, you're ready to see some action. Please type the following command into your Terminal
window and hit Return:

$ docker container run alpine echo "Hello World"

When you run the preceding command the first time, you should see an output in your
Terminal window similar to this:

Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
e7c96db7181b: Pull complete
Digest:
sha256:769fddc7cc2f0a1c35abb2f91432e8beecf83916c421420e6a6da9f8975464b6
Status: Downloaded newer image for alpine:latest
Hello World

Now that was easy! Let's try to run the very same command again:

$ docker container run alpine echo "Hello World"

The second, third, or nth time you run the preceding command, you should see only this
output in your Terminal:

 Hello World

Try to reason about why the first time you run a command you see a different output than
all of the subsequent times. But don't worry if you can't figure it out; we will explain the
reasons in detail in the following sections of this chapter.

Mastering Containers Chapter 3

[49]

Starting, stopping, and removing containers
You have successfully run a container in the previous section. Now, we want to investigate
in detail what exactly happened and why. Let's look again at the command we used:

$ docker container run alpine echo "Hello World"

This command contains multiple parts. First and foremost, we have the word docker. This
is the name of the Docker Command-Line Interface (CLI) tool, which we are using to
interact with the Docker engine that is responsible to run containers. Next, we have the
word container, which indicates the context we are working with. As we want to run a
container, our context is the word container. Next is the actual command we want to
execute in the given context, which is run.

Let me recap—so far, we have docker container run, which means, Hey Docker, we want
to run a container.

Now we also need to tell Docker which container to run. In this case, this is the so-
called alpine container.

alpine is a minimal Docker image based on Alpine Linux with a
complete package index and is only 5 MB in size.

Finally, we need to define what kind of process or task shall be executed inside the
container when it is running. In our case, this is the last part of the command, echo
"Hello World".

Maybe the following screenshot can help you to get a better idea of the whole thing:

Anatomy of the docker container run expression

Mastering Containers Chapter 3

[50]

Now that we have understood the various parts of a command to run a container, let's try
to run another container with a different process running inside it. Type the following
command into your Terminal:

$ docker container run centos ping -c 5 127.0.0.1

You should see output in your Terminal window similar to the following:

Unable to find image 'centos:latest' locally
latest: Pulling from library/centos
8ba884070f61: Pull complete
Digest:
sha256:b5e66c4651870a1ad435cd75922fe2cb943c9e973a9673822d1414824a1d0475
Status: Downloaded newer image for centos:latest
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.104 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.059 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.081 ms
64 bytes from 127.0.0.1: icmp_seq=4 ttl=64 time=0.050 ms
64 bytes from 127.0.0.1: icmp_seq=5 ttl=64 time=0.055 ms
--- 127.0.0.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4127ms
rtt min/avg/max/mdev = 0.050/0.069/0.104/0.022 ms

What changed is that this time, the container image we're using is centos and the process
we're executing inside the centos container is ping -c 5 127.0.0.1, which pings the
loopback address five times until it stops.

centos is the official Docker image for CentOS Linux, which is a
community-supported distribution derived from sources freely provided
to the public by Red Hat for Red Hat Enterprise Linux (RHEL).

Let's analyze the output in detail.

The first line is as follows:

Unable to find image 'centos:latest' locally

Mastering Containers Chapter 3

[51]

This tells us that Docker didn't find an image named centos:latest in the local cache of
the system. So, Docker knows that it has to pull the image from some registry where
container images are stored. By default, your Docker environment is configured so that
images are pulled from Docker Hub at docker.io. This is expressed by the second line, as
follows:

latest: Pulling from library/centos

The next three lines of output are as follows:

8ba884070f61: Pull complete
Digest:
sha256:b5e66c4651870a1ad435cd75922fe2cb943c9e973a9673822d1414824a1d0475
Status: Downloaded newer image for centos:latest

This tells us that Docker has successfully pulled the centos:latest image from Docker
Hub.

All of the subsequent lines of the output are generated by the process we ran inside the
container, which is the Ping tool in this case. If you have been attentive so far, then you
might have noticed the latest keyword occurring a few times. Each image has a version
(also called tag), and if we don't specify a version explicitly, then Docker automatically
assumes it is latest.

If we run the preceding container again on our system, the first five lines of the output will
be missing since, this time, Docker will find the container image cached locally and hence
won't have to download it first. Try it out and verify what I just told you.

Running a random trivia question container
For the subsequent sections of this chapter, we need a container that runs continuously in
the background and produces some interesting output. That's why we have chosen an
algorithm that produces random trivia questions. The API that produces that free random
trivia can be found at http:/ /jservice. io/.

Now the goal is to have a process running inside a container that produces a new random
trivia question every five seconds and outputs the question to STDOUT. The following script
will do exactly that:

while :
do
 wget -qO- http://jservice.io/api/random | jq .[0].question
 sleep 5
done

http://jservice.io/
http://jservice.io/
http://jservice.io/
http://jservice.io/
http://jservice.io/
http://jservice.io/
http://jservice.io/
http://jservice.io/

Mastering Containers Chapter 3

[52]

Try it in a Terminal window. Stop the script by pressing Ctrl + C. The output should look
similar to this:

"In 2004 Pitt alumna Wangari Maathai became the first woman from this
continent to win the Nobel Peace Prize"
"There are 86,400 of these in every day"
"For $5 million in 2013 an L.A. movie house became TCL Chinese Theatre, but
we bet many will still call it this, after its founder"
^C

Each response is a different trivia question.

You may need to install jq first on your macOS or Windows computer. jq
is a handy tool often used to nicely filter and format JSON output, which
increases the readability of it on the screen.

Now, let's run this logic in an alpine container. Since this is not just a simple command,
we want to wrap the preceding script in a script file and execute that one. To make things
simpler, I have created a Docker image called fundamentalsofdocker/trivia that
contains all of the necessary logic, so that we can just use it here. Later on, once we have
introduced Docker images, we will analyze this container image further. For the moment,
let's just use it as is. Execute the following command to run the container as a background
service. In Linux, a background service is also called a daemon:

$ docker container run -d --name trivia fundamentalsofdocker/trivia:ed2

In the preceding expression, we have used two new command-line parameters, -d and --
name. Now, -d tells Docker to run the process running in the container as a Linux daemon.
The --name parameter, in turn, can be used to give the container an explicit name. In the
preceding sample, the name we chose is trivia.

If we don't specify an explicit container name when we run a container, then Docker will
automatically assign the container a random but unique name. This name will be composed
of the name of a famous scientist and an adjective. Such names could
be boring_borg or angry_goldberg. They're quite humorous, our Docker
engineers, aren't they?

We are also using the tag ed2 for the container. This tag just tells us that this image has
been created for the second edition of this book.

Mastering Containers Chapter 3

[53]

One important takeaway is that the container name has to be unique on the system. Let's
make sure that the trivia container is up and running:

$ docker container ls -l

This should give us something like this (shortened for readability):

CONTAINER ID IMAGE ... CREATED STATUS
...
0ff3d7cf7634 fundamentalsofdocker/trivia:ed2 ... 11 seconds ago Up 9
seconds ...

The important part of the preceding output is the STATUS column, which in this case is Up
9 seconds. That is, the container has been up and running for 9 seconds now.

Don't worry if the last Docker command is not yet familiar to you, we will come back to it
in the next section.

To complete this section, let's stop and remove the trivia container with the following
command:

$ docker rm -f trivia

Now it is time to learn how to list containers running or dangling on our system.

Listing containers
As we continue to run containers over time, we get a lot of them in our system. To find out
what is currently running on our host, we can use the container ls command, as
follows:

$ docker container ls

This will list all currently running containers. Such a list might look similar to this:

List of all containers running on the system

Mastering Containers Chapter 3

[54]

By default, Docker outputs seven columns with the following meanings:

Column Description

Container ID This is the unique ID of the container. It is an SHA-256.

Image
This is the name of the container image from which this container is
instantiated.

Command
This is the command that is used to run the main process in the
container.

Created This is the date and time when the container was created.

Status
This is the status of the container (created, restarting, running, removing,
paused, exited, or dead).

Ports This is the list of container ports that have been mapped to the host.

Names This is the name assigned to this container (multiple names are possible).

If we want to list not only the currently running containers but all containers that are
defined on our system, then we can use the command-line parameter -a or --all, as
follows:

$ docker container ls -a

Mastering Containers Chapter 3

[55]

This will list containers in any state, such as created, running, or exited.

Sometimes, we want to just list the IDs of all containers. For this, we have the -q parameter:

$ docker container ls -q

You might wonder where this is useful. I will show you a command where it is very helpful
right here:

$ docker container rm -f $(docker container ls -a -q)

Lean back and take a deep breath. Then, try to find out what the preceding command does.
Don't read any further until you find the answer or give up.

The preceding command deletes all containers that are currently defined on the system,
including the stopped ones. The rm command stands for remove, and it will be explained
soon.

In the previous section, we used the -l parameter in the list command. Try to use Docker
help to find out what the -l parameter stands for. You can invoke help for the list
command as follows:

$ docker container ls -h

Next, let's learn how to stop and restart containers.

Stopping and starting containers
Sometimes, we want to (temporarily) stop a running container. Let's try this out with the
trivia container we used previously:

Run the container again with this command:1.

$ docker container run -d --name trivia
fundamentalsofdocker/trivia:ed2

Now, if we want to stop this container, then we can do so by issuing this2.
command:

$ docker container stop trivia

When you try to stop the trivia container, you will probably note that it takes a while until
this command is executed. To be precise, it takes about 10 seconds. Why is this the case?

Mastering Containers Chapter 3

[56]

Docker sends a Linux SIGTERM signal to the main process running inside the container. If
the process doesn't react to this signal and terminate itself, Docker waits for 10 seconds and
then sends SIGKILL, which will kill the process forcefully and terminate the container.

In the preceding command, we have used the name of the container to specify which
container we want to stop. But we could have also used the container ID instead.

How do we get the ID of a container? There are several ways of doing so. The manual
approach is to list all running containers and find the one that we're looking for in the list.
From there, we copy its ID. A more automated way is to use some shell scripting and
environment variables. If, for example, we want to get the ID of the trivia container, we can
use this expression:

$ export CONTAINER_ID=$(docker container ls -a | grep trivia | awk '{print
$1}')

We are using the -a parameter with the Docker container ls command
to list all containers, even the stopped ones. This is necessary in this case
since we stopped the trivia container a moment ago.

Now, instead of using the container name, we can use the $CONTAINER_ID variable in our
expression:

$ docker container stop $CONTAINER_ID

Once we have stopped the container, its status changes to Exited.

If a container is stopped, it can be started again using the docker container
start command. Let's do this with our trivia container. It is good to have it running again,
as we'll need it in the subsequent sections of this chapter:

$ docker container start trivia

It is now time to discuss what to do with stopped containers that we don't need anymore.

Mastering Containers Chapter 3

[57]

Removing containers
When we run the docker container ls -a command, we can see quite a few containers
that are in the Exited status. If we don't need these containers anymore, then it is a good
thing to remove them from memory; otherwise, they unnecessarily occupy precious
resources. The command to remove a container is as follows:

$ docker container rm <container ID>

Another command to remove a container is the following:

$ docker container rm <container name>

Try to remove one of your exited containers using its ID.

Sometimes, removing a container will not work as it is still running. If we want to force a
removal, no matter what the condition of the container currently is, we can use the
command-line parameter -f or --force.

Inspecting containers
Containers are runtime instances of an image and have a lot of associated data that
characterizes their behavior. To get more information about a specific container, we can use
the inspect command. As usual, we have to provide either the container ID or name to
identify the container of which we want to obtain the data. So, let's inspect our sample
container:

$ docker container inspect trivia

The response is a big JSON object full of details. It looks similar to this:

[
 {
 "Id": "48630a3bf188...",
 ...
 "State": {
 "Status": "running",
 "Running": true,
 ...
 },
 "Image": "sha256:bbc92c8f014d605...",
 ...
 "Mounts": [],
 "Config": {

Mastering Containers Chapter 3

[58]

 "Hostname": "48630a3bf188",
 "Domainname": "",
 ...
 },
 "NetworkSettings": {
 "Bridge": "",
 "SandboxID": "82aed83429263ceb6e6e...",
 ...
 }
 }
]

The output has been shortened for readability.

Please take a moment to analyze what you got. You should see information such as the
following:

The ID of the container
The creation date and time of the container
The image from which the container is built

Many sections of the output, such as Mounts or NetworkSettings, don't make much sense
right now, but we will certainly discuss those in the upcoming chapters of this book. The
data you're seeing here is also named the metadata of a container. We will be using
the inspect command quite often in the remainder of this book as a source of information.

Sometimes, we need just a tiny bit of the overall information, and to achieve this,
we can either use the grep tool or a filter. The former method does not always result in the
expected answer, so let's look into the latter approach:

$ docker container inspect -f "{{json .State}}" trivia | jq .

The -f or --filter parameter is used to define the filter. The filter expression itself uses
the Go template syntax. In this example, we only want to see the state part of the whole
output in the JSON format.

To nicely format the output, we pipe the result into the jq tool:

{
 "Status": "running",
 "Running": true,
 "Paused": false,
 "Restarting": false,
 "OOMKilled": false,
 "Dead": false,
 "Pid": 18252,

Mastering Containers Chapter 3

[59]

 "ExitCode": 0,
 "Error": "",
 "StartedAt": "2019-06-16T13:30:15.776272Z",
 "FinishedAt": "2019-06-16T13:29:38.6412298Z"
}

After we have learned how to retrieve loads of important and useful meta information
about a container, we now want to investigate how we can execute it in a running
container.

Exec into a running container
Sometimes, we want to run another process inside an already-running container. A typical
reason could be to try to debug a misbehaving container. How can we do this? First, we need
to know either the ID or the name of the container, and then we can define which process
we want to run and how we want it to run. Once again, we use our currently running trivia
container and we run a shell interactively inside it with the following command:

$ docker container exec -i -t trivia /bin/sh

The -i flag signifies that we want to run the additional process interactively, and -t tells
Docker that we want it to provide us with a TTY (a Terminal emulator) for the command.
Finally, the process we run is /bin/sh.

If we execute the preceding command in our Terminal, then we will be presented with a
new prompt, /app #. We're now in a shell inside the trivia container. We can easily prove
that by, for example, executing the ps command, which will list all running processes in the
context:

/app # ps

The result should look somewhat similar to this:

List of processes running inside the trivia container

Mastering Containers Chapter 3

[60]

We can clearly see that the process with PID 1 is the command that we have defined to run
inside the trivia container. The process with PID 1 is also named the main process.

Leave the container by pressing Ctrl + D. We cannot only execute additional processes
interactive in a container. Please consider the following command:

$ docker container exec trivia ps

The output evidently looks very similar to the preceding output:

List of processes running inside the trivia container

We can even run processes as a daemon using the -d flag and define environment variables
using the -e flag variables, as follows:

$ docker container exec -it \
 -e MY_VAR="Hello World" \
 trivia /bin/sh
/app # echo $MY_VAR
Hello World
/app # <CTRL-d>

Great, we have learned how to execute into a running container and run additional
processes. But there is another important way to mingle with a running container.

Attaching to a running container
We can use the attach command to attach our Terminal's standard input, output, and
error (or any combination of the three) to a running container using the ID or name of the
container. Let's do this for our trivia container:

$ docker container attach trivia

In this case, we will see every five seconds or so a new quote appearing in the output.

Mastering Containers Chapter 3

[61]

To quit the container without stopping or killing it, we can press the key
combination Ctrl + P+ Ctrl + Q. This detaches us from the container while leaving it running
in the background. On the other hand, if we want to detach and stop the container at the
same time, we can just press Ctrl + C.

Let's run another container, this time an Nginx web server:

$ docker run -d --name nginx -p 8080:80 nginx:alpine

Here, we run the Alpine version of Nginx as a daemon in a container named nginx. The -p
8080:80 command-line parameter opens port 8080 on the host for access to the Nginx web
server running inside the container. Don't worry about the syntax here as we will explain
this feature in more detail in Chapter 10, Single-Host Networking:

Let's see whether we can access Nginx using the curl tool and running this1.
command:

$ curl -4 localhost:8080

If all works correctly, you should be greeted by the welcome page of Nginx
(shortened for readability):

<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
...
</html>

Now, let's attach our Terminal to the nginx container to observe what's2.
happening:

$ docker container attach nginx

Mastering Containers Chapter 3

[62]

Once you are attached to the container, you first will not see anything. But now3.
open another Terminal, and in this new Terminal window, repeat
the curl command a few times, for example, using the following script:

$ for n in {1..10}; do curl -4 localhost:8080; done

You should see the logging output of Nginx, which looks similar to this:

172.17.0.1 - - [16/Jun/2019:14:14:02 +0000] "GET / HTTP/1.1" 200
612 "-" "curl/7.54.0" "-"
172.17.0.1 - - [16/Jun/2019:14:14:02 +0000] "GET / HTTP/1.1" 200
612 "-" "curl/7.54.0" "-"
172.17.0.1 - - [16/Jun/2019:14:14:02 +0000] "GET / HTTP/1.1" 200
612 "-" "curl/7.54.0" "-"
...

Quit the container by pressing Ctrl + C. This will detach your Terminal and, at4.
the same time, stop the nginx container.
To clean up, remove the nginx container with the following command:5.

$ docker container rm nginx

In the next section, we're going to learn how to work with container logs.

Retrieving container logs
It is a best practice for any good application to generate some logging information that
developers and operators alike can use to find out what the application is doing at a given
time, and whether there are any problems to help to pinpoint the root cause of the issue.

When running inside a container, the application should preferably output the log items to
STDOUT and STDERR and not into a file. If the logging output is directed to STDOUT and
STDERR, then Docker can collect this information and keep it ready for consumption by a
user or any other external system:

To access the logs of a given container, we can use the docker container1.
logs command. If, for example, we want to retrieve the logs of
our trivia container, we can use the following expression:

$ docker container logs trivia

Mastering Containers Chapter 3

[63]

This will retrieve the whole log produced by the application from the very
beginning of its existence.

Stop, wait a second—this is not quite true, what I just said. By default,
Docker uses the so-called json-file logging driver. This driver stores
the logging information in a file. And if there is a file rolling policy
defined, then docker container logs only retrieves what is in the
current active log file and not what is in previous rolled files that might
still be available on the host.

If we want to only get a few of the latest entries, we can use the -t or --2.
tail parameter, as follows:

$ docker container logs --tail 5 trivia

This will retrieve only the last five items the process running inside the container
produced.

Sometimes, we want to follow the log that is produced by a container. This is
possible when using the -f or --follow parameter. The following expression
will output the last five log items and then follow the log as it is produced by the
containerized process:

$ docker container logs --tail 5 --follow trivia

Often using the default mechanism for container logging is not enough. We need a different
way of logging. This is discussed in the following section.

Logging drivers
Docker includes multiple logging mechanisms to help us to get information from running
containers. These mechanisms are named logging drivers. Which logging driver is used
can be configured at the Docker daemon level. The default logging driver is json-file.
Some of the drivers that are currently supported natively are as follows:

Driver Description
none No log output for the specific container is produced.

json-file
This is the default driver. The logging information is stored in files,
formatted as JSON.

journald
If the journals daemon is running on the host machine, we can use this
driver. It forwards logging to the journald daemon.

Mastering Containers Chapter 3

[64]

syslog
If the syslog daemon is running on the host machine, we can configure
this driver, which will forward the log messages to the syslog daemon.

gelf
When using this driver, log messages are written to a Graylog Extended
Log Format (GELF) endpoint. Popular examples of such endpoints are
Graylog and Logstash.

fluentd
Assuming that the fluentd daemon is installed on the host system, this
driver writes log messages to it.

If you change the logging driver, please be aware that the docker
container logs command is only available for the json-
file and journald drivers.

Using a container-specific logging driver
We have seen that the logging driver can be set globally in the Docker daemon
configuration file. But we can also define the logging driver on a container by container
basis. In the following example, we are running a busybox container and use the --log-
driver parameter to configure the none logging driver:

$ docker container run --name test -it \
 --log-driver none \
 busybox sh -c 'for N in 1 2 3; do echo "Hello $N"; done'

We should see the following:

Hello 1
Hello 2
Hello 3

Now, let's try to get the logs of the preceding container:

$ docker container logs test

The output is as follows:

Error response from daemon: configured logging driver does not support
reading

Mastering Containers Chapter 3

[65]

This is to be expected since the none driver does not produce any logging output. Let's
clean up and remove the test container:

$ docker container rm test

Advanced topic – changing the default logging
driver
Let's change the default logging driver of a Linux host:

The easiest way to do this is on a real Linux host. For this purpose, we're going to1.
use Vagrant with an Ubuntu image:

$ vagrant init bento/ubuntu-17.04
$ vagrant up
$ vagrant ssh

Vagrant is an open source tool developed by Hashicorp that is often used
for building and maintaining portable virtual software development
environments.

Once inside the Ubuntu VM, we want to edit the Docker daemon configuration2.
file. Navigate to the /etc/docker folder and run vi as follows:

$ vi daemon.json

Enter the following content:3.

{
 "Log-driver": "json-log",
 "log-opts": {
 "max-size": "10m",
 "max-file": 3
 }
}

Mastering Containers Chapter 3

[66]

Save and exit vi by first pressing Esc and then typing :w:q and finally hitting4.
the Enter key.

The preceding definition tells the Docker daemon to use the json-log driver
with a maximum log file size of 10 MB before it is rolled, and the maximum
number of log files that can be present on the system is 3 before the oldest file gets
purged.

Now we have to send a SIGHUP signal to the Docker daemon so that it picks up
the changes in the configuration file:

$ sudo kill -SIGHUP $(pidof dockerd)

Note that the preceding command only reloads the config file and does not restart the
daemon.

Anatomy of containers
Many people wrongly compare containers to VMs. However, this is a questionable
comparison. Containers are not just lightweight VMs. OK then, what is the correct description
of a container?

Containers are specially encapsulated and secured processes running on the host system.
Containers leverage a lot of features and primitives available in the Linux OS. The most
important ones are namespaces and cgroups. All processes running in containers only share
the same Linux kernel of the underlying host operating system. This is fundamentally
different compared with VMs, as each VM contains its own full-blown operating system.

The startup times of a typical container can be measured in milliseconds, while a VM
normally needs several seconds to minutes to start up. VMs are meant to be long-living. It
is a primary goal of each operations engineer to maximize the uptime of their VMs.
Contrary to that, containers are meant to be ephemeral. They come and go relatively
quickly.

Let's first get a high-level overview of the architecture that enables us to run containers.

Mastering Containers Chapter 3

[67]

Architecture
Here, we have an architectural diagram on how this all fits together:

High-level architecture of Docker

In the lower part of the preceding diagram, we have the Linux operating system with its
cgroups, Namespaces, and Layer Capabilities as well as Other OS Functionality that we
do not need to explicitly mention here. Then, there is an intermediary layer composed
of containerd and runc. On top of all that now sits the Docker engine. The Docker engine
offers a RESTful interface to the outside world that can be accessed by any tool, such as the
Docker CLI, Docker for macOS, and Docker for Windows or Kubernetes to name just a few.

Let's now describe the main building blocks in a bit more detail.

Namespaces
Linux namespaces had been around for years before they were leveraged by Docker for
their containers. A namespace is an abstraction of global resources such as filesystems,
network access, and process trees (also named PID namespaces) or the system group IDs
and user IDs. A Linux system is initialized with a single instance of each namespace type.
After initialization, additional namespaces can be created or joined.

Mastering Containers Chapter 3

[68]

The Linux namespaces originated in 2002 in the 2.4.19 kernel. In kernel version 3.8, user
namespaces were introduced and with it, namespaces were ready to be used by containers.

If we wrap a running process, say, in a filesystem namespace, then this process has the
illusion that it owns its own complete filesystem. This, of course, is not true; it is only a
virtual filesystem. From the perspective of the host, the contained process gets a shielded
subsection of the overall filesystem. It is like a filesystem in a filesystem:

Filesystem namespaces on Linux

The same applies to all of the other global resources for which namespaces exist. The user
ID namespace is another example. Having a user namespace, we can now define
a jdoe user many times on the system as long as it is living in its own namespace.

Mastering Containers Chapter 3

[69]

The PID namespace is what keeps processes in one container from seeing or interacting
with processes in another container. A process might have the apparent PID 1 inside a
container, but if we examine it from the host system, it would have an ordinary PID,
say 334:

Process tree on a Docker host

In a given namespace, we can run one to many processes. That is important when we talk
about containers, and we have experienced that already when we executed another process
in an already-running container.

Control groups (cgroups)
Linux cgroups are used to limit, manage, and isolate resource usage of collections of
processes running on a system. Resources are CPU time, system memory, network
bandwidth, or combinations of these resources, and so on.

Engineers at Google originally implemented this feature in 2006. The cgroups functionality
was merged into the Linux kernel mainline in kernel version 2.6.24, which was released in
January 2008.

Mastering Containers Chapter 3

[70]

Using cgroups, administrators can limit the resources that containers can consume. With
this, we can avoid, for example, the classical noisy neighbor problem, where a rogue process
running in a container consumes all CPU time or reserves massive amounts of RAM and, as
such, starves all of the other processes running on the host, whether they're containerized
or not.

Union filesystem (Unionfs)
Unionfs forms the backbone of what is known as container images. We will discuss
container images in detail in the next chapter. At this time, we want to just understand a bit
better what Unionfs is, and how it works. Unionfs is mainly used on Linux and allows files
and directories of distinct filesystems to be overlaid to form a single coherent filesystem. In
this context, the individual filesystems are called branches. Contents of directories that have
the same path within the merged branches will be seen together in a single merged
directory, within the new virtual filesystem. When merging branches, the priority between
the branches is specified. In that way, when two branches contain the same file, the one
with the higher priority is seen in the final filesystem.

Container plumbing
The basement on top of which the Docker engine is built; is the container plumbing and is
formed by two components, runc and containerd.

Originally, Docker was built in a monolithic way and contained all of the functionality
necessary to run containers. Over time, this became too rigid and Docker started to break
out parts of the functionality into their own components. Two important components are
runc and containerd.

runC
runC is a lightweight, portable container runtime. It provides full support for Linux
namespaces as well as native support for all security features available on Linux, such as
SELinux, AppArmor, seccomp, and cgroups.

runC is a tool for spawning and running containers according to the Open Container
Initiative (OCI) specification. It is a formally specified configuration format, governed by
the Open Container Project (OCP) under the auspices of the Linux Foundation.

Mastering Containers Chapter 3

[71]

Containerd
runC is a low-level implementation of a container runtime; containerd builds on top of it
and adds higher-level features, such as image transfer and storage, container execution, and
supervision as well as network and storage attachments. With this, it manages the complete
life cycle of containers. Containerd is the reference implementation of the OCI specifications
and is by far the most popular and widely used container runtime.

Containerd was donated to and accepted by the CNCF in 2017. There exist alternative
implementations of the OCI specification. Some of them are rkt by CoreOS, CRI-O by
RedHat, and LXD by Linux Containers. However, containerd at this time is by far the most
popular container runtime and is the default runtime of Kubernetes 1.8 or later and the
Docker platform.

Summary
In this chapter, you learned how to work with containers that are based on existing images.
We showed how to run, stop, start, and remove a container. Then, we inspected the
metadata of a container, extracted the logs of it, and learned how to run an arbitrary
process in an already-running container. Last but not least, we dug a bit deeper and
investigated how containers work and what features of the underlying Linux operating
system they leverage.

In the next chapter, you're going to learn what container images are and how we can build
and share our own custom images. We'll also be discussing the best practices commonly
used when building custom images, such as minimizing their size and leveraging the image
cache. Stay tuned!

Questions
To assess your learning progress, please answer the following questions:

What are the states of a container?1.
Which command helps us to find out what is currently running on our Docker2.
host?
Which command is used to list the IDs of all containers?3.

Mastering Containers Chapter 3

[72]

Further reading
The following articles give you some more information related to the topics we discussed in
this chapter:

Docker containers at http:/ / dockr. ly/ 2iLBV2I

Getting started with containers at http:/ / dockr. ly/2gmxKWB

Isolating containers with a user namespace at http:/ /dockr. ly/2gmyKdf

Limiting a container's resources at http:/ /dockr. ly/ 2wqN5Nn

http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2iLBV2I
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2gmyKdf
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn
http://dockr.ly/2wqN5Nn

4
Creating and Managing

Container Images
In the previous chapter, we learned what containers are and how to run, stop, remove, list,
and inspect them. We extracted the logging information of some containers, ran other
processes inside an already running container, and finally, we dived deep into the anatomy
of containers. Whenever we ran a container, we created it using a container image. In this
chapter, we will be familiarizing ourselves with these container images. We will learn in
detail what they are, how to create them, and how to distribute them.

This chapter will cover the following topics:

What are images?
Creating images
Lift and shift: Containerizing a legacy app
Sharing or shipping images

After completing this chapter, you will be able to do the following:

Name three of the most important characteristics of a container image.
Create a custom image by interactively changing the container layer and
committing it.
Author a simple Dockerfile to generate a custom image.
Export an existing image using docker image save and import it into another
Docker host using docker image load.
Write a two-step Dockerfile that minimizes the size of the resulting image by
only including the resulting artifacts in the final image.

Creating and Managing Container Images Chapter 4

[74]

What are images?
In Linux, everything is a file. The whole operating system is basically a filesystem with files
and folders stored on the local disk. This is an important fact to remember when looking at
what container images are. As we will see, an image is basically a big tarball containing a
filesystem. More specifically, it contains a layered filesystem.

The layered filesystem
Container images are templates from which containers are created. These images are not
made up of just one monolithic block but are composed of many layers. The first layer in
the image is also called the base layer. We can see this in the following graphic:

The image as a stack of layers

Each individual layer contains files and folders. Each layer only contains the changes to the
filesystem with respect to the underlying layers. Docker uses a Union filesystem—as
discussed in Chapter 3, Mastering Containers — to create a virtual filesystem out of the set
of layers. A storage driver handles the details regarding the way these layers interact with
each other. Different storage drivers are available that have advantages and disadvantages
in different situations.

Creating and Managing Container Images Chapter 4

[75]

The layers of a container image are all immutable. Immutable means that once generated,
the layer cannot ever be changed. The only possible operation affecting the layer is its
physical deletion. This immutability of layers is important because it opens up a
tremendous amount of opportunities, as we will see.

In the following screenshot, we can see what a custom image for a web application, using
Nginx as a web server, could look like:

A sample custom image based on Alpine and Nginx

Our base layer here consists of the Alpine Linux distribution. Then, on top of that, we have
an Add Nginx layer where Nginx is added on top of Alpine. Finally, the third layer
contains all the files that make up the web application, such as HTML, CSS, and JavaScript
files.

As has been said previously, each image starts with a base image. Typically, this base image
is one of the official images found on Docker Hub, such as a Linux distro, Alpine, Ubuntu,
or CentOS. However, it is also possible to create an image from scratch.

Docker Hub is a public registry for container images. It is a central hub
ideally suited for sharing public container images.

Each layer only contains the delta of changes in regard to the previous set of layers. The
content of each layer is mapped to a special folder on the host system, which is usually a
subfolder of /var/lib/docker/.

Since layers are immutable, they can be cached without ever becoming stale. This is a big
advantage, as we will see.

Creating and Managing Container Images Chapter 4

[76]

The writable container layer
As we have discussed, a container image is made of a stack of immutable or read-only
layers. When the Docker Engine creates a container from such an image, it adds a writable
container layer on top of this stack of immutable layers. Our stack now looks as follows:

The writable container layer

The Container Layer is marked as read/write. Another advantage of the immutability of
image layers is that they can be shared among many containers created from this image. All
that is needed is a thin, writable container layer for each container, as shown in the
following screenshot:

Multiple containers sharing the same image layers

Creating and Managing Container Images Chapter 4

[77]

This technique, of course, results in a tremendous reduction in the resources that are
consumed. Furthermore, this helps to decrease the loading time of a container since only a
thin container layer has to be created once the image layers have been loaded into memory,
which only happens for the first container.

Copy-on-write
Docker uses the copy-on-write technique when dealing with images. Copy-on-write is a
strategy for sharing and copying files for maximum efficiency. If a layer uses a file or folder
that is available in one of the low-lying layers, then it just uses it. If, on the other hand, a
layer wants to modify, say, a file from a low-lying layer, then it first copies this file up to
the target layer and then modifies it. In the following screenshot, we can see a glimpse of
what this means:

Docker image using copy-on-write

The second layer wants to modify File 2, which is present in the Base Layer. Thus, it copies
it up and then modifies it. Now, let's say that we're sitting in the top layer of the preceding
screenshot. This layer will use File 1 from the Base Layer and File 2 and File 3 from the
second layer.

Creating and Managing Container Images Chapter 4

[78]

Graph drivers
Graph drivers are what enable the Union filesystem. Graph drivers are also called storage
drivers and are used when dealing with layered container images. A graph driver
consolidates multiple image layers into a root filesystem for the mount namespace of the
container. Or, put differently, the driver controls how images and containers are stored and
managed on the Docker host.

Docker supports several different graph drivers using a pluggable architecture. The
preferred driver is overlay2, followed by overlay.

Creating images
There are three ways to create a new container image on your system. The first one is by
interactively building a container that contains all the additions and changes one desires,
and then committing those changes into a new image. The second, and most important,
way is to use a Dockerfile to describe what's in the new image, and then build the image
using that Dockerfile as a manifest. Finally, the third way of creating an image is by
importing it into the system from a tarball.

Now, let's look at these three ways in detail.

Interactive image creation
The first way we can create a custom image is by interactively building a container. That is,
we start with a base image that we want to use as a template and run a container of it
interactively. Let's say that this is the Alpine image.

To interactively create an image follow along:

The command to run the container would be as follows:1.

$ docker container run -it \
 --name sample \
 alpine:3.10 /bin/sh

The preceding command runs a container based on the alpine:3.10 image.

We run the container interactively with an attached teletypewriter (TTY) using
the -it parameter, name it sample with the --name parameter,
and—finally—run a shell inside the container using /bin/sh.

Creating and Managing Container Images Chapter 4

[79]

In the Terminal window where you run the preceding command, you should see
something similar to this:

Unable to find image 'alpine:3.10' locally
3.10: Pulling from library/alpine
921b31ab772b: Pull complete
Digest:
sha256:ca1c944a4f8486a153024d9965aafbe24f5723c1d5c02f4964c045a16d19
dc54
Status: Downloaded newer image for alpine:3.10
/ #

By default, the alpine container does not have the ping tool installed. Let's
assume we want to create a new custom image that has ping installed.

Inside the container, we can then run the following command:2.

/ # apk update && apk add iputils

This uses the apk Alpine package manager to install the iputils library, of
which ping is a part. The output of the preceding command should look
approximately like this:

Installing ping on Alpine

Creating and Managing Container Images Chapter 4

[80]

Now, we can indeed use ping, as the following code snippet shows:3.

Using ping from within the container

Once we have finished our customization, we can quit the container by4.
typing exit at the prompt.

If we now list all containers with the ls -a Docker container, we can see that our
sample container has a status of Exited, but still exists on the system, as shown
in the following code block:

$ docker container ls -a | grep sample
040fdfe889a6 alpine:3.10 "/bin/sh" 8 minutes ago Exited (0) 4
seconds ago

If we want to see what has changed in our container in relation to the base image,5.
we can use the docker container diff command, as follows:

$ docker container diff sample

The output should present a list of all modifications done on the filesystem of the
container, as follows:

C /usr
C /usr/sbin
A /usr/sbin/getcap
A /usr/sbin/ipg
A /usr/sbin/tftpd
A /usr/sbin/ninfod
A /usr/sbin/rdisc
A /usr/sbin/rarpd
A /usr/sbin/tracepath
...
A /var/cache/apk/APKINDEX.d8b2a6f4.tar.gz
A /var/cache/apk/APKINDEX.00740ba1.tar.gz

Creating and Managing Container Images Chapter 4

[81]

C /bin
C /bin/ping
C /bin/ping6
A /bin/traceroute6
C /lib
C /lib/apk
C /lib/apk/db
C /lib/apk/db/scripts.tar
C /lib/apk/db/triggers
C /lib/apk/db/installed

We have shortened the preceding output for better readability. In the list, A stands
for added, and C stands for changed. If we had any deleted files, then those would
be prefixed with a D.

We can now use the docker container commit command to persist our6.
modifications and create a new image from them, like this:

$ docker container commit sample my-alpine
sha256:44bca4141130ee8702e8e8efd1beb3cf4fe5aadb62a0c69a6995afd49c2e
7419

With the preceding command, we have specified that the new image will be
called my-alpine. The output generated by the preceding command corresponds
to the ID of the newly generated image.

We can verify this by listing all images on our system, as follows:7.

$ docker image ls

We can see this image ID (shortened) as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE
my-alpine latest 44bca4141130 About a minute ago 7.34MB
...

We can see that the image named my-alpine has the expected ID
of 44bca4141130 and automatically got a latest tag assigned. This happens
since we did not explicitly define a tag ourselves. In this case, Docker always
defaults to the latest tag.

Creating and Managing Container Images Chapter 4

[82]

If we want to see how our custom image has been built, we can use8.
the history command as follows:

$ docker image history my-alpine

This will print a list of the layers our image consists of, as follows:

History of the my-alpine Docker image

The first layer in the preceding output is the one that we just created by adding
the iputils package.

Using Dockerfiles
Manually creating custom images, as shown in the previous section of this chapter, is very
helpful when doing exploration, creating prototypes, or authoring feasibility studies. But it
has a serious drawback: it is a manual process and thus is not repeatable or scalable. It is
also as error-prone as any other task executed manually by humans. There must be a better
way.

This is where the so-called Dockerfile comes into play. A Dockerfile is a text file
that is usually literally called Dockerfile. It contains instructions on how to build a
custom container image. It is a declarative way of building images.

Declarative versus imperative:
In computer science, in general, and with Docker specifically, one often
uses a declarative way of defining a task. One describes the expected
outcome and lets the system figure out how to achieve this goal, rather
than giving step-by-step instructions to the system on how to achieve this
desired outcome. The latter is an imperative approach.

Creating and Managing Container Images Chapter 4

[83]

Let's look at a sample Dockerfile, as follows:

FROM python:2.7
RUN mkdir -p /app
WORKDIR /app
COPY ./requirements.txt /app/
RUN pip install -r requirements.txt
CMD ["python", "main.py"]

This is a Dockerfile as it is used to containerize a Python 2.7 application. As we can see,
the file has six lines, each starting with a keyword such as FROM, RUN, or COPY. It is a
convention to write the keywords in all caps, but that is not a must.

Each line of the Dockerfile results in a layer in the resulting image. In the following
screenshot, the image is drawn upside down compared to the previous illustrations in this
chapter, showing an image as a stack of layers. Here, the Base Layer is shown on top. Don't
let yourself be confused by this. In reality, the base layer is always the lowest layer in the
stack:

The relation of Dockerfile and layers in an image

Now, let's look at the individual keywords in more detail.

The FROM keyword
Every Dockerfile starts with the FROM keyword. With it, we define which base image we
want to start building our custom image from. If we want to build starting with CentOS 7,
for example, we would have the following line in the Dockerfile:

FROM centos:7

Creating and Managing Container Images Chapter 4

[84]

On Docker Hub, there are curated or official images for all major Linux distros, as well as
for all important development frameworks or languages, such as Python, Node.js, Ruby,
Go, and many more. Depending on our needs, we should select the most appropriate base
image.

For example, if I want to containerize a Python 3.7 application, I might want to select the
relevant official python:3.7 image.

If we really want to start from scratch, we can also use the following statement:

FROM scratch

This is useful in the context of building super-minimal images that only—for
example—contain a single binary: the actual statically linked executable, such as Hello-
World. The scratch image is literally an empty base image.

FROM scratch is a no-op in the Dockerfile, and as such does not generate a layer in the
resulting container image.

The RUN keyword
The next important keyword is RUN. The argument for RUN is any valid Linux command,
such as the following:

RUN yum install -y wget

The preceding command is using the yum CentOS package manager to install
the wget package into the running container. This assumes that our base image is CentOS
or Red Hat Enterprise Linux (RHEL). If we had Ubuntu as our base image, then the
command would look similar to the following:

RUN apt-get update && apt-get install -y wget

It would look like this because Ubuntu uses apt-get as a package manager. Similarly, we
could define a line with RUN, like this:

RUN mkdir -p /app && cd /app

We could also do this:

RUN tar -xJC /usr/src/python --strip-components=1 -f python.tar.xz

Creating and Managing Container Images Chapter 4

[85]

Here, the former creates an /app folder in the container and navigates to it, and the latter
untars a file to a given location. It is completely fine, and even recommended, for you to
format a Linux command using more than one physical line, such as this:

RUN apt-get update \
 && apt-get install -y --no-install-recommends \
 ca-certificates \
 libexpat1 \
 libffi6 \
 libgdbm3 \
 libreadline7 \
 libsqlite3-0 \
 libssl1.1 \
 && rm -rf /var/lib/apt/lists/*

If we use more than one line, we need to put a backslash (\) at the end of the lines to
indicate to the shell that the command continues on the next line.

Try to find out what the preceding command does.

The COPY and ADD keywords
The COPY and ADD keywords are very important since, in the end, we want to add some
content to an existing base image to make it a custom image. Most of the time, these are a
few source files of—say—a web application, or a few binaries of a compiled application.

These two keywords are used to copy files and folders from the host into the image that
we're building. The two keywords are very similar, with the exception that
the ADD keyword also lets us copy and unpack TAR files, as well as providing a URL as a
source for the files and folders to copy.

Let's look at a few examples of how these two keywords can be used, as follows:

COPY . /app
COPY ./web /app/web
COPY sample.txt /data/my-sample.txt
ADD sample.tar /app/bin/
ADD http://example.com/sample.txt /data/

Creating and Managing Container Images Chapter 4

[86]

In the preceding lines of code, the following applies:

The first line copies all files and folders from the current directory recursively to
the app folder inside the container image.
The second line copies everything in the web subfolder to the target
folder, /app/web.
The third line copies a single file, sample.txt, into the target folder, /data, and
at the same time, renames it to my-sample.txt.
The fourth statement unpacks the sample.tar file into the target
folder, /app/bin .
Finally, the last statement copies the remote file, sample.txt, into the target
file, /data.

Wildcards are allowed in the source path. For example, the following statement copies all
files starting with sample to the mydir folder inside the image:

COPY ./sample* /mydir/

From a security perspective, it is important to know that, by default, all files and folders
inside the image will have a user ID (UID) and a group ID (GID) of 0. The good thing is
that for both ADD and COPY, we can change the ownership that the files will have inside the
image using the optional --chown flag, as follows:

ADD --chown=11:22 ./data/web* /app/data/

The preceding statement will copy all files starting with the name web and put them into
the /app/data folder in the image, and at the same time assign user 11 and group 22 to
these files.

Instead of numbers, one could also use names for the user and group, but then these
entities would have to be already defined in the root filesystem of the image
at /etc/passwd and /etc/group respectively; otherwise, the build of the image would
fail.

The WORKDIR keyword
The WORKDIR keyword defines the working directory or context that is used when a
container is run from our custom image. So, if I want to set the context to
the /app/bin folder inside the image, my expression in the Dockerfile would have to
look as follows:

WORKDIR /app/bin

Creating and Managing Container Images Chapter 4

[87]

All activity that happens inside the image after the preceding line will use this directory as
the working directory. It is very important to note that the following two snippets from a
Dockerfile are not the same:

RUN cd /app/bin
RUN touch sample.txt

Compare the preceding code with the following code:

WORKDIR /app/bin
RUN touch sample.txt

The former will create the file in the root of the image filesystem, while the latter will create
the file at the expected location in the /app/bin folder. Only the WORKDIR keyword sets the
context across the layers of the image. The cd command alone is not persisted across layers.

The CMD and ENTRYPOINT keywords
The CMD and ENTRYPOINT keywords are special. While all other keywords defined for a
Dockerfile are executed at the time the image is built by the Docker builder, these two are
actually definitions of what will happen when a container is started from the image we
define. When the container runtime starts a container, it needs to know what the process or
application will be that has to run inside that container. That is exactly what CMD and
ENTRYPOINT are used for—to tell Docker what the start process is and how to start that
process.

Now, the differences between CMD and ENTRYPOINT are subtle, and honestly, most users
don't fully understand them or use them in the intended way. Luckily, in most cases, this is
not a problem and the container will run anyway; it's just the handling of it that is not as
straightforward as it could be.

To better understand how to use the two keywords, let's analyze what a typical Linux
command or expression looks like. Let's take the ping utility as an example, as follows:

$ ping -c 3 8.8.8.8

In the preceding expression, ping is the command and -c 3 8.8.8.8 are the parameters
to this command. Let's look at another expression here:

$ wget -O - http://example.com/downloads/script.sh

Creating and Managing Container Images Chapter 4

[88]

Again, in the preceding expression, wget is the command and -O -
http://example.com/downloads/script.sh are the parameters.

Now that we have dealt with this, we can get back to CMD and ENTRYPOINT. ENTRYPOINT is
used to define the command of the expression, while CMD is used to define the parameters
for the command. Thus, a Dockerfile using Alpine as the base image and
defining ping as the process to run in the container could look like this:

FROM alpine:3.10
ENTRYPOINT ["ping"]
CMD ["-c","3","8.8.8.8"]

For both ENTRYPOINT and CMD, the values are formatted as a JSON array of strings, where
the individual items correspond to the tokens of the expression that are separated by
whitespace. This is the preferred way of defining CMD and ENTRYPOINT. It is also called
the exec form.

Alternatively, one can also use what's called the shell form, as shown here:

CMD command param1 param2

We can now build an image called pinger from the preceding Dockerfile, as follows:

$ docker image build -t pinger .

Then, we can run a container from the pinger image we just created, like this:

$ docker container run --rm -it pinger
PING 8.8.8.8 (8.8.8.8): 56 data bytes
64 bytes from 8.8.8.8: seq=0 ttl=37 time=19.298 ms
64 bytes from 8.8.8.8: seq=1 ttl=37 time=27.890 ms
64 bytes from 8.8.8.8: seq=2 ttl=37 time=30.702 ms

The beauty of this is that I can now override the CMD part that I have defined in the
Dockerfile (remember, it was ["-c", "3","8.8.8.8"]) when I create a new container
by adding the new values at the end of the docker container run expression, like this:

$ docker container run --rm -it pinger -w 5 127.0.0.1

This will now cause the container to ping the loopback for 5 seconds.

Creating and Managing Container Images Chapter 4

[89]

If we want to override what's defined in the ENTRYPOINT in the Dockerfile, we need to
use the --entrypoint parameter in the docker container run expression. Let's say we
want to execute a shell in the container instead of the ping command. We could do so by
using the following command:

$ docker container run --rm -it --entrypoint /bin/sh pinger

We will then find ourselves inside the container. Type exit to leave the container.

As I already mentioned, we do not necessarily have to follow best practices and define the
command through ENTRYPOINT and the parameters through CMD; we can instead enter the
whole expression as a value of CMD and it will work, as shown in the following code block:

FROM alpine:3.10
CMD wget -O - http://www.google.com

Here, I have even used the shell form to define the CMD. But what does really happen in this
situation where ENTRYPOINT is undefined? If you leave ENTRYPOINT undefined, then it will
have the default value of /bin/sh -c, and whatever the value of CMD is will be passed as a
string to the shell command. The preceding definition would thereby result in entering the
following code to run the process inside the container:

/bin/sh -c "wget -O - http://www.google.com"

Consequently, /bin/sh is the main process running inside the container, and it will start a
new child process to run the wget utility.

A complex Dockerfile
We have discussed the most important keywords commonly used in Dockerfiles. Let's look
at a realistic, and somewhat complex example of a Dockerfile. The interested reader
might note that it looks very similar to the first Dockerfile that we presented in this
chapter. Here is the content:

FROM node:12.5-stretch
RUN mkdir -p /app
WORKDIR /app
COPY package.json /app/
RUN npm install
COPY . /app
ENTRYPOINT ["npm"]
CMD ["start"]

Creating and Managing Container Images Chapter 4

[90]

OK; so, what is happening here? Evidently, this is a Dockerfile that is used to build an
image for a Node.js application; we can deduce this from the fact that the node:12.5-
stretch base image is used. Then, the second line is an instruction to create
an /app folder in the filesystem of the image. The third line defines the working directory
or context in the image to be this new /app folder. Then, on line four, we copy
a package.json file into the /app folder inside the image. After this, on line five, we
execute the npm install command inside the container; remember, our context is
the /app folder, and thus, npm will find the package.json file there that we copied on line
four.

After all the Node.js dependencies are installed, we copy the rest of the application files
from the current folder of the host into the /app folder of the image.

Finally, on the last two lines, we define what the startup command will be when a container
is run from this image. In our case, it is npm start, which will start the Node.js
application.

Building an image
Let's look at a concrete example and build a simple Docker image, as follows:

In your home directory, create a fod folder (short for Fundamentals of Docker)1.
with a ch04 subfolder in it, and navigate to this folder, like this:

$ mkdir -p ~/fod/ch04 && cd ~/fod/ch04

In the preceding folder, create a sample1 subfolder and navigate to it, like this:2.

$ mkdir sample1 && cd sample1

Use your favorite editor to create a file called Dockerfile inside this sample3.
folder, with the following content:

FROM centos:7
RUN yum install -y wget

4. Save the file and exit your editor.

5. Back in the Terminal window, we can now build a new container image using
the preceding Dockerfile as a manifest or construction plan, like this:

$ docker image build -t my-centos .

Creating and Managing Container Images Chapter 4

[91]

Please note that there is a period at the end of the preceding command. This
command means that the Docker builder is creating a new image called my-
centos using the Dockerfile that is present in the current directory. Here, the
period at the end of the command stands for current directory. We could also write
the preceding command as follows, with the same result:

$ docker image build -t my-centos -f Dockerfile .

But we can omit the -f parameter, since the builder assumes that the
Dockerfile is literally called Dockerfile. We only ever need the -f parameter
if our Dockerfile has a different name or is not located in the current directory.

The preceding command gives us this (shortened) output:

Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM centos:7
7: Pulling from library/centos
af4b0a2388c6: Pull complete
Digest:
sha256:2671f7a3eea36ce43609e9fe7435ade83094291055f1c96d9d1d1d7c0b98
6a5d
Status: Downloaded newer image for centos:7
---> ff426288ea90
Step 2/2 : RUN yum install -y wget
---> Running in bb726903820c
Loaded plugins: fastestmirror, ovl
Determining fastest mirrors
* base: mirror.dal10.us.leaseweb.net
* extras: repos-tx.psychz.net
* updates: pubmirrors.dal.corespace.com
Resolving Dependencies
--> Running transaction check
---> Package wget.x86_64 0:1.14-15.el7_4.1 will be installed
...
Installed:
 wget.x86_64 0:1.14-15.el7_4.1
Complete!
Removing intermediate container bb726903820c
---> bc070cc81b87
Successfully built bc070cc81b87
Successfully tagged my-centos:latest

Creating and Managing Container Images Chapter 4

[92]

Let's analyze this output, as follows:

First, we have the following line:1.

Sending build context to Docker daemon 2.048kB

The first thing the builder does is package the files in the current build context,
excluding the files and folder mentioned in the .dockerignore file (if present),
and sends the resulting .tar file to the Docker daemon.

Next, we have the following lines:2.

Step 1/2 : FROM centos:7
7: Pulling from library/centos
af4b0a2388c6: Pull complete
Digest: sha256:2671f7a...
Status: Downloaded newer image for centos:7
---> ff426288ea90

The first line tells us which step of the Dockerfile the builder is currently
executing. Here, we only have two statements in the Dockerfile, and we are on
Step 1 of 2. We can also see what the content of that section is. Here, it is the
declaration of the base image, on top of which we want to build our custom
image. What the builder then does is pull this image from Docker Hub, if it is not
already available in the local cache. The last line of the preceding code snippet
indicates which ID the just-built image layer gets assigned by the builder.

Now, follow the next step. I have shortened it even more than the preceding one3.
to concentrate on the essential part:

Step 2/2 : RUN yum install -y wget
---> Running in bb726903820c
...
...
Removing intermediate container bb726903820c
---> bc070cc81b87

Here, again, the first line indicates to us that we are in Step 2 of 2. It also shows us
the respective entry from the Dockerfile. On line two, we can see Running in
bb726903820c, which tells us that the builder has created a container with ID
bb726903820c, inside which it executes the RUN command.

Creating and Managing Container Images Chapter 4

[93]

We have omitted the output of the yum install -y wget command in the
snippet since it is not important in this section. When the command is finished,
the builder stops the container, commits it to a new layer, and then removes the
container. The new layer has ID bc070cc81b87, in this particular case.

At the very end of the output, we encounter the following two lines:4.

Successfully built bc070cc81b87
Successfully tagged my-centos:latest

This tells us that the resulting custom image has been given the
ID bc070cc81b87, and has been tagged with the name my-centos:latest.

So, how does the builder work, exactly? It starts with the base image. From this base image,
once downloaded into the local cache, the builder creates a container and runs the first
statement of the Dockerfile inside this container. Then, it stops the container and persists
the changes made in the container into a new image layer. The builder then creates a new
container from the base image and the new layer and runs the second statement inside this
new container. Once again, the result is committed to a new layer. This process is repeated
until the very last statement in the Dockerfile is encountered. After having committed the
last layer of the new image, the builder creates an ID for this image and tags the image with
the name we provided in the build command, as shown in the following screenshot:

The image build process visualized

Creating and Managing Container Images Chapter 4

[94]

Now that we have analyzed how the build process of a Docker image works and what
steps are involved, let's talk about how to further improve this by introducing multi-step
builds.

Multi-step builds
To demonstrate why a Dockerfile with multiple build steps is useful, let's make an
example Dockerfile. Let's take a Hello World application written in C. Here is the code
found inside the hello.c file:

#include <stdio.h>
int main (void)
{
 printf ("Hello, world!\n");
 return 0;
}

Follow along to experience the advantages of a multi-step build:

To containerize this application we first write a Dockerfile with the following1.
content:

FROM alpine:3.7
RUN apk update &&
apk add --update alpine-sdk
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN mkdir bin
RUN gcc -Wall hello.c -o bin/hello
CMD /app/bin/hello

Next, let's build this image:2.

$ docker image build -t hello-world .

This gives us a fairly long output since the builder has to install the Alpine
Software Development Kit (SDK), which, among other tools, contains the C++
compiler we need to build the application.

Once the build is done, we can list the image and see its size shown, as follows:3.

$ docker image ls | grep hello-world
hello-world latest e9b... 2 minutes ago 176MB

Creating and Managing Container Images Chapter 4

[95]

With a size of 176 MB, the resulting image is way too big. In the end, it is just
a Hello World application. The reason for it being so big is that the image not only
contains the Hello World binary but also all the tools to compile and link the
application from the source code. But this is really not desirable when running the
application, say, in production. Ideally, we only want to have the resulting binary
in the image and not a whole SDK.

It is precisely for this reason that we should define Dockerfiles as multi-stage. We have
some stages that are used to build the final artifacts, and then a final stage, where we use
the minimal necessary base image and copy the artifacts into it. This results in very small
Docker images. Have a look at this revised Dockerfile:

FROM alpine:3.7 AS build
RUN apk update && \
 apk add --update alpine-sdk
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN mkdir bin
RUN gcc hello.c -o bin/hello

FROM alpine:3.7
COPY --from=build /app/bin/hello /app/hello
CMD /app/hello

Here, we have the first stage with a build alias that is used to compile the application, and
then the second stage uses the same alpine:3.7 base image but does not install the SDK,
and only copies the binary from the build stage, using the --from parameter, into this
final image:

Let's build the image again, as follows:1.

$ docker image build -t hello-world-small .

When we compare the sizes of the images, we get the following output:2.

$ docker image ls | grep hello-world
hello-world-small latest f98... 20 seconds ago 4.16MB
hello-world latest 469... 10 minutes ago 176MB

Creating and Managing Container Images Chapter 4

[96]

We have been able to reduce the size from 176 MB down to 4 MB. This is a
reduction in size by a factor of 40. A smaller image has many advantages, such as
a smaller attack surface area for hackers, reduced memory and disk consumption,
faster startup times of the corresponding containers, and a reduction of the
bandwidth needed to download the image from a registry, such as Docker Hub.

Dockerfile best practices
There are a few recommended best practices to consider when authoring a Dockerfile,
which are as follows:

First and foremost, we need to consider that containers are meant to be
ephemeral. By ephemeral, we mean that a container can be stopped and
destroyed, and a new one built and put in place with an absolute minimum of
setup and configuration. That means that we should try hard to keep the time
that is needed to initialize the application running inside the container at a
minimum, as well as the time needed to terminate or clean up the application.
The next best practice tells us that we should order the individual commands in
the Dockerfile so that we leverage caching as much as possible. Building a
layer of an image can take a considerable amount of time—sometimes many
seconds, or even minutes. While developing an application, we will have to build
the container image for our application multiple times. We want to keep the
build times at a minimum.

When we're rebuilding a previously built image, the only layers that are rebuilt are the ones
that have changed, but if one layer needs to be rebuilt, all subsequent layers also need to be
rebuilt. This is very important to remember. Consider the following example:

FROM node:9.4
RUN mkdir -p /app
WORKIR /app
COPY . /app
RUN npm install
CMD ["npm", "start"]

Creating and Managing Container Images Chapter 4

[97]

In this example, the npm install command on line five of the Dockerfile usually takes
the longest. A classical Node.js application has many external dependencies, and those are
all downloaded and installed in this step. This can take minutes until it is done. Therefore,
we want to avoid running npm install each time we rebuild the image, but a developer
changes their source code all the time during the development of an application. That
means that line four, the result of the COPY command, changes every time, and thus this
layer has to be rebuilt. But as we discussed previously, that also means that all subsequent
layers have to be rebuilt, which—in this case—includes the npm install command. To
avoid this, we can slightly modify the Dockerfile and have the following:

FROM node:9.4
RUN mkdir -p /app
WORKIR /app
COPY package.json /app/
RUN npm install
COPY . /app
CMD ["npm", "start"]

What we have done here is, on line four, we only copied the single file that the npm
install command needs as a source, which is the package.json file. This
file rarely changes in a typical development process. As a consequence, the npm
install command also has to be executed only when the package.json file changes. All
the remaining, frequently changed content is added to the image after the npm
install command.

A further best practice is to keep the number of layers that make up your image
relatively small. The more layers an image has, the more the graph driver needs
to work to consolidate the layers into a single root filesystem for the
corresponding container. Of course, this takes time, and thus the fewer layers an
image has, the faster the startup time for the container can be.

But how can we keep our number of layers low? Remember that in a Dockerfile, each
line that starts with a keyword such as FROM, COPY, or RUN creates a new layer. The easiest
way to reduce the number of layers is to combine multiple individual RUN commands into a
single one. For example, say that we had the following in a Dockerfile:

RUN apt-get update
RUN apt-get install -y ca-certificates
RUN rm -rf /var/lib/apt/lists/*

Creating and Managing Container Images Chapter 4

[98]

We could combine these into a single concatenated expression, as follows:

RUN apt-get update \
 && apt-get install -y ca-certificates \
 && rm -rf /var/lib/apt/lists/*

The former will generate three layers in the resulting image, while the latter only creates a
single layer.

The next three best practices all result in smaller images. Why is this important? Smaller
images reduce the time and bandwidth needed to download the image from a registry.
They also reduce the amount of disk space needed to store a copy locally on the Docker
host and the memory needed to load the image. Finally, smaller images also mean a smaller
attack surface for hackers. Here are the best practices mentioned:

The first best practice that helps to reduce the image size is to use
a .dockerignore file. We want to avoid copying unnecessary files and folders
into an image, to keep it as lean as possible. A .dockerignore file works in
exactly the same way as a .gitignore file, for those who are familiar with Git.
In a .dockerignore file, we can configure patterns to exclude certain files or
folders from being included in the context when building the image.
The next best practice is to avoid installing unnecessary packages into the
filesystem of the image. Once again, this is to keep the image as lean as possible.
Last but not least, it is recommended that you use multi-stage builds so that the
resulting image is as small as possible and only contains the absolute minimum
needed to run your application or application service.

Saving and loading images
The third way to create a new container image is by importing or loading it from a file. A
container image is nothing more than a tarball. To demonstrate this, we can use the docker
image save command to export an existing image to a tarball, like this:

$ docker image save -o ./backup/my-alpine.tar my-alpine

The preceding command takes our my-alpine image that we previously built and exports
it into a file called ./backup/my-alpine.tar.

Creating and Managing Container Images Chapter 4

[99]

If, on the other hand, we have an existing tarball and want to import it as an image into our
system, we can use the docker image load command, as follows:

$ docker image load -i ./backup/my-alpine.tar

In the next section, we will discuss how we can create Docker images for existing legacy
applications, and thus run them in a container, and profit from this.

Lift and shift: Containerizing a legacy app
We can't always start from scratch and develop a brand new application. More often than
not, we find ourselves with a huge portfolio of traditional applications that are up and
running in production and provide mission-critical value to the company or the customers
of the company. Often, those applications are organically grown and very complex.
Documentation is sparse, and nobody really wants to touch such an application. Often, the
saying Never touch a running system applies. Yet, market needs change, and with that arises
the need to update or rewrite those apps. Often, a complete rewrite is not possible due to
the lack of resources and time, or due to the excessive cost. What are we going to do about
those applications? Could we possibly Dockerize them and profit from benefits introduced
by containers?

It turns out we can. In 2017, Docker introduced a program called Modernize Traditional
Apps (MTA) to their enterprise customers, which in essence promised to help those
customers to take their existing or traditional Java and .NET applications and containerize
them, without the need to change a single line of code. The focus of MTA was on Java and
.NET applications since those made up the lion's share of the traditional applications in a
typical enterprise. But the same is possible for any application that was written in—say—C,
C++, Python, Node.js, Ruby, PHP, or Go, to just name a few other languages and platforms.

Let's imagine such a legacy application for a moment. Assume we have an old Java
application written 10 years ago, and continuously updated during the following 5 years.
The application is based on Java SE 6, which came out in December 2006. It uses
environment variables and property files for configuration. Secrets such as username and
passwords used in the database connection strings are pulled from a secrets keystore, such
as HashiCorp's Vault.

Creating and Managing Container Images Chapter 4

[100]

Analysis of external dependencies
One of the first steps in the modernization process is to discover and list all external
dependencies of the legacy application.

We need to ask ourselves questions like the following:

Does it use a database? If yes, which one? What does the connection string look1.
like?
Does it use external APIs such as credit card approval or geo-mapping APIs?2.
What are the API keys and key secrets?
Is it consuming from or publishing to an Enterprise Service Bus (ESB)?3.

These are just a few possible dependencies that come to mind. Many more exist. These are
the seams of the application to the outer world, and we need to be aware of them and create
an inventory.

Source code and build instructions
The next step is to locate all the source code and other assets, such as images and CSS and
HTML files that are part of the application. Ideally, they should be located in a single
folder. This folder will be the root of our project and can have as many subfolders as
needed. This project root folder will be the context during the build of the container image
we want to create for our legacy application. Remember, the Docker builder only includes
files in the build that are part of that context; in our case, that is the root project folder.

There is, though, an option to download or copy files during the build from different
locations, using the COPY or ADD commands. Please refer to the online documentation for
the exact details on how to use these two commands. This option is useful if the sources for
your legacy application cannot be easily contained in a single, local folder.

Once we are aware of all the parts that are contributing to the final application, we need to
investigate how the application is built and packaged. In our case, this is most probably
done by using Maven. Maven is the most popular build automation tool for Java, and has
been—and still is—used in most enterprises that are developing Java applications. In the
case of a legacy .NET application, it is most probably done by using the MSBuild tool; and
in the case of a C/C++ application, Make would most likely be used.

Once again, let's extend our inventory and write down the exact build commands used. We
will need this information later on when authoring the Dockerfile.

Creating and Managing Container Images Chapter 4

[101]

Configuration
Applications need to be configured. Information provided during configuration can be—for
example— the type of application logging to use, connection strings to databases,
hostnames to services such as ESBs or URIs to external APIs, to name just a few.

We can differentiate a few types of configurations, as follows:

Build time: This is the information needed during the build of the application
and/or its Docker image. It needs to be available when we create the Docker
images.
Environment: This is configuration information that varies with the environment
in which the application is running—for example, DEVELOPMENT versus
STAGING or PRODUCTION. This kind of configuration is applied to the
application when a container with the app starts—for example, in production.
Runtime: This is information that the application retrieves during runtime, such
as secrets to access an external API.

Secrets
Every mission-critical enterprise application needs to deal with secrets in some form or
another. The most familiar secrets are part of the connection information needed to access
databases that are used to persist the data produced by or used by the application. Other
secrets include the credentials needed to access external APIs, such as a credit score lookup
API. It is important to note that, here, we are talking about secrets that have to be provided
by the application itself to the service providers the application uses or depends on, and not
secrets provided by the users of the application. The actor here is our application, which
needs to be authenticated and authorized by external authorities and service providers.

There are various ways traditional applications got their secrets. The worst and most
insecure way of providing secrets is by hardcoding them or reading them from
configuration files or environment variables, where they are available in cleartext. A much
better way is to read the secrets during runtime from a special secrets store that persists the
secrets encrypted and provides them to the application over a secure connection, such as
Transport Layer Security (TLS).

Once again, we need to create an inventory of all secrets that our application uses and the
way it procures them. Is it through environment variable or configuration files, or is it by
accessing an external keystore, such as HashiCorp's Vault?

Creating and Managing Container Images Chapter 4

[102]

Authoring the Dockerfile
Once we have a complete inventory of all the items discussed in the previous few sections,
we are ready to author our Dockerfile. But I want to warn you: don't expect this to be a
one-shot-and-go task. You may need several iterations until you have crafted your final
Dockerfile. The Dockerfile may be rather long and ugly-looking, but that's not a
problem, as long as we get a working Docker image. We can always fine-tune the
Dockerfile once we have a working version.

The base image
Let's start by identifying the base image we want to use and build our image from. Is there
an official Java image available that is compatible with our requirements? Remember that
our imaginary application is based on Java SE 6. If such a base image is available, then let's
use that one. Otherwise, we want to start with a Linux distro such as Red Hat, Oracle, or
Ubuntu. In the latter case, we will use the appropriate package manager of the distro (yum,
apt, or another) to install the desired versions of Java and Maven. For this, we use
the RUN keyword in the Dockerfile. Remember, RUN gives us the possibility to execute
any valid Linux command in the image during the build process.

Assembling the sources
In this step, we make sure all source files and other artifacts needed to successfully build
the application are part of the image. Here, we mainly use the two keywords of the
Dockerfile: COPY and ADD. Initially, the structure of the source inside the image should
look exactly the same as on the host, to avoid any build problems. Ideally, you would have
a single COPY command that copies all of the root project folder from the host into the
image. The corresponding Dockerfile snippet could then look as simple as this:

WORKDIR /app
COPY . .

Don't forget to also provide a .dockerignore file located in the project
root folder, which lists all the files and (sub-) folders of the project root
folder that should not be part of the build context.

Creating and Managing Container Images Chapter 4

[103]

As mentioned earlier, you can also use the ADD keyword to download sources and other
artifacts into the Docker image that are not located in the build context but somewhere
reachable by a URI, as shown here:

ADD http://example.com/foobar ./

This would create a foobar folder in the image's working folder and copy all the contents
from the URI.

Building the application
In this step, we make sure to create the final artifacts that make up our executable legacy
application. Often, this is a JAR or WAR file, with or without some satellite JARs. This part
of the Dockerfile should exactly mimic the way you traditionally used to build an
application before containerizing them. Thus, if using Maven as the build automation tool,
the corresponding snippet of the Dockerfile could look as simple as this:

RUN mvn --clean install

In this step, we may also want to list the environment variables the application uses, and
provide sensible defaults. But never provide default values for environment variables that
provide secrets to the application such as the database connection string! Use the ENV
keyword to define your variables, like this:

ENV foo=bar
ENV baz=123

Also, declare all ports that the application is listening on and that need to be accessible from
outside of the container via the EXPOSE keyword, like this:

EXPOSE 5000
EXPOSE 15672/tcp

Defining the start command
Usually, a Java application is started with a command such as java -jar <main
application jar> if it is a standalone application. If it is a WAR file, then the start
command may look a bit different. We can thus either define the ENTRYPOINT or the CMD to
use this command. Thus, the final statement in our Dockerfile could look like this:

ENTRYPOINT java -jar pet-shop.war

Creating and Managing Container Images Chapter 4

[104]

Often, though, this is too simplistic, and we need to execute a few pre-run tasks. In this
case, we can craft a script file that contains the series of commands that need to be executed
to prepare the environment and run the application. Such a file is often called docker-
entrypoint.sh, but you are free to name it however you want. Make sure the file is
executable— for example, with the following:

chmod +x ./docker-entrypoint.sh

 The last line of the Dockerfile would then look like this:

ENTRYPOINT ./docker-entrypoint.sh

Now that you have been given hints on how to containerize a legacy application, it is time
to recap and ask ourselves: Is it really worth the whole effort?

Why bother?
At this point, I can see you scratching your head and asking yourself: Why bother? Why
should you take on all this seemingly huge effort just to containerize a legacy application?
What are the benefits?

It turns out that the return on investment (ROI) is huge. Enterprise customers of Docker
have publicly disclosed at conferences such as DockerCon 2018 and 2019 that they are
seeing these two main benefits of Dockerizing traditional applications:

More than a 50% saving in maintenance costs.
Up to a 90% reduction in the time between the deployments of new releases.

The costs saved by reducing the maintenance overhead can be directly reinvested and used
to develop new features and products. The time saved during new releases of traditional
applications makes a business more agile and able to react to changing customer or market
needs more quickly.

Now that we have discussed at length how to build Docker images, it is time to learn how
we can ship those images through the various stages of the software delivery pipeline.

Creating and Managing Container Images Chapter 4

[105]

Sharing or shipping images
To be able to ship our custom image to other environments, we need to first give it a
globally unique name. This action is often called tagging an image. We then need to publish
the image to a central location from which other interested or entitled parties can pull it.
These central locations are called image registries.

Tagging an image
Each image has a so-called tag. A tag is often used to version images, but it has a broader
reach than just being a version number. If we do not explicitly specify a tag when working
with images, then Docker automatically assumes we're referring to the latest tag. This is
relevant when pulling an image from Docker Hub, as in the following example:

$ docker image pull alpine

The preceding command will pull the alpine:latest image from Docker Hub. If we
want to explicitly specify a tag, we do so like this:

$ docker image pull alpine:3.5

This will now pull the alpine image that has been tagged with 3.5.

Image namespaces
So far, we have been pulling various images and haven't been worrying so much about
where those images originated from. Your Docker environment is configured so that, by
default, all images are pulled from Docker Hub. We also only pulled so-called official
images from Docker Hub, such as alpine or busybox.

Now, it is time to widen our horizon a bit and learn about how images are namespaced.
The most generic way to define an image is by its fully qualified name, which looks as
follows:

<registry URL>/<User or Org>/<name>:<tag>

Creating and Managing Container Images Chapter 4

[106]

Let's look at this in a bit more detail:

 <registry URL>: This is the URL to the registry from which we want to pull
the image. By default, this is docker.io. More generally, this could
be https://registry.acme.com.

Other than Docker Hub, there are quite a few public registries out there that you
could pull images from. The following is a list of some of them, in no particular
order:

Google, at https:/ /cloud. google. com/ container- registry

Amazon AWS Amazon Elastic Container Registry (ECR),
at https:/ /aws. amazon. com/ ecr/

Microsoft Azure, at https:/ /azure. microsoft. com/ en- us/
services/ container- registry/

Red Hat, at https:/ /access. redhat. com/ containers/

Artifactory, at https:/ / jfrog. com/ integration/ artifactory-
docker- registry/

<User or Org>: This is the private Docker ID of either an individual or an
organization defined on Docker Hub—or any other registry, for that
matter—such as microsoft or oracle.
<name>: This is the name of the image, which is often also called a repository.
<tag>: This is the tag of the image.

Let's look at an example, as follows:

https://registry.acme.com/engineering/web-app:1.0

Here, we have an image, web-app, that is tagged with version 1.0 and belongs to
the engineering organization on the private registry at https://registry.acme.com.

Now, there are some special conventions:

If we omit the registry URL, then Docker Hub is automatically taken.
If we omit the tag, then latest is taken.
If it is an official image on Docker Hub, then no user or organization namespace
is needed.

https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://access.redhat.com/containers/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/
https://jfrog.com/integration/artifactory-docker-registry/

Creating and Managing Container Images Chapter 4

[107]

Here are a few samples in tabular form:

Image Description

alpine
Official alpine image on Docker Hub with
the latest tag.

ubuntu:19.04
Official ubuntu image on Docker Hub with
the 19.04 tag or version.

microsoft/nanoserver
nanoserver image of Microsoft on Docker Hub
with the latest tag.

acme/web-api:12.0
web-api image version 12.0 associated with
the acme org. The image is on Docker Hub.

gcr.io/gnschenker/sample-app:1.1
sample-app image with the 1.1 tag belonging
to an individual with the gnschenker ID on
Google's container registry.

Now that we know how the fully qualified name of a Docker image is defined and what its
parts are, let's talk about some special images we can find on Docker Hub.

Creating and Managing Container Images Chapter 4

[108]

Official images
In the preceding table, we mentioned official image a few times. This needs an explanation.
Images are stored in repositories on the Docker Hub registry. Official repositories are a set
of repositories hosted on Docker Hub that are curated by individuals or organizations that
are also responsible for the software packaged inside the image. Let's look at an example of
what that means. There is an official organization behind the Ubuntu Linux distro. This
team also provides official versions of Docker images that contain their Ubuntu distros.

Official images are meant to provide essential base OS repositories, images for popular
programming language runtimes, frequently used data storage, and other important
services.

Docker sponsors a team whose task it is to review and publish all those curated images in
public repositories on Docker Hub. Furthermore, Docker scans all official images for
vulnerabilities.

Pushing images to a registry
Creating custom images is all well and good, but at some point, we want to actually share
or ship our images to a target environment, such as a test, quality assurance (QA), or
production system. For this, we typically use a container registry. One of the most popular
and public registries out there is Docker Hub. It is configured as a default registry in your
Docker environment, and it is the registry from which we have pulled all our images so far.

On a registry, one can usually create personal or organizational accounts. For example, my
personal account at Docker Hub is gnschenker. Personal accounts are good for personal
use. If we want to use the registry professionally, then we'll probably want to create an
organizational account, such as acme, on Docker Hub. The advantage of the latter is that
organizations can have multiple teams. Teams can have differing permissions.

To be able to push an image to my personal account on Docker Hub, I need to tag it
accordingly:

Let's say I want to push the latest version of Alpine to my account and give it a1.
tag of 1.0. I can do this in the following way:

$ docker image tag alpine:latest gnschenker/alpine:1.0

Now, to be able to push the image, I have to log in to my account, as follows:2.

$ docker login -u gnschenker -p <my secret password>

Creating and Managing Container Images Chapter 4

[109]

After a successful login, I can then push the image, like this:3.

$ docker image push gnschenker/alpine:1.0

I will see something similar to this in the Terminal:

The push refers to repository [docker.io/gnschenker/alpine]
04a094fe844e: Mounted from library/alpine
1.0: digest: sha256:5cb04fce... size: 528

For each image that we push to Docker Hub, we automatically create a repository.
A repository can be private or public. Everyone can pull an image from a public
repository. From a private repository, an image can only be pulled if one is logged
in to the registry and has the necessary permissions configured.

Summary
In this chapter, we have discussed in detail what container images are and how we can
build and ship them. As we have seen, there are three different ways that an image can be
created—either manually, automatically, or by importing a tarball into the system. We also
learned some of the best practices commonly used when building custom images.

In the next chapter, we're going to introduce Docker volumes that can be used to persist the
state of a container. We'll also show how to define individual environment variables for the
application running inside the container, as well as how to use files containing whole sets
of configuration settings.

Questions
Please try to answer the following questions to assess your learning progress:

How would you create a Dockerfile that inherits from Ubuntu version 19.04,1.
and that installs ping and runs ping when a container starts? The default
address to ping will be 127.0.0.1.
How would you create a new container image that uses alpine:latest and2.
installs curl? Name the new image my-alpine:1.0.
Create a Dockerfile that uses multiple steps to create an image of a Hello3.
World app of minimal size, written in C or Go.

Creating and Managing Container Images Chapter 4

[110]

Name three essential characteristics of a Docker container image.4.
You want to push an image named foo:1.0 to your jdoe personal account on5.
Docker Hub. Which of the following is the right solution?

A. $ docker container push foo:1.0
B. $ docker image tag foo:1.0 jdoe/foo:1.0
 $ docker image push jdoe/foo:1.0
C. $ docker login -u jdoe -p <your password>
 $ docker image tag foo:1.0 jdoe/foo:1.0
 $ docker image push jdoe/foo:1.0
D. $ docker login -u jdoe -p <your password>
 $ docker container tag foo:1.0 jdoe/foo:1.0
 $ docker container push jdoe/foo:1.0
E. $ docker login -u jdoe -p <your password>
 $ docker image push foo:1.0 jdoe/foo:1.0

Further reading
The following list of references gives you some material that dives more deeply into the
topic of authoring and building container images:

Best practices for writing Dockerfiles, at http:/ / dockr. ly/22WiJiO

Using multi-stage builds, at http:/ /dockr. ly/ 2ewcUY3

About storage drivers, at http:/ /dockr. ly/ 1TuWndC

Graphdriver plugins, at http:/ / dockr. ly/2eIVCab

User-guided caching in Docker for Mac, at http:/ / dockr. ly/2xKafPf

http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/22WiJiO
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/2ewcUY3
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/1TuWndC
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2eIVCab
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf
http://dockr.ly/2xKafPf

5
Data Volumes and

Configuration
In the last chapter, we learned how to build and share our own container images. Particular
focus was placed on how to build images that are as small as possible by only containing
artifacts that are really needed by the containerized application.

In this chapter, we are going to learn how we can work with stateful containers—that is,
containers that consume and produce data. We will also learn how to configure our
containers at runtime and at image build time, using environment variables and config
files.

Here is a list of the topics we're going to discuss:

Creating and mounting data volumes
Sharing data between containers
Using host volumes
Defining volumes in images
Configuring containers

After working through this chapter, you will be able to do the following:

Create, delete, and list data volumes.
Mount an existing data volume into a container.
Create durable data from within a container using a data volume.
Share data between multiple containers using data volumes.
Mount any host folder into a container using data volumes.
Define the access mode (read/write or read-only) for a container when accessing
data in a data volume.
Configure environment variables for applications running in a container.
Parametrize a Dockerfile by using build arguments.

Data Volumes and Configuration Chapter 5

[112]

Technical requirements
For this chapter, you need either Docker Toolbox installed on your machine or access to a
Linux virtual machine (VM) running Docker on your laptop or in the cloud. Furthermore,
it is advantageous to have Docker for Desktop installed on your machine. There is no code
accompanying this chapter.

Creating and mounting data volumes
All meaningful applications consume or produce data. Yet containers are, preferably,
meant to be stateless. How are we going to deal with this? One way is to use Docker
volumes. Volumes allow containers to consume, produce, and modify a state. Volumes
have a life cycle that goes beyond the life cycle of containers. When a container that uses a
volume dies, the volume continues to exist. This is great for the durability of the state.

Modifying the container layer
Before we dive into volumes, let's first discuss what happens if an application in a container
changes something in the filesystem of the container. In this case, the changes are all
happening in the writable container layer that we introduced in Chapter 3, Mastering
Containers. Let's quickly demonstrate this by running a container, and execute a script in it
that is creating a new file, like this:

$ docker container run --name demo \
 alpine /bin/sh -c 'echo "This is a test" > sample.txt'

The preceding command creates a container named demo, and, inside this container, creates
a file called sample.txt with the content This is a test. The container exits after
running the echo command but remains in memory, available for us to do our
investigations. Let's use the diff command to find out what has changed in the container's
filesystem in relation to the filesystem of the original image, as follows:

$ docker container diff demo

The output should look like this:

A /sample.txt

Evidently, a new file, as indicated by the A, has been added to the filesystem of the
container, as expected. Since all layers that stem from the underlying image (alpine, in this
case) are immutable, the change could only happen in the writeable container layer.

Data Volumes and Configuration Chapter 5

[113]

Files that have changed compared to the original image will be marked
with a C, and those that have been deleted, with a D.

If we now remove the container from memory, its container layer will also be removed, and
with it, all the changes will be irreversibly deleted. If we need our changes to persist even
beyond the lifetime of the container, this is not a solution. Luckily, we have better options,
in the form of Docker volumes. Let's get to know them.

Creating volumes
Since at this time, when using Docker for Desktop on a macOS or Windows computer,
containers are not running natively on macOS or Windows but rather in a (hidden) VM
created by Docker for Desktop, for illustrative purposes it is best we use docker-
machine to create and use an explicit VM running Docker. At this point, we assume that
you have Docker Toolbox installed on your system. If not, then please go back to Chapter
2, Setting up a Working Environment, where we provide detailed instructions on how to
install Toolbox:

Use docker-machine to list all VMs currently running in VirtualBox, as follows:1.

$ docker-machine ls

If you do not have a VM called node-1 listed, then please create one with the2.
following command:

$ docker-machine create --driver virtualbox node-1

Refer back to Chapter 2, Setting up a Working Environment, on how to
create a Hyper-V-based VM with docker-machine if you are running on
Windows with Hyper-V enabled.

If, on the other hand, you have a VM called node-1 but it is not running, then3.
please start it, as follows:

$ docker-machine start node-1

Now that everything is ready, use docker-machine to SSH into this VM, like4.
this:

$ docker-machine ssh node-1

Data Volumes and Configuration Chapter 5

[114]

You should be greeted by this welcome image:5.

docker-machine VM welcome message

To create a new data volume, we can use the docker volume6.
create command. This will create a named volume that can then be mounted
into a container and used for persistent data access or storage. The following
command creates a volume called sample, using the default volume driver:

$ docker volume create sample

The default volume driver is the so-called local driver, which stores the data
locally in the host filesystem.

The easiest way to find out where the data is stored on the host is by using7.
the docker volume inspect command on the volume we just created. The
actual location can differ from system to system, and so, this is the safest way to
find the target folder. You can see this command in the following code block:

$ docker volume inspect sample
[
 {
 "CreatedAt": "2019-08-02T06:59:13Z",
 "Driver": "local",
 "Labels": {},
 "Mountpoint":
"/mnt/sda1/var/lib/docker/volumes/sample/_data",
 "Name": "my-data",
 "Options": {},
 "Scope": "local"
 }
]

The host folder can be found in the output under Mountpoint. In our case, when
using docker-machine with a LinuxKit-based VM running in VirtualBox, the
folder is /mnt/sda1/var/lib/docker/volumes/sample/_data.

Data Volumes and Configuration Chapter 5

[115]

The target folder is often a protected folder, and we thus might need to
use sudo to navigate to this folder and execute any operations in it.

On our LinuxKit-based VM in Docker Toolbox, access is also denied, yet we don't
have sudo available either. Is that the end of our exploration?

Luckily not; I have prepared a fundamentalsofdocker/nsenter utility
container that allows us to access the backing folder of our sample volume we
created earlier.

We need to run this container in privileged mode to get access to this8.
protected part of the filesystem, like this:

$ docker run -it --rm --privileged --pid=host \
 fundamentalsofdocker/nsenter
/ #

We are running the container with the --privileged flag. This means
that any app running in the container gets access to the devices of the
host. The --pid=host flag signifies that the container is allowed to access
the process tree of the host (the hidden VM in which the Docker daemon
is running). Now, the preceding container runs the Linux nsenter tool to
enter the Linux namespace of the host and then runs a shell within there.
From this shell, we are thus granted access to all resources managed by
the host.

When running the container, we basically execute the following command
inside the container:
nsenter -t 1 -m -u -n -i sh

If that sounds complicated to you, don't worry; you will understand more
as we proceed through this book. If there is one takeaway for you out of
this, then it is to realize how powerful the right use of containers can be.

From within this container, we can now navigate to the folder representing the9.
mount point of the volume, and then list its content, as follows:

/ # cd /mnt/sda1/var/lib/docker/volumes/sample/_data
/ # ls -l
total 0

Data Volumes and Configuration Chapter 5

[116]

The folder is currently empty since we have not yet stored any data in the
volume.

Exit the tool container by pressing Ctrl + D.10.

There are other volume drivers available from third parties, in the form of plugins. We can
use the --driver parameter in the create command to select a different volume driver.
Other volume drivers use different types of storage systems to back a volume, such as
cloud storage, Network File System (NFS) drives, software-defined storage, and more. The
discussion of the correct usage of other volume drivers is beyond the scope of this book,
though.

Mounting a volume
Once we have created a named volume, we can mount it into a container by following these
steps:

For this, we can use the -v parameter in the docker container run command,1.
like this:

$ docker container run --name test -it \
 -v sample:/data \
 alpine /bin/sh

Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
050382585609: Pull complete
Digest:
sha256:6a92cd1fcdc8d8cdec60f33dda4db2cb1fcdcacf3410a8e05b3741f44a9b
5998
Status: Downloaded newer image for alpine:latest
/ #

The preceding command mounts the sample volume to the /data folder inside
the container.

Inside the container, we can now create files in the /data folder and then exit, as2.
follows:

/ # cd /data / # echo "Some data" > data.txt
/ # echo "Some more data" > data2.txt
/ # exit

Data Volumes and Configuration Chapter 5

[117]

If we navigate to the host folder that contains the data of the volume and list its3.
content, we should see the two files we just created inside the container
(remember: we need to use the fundamentalsofdocker/nsenter tool
container to do so), as follows:

$ docker run -it --rm --privileged --pid=host \
 fundamentalsofdocker/nsenter
/ # cd /mnt/sda1/var/lib/docker/volumes/sample/_data
/ # ls -l
total 8
-rw-r--r-- 1 root root 10 Jan 28 22:23 data.txt
-rw-r--r-- 1 root root 15 Jan 28 22:23 data2.txt

We can even try to output the content of, say, the second file, like this:4.

/ # cat data2.txt

Let's try to create a file in this folder from the host, and then use the volume with5.
another container, like this:

/ # echo "This file we create on the host" > host-data.txt

Exit the tool container by pressing Ctrl + D.6.
Now, let's delete the test container, and run another one based on CentOS. This7.
time, we are even mounting our volume to a different container folder,
/app/data, like this:

$ docker container rm test
$ docker container run --name test2 -it \
 -v my-data:/app/data \
 centos:7 /bin/bash

Unable to find image 'centos:7' locally
7: Pulling from library/centos
8ba884070f61: Pull complete
Digest:
sha256:a799dd8a2ded4a83484bbae769d97655392b3f86533ceb7dd96bbac92980
9f3c
Status: Downloaded newer image for centos:7
[root@275c1fe31ec0 /]#

Data Volumes and Configuration Chapter 5

[118]

Once inside the centos container, we can navigate to the /app/data folder to8.
which we have mounted the volume, and list its content, as follows:

[root@275c1fe31ec0 /]# cd /app/data
[root@275c1fe31ec0 /]# ls -l

As expected, we should see these three files:

-rw-r--r-- 1 root root 10 Aug 2 22:23 data.txt
-rw-r--r-- 1 root root 15 Aug 2 22:23 data2.txt
-rw-r--r-- 1 root root 32 Aug 2 22:31 host-data.txt

This is the definitive proof that data in a Docker volume persists beyond the
lifetime of a container, and also, that volumes can be reused by other, even
different, containers from the one that used it first.

It is important to note that the folder inside the container to which we mount a
Docker volume is excluded from the Union filesystem. That is, each change inside
this folder and any of its subfolders will not be part of the container layer, but will
be persisted in the backing storage provided by the volume driver. This fact is
really important since the container layer is deleted when the corresponding
container is stopped and removed from the system.

Exit the centos container with Ctrl + D. Now, exit the node-1 VM by pressing9.
Ctrl + D again.

Removing volumes
Volumes can be removed using the docker volume rm command. It is important to
remember that removing a volume destroys the containing data irreversibly, and thus is to
be considered a dangerous command. Docker helps us a bit in this regard, as it does not
allow us to delete a volume that is still in use by a container. Always make sure before you
remove or delete a volume that you either have a backup of its data or you really don't
need this data anymore. Let's see how to remove volumes by following these steps:

The following command deletes our sample volume that we created earlier:1.

$ docker volume rm sample

After executing the preceding command, double-check that the folder on the host2.
has been deleted.

Data Volumes and Configuration Chapter 5

[119]

To remove all running containers in order to clean up the system, run the3.
following command:

$ docker container rm -f $(docker container ls -aq)

Note that by using the -v or --volume flag in the command you use to
remove a container, you can ask the system to also remove any volume
associated with that particular container. Of course, that will only work if
the particular volume is only used by this container.

In the next section, we will show how we can access the backing folder of a volume when
working with Docker for Desktop.

Accessing volumes created with Docker for
Desktop
Follow these steps:

Let's create a sample volume and inspect it using Docker for Desktop on our1.
macOS or Windows machine, like this:

$ docker volume create sample
$ docker volume inspect sample
[
 {
 "CreatedAt": "2019-08-02T07:44:08Z",
 "Driver": "local",
 "Labels": {},
 "Mountpoint": "/var/lib/docker/volumes/sample/_data",
 "Name": "sample",
 "Options": {},
 "Scope": "local"
 }
]

The Mountpoint is shown as /var/lib/docker/volumes/sample/_data, but
you will discover that there is no such folder on your macOS or Windows
machine. The reason is that the path shown is in relation to the hidden VM that
Docker for Windows uses to run containers. At this time, Linux containers cannot
run natively on macOS, nor on Windows.

Data Volumes and Configuration Chapter 5

[120]

Next, let's generate two files with data in the volume from within an alpine2.
container. To run the container and mount the sample volume to the /data
folder of the container, use the following code:

$ docker container run --rm -it -v sample:/data alpine /bin/sh

Generate two files in the /data folder inside the container, like this:3.

/ # echo "Hello world" > /data/sample.txt
/ # echo "Other message" > /data/other.txt

Exit the alpine container by pressing Ctrl + D.4.

As mentioned earlier, we cannot directly access the backing folder of the sample
volume from our macOS or from Windows. This is because the volume is in the
hidden VM running on macOS or Windows that is used to run the Linux
container in Docker for Desktop.

To access that hidden VM from our macOS, we have two options. We can either
use a special container and run it in privileged mode, or we can use the screen
utility to screen into the Docker driver. The first method is also applicable to
Docker for Windows.

Let's start with the first method mentioned, by running a container from5.
the fundamentalsofdocker/nsenter image. We have been using this
container already in the previous section. Run the following code:

$ docker run -it --rm --privileged --pid=host
fundamentalsofdocker/nsenter
/ #

We can now navigate to the folder backing our sample volume, like this:6.

/ # cd /var/lib/docker/volumes/sample/_data

Let's see what is in this folder by running this code:

/ # ls -l
total 8
-rw-r--r-- 1 root root 14 Aug 2 08:07 other.txt
-rw-r--r-- 1 root root 12 Aug 2 08:07 sample.txt

Data Volumes and Configuration Chapter 5

[121]

Let's try to create a file from within this special container, and then list the7.
content of the folder, as follows:

/ # echo "I love Docker" > docker.txt
/ # ls -l
total 12
-rw-r--r-- 1 root root 14 Aug 2 08:08 docker.txt
-rw-r--r-- 1 root root 14 Aug 2 08:07 other.txt
-rw-r--r-- 1 root root 12 Aug 2 08:07 sample.txt

And now, we have the files in the backing folder of the sample volume.

To exit our special privileged container, we can just press Ctrl + D.8.
Now that we have explored the first option, and if you're using macOS, let's try9.
the screen tool, as follows:

$ screen
~/Library/Containers/com.docker.docker/Data/com.docker.driver.amd64
-linux/tty

By doing so, we will be greeted by an empty screen. Hit Enter, and a docker-10.
desktop:~# command-line prompt will be displayed. We can now navigate to
the volume folder, like this:

docker-desktop:~# cd /var/lib/docker/volumes/sample/_data

Let's create another file with some data in it, and then list the content of the11.
folder, as follows:

docker-desktop:~# echo "Some other test" > test.txt
docker-desktop:~# ls -l
total 16
-rw-r--r-- 1 root root 14 Aug 2 08:08 docker.txt
-rw-r--r-- 1 root root 14 Aug 2 08:07 other.txt
-rw-r--r-- 1 root root 12 Aug 2 08:07 sample.txt
-rw-r--r-- 1 root root 16 Aug 2 08:10 test.txt

To exit this session with the Docker VM, press Ctrl + A + K.12.

Data Volumes and Configuration Chapter 5

[122]

We have now created data using three different methods, as follows:

From within a container that has a sample volume mounted.
Using a special privileged folder to access the hidden VM used by
Docker for Desktop, and directly writing into the backing folder of
the sample volume.
Only on macOS, using the screen utility to enter into the hidden
VM, and also directly writing into the backing folder of the sample
volume.

Sharing data between containers
Containers are like sandboxes for the applications running inside them. This is mostly
beneficial and wanted, in order to protect applications running in different containers from
each other. It also means that the whole filesystem visible to an application running inside a
container is private to this application, and no other application running in a different
container can interfere with it.

At times, though, we want to share data between containers. Say an application running in
container A produces some data that will be consumed by another application running in
container B. How can we achieve this? Well, I'm sure you've already guessed it—we can use
Docker volumes for this purpose. We can create a volume and mount it to container A, as
well as to container B. In this way, both applications A and B have access to the same data.

Now, as always when multiple applications or processes concurrently access data, we have
to be very careful to avoid inconsistencies. To avoid concurrency problems such as race
conditions, we ideally have only one application or process that is creating or modifying
data, while all other processes concurrently accessing this data only read it. We can enforce
a process running in a container to only be able to read the data in a volume by mounting
this volume as read-only. Have a look at the following command:

$ docker container run -it --name writer \
 -v shared-data:/data \
 alpine /bin/sh

Data Volumes and Configuration Chapter 5

[123]

Here, we create a container called writer that has a volume, shared-data, mounted in
default read/write mode:

Try to create a file inside this container, like this:1.

/ echo "I can create a file" > /data/sample.txt

It should succeed.

Exit this container, and then execute the following command:2.

$ docker container run -it --name reader \
 -v shared-data:/app/data:ro \
 ubuntu:19.04 /bin/bash

And we have a container called reader that has the same volume mounted
as read-only (ro).

Firstly, make sure you can see the file created in the first container, like this:3.

$ ls -l /app/data
total 4
-rw-r--r-- 1 root root 20 Jan 28 22:55 sample.txt

Then, try to create a file, like this:4.

/ echo "Try to break read/only" > /app/data/data.txt

It will fail with the following message:

bash: /app/data/data.txt: Read-only file system

Let's exit the container by typing exit at the Command Prompt. Back on the5.
host, let's clean up all containers and volumes, as follows:

$ docker container rm -f $(docker container ls -aq)
$ docker volume rm $(docker volume ls -q)

Once this is done, exit the docker-machine VM by also typing exit at the6.
Command Prompt. You should be back on your Docker for Desktop.
Use docker-machine to stop the VM, like this:

$ docker-machine stop node-1

Next, we will show how to mount arbitrary folders from the Docker host into a container.

Data Volumes and Configuration Chapter 5

[124]

Using host volumes
In certain scenarios, such as when developing new containerized applications or when a
containerized application needs to consume data from a certain folder produced—say—by
a legacy application, it is very useful to use volumes that mount a specific host folder. Let's
look at the following example:

$ docker container run --rm -it \
 -v $(pwd)/src:/app/src \
 alpine:latest /bin/sh

The preceding expression interactively starts an alpine container with a shell and mounts
the src subfolder of the current directory into the container at /app/src. We need to
use $(pwd) (or `pwd`, for that matter), which is the current directory, as when working
with volumes, we always need to use absolute paths.

Developers use these techniques all the time when they are working on their application
that runs in a container, and want to make sure that the container always contains the latest
changes they make to the code, without the need to rebuild the image and rerun the
container after each change.

Let's make a sample to demonstrate how that works. Let's say we want to create a simple
static website using nginx as our web server as follows:

First, let's create a new folder on the host, where we will put our web1.
assets—such as HTML, CSS, and JavaScript files—and navigate to it, like this:

$ mkdir ~/my-web
$ cd ~/my-web

Then, we create a simple web page, like this:2.

$ echo "<h1>Personal Website</h1>" > index.html

Now, we add a Dockerfile that will contain instructions on how to build the3.
image containing our sample website.
Add a file called Dockerfile to the folder, with this content:4.

FROM nginx:alpine
COPY . /usr/share/nginx/html

Data Volumes and Configuration Chapter 5

[125]

The Dockerfile starts with the latest Alpine version of nginx, and then copies all
files from the current host directory into the /usr/share/nginx/html
containers folder. This is where nginx expects web assets to be located.

Now, let's build the image with the following command:5.

$ docker image build -t my-website:1.0 .

And finally, we run a container from this image. We will run the container in6.
detached mode, like this:

$ docker container run -d \
 --name my-site \
 -p 8080:80 \
 my-website:1.0

Note the -p 8080:80 parameter. We haven't discussed this yet, but we will do it
in detail in Chapter 10, Single-Host Networking. At the moment, just know that
this maps the container port 80 on which nginx is listening for incoming requests
to port 8080 of your laptop, where you can then access the application.

Now, open a browser tab and navigate7.
to http://localhost:8080/index.html, and you should see your website,
which currently consists only of a title, Personal Website.
Now, edit the index.html file in your favorite editor, to look like this:8.

<h1>Personal Website</h1>
<p>This is some text</p>

Now, save it, and then refresh the browser. Oh! That didn't work. The browser9.
still displays the previous version of the index.html file, which consists only of
the title. So, let's stop and remove the current container, then rebuild the image,
and rerun the container, as follows:

$ docker container rm -f my-site
$ docker image build -t my-website:1.0 .
$ docker container run -d \
 --name my-site \
 -p 8080:80 \
 my-website:1.0

Data Volumes and Configuration Chapter 5

[126]

This time, when you refresh the browser, the new content should be shown. Well,
it worked, but there is way too much friction involved. Imagine you have to do
this each and every time that you make a simple change to your website. That's
not sustainable.

Now is the time to use host-mounted volumes. Once again, remove the current10.
container and rerun it with the volume mount, like this:

$ docker container rm -f my-site
$ docker container run -d \
 --name my-site \
 -v $(pwd):/usr/share/nginx/html \
 -p 8080:80 \
 my-website:1.0

Now, append some more content to the index.html file, and save it. Then,11.
refresh your browser. You should see the changes. And this is exactly what we
wanted to achieve; we also call this an edit-and-continue experience. You can make
as many changes in your web files and always immediately see the result in the
browser, without having to rebuild the image and restart the container
containing your website.

It is important to note that the updates are now propagated bi-directionally. If
you make changes on the host, they will be propagated to the container, and vice
versa. Also important is the fact that when you mount the current folder into the
container target folder, /usr/share/nginx/html, the content that is already
there is replaced by the content of the host folder.

Defining volumes in images
If we go for a moment back to what we have learned about containers in Chapter
3, Mastering Containers, then we have this: the filesystem of each container, when started, is
made up of the immutable layers of the underlying image, plus a writable container layer
specific to this very container. All changes that the processes running inside the container
make to the filesystem will be persisted in this container layer. Once the container is
stopped and removed from the system, the corresponding container layer is deleted from
the system and irreversibly lost.

Data Volumes and Configuration Chapter 5

[127]

Some applications, such as databases running in containers, need to persist their data
beyond the lifetime of the container. In this case, they can use volumes. To make things a
bit more explicit, let's look at a concrete example. MongoDB is a popular open source
document database. Many developers use MongoDB as a storage service for their
applications. The maintainers of MongoDB have created an image and published it on
Docker Hub, which can be used to run an instance of the database in a container. This
database will be producing data that needs to be persisted long term, but the MongoDB
maintainers do not know who uses this image and how it is used. So, they have no
influence over the docker container run command with which the users of the
database will start this container. How can they now define volumes?

Luckily, there is a way of defining volumes in the Dockerfile. The keyword to do so
is VOLUME, and we can either add the absolute path to a single folder or a comma-separated
list of paths. These paths represent folders of the container's filesystem. Let's look at a few
samples of such volume definitions, as follows:

VOLUME /app/data
VOLUME /app/data, /app/profiles, /app/config
VOLUME ["/app/data", "/app/profiles", "/app/config"]

The first line in the preceding snippet defines a single volume to be mounted
at /app/data. The second line defines three volumes as a comma-separated list. The last
one defines the same as the second line, but this time, the value is formatted as a JSON
array.

When a container is started, Docker automatically creates a volume and mounts it to the
corresponding target folder of the container for each path defined in the Dockerfile. Since
each volume is created automatically by Docker, it will have an SHA-256 as its ID.

At container runtime, the folders defined as volumes in the Dockerfile are excluded from
the Union filesystem, and thus any changes in those folders do not change the
container layer but are persisted to the respective volume. It is now the responsibility of the
operations engineers to make sure that the backing storage of the volumes is properly
backed up.

We can use the docker image inspect command to get information about the volumes
defined in the Dockerfile. Let's see what MongoDB gives us by following these steps:

First, we pull the image with the following command:1.

$ docker image pull mongo:3.7

Data Volumes and Configuration Chapter 5

[128]

Then, we inspect this image, and use the --format parameter to only extract the2.
essential part from the massive amount of data, as follows:

 $ docker image inspect \
 --format='{{json .ContainerConfig.Volumes}}' \
 mongo:3.7 | jq .

Note the | jq . at the end of the command. We are piping the output of
docker image inspect into the jq tool, which nicely formats the
output. If you haven't installed jq yet on your system, you can do so with
brew install jq on your macOS, or with choco install jq on
Windows.

The preceding command will return the following result:

{
 "/data/configdb": {},
 "/data/db": {}
}

Evidently, the Dockerfile for MongoDB defines two volumes
at /data/configdb and /data/db.

Now, let's run an instance of MongoDB in the background as a daemon, as3.
follows:

$ docker run --name my-mongo -d mongo:3.7

We can now use the docker container inspect command to get information4.
about the volumes that have been created, among other things.

Use this command to just get the volume information:

$ docker inspect --format '{{json .Mounts}}' my-mongo | jq .

The preceding command should output something like this (shortened):

[
 {
 "Type": "volume",
 "Name": "b9ea0158b5...",
 "Source": "/var/lib/docker/volumes/b9ea0158b.../_data",
 "Destination": "/data/configdb",
 "Driver": "local",
 ...
 },
 {

Data Volumes and Configuration Chapter 5

[129]

 "Type": "volume",
 "Name": "5becf84b1e...",
 "Source": "/var/lib/docker/volumes/5becf84b1.../_data",
 "Destination": "/data/db",
 ...
 }
]

Note that the values of the Name and Source fields have been trimmed for
readability. The Source field gives us the path to the host directory, where the
data produced by the MongoDB inside the container will be stored.

That's it for the moment about volumes. In the next section, we will explore how we can
configure applications running in containers, and the container image build process itself.

Configuring containers
More often than not, we need to provide some configuration to the application running
inside a container. The configuration is often used to allow one and the same container to
run in very different environments, such as in development, test, staging, or production
environments.

In Linux, configuration values are often provided via environment variables.

We have learned that an application running inside a container is completely shielded from
its host environment. Thus, the environment variables that we see on the host are different
from the ones that we see from within a container.

Let's prove that by first looking at what is defined on our host:

Use this command:1.

$ export

On my macOS, I see something like this (shortened):

...
COLORFGBG '7;0'
COLORTERM truecolor
HOME /Users/gabriel
ITERM_PROFILE Default
ITERM_SESSION_ID w0t1p0:47EFAEFE-BA29-4CC0-B2E7-8C5C2EA619A8
LC_CTYPE UTF-8
LOGNAME gabriel
...

Data Volumes and Configuration Chapter 5

[130]

Next, let's run a shell inside an alpine container, and list the environment2.
variables we see there, as follows:

$ docker container run --rm -it alpine /bin/sh
/ # export

export HOME='/root'
export HOSTNAME='91250b722bc3'
export
PATH='/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin'
export PWD='/'
export SHLVL='1'
export TERM='xterm'

The preceding output we see from the export command is evidently totally
different than what we saw directly on the host.

Hit Ctrl + D to leave the alpine container.3.

Next, let's define environment variables for containers.

Defining environment variables for containers
Now, the good thing is that we can actually pass some configuration values into the
container at start time. We can use the --env (or the short form, -e) parameter in the form
--env <key>=<value> to do so, where <key> is the name of the environment variable
and <value> represents the value to be associated with that variable. Let's assume we want
the app that is to be run in our container to have access to an environment variable called
LOG_DIR, with the value /var/log/my-log. We can do so with this command:

$ docker container run --rm -it \
 --env LOG_DIR=/var/log/my-log \
 alpine /bin/sh
/ #

The preceding code starts a shell in an alpine container and defines the requested
environment inside the running container. To prove that this is true, we can execute this
command inside the alpine container:

/ # export | grep LOG_DIR

export LOG_DIR='/var/log/my-log'

Data Volumes and Configuration Chapter 5

[131]

The output looks as expected. We now indeed have the requested environment variable
with the correct value available inside the container.

We can, of course, define more than just one environment variable when we run a
container. We just need to repeat the --env (or -e) parameter. Have a look at this sample:

$ docker container run --rm -it \
 --env LOG_DIR=/var/log/my-log \
 --env MAX_LOG_FILES=5 \
 --env MAX_LOG_SIZE=1G \
 alpine /bin/sh
/ #

If we do a list of the environment variables now, we see the following:

/ # export | grep LOG

export LOG_DIR='/var/log/my-log'
export MAX_LOG_FILES='5'
export MAX_LOG_SIZE='1G'

Let's now look at situations where we have many environment variables to configure.

Using configuration files
Complex applications can have many environment variables to configure, and thus our
command to run the corresponding container can quickly become unwieldy. For this
purpose, Docker allows us to pass a collection of environment variable definitions as a file,
and we have the --env-file parameter in the docker container run command.

Let's try this out, as follows:

Create a fod/05 folder and navigate to it, like this:1.

$ mkdir -p ~/fod/05 && cd ~/fod/05

Use your favorite editor to create a file called development.config in this2.
folder. Add the following content to the file, and save it, as follows:

LOG_DIR=/var/log/my-log
MAX_LOG_FILES=5
MAX_LOG_SIZE=1G

Data Volumes and Configuration Chapter 5

[132]

Notice how we have the definition of a single environment variable per line in the
format <key>=<value>, where, once again, <key> is the name of the
environment variable, and <value> represents the value to be associated with
that variable.

Now, from within the fod/05 folder, let's run an alpine container, pass the file3.
as an environment file, and run the export command inside the container to
verify that the variables listed inside the file have indeed been created as
environment variables inside the container, like this:

$ docker container run --rm -it \
 --env-file ./development.config \
 alpine sh -c "export"

And indeed, the variables are defined, as we can see in the output generated:

export HOME='/root'
export HOSTNAME='30ad92415f87'
export LOG_DIR='/var/log/my-log'
export MAX_LOG_FILES='5'
export MAX_LOG_SIZE='1G'
export
PATH='/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin'
export PWD='/'
export SHLVL='1'
export TERM='xterm'

Next, let's look at how to define default values for environment variables that are valid for
all container instances of a given Docker image.

Data Volumes and Configuration Chapter 5

[133]

Defining environment variables in container
images
Sometimes, we want to define some default value for an environment variable that must be
present in each container instance of a given container image. We can do so in the
Dockerfile that is used to create that image by following these steps:

Use your favorite editor to create a file called Dockerfile in1.
the ~/fod/05 folder. Add the following content to the file, and save it:

FROM alpine:latest
ENV LOG_DIR=/var/log/my-log
ENV MAX_LOG_FILES=5
ENV MAX_LOG_SIZE=1G

Create a container image called my-alpine using the preceding Dockerfile, as2.
follows:

$ docker image build -t my-alpine .

Run a container instance from this image that outputs the environment variables
defined inside the container, like this:

$ docker container run --rm -it \
 my-alpine sh -c "export | grep LOG"

export LOG_DIR='/var/log/my-log'
export MAX_LOG_FILES='5'
export MAX_LOG_SIZE='1G'

This is exactly what we would have expected.

The good thing, though, is that we are not stuck with those variable values at all.
We can override one or many of them, using the --env parameter in the docker
container run command. Have a look at the following command and its
output:

$ docker container run --rm -it \
 --env MAX_LOG_SIZE=2G \
 --env MAX_LOG_FILES=10 \
 my-alpine sh -c "export | grep LOG"

export LOG_DIR='/var/log/my-log'
export MAX_LOG_FILES='10'
export MAX_LOG_SIZE='2G'

Data Volumes and Configuration Chapter 5

[134]

We can also override default values, using environment files together with the --
env-file parameter in the docker container run command. Please try it out
for yourself.

Environment variables at build time
Sometimes, we would want to have the possibility to define some environment variables
that are valid at the time when we build a container image. Imagine that you want to define
a BASE_IMAGE_VERSION environment variable that shall then be used as a parameter in
your Dockerfile. Imagine the following Dockerfile:

ARG BASE_IMAGE_VERSION=12.7-stretch
FROM node:${BASE_IMAGE_VERSION}
WORKDIR /app
COPY packages.json .
RUN npm install
COPY . .
CMD npm start

We are using the ARG keyword to define a default value that is used each time we build an
image from the preceding Dockerfile. In this case, that means that our image uses the
node:12.7-stretch base image.

Now, if we want to create a special image for—say—testing purposes, we can override this
variable at image build time using the --build-arg parameter, as follows:

$ docker image build \
 --build-arg BASE_IMAGE_VERSION=12.7-alpine \
 -t my-node-app-test .

In this case, the resulting my-node-test:latest image will be built from the node:12.7-
alpine base image and not from the node:12.7-stretch default image.

To summarize, environment variables defined via --env or --env-file are valid at
container runtime. Variables defined with ARG in the Dockerfile or --build-arg in the
docker container build command are valid at container image build time. The former
are used to configure an application running inside a container, while the latter are used to
parametrize the container image build process.

Data Volumes and Configuration Chapter 5

[135]

Summary
In this chapter, we have introduced Docker volumes that can be used to persist states
produced by containers and make them durable. We can also use volumes to provide
containers with data originating from various sources. We have learned how to create,
mount, and use volumes. We have learned various techniques of defining volumes such as
by name, by mounting a host directory, or by defining volumes in a container image.

In this chapter, we have also discussed how we can configure environment variables that
can be used by applications running inside a container. We have shown how to define
those variables in the docker container run command, either explicitly, one by one, or
as a collection in a configuration file. We have also shown how to parametrize the build
process of container images by using build arguments.

In the next chapter, we are going to introduce techniques commonly used to allow a
developer to evolve, modify, debug, and test their code while running in a container.

Questions
Please try to answer the following questions to assess your learning progress:

How would you create a named data volume with a name—for example, my-1.
products—using the default driver?
How would you run a container using the alpine image and mount the my-2.
products volume in read-only mode into the /data container folder?
How would you locate the folder that is associated with the my-3.
products volume and navigate to it? Also, how will you create a
file, sample.txt, with some content?
How would you run another alpine container in to which you mount the my-4.
products volume to the /app-data folder, in read/write mode? Inside this
container, navigate to the /app-data folder and create a hello.txt file with
some content.
How would you mount a host volume—for example, ~/my-project—into a5.
container?

Data Volumes and Configuration Chapter 5

[136]

How would you remove all unused volumes from your system?6.
The list of environment variables that an application running in a container sees7.
is the same as if the application were to run directly on the host.

A. True
B. False

Your application that shall run in a container needs a huge list of environment8.
variables for configuration. What is the simplest method to run a container with
your application and provide all this information to it?

Further reading
The following articles provide more in-depth information:

Use volumes, at http:/ /dockr. ly/2EUjTml

Manage data in Docker, at http:/ /dockr. ly/2EhBpzD

Docker volumes on Play with Docker (PWD), at http:/ /bit. ly/2sjIfDj

nsenter —Linux man page, at https:/ /bit. ly/2MEPG0n

Set environment variables, at https:/ /dockr. ly/ 2HxMCjS

Understanding how ARG and FROM interact, at https:/ /dockr. ly/ 2OrhZgx

http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EUjTml
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://dockr.ly/2EhBpzD
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
http://bit.ly/2sjIfDj
https://bit.ly/2MEPG0n
https://bit.ly/2MEPG0n
https://bit.ly/2MEPG0n
https://bit.ly/2MEPG0n
https://bit.ly/2MEPG0n
https://bit.ly/2MEPG0n
https://bit.ly/2MEPG0n
https://bit.ly/2MEPG0n
https://bit.ly/2MEPG0n
https://dockr.ly/2HxMCjS
https://dockr.ly/2HxMCjS
https://dockr.ly/2HxMCjS
https://dockr.ly/2HxMCjS
https://dockr.ly/2HxMCjS
https://dockr.ly/2HxMCjS
https://dockr.ly/2HxMCjS
https://dockr.ly/2HxMCjS
https://dockr.ly/2HxMCjS
https://dockr.ly/2OrhZgx
https://dockr.ly/2OrhZgx
https://dockr.ly/2OrhZgx
https://dockr.ly/2OrhZgx
https://dockr.ly/2OrhZgx
https://dockr.ly/2OrhZgx
https://dockr.ly/2OrhZgx
https://dockr.ly/2OrhZgx
https://dockr.ly/2OrhZgx

6
Debugging Code Running in

Containers
In the previous chapter, we learned how to work with stateful containers, that is, containers
that consume and produce data. We also learned how to configure our containers at
runtime and at image build time using environment variables and config files.

In this chapter, we're going to introduce techniques commonly used to allow a developer to
evolve, modify, debug, and test their code while running in a container. With these
techniques at hand, you will enjoy a frictionless development process for applications
running in a container, similar to what you experience when developing applications that
run natively.

Here is a list of the topics we're going to discuss:

Evolving and testing code running in a container
Auto restarting code upon changes
Line-by-line code debugging inside a container
Instrumenting your code to produce meaningful logging information
Using Jaeger to monitor and troubleshoot

After finishing this chapter, you will be able to do the following:

Mount source code residing on the host in a running container
Configure an application running in a container to auto-restart after a code
change
Configure Visual Studio Code to debug applications written in Java, Node.js,
Python, or .NET running inside a container line by line
Log important events from your application code

Debugging Code Running in Containers Chapter 6

[138]

Technical requirements
In this chapter, if you want to follow along with the code, you need Docker for Desktop on
macOS or Windows and a code editor—preferably Visual Studio Code. The sample will
also work on a Linux machine with Docker and VS Code installed.

Evolving and testing code running in a
container
When developing code that will eventually be running in a container, it is often the best
approach to run the code in the container from the very beginning, to make sure there will
be no unexpected surprises. But, we have to do this in the right way in order not to
introduce any unnecessary friction into our development process. Let's first look at a naive
way that we could run and test code in a container:

Create a new project folder and navigate to it:1.

$ mkdir -p ~/fod/ch06 && cd ~/fod/ch06

Let's use npm to create a new Node.js project:2.

$ npm init

Accept all the defaults. Notice that a package.json file is created with the3.
following content:

{
 "name": "ch06",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

We want to use the Express.js library in our Node application; thus, use npm to4.
install it:

$ npm install express --save

Debugging Code Running in Containers Chapter 6

[139]

This will install the newest version of Express.js on our machine and, because of
the --save parameter, add a reference to our package.json file that looks
similar to this:

"dependencies": {
 "express": "^4.17.1"
}

Start VS Code from within this folder:5.

$ code .

In VS Code, create a new index.js file and add this code snippet to it. Do not6.
forget to save:

const express = require('express');
const app = express();

app.listen(3000, '0.0.0.0', ()=>{
 console.log('Application listening at 0.0.0.0:3000');
})

app.get('/', (req,res)=>{
 res.send('Sample Application: Hello World!');
})

From back within your terminal window, start the application:7.

$ node index.js

You should see this as the output:

Application listening at 0.0.0.0:3000

This means that the application is running and ready to listen at 0.0.0.0:3000.
You may ask yourself what the meaning of the host address 0.0.0.0 is and why
we have chosen it. We will come back to that later, when we run the application
inside a container. For the moment, just know that 0.0.0.0 is a reserved IP
address with a special meaning, similar to the loopback address 127.0.0.1.
The 0.0.0.0 address simply means all IPv4 addresses on the local machine. If a host
has two IP addresses, say 52.11.32.13 and 10.11.0.1, and a server running on
the host listens on 0.0.0.0, it will be reachable at both of those IPs.

Debugging Code Running in Containers Chapter 6

[140]

Now open a new tab in your favorite browser and navigate to localhost:3000.8.
You should see this:

Sample Node.js app running in a browser

Great—our Node.js application is running on our developer machine. Stop the
application by pressing Ctrl + C in the terminal.

Now we want to test the application we have developed so far by running it9.
inside a container. To do this, we have to create a Dockerfile first, so that we
can build a container image, from which we can then run a container. Let's use
VS Code again to add a file called Dockerfile to our project folder and give it
the following content:

FROM node:latest
WORKDIR /app
COPY package.json ./
RUN npm install
COPY . .
CMD node index.js

We can then use this Dockerfile to build an image called sample-app as10.
follows:

$ docker image build -t sample-app .

After building, run the application in the container with this command:11.

$ docker container run --rm -it \
 --name my-sample-app \
 -p 3000:3000 \
 sample-app

Debugging Code Running in Containers Chapter 6

[141]

 The preceding command runs a container with the name my-sample-app from
the container image sample-app and maps the container port 3000 to the
equivalent host port. The port mapping is necessary; otherwise, we could not
access the application running inside the container from outside the container. We
will learn more about port mapping in Chapter 10, Single-Host Networking.

Similar to when we ran the application directly on our host, the output is as
follows:

Application listening at 0.0.0.0:3000

Refresh the browser tab from before (or open a new browser tab and navigate to12.
localhost:3000, if you closed it). You should see that the application still runs
and produces the same output as when running natively. This is good. We have
just shown that our application not only runs on our host but also inside a
container.
Stop and remove the container by pressing Ctrl + C in the terminal.13.
Now let's modify our code and add some additional functionality. We will define14.
another HTTP GET endpoint at /hobbies. Please add the following code snippet
to your index.js file:

const hobbies = [
 'Swimming', 'Diving', 'Jogging', 'Cooking', 'Singing'
];

app.get('/hobbies', (req,res)=>{
 res.send(hobbies);
})

We can first test the new functionality on our host by running the app with node
index.js and navigating to localhost:3000/hobbies in the browser. We
should see the expected output in the browser window. Don't forget to stop the
application with Ctrl + C when done testing.

Next, we need to test the code when it runs inside the container. Thus, first, we15.
create a new version of the container image:

$ docker image build -t sample-app .

Next, we run a container from this new image:16.

$ docker container run --rm -it \
 --name my-sample-app \
 -p 3000:3000 \
 sample-app

Debugging Code Running in Containers Chapter 6

[142]

Now, we can navigate to localhost:3000/hobbies in our browser and confirm
that the application works as expected inside the container too. Once again, don't
forget to stop the container when done by pressing Ctrl + C.

We can repeat this sequence of tasks over and over again for each feature we add or any
existing features we improve. It turns out that this is a lot of added friction compared to
times when all the applications we developed always ran directly on the host.

However, we can do better. In the next section, we will look at a technique that allows us to
remove most of the friction.

Mounting evolving code into the running
container
What if, after a code change, we do not have to rebuild the container image and rerun a
container? Wouldn't it be great if the changes would immediately, as we save them in an
editor such as VS Code, be available inside the container too? Well, exactly that is possible
with volume mapping. In the last chapter, we learned how to map an arbitrary host folder
into an arbitrary location inside a container. We want to leverage exactly that in this section.

We saw in Chapter 5, Data Volumes and Configuration, how we can map host folders as
volumes in a container. If I want, for example, to mount a host
folder, /projects/sample-app, into a container at /app, the syntax for this looks as
follows:

$ docker container run --rm -it \
 --volume /projects/sample-app:/app \
 alpine /bin/sh

Notice the line --volume <host-folder>:<container-folder>. The path to the host
folder needs to be an absolute path, as in the example, /projects/sample-app.

If we now want to run a container from our sample-app container image, and, if we do
that from the project folder, then we can map the current folder into the /app folder of the
container as follows:

$ docker container run --rm -it \
 --volume $(pwd):/app \
 -p 3000:3000 \

Debugging Code Running in Containers Chapter 6

[143]

Please note the $(pwd) in place of the host folder path. $(pwd) evaluates to the absolute
path of the current folder, which comes in very handy.

Now, if we do mount the current folder into the container as described above, then
whatever was in the /app folder of the sample-app container image will be overridden by
the content of the mapped host folder, that is, in our case, the current folder. That's exactly
what we want—we want the current source to be mapped from the host in the container.

Let's test whether it works:

Stop the container if you have started it by pressing Ctrl + C.1.
Then add the following snippet to the end of the index.js file:2.

app.get('/status', (req,res)=>{
 res.send('OK');
})

Do not forget to save.

Then run the container again – this time without rebuilding the image first – to3.
see what happens:

$ docker container run --rm -it \
 --name my-sample-app \
 --volume $(pwd):/app \
 -p 3000:3000 \
 sample-app

In your browser, navigate to localhost:3000/status and expect to see the OK4.
output in the browser window. Alternatively, you could use curl in another
terminal window:

$ curl localhost:3000/status
OK

For all those working on Windows and/or Docker for Windows, you can
use the PowerShell command Invoke-WebRequest or iwr for short
instead of curl. The equivalent to the preceding command would then
be iwr -Url localhost:3000/status.

Debugging Code Running in Containers Chapter 6

[144]

Leave the application in the container running for the moment and make yet5.
another change. Instead of just returning OK when navigating to /status, we
want the message OK, all good to be returned. Make your modification and
save the changes.
Then execute the curl command again or, if you did use the browser, refresh the6.
page. What do you see? Right—nothing happened. The change we made is not
reflected in the running application.
Well, let's double-check whether the change has been propagated in the running7.
container. To do this, let's execute the following command:

$ docker container exec my-sample-app cat index.js

We should see something like this—I have shortened the output for readability:

...
app.get('/hobbies', (req,res)=>{
 res.send(hobbies);
})

app.get('/status', (req,res)=>{
 res.send('OK, all good');
})
...

Evidently, our changes have been propagated into the container as expected.
Why, then, are the changes not reflected in the running application? Well, the
answer is simple: for changes to be applied to the application, the application has
to be restarted.

Let's try that. Stop the container with the application running by pressing Ctrl +8.
C. Then re-execute the preceding docker container run command and use
curl to probe the endpoint localhost:3000/status. Now, the following new
message should be displayed:

$ curl localhost:3000/status
 OK, all good

So, we have achieved a significant reduction in the friction in the development process by
mapping the source code in the running container. We can now add new or modify existing
code and test it without having to build the container image first. Yet, there is still a bit of
friction left in play. We have to manually restart the container every time we want to test
some new or modified code. Can we automate this? The answer is yes! We will
demonstrate exactly this in the next section.

Debugging Code Running in Containers Chapter 6

[145]

Auto restarting code upon changes
Cool—in the last section, we showed how we can massively reduce friction by volume
mapping the source code folder in the container, thus avoiding having to rebuild the
container image and rerun the container over and over again.

Yet we still feel some remaining friction. The application running inside the container does
not automatically restart when a code change happens. Thus, we have to manually stop
and restart the container to pick up the new changes.

Auto-restarting for Node.js
If you have been coding for a while, you will certainly have heard about helpful tools that
can run your applications and restart them automatically whenever they discover a change
in the code base. For Node.js applications, the most popular such tool is nodemon. We can
install nodemon globally on our system with the following command:

$ npm install -g nodemon

Now, having nodemon available, instead of starting our application (for example, on the
host) with node index.js, we can just execute nodemon and we should see the following:

Using nodemon to run a Node.js application

Evidently, nodemon has recognized, from parsing our package.json file, that it should
use node index.js as the start command.

Now try to change some code, for example, add the following code snippet at the end of
index.js and then save the file:

app.get('/colors', (req,res)=>{
 res.send(['red','green','blue']);
})

Debugging Code Running in Containers Chapter 6

[146]

Look at the terminal window. Did you see something happening? You should see this
additional output:

[nodemon] restarting due to changes...
[nodemon] starting `node index.js`
Application listening at 0.0.0.0:3000

This clearly indicates that nodemon has recognized some changes and automatically
restarted the application. Try it out with your browser by navigating to
localhost:3000/colors. You should see the following expected output in the browser:

Getting colors

This is cool—you got this result without having to manually restart the application. This
makes us yet another bit more productive. Now, can we do the same within the container?
Yes, we can. We won't use the start command node index.js, as defined in the last line of
our Dockerfile:

CMD node index.js

We will use nodemon instead.

Do we have to modify our Dockerfile? Or do we need two different Dockerfiles, one
for development and one for production?

Our original Dockerfile creates an image that unfortunately does not contain nodemon.
Thus, we need to create a new Dockerfile. Let's call it Dockerfile-dev. It should look
like this:

FROM node:latest
RUN npm install -g nodemon
WORKDIR /app
COPY package.json ./
RUN npm install
COPY . .
CMD nodemon

Debugging Code Running in Containers Chapter 6

[147]

Comparing with our original Dockerfile, we have added line 2 where we install nodemon.
We have also changed the last line and are now using nodemon as our start command.

Let's build our development image as follows:

$ docker image build -t sample-app-dev .

We'll run a container like this:

$ docker container run --rm -it \
 -v $(pwd):/app \
 -p 3000:3000 \
 sample-app-dev

Now, while the application is running in the container, change some code, save, and notice
that the application inside the container is automatically restarted. Thus, we have achieved
the same reduction in friction running in a container as we did when running directly on
the host.

You may ask, does this only apply to Node.js? No, fortunately many of the popular
languages support similar concepts.

Auto-restarting for Python
Let's look at how the same thing works for Python:

First, create a new project folder for our sample Python application and navigate1.
to it:

$ mkdir -p ~/fod/ch06/python && cd ~/fod/ch06/python

Open VS Code from within this folder with the command code ..2.
We will create a sample Python application that uses the popular Flask library.3.
Thus, add a requirements.txt file with the flask content to this folder.

Debugging Code Running in Containers Chapter 6

[148]

Next, add a main.py file and give it this content:4.

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

This is a simple Hello World type app that implements a single RESTful endpoint
at localhost:5000/.

Before we can run and test this application, we need to install the5.
dependencies—Flask in our case. In the terminal, run the following:

$ pip install -r requirements.txt

This should install Flask on your host. We are now ready to go.

When using Python, we can also use nodemon to have our application auto6.
restart upon any changes to the code. For example, assume that your command
to start the Python application is python main.py. Then you would just use
nodemon as follows:

$ nodemon main.py

You should see this:

Debugging Code Running in Containers Chapter 6

[149]

Using nodemon to start and monitor a Python application, we can test the 7.
application by using curl and should see this:

$ curl localhost:5000/
Hello World!

Let's now modify the code by adding this snippet to main.py, right after the8.
definition of the / endpoint, and save:

from flask import jsonify

@app.route("/colors")
def colors():
 return jsonify(["red", "green", "blue"])

nodemon will discover the changes and restart the Python app, as we can see in
the output produced in the terminal:

nodemon discovering a change in the Python code

Once again, believing is good, testing is better. Thus, let's use our friend curl9.
once again to probe the new endpoint and see what we get:

$ curl localhost:5000/colors
["red", "green", "blue"]

Nice—it works! With that, we have covered Python. .NET is another popular platform.
Let's see if we can do something similar to this when developing a C# application on .NET.

Debugging Code Running in Containers Chapter 6

[150]

Auto-restarting for .NET
Our next candidate is a .NET application written in C#. Let's look at how auto-restart works
in .NET.

First, create a new project folder for our sample C# application and navigate to it:1.

$ mkdir -p ~/fod/ch06/csharp && cd ~/fod/ch06/csharp

If you have not done so before, please install .NET Core on your laptop or
workstation. You can get it at https:/ /dotnet. microsoft. com/download/
dotnet- core. At the time of writing, version 2.2 is the current stable
version. Once it's installed, check the version with dotnet --version. It
is 2.2.401 for me.

Navigate to the source folder for this chapter:2.

$ cd ~/fod/ch06

From within this folder, use the dotnet tool to create a new Web API and have it3.
placed in the dotnet subfolder:

$ dotnet new webapi -o dotnet

Navigate to this new project folder:4.

$ cd dotnet

Once again, use the code . command to open VS Code from within5.
the dotnet folder.

If this is the first time you have opened a .NET Core 2.2 project with VS
Code, then the editor will start to download some C# dependencies. Wait
until all dependencies have been downloaded. The editor may also
display a popup asking you to add the missing dependencies for
our dotnet project. Click the Yes button in this case.

https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core

Debugging Code Running in Containers Chapter 6

[151]

In the project explorer of VS Code, you should see this:

DotNet Web API project in the VS Code Project Explorer

Please note the Controllers folder with the ValuesController.cs file in it.6.
Open this file and analyze its content. It contains the definition for
a ValuesController class, which implements a simple RESTful controller with
GET, PUT, POST, and DELETE endpoints at api/values.
From your terminal, run the application with dotnet run. You should see7.
something like this:

Running the .NET sample Web API on the host

Debugging Code Running in Containers Chapter 6

[152]

We can use curl to test the application as follows, for example:8.

$ curl --insecure https://localhost:5001/api/values
["value1","value2"]

The application runs and returns the expected result.

Please note that the application is configured to redirect
http://localhost:5000 to https://localhost:5001 by default.
But, this is an insecure endpoint and to suppress the warning, we use the
--insecure switch.

We can now try to modify the code in ValuesController.cs and return, say,9.
three items instead of two from the first GET endpoint:

[HttpGet]
public ActionResult<IEnumerable<string>> Get()
{
 return new string[] { "value1", "value2", "value3" };
}

Save your changes and rerun the curl command. Notice how the result does not10.
contain the new added value. It is the same problem as we observed for Node.js
and Python. To see the new updated return value, we need to (manually) restart
the application.
Thus, in your terminal, stop the application with Ctrl + C and restart it with11.
dotnet run. Try the curl command again. The result should now reflect your
changes.
Luckily for us, the dotnet tool has the watch command. Stop the application by12.
pressing Ctrl + C and execute dotnet watch run. You should see output
resembling the following:

Running the .NET sample application with the watch task

Debugging Code Running in Containers Chapter 6

[153]

Notice the second line in the preceding output, which states that the running
application is now watched for changes.

 Make another change in ValuesController.cs; for example, add a fourth item13.
to the return value of the first GET endpoint and save. Observe the output in the
terminal. It should look something like this:

Auto restarting the running sample .NET Core application

With that automatic restart of the application upon changes to the code, the14.
result is immediately available to us and we can easily test it by running
the curl command:

$ curl --insecure https://localhost:5001/api/values
["value1","value2","value3","value4"]

Now that we have auto restart working on the host, we can author a Dockerfile15.
that does the same for the application running inside a container. In VS Code,
add a new file called Dockerfile-dev to the project and add the following
content to it:

FROM mcr.microsoft.com/dotnet/core/sdk:2.2
WORKDIR /app
COPY dotnet.csproj ./
RUN dotnet restore
COPY . .
CMD dotnet watch run

Debugging Code Running in Containers Chapter 6

[154]

Before we can continue and build the container image, we need to add a slight16.
modification to the startup configuration of the .NET application, such that the
web server (Kestrel in this case) listens, for example, at 0.0.0.0:3000 and will
thus be able to run inside a container and be accessible from outside of the
container. Open the Program.cs file and make the following modification to
the CreateWebHostBuilder method:

public static IWebHostBuilder CreateWebHostBuilder(string[] args)
=>
 WebHost.CreateDefaultBuilder(args)
 .UseUrls("http://0.0.0.0:3000")
 .UseStartup<Startup>();

With the UseUrls method, we tell the web server to listen to the desired endpoints.

Now we're ready to build the container image:

To build the image use the following command:1.

$ docker image build -f Dockerfile-dev -t sample-app-dotnet .

Once the image is built, we can run a container from it:2.

$ docker container run --rm -it \
 -p 3000:3000 \
 -v $(pwd):/app \
 sample-app-dotnet

We should see a similar output to that seen when running natively:

A .NET sample application running in a container

Debugging Code Running in Containers Chapter 6

[155]

Let's test the application with our friend curl:3.

$ curl localhost:3000/api/values
["value1","value2","value3","value4"]
$
$ curl localhost:3000/api/values/1
value

No surprises here—it works as expected.

Now let's do a code change in the controller and then save. Observe what's4.
happening in the terminal window. We should see an output similar to this:

Auto restart happening to the .NET sample application running inside the container

Well, that's exactly what we expected. With this, we have removed most of the friction
introduced by using containers when developing a .NET application.

Line-by-line code debugging inside a
container
Before we dive into this section about the line-by-line debugging of code running inside a
container, let me make a disclaimer. What you will learn here should usually be your last
resort, if nothing else works. Ideally, when following a test-driven approach when
developing your application, the code is mostly guaranteed to work due to the fact that you
have written unit and integration tests for it and run them against your code, which also
runs in a container. Alternatively, if unit or integration tests don't provide you with enough
insight and you really need to debug your code line by line, you can do so having your
code running directly on your host, thus leveraging the support of development
environments such as Visual Studio, Eclipse, or IntelliJ, to name just a few IDEs.

Debugging Code Running in Containers Chapter 6

[156]

With all this preparation, you should rarely need to have to manually debug your code as it
is running inside a container. That said, let's see how you can do it!

In this section, we are going to concentrate exclusively on how to debug when using Visual
Studio Code. Other editors and IDEs may or may not offer similar capabilities.

Debugging a Node.js application
We'll start with the easiest one—a Node.js application. We will use our sample application
in folder ~/fod/ch06/node, which we worked with earlier in this chapter:

Make sure that you navigate to this project folder and open VS Code from within1.
it:

$ cd ~/fod/ch06/node
$ code .

In the terminal window, from within the project folder, run a container with our2.
sample Node.js application:

$ docker container run --rm -it \
 --name my-sample-app \
 -p 3000:3000 \
 -p 9229:9229 \
 -v $(pwd):/app \
 sample-app node --inspect=0.0.0.0 index.js

Note how I map port 9229 to the host. This port is used by the debugger, and VS Studio
will communicate with our Node application via this port. Thus it is important that you
open this port—but only during a debugging session! Also note that we override the
standard start command defined in the Dockerfile (node index.js) with node --
inspect=0.0.0.0 index.js. --inspect=0.0.0.0 tells Node to run in debug mode and
listen on all IP4 addresses in the container.

Now we are ready to define a VS Code launch task for the scenario at hand, that is, our
code running inside a container:

To open thelaunch.json file, press Ctrl+Shift+P (or Ctrl+Shift+P on Windows) to1.
open the command palette and look for Debug:Open launch.json and select it.
The launch.json file should open in the editor.
Click the blue Add Configuration... button to add the new configuration we2.
need to debug inside the container.

Debugging Code Running in Containers Chapter 6

[157]

From the options, select Docker: Attach to Node. A new entry will be added3.
to the configurations list in the launch.json file. It should look similar to this:

{
 "type": "node",
 "request": "attach",
 "name": "Docker: Attach to Node",
 "remoteRoot": "/usr/src/app"
},

Since we have our code in the /app folder, inside the container, we need to
change the value of remoteRoot accordingly. Change the /usr/src/app value
to just /app. Do not forget to save your change. That's it, we are ready to roll.

Open the Debug view in VS Code by pressing command + Shift + D (Ctrl + Shift +4.
D on Windows).
Make sure you select the correct launch task in the dropdown right next to the5.
green start button at the top of the view. Select Docker: Attach to Node as
shown here:

Selecting the correct launch task for debugging in VS Code

Next click on the green start button to attach VS Code to the Node application6.
running in the container.
Open index.js in the editor and put a breakpoint on the line that returns the7.
message "Sample Application: Hello World!" when calling the endpoint
'/'.

Debugging Code Running in Containers Chapter 6

[158]

In another terminal window, use curl to navigate to localhost:3000/ and8.
observe that the code execution stops at the breakpoint:

The code execution stops at the breakpoint

In the preceding screenshot, we can see the yellow bar indicating that the code execution
has stopped at the breakpoint. In the upper-right corner, we have a toolbar that allows us to
navigate through the code, for example, step by step. On the left-hand side, we see the
VARIABLES, WATCH, and CALL STACK windows, which we can use to observe the details of
our running application. The fact that we are really debugging the code running inside the
container can be verified by the fact that in the terminal windows where we started the
container, we see the output Debugger attached., which was generated the moment we
started debugging inside VS Code.

Debugging Code Running in Containers Chapter 6

[159]

Let's look how we can further improve the debugging experience:

To stop the container, enter the following command in the terminal:1.

$ docker container rm -f my-sample-app

If we want to use nodemon for even more flexibility, then we have to change the2.
container run command slightly:

$ docker container run --rm -it \
 --name my-sample-app \
 -p 3000:3000 \
 -p 9229:9229 \
 -v $(pwd):/app \
 sample-app-dev nodemon --inspect=0.0.0.0 index.js

Note how we use the start command, nodemon --inspect=0.0.0.0
index.js. This will have the benefit that, upon any code changes, the application
running inside the container will restart automatically, as we learned earlier in
this chapter. You should see the following:

Starting the Node.js application with nodemon and debugging turned on

Debugging Code Running in Containers Chapter 6

[160]

Unfortunately, the consequence of an application restart is that the debugger3.
loses the connection with VS Code. But no worries—we can mitigate this by
adding "restart": true to our launch task in the launch.json file. Modify
the task such that it looks like this:

{
 "type": "node",
 "request": "attach",
 "name": "Docker: Attach to Node",
 "remoteRoot": "/app",
 "restart": true
},

After saving your changes, start the debugger in VS Code by clicking the green4.
start button in the debug window. In the terminal, you should again see that
the Debugger attached. message is output. In addition to that, VS Code
shows an orange status bar at the bottom, indicating that the editor is in debug
mode.
In a different terminal window, use curl and try to navigate to5.
localhost:3000/ to test that line-by-line debugging still works. Make sure
code execution stops at any breakpoint you have set in the code.
Once you have verified that debugging still works, try to modify some code; for6.
example, change the message "Sample Application: Hello World!" to
"Sample Application: Message from within container" and save your
changes. Observe how nodemon restarts the application and the debugger is
automatically re-attached to the application running inside the container:

nodemon restarting the application and the debugger automatically re-attaching to application

With that, we have everything assembled and can now work with code running inside a
container as if the same code were running natively on the host. We have removed pretty
much all of the friction that the introduction of containers brought into the development
process. We can now just enjoy the benefits of deploying our code in containers.

To clean up, stop the container by pressing Ctrl + C.

Debugging Code Running in Containers Chapter 6

[161]

Debugging a .NET application
Now we want to give a quick run-through on how you can debug a .NET application line-
by-line. We will use the sample .NET application that we created earlier in this chapter.

Navigate to the project folder and open VS Code from within there:1.

$ cd ~/fod/ch06/dotnet
$ code .

To work with the debugger, we need to first install the debugger in the container.2.
Thus, let's create a new Dockerfile in the project directory. Call it
Dockerfile-debug and add the following content:

FROM mcr.microsoft.com/dotnet/core/sdk:2.2
RUN apt-get update && apt-get install -y unzip && \
 curl -sSL https://aka.ms/getvsdbgsh | \
 /bin/sh /dev/stdin -v latest -l ~/vsdbg
WORKDIR /app
COPY dotnet.csproj ./
RUN dotnet restore
COPY . .
CMD dotnet watch run

Please note the second line of the Dockerfile, which uses apt-get to install the
unzip tool and then uses curl to download and install the debugger.

We can build an image called sample-app-dotnet-debug from this3.
Dockerfile as follows:

$ docker image build -t sample-app-dotnet-debug .

This command can take a moment to execute since, among other things, the
debugger has to be downloaded and installed.

Once this is done, we can run a container from this image interactively:4.

$ docker run --rm -it \
 -v $(pwd):/app \
 -w /app \
 -p 3000:3000 \
 --name my-sample-app \
 --hostname sample-app \
 sample-app-dotnet-debug

Debugging Code Running in Containers Chapter 6

[162]

We will see something like this:

Sample .NET application started interactively inside the SDK container

In VS Code, open the launch.json file and add the following launch task:5.

{
 "name": ".NET Core Docker Attach",
 "type": "coreclr",
 "request": "attach",
 "processId": "${command:pickRemoteProcess}",
 "pipeTransport": {
 "pipeProgram": "docker",
 "pipeArgs": ["exec", "-i", "my-sample-app"],
 "debuggerPath": "/root/vsdbg/vsdbg",
 "pipeCwd": "${workspaceRoot}",
 "quoteArgs": false
 },
 "sourceFileMap": {
 "/app": "${workspaceRoot}"
 },
 "logging": {
 "engineLogging": true
 }
},

Debugging Code Running in Containers Chapter 6

[163]

Save your changes and switch to the debug window of VS Code (use command +6.
Shift + D or Ctrl + Shift + D to open it). Make sure you have selected the correct
debug launch task—its name is .NET Core Docker Attach:

Select the correct debug launch task in VS Code

Now click the green start button to start the debugger. As a consequence, the7.
popup to select the process shows up with the list of potential processes to attach
to. Select the process that looks like the one marked in the following screenshot:

Select the process to attach the debugger to

Debugging Code Running in Containers Chapter 6

[164]

Let's put a breakpoint in the first GET request of the ValuesController.cs file8.
and then execute a curl command:

$ curl localhost:3000/api/values

The code execution should stop at the breakpoint, as shown here:

Line-by-line debugging a .NET Core application running inside a container

We can now step through the code, define watches, or analyze the call stack of9.
the application, similar to what we did with the sample Node.js application. Hit
the Continue button on the debug toolbar or press F5 to continue the code
execution.
Now change some code and save the changes. Observe in the terminal window10.
how the application is automatically restarted.
Use curl again to test whether your changes are visible to the application.11.
Indeed, the changes are available, but have you noticed something? Yes—the
code execution did not start at the breakpoint. Unfortunately, restarting the
application caused the debugger to disconnect. You have to re-attach the
debugger afresh by clicking the start button in the debug view of VS Code and
selecting the right process.
To stop the application, press Ctrl + C in the terminal window where you started12.
the container.

Now that we know how to debug code running in a container line by line, it is time to
instrument our code such that it produces meaningful logging information.

Debugging Code Running in Containers Chapter 6

[165]

Instrumenting your code to produce
meaningful logging information
Once an application is running in production, it is impossible or strongly discouraged to
interactively debug the application. Thus, we need to come up with other ways to find the
root cause when the system is behaving unexpectedly or causing errors. The best way is to
have the application generate detailed logging information that can then be used by the
developers that need to track down any errors. Since logging is such a common task, all
relevant programming languages or frameworks offer libraries that make the task of
producing logging information inside an application straightforward.

It is common to categorize the information output by an application as logs into so-called
severity levels. Here is the list of those severity levels with a short description of each:

Security levels Explanation

TRACE Very fine-grained information. At this level, you are looking at capturing
every detail possible about your application's behavior.

DEBUG Relatively granular and mostly diagnostic information helping to pin
down potential problems if they occur.

INFO Normal application behavior or milestones.

WARN The application might have encountered a problem or you detected an
unusual situation.

ERROR The application encountered a serious issue. This most probably
represents the failure of an important application task.

FATAL The catastrophic failure of your application. The immediate shutdown of
the application is advised.

List of the severity levels used when generating logging information

Logging libraries usually allow a developer to define different log sinks, that is,
destinations for the logging information. Popular sinks are file sinks or a stream to the
console. When working with containerized applications, it is strongly recommended to
always direct logging output to the console or STDOUT. Docker will then make this
information available to you via the docker container logs command. Other log
collectors, such as Prometheus, can also be used to scrape this information.

Debugging Code Running in Containers Chapter 6

[166]

Instrumenting a Python application
Let's now try to instrument our existing Python sample application:

First, in your terminal, navigate to the project folder and open VS Code:1.

$ cd ~/fob/ch06/python
$ code .

Open the main.py file and add the following code snippet to the top of it:2.

Defining a logger for our Python sample application

On line 1, we import the standard logging library. We then define a logger for
our sample application of line 3. On line 4, we define the filter for logging to be
used. In this case, we set it to WARN. That means that all logging messages
produced by the application with a severity equal to or higher than WARN will be
output to the defined logging handlers or sinks as we called them at the
beginning of this section. In our case, only log messages with a log level of WARN,
ERROR, or FATAL will be output.

Debugging Code Running in Containers Chapter 6

[167]

On line 6, we create a logging sink or handler. In our case, it is StreamHandler,
which outputs to STDOUT. Then, on line 8, we define how we want the logger to
format the messages it outputs. Here, the format that we chose will output the
time and date, the application (or logger) name, the log severity level, and
finally, the actual message that we developers define in code. On line 9, we add
the formatter to the log handler, and, on line 10, we add the handler to the
logger. Note that we can define more than one handler per logger. Now we are
ready to use the logger.

Let's instrument the hello function, which is called when we navigate to the3.
endpoint /:

Instrumenting a method with logging

As you can see in the preceding screenshot, we have added line 17, where we use
the logger object to produce a logging message with log level INFO. The message
is: "Accessing endpoint '/'".

Let's instrument another function and output a message with the log level WARN:4.

Generating a warning

This time, we produce a message with the log level WARN on line 24 in the
colors function. So far, so good—that wasn't hard!

Let's now run the application and see what output we get:5.

$ python main.py

Debugging Code Running in Containers Chapter 6

[168]

Then, in your browser, navigate to localhost:5000/ first and then to6.
localhost:5000/colors. You should see an output similar to this:

Running the instrumented sample Python application

As you can see, only the warning is output to the console; the INFO message is not. This is
due to the filter we set when defining the logger. Also note how our logging message is
formatted with the date and time at the beginning, then the name of the logger, the log
level, and finally, our actual message defined on line 24 of our application. When done,
please stop the application by pressing Ctrl + C.

Instrumenting a .NET C# application
 Let's now instrument our sample C# application:

First, navigate to the project folder, from where you'll open VS Code:1.

$ cd ~/fod/ch06/dotnet
$ code .

Next, we need to add a NuGet package containing the logging library to the2.
project:

$ dotnet add package Microsoft.Extensions.Logging

This should add the following line to your dotnet.csproj project file:

<PackageReference Include="Microsoft.Extensions.Logging"
Version="2.2.0" />

Debugging Code Running in Containers Chapter 6

[169]

Open the Program.cs class and notice that we call3.
the CreateDefaultBuilder(args) method on line 21:

Configuring logging in ASP.NET Core 2.2

This method, by default, adds a few logging providers to the application, among
them the console logging provider. This comes in very handy and frees us from
having to do any complicated configuration first. You can, of course, override the
default setting any time with your own settings.

Next, open the ValuesController.cs file in the Controllers folder and add4.
the following using statement to the top of the file:

using Microsoft.Extensions.Logging;

Then, in the class body, add an instance variable, _logger, of type ILogger and5.
add a constructor that has a parameter of type ILogger<T>. Assign this
parameter to the instance variable _logger:

Defining a logger for the Web API controller

Debugging Code Running in Containers Chapter 6

[170]

Now we're ready to use the logger in the controller methods. Let's instrument the6.
Get method with an INFO message:

Logging an INFO message from the API controller

Let's now instrument the Get(int id) method:7.

Logging messages with log levels WARN and ERROR

On line 31, we have the logger generate a DEBUG message and then we have some
logic on line 32 to catch unexpected values for id and producing ERROR messages
and returning an HTTP response status of 404 (not found).

Let's run the application with the following:8.

$ dotnet run

Debugging Code Running in Containers Chapter 6

[171]

We should see this when navigating to localhost:3000/api/values:9.

Log of our sample .NET application when accessing endpoint /api/values

We can see the output of our log message of type INFO. All the other log items
have been produced by the ASP.NET Core library. You can see that there is a lot
of helpful information available if you need to debug the application.

Now let's try to access the endpoint /api/values/{id} with an invalid value10.
for {id}. We should see something along the lines of this:

Debug and error log items generated by our .NET sample application

We can clearly first see the log item with the level DEBUG and then the one with
the level ERROR. The latter in the output is marked in red as fail.

When done, please end the application with Ctrl + C.11.

Debugging Code Running in Containers Chapter 6

[172]

Now that we have learned about instrumenting, we will look at Jaeger in the next section.

Using Jaeger to monitor and troubleshoot
When we want to monitor and troubleshoot transactions in a complex distributed system,
we need something a bit more powerful than what we have just learned. Of course, we can
and should continue to instrument our code with meaningful logging messages, yet we
need something more on top of that. This more is the capability to trace a single request or
transaction end to end, as it flows through the system consisting of many application
services. Ideally, we would also want to capture other interesting metrics such as the time
spent on each component versus the total time that the request took.

Luckily, we do not have to reinvent the wheel. There is battle-tested open source software
out there that helps us to achieve exactly the aforementioned goals. One example of such an
infrastructure component or software is Jaeger (https:/ /www. jaegertracing. io/). When
using Jaeger, you run a central Jaeger server component and each application component
uses a Jaeger client that will forward debug and tracing information transparently to the
Jaeger server component. There are Jaeger clients for all major programming languages and
frameworks, such as Node.js, Python, Java, and .NET.

We will not go into all the intimate details of how to use Jaeger in this book, but will give a
high-level overview of how it works conceptually:

First, we define a Jaeger tracer object. This object basically coordinates the1.
whole process of tracing a request through our distributed application. We can
use this tracer object and also create a logger object from it, which our
application code can use to generate log items, similar to what we did in the
previous Python and .NET examples.
Next, we have to wrap each method in the code that we want to trace with what2.
Jaeger calls a span. The span has a name and provides us with a scope object.
Let's look at some C# pseudo-code that illustrates that:

public void SayHello(string helloTo) {
 using(var scope = _tracer.BuildSpan("say-
hello").StartActive(true)) {
 // here is the actual logic of the method
 ...
 var helloString = FormatString(helloTo);
 ...
 }
}

https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/

Debugging Code Running in Containers Chapter 6

[173]

As you can see, we're instrumenting the SayHello method. With a using statement
creating a span, we're wrapping the whole application code of this method. We call the
span "say-hello", and this will be the ID with which we can identify the method in the
trace log produced by Jaeger.

Note that the method calls another nested method, FormatString. This method will look
quite similar in regard to the code needed for instrumenting it:

public void string Format(string helloTo) {
 using(var scope = _tracer.BuildSpan("format-string").StartActive(true))
{
 // here is the actual logic of the method
 ...
 _logger.LogInformation(helloTo);
 return
 ...
 }
}

The span that our tracer object builds in this method will be a child span of the calling
method. This child span here is called "format-string". Also note that we are using the
logger object in the preceding method to explicitly generate a log item of level INFO.

In the code included with this chapter, you can find a complete sample application written
in C# consisting of a Jaeger server container and two application containers called client
and library that use the Jaeger client library to instrument the code.

Navigate to the project folder:1.

$ cd ~/fod/ch06/jaeger-sample

Next, start the Jaeger server container:2.

$ docker run -d --name jaeger \
 -e COLLECTOR_ZIPKIN_HTTP_PORT=9411 \
 -p 5775:5775/udp \
 -p 6831:6831/udp \
 -p 6832:6832/udp \
 -p 5778:5778 \
 -p 16686:16686 \
 -p 14268:14268 \
 -p 9411:9411 \
 jaegertracing/all-in-one:1.13

Debugging Code Running in Containers Chapter 6

[174]

Next, we need to run the API, which is implemented as an ASP.NET Core 2.23.
Web API component. Navigate to the api folder and start the component:

Starting the API component of the Jaeger sample

Now open a new terminal window and navigate into the client subfolder and4.
then run the application:

$ cd ~/fod/ch06/jaeger-sample/client
 $ dotnet run Gabriel Bonjour

Please note the two parameters I am passing—Gabriel and Bonjour—which
correspond with <name> and <greeting>. You should see something along the
lines of this:

Running the client component of the Jaeger sample application

Debugging Code Running in Containers Chapter 6

[175]

In the preceding output, you can see the three spans marked with red arrows, starting from
the innermost to the outermost span. We can also use the graphical UI of Jaeger to see more
details:

In your browser, navigate to http://localhost:16686 to access the Jaeger UI.1.
In the Search panel, make sure the hello-world service is selected. Leave2.
Operation as all and click the Find Traces button. You should see the
following:

The Search view of the Jaeger UI

Debugging Code Running in Containers Chapter 6

[176]

Now click on the (only) entry hello-world: say-hello to see the details of2.
that request:

Details of the request as reported by Jaeger

In the preceding screenshot, we can see how the request starts in the hello-
world component in the say-hello method, then navigates to the format-
string method in the same component, which, in turn, calls an endpoint in
Webservice, whose logic is implemented in the FormatController controller.
For each and every step, we see the exact timings as well as other interesting
information. You can drill down in this view to see even more details.

Before you continue, you may want to take some time and browse through the
code of the API and the client component that we just used for this demo.

To clean up, stop the Jaeger server container:3.

$ docker container rm -f jaeger

Also stop the API with Ctrl + C.

Debugging Code Running in Containers Chapter 6

[177]

Summary
In this chapter, we have learned how to debug Node.js, Python, Java, and .NET code
running inside a container. We first started by mounting the source code from the host into
the container to avoid a rebuild of the container image each time the code changes. Then,
we smoothed out the development process further by enabling automatic application
restart inside the container upon code changes. Next, we learned how to configure Visual
Studio Code to enable the full interactive debugging of code running inside a container.
Finally, we learned how we can instrument our applications such that they generate
logging information that can help us to do root cause analysis on failures or misbehaving
applications or application services running in production.

In the next chapter, we are going to show how using Docker containers can super-charge
your automation, from running a simple automation task in a container, to using containers
to build up CI/CD pipelines.

Questions
Please try to answer the following questions to assess your learning progress:

Name two methods that help to reduce the friction in the development process1.
introduced by the use of containers.

How can you achieve a live update of code inside a container?2.

When and why would you use the line-by-line debugging of code running inside3.
a container?

Why is instrumenting code with good debugging information paramount?4.

Debugging Code Running in Containers Chapter 6

[178]

Further reading
Live debugging with Docker: https:/ /www. docker. com/ blog/ live- debugging-
docker/

Debug apps in a local Docker container: https:/ /docs. microsoft. com/ en- us/
visualstudio/ containers/ edit- and- refresh? view= vs- 2019

Debug your java applications in Docker using IntelliJ IDEA: https:/ / blog.
jetbrains. com/ idea/ 2019/ 04/ debug- your- java- applications- in- docker-
using-intellij- idea/

https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://www.docker.com/blog/live-debugging-docker/
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/containers/edit-and-refresh?view=vs-2019
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/
https://blog.jetbrains.com/idea/2019/04/debug-your-java-applications-in-docker-using-intellij-idea/

7
Using Docker to Supercharge

Automation
In the last chapter, we introduced techniques commonly used to allow a developer to
evolve, modify, debug, and test their code while running in a container. We also learned
how to instrument applications so that they generate logging information that can help us
to do root cause analysis of failures or misbehaviors of applications or application services
that are running in production.

In this chapter, we will show how you can use tools to perform administrative tasks
without having to install those tools on the host computer. We will also illustrate the use of
containers that host and run test scripts or code used to test and validate application
services running in containers. Finally, we will guide the reader through the task of
building a simple Docker-based CI/CD pipeline.

This is a quick overview of all of the subjects we are going to touch on in this chapter:

Executing simple admin tasks in a container
Using test containers
Using Docker to power a CI/CD pipeline

After finishing this chapter, you will be able to do the following:

Run a tool not available on the host in a container
Use a container to run test scripts or code against an application service
Build a simple CI/CD pipeline using Docker

Using Docker to Supercharge Automation Chapter 7

[180]

Technical requirements
In this section, if you want to follow along with the code, you need Docker for Desktop on
your macOS or Windows machine and a code editor, preferably Visual Studio Code. The
sample will also work on a Linux machine with Docker and VS Code installed.

Executing simple admin tasks in a container
Let's assume you need to strip all leading whitespaces from a file and you found the
following handy Perl script to do exactly that:

$ cat sample.txt | perl -lpe 's/^\s*//'

As it turns out, you don't have Perl installed on your working machine. What can you do?
Install Perl on the machine? Well, that would certainly be an option, and it's exactly what
most developers or system admins do. But wait a second, you already have Docker
installed on your machine. Can't we use Docker to circumvent the need to install Perl? Yes,
we can. This is how we're going to do it:

Create a folder, ch07/simple-task, and navigate to it:1.

$ mkdir -p ~/fod/ch07/simple-task && cd ~/fod/ch07/simple-task

Open VS Code from within this folder:2.

$ code .

In this folder, create a sample.txt file with the following content:3.

1234567890
 This is some text
 another line of text
 more text
 final line

Please note the whitespaces at the beginning of each line. Save the file.

Using Docker to Supercharge Automation Chapter 7

[181]

Now, we can run a container with Perl installed in it. Thankfully, there is an4.
official Perl image on Docker Hub. We are going to use the slim version of the
image:

$ docker container run --rm -it \
 -v $(pwd):/usr/src/app \
 -w /usr/src/app \
 perl:slim sh -c "cat sample.txt | perl -lpe 's/^\s*//'"

The preceding command runs a Perl container (perl:slim) interactively, maps
the content of the current folder into the /usr/src/app folder of the container,
and sets the working folder inside the container to /usr/src/app. The command
that is run inside the container is sh -c "cat sample.txt | perl -lpe
's/^\s*//'", basically spawning a Bourne shell and executing our desired Perl
command.

The output generated by the preceding command should look like this:

1234567890
This is some text
another line of text
more text
final line

Without needing to install Perl on our machine, we were able to achieve our goal.5.

If that doesn't convince you yet because if you're on macOS, you already have
Perl installed, then consider you're looking into running a Perl script named
your-old-perl-script.pl that is old and not compatible with the newest
release of Perl that you happen to have installed on your system. Do you try to
install multiple versions of Perl on your machine and potentially break
something? No, you just run a container with the (old) version of Perl that is
compatible with your script, as in this example:

$ docker container run -it --rm \
 -v $(pwd):/usr/src/app \
 -w /usr/src/app \
 perl:<old-version> perl your-old-perl-script.pl

Here, <old-version> corresponds to the tag of the version of Perl that you need
to run your script. The nice thing is that, after the script has run, the container is
removed from your system without leaving any traces because we used the --rm
flag in the docker container run command.

Using Docker to Supercharge Automation Chapter 7

[182]

A lot of people use quick and dirty Python scripts or mini apps to automate tasks that are
not easily coded with, say, Bash. Now if the Python script has been written in Python 3.7
and you only happen to have Python 2.7 installed, or no version at all on your machine,
then the easiest solution is to execute the script inside a container. Let's assume a simple
example where the Python script counts lines, words, and letters in a given file and outputs
the result to the console:

Still in the ch07/simple-task folder add a stats.py file and add the following1.
content:

import sys

fname = sys.argv[1]
lines = 0
words = 0
letters = 0

for line in open(fname):
 lines += 1
 letters += len(line)

 pos = 'out'
 for letter in line:
 if letter != ' ' and pos == 'out':
 words += 1
 pos = 'in'
 elif letter == ' ':
 pos = 'out'

print("Lines:", lines)
print("Words:", words)
print("Letters:", letters)

After saving the file, you can run it with the following command:2.

$ docker container run --rm -it \
 -v $(pwd):/usr/src/app \
 -w /usr/src/app \
 python:3.7.4-alpine python stats.py sample.txt

Note that, in this example, we are reusing the sample.txt file from before. The
output in my case is as follows:

Lines: 5
Words: 13
Letters: 81

Using Docker to Supercharge Automation Chapter 7

[183]

The beauty of this approach is that this Python script will now run on any
computer with any OS installed, as long as the machine is a Docker host and,
hence, can run containers.

Using test containers
For each serious software project out there, it is highly recommended to have plenty of tests
in place. There are various test categories such as unit tests, integration tests, stress and
load tests, and end-to-end tests. I have tried to visualize the different categories in the
following screenshot:

Categories of application tests

Using Docker to Supercharge Automation Chapter 7

[184]

Unit tests assert the correctness and quality of an individual, isolated piece of the overall
application or application service. Integration tests make sure that pieces that are closely
related work together as expected. Stress and load tests often take the application or service
as a whole and assert a correct behavior under various edge cases such as high load
through multiple concurrent requests handled by the service, or by flooding the service
with a huge amount of data. Finally, end-to-end tests simulate a real user working with the
application or application service. The typical tasks that a user would do are automated.

The code or component under test is often called a System Under Test (SUT).

Unit tests are in their nature tightly coupled to the actual code or SUT. It is, hence,
necessary that those tests run in the same context as the code under test. Hence, the test
code lives in the same container as the SUT. All external dependencies of the SUT are either
mocked or stubbed.

Integration tests, stress and load tests, and end-to-end tests, on the other hand, act on public
interfaces of the system under test and it is, hence, most common to run that test code in a
separate container:

Integration tests using containers

In the preceding diagram, we can see the Test Code running in its own Test Container. The
Test Code accesses the public interface of the API component that also runs in a dedicated
container. The API component has external dependencies such as Other Service and
Database that each run in their dedicated container. In this case, the whole ensemble of
API, Other Service, and Database is our system under test, or SUT.

Using Docker to Supercharge Automation Chapter 7

[185]

What exactly would stress and load tests look like? Imagine a situation where we have a
Kafka Streams application we want to put under test. The following diagram gives an idea
of what exactly we could test, from a high level:

Stress and load test a Kafka Streams application

In a nutshell, a Kafka Streams application consumes data from one or more topics stored
in Apache Kafka(R). The application filters, transforms, or aggregates the data. The
resulting data is written back to one or several topics in Kafka. Typically, when working
with Kafka, we deal with real-time data streaming into Kafka. Tests could now simulate the
following:

Large topics with a huge amount of records
Data flowing into Kafka with a very high frequency
Data being grouped by the application under test, where there is a lot of distinct
keys, each one with low cardinality
Data aggregated by time windows where the size of the window is small, for
example, each only a few seconds long

End-to-end tests automate the users that interact with an application by the use of tools
such as the Selenium Web Driver, which provides a developer means to automate actions
on a given web page such as filling out fields in a form or clicking buttons.

Using Docker to Supercharge Automation Chapter 7

[186]

Integration tests for a Node.js application
Let's now have a look at a sample integration test implemented in Node.js. Here is the
setup that we are going to look into:

Integration tests for an Express JS Application

Following are the steps to create such an integration test:

Let's first prepare our project folder structure. We create the project root and1.
navigate to it:

$ mkdir ~/fod/ch07/integration-test-node && \
 cd ~/fod/ch07/integration-test-node

Within this folder, we create three subfolders, tests, api, and database:2.

$ mkdir tests api database

Now, we open VS Code from the project root:3.

$ code .

To the database folder, add an init-script.sql file with the following4.
content:

CREATE TABLE hobbies(
 hobby_id serial PRIMARY KEY,
 hobby VARCHAR (255) UNIQUE NOT NULL
);

insert into hobbies(hobby) values('swimming');
insert into hobbies(hobby) values('diving');
insert into hobbies(hobby) values('jogging');
insert into hobbies(hobby) values('dancing');
insert into hobbies(hobby) values('cooking');

Using Docker to Supercharge Automation Chapter 7

[187]

The preceding script will create a hobbies table in our Postgres database that we
are going to use and fill it with some seed data. Save the file.

Now we can start the database. Of course, we are going to use the official Docker5.
image for Postgres to run the database in a container. But first, we will create a
Docker volume where the database will store its files. We will call the volume
pg-data:

$ docker volume create pg-data

Now, it's time to run the database container. From within the project root folder6.
(integration-test-node), run the following:

$ docker container run -d \
 --name postgres \
 -p 5432:5432 \
 -v $(pwd)/database:/docker-entrypoint-initdb.d \
 -v pg-data:/var/lib/postgresql/data \
 -e POSTGRES_USER=dbuser \
 -e POSTGRES_DB=sample-db \
 postgres:11.5-alpine

Note that the folder from which you run the preceding command matters, due to
the volume mounting we are using for the database initialization script, init-
script.sql. Also note that we are using environment variables to define the
name and user of the database in Postgres, and we are mapping port 5432 of
Postgres to the equivalent port on our host machine.

After you have started the database container, double-check that it runs as7.
expected by retrieving its logs:

$ docker container logs postgres

You should see something similar to this:

...
server started
CREATE DATABASE

/usr/local/bin/docker-entrypoint.sh: running /docker-entrypoint-
initdb.d/init-db.sql
CREATE TABLE
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1

Using Docker to Supercharge Automation Chapter 7

[188]

INSERT 0 1

...

PostgreSQL init process complete; ready for start up.

2019-09-07 17:22:30.056 UTC [1] LOG: listening on IPv4 address
"0.0.0.0", port 5432
...

Note, we have shortened the output for better readability. The important parts of
the preceding output are the first few lines, where we can see that the database
has picked up our initialization script, created the hobbies table and seeded it
with five records. Also important is the last line, telling us that the database is
ready to work. The container logs are always your first stop when
troubleshooting problems!

With that, our first piece of the SUT is ready. Let's move on to the next one, which is our
API implemented in Express JS:

In the Terminal window, navigate to the api folder:1.

$ cd ~/fod/ch07/integration-test-node/api

Then, run npm init to initialize the API project. Just accept all defaults:2.

$ npm init

The resulting package.json file should look like this:

{
 "name": "api",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

Using Docker to Supercharge Automation Chapter 7

[189]

Modify the scripts node of the preceding file so that it contains a start3.
command:

Adding a start script to the package.json file

We then have to install Express JS and can do so with the following command:4.

$ npm install express --save

This will install the library and all of its dependencies and add a
dependencies node to our package.json file that looks similar to this:

Adding Express JS as a dependency to the API

In the api folder, create a server.js file and add the following code snippet:5.

Simple Express JS API

This is a simple Express JS API with only the / endpoint implemented. It serves
as a starting point for our exploration into integration testing. Note that the API
will be listening at port 3000, on all endpoints inside the container (0.0.0.0).

Using Docker to Supercharge Automation Chapter 7

[190]

Now we can start the API with npm start and then test the home endpoint, for6.
example, with curl:

$ curl localhost:3000
Sample API

After all of these steps, we're ready to scaffold the test environment.

We will be using jasmine to write our tests. Navigate to the tests folder and7.
run npm init to initialize the test project:

$ cd ~/fod/ch07/integration-test-node/tests && \
 npm init

Accept all of the defaults.

Next, add jasmine to the project:8.

$ npm install --save-dev jasmine

Then initialize jasmine for this project:9.

$ node node_modules/jasmine/bin/jasmine init

We also need to change our package.json file so that the scripts block looks10.
like this:

Adding a test script for our integration tests

Using Docker to Supercharge Automation Chapter 7

[191]

We cannot run the tests any time by executing npm test from within the tests11.
folder. The first time we run it, we will get an error since we have not yet added
any tests:

The first run fails since no tests were found

Now in the spec/support subfolder of the project, let's create12.
a jasmine.json file. This will contain the configuration settings for the
jasmine test framework. Add the following code snippet to this file and save:

{
 "spec_dir": "spec",
 "spec_files": [
 "**/*[sS]pec.js"
],
 "stopSpecOnExpectationFailure": false,
 "random": false
}

Since we are going to author integration tests we will want to access the SUT via13.
its public interface, which, in our case, is a RESTful API. Hence, we need a client
library that allows us to do so. My choice is the Requests library. Let's add it to
our project:

$ npm install request --save-dev

Using Docker to Supercharge Automation Chapter 7

[192]

Add an api-spec.js file to the spec subfolder of the project. It will contain our14.
test functions. Let's start with the first one:

Sample test suite for the API

We are using the request library to make RESTful calls to our API (line 1). Then,
on line 3, we're defining the base URL on which the API is listening. Note, the
code that we use allows us to override the default of http://localhost:3000
with whatever we define in an environment variable called BASE_URL. Line 5
defines our test suite, which, on line 6, has a test for GET /. We then assert two
outcomes, namely that the status code of a GET call to / is 200 (OK) and that the
text returned in the body of the response is equal to Sample API.

Using Docker to Supercharge Automation Chapter 7

[193]

If we run the test now, we get the following outcome:15.

Successfully running Jasmine-based integration tests

We have two specifications—another word for tests—running; all of them are
successful since we have zero failures reported.

Before we continue, please stop the API and remove the Postgres container with16.
docker container rm -f postgres.

So far so good, but now let's bring containers to the table. That's what we are most excited
about, isn't it? We're excited to run everything, including test code in containers. If you
recall, we are going to deal with three containers, the database, the API, and the container
with the test code. For the database, we are just using the standard Postgres Docker image,
but, for the API and tests, we will create our own images:

Let's start with the API. To the api folder, add a Dockerfile file with this1.
content:

FROM node:alpine
WORKDIR /usr/src/app
COPY package.json ./
RUN npm install
COPY . .
EXPOSE 3000
CMD npm start

This is just a very standard way of creating a container image for a Node.js based
application. There's nothing special here.

To the tests folder, also add a Dockerfile with this content:2.

FROM node:alpine
WORKDIR /usr/src/app
COPY package.json ./

Using Docker to Supercharge Automation Chapter 7

[194]

RUN npm install
COPY . .
CMD npm test

Now, we're ready to run all three containers, in the right sequence. To simplify3.
this task, let's create a shell script that does exactly that. Add a test.sh file to
the integration-test-node folder, our project root folder. Add the following
content to this file and save:

docker image build -t api-node api
docker image build -t tests-node tests

docker network create test-net

docker container run --rm -d \
 --name postgres \
 --net test-net \
 -v $(pwd)/database:/docker-entrypoint-initdb.d \
 -v pg-data:/var/lib/postgresql/data \
 -e POSTGRES_USER=dbuser \
 -e POSTGRES_DB=sample-db \
 postgres:11.5-alpine

docker container run --rm -d \
 --name api \
 --net test-net \
 api-node

echo "Sleeping for 5 sec..."
sleep 5

docker container run --rm -it \
 --name tests \
 --net test-net \
 -e BASE_URL="http://api:3000" \
 tests-node

On the first two lines of the script, we make sure that the two container images for
API and tests are built with the newest code. Then, we create a Docker network
called test-net on which we will run all three containers. Don't worry about the
details of this as we will explain networks in detail in Chapter 10, Single Host
Networking. For the moment, suffice to say that if all containers run on the same
network, then the applications running inside those containers can see each other
as if they were running natively on the host, and they can call each other by name.

Using Docker to Supercharge Automation Chapter 7

[195]

The next command starts the database container, followed by the command that
starts the API. Then, we pause for a few seconds to give the database and the API
time to completely start up and initialize, before we start the third and final
container, the tests container.

Make this file an executable with the following:4.

$ chmod +x ./test.sh

Now you can run it:5.

$./test.sh

If everything works as expected, you should see something along these lines
(shortened for readability):

...
Successfully built 44e0900aaae2
Successfully tagged tests-node:latest
b4f233c3578898ae851dc6facaa310b014ec86f4507afd0a5afb10027f10c79d
728eb5a573d2c3c1f3a44154e172ed9565606af8e7653afb560ee7e99275ecf6
0474ea5e0afbcc4d9cd966de17e991a6e9a3cec85c53a934545c9352abf87bc6
Sleeping for 10 sec...

> tests@1.0.0 test /usr/src/app
> jasmine

Started
..

2 specs, 0 failures
Finished in 0.072 seconds

We can also create a script that cleans up after testing. For this, add a file called6.
cleanup.sh and make it an executable the same way as you've done with the
test.sh script. Add the following code snippet to this file:

docker container rm -f postgres api
docker network rm test-net
docker volume rm pg-data

Line one removes the postgres and api containers. Line 2 removes the network
we used for the third container, and finally, line 3 removes the volume used by
Postgres. After each test run, execute this file with ./cleanup.sh.

Using Docker to Supercharge Automation Chapter 7

[196]

Now you can start adding more code to your API component and more
integration tests. Each time you want to test new or modified code, just run the
test.sh script.

Challenge: How can you optimize this process further, so that fewer
manual steps are required?
Use what we have learned in Chapter 6, Debugging Code Running in
Containers.

The Testcontainers project
If you're a Java developer, then there is a nice project called Testcontainers (https:/ /
testcontainers.org). In their own words, the project can be summarized as follows:

"Testcontainers is a Java library that supports JUnit tests, providing lightweight,
throwaway instances of common databases, Selenium web browsers, or anything else that
can run in Docker container."

To experiment with Testcontainer follow along:

First create a testcontainer-node folder and navigate to it:1.

$ mkdir ~/fod/ch07/testcontainer-node && cd
~/fod/ch07/testcontainer-node

Next open VS Code from within that folder with code .. Create three2.
subfolders, database, api, and tests, within the same folder. To the api
folder, add a package.json file with the following content:

Content of package.json for the API

https://testcontainers.org
https://testcontainers.org
https://testcontainers.org
https://testcontainers.org
https://testcontainers.org
https://testcontainers.org

Using Docker to Supercharge Automation Chapter 7

[197]

Add a server.js file to the api folder with this content:3.

The sample API using the pg library to access Postgres

Here, we create an Express JS application listening at port 3000. The application
uses the pg library, which is a client library for Postgres, to access our database.
On lines 8 through 15, we are defining a connection pool object that will allow us
to connect to Postgres and retrieve or write data. On lines 21 through 24, we're
defining a GET method on the /hobbies endpoint, which returns the list of
hobbies that are retrieved from the database via the SQL query, SELECT hobby
FROM hobbies.

Using Docker to Supercharge Automation Chapter 7

[198]

Now add a Dockerfile to the same folder with this content:4.

Dockerfile for the API

This is exactly the same definition as we used in the previous example. With this,
the API is ready to be used. Let's now continue with the tests that will use the
testcontainer library to simplify container-based testing.

In your Terminal, navigate to the tests folder that we created earlier and use5.
npm init to initialize it as a Node.js project. Accept all of the defaults. Next, use
npm to install the request library and the testcontainers library:

$ npm install request --save-dev
$ npm install testcontainers --save-dev

The result of this is a package.json file that should look similar to this:

The package.json file for the tests project

Using Docker to Supercharge Automation Chapter 7

[199]

Now, still in the tests folder, create a tests.js file and add the following code6.
snippet:

const request = require("request");
const path = require('path');
const dns = require('dns');
const os = require('os');
const { GenericContainer } = require("testcontainers");

(async () => {
 // TODO
})();

Note how we're requesting a new object such as the request object, which will
help us to access the RESTful interface of our sample API component. We are also
requesting the GenericContainer object from the testcontainers library that
will allow us to build and run any container.

We then define an async self-invoking function, which will be the wrapper for our
setup and test code. It has to be an async function since, inside it, we will be
awaiting other async functions, such as the various methods used from the
testcontainers library.

As a very first step, we want to use the testcontainers library to create a7.
Postgres container with the necessary seed data loaded. Let's add this code
snippet after //TODO:

const localPath = path.resolve(__dirname, "../database");
const dbContainer = await new GenericContainer("postgres")
 .withName("postgres")
 .withExposedPorts(5432)
 .withEnv("POSTGRES_USER", "dbuser")
 .withEnv("POSTGRES_DB", "sample-db")
 .withBindMount(localPath, "/docker-entrypoint-initdb.d")
 .withTmpFs({ "/temp_pgdata": "rw,noexec,nosuid,size=65536k" })
 .start();

The preceding snippet has some similarities with a Docker run command. That is
no accident since we are instructing the testcontainers library to do exactly
that and run an instance of PostgreSQL for us.

Using Docker to Supercharge Automation Chapter 7

[200]

Next, we need to find out to which host port the exposed port 5432 is mapped.8.
We can do that with the following logic:

const dbPort = dbContainer.getMappedPort(5432);

We will need this information since the API component will have to access
Postgres via this port.

We also need to know which IP address the host is reachable from within a9.
container—note, localhost won't work from within a container since that would
map to the loopback adapter of the container's own network stack. We can get
this host IP address like this:

const myIP4 = await lookupPromise();

The lookupPromise function is a wrapper function to make the normal async
dns.lookup function return a promise so that we can await it. Here is its
definition:

async function lookupPromise(){
 return new Promise((resolve, reject) => {
 dns.lookup(os.hostname(), (err, address, family) => {
 if(err) throw reject(err);
 resolve(address);
 });
 });
};

Now, with this information, we are ready to instruct the testcontainer library10.
to first build the container image for the API and then run a container from this
image. Let's start with the build:

const buildContext = path.resolve(__dirname, "../api");
const apiContainer = await GenericContainer
 .fromDockerfile(buildContext)
 .build();

Note how this command uses the Dockerfile that we defined in the api subfolder.

Using Docker to Supercharge Automation Chapter 7

[201]

Once we have the apiContainer variable referencing the new image, we can11.
use this to run a container from it:

const startedApiContainer = await apiContainer
 .withName("api")
 .withExposedPorts(3000)
 .withEnv("DB_HOST", myIP4)
 .withEnv("DB_PORT", dbPort)
 .start();

Once again, we need to find out to which host port the exposed port 3000 of the12.
API component has been mapped. The testcontainer library makes this a
breeze:

const apiPort = startedApiContainer.getMappedPort(3000);

With this last line, we have finished the test setup code and can now finally start13.
implementing some tests. We start by defining the base URL for the API
component that we want to access. Then, we use the request library to make an
HTTP GET request to the /hobbies endpoint:

const base_url = `http://localhost:${apiPort}`
request.get(base_url + "/hobbies", (error, response, body) => {
 //Test code here...
})

Let's now implement some assertions right after the //Test code14.
here... comment:

console.log("> expecting status code 200");
if(response.statusCode != 200){
 logError(`Unexpected status code ${response.statusCode}`);
}

First, we log our expectation to the console as a feedback when running tests.
Then, we assert that the returned status code is 200, and, if not, we log an error.
The logError helper function just writes the given message in red to the console,
and prefixes it with ***ERR. Here is the definition of this function:

function logError(message){
 console.log('\x1b[31m%s\x1b[0m', `***ERR: ${message}`);
}

Using Docker to Supercharge Automation Chapter 7

[202]

Let's add two more assertions:15.

const hobbies = JSON.parse(body);
console.log("> expecting length of hobbies == 5");
if(hobbies.length != 5){
 logError(`${hobbies.length} != 5`);
}
console.log("> expecting first hobby == swimming");
if(hobbies[0].hobby != "swimming"){
 logError(`${hobbies[0].hobby} != swimming`);
}

I leave it up to you, dear reader, to find out what these assertions do exactly.

At the end of the assertions, we have to clean up so that we're ready for a next16.
run:

await startedApiContainer.stop()
await dbContainer.stop();

What we're doing is just stopping the API and the database container. This will
automatically remove them from memory too.

Now we can run this test suite using the following command from within the17.
tests subfolder:

$ node tests.js

The output in my case looks like this (note, I have sprinkled a few console.log
statements in the code to more easily follow along what exactly is happening at a
give time):

Running the testcontainer-based integration tests

Using Docker to Supercharge Automation Chapter 7

[203]

The full code is given in the sample code repository that you cloned from GitHub. If you
have problems running your tests, please compare your implementation to the given
sample solution.

Now that we have a good understanding of how to use containers to run our integration
tests, we'll move on to another very popular use case for container based automation,
namely, building a Continuous Integration and Continuous Deployment or Delivery
(CI/CD) pipeline.

Using Docker to power a CI/CD pipeline
The goal of this section is to build a CI/CD pipeline that looks like this:

A simple CI/CD pipeline using Jenkins

We are going to use Jenkins (https:/ /jenkins. io) as our automation server. Other
automation servers such as TeamCity (https:/ /www. jetbrains. com/ teamcity) work
equally well. When using Jenkins, the central document is the Jenkinsfile, which will
contain the definition of the pipeline with its multiple stages.

https://jenkins.io
https://jenkins.io
https://jenkins.io
https://jenkins.io
https://jenkins.io
https://jenkins.io
https://jenkins.io
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity
https://www.jetbrains.com/teamcity

Using Docker to Supercharge Automation Chapter 7

[204]

A simple Jenkinsfile with the Build, Test, Deploy to Staging, and Deploy to
Production stages could look like this:

pipeline {
 agent any
 options {
 skipStagesAfterUnstable()
 }
 stages {
 stage('Build') {
 steps {
 echo 'Building'
 }
 }
 stage('Test') {
 steps {
 echo 'Testing'
 }
 }
 stage('Deploy to Staging') {
 steps {
 echo 'Deploying to Staging'
 }
 }
 stage('Deploy to Production') {
 steps {
 echo 'Deploying to Production'
 }
 }
 }
}

Of course, the preceding pipeline just outputs a message during each stage and does
nothing else. It is useful though as a starting point from which to build up our pipeline:

Create a project folder named jenkins-pipeline and navigate to it:1.

$ mkdir ~/fod/ch07/jenkins-pipeline && cd ~/fod/ch07/jenkins-
pipeline

Using Docker to Supercharge Automation Chapter 7

[205]

Now, let's run Jenkins in a Docker container. Use the following command to do2.
so:

$ docker run --rm -d \
 --name jenkins \
 -u root \
 -p 8080:8080 \
 -v jenkins-data:/var/jenkins_home \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v "$HOME":/home \
 jenkinsci/blueocean

Note that we are running as the root user inside the container and that we are
mounting the Docker socket into the container (-v
/var/run/docker.sock:/var/run/docker.sock) so that Jenkins can access
Docker from within the container. Data produced and used by Jenkins will be
stored in the Docker volume, jenkins-data.

We can find the initial admin password generated automatically by Jenkins with3.
the following command:

$ docker container exec jenkins cat
/var/jenkins_home/secrets/initialAdminPassword

In my case, this outputs 7f449293de5443a2bbcb0918c8558689. Save this
password as you will be using it in the next step.

In your browser, navigate to http://localhost:8080 to access the graphical4.
UI of Jenkins.
Unlock Jenkins with the admin password that you retrieved with the previous5.
command.
Next, choose Install suggested plugins to have Jenkins automatically install the6.
most useful plugins. Plugins include the GitHub integration, an email extension,
Maven and Gradle integration, and so on.
As soon as the plugins are installed, create your first admin account. When asked7.
to restart Jenkins, do so.

Using Docker to Supercharge Automation Chapter 7

[206]

Once you have configured your Jenkins server, start by creating a new project;8.
you may need to click New Item in the main menu:

Add a new project in Jenkins

Give the project the name sample-pipeline, select the Pipeline type, and9.
click OK.
In the configuration view, select the Pipeline tab and add the pipeline definition10.
from the preceding into the Script textbox:

Defining the pipeline in our Jenkins project called sample-pipeline

Using Docker to Supercharge Automation Chapter 7

[207]

Click Save and then, in the main menu of Jenkins, select Build Now. After a11.
short moment, you should see this:

Running our sample pipeline in Jenkins

Now that we have prepared Jenkins, we can start to integrate our sample12.
application. Let's start with the build step. First, we initialize the jenkins-
pipeline project folder as a Git project:

$ cd ~/fod/ch07/jenkins-pipeline && git init

Add a package.json file to this folder with this content:13.

{
 "name": "jenkins-pipeline",
 "version": "1.0.0",
 "main": "server.js",
 "scripts": {
 "start": "node server.js",
 "test": "jasmine"
 },
 "dependencies": {
 "express": "^4.17.1"
 },
 "devDependencies": {
 "jasmine": "^3.4.0"
 }
}

Using Docker to Supercharge Automation Chapter 7

[208]

There is nothing exceptional in this file other the usual list of external
dependencies, express and jasmine, in this case. Also, note the two scripts
start and test that we define for use with npm.

Add a hobbies.js file to the project, which implements the logic to retrieve14.
hobbies as a JavaScript module called hobbies:

const hobbies =
["jogging","cooking","diving","swimming","reading"];

exports.getHobbies = () => {
 return hobbies;
}

exports.getHobby = id => {
 if(id<1 || id > hobbies.length)
 return null;
 return hobbies[id-1];
}

This code evidently is simulating a database by serving pre-canned data stored in
the hobbies array. We do this for simplicity.

Next add a server.js file to the folder that defines a RESTful API with the three15.
endpoints, GET /, GET /hobbies, and GET /hobbies/:id. The code uses the
logic defined in the hobbies module to retrieve data:

const hobbies = require('./hobbies');
const express = require('express');
const app = express();

app.listen(3000, '0.0.0.0', () => {
 console.log('Application listening at 0.0.0.0:3000');
})

app.get('/', (req, res) => {
 res.send('Sample API');
})

app.get('/hobbies', async (req, res) => {
 res.send(hobbies.getHobbies());
})

app.get('/hobbies/:id', async (req, res) => {
 const id = req.params.id;
 const hobby = hobbies.getHobby(id);
 if(!hobby){

Using Docker to Supercharge Automation Chapter 7

[209]

 res.status(404).send("Hobby not found");
 return;
 }
 res.send();
})

Now we need to define some unit tests. Create a spec subfolder in the project16.
and add the hobbies-spec.js file to it with the following code that tests
the hobbies module:

const hobbies = require('../hobbies');
describe("API unit test suite", () => {
 describe("getHobbies", () => {
 const list = hobbies.getHobbies();
 it("returns 5 hobbies", () => {
 expect(list.length).toEqual(5);
 });
 it("returns 'jogging' as first hobby", () => {
 expect(list[0]).toBe("jogging");
 });
 })
})

The last step is to add a support/jasmine.json file to configure our test17.
framework, Jasmine. Add the following code snippet:

{
 "spec_dir": "spec",
 "spec_files": [
 "**/*[sS]pec.js"
],
 "stopSpecOnExpectationFailure": false,
 "random": false
}

This is all the code that we need for the moment.

We can now start to build the CI/CD pipeline:

Commit the code just created locally with the following command:1.

$ git add -A && git commit -m "First commit"

To avoid all of the node modules being saved to GitHub, add a2.
.gitignore file to the project root folder with the following content:

node_modules

Using Docker to Supercharge Automation Chapter 7

[210]

Now, we need to define a repository on GitHub. Log in to your account on3.
GitHub at https:/ /github. com.
Create a new repository there and call it jenkins-pipeline:4.

Create a new GitHub repository for the Jenkins pipeline sample application

Note that my GitHub account is gnschenker. In your case, it will be your
own account.

After you have clicked the green button, Create repository, go back to you5.
project and execute the following two commands from within the project root
folder:

$ git remote add origin
https://github.com/gnschenker/jenkins-pipeline.git
$ git push -u origin master

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com

Using Docker to Supercharge Automation Chapter 7

[211]

Make sure you replace gnschenker in the first line with your own GitHub
account name. After this step, your code will be available on GitHub for further
use. One of the users will be Jenkins, which will pull the code from this repository
as we will show shortly.

The next thing is to go back to Jenkins (localhost:8080) and modify the6.
configuration of the project. Log in to Jenkins if needed and select your
project, sample-pipeline.
Then, select Configure in the main menu. Select the Pipeline tab and modify the7.
settings so that they look similar to this:

Configuring Jenkins to pull source from GitHub

Using Docker to Supercharge Automation Chapter 7

[212]

With this, we configure Jenkins to pull code from GitHub and use a
Jenkinsfile to define the pipeline. Jenkinsfile is expected to be found in the
root of the project. Note that for the repository URL path, we need to give the
relative path to the /home directory where our project is located. Remember that,
when running the Jenkins container, we mapped our own home folder on the
host to the /home folder inside the Jenkins container with this: -v
"$HOME":/home.

Hit the green Save button to accept the changes.8.
We have defined that Jenkinsfile needs to be in the project root folder. This9.
is the foundation of Pipeline-as-Code, since the pipeline definition file will be
committed to the GitHub repository along with the rest of the code. Hence, add a
file called Jenkinsfile to the jenkins-pipeline folder and add this code to
it:

pipeline {
 environment {
 registry = "gnschenker/jenkins-docker-test"
 DOCKER_PWD = credentials('docker-login-pwd')
 }
 agent {
 docker {
 image 'gnschenker/node-docker'
 args '-p 3000:3000'
 args '-w /app'
 args '-v /var/run/docker.sock:/var/run/docker.sock'
 }
 }
 options {
 skipStagesAfterUnstable()
 }
 stages {
 stage("Build"){
 steps {
 sh 'npm install'
 }
 }
 stage("Test"){
 steps {
 sh 'npm test'
 }
 }
 stage("Build & Push Docker image") {
 steps {
 sh 'docker image build -t $registry:$BUILD_NUMBER
.'

Using Docker to Supercharge Automation Chapter 7

[213]

 sh 'docker login -u gnschenker -p $DOCKER_PWD'
 sh 'docker image push $registry:$BUILD_NUMBER'
 sh "docker image rm $registry:$BUILD_NUMBER"
 }
 }
 }
}

OK, let's dive into this file one part at a time. At the top, we're defining two environment
variables that will be available throughout every stage of the pipeline. We will be using
those variables in the Build & Push Docker image stage:

environment {
 registry = "gnschenker/jenkins-docker-test"
 DOCKER_PWD = credentials('docker-login-pwd')
}

The first variable, registry, just contains the full name of the container image we
will eventually produce and push to Docker Hub. Replace gnschenker with your own
GitHub username. The second variable, DOCKER_PWD, is a bit more interesting. It will
contain the password to log in to my Docker Hub account. Of course, I don't want to have
the value hardcoded here in code, hence, I use the credentials function of Jenkins that gives
me access to a secret stored under the name docker-login-pwd in Jenkins.

Next, we define the agent we want to use to run the Jenkins pipeline on. In our case, it is
based on a Docker image. We are using the gnschenker/node-docker image for this
purpose. This is an image based on node:12.10-alpine, which has Docker and curl
installed, as we will need these two tools in some of the stages:

agent {
 docker {
 image 'gnschenker/node-docker'
 args '-v /var/run/docker.sock:/var/run/docker.sock'
 }
}

With the args parameter, we are also mapping the Docker socket into the container so that
we can use Docker from within the agent.

Ignore the options part for the moment. We then are defining three stages:

stages {
 stage("Build"){
 steps {
 sh 'npm install'
 }

Using Docker to Supercharge Automation Chapter 7

[214]

 }
 stage("Test"){
 steps {
 sh 'npm test'
 }
 }
 stage("Build & Push Docker image") {
 steps {
 sh 'docker image build -t $registry:$BUILD_NUMBER .'
 sh 'docker login -u gnschenker -p $DOCKER_PWD'
 sh 'docker image push $registry:$BUILD_NUMBER'
 sh "docker image rm $registry:$BUILD_NUMBER"
 }
 }
}

The first stage, Build, just runs npm install to make sure all external dependencies of
our app can be installed. If this were, for example, a Java application, we would probably
also compile and package the application in this step.

In the second stage, Test, we run npm test, which runs our unit tests that we have
defined for the sample API.

The third stage, Build & Push Docker image, is a bit more interesting. Now that we
have successfully built and tested our application, we can create a Docker image for it and
push it to a registry. We are using Docker Hub as our registry, but any private or public
registry would work. In this stage, we define four steps:

We use Docker to build the image. We use the $registry environment variable1.
we have defined in the first part of the Jenkinsfile. The
$BUILD_NUMBER variable is defined by Jenkins itself.
Before we can push something to the registry, we need to log in. Here, I am using2.
the $DOCKER_PWD variable that I defined earlier on.
Once we're successfully logged in to the registry, we can push the image.3.
Since the image is now in the registry, we can delete it from the local cache to4.
avoid wasting space.

Remember that all of the stages run inside our gnschenker/node-docker builder
container. Hence, we're running Docker inside Docker. But, since we have mapped the
Docker socket into the builder, the Docker commands act on the host.

Let's add two more stages to the pipeline. The first one looks like this:

stage('Deploy and smoke test') {
 steps{

Using Docker to Supercharge Automation Chapter 7

[215]

 sh './jenkins/scripts/deploy.sh'
 }
}

Add it just after the Build & Push Docker image stage. This stage just executes a
deploy.sh script located in the jenkins/scripts subfolder. We do not yet have such a
file in our project.

Hence, add this file to your project with the following content:

#!/usr/bin/env sh

echo "Removing api container if it exists..."
docker container rm -f api || true
echo "Removing network test-net if it exists..."
docker network rm test-net || true

echo "Deploying app ($registry:$BUILD_NUMBER)..."
docker network create test-net

docker container run -d \
 --name api \
 --net test-net \
 $registry:$BUILD_NUMBER

Logic to wait for the api component to be ready on port 3000

read -d '' wait_for << EOF
echo "Waiting for API to listen on port 3000..."
while ! nc -z api 3000; do
 sleep 0.1 # wait for 1/10 of the second before check again
 printf "."
done
echo "API ready on port 3000!"
EOF

docker container run --rm \
 --net test-net \
 node:12.10-alpine sh -c "$wait_for"

echo "Smoke tests..."
docker container run --name tester \
 --rm \
 --net test-net \
 gnschenker/node-docker sh -c "curl api:3000"

Using Docker to Supercharge Automation Chapter 7

[216]

OK, so this code does the following. First, it tries to remove any artifacts that might have
been left over from an earlier, failed run of the pipeline. Then, it creates a Docker network
called test-net. Next, it runs a container from the image we built in the previous step.
This container is our Express JS API and is called api accordingly.

This container and the application within it may take a moment to be ready. Hence, we
define some logic that uses the netcat or nc tool to probe port 3000. Once the application
is listening at port 3000, we continue with the smoke test. In our case, the smoke test is just
making sure it can access the / endpoint of our API. We are using curl for this task. In a
more realistic setup, you would run some more sophisticated tests here.

As a last stage, we are adding a Cleanup step:

Add the following snippet as a last stage to your Jenkinsfile:1.

stage('Cleanup') {
 steps{
 sh './jenkins/scripts/cleanup.sh'
 }
}

Once again, this Cleanup stage uses a script located in
the jenkins/script subfolder.

Please add such a file to your project with the following content:2.

#!/usr/bin/env sh

docker rm -f api
docker network rm test-net

This script removes the api container and the Docker network, test-net, that
we used to run our containers on.

Now, we are ready to roll. Use git to commit your changes and push them to3.
your repository:

$ git -a . && git commit -m "Defined code based Pipeline"
$ git push origin master

Once the code is pushed to GitHub, go back to Jenkins.

Using Docker to Supercharge Automation Chapter 7

[217]

Select your sample-pipeline project and click Build now in the main menu.4.
Jenkins will start to build the pipeline. If everything goes well, you should see
something like this:

Running our full code-based pipeline in Jenkins

Our pipeline is executed successfully and now has six steps. The checkout from GitHub has
been automatically added as a first enabling step. To access the logs generated during the
pipeline execution, you can click the little ball icon on the left side of the run under Build
History. In the preceding screenshot, it is the bluish icon on the left of #26. This is especially
helpful if the pipeline step fails to quickly find the root cause of the failure.

To summarize, we have built a simple CI/CD pipeline where everything, including the
automation server, Jenkins, is running in containers. We have only scratched the surface of
what is possible.

Summary
In this chapter, we learned how to use Docker containers to optimize various kinds of
automation tasks, from running a simple one-off task to building up a containerized CI/CD
pipeline.

In the next chapter, we will introduce advanced tips, tricks, and concepts useful when
containerizing complex distributed applications or when using Docker to automate
sophisticated tasks.

Using Docker to Supercharge Automation Chapter 7

[218]

Questions
Name a few pros and cons for running a one-off task in a container instead of1.
directly on the host machine.
List two or three advantages of running tests in containers.2.
Sketch a high-level diagram of a containerized CI/CD pipeline, starting from the3.
user producing code till the code being deployed into production.

Further reading
Write Maintainable Integration Tests with Docker at https:/ /www. docker. com/
blog/maintainable- integration- tests- with- docker/
A Docker Workflow for .NET Developer - Part 2 (Integration Tests) at https:/ /
gabrielschenker. com/ index. php/2019/ 10/ 09/a- docker- workflow- for- net-
developers- part- 2/

Jenkins on Docker Hub at https:/ /hub. docker. com/ _/jenkins/

Jenkins Tutorial Overview at https:/ /jenkins. io/ doc/ tutorials/

https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://www.docker.com/blog/maintainable-integration-tests-with-docker/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://gabrielschenker.com/index.php/2019/10/09/a-docker-workflow-for-net-developers-part-2/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://hub.docker.com/_/jenkins/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/

8
Advanced Docker Usage

Scenarios
In the last chapter, we showed you how you can use tools to perform administrative tasks
without having to install those tools on the host computer. We also illustrated the use of
containers that host and run test scripts or code used to test and validate application
services running in containers. Finally, we guided you through the task of building a
simple Docker-based CI/CD pipeline using Jenkins as the automation server.

In this chapter, we will introduce advanced tips, tricks, and concepts that are useful when
containerizing complex distributed applications, or when using Docker to automate
sophisticated tasks.

This is a quick overview of all of the subjects we are going to touch on in this chapter:

All of the tips and tricks of a Docker pro
Running your Terminal in a remote container and accessing it via HTTPS
Running your development environment inside a container
Running your code editor in a remote container and accessing it via HTTPS

After finishing this chapter, you will be able to do the following:

Successfully restore your Docker environment after it has been messed up
completely
Run a remote Terminal in a container and access it with your browser via HTTPS
Edit code remotely with Visual Studio Code with your browser via HTTPS

Advanced Docker Usage Scenarios Chapter 8

[220]

Technical requirements
In this chapter, if you want to follow along with the code, you need Docker for Desktop on
your Mac or Windows machine and the Visual Studio Code editor. The example will also
work on a Linux machine with Docker and Visual Studio Code installed. Docker Toolbox is
not supported in this chapter.

All of the tips and tricks of a Docker pro
In this section, I will present a few very useful tips and tricks that make the lives of
advanced Docker users so much easier. We will start with some guidance on how to keep
your Docker environment clean.

Keeping your Docker environment clean
First, we want to learn how we can delete dangling images. According to Docker, dangling
images are layers that have no relationship to any tagged images. Such image layers are
certainly useless to us and can quickly fill up our disk—it's better to remove them from
time to time. Here is the command:

$ docker image prune -f

Please note that I have added the -f parameter to the prune command. This is to prevent
the CLI from asking for a confirmation that we really want to delete those superfluous
layers.

Stopped containers can waste precious resources too. If you're sure that you don't need
these containers anymore, then you should remove them, either individually with the
following:

$ docker container rm <container-id>

Or, you can remove them as a batch with the following:

$ docker container prune --force

It is worth mentioning once again that, instead of <container-id>, we can also use
<container-name> to identify a container.

Advanced Docker Usage Scenarios Chapter 8

[221]

Unused Docker volumes too can quickly fill up disk space. It is a good practice to tender
your volumes, specifically in a development or CI environment where you create a lot of
mostly temporary volumes. But I have to warn you, Docker volumes are meant to store
data. Often, this data must live longer than the life cycle of a container. This is specifically
true in a production or production-like environment where the data is often mission-
critical. Hence, be 100% sure of what you're doing when using the following command to
prune volumes on your Docker host:

$ docker volume prune
WARNING! This will remove all local volumes not used by at least one
container.
Are you sure you want to continue? [y/N]

I recommend using this command without the -f (or --force) flag. It is a dangerous and
terminal operation and it's better to give yourself a second chance to reconsider your action.
Without the flag, the CLI outputs the warning you see in the preceding. You have to
explicitly confirm by typing y and pressing the Enter key.

On production or production-like systems, you should abstain from the preceding
command and rather delete unwanted volumes one at a time by using this command:

$ docker volume rm <volume-name>

I should also mention that there is a command to prune Docker networks. But since we
have not yet officially introduced networks, I will defer this to chapter 10, Single-Host
Networking.

In the next section, we are going to show how we can automate Docker from within a
container.

Running Docker in Docker
At times, we may want to run a container hosting an application that automates certain
Docker tasks. How can we do that? The Docker Engine and the Docker CLI are installed on
the host, yet the application runs inside the container. Well, from early on, Docker has
provided a means to bind-mount Linux sockets from the host into the container. On Linux,
sockets are used as very efficient data communications endpoints between processes that
run on the same host. The Docker CLI uses a socket to communicate with the Docker
Engine; it is often called the Docker socket. If we can give access to the Docker socket to an
application running inside a container then we can just install the Docker CLI inside this
container, and we will then be able to run an application in the same container that uses
this locally installed Docker CLI to automate container-specific tasks.

Advanced Docker Usage Scenarios Chapter 8

[222]

It is important to note that here we are not talking about running the
Docker Engine inside the container but rather only the Docker CLI and
bind-mount the Docker socket from the host into the container so that the
CLI can communicate with the Docker Engine running on the host
computer. This is an important distinction. Running the Docker Engine
inside a container, although possible, is not recommended.

Let's assume we have the following script, called pipeline.sh, automating the building,
testing, and pushing of a Docker image:

#! /bin/bash
*** Sample script to build, test and push containerized Node.js
applications ***
build the Docker image
docker image build -t $HUB_USER/$REPOSITORY:$TAG .
Run all unit tests
docker container run $HUB_USER/$REPOSITORY:$TAG npm test
Login to Docker Hub
docker login -u $HUB_USER -p $HUB_PWD
Push the image to Docker Hub
docker image push $HUB_USER/$REPOSITORY:$TAG

Note that we're using four environment variables: $HUB_USER and $HUB_PWD being the
credentials for Docker Hub and $REPOSITORY and $TAG being the name and tag of the
Docker image we want to build. Eventually, we will have to pass values for those
environment variables in the docker run command.

We want to run that script inside a builder container. Since the script uses the Docker CLI,
our builder container must have the Docker CLI installed, and to access the Docker Engine,
the builder container must have the Docker socket bind-mounted. Let's start creating a
Docker image for such a builder container:

First, create a builder folder and navigate to it:1.

$ mkdir builder && cd builder

Inside this folder, create a Dockerfile that looks like this:2.

FROM alpine:latest
RUN apk update && apk add docker
WORKDIR /usr/src/app
COPY . .
CMD ./pipeline.sh

Advanced Docker Usage Scenarios Chapter 8

[223]

Now create a pipeline.sh file in the builder folder and add as content the3.
pipeline script we have presented in the preceding file.
Save and make the file an executable:4.

$ chmod +x ./pipeline.sh

Building an image is straightforward:5.

$ docker image build -t builder .

We are now ready to try builder out with a real Node.js application, for example, the
sample app we defined in the ch08/sample-app folder. Make sure you
replace <user> and <password> with your own credentials for Docker Hub:

$ cd ~/fod/ch08/sample-app
$ docker container run --rm \
 --name builder \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v "$PWD":/usr/src/app \
 -e HUB_USER=<user> \
 -e HUB_PWD=<password>@j \
 -e REPOSITORY=ch08-sample-app \
 -e TAG=1.0 \
 builder

Notice how, in the preceding command, we mounted the Docker socket into the container
with -v /var/run/docker.sock:/var/run/docker.sock. If everything goes well, you
should have a container image built for the sample application, the test should have been
run, and the image should have been pushed to Docker Hub. This is only one of the many
use cases where it is very useful to be able to bind-mount the Docker socket.

Advanced Docker Usage Scenarios Chapter 8

[224]

A special notice to all those of you who want to try Windows containers.
On Docker for Windows, you can create a similar environment by bind-
mounting Docker's named pipe instead of a socket. A named pipe on
Windows is roughly the same as a socket on a Unix-based system.
Assuming you're using a PowerShell Terminal, the command to bind-
mount a named pipe when running a Windows container hosting Jenkins
looks like this:

PS> docker container run `
--name jenkins `
-p 8080:8080 `
-v \\.\pipe\docker_engine:\\.\pipe\docker_engine `
friism/jenkins

Note the special syntax, \\.\pipe\docker_engine, to access Docker's
named pipe.

Formatting the output of common Docker
commands
Have you at times wished that your Terminal window was infinitely wide since the output
of a Docker command such as docker container ps is scrambled across several lines per
item? Worry not, as you can customize the output to your liking. Almost all commands that
produce an output have a --format argument, which accepts a so-called Go template as a
parameter. If you wonder why a Go template, it's because most of Docker is written in this
popular low-level language. Let's look at an example. Assume we want to only show the
name of the container, the name of the image, and the state of the container, separated by
tabs, output by the docker container ps command. The format would then look like
this:

$ docker container ps -a \
--format "table {{.Names}}\t{{.Image}}\t{{.Status}}"

Please be aware that the format string is case sensitive. Also, note the addition of the -a
parameter to include stopped containers in the output. A sample output could look like
this:

NAMES IMAGE STATUS
elated_haslett alpine Up 2 seconds
brave_chebyshev hello-world Exited (0) 3 minutes ago

Advanced Docker Usage Scenarios Chapter 8

[225]

This is definitely nicer to display even on a narrow Terminal window than the unformatted
one scattering wildly over multiple lines.

Filtering the output of common Docker
commands
Similar to what we have done in the previous section by pretty-printing the output of
Docker commands, we can also filter what is output. There are quite a few filters that are
supported. Please find the full list for each command in the Docker online documentation.
The format of filters is straightforward and of the type --filter <key>=<value>. If we
need to combine more than one filter, we can just combine multiple of these statements.
Let's do an example with the docker image ls command as I have a lot of images on my
workstation:

$ docker image ls --filter dangling=false --filter "reference=*/*/*:latest"

The preceding filter only outputs images that are not dangling, that is, real images whose
fully qualified name is of the form <registry>/<user|org><repository>:<tag>, and
the tag is equal to latest. The output on my machine looks like this:

REPOSITORY TAG IMAGE ID CREATED
SIZE
docker.bintray.io/jfrog/artifactory-cpp-ce latest 092f11699785 9 months
ago 900MB
docker.bintray.io/jfrog/artifactory-oss latest a8a8901c0230 9 months
ago 897MB

Having shown how to pretty print and filter output generated by the Docker CLI, it is now
time to talk once more about building Docker images and how to optimize this process.

Optimizing your build process
Many Docker beginners make the following mistake when crafting their first Dockerfile:

FROM node:12.10-alpine
WORKDIR /usr/src/app
COPY . .
RUN npm install
CMD npm start

Advanced Docker Usage Scenarios Chapter 8

[226]

Can you spot the weak point in this typical Dockerfile for a Node.js application? In
Chapter 4, Creating and Managing Container Images, we have learned that an image consists
of a series of layers. Each (logical) line in a Dockerfile creates a layer, except the lines
with the CMD and/or ENTRYPOINT keyword. We have also learned that the Docker builder
tries to do its best by caching layers and reusing them if they have not changed between
subsequent builds. But the caching only uses cached layers that occur before the first
changed layer. All subsequent layers need to be rebuilt. That said, the preceding structure
of the Dockerfile busts the image layer cache!

Why? Well, from experience, you certainly know that npm install can be a pretty
expensive operation in a typical Node.js application with many external dependencies. The
execution of this command can take from seconds to many minutes. That said, each time
one of the source files changes, and we know that happens frequently during development,
line 3 in the Dockerfile causes the corresponding image layer to change. Hence, the
Docker builder cannot reuse this layer from cache, nor can it reuse the subsequent layer
created by RUN npm install. Any minor change in code causes a complete rerun of npm
install. That can be avoided. The package.json file containing the list of external
dependencies rarely changes. With all of that information, let's fix the Dockerfile:

FROM node:12.10-alpine
WORKDIR /usr/src/app
COPY package.json ./
RUN npm install
COPY . .
CMD npm start

This time, on line 3, we only copy the package.json file into the container, which rarely
changes. Hence, the subsequent npm install command has to be executed equally rarely.
The COPY command on line 5 then is a very fast operation and hence rebuilding an image
after some code has changed only needs to rebuild this last layer. Build times reduce to
merely a fraction of a second.

The very same principle applies to most languages or frameworks, such as Python, .NET, or
Java. Avoid busting your image layer cache!

Advanced Docker Usage Scenarios Chapter 8

[227]

Limiting resources consumed by a container
One of the great features of a container, apart from encapsulating application processes, is
the possibility of limiting the resources a single container can consume at. This includes
CPU and memory consumption. Let's have a look at how limiting the amount of memory
(RAM) works:

$ docker container run --rm -it \
 --name stress-test \
 --memory 512M \
 ubuntu:19.04 /bin/bash

Once inside the container, install the stress tool, which we will use to simulate memory
pressure:

/# apt-get update && apt-get install -y stress

Open another Terminal window and execute the docker stats command. You should see
something like this:

docker stats showing a resource-limited container

Look at MEM USAGE and LIMIT. Currently, the container uses only 1.87MiB memory and
has a limit of 512MB. The latter corresponds to what we have configured for this container.
Now, let's use stress to simulate four workers, which try to malloc() memory in blocks
of 256MB. Run this command inside the container to do so:

/# stress -m 4

In the Terminal running Docker stats, observe how the value for MEM USAGE approaches
but never exceeds LIMIT. This is exactly the behavior we expected from Docker. Docker
uses Linux cgroups to enforce those limits.

We could similarly limit the amount of CPU a container can consume with the --cpu
switch.

With this operation, engineers can avoid the noisy neighbor problem on a busy Docker
host, where a single container starves all of the others by consuming an excessive amount
of resources.

Advanced Docker Usage Scenarios Chapter 8

[228]

Read-only filesystem
To protect your applications against malicious hacker attacks, it is often advised to define
the filesystem of the container or part of it as read-only. This makes the most sense for
stateless services. Assume that you have a billing service running in a container as part of
your distributed, mission-critical application. You could run your billing service as follows:

$ docker container run -d --rm \
 --name billing \
 --read-only \
 acme/billing:2.0

The --read-only flag mounts the container's filesystem as read-only. If a hacker succeeds
in entering your billing container and tries to change an application maliciously by, say,
replacing one of the binaries with a compromised one, then this operation would fail. We
can easily demonstrate that with the following commands:

$ docker container run --tty -d \
 --name billing \
 --read-only \
 alpine /bin/sh

$ docker container exec -it billing \
 sh -c 'echo "You are doomed!" > ./sample.txt'
sh: can't create ./sample.txt: Read-only file system

The first command runs a container with a read-only filesystem and the second command
tries to execute another process in this container, which is supposed to write something to
the filesystem—in this case, a simple text file. This fails, as we can see in the preceding
output, with the error message Read-only file system.

Another means to tighten the security of your applications running in containers is to avoid
running them as root.

Avoid running a containerized app as root
Most applications or application services that run inside a container do not need root
access. To tighten security, it is helpful in those scenarios to run these processes with
minimal necessary privileges. These applications should not be run as root nor assume
that they have root-level privileges.

Advanced Docker Usage Scenarios Chapter 8

[229]

Once again, let's illustrate what we mean with an example. Assume we have a file with top-
secret content. We want to secure this file on our Unix-based system using the chmod tool
so that only users with root permission can access it. Let's assume I am logged in as
gabriel on the dev host and hence my prompt is gabriel@dev $. I can use sudo su to
impersonate a superuser. I have to enter the superuser password though:

gabriel@dev $ sudo su
Password: <root password>
root@dev $

Now, as the root user, I can create this file called top-secret.txt and secure it:

root@dev $ echo "You should not see this." > top-secret.txt
root@dev $ chmod 600 ./top-secret.txt
root@dev $ exit
gabriel@dev $

If I try to access the file as gabriel, the following happens:

gabriel@dev $ cat ./top-secret.txt
cat: ./top-secret.txt: Permission denied

I get Permission denied, which is what we wanted. No other user except root can
access this file. Now, let's build a Docker image that contains this secured file and when a
container is created from it, tries to output its content. The Dockerfile could look like this:

FROM ubuntu:latest
COPY ./top-secret.txt /secrets/
simulate use of restricted file
CMD cat /secrets/top-secret.txt

We can build an image from that Dockerfile (as root!) with the following:

gabriel@dev $ sudo su
Password: <root password>
root@dev $ docker image build -t demo-image .
root@dev $ exit
gabriel@dev $

Then, when running a container from that image we get:

gabriel@dev $ docker container run demo-image
You should not see this.

Advanced Docker Usage Scenarios Chapter 8

[230]

OK, so although I am impersonating the gabriel user on the host and running the
container under this user account, the application running inside the container
automatically runs as root, and hence has full access to protected resources. That's bad, so
let's fix it! Instead of running with the default, we define an explicit user inside the
container. The modified Dockerfile looks like this:

FROM ubuntu:latest
RUN groupadd -g 3000 demo-group |
 && useradd -r -u 4000 -g demo-group demo-user
USER demo-user
COPY ./top-secret.txt /secrets/
simulate use of restricted file
CMD cat /secrets/top-secret.txt

We use the groupadd tool to define a new group, demo-group, with the ID 3000. Then, we
use the useradd tool to add a new user, demo-user, to this group. The user has the ID
4000 inside the container. Finally, with the USER demo-user statement, we declare that all
subsequent operations should be executed as demo-user.

Rebuild the image—again as root—and then try to run a container from it:

gabriel@dev $ sudo su
Password: <root password>
root@dev $ docker image build -t demo-image .
root@dev $ exit
gabriel@dev $ docker container run demo-image
cat: /secrets/top-secret.txt: Permission denied

And as you can see on the last line, the application running inside the container runs with
restricted permissions and cannot access resources that need root-level access. By the way,
what do you think would happen if I ran the container as root? Try it out!

These have been a few tips and tricks for pros that are useful in the day-to-day usage of
containers. There are many more. Google them. It is worth it.

Running your Terminal in a remote
container and accessing it via HTTPS
There are situations where you need to access a remote server and only have the option to
use a browser for that. Your laptop may be locked down by your employer so that you are
not allowed to, for example, ssh into a server outside of the company's domain.

Advanced Docker Usage Scenarios Chapter 8

[231]

To test this scenario proceed as follows:

Create a free account on Microsoft Azure, GCP, or AWS. Then, create a VM,1.
preferably with Ubuntu 18.04 or higher as the operating system, to follow along
more easily.
Once your VM is ready, SSH into it. The command to do so should look similar2.
to this:

$ ssh gnschenker@40.115.4.249

To get access, you may need to open port 22 for ingress first for the VM.

The user I have defined during the provisioning of the VM is gnschenker and
the public IP address of my VM is 40.115.4.249.

Install Docker on this VM using the description found here: https:/ /docs.3.
docker.com/ install/ linux/ docker- ce/ubuntu/ .
On a special note, do not forget to add your user (gnschenker, in my case) to the4.
docker group on the VM with the following command:

$ sudo usermod -aG docker <user-name>

With this, you avoid having to constantly use sudo for all Docker commands.
You need to log out from and log in to the VM to make this change work.

Now, we are ready to run Shell in a Box (https:/ /github. com/ shellinabox/5.
shellinabox) in a container on the VM. There are quite a few people who have
containerized Shell in a Box. We are using the Docker
image, sspreitzer/shellinabox. At the time of writing, it is the most popular
version by far on Docker Hub. With the following command, we are running the
application with a user, gnschenker; password, top-secret; sudo for the user
enabled; and with self-signed certificates:

$ docker container run --rm \
 --name shellinabox \
 -p 4200:4200 \
 -e SIAB_USER=gnschenker \
 -e SIAB_PASSWORD=top-secret \
 -e SIAB_SUDO=true \
 -v `pwd`/dev:/usr/src/dev \
 sspreitzer/shellinabox:latest

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox

Advanced Docker Usage Scenarios Chapter 8

[232]

Note that initially, we recommend running the container in interactive mode so
that you can follow what's happening. Once you are more familiar with the
service, consider running it in the background with the -d flag. Also, note that we
are mounting the ~/dev folder from the host to the /usr/src/dev folder inside
the container. This is useful if we want to remotely edit code that we have, for
example, cloned from GitHub into the ~/dev folder.

Also, notice that we are mapping port 4200 of Shell in a Box to host port 4200.
This is the port over which we will be able to access the shell using a browser and
HTTPS. Hence, you need to open port 4200 for ingress on your VM. As a
protocol, select TCP.

Once the container is running and you have opened port 4200 for ingress, open a6.
new browser window and navigate to https://<public-IP>:4200, where
<public-IP> is the public IP address of your VM. Since we're using a self-
signed certificate, you will be greeted with a warning,here shown when using
Firefox:

Browser warning due to the use of self-signed certificates

Advanced Docker Usage Scenarios Chapter 8

[233]

In our case, this is not a problem; we know the cause—it's the self-signed7.
certificate. Hence, click the Advanced... button and then Accept Risk and
Continue. Now, you will be redirected to the login screen. Log in with your
username and password:

Log in to the remote VM from your browser using HTTPS

We are logged in to the Shell in a Box application running on our remote VM,
using the HTTPS protocol.

Now, we have full access to, for example, the files and folder mapped from the8.
host VM to /usr/src/dev. We can, for example, use the vi text editor to create
and edit files, although we have to first install vi with this:

$ sudo apt-get update && sudo apt-get install -y vim

The possibilities are nearly endless. Please experiment with this setup.For9.
example, run the Shell in a Box container with the Docker socket mounted, install
Docker inside the container, and then try to use the Docker CLI from within the
container. It is really cool because you can do all of this from within your
browser!
If you intend to use this Shell in a Box container often and need some additional10.
software installed, do not hesitate to create your own custom Docker image
inheriting from sspreitzer/shellinabox.

Advanced Docker Usage Scenarios Chapter 8

[234]

Next, we will see how to run your development environment inside a container.

Running your development environment
inside a container
Imagine that you only have access to a workstation with Docker for Desktop installed, but
no possibility to add or change anything else on this workstation. Now you want to do
some proof of concepts and code some sample application using Python. Unfortunately,
Python is not installed on your computer. What can you do? What if you could run a whole
development environment inside a container, including code editor and debugger? What if,
at the same time, you could still have your code files on your host machine?

Containers are awesome and genius engineers have come up with solutions for exactly this
kind of problem.

Let's try this for a Python application:

We will be using Visual Studio Code, our favorite code editor, to show how to1.
run a complete Python development environment inside a container. But first,
we need to install the necessary Visual Studio Code extension. Open Visual
StudioCode and install the extension called Remote Development:

Remote Development extension for Visual Studio Code

Advanced Docker Usage Scenarios Chapter 8

[235]

Then, click the green quick actions status bar item in the lower-left of the Visual2.
Studio Code window. In the popup, select Remote-Containers: Open Folder in
Container...:

Opening a project in a remote container

Select the project folder you want to work with in the container. In our case, we3.
selected the ~/fod/ch08/remote-app folder. Visual StudioCode will start
preparing the environment, which, the very first time, can take a couple of
minutes or so. You will see a message like this while this is happening:

Visual Studio Code preparing the development container

Advanced Docker Usage Scenarios Chapter 8

[236]

By default, this development container runs as a non-root user—called python in
our case. We learned, in a prior section, that this is a highly recommended best
practice. You can change though, and run as root by commenting out the line
with "runArgs": ["-u", "python"], in
the .devcontainer/devcontainer.json file.

Open a Terminal inside Visual Studio Code with Shift + Ctrl + ` and run the Flask4.
app with the env FLASK_APP=main.py flask run command. You should see
output like this:

Starting a Python Flask app from Visual Studio Code running inside a container

The python@df86dceaed3d:/workspaces/remote-app$ prompt indicates that
we are not running directly on our Docker host but from within a development
container that Visual Studio Code spun up for us. The remote part of Visual
Studio Code itself also runs inside that container. Only the client part of Visual
Studio Code—the UI—continues to run on our host.

Open another Terminal window inside Visual Studio Code by pressing5.
Shift+Ctrl+`. Then, use curl to test the application:

Testing the remote Flask app

Advanced Docker Usage Scenarios Chapter 8

[237]

Press Ctrl + C to stop the Flask application.6.
We can also debug the application like we're used when working directly on the7.
host. Open the .vscode/launch.json file to understand how the Flask app is
started and how the debugger is attached.
Open the main.py file and set a breakpoint on the return statement of the8.
home() function.
Then, switch to the Debug view of Visual Studio Code and make sure the launch9.
task, Python: Flask, is selected in the drop-down menu.
Next, press the green start arrow to start debugging. The output in the Terminal10.
should look like this:

Start debugging a remote app running in a container

Advanced Docker Usage Scenarios Chapter 8

[238]

Open another Terminal with Shift + Ctrl + ` and test the application by running11.
the curl localhost:9000/ command. The debugger should hit the breakpoint
and you can start analyzing:

Line-by-line debugging in Visual Studio Code running inside a container

I cannot say strongly enough how cool that is. The backend (non-UI part) of Visual
Studio Code is running inside a container, as is Python, the Python debugger, and the
Python Flask application itself. At the same time, the source code is mounted from the host
into the container and the UI part of Visual Studio Code also runs on the host. This opens
up unlimited possibilities for developers even on the most restricted workstations. You can
do the same for all popular languages and frameworks, such as .NET, C#, Java, Go, Node.js,
and Ruby. If one language is not supported out of the box, you can craft your own
development container that will then work the same way as what we have shown with
Python.

What if you are working on a workstation that does not have Docker for Desktop installed
and is locked down even further? What are your options there?

Advanced Docker Usage Scenarios Chapter 8

[239]

Running your code editor in a remote
container and accessing it via HTTPS
In this section, we will show how you can use Visual Studio Code to enable remote
development inside a container. This is interesting when you are limited in what you can
run on your workstation. Let's follow these steps:

Download and extract the latest version of code-server. You can find out the1.
URL by navigating to https:/ / github. com/ cdr/ code- server/ releases/ latest.
At the time of writing, it is 1.1156-vsc1.33.1:

$ VERSION=<version>
$ wget
https://github.com/cdr/code-server/releases/download/${VERSION}/cod
e-server${VERSION}-linux-x64.tar.gz
$ tar -xvzf code-server${VERSION}-linux-x64.tar.gz

Make sure to replace <version> with your specific version.

Navigate to the folder with the extracted binary, make it executable, and start it:2.

$ cd code-server${VERSION}-linux-x64
$ chmod +x ./code-server
$ sudo ./code-server -p 4200

The output should look similar to this:

Starting Visual Studio Code remote-server on a remote VM

https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest
https://github.com/cdr/code-server/releases/latest

Advanced Docker Usage Scenarios Chapter 8

[240]

Code Server is using self-signed certificates to secure communication, so we can
access it over HTTPS. Please make sure you note down the Password output on
the screen since you need it when accessing Code Server from within your
browser. Also note that we are using port 4200 to expose Code Server on the
host, the reason being that we already opened that port for ingress on our VM.
You can, of course, select any port you want—just make sure you open it for
ingress.

Open a new browser page and navigate to https://<public IP>:4200 ,where3.
<public IP> is the public IP address of your VM. Since we are using self-signed
certificates once again, the browser will greet you with a warning similar to what
happened when we were using Shell in a Box earlier in this chapter. Accept the
warning and you will be redirected to the login page of Code Server:

Login page of Code Server

Enter the password that you noted down before and click ENTER IDE. Now you4.
will be able to use Visual Studio Code remotely via your browser over a secure
HTTPS connection:

Advanced Docker Usage Scenarios Chapter 8

[241]

Visual Studio Code running in the browser over HTTPS

Now you can do your development from, for example, a Chrome Book or a5.
locked-down workstation, without restrictions. But wait a minute, you may say
now! What does this have to do with containers? You're right—so far, there are
no containers involved. I could say, though, that if your remote VM has Docker
installed, you can use Code Server to do any container-specific development, and
I would have saved the day. But that would be a cheap answer.
Let's run Code Server itself in a container. That should be easy, shouldn't it? Try6.
using this command, which maps the internal port 8080 to the host port 4200
and mounts host folders containing Code Server settings and possibly your
projects into the container:

$ docker container run -it \
 -p 4200:8080 \
 -v "${HOME}/.local/share/code-
server:/home/coder/.local/share/code-server" \
 -v "$PWD:/home/coder/project" \
 codercom/code-server:v2

Advanced Docker Usage Scenarios Chapter 8

[242]

Note, the preceding command runs Code Server in insecure mode as indicated in
the output:

info Server listening on http://0.0.0.0:8080
info - No authentication
info - Not serving HTTPS

You can now access Visual Studio Code in your browser at http://<public7.
IP>:4200. Please note the HTTP in the URL instead of HTTPS! Similarly to when
running Code Server natively on the remote VM, you can now use Visual Studio
Code from within your browser:

 Developing within your browser

With this, I hope you have got a feel for the near-unlimited possibilities that the use of
containers offers to you.

Advanced Docker Usage Scenarios Chapter 8

[243]

Summary
In this chapter, we have shown a few tips and tricks for the advanced Docker user that can
make your life much more productive. We have also shown how you can leverage
containers to serve whole development environments that run on remote servers and can
be accessed from within a browser over a secure HTTPS connection.

In the next chapter, we will introduce the concept of a distributed application architecture
and discuss the various patterns and best practices that are required to run a distributed
application successfully. In addition to that, we will list some of the concerns that need to
be fulfilled to run such an application in production or a production-like environment.

Questions
Name the reasons why you would want to run a complete development1.
environment inside a container.
Why should you avoid to run applications inside a container as root?2.
Why would you ever bind-mount the Docker socket into a container?3.
When pruning your Docker resources to make space, why do you need to handle4.
volumes with special care?

Further reading
Using Docker in Docker at http:/ / jpetazzo. github. io/2015/ 09/ 03/ do-not-
use-docker- in- docker- for- ci/

Shell in a Box at https:/ / github. com/ shellinabox/ shellinabox

Remote development using SSH at https:/ /code. visualstudio. com/ docs/
remote/ssh

Developing inside a container at https:/ /code. visualstudio. com/ docs/
remote/containers

http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://github.com/shellinabox/shellinabox
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers

3
Section 3: Orchestration

Fundamentals and Docker
Swarm

In this section, you will get familiar with the concepts of a dockerized distributed
application, as well as container orchestrators, and use Docker Swarm to deploy and run
your applications.

This section comprises the following chapters:

Chapter 9, Distributed Application Architecture
Chapter 10, Single-Host Networking
Chapter 11, Docker Compose
Chapter 12, Orchestrators
Chapter 13, Introduction to Docker Swarm
Chapter 14, Zero-Downtime Deployments and Secrets

9
Distributed Application

Architecture
In the previous chapter, we discussed advanced tips, tricks, and concepts that are useful
when containerizing complex distributed applications, or when using Docker to automate
sophisticated tasks.

In this chapter, we'll introduce the concept of a distributed application architecture and
discuss the various patterns and best practices that are required to run a distributed
application successfully. Finally, we will discuss the additional requirements that need to
be fulfilled to run such an application in production.

In this chapter, we will cover the following topics:

Understanding the distributed application architecture
Patterns and best practices
Running in production

After finishing this chapter, you will be able to do the following:

Name at least four characteristics of a distributed application architecture
List three to four patterns that need to be implemented for a production-ready
distributed application

Distributed Application Architecture Chapter 9

[246]

Understanding the distributed application
architecture
In this section, we are going to explain what we mean when we talk about a distributed
application architecture. First, we need to make sure that all words or acronyms we use
have a meaning and that we are all talking the same language.

Defining the terminology
In this and subsequent chapters, we will talk about a lot about concepts that might not be
familiar to everyone. To make sure we're all talking the same language,
let's briefly introduce and describe the most important of these concepts or words:

Terminology Explanation
VM The acronym for virtual machine. This is a virtual computer.

Node

An individual server used to run applications. This can be a physical server, often
called bare-metal, or a VM. A can be a mainframe, supercomputer,
standard business server, or even a Raspberry Pi. Nodes can be computers in a company's
own data center or in the cloud. Normally, a node is part of a cluster.

Cluster A group of nodes connected by a network that are used to run distributed applications.

Network Physical and software-defined communication paths between individual nodes of a
cluster and programs running on those nodes.

Port A channel on which an application such as a web server listens for incoming requests.

Service

This, unfortunately, is a very overloaded term and its real meaning depends on the
context that it is used in. If we use the term service in the context of an application such as
an application service, then it usually means that this is a piece of software that
implements a limited set of functionality that is then used by other parts of the
application. As we progress through this book, other types of services that have a slightly
different definition will be discussed.

Naively said, a distributed application architecture is the opposite of a monolithic
application architecture, but it's not unreasonable to look at this monolithic architecture
first. Traditionally, most business applications have been written in such a way that the
result can be seen as one single, tightly coupled program that runs on a named server
somewhere in a data center. All its code is compiled into a single binary or a few very
tightly coupled binaries that need to be co-located when running the application. The fact
that the server, or more general host, that the application is running on has a well-defined
name or static IP address is also important in this context. Let's look at the following
diagram to illustrate this type of application architecture a bit more clearly:

Distributed Application Architecture Chapter 9

[247]

Monolithic application architecture

In the preceding diagram, we can see a Server named blue-box-12a with an IP address
of 172.52.13.44 running an application called pet-shop, which is a monolith consisting
of a main module and a few tightly coupled libraries.

Now, let's look at the following diagram:

Distributed application architecture

Distributed Application Architecture Chapter 9

[248]

Here, all of a sudden, we don't have only a single named server anymore; instead, we have
a lot of them, and they don't have human-friendly names, but rather some unique IDs that
can be something like a Universal Unique Identifier (UUID). The pet shop application, all
of a sudden, also does not consist of a single monolithic block anymore, but rather a
plethora of interacting, yet loosely coupled, services such as pet-api, pet-web, and pet-
inventory. Furthermore, each service runs in multiple instances in this cluster of servers or
hosts.

You might be wondering why we are discussing this in a book about Docker containers,
and you are right to ask. While all the topics we're going to investigate apply equally to a
world where containers do not (yet) exist, it is important to realize that containers and
container orchestration engines help address all these problems in a much more efficient
and straightforward way. Most of the problems that used to be very hard to solve in a
distributed application architecture become quite simple in a containerized world.

Patterns and best practices
A distributed application architecture has many compelling benefits, but it also has one
very significant drawback compared to a monolithic application architecture – the former is
way more complex. To tame this complexity, the industry has come up with some
important best practices and patterns. In the following sections, we are going to look into
some of the most important ones in more detail.

Loosely coupled components
The best way to address a complex subject has always been to divide it into smaller
subproblems that are more manageable. As an example, it would be insanely complex to
build a house in one single step. It is much easier to build the house from simple parts that
are then combined into the final result.

The same also applies to software development. It is much easier to develop a very complex
application if we divide this application into smaller components that interoperate and
make up the overall application. Now, it is much easier to develop these components
individually if they are only loosely coupled to each other. What this means is that
component A makes no assumptions about the inner workings of, say, components B and
C, and is only interested in how it can communicate with those two components across a
well-defined interface.

Distributed Application Architecture Chapter 9

[249]

If each component has a well-defined and simple public interface through which
communication with the other components in the system and the outside world happens,
then this enables us to develop each component individually, without implicit
dependencies to other components. During the development process, other components in
the system can easily be replaced by stubs or mocks to allow us to test our components.

Stateful versus stateless
Every meaningful business application creates, modifies, or uses data. In IT, a synonym for
data is state. An application service that creates or modifies persistent data is called a
stateful component. Typical stateful components are database services or services that
create files. On the other hand, application components that do not create or modify
persistent data are called stateless components.

In a distributed application architecture, stateless components are much simpler to handle
than stateful components. Stateless components can be easily scaled up and down.
Furthermore, they can be quickly and painlessly torn down and restarted on a completely
different node of the cluster – all of this because they have no persistent data associated
with them.

Given that fact, it is helpful to design a system in a way that most of the application services
are stateless. It is best to push all the stateful components to the boundary of the application
and limit their number. Managing stateful components is hard.

Service discovery
As we build applications that consist of many individual components or services that
communicate with each other, we need a mechanism that allows the individual
components to find each other in the cluster. Finding each other usually means that you
need to know on which node the target component is running and on which port it is
listening for communication. Most often, nodes are identified by an IP address and a port,
which is just a number in a well-defined range.

Distributed Application Architecture Chapter 9

[250]

Technically, we could tell Service A, which wants to communicate with a target, Service B,
what the IP address and port of the target are. This could happen, for example, through an
entry in a configuration file:

Components are hardwired

While this might work very well in the context of a monolithic application that runs on one
or only a few well-known and curated servers, it totally falls apart in a distributed
application architecture. First of all, in this scenario, we have many components, and
keeping track of them manually becomes a nightmare. This is definitely not scalable.
Furthermore, Service A typically should or will never know on which node of the cluster
the other components run. Their location may not even be stable as component B could be
moved from node X to another node Y, due to various reasons external to the application.
Thus, we need another way in which Service A can locate Service B, or any other service,
for that matter. What is most commonly used is an external authority that is aware of the
topology of the system at any given time.

This external authority or service knows all the nodes and their IP addresses that currently
pertain to the cluster; it knows about all the services that are running and where they are
running. Often, this kind of service is called a DNS service, where DNS stands for Domain
Name System. As we will see, Docker has a DNS service implemented as part of the
underlying engine. Kubernetes – the number one container orchestration system, which
we'll discuss in Chapter 12, Orchestrators – also uses a DNS service to facilitate
communication between components running in the cluster:

Distributed Application Architecture Chapter 9

[251]

Components consulting an external locator service

In the preceding diagram, we can see how Service A wants to communicate with Service B,
but it can't do this directly. First, it has to query the external authority, a registry service
(here, called a DNS Service), about the whereabouts of Service B. The registry service will
answer with the requested information and hand out the IP address and port number
that Service A can use to reach Service B. Service A then uses this information and
establishes a communication with Service B. Of course, this is a naive picture of what's
really happening on a low level, but it is a good picture to help us understand the
architectural pattern of service discovery.

Routing
Routing is the mechanism of sending packets of data from a source component to a target
component. Routing is categorized into different types. The so-called OSI model (see the
reference to this in the Further reading section of this chapter for more information) is used
to distinguish between different types of routing. In the context of containers and container
orchestration, routing at layers 2, 3, 4, and 7 is relevant. We will dive into more detail about
routing in subsequent chapters. Here, let's just say that layer 2 routing is the most low-level
type of routing, which connects a MAC address to another MAC address, while layer 7
routing, which is also called application-level routing, is the most high-level one. The latter
is, for example, used to route requests that have a target identifier, that is, a URL such
as https://acme. com/ pets, to the appropriate target component in our system.

https://acme.com/pets
https://acme.com/pets
https://acme.com/pets
https://acme.com/pets
https://acme.com/pets
https://acme.com/pets
https://acme.com/pets
https://acme.com/pets
https://acme.com/pets

Distributed Application Architecture Chapter 9

[252]

Load balancing
Load balancing is used whenever Service A needs to communicate with Service B, say in a
request-response pattern, but the latter is running in more than one instance, as shown in
the following diagram:

The request of Service A being load balanced to Service B

If we have multiple instances of a service such as Service B running in our system, we want
to make sure that every one of those instances gets an equal amount of workload assigned
to it. This task is a generic one, which means that we don't want the caller to have to do the
load balancing, but rather an external service that intercepts the call and takes over the part
of deciding which of the target service instances to forward the call to. This external service
is called a load balancer. Load balancers can use different algorithms to decide how to
distribute incoming calls to target service instances. The most common algorithm that's
used is called round-robin. This algorithm just assigns requests in a repetitive way, starting
with instance 1, then 2, until instance n. After the last instance has been served, the load
balancer starts over with instance number 1.

In the preceding example, a load balancer also facilitates high availability since a request
from service A will be forwarded to a healthy instance of Service B. The load balancer also
takes the role of periodically checking the health of each instance of B.

Distributed Application Architecture Chapter 9

[253]

Defensive programming
When developing a service for a distributed application, it is important to remember that
this service is not going to be standalone and that it's dependent on other application
services or even on external services provided by third parties, such as credit card
validation services or stock information services, to just name two. All these other services
are external to the service we are developing. We have no control over their correctness or
their availability at any given time. Thus, when coding, we always need to assume the
worst and hope for the best. Assuming the worst means that we have to deal with potential
failures explicitly.

Retries
When there is a possibility that an external service might be temporarily unavailable or not
responsive enough, then the following procedure can be used. When the call to the other
service fails or times out, the calling code should be structured in such a way that the same
call is repeated after a short wait time. If the call fails again, the wait should be a bit longer
before the next trial. The calls should be repeated up until a maximum number of times,
each time increasing the wait time. After that, the service should give up and provide a
degraded service, which could mean returning some stale cached data or no data at all,
depending on the situation.

Logging
Important operations that are performed on a service should always be logged. Logging
information needs to be categorized to be of any real value. A common list of categories
includes debug, info, warning, error, and fatal. Logging information should be collected by
a central log aggregation service and not be stored on an individual node of the cluster.
Aggregated logs are easy to parse and filter for relevant information. This information is
essential to quickly pinpoint the root cause of a failure or unexpected behavior in a
distributed system consisting of many moving parts, running in production.

Distributed Application Architecture Chapter 9

[254]

Error handling
As we mentioned earlier, each application service in a distributed application is dependent
on other services. As developers, we should always expect the worst and have appropriate
error handling in place. One of the most important best practices is to fail fast. Code the
service in such a way that unrecoverable errors are discovered as early as possible and, if
such an error is detected, have the service fail immediately. But don't forget to log
meaningful information to STDERR or STDOUT, which can be used by developers or system
operators later to track malfunctions of the system. Also, return a helpful error to the caller,
indicating as precisely as possible why the call failed.

One sample of fail fast is to always check the input values provided by the caller. Are the
values in the expected ranges and complete? If not, then do not try to continue processing;
instead, immediately abort the operation.

Redundancy
A mission-critical system has to be available at all times, around the clock, 365 days a year.
Downtime is not acceptable since it might result in a huge loss of opportunities or
reputation for the company. In a highly distributed application, the likelihood of a failure of
at least one of the many involved components is non-neglectable. We can say that the
question is not whether a component will fail, but rather when a failure will occur.

To avoid downtime when one of the many components in the system fails, each individual
part of the system needs to be redundant. This includes the application components, as well
as all infrastructure parts. What that means is that if we, say, have a payment service as part
of our application, then we need to run this service redundantly. The easiest way to do that
is to run multiple instances of this very service on different nodes of our cluster. The same
applies, say, for an edge router or a load balancer. We cannot afford for this to ever go
down. Thus, the router or load balancer must be redundant.

Distributed Application Architecture Chapter 9

[255]

Health checks
We have mentioned various times that in a distributed application architecture, with its
many parts, the failure of an individual component is highly likely and that it is only a
matter of time until it happens. For that reason, we run every single component of the
system redundantly. Proxy services then load balance the traffic across the individual
instances of a service.

But now, there is another problem. How does the proxy or router know whether a certain
service instance is available? It could have crashed or it could be unresponsive. To solve
this problem, we can use so-called health checks. The proxy, or some other system service
on behalf of the proxy, periodically polls all the service instances and checks their health.
The questions are basically, Are you still there? Are you healthy? The answer to each
service is either Yes or No, or the health check times out if the instance is not responsive
anymore.

If the component answers with No or a timeout occurs, then the system kills the
corresponding instance and spins up a new instance in its place. If all this happens in a
fully automated way, then we say that we have an auto-healing system in place.

Instead of the proxy periodically polling the status of the components, responsibility can
also be turned around. The components could be required to periodically send live signals
to the proxy. If a component fails to send live signals over a predefined, extended period of
time, it is assumed to be unhealthy or dead.

There are situations where either of the described ways is more appropriate.

Circuit breaker pattern
A circuit breaker is a mechanism that is used to avoid a distributed application going down
due to the cascading failure of many essential components. Circuit breakers help to avoid
one failing component tearing down other dependent services in a domino effect. Like
circuit breakers in an electrical system, which protect a house from burning down due to
the failure of a malfunctioning plugged-in appliance by interrupting the power line, circuit
breakers in a distributed application interrupt the connection from Service A to Service B if
the latter is not responding or is malfunctioning.

Distributed Application Architecture Chapter 9

[256]

This can be achieved by wrapping a protected service call in a circuit breaker object. This
object monitors for failures. Once the number of failures reaches a certain threshold, the
circuit breaker trips. All subsequent calls to the circuit breaker will return with an error,
without the protected call being made at all:

Circuit breaker pattern

In the preceding diagram, we have a circuit breaker that tips over after the second timeout
is received when calling Service B.

Distributed Application Architecture Chapter 9

[257]

Running in production
To successfully run a distributed application in production, we need to consider a few more
aspects beyond the best practices and patterns presented in the preceding sections. One
specific area that comes to mind is introspection and monitoring. Let's go through the most
important aspects in detail.

Logging
Once a distributed application is in production, it is not possible to live debug it. But how
can we then find out what exactly is the root cause of the application malfunctioning? The
solution to this problem is that the application produces abundant and meaningful logging
information while running. Developers need to instrument their application services in
such a way that they output helpful information, such as when an error happens or a
potentially unexpected or unwanted situation is encountered. Often, this information is
output to STDOUT and STDERR, where it is then collected by system daemons that write the
information to local files or forward it to a central log aggregation service.

If there is sufficient information in the logs, developers can use those logs to track down the
root cause of the errors in the system.

In a distributed application architecture, with its many components, logging is even more
important than in a monolithic application. The paths of execution of a single request
through all the components of the application can be very complex. Also, remember that
the components are distributed across a cluster of nodes. Thus, it makes sense to log
everything of importance, and to add things to each log entry such as the exact time when it
happened, the component in which it happened, and the node on which the component
ran, to name just a few. Furthermore, the logging information should be aggregated in a
central location so that it is readily available for developers and system operators to
analyze.

Tracing
Tracing is used to find out how an individual request is funneled through a distributed
application and how much time is spent overall for the request and in every individual
component. This information, if collected, can be used as one of the sources for dashboards
that shows the behavior and health of the system.

Distributed Application Architecture Chapter 9

[258]

Monitoring
Operation engineers like to have dashboards showing live key metrics of the system, which
show them the overall health of the application at a glance. These metrics can be non-
functional metrics, such as memory and CPU usage, the number of crashes of a system or
application component, and the health of a node, as well as functional and, hence,
application-specific metrics, such as the number of checkouts in an ordering system or the
number of items out of stock in an inventory service.

Most often, the base data that's used to aggregate the numbers that are used for a
dashboard is extracted from logging information. This can either be system logs, which will
mostly be used for non-functional metrics, or application-level logs, for functional metrics.

Application updates
One of the competitive advantages for a company is to be able to react in a timely manner
to changing market situations. Part of this is to be able to quickly adjust an application to
fulfill new and changed needs or to add new functionality. The faster we can update our
applications, the better. Many companies these days roll out new or changed features
multiple times per day.

Since application updates are so frequent, these updates have to be non-disruptive. We
cannot allow the system to go down for maintenance when upgrading. It all has to happen
seamlessly and transparently.

Rolling updates
One way of updating an application or an application service is to use rolling updates. The
assumption here is that the particular piece of software that has to be updated runs in
multiple instances. Only then can we use this type of update.

What happens is that the system stops one instance of the current service and replaces it
with an instance of the new service. As soon as the new instance is ready, it will be served
traffic. Usually, the new instance is monitored for some time to see whether or not it works
as expected and, if it does, the next instance of the current service is taken down and
replaced with a new instance. This pattern is repeated until all the service instances have
been replaced.

Since there are always a few instances running at any given time, current or new, the
application is operational all the time. No downtime is needed.

Distributed Application Architecture Chapter 9

[259]

Blue-green deployments
In blue-green deployments, the current version of the application service, called blue,
handles all the application traffic. We then install the new version of the application service,
called green, on the production system. The new service is not wired with the rest of the
application yet.

Once green is installed, we can execute smoke tests against this new service and, if those
succeed, the router can be configured to funnel all traffic that previously went to blue to the
new service, green. The behavior of green is then observed closely and, if all success criteria
are met, blue can be decommissioned. But if, for some reason, green shows some
unexpected or unwanted behavior, the router can be reconfigured to return all traffic to
blue. Green can then be removed and fixed, and a new blue-green deployment can be
executed with the corrected version:

Blue-green deployment

Next, let's look at canary releases.

Distributed Application Architecture Chapter 9

[260]

Canary releases
Canary releases are releases where we have the current version of the application service
and the new version installed on the system in parallel. As such, they resemble blue-green
deployments. At first, all traffic is still routed through the current version. We then
configure a router so that it funnels a small percentage, say 1%, of the overall traffic to the
new version of the application service. Subsequently, the behavior of the new service is
monitored closely to find out whether it works as expected. If all the criteria for success are
met, then the router is configured to funnel more traffic, say 5% this time, through the new
service. Again, the behavior of the new service is closely monitored and, if it is successful,
more and more traffic is routed to it until we reach 100%. Once all the traffic has been
routed to the new service and it has been stable for some time, the old version of the service
can be decommissioned.

Why do we call this a canary release? It is named after the coal miners who would use
canary birds as an early warning system in the mines. Canary birds are particularly
sensitive to toxic gas and if such a canary bird died, the miners knew they had to abandon
the mine immediately.

Irreversible data changes
If part of our update process is to execute an irreversible change in our state, such as an
irreversible schema change in a backing relational database, then we need to address this
with special care. It is possible to execute such changes without downtime if we use the
right approach. It is important to recognize that, in such a situation, we cannot deploy the
code changes that require the new data structure in the data store at the same time as the
changes to the data. Rather, the whole update has to be separated into three distinct steps.
In the first step, we roll out a backward-compatible schema and data change. If this is
successful, then we roll out the new code in the second step. Again, if that is successful, we
clean up the schema in the third step and remove the backward compatibility:

Distributed Application Architecture Chapter 9

[261]

Rolling out an irreversible data or schema change

The preceding diagram shows how the data and its structure are updated, then how the
application code is updated, and finally, in the third step, how the data and data structure
are cleaned up.

Rollback
If we have frequent updates for our application services that run in production, sooner or
later, there will be a problem with one of those updates. Maybe a developer, while fixing a
bug, introduced a new one, which was not caught by all the automated, and maybe
manual, tests, so the application is misbehaving and it is imperative that we roll back the
service to the previous good version. In this regard, a rollback is a recovery from a disaster.

Again, in a distributed application architecture, it is not a question of whether a rollback
will ever be needed, but rather when a rollback will have to occur. Thus, we need to be
absolutely sure that we can always roll back to a previous version of any service that makes
up our application. Rollbacks cannot be an afterthought; they have to be a tested and
proven part of our deployment process.

If we are using blue-green deployments to update our services, then rollbacks should be
fairly simple. All we need to do is switch the router from the new green version of the
service back to the previous blue version.

Distributed Application Architecture Chapter 9

[262]

Summary
In this chapter, we learned what a distributed application architecture is and what patterns
and best practices are helpful or needed to successfully run a distributed application.
Lastly, we discussed what more is needed to run such an application in production.

In the next chapter, we will dive into networking limited to a single host. We're going to
discuss how containers living on the same host can communicate with each other and how
external clients can access containerized applications if necessary.

Questions
Please answer the following questions to assess your understanding of this chapter's
content:

When and why does every part in a distributed application architecture have to1.
be redundant? Explain in a few short sentences.
Why do we need DNS services? Explain in three to five sentences.2.
What is a circuit breaker and why is it needed?3.
What are some of the important differences between a monolithic application4.
and a distributed or multi-service application?
What is a blue-green deployment?5.

Further reading
The following articles provide more in-depth information regarding what was covered in
this chapter:

Circuit breakers: http:/ / bit. ly/ 1NU1sgW

The OSI model explained: http:/ /bit. ly/ 1UCcvMt

Blue-green deployments: http:/ /bit. ly/ 2r2IxNJ

https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2pBENyP
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
https://bit.ly/2BIRpJY
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ
http://bit.ly/2r2IxNJ

10
Single-Host Networking

In the previous chapter, we learned about the most important architectural patterns and
best practices that are used when dealing with a distributed application architecture.

In this chapter, we will introduce the Docker container networking model and its single-
host implementation in the form of the bridge network. This chapter also introduces the
concept of software-defined networks and how they are used to secure containerized
applications. Furthermore, we will demonstrate how container ports can be opened to the
public and thus make containerized components accessible to the outside world. Finally,
we will introduce Traefik, a reverse proxy, which can be used to enable sophisticated HTTP
application-level routing between containers.

This chapter covers the following topics:

Dissecting the container network model
Network firewalling
Working with the bridge network
The host and null network
Running in an existing network namespace
Managing container ports
HTTP-level routing using a reverse proxy

After completing this chapter, you will be able to do the following:

Create, inspect, and delete a custom bridge network
Run a container attached to a custom bridge network
Isolate containers from each other by running them on different bridge networks
Publish a container port to a host port of your choice
Add Traefik as a reverse proxy to enable application-level routing

Single-Host Networking Chapter 10

[264]

Technical requirements
For this chapter, the only thing you will need is a Docker host that is able to run Linux
containers. You can use your laptop with either Docker for macOS or Windows or have
Docker Toolbox installed.

Dissecting the container network model
So far, we have been mostly working with single containers. But in reality, a containerized
business application consists of several containers that need to collaborate to achieve a goal.
Therefore, we need a way for individual containers to communicate with each other. This is
achieved by establishing pathways that we can use to send data packets back and forth
between containers. These pathways are called networks. Docker has defined a very simple
networking model, the so-called container network model (CNM), to specify the
requirements that any software that implements a container network has to fulfill. The
following is a graphical representation of the CNM:

The Docker CNM

The CNM has three elements – sandbox, endpoint, and network:

Sandbox: The sandbox perfectly isolates a container from the outside world. No
inbound network connection is allowed into the sandboxed container. But, it is
very unlikely that a container will be of any value in a system if absolutely no
communication with it is possible. To work around this, we have element
number two, which is the endpoint.

Single-Host Networking Chapter 10

[265]

Endpoint: An endpoint is a controlled gateway from the outside world into the
network's sandbox that shields the container. The endpoint connects the network
sandbox (but not the container) to the third element of the model, which is the
network.
Network: The network is the pathway that transports the data packets of an
instance of communication from endpoint to endpoint or, ultimately, from
container to container.

It is important to note that a network sandbox can have zero to many endpoints, or, said
differently, each container living in a network sandbox can either be attached to no network
at all or it can be attached to multiple different networks at the same time. In the preceding
diagram, the middle of the three Network Sandboxes is attached to both Network 1 and
Network 2 through an endpoint.

This networking model is very generic and does not specify where the individual
containers that communicate with each other over a network run. All containers could, for
example, run on one and the same host (local) or they could be distributed across a cluster
of hosts (global).

Of course, the CNM is just a model describing how networking works among containers.
To be able to use networking with our containers, we need real implementations of the
CNM. For both local and global scope, we have multiple implementations of the CNM. In
the following table, we've given a short overview of the existing implementations and their
main characteristics. The list is in no particular order:

Network Company Scope Description

Bridge Docker Local Simple network based on Linux bridges to allow
networking on a single host

Macvlan Docker Local Configures multiple layer 2 (that is, MAC)
addresses on a single physical host interface

Overlay Docker Global Multinode-capable container network based
on Virtual Extensible LAN (VXLan)

Single-Host Networking Chapter 10

[266]

Weave Net Weaveworks Global Simple, resilient, multi-host Docker networking

Contiv Network Plugin Cisco Global Open source container networking

All network types not directly provided by Docker can be added to a Docker host as a
plugin.

Network firewalling
Docker has always had the mantra of security first. This philosophy had a direct influence
on how networking in a single and multi-host Docker environment was designed and
implemented. Software-defined networks are easy and cheap to create, yet they perfectly
firewall containers that are attached to this network from other non-attached containers,
and from the outside world. All containers that belong to the same network can freely
communicate with each other, while others have no means to do so.

In the following diagram, we have two networks called front and back. Attached to the
front network, we have containers c1 and c2, and attached to the back network, we have
containers c3 and c4. c1 and c2 can freely communicate with each other, as can c3 and c4.
But c1 and c2 have no way to communicate with either c3 or c4, and vice versa:

Docker networks

Now, what about the situation where we have an application consisting of three
services: webAPI, productCatalog, and database? We want webAPI to be able to
communicate with productCatalog, but not with the database, and we
want productCatalog to be able to communicate with the database service. We can solve
this situation by placing webAPI and the database on different networks and
attaching productCatalog to both of these networks, as shown in the following diagram:

Single-Host Networking Chapter 10

[267]

Container attached to multiple networks

Since creating SDNs is cheap, and each network provides added security by isolating
resources from unauthorized access, it is highly recommended that you design and run
applications so that they use multiple networks and only run services on the same network
that absolutely need to communicate with each other. In the preceding example, there is
absolutely no need for the webAPI component to ever communicate directly with the
database service, so we have put them on different networks. If the worst-case scenario
happens and a hacker compromises the webAPI, they cannot access the database from
there without also hacking the productCatalog service.

Working with the bridge network
The Docker bridge network is the first implementation of the container network model that
we're going to look at in detail. This network implementation is based on the Linux bridge.
When the Docker daemon runs for the first time, it creates a Linux bridge and calls
it docker0. This is the default behavior and can be changed by changing the configuration.
Docker then creates a network with this Linux bridge and calls the network bridge. All the
containers that we create on a Docker host and that we do not explicitly bind to another
network leads to Docker automatically attaching to this bridge network.

To verify that we indeed have a network called bridge of the bridge type defined on our
host, we can list all the networks on the host with the following command:

$ docker network ls

This should provide an output similar to the following:

Listing all the Docker networks available by default

Single-Host Networking Chapter 10

[268]

In your case, the IDs will be different, but the rest of the output should look the same. We
do indeed have a first network called bridge using the bridge driver. The scope
being local just means that this type of network is restricted to a single host and cannot
span multiple hosts. In Chapter 13, Introduction to Docker Swarm, we will also discuss other
types of networks that have a global scope, meaning they can span whole clusters of hosts.

Now, let's look a little bit deeper into what this bridge network is all about. For this, we are
going to use the Docker inspect command:

$ docker network inspect bridge

When executed, this outputs a big chunk of detailed information about the network in
question. This information should look as follows:

Output generated when inspecting the Docker bridge network

Single-Host Networking Chapter 10

[269]

We saw the ID, Name, Driver, and Scope values when we listed all the networks, so that is
nothing new. But let's have a look at the IP address management (IPAM) block. IPAM is a
piece of software that is used to track IP addresses that are used on a computer. The
important part of the IPAM block is the Config node with its values for Subnet and
Gateway. The subnet for the bridge network is defined by default as 172.17.0.0/16. This
means that all containers attached to this network will get an IP address assigned by
Docker that is taken from the given range, which is 172.17.0.2 to
172.17.255.255. The 172.17.0.1 address is reserved for the router of this network
whose role in this type of network is taken by the Linux bridge. We can expect that the very
first container that will be attached to this network by Docker will get
the 172.17.0.2 address. All subsequent containers will get a higher number; the
following diagram illustrates this fact:

The bridge network

In the preceding diagram, we can see the network namespace of the host, which includes
the host's eth0 endpoint, which is typically a NIC if the Docker host runs on bare metal or a
virtual NIC if the Docker host is a VM. All traffic to the host comes through eth0. The
Linux bridge is responsible for routing the network traffic between the host's network and
the subnet of the bridge network.

Single-Host Networking Chapter 10

[270]

By default, only egress traffic is allowed, and all ingress is blocked. What this means is
that while containerized applications can reach the internet, they cannot be reached by any
outside traffic. Each container attached to the network gets its own virtual ethernet (veth)
connection with the bridge. This is illustrated in the following diagram:

Details of the bridge network

The preceding diagram shows us the world from the perspective of the Host. We will
explore what this situation looks like from within a container later on in this section.

We are not limited to just the bridge network, as Docker allows us to define our own
custom bridge networks. This is not just a feature that is nice to have, but it is a
recommended best practice to not run all containers on the same network. Instead, we
should use additional bridge networks to further isolate containers that have no need to
communicate with each other. To create a custom bridge network called sample-net, use
the following command:

$ docker network create --driver bridge sample-net

Single-Host Networking Chapter 10

[271]

If we do this, we can then inspect what subnet Docker has created for this new custom
network, as follows:

$ docker network inspect sample-net | grep Subnet

This returns the following value:

"Subnet": "172.18.0.0/16",

Evidently, Docker has just assigned the next free block of IP addresses to our new custom
bridge network. If, for some reason, we want to specify our own subnet range when
creating a network, we can do so by using the --subnet parameter:

$ docker network create --driver bridge --subnet "10.1.0.0/16" test-net

To avoid conflicts due to duplicate IP addresses, make sure you avoid
creating networks with overlapping subnets.

Now that we have discussed what a bridge network is and how we can create a custom
bridge network, we want to understand how we can attach containers to these networks.
First, let's interactively run an Alpine container without specifying the network to be
attached:

$ docker container run --name c1 -it --rm alpine:latest /bin/sh

In another Terminal window, let's inspect the c1 container:

$ docker container inspect c1

Single-Host Networking Chapter 10

[272]

In the vast output, let's concentrate for a moment on the part that provides network-related
information. This can be found under the NetworkSettings node. I have it listed in the
following output:

The NetworkSettings section of the container metadata

In the preceding output, we can see that the container is indeed attached to
the bridge network since NetworkID is equal to 026e65..., which we can see from the
preceding code is the ID of the bridge network. We can also see that the container got the
IP address of 172.17.0.4 assigned as expected and that the gateway is at 172.17.0.1.
Please note that the container also had a MacAddress associated with it. This is important
as the Linux bridge uses the MacAddress for routing.

Single-Host Networking Chapter 10

[273]

So far, we have approached this from the outside of the container's network namespace.
Now, let's see what the situation looks like when we're not only inside the container but
inside the containers' network namespace. Inside the c1 container, let's use the ip tool to
inspect what's going on. Run the ip addr command and observe the output that is
generated, as follows:

Container namespace, as seen by the IP tool

The interesting part of the preceding output is number 19, that is, the eth0 endpoint.
The veth0 endpoint that the Linux bridge created outside of the container namespace is
mapped to eth0 inside the container. Docker always maps the first endpoint of a container
network namespace to eth0, as seen from inside the namespace. If the network namespace
is attached to an additional network, then that endpoint will be mapped to eth1, and so on.

Since at this point we're not really interested in any endpoint other than eth0, we could
have used a more specific variant of the command, which would have given us the
following:

/ # ip addr show eth0
195: eth0@if196: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc
noqueue state UP
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 valid_lft forever preferred_lft forever

In the output, we can also see what MAC address (02:42:ac:11:00:02) and what IP
(172.17.0.2) have been associated with this container network namespace by Docker.

Single-Host Networking Chapter 10

[274]

We can also get some information about how requests are routed by using the ip
route command:

/ # ip route
default via 172.17.0.1 dev eth0
172.17.0.0/16 dev eth0 scope link src 172.17.0.2

This output tells us that all the traffic to the gateway at 172.17.0.1 is routed through
the eth0 device.

Now, let's run another container called c2 on the same network:

$ docker container run --name c2 -d alpine:latest ping 127.0.0.1

The c2 container will also be attached to the bridge network since we have not specified
any other network. Its IP address will be the next free one from the subnet, which
is 172.17.0.3, as we can readily test:

$ docker container inspect --format "{{.NetworkSettings.IPAddress}}" c2
172.17.0.3

Now, we have two containers attached to the bridge network. We can try to inspect this
network once again to find a list of all containers attached to it in the output:

$ docker network inspect bridge

This information can be found under the Containers node:

The Containers section of the output of the Docker network inspect bridge

Single-Host Networking Chapter 10

[275]

Once again, we have shortened the output to the relevant part for readability.

Now, let's create two additional containers, c3 and c4, and attach them to test-net. For
this, we'll use the --network parameter:

$ docker container run --name c3 -d --network test-net \
 alpine:latest ping 127.0.0.1
$ docker container run --name c4 -d --network test-net \
 alpine:latest ping 127.0.0.1

Let's inspect network test-net and confirm that containers c3 and c4 are indeed
attached to it:

$ docker network inspect test-net

This will give us the following output for the Containers section:

Containers section of the docker network inspect test-net command

The next question we're going to ask ourselves is whether the c3 and c4 containers can
freely communicate with each other. To demonstrate that this is indeed the case, we
can exec into the c3 container:

$ docker container exec -it c3 /bin/sh

Once inside the container, we can try to ping container c4 by name and by IP address:

/ # ping c4
PING c4 (10.1.0.3): 56 data bytes
64 bytes from 10.1.0.3: seq=0 ttl=64 time=0.192 ms
64 bytes from 10.1.0.3: seq=1 ttl=64 time=0.148 ms
...

Single-Host Networking Chapter 10

[276]

The following is the result of the ping using the IP address of c4:

/ # ping 10.1.0.3
PING 10.1.0.3 (10.1.0.3): 56 data bytes
64 bytes from 10.1.0.3: seq=0 ttl=64 time=0.200 ms
64 bytes from 10.1.0.3: seq=1 ttl=64 time=0.172 ms
...

The answer in both cases confirms to us that the communication between containers
attached to the same network is working as expected. The fact that we can even use the
name of the container we want to connect to shows us that the name resolution provided
by the Docker DNS service works inside this network.

Now, we want to make sure that the bridge and the test-net networks are firewalled
from each other. To demonstrate this, we can try to ping the c2 container from
the c3 container, either by its name or by its IP address:

/ # ping c2
ping: bad address 'c2'

The following is the result of the ping using the IP address of the c2 container instead:

/ # ping 172.17.0.3
PING 172.17.0.3 (172.17.0.3): 56 data bytes
^C
--- 172.17.0.3 ping statistics ---
43 packets transmitted, 0 packets received, 100% packet loss

The preceding command remained hanging and I had to terminate the command
with Ctrl+C. From the output of pinging c2, we can also see that the name resolution does
not work across networks. This is the expected behavior. Networks provide an extra layer
of isolation, and thus security, to containers.

Earlier, we learned that a container can be attached to multiple networks. Let's attach
the c5 container to the sample-net and test-net networks at the same time:

$ docker container run --name c5 -d \
 --network sample-net \
 --network test-net \
 alpine:latest ping 127.0.0.1

Now, we can test that c5 is reachable from the c2 container, similar to when we tested the
same for the c4 and c2 containers. The result will show that the connection indeed works.

Single-Host Networking Chapter 10

[277]

If we want to remove an existing network, we can use the docker network rm command,
but note that we cannot accidentally delete a network that has containers attached to it:

$ docker network rm test-net
Error response from daemon: network test-net id 863192... has active
endpoints

Before we continue, let's clean up and remove all the containers:

$ docker container rm -f $(docker container ls -aq)

Now, we can remove the two custom networks that we created:

$ docker network rm sample-net
$ docker network rm test-net

Alternatively, we could remove all the networks that no container is attached to with the
prune command:

$ docker network prune --force

I used the --force (or -f) argument here to prevent Docker from reconfirming that I really
want to remove all unused networks.

The host and null network
In this section, we are going to look at two predefined and somewhat unique types of
networks, the host and the null networks. Let's start with the former.

The host network
There are occasions where we want to run a container in the network namespace of the
host. This can be necessary when we need to run some software in a container that is used
to analyze or debug the host networks' traffic. But keep in mind that these are very specific
scenarios. When running business software in containers, there is no good reason to ever
run the respective containers attached to the host's network. For security reasons, it is
strongly recommended that you do not run any such container attached to the host
network on a production or production-like environment.

That said, how can we run a container inside the network namespace of the host? Simply by
attaching the container to the host network:

$ docker container run --rm -it --network host alpine:latest /bin/sh

Single-Host Networking Chapter 10

[278]

If we use the ip tool to analyze the network namespace from within the container, we will
see that we get exactly the same picture as we would if we were running the ip tool
directly on the host. For example, if I inspect the eth0 device on my host, I get this:

/ # ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
UP qlen 1000
 link/ether 02:50:00:00:00:01 brd ff:ff:ff:ff:ff:ff
 inet 192.168.65.3/24 brd 192.168.65.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::c90b:4219:ddbd:92bf/64 scope link
 valid_lft forever preferred_lft forever

Here, I can see that 192.168.65.3 is the IP address that the host has been assigned and
that the MAC address shown here also corresponds to that of the host.

We can also inspect the routes to get the following (shortened):

/ # ip route
default via 192.168.65.1 dev eth0 src 192.168.65.3 metric 202
10.1.0.0/16 dev cni0 scope link src 10.1.0.1
127.0.0.0/8 dev lo scope host
172.17.0.0/16 dev docker0 scope link src 172.17.0.1
...
192.168.65.0/24 dev eth0 scope link src 192.168.65.3 metric 202

Before I let you go on to the next section of this chapter, I want to once more point out that
the use of the host network is dangerous and needs to be avoided if possible.

The null network
Sometimes, we need to run a few application services or jobs that do not need any network
connection at all to execute the task at hand. It is strongly advised that you run those
applications in a container that is attached to the none network. This container will be
completely isolated, and is thus safe from any outside access. Let's run such a container:

$ docker container run --rm -it --network none alpine:latest /bin/sh

Once inside the container, we can verify that there is no eth0 network endpoint available:

/ # ip addr show eth0
ip: can't find device 'eth0'

Single-Host Networking Chapter 10

[279]

There is also no routing information available, as we can demonstrate by using the
following command:

/ # ip route

This returns nothing.

Running in an existing network namespace
Normally, Docker creates a new network namespace for each container we run. The
network namespace of the container corresponds to the sandbox of the container network
model we described earlier on. As we attach the container to a network, we define an
endpoint that connects the container network namespace with the actual network. This
way, we have one container per network namespace.

Docker provides an additional way for us to define the network namespace that a container
runs in. When creating a new container, we can specify that it should be attached to (or
maybe we should say included) in the network namespace of an existing container. With
this technique, we can run multiple containers in a single network namespace:

Multiple containers running in a single network namespace

In the preceding diagram, we can see that in the leftmost Network Namespace, we have
two containers. The two containers, since they share the same namespace, can communicate
on localhost with each other. The network namespace (and not the individual containers) is
then attached to Network 1.

This is useful when we want to debug the network of an existing container without running
additional processes inside that container. We can just attach a special utility container to
the network namespace of the container to inspect. This feature is also used by Kubernetes
when it creates a pod. We will learn more about Kubernetes and pods in Chapter
15, Introduction to Kubernetes of this book.

Single-Host Networking Chapter 10

[280]

Now, let's demonstrate how this works:

First, we create a new bridge network:1.

$ docker network create --driver bridge test-net

Next, we run a container attached to this network:2.

$ docker container run --name web -d \
 --network test-net nginx:alpine

Finally, we run another container and attach it to the network of3.
our web container:

$ docker container run -it --rm --network container:web \
alpine:latest /bin/sh

Specifically, note how we define the network: --network container:web. This
tells Docker that our new container shall use the same network namespace as the
container called web.

Since the new container is in the same network namespace as the web container4.
running nginx, we're now able to access nginx on localhost! We can prove this
by using the wget tool, which is part of the Alpine container, to connect to nginx.
We should see the following:

/ # wget -qO - localhost
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</html>

Note that we have shortened the output for readability. Please also note that there
is an important difference between running two containers attached to the same
network and two containers running in the same network namespace. In both
cases, the containers can freely communicate with each other, but in the latter
case, the communication happens over localhost.

To clean up the container and network, we can use the following command:5.

$ docker container rm --force web
$ docker network rm test-net

Single-Host Networking Chapter 10

[281]

In the next section, we are going to learn how to expose container ports on the container
host.

Managing container ports
Now that we know how we can isolate firewall containers from each other by placing them
on different networks, and that we can have a container attached to more than one
network, we have one problem that remains unsolved. How can we expose an application
service to the outside world? Imagine a container running a web server hosting our webAPI
from before. We want customers from the internet to be able to access this API. We have
designed it to be a publicly accessible API. To achieve this, we have to, figuratively
speaking, open a gate in our firewall through which we can funnel external traffic to our
API. For security reasons, we don't just want to open the doors wide; we want to have a
single controlled gate that traffic flows through.

We can create such a gate by mapping a container port to an available port on the host.
We're also calling this opening a gate to the container port to publish a port. Remember that
the container has its own virtual network stack, as does the host. Therefore, container ports
and host ports exist completely independently and by default have nothing in common at
all. But we can now wire a container port with a free host port and funnel external traffic
through this link, as illustrated in the following diagram:

Mapping container ports to host ports

Single-Host Networking Chapter 10

[282]

But now, it is time to demonstrate how we can actually map a container port to a host port.
This is done when creating a container. We have different ways of doing so:

First, we can let Docker decide which host port our container port shall be1.
mapped to. Docker will then select one of the free host ports in the range of
32xxx. This automatic mapping is done by using the -P parameter:

$ docker container run --name web -P -d nginx:alpine

The preceding command runs an nginx server in a container. nginx is listening at
port 80 inside the container. With the -P parameter, we're telling Docker to map
all the exposed container ports to a free port in the 32xxx range. We can find out
which host port Docker is using by using the docker container
port command:

$ docker container port web
80/tcp -> 0.0.0.0:32768

The nginx container only exposes port 80, and we can see that it has been mapped
to the host port 32768. If we open a new browser window and navigate
to localhost:32768, we should see the following screen:

The welcome page of nginx

An alternative way to find out which host port Docker is using for our container2.
is to inspect it. The host port is part of the NetworkSettings node:

$ docker container inspect web | grep HostPort
32768

Single-Host Networking Chapter 10

[283]

Finally, the third way of getting this information is to list the container:3.

$ docker container ls
CONTAINER ID IMAGE ... PORTS NAMES
56e46a14b6f7 nginx:alpine ... 0.0.0.0:32768->80/tcp web

Please note that in the preceding output, the /tcp part tells us that the port
has been opened for communication with the TCP protocol, but not for the
UDP protocol. TCP is the default, and if we want to specify that we want to
open the port for UDP, then we have to specify this explicitly. 0.0.0.0 in
the mapping tells us that traffic from any host IP address can now reach
container port 80 of the web container.

Sometimes, we want to map a container port to a very specific host port. We can do this by
using the -p parameter (or --publish). Let's look at how this is done with the following
command:

$ docker container run --name web2 -p 8080:80 -d nginx:alpine

The value of the -p parameter is in the form of <host port>:<container port>.
Therefore, in the preceding case, we map container port 80 to host port 8080. Once
the web2 container runs, we can test it in the browser by navigating to localhost:8080,
and we should be greeted by the same nginx welcome page that we saw in the previous
example that dealt with automatic port mapping.

When using the UDP protocol for communication over a certain port, the publish
parameter will look like -p 3000:4321/udp. Note that if we want to allow communication
with both TCP and UDP protocols over the same port, then we have to map each protocol
separately.

HTTP-level routing using a reverse proxy
Imagine you have been tasked with containerizing a monolithic application. The
application has organically evolved over the years into an unmaintainable monster.
Changing even a minor feature in the source code may break other features due to the tight
coupling existing in the code base. Releases are rare due to their complexity and require the
whole team to be on deck. The application has to be taken down during the release
window, which costs the company a lot of money due to lost opportunities, not to mention
their loss of reputation.

Single-Host Networking Chapter 10

[284]

Management has decided to put an end to that vicious cycle and improve the situation by
containerizing the monolith. This alone will lead to a massively decreased time between
releases as witnessed by the industry. In a later step, the company wants to break out every
piece of functionality from the monolith and implement them as microservices. This
process will continue until the monolith has been completely starved.

But it is this second point that leads to some head-scratching in the team involved. How
will we break down the monolith into loosely coupled microservices without affecting all
the many clients of the monolith out there? The public API of the monolith, though very
complex, has a well-structured design. Public URIs had been carefully crafted and should
not be changed at all costs. For example, there is a product catalog function implemented in
the app that can be accessed via https://acme.com/catalog?category=bicycles so
that we can access a list of bicycles offered by the company.

On the other hand, there is a URL called https://acme.com/checkout that we can use to
initiate the checkout of a customers' shopping cart, and so on. I hope it is clear where we
are going with this.

Containerizing the monolith
Let's start with the monolith. I have prepared a simple code base that has been
implemented in Python 2.7 and uses Flask to implement the public REST API. The sample
app is not really a full-blown application but just complex enough to allow for some
redesign. The sample code can be found in the ch10/e-shop folder. Inside this folder is a
subfolder called monolith containing the Python application. Follow these steps:

In a new Terminal window, navigate to that folder, install the required1.
dependencies, and run the application:

$ cd ~/fod/ch10/e-shop/monolith
$ pip install -r requirements.txt
$ export FLASK_APP=main.py
$ flask run

Single-Host Networking Chapter 10

[285]

The application will be starting and listening on localhost on port 5000:

Running the Python monolith

We can use curl to test the app. Use the following command to retrieve a list of2.
all the bicycles the company offers:

$ curl localhost:5000/catalog?category=bicycles

[{"id": 1, "name": "Mountanbike Driftwood 24\"", "unitPrice": 199},
{"id": 2, "name": "Tribal 100 Flat Bar Cycle Touring Road Bike",
"unitPrice": 300}, {"id": 3, "name": "Siech Cycles Bike (58 cm)",
"unitPrice": 459}]

You should see a JSON formatted list of three types of bicycles. OK – so far, so
good.

Now, let's change the hosts file, add an entry for acme.com, and map it to3.
127.0.0.1, the loop-back address. This way, we can simulate a real client
accessing the app with the URL
http://acme.cnoteom/catalog?category=bicycles instead of using
localhost. You need to use sudo to edit the hosts file on a macOS or on Linux.
You should add a line to the hosts file that looks like this:

127.0.0.1 acme.com

Save your changes and assert that it works by pinging acme.com:4.

Mapping acme.com to the loop-back address via the hosts file

Single-Host Networking Chapter 10

[286]

On Windows, you can edit the file by, for example, running Notepad as
an administrator, opening the
c:\Windows\System32\Drivers\etc\hosts file, and modifying it.

After all this, it is time to containerize the application. The only change we need
to make in the application is ensuring that we have the application web server
listening on 0.0.0.0 instead of localhost.

We can do this easily by modifying the application and adding the following5.
start logic at the end of main.py:

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

Then, we can start the application with python main.py.

Now, add a Dockerfile to the monolith folder with the following content:6.

FROM python:3.7-alpine
WORKDIR /app
COPY requirements.txt ./
RUN pip install -r requirements.txt
COPY . .
EXPOSE 5000
CMD python main.py

In your Terminal window, from within the monolith folder, execute the7.
following command to build a Docker image for the application:

$ docker image build -t acme/eshop:1.0 .

After the image has been built, try to run the application:8.

$ docker container run --rm -it \
 --name eshop \
 -p 5000:5000 \
 acme/eshop:1.0

Notice that the output from the app now running inside a container is indistinguishable
from what we got when running the application directly on the host. We can now test if the
application still works as before by using the two curl commands to access the catalog and
the checkout logic:

Single-Host Networking Chapter 10

[287]

Testing the monolith while running in a container

Evidently, the monolith still works exactly the same way as before, even when using the
correct URL, that is, http://acme.com. Great! Now, let's break out part of the monolith's
functionality into a Node.js microservice, which will be deployed separately.

Extracting the first microservice
The team, after some brainstorming, has decided that the product catalog is a good
candidate for the first piece of functionality that is cohesive yet self-contained enough to be
extracted from the monolith. They decide to implement the product catalog as a
microservice implemented in Node.js.

You can find the code they came up with and the Dockerfile in the catalog subfolder of
the project folder, that is, e-shop. It is a simple Express.js application that replicates the
functionality that was previously available in the monolith. Let's get started:

In your Terminal window, from within the catalog folder, build the Docker1.
image for this new microservice:

$ docker image build -t acme/catalog:1.0 .

Then, run a container from the new image you just built:2.

$ docker run --rm -it --name catalog -p 3000:3000 acme/catalog:1.0

From a different Terminal window, try to access the microservice and validate3.
that it returns the same data as the monolith:

$ curl http://acme.com:3000/catalog?type=bicycle

Please notice the differences in the URL compared to when accessing the same functionality
in the monolith. Here, we are accessing the microservice on port 3000 (instead of 5000).
But we said that we didn't want to have to change the clients that access our e-shop
application. What can we do? Luckily, there are solutions to problems like this. We need to
reroute incoming requests. We'll show you how to do this in the next section.

Single-Host Networking Chapter 10

[288]

Using Traefik to reroute traffic
In the previous section, we realized that we will have to reroute incoming traffic with a
target URL starting with http://acme.com:5000/catalog to an alternative URL such as
product-catalog:3000/catalog. We will be using Traefik to do exactly that.

Traefik is a cloud-native edge router and it is open source, which is great for our specific
case. It even has a nice web UI that you can use to manage and monitor your routes. Traefik
can be combined with Docker in a very straightforward way, as we will see in a moment.

To integrate well with Docker, Traefik relies on metadata found on each container or
service. This metadata can be applied in the form of labels that contain the routing
information.

First, let's look at how to run the catalog service:

Here is the Docker run command:1.

$ docker container run --rm -d \
 --name catalog \
 --label traefik.enable=true \
 --label traefik.port=3000 \
 --label traefik.priority=10 \
 --label traefik.http.routers.catalog.rule="Host(\"acme.com\")
&& PathPrefix(\"/catalog\")" \
 acme/catalog:1.0

Let's quickly look at the four labels we define:2.

traefik.enable=true: This tells Traefik that this particular
container should be included in the routing (the default is false).
traefik.port=3000: The router should forward the call to port
3000 (which is the port that the Express.js app is listening on).
traefik.priority=10: Give this route high priority. We will see
why in a second.
traefik.http.routers.catalog.rule="Host(\"acme.com\"

) && PathPrefix(\"/catalog\")": The route must include the
hostname, acme.com, and the path must start with /catalog in
order to be rerouted to this service. As an
example, acme.com/catalog?type=bicycles would qualify for
this rule.

Single-Host Networking Chapter 10

[289]

Please note the special form of the fourth label. Its general form is
traefik.http.routers.<service name>.rule.

Now, let's look at how we can run the eshop container:3.

$ docker container run --rm -d \
 --name eshop \
 --label traefik.enable=true \
 --label traefik.port=5000 \
 --label traefik.priority=1 \
 --label traefik.http.routers.eshop.rule="Host(\"acme.com\")" \
 acme/eshop:1.0

Here, we forward any matching calls to port 5000, which corresponds to the port
where the eshop application is listening. Pay attention to the priority, which is set
to 1 (low). This, in combination with the high priority of the catalog service,
allows us to have all URLs starting with /catalog being filtered out and
redirected to the catalog service, while all other URLs will go to the eshop
service.

Now, we can finally run Traefik as the edge router that will serve as a reverse4.
proxy in front of our application. This is how we start it:

$ docker run -d \
 --name traefik \
 -p 8080:8080 \
 -p 80:80 \
 -v /var/run/docker.sock:/var/run/docker.sock \
 traefik:v2.0 --api.insecure=true --providers.docker

Note how we mount the Docker socket into the container so that Traefik can interact with
the Docker engine. We will be able to send web traffic to port 80 of Traefik, from where it
will be rerouted according to our rules in the routing definitions found in the metadata of
the participating container. Furthermore, we can access the web UI of Traefik via port 8080.

Now that everything is running, that is, the monolith, the first microservice called catalog,
and Traefik, we can test if all works as expected. Use curl once again to do so:

$ curl http://acme.com/catalog?type=bicycles
$ curl http://acme.com/checkout

Single-Host Networking Chapter 10

[290]

As we mentioned earlier, we are now sending all traffic to port 80, which is what Traefik is
listening on. This proxy will then reroute the traffic to the correct destination.

Before proceeding, stop all containers:

$ docker container rm -f traefik eshop catalog

That's it for this chapter.

Summary
In this chapter, we have learned about how containers running on a single host can
communicate with each other. First, we looked at the CNM, which defines the requirements
of a container network, and then we investigated several implementations of the CNM,
such as the bridge network. We then looked at how the bridge network functions in detail
and also what kind of information Docker provides us with about the networks and the
containers attached to those networks. We also learned about adopting two different
perspectives, from both outside and inside the container. Last but not least we introduced
Traefik as a means to provide application level routing to our applications.

In the next chapter, we're going to introduce Docker Compose. We will learn about creating
an application that consists of multiple services, each running in a container, and how
Docker Compose allows us to easily build, run, and scale such an application using a
declarative approach.

Questions
To assess the skills that you have gained from this chapter, please try to answer the
following questions:

Name the three core elements of the container network model (CNM).1.
How do you create a custom bridge network called, for example, frontend?2.
How do you run two nginx:alpine containers attached to the frontend3.
network?
For the frontend network, get the following:4.

The IPs of all the attached containers
The subnet associated with the network

What is the purpose of the host network?5.

Single-Host Networking Chapter 10

[291]

Name one or two scenarios where the use of the host network is appropriate.6.
What is the purpose of the none network?7.
In what scenarios should the none network be used?8.
Why would we use a reverse proxy such as Traefik together with our9.
containerized application?

Further reading
Here are some articles that describe the topics that were presented in this chapter in more
detail:

Docker networking overview: http:/ /dockr. ly/ 2sXGzQn

Container networking: http:/ / dockr. ly/ 2HJfQKn

What is a bridge?: https:/ / bit. ly/2HyC3Od

Using bridge networks: http:/ /dockr. ly/ 2BNxjRr

Using Macvlan networks: http:/ /dockr. ly/ 2ETjy2x

Networking using the host network: http:/ / dockr. ly/2F4aI59

http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2sXGzQn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
http://dockr.ly/2HJfQKn
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
https://bit.ly/2HyC3Od
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2BNxjRr
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2ETjy2x
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59
http://dockr.ly/2F4aI59

11
Docker Compose

In the previous chapter, we learned a lot about how container networking works on a
single Docker host. We introduced the Container Network Model (CNM), which forms
the basis of all networking between Docker containers, and then we dove deep into
different implementations of the CNM, specifically the bridge network. Finally, we
introduced Traefik, a reverse proxy, to enable sophisticated HTTP application-level routing
between containers.

This chapter introduces the concept of an application consisting of multiple services, each
running in a container, and how Docker Compose allows us to easily build, run, and scale
such an application using a declarative approach.

This chapter covers the following topics:

Demystifying declarative versus imperative
Running a multi-service application
Scaling a service
Building and pushing an application
Using Docker Compose overrides

After completing this chapter, the reader will be able to do the following:

Explain in a few short sentences the main differences between an imperative and
declarative approach for defining and running an application
Describe in their own words the difference between a container and a Docker
Compose service
Author a Docker Compose YAML file for a simple multi-service application
Build, push, deploy, and tear down a simple multi-service application using
Docker Compose
Use Docker Compose to scale an application service up and down
Define environment-specific Docker Compose files using overrides

Docker Compose Chapter 11

[293]

Technical requirements
The code accompanying this chapter can be found at https:/ / github. com/
PacktPublishing/Learn- Docker- -- Fundamentals- of- Docker- 19. x-Second- Edition/ tree/
master/ch11.

You need to have docker-compose installed on your system. This is automatically the case
if you have installed Docker for Desktop or Docker Toolbox on your Windows or macOS
computer. Otherwise, you can find detailed installation instructions here: https:/ /docs.
docker.com/compose/ install/

Demystifying declarative versus imperative
Docker Compose is a tool provided by Docker that is mainly used where you need to run
and orchestrate containers running on a single Docker host. This includes, but is not
limited to, development, continuous integration (CI), automated testing, manual QA, or
demos.

Docker Compose uses files formatted in YAML as input. By default, Docker Compose
expects these files to be called docker-compose.yml, but other names are possible. The
content of a docker-compose.yml is said to be a declarative way of describing and running
a containerized application potentially consisting of more than a single container.

So, what is the meaning of declarative?

First of all, declarative is the antonym of imperative. Well, that doesn't help much. Now that I
have introduced another definition, I need to explain both of them:

Imperative: This is a way in which we can solve problems by specifying the exact
procedure that has to be followed by the system.

If I tell a system such as the Docker daemon imperatively how to run an
application, then that means that I have to describe step by step what the system
has to do and how it has to react if some unexpected situation occurs. I have to be
very explicit and precise in my instructions. I need to cover all edge cases and
how they need to be treated.

Declarative: This is a way in which we can solve problems without requiring the
programmer to specify an exact procedure to be followed.

https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch11
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

Docker Compose Chapter 11

[294]

A declarative approach means that I tell the Docker engine what my desired state
for an application is and it has to figure out on its own how to achieve this desired
state and how to reconcile it if the system deviates from it.

Docker clearly recommends the declarative approach when dealing with containerized
applications. Consequently, the Docker Compose tool uses this approach.

Running a multi-service app
In most cases, applications do not consist of only one monolithic block, but rather of several
application services that work together. When using Docker containers, each application
service runs in its own container. When we want to run such a multi-service application,
we can, of course, start all the participating containers with the well-known docker
container run command, and we have done this in previous chapters. But this is
inefficient at best. With the Docker Compose tool, we are given a way to define the
application in a declarative way in a file that uses the YAML format.

Let's have a look at the content of a simple docker-compose.yml file:

version: "2.4"
services:
 web:
 image: fundamentalsofdocker/ch11-web:2.0
 build: web
 ports:
 - 80:3000
 db:
 image: fundamentalsofdocker/ch11-db:2.0
 build: db
 volumes:
 - pets-data:/var/lib/postgresql/data

volumes:
 pets-data:

The lines in the file are explained as follows:

version: In this line, we specify the version of the Docker Compose format we
want to use. At the time of writing, this is version 2.4.
services: In this section, we specify the services that make up our application in
the services block. In our sample, we have two application services and we call
them web and db:

Docker Compose Chapter 11

[295]

web: The web service is using an image called fundamentalsofdocker/ch11-
web:2.0, which, if not already in the image cache, is built from the Dockerfile
found in the web folder . The service is also
publishing container port 3000 to the host port 80.
db: The db service, on the other hand, is using the image name
fundamentalsofdocker/ch11-db:2.0, which is a customized PostgreSQL
database. Once again, if the image is not already in the cache, it is built from the
Dockerfile found in the db folder . We are mounting a volume called pets-
data into the container of the db service.

volumes: The volumes used by any of the services have to be declared in this
section. In our sample, this is the last section of the file. The first time the
application is run, a volume called pets-data will be created by Docker and
then, in subsequent runs, if the volume is still there, it will be reused. This could
be important when the application, for some reason, crashes and has to be
restarted. Then, the previous data is still around and ready to be used by the
restarted database service.

Note that we are using version 2.x of the Docker Compose file syntax. This
is the one targeted toward deployments on a single Docker host. There
exists also a version 3.x of the Docker Compose file syntax. This version is
used when you want to define an application that is targeted either at
Docker Swarm or Kubernetes. We will discuss this in more detail starting
with Chapter 12, Orchestrators.

Building images with Docker Compose
Navigate to the ch11 subfolder of the fods folder and then build the images:

$ cd ~/fod/ch11
$ docker-compose build

If we enter the preceding command, then the tool will assume that there must be a file in
the current directory called docker-compose.yml and it will use that one to run. In our
case, this is indeed the case and the tool will build the images.

Docker Compose Chapter 11

[296]

In your Terminal window, you should see an output similar to this:

Building the Docker image for the web service

Docker Compose Chapter 11

[297]

In the preceding screenshot, you can see that docker-compose first downloads the base
image node:12.12-alpine, for the web image we're building from Docker Hub.
Subsequently, it uses the Dockerfile found in the web folder to build the image and
names it fundamentalsofdocker/ch11-web:2.0. But this is only the first part; the
second part of the output should look similar to this:

Building the Docker image for the db service

Here, once again, docker-compose pulls the base image, postgres:12.0-alpine, from
Docker Hub and then uses the Dockerfile found in the db folder to build the image we
call fundamentalsofdocker/ch11-db:2.0.

Docker Compose Chapter 11

[298]

Running an application with Docker Compose
Once we have built our images, we can start the application using Docker Compose:

$ docker-compose up

The output will show us the application starting. We should see the following:

Running the sample application, part 1

In this first part of the output, we see how Docker Compose does the following:

Creates a bridge network called ch11_default
Creates a volume called ch11_pets-data
Creates the two services, ch11_web_1 and ch11_db_1, and attaches them to the
network

Docker Compose Chapter 11

[299]

Docker Compose then also shows log output generated by the database (blue) and by the
web service (yellow) that are both stating up. The third last line in the output shows us that
the web service is ready and listens at port 3000. Remember though that this is the
container port and not the host port. We have mapped container port 3000 to host port 80,
and that is the port we will be accessing later on.

Now let's look at the second part of the output:

Running the sample application, part 2

We have shortened the second part of the output a bit. It shows us how the database
finalizes its initialization. We can specifically see how our initialization script, init-
db.sql, is applied, which defines a database and seeds it with some data.

Docker Compose Chapter 11

[300]

We can now open a browser tab and navigate to localhost/animal. We should be
greeted by a wild animal whose picture I took at the Masai Mara national park in Kenya:

The sample application in the browser

Refresh the browser a few times to see other cat images. The application selects the current
image randomly from a set of 12 images whose URLs are stored in the database.

As the application is running in interactive mode and, thus, the Terminal where we ran
Docker Compose is blocked, we can cancel the application by pressing Ctrl + C. If we do so,
we will see the following:

^CGracefully stopping... (press Ctrl+C again to force)
Stopping ch11_web_1 ... done
Stopping ch11_db_1 ... done

Docker Compose Chapter 11

[301]

We will notice that the database and the web services stop immediately. Sometimes,
though, some services will take about 10 seconds to do so. The reason for this is that the
database and the web service listen to, and react to, the SIGTERM signal sent by Docker
while other services might not, and so Docker kills them after a predefined timeout interval
of 10 seconds.

If we run the application again with docker-compose up, the output will be much
shorter:

Output of docker-compose up

This time, we didn't have to download the images and the database didn't have to initialize
from scratch, but it was just reusing the data that was already present in the pets-
data volume from the previous run.

We can also run the application in the background. All containers will run as daemons. For
this, we just need to use the -d parameter, as shown in the following code:

$ docker-compose up -d

Docker Compose offers us many more commands than just up. We can use the tool to list
all services that are part of the application:

Output of docker-compose ps

This command is similar to docker container ls, with the only difference being that
docker-compose only lists containers or services that are part of the application.

Docker Compose Chapter 11

[302]

To stop and clean up the application, we use the docker-compose down command:

$ docker-compose down
Stopping ch11_web_1 ... done
Stopping ch11_db_1 ... done
Removing ch11_web_1 ... done
Removing ch11_db_1 ... done
Removing network ch11_default

If we also want to remove the volume for the database, then we can use the following
command:

$ docker volume rm ch11_pets-data

Alternatively, instead of using the two commands, docker-compose down and docker
volume rm <volume name>, we can combine them into a single command:

$ docker-compose down -v

Here, the argument -v (or --volumes) removes named volumes declared in the
volumes section of the compose file and anonymous volumes attached to containers.

Why is there a ch11 prefix in the name of the volume? In the docker-compose.yml file,
we have called the volume to use pets-data. But, as we have already mentioned, Docker
Compose prefixes all names with the name of the parent folder of the docker-
compose.yml file plus an underscore. In this case, the parent folder is called ch11. If you
don't like this approach, you can define a project name explicitly, for example, as follows:

$ docker-compose -p my-app up

which uses a project name my-app for the application to run under.

Scaling a service
Now, let's, for a moment, assume that our sample application has been live on the web and
become very successful. Loads of people want to see our cute animal images. So now we're
facing a problem, since our application has started to slow down. To counteract this
problem, we want to run multiple instances of the web service. With Docker Compose, this
is readily done.

Running more instances is also called scaling up. We can use this tool to scale
our web service up to, say, three instances:

$ docker-compose up --scale web=3

Docker Compose Chapter 11

[303]

If we do this, we are in for a surprise. The output will look similar to the following
screenshot:

Output of docker-compose --scale

The second and third instances of the web service fail to start. The error message tells us
why: we cannot use the same host port 80 more than once. When instances 2 and 3 try to
start, Docker realizes that port 80 is already taken by the first instance. What can we
do? Well, we can just let Docker decide which host port to use for each instance.

If, in the ports section of the compose file, we only specify the container port and leave out
the host port, then Docker automatically selects an ephemeral port. Let's do exactly this:

First, let's tear down the application:1.

$ docker-compose down

Then, we modify the docker-compose.yml file to look as follows:2.

version: "2.4"
services:
 web:
 image: fundamentalsofdocker/ch11-web:2.0
 build: web
 ports:
 - 3000
 db:
 image: fundamentalsofdocker/ch11-db:2.0
 build: db
 volumes:
 - pets-data:/var/lib/postgresql/data

volumes:
 pets-data:

Docker Compose Chapter 11

[304]

Now, we can start the application again and scale it up immediately after that: 3.

$ docker-compose up -d
$ docker-compose up -d --scale web=3
Starting ch11_web_1 ... done
Creating ch11_web_2 ... done
Creating ch11_web_3 ... done

If we now do docker-compose ps, we should see the following screenshot:4.

Output of docker-compose ps

As we can see, each service has been associated to a different host port. We5.
can try to see whether they work, for example, using curl. Let's test the third
instance, ch11_web_3:

$ curl -4 localhost:32772
Pets Demo Application

The answer, Pets Demo Application, tells us that, indeed, our application is still
working as expected. Try it out for the other two instances to be sure.

Building and pushing an application
We have seen earlier that we can also use the docker-compose build command to just
build the images of an application defined in the underlying docker-compose file. But to
make this work, we'll have to add the build information to the docker-compose file. In the
folder, we have a file, docker-compose.dev.yml, which has those instructions already
added. It is basically a copy of the docker-compose.yml file we have used so far:

version: "2.4"
services:
 web:
 build: web
 image: fundamentalsofdocker/ch11-web:2.0
 ports:
 - 80:3000

Docker Compose Chapter 11

[305]

 db:
 build: db
 image: fundamentalsofdocker/ch1-db:2.0
 volumes:
 - pets-data:/var/lib/postgresql/data

volumes:
 pets-data:

Please note the build key for each service. The value of that key indicates the context or
folder where Docker is expecting to find the Dockerfile to build the corresponding
image. If we wanted to use a Dockerfile that is named differently, say Dockerfile-dev,
for the web service, then the build block in the docker-compose file would look like this:

build:
 context: web
 dockerfile: Dockerfile-dev

Let's use that alternative docker-compose-dev.yml file now:

$ docker-compose -f docker-compose.dev.yml build

The -f parameter will tell the Docker Compose application which compose file to use.

To push all images to Docker Hub, we can use docker-compose push. We need to be
logged in to Docker Hub so that this succeeds, otherwise we get an authentication error
while pushing. Thus, in my case, I do the following:

$ docker login -u fundamentalsofdocker -p <password>

Assuming the login succeeds, I can then push the following code:

$ docker-compose -f docker-compose.dev.yml push

This may take a while, depending on the bandwidth of your internet connection. While
pushing, your screen may look similar to this:

Pushing images with docker-compose to Docker Hub

Docker Compose Chapter 11

[306]

The preceding command pushes the two images to the
fundamentalsofdocker account on Docker Hub. You can find these two images at the
following URL: https:/ / hub. docker. com/ u/fundamentalsofdocker/

Using Docker Compose overrides
Sometimes, we want to run our applications in different environments that need specific
configuration settings. Docker Compose provides a handy capability to address exactly this
issue.

Let's make a specific sample. We can define a base Docker Compose file and then define
environment-specific overrides. Let's assume we have a file called docker-
compose.base.yml with the following content:

version: "2.4"
services:
 web:
 image: fundamentalsofdocker/ch11-web:2.0
 db:
 image: fundamentalsofdocker/ch11-db:2.0
 volumes:
 - pets-data:/var/lib/postgresql/data

volumes:
 pets-data:

This only defines the part that should be the same in all environments. All specific settings
have been taken out.

Let's assume for a moment that we want to run our sample application on a CI system, but
there we want to use different settings for the database. The Dockerfile we used to create
the database image looked like this:

FROM postgres:12.0-alpine
COPY init-db.sql /docker-entrypoint-initdb.d/
ENV POSTGRES_USER dockeruser
ENV POSTGRES_PASSWORD dockerpass
ENV POSTGRES_DB pets

https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/
https://hub.docker.com/u/fundamentalsofdocker/

Docker Compose Chapter 11

[307]

Notice the three environment variables we define on lines 3 through 5. The Dockerfile of
the web service has similar definitions. Let's say that on the CI system, we want to do the
following:

Build the images from code
Define POSTGRES_PASSWORD as ci-pass
Map container port 3000 of the web service to host port 5000

Then, the corresponding override file would look like this:

version: "2.4"
services:
 web:
 build: web
 ports:
 - 5000:3000
 environment:
 POSTGRES_PASSWORD: ci-pass
 db:
 build: db
 environment:
 POSTGRES_PASSWORD: ci-pass

And we can run this application with the following command:

$ docker-compose -f docker-compose.yml -f docker-compose-ci.yml up -d --
build

Note that with the first -f parameter, we provide the base Docker Compose file, and with
the second one, we provide the override. The --build parameter is used to force docker-
compose to rebuild the images.

When using environment variables, note the following precedence:

Declaring them in the Docker file defines a default value
Declaring the same variable in the Docker Compose file
overrides the value from the Dockerfile

Had we followed the standard naming convention and called the base file
just docker-compose.yml and the override file docker-
compose.override.yml instead, then we could have started the
application with docker-compose up -d without explicitly naming the
compose files.

Docker Compose Chapter 11

[308]

Summary
In this chapter, we introduced the docker-compose tool. This tool is mostly used to run
and scale multi-service applications on a single Docker host. Typically, developers and CI
servers work with single hosts and those two are the main users of Docker Compose. The
tool is using YAML files as input that contain the description of the application in a
declarative way.

The tool can also be used to build and push images, among many other helpful tasks. The
code accompanying this chapter can be found in fod/ch11.

In the next chapter, we are going to introduce orchestrators. An orchestrator is an
infrastructure software that is used to run and manage containerized applications in a
cluster while making sure that these applications are in their desired state at all times.

Questions
To assess your learning progress, please answer the following questions:

How will you use docker-compose to run an application in daemon mode?1.
How will you use docker-compose to display the details of the running service?2.
How will you scale up a particular web service to, say, three instances?3.

Further reading
The following links provide additional information on the topics discussed in this chapter:

The official YAML website: http:/ /www. yaml. org/

Docker Compose documentation: http:/ /dockr. ly/ 1FL2VQ6

Compose file version 2 reference: http:/ / dohttps:/ / docs. docker. com/ compose/
compose- file/ compose- file- v2/

Share Compose configurations between files and projects: https:/ /docs.
docker.com/ compose/ extends/

http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://www.yaml.org/
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
http://dockr.ly/1FL2VQ6
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/
https://docs.docker.com/compose/extends/

12
Orchestrators

In the previous chapter, we introduced Docker Compose, a tool that allows us to work with
multi-service applications that are defined in a declarative way on a single Docker host.

This chapter introduces the concept of orchestrators. It teaches us why orchestrators are
needed, and how they work conceptually. This chapter will also provide an overview of the
most popular orchestrators and list a few of their pros and cons.

In this chapter, we will cover the following topics:

What are orchestrators and why do we need them?
The tasks of an orchestrator
Overview of popular orchestrators

After finishing this chapter, you will be able to do the following:

Name three to four tasks for which an orchestrator is responsible
List two to three of the most popular orchestrators
Explain to an interested layman, in your own words, and with appropriate
analogies, why we need container orchestrators

What are orchestrators and why do we need
them?
In Chapter 9, Distributed Application Architecture, we learned which patterns and best
practices are commonly used to successfully build, ship, and run a highly distributed
application. Now, if our distributed application is containerized, then we're facing the exact
same problems or challenges that a non-containerized distributed application faces. Some
of these challenges are those that were discussed in Chapter 9, Distributed Application
Architecture—service discovery, load balancing, scaling, and so on.

Orchestrators Chapter 12

[310]

Similar to what Docker did with containers—standardizing the packaging and shipping of
software with the introduction of those containers—we would like to have some tool or
infrastructure software that handles all or most of the challenges mentioned. This software
turns out to be what we call container orchestrators or, as we also call them, orchestration
engines.

If what I just said doesn't make much sense to you yet, then let's look at it from a different
angle. Take an artist who plays an instrument. They can play wonderful music to an
audience all on their own—just the artist and their instrument. But now take an orchestra of
musicians. Put them all in a room, give them the notes of a symphony, ask them to play it,
and leave the room. Without any director, this group of very talented musicians would not
be able to play this piece in harmony; it would more or less sound like a cacophony. Only if
the orchestra has a conductor, who orchestrates the group of musicians, will the resulting
music of the orchestra be enjoyable to our ears:

A container orchestrator is like the conductor of an orchestra

Source: https://it.wikipedia.org/wiki/Giuseppe_Lanzetta#/media/File:UMB_5945.JPG

License: https://creativecommons.org/licenses/by-sa/3.0/deed.en

Orchestrators Chapter 12

[311]

Instead of musicians, we now have containers, and instead of different instruments, we
have containers that have different requirements to the container hosts to run. And instead
of the music being played at varying tempi, we have containers that communicate with
each other in particular ways, and have to scale up and scale down. In this regard, a
container orchestrator has very much the same role as a conductor in an orchestra. It makes
sure that the containers and other resources in a cluster play together in harmony.

I hope that you can now see more clearly what a container orchestrator is, and why we
need one. Assuming that you confirm this question, we can now ask ourselves how the
orchestrator is going to achieve the expected outcome, namely, to make sure that all the
containers in the cluster play with each other in harmony. Well, the answer is, the
orchestrator has to execute very specific tasks, similar to the way in which the conductor of
an orchestra also has a set of tasks that they execute in order to tame and, at the same time,
elevate the orchestra.

The tasks of an orchestrator
So, what are the tasks that we expect an orchestrator worth its money to execute for
us? Let's look at them in detail. The following list shows the most important tasks that, at
the time of writing, enterprise users typically expect from their orchestrator.

Reconciling the desired state
When using an orchestrator, you tell it, in a declarative way, how you want it to run a given
application or application service. We learned what declarative versus imperative means
in Chapter 11, Docker Compose. Part of this declarative way of describing the application
service that we want to run includes elements such as which container image to use, how
many instances of this service to run, which ports to open, and more. This declaration of the
properties of our application service is what we call the desired state.

So, when we now tell the orchestrator for the first time to create such a new application
service based on the declaration, then the orchestrator makes sure to schedule as many
containers in the cluster as requested. If the container image is not yet available on the
target nodes of the cluster where the containers are supposed to run, then the scheduler
makes sure that they're first downloaded from the image registry. Next, the containers are
started with all the settings, such as networks to which to attach, or ports to expose. The
orchestrator works as hard as it can to exactly match, in reality, the cluster to the
declaration.

Orchestrators Chapter 12

[312]

Once our service is up and running as requested, that is, it is running in the desired state,
then the orchestrator continues to monitor it. Each time the orchestrator discovers a
discrepancy between the actual state of the service and its desired state, it again tries its best
to reconcile the desired state.

What could such a discrepancy between the actual and desired states of an application
service be? Well, let's say one of the replicas of the service, that is, one of the containers,
crashes due to, say, a bug, then the orchestrator will discover that the actual state differs
from the desired state in the number of replicas: there is one replica missing. The
orchestrator will immediately schedule a new instance to another cluster node, which
replaces the crashed instance. Another discrepancy could be that there are too many
instances of the application service running, if the service has been scaled down. In this
case, the orchestrator will just randomly kill as many instances as needed in order to
achieve parity between the actual and the desired number of instances. Yet another
discrepancy could be when the orchestrator discovers that there is an instance of the
application service running a wrong (maybe old) version of the underlying container
image. By now, you should get the picture, right?

Thus, instead of us actively monitoring our application's services that are running in the
cluster and correcting any deviation from the desired state, we delegate this tedious task to
the orchestrator. This works very well provided we use a declarative and not an imperative
way of describing the desired state of our application services.

Replicated and global services
There are two quite different types of services that we might want to run in a cluster that is
managed by an orchestrator. They are replicated and global services. A replicated service is a
service that is required to run in a specific number of instances, say 10. A global service, in
turn, is a service that is required to have exactly one instance running on every single
worker node of the cluster. I have used the term worker node here. In a cluster that is
managed by an orchestrator, we typically have two types of nodes, managers and workers.
A manager node is usually exclusively used by the orchestrator to manage the cluster and
does not run any other workload. Worker nodes, in turn, run the actual applications.

So, the orchestrator makes sure that, for a global service, an instance of it is running on
every single worker node, no matter how many there are. We do not need to care about the
number of instances, but only that on each node, it is guaranteed to run a single instance of
the service.

Orchestrators Chapter 12

[313]

Once again, we can fully rely on the orchestrator to handle this. In a replicated service, we
will always be guaranteed to find the exact desired number of instances, while for a global
service, we can be assured that on every worker node, there will always run exactly one
instance of the service. The orchestrator will always work as hard as it can to guarantee this
desired state.

In Kubernetes, a global service is also called a DaemonSet.

Service discovery
When we describe an application service in a declarative way, we are never supposed to
tell the orchestrator on which cluster nodes the different instances of the service have to
run. We leave it up to the orchestrator to decide which nodes best fit this task.

It is, of course, technically possible to instruct the orchestrator to use very deterministic
placement rules, but this would be an anti-pattern, and is not recommended at all, other
than in very special edge cases.

So, if we now assume that the orchestration engine has complete and free will as to where
to place individual instances of the application service and, furthermore, that instances can
crash and be rescheduled by the orchestrator to different nodes, then we will realize that it
is a futile task for us to keep track of where the individual instances are running at any
given time. Even better, we shouldn't even try to know this, since it is not important.

OK, you might say, but what about if I have two services, A and B, and Service A relies on
Service B; shouldn't any given instance of Service A know where it can find an instance of Service
B?

Here, I have to say loudly and clearly—no, it shouldn't. This kind of knowledge is not
desirable in a highly distributed and scalable application. Rather, we should rely on the
orchestrator to provide us with the information that we need in order to reach the other
service instances that we depend on. It is a bit like in the old days of telephony, when we
could not directly call our friends, but had to call the phone company's central office, where
some operator would then route us to the correct destination. In our case, the orchestrator
plays the role of the operator, routing a request coming from an instance of Service A to an
available instance of Service B. This whole process is called service discovery.

Orchestrators Chapter 12

[314]

Routing
We have learned so far that in a distributed application, we have many interacting services.
When Service A interacts with Service B, it happens through the exchange of data packets.
These data packets need to somehow be funneled from Service A to Service B. This process
of funneling the data packets from a source to a destination is also called routing. As
authors or operators of an application, we do expect the orchestrator to take over this task
of routing. As we will see in later chapters, routing can happen on different levels. It is like
in real life. Suppose you're working in a big company in one of their office buildings. Now,
you have a document that needs to be forwarded to another employee of the company. The
internal post service will pick up the document from your outbox, and take it to the post
office located in the same building. If the target person works in the same building, the
document can then be directly forwarded to that person. If, on the other hand, the person
works in another building of the same block, the document will be forwarded to the post
office in that target building, from where it is then distributed to the receiver through the
internal post service. Thirdly, if the document is targeted at an employee working in
another branch of the company that is located in a different city or even country, then the
document is forwarded to an external postal service such as UPS, which will transport it to
the target location, from where, once again, the internal post service takes over and delivers
it to the recipient.

Similar things happen when routing data packets between application services that are
running in containers. The source and target containers can be located on the same cluster
node, which corresponds to the situation where both employees work in the same building.
The target container can be running on a different cluster node, which corresponds to the
situation where the two employees work in different buildings of the same block. Finally,
the third situation is when a data packet comes from outside of the cluster and has to be
routed to the target container that is running inside the cluster.

All these situations, and more, have to be handled by the orchestrator.

Load balancing
In a highly available distributed application, all components have to be redundant. That
means that every application service has to be run in multiple instances, so that if one
instance fails, the service as a whole is still operational.

Orchestrators Chapter 12

[315]

To make sure that all instances of a service are actually doing work and are not just sitting
around idle, you have to make sure that the requests for service are distributed equally to
all the instances. This process of distributing workload among service instances is
called load balancing. Various algorithms exist for how the workload can be distributed.
Usually, a load balancer works using the so-called round robin algorithm, which makes
sure that the workload is distributed equally to the instances using a cyclic algorithm.

Once again, we expect the orchestrator to take care of the load balancing requests from one
service to another, or from external sources to internal services.

Scaling
When running our containerized, distributed application in a cluster that is managed by an
orchestrator, we additionally want an easy way to handle expected or unexpected increases
in workload. To handle an increased workload, we usually just schedule additional
instances of a service that is experiencing this increased load. Load balancers will then
automatically be configured to distribute the workload over more available target
instances.

But in real-life scenarios, the workload varies over time. If we look at a shopping site such
as Amazon, it might have a high load during peak hours in the evening, when everyone is
at home and shopping online; it may experience extreme loads during special days such as
Black Friday; and it may experience very little traffic early in the morning. Thus, services
need to not just be able to scale up, but also to scale down when the workload goes down.

We also expect orchestrators to distribute the instances of a service in a meaningful way
when scaling up or down. It would not be wise to schedule all instances of the service on
the same cluster node, since, if that node goes down, the whole service goes down. The
scheduler of the orchestrator, which is responsible for the placement of the containers,
needs to also consider not placing all instances into the same rack of computers, since, if the
power supply of the rack fails, again, the whole service is affected. Furthermore, service
instances of critical services should even be distributed across data centers in order to avoid
outages. All these decisions, and many more, are the responsibility of the orchestrator.

In the cloud, instead of computer racks, the term 'availability zones' is
often used.

Orchestrators Chapter 12

[316]

Self-healing
These days, orchestrators are very sophisticated and can do a lot for us to maintain a
healthy system. Orchestrators monitor all containers that are running in the cluster, and
they automatically replace crashed or unresponsive ones with new instances. Orchestrators
monitor the health of cluster nodes, and take them out of the scheduler loop if a node
becomes unhealthy or is down. A workload that was located on those nodes is
automatically rescheduled to different available nodes.

All these activities, where the orchestrator monitors the current state and automatically
repairs the damage or reconciles the desired state, lead to a so-called self-healing system.
We do not, in most cases, have to actively engage and repair damage. The orchestrator will
do this for us automatically.

However, there are a few situations that the orchestrator cannot handle without our help.
Imagine a situation where we have a service instance running in a container. The container
is up and running and, from the outside, looks perfectly healthy. But, the application
running inside it is in an unhealthy state. The application did not crash, it just is not able to
work as it was originally designed anymore. How could the orchestrator possibly know about
this without us giving it a hint? It can't! Being in an unhealthy or invalid state means
something completely different for each application service. In other words, the health
status is service dependent. Only the authors of the service, or its operators, know what
health means in the context of a service.

Now, orchestrators define seams or probes, over which an application service can
communicate to the orchestrator about what state it is in. Two fundamental types of probe
exist:

The service can tell the orchestrator that it is healthy or not
The service can tell the orchestrator that it is ready or temporarily unavailable

How the service determines either of the preceding answers is totally up to the service. The
orchestrator only defines how it is going to ask, for example, through an HTTP GET request,
or what type of answers it is expecting, for example, OK or NOT OK.

If our services implement logic in order to answer the preceding health or availability
questions, then we have a truly self-healing system, since the orchestrator can kill
unhealthy service instances and replace them with new healthy ones, and it can take service
instances that are temporarily unavailable out of the load balancer's round robin.

Orchestrators Chapter 12

[317]

Zero downtime deployments
These days, it gets harder and harder to justify a complete downtime for a mission-critical
application that needs to be updated. Not only does that mean missed opportunities, but it
can also result in a damaged reputation for the company. Customers using the application
are no longer prepared to accept such an inconvenience, and will turn away quickly.
Furthermore, our release cycles get shorter and shorter. Where, in the past, we would have
one or two new releases per year, these days, a lot of companies update their applications
multiple times a week, or even multiple times per day.

The solution to that problem is to come up with a zero downtime application update
strategy. The orchestrator needs to be able to update individual application services, batch-
wise. This is also called rolling updates. At any given time, only one or a few of the total
number of instances of a given service are taken down and replaced by the new version of
the service. Only if the new instances are operational, and do not produce any unexpected
errors or show any misbehavior, will the next batch of instances be updated. This is
repeated until all instances are replaced with their new version. If, for some reason, the
update fails, then we expect the orchestrator to automatically roll the updated instances
back to their previous version.

Other possible zero downtime deployments are blue–green deployments and canary
releases. In both cases, the new version of a service is installed in parallel with the current,
active version. But initially, the new version is only accessible internally. Operations can
then run smoke tests against the new version, and when the new version seems to be
running just fine, then, in the case of a blue–green deployment, the router is switched from
the current blue version, to the new green version. For some time, the new green version of
the service is closely monitored and, if everything is fine, the old blue version can be
decommissioned. If, on the other hand, the new green version does not work as expected,
then it is only a matter of setting the router back to the old blue version in order to achieve
a complete rollback.

In the case of a canary release, the router is configured in such a way that it funnels a tiny
percentage, say 1%, of the overall traffic through the new version of the service, while 99%
of the traffic is still routed through the old version. The behavior of the new version is
closely monitored and compared to the behavior of the old version. If everything looks
good, then the percentage of the traffic that is funneled through the new service is slightly
increased. This process is repeated until 100% of the traffic is routed through the new
service. If the new service has run for a while and everything looks good, then the old
service can be decommissioned.

Orchestrators Chapter 12

[318]

Most orchestrators support at least the rolling update type of zero downtime deployment
out of the box. Blue–green deployments and canary releases are often quite easy to
implement.

Affinity and location awareness
Sometimes, certain application services require the availability of dedicated hardware on
the nodes on which they run. For example, I/O-bound services require cluster nodes with
an attached high-performance solid-state drive (SSD), or some services that are used for
machine learning, or similar, require an Accelerated Processing Unit (APU).
Orchestrators allow us to define node affinities per application service. The orchestrator
will then make sure that its scheduler only schedules containers on cluster nodes that fulfill
the required criteria.

Defining an affinity to a particular node should be avoided; this would introduce a single
point of failure and thus compromise high availability. Always define a set of multiple
cluster nodes as the target for an application service.

Some orchestration engines also support what is called location awareness or geo
awareness. What this means is that you can ask the orchestrator to equally distribute
instances of a service over a set of different locations. You could, for example, define a
datacenter label, with the possible west, center, and east values, and apply the label to
all of the cluster nodes with the value that corresponds to the geographical region in which
the respective node is located. Then, you instruct the orchestrator to use this label for the
geo awareness of a certain application service. In this case, if you request nine replicas of
the service, then the orchestrator would make sure that three instances are deployed to the
nodes in each of the three data centers—west, center, and east.

Geo awareness can even be defined hierarchically; for example, you can have a data center
as the top-level discriminator, followed by the availability zone.

Geo awareness, or location awareness, is used to decrease the probability of outages due to
power supply failures or data center outages. If the application instances are distributed
across nodes, availability zones, or even data centers, it is extremely unlikely that
everything will go down at once. One region will always be available.

Orchestrators Chapter 12

[319]

Security
These days, security in IT is a very hot topic. Cyber warfare is at an all-time high. Most
high-profile companies have been victims of hacker attacks, with very costly consequences.
One of the worst nightmares of each chief information officer (CIO) or chief technology
officer (CTO) is to wake up in the morning and hear in the news that their company has
become a victim of a hacker attack, and that sensitive information has been stolen or
compromised.

To counter most of these security threats, we need to establish a secure software supply
chain, and enforce security defense in depth. Let's look at some of the tasks that you can
expect from an enterprise-grade orchestrator.

Secure communication and cryptographic node identity
First and foremost, we want to make sure that our cluster that is managed by the
orchestrator is secure. Only trusted nodes can join the cluster. Each node that joins the
cluster gets a cryptographic node identity, and all communication between the nodes must
be encrypted. For this, nodes can use Mutual Transport Layer Security (MTLS). In order to
authenticate nodes of the cluster with each other, certificates are used. These certificates are
automatically rotated periodically, or on request, to protect the system in case a certificate is
leaked.

The communication that happens in a cluster can be separated into three types. You talk
about communication planes—management, control, and data planes:

The management plane is used by the cluster managers, or masters, to, for
example, schedule service instances, execute health checks, or create and modify
any other resources in the cluster, such as data volumes, secrets, or networks.
The control plane is used to exchange important state information between all
nodes of the cluster. This kind of information is, for example, used to update the
local IP tables on clusters, which are used for routing purposes.
The data plane is where the actual application services communicate with each
other and exchange data.

Normally, orchestrators mainly care about securing the management and control plane.
Securing the data plane is left to the user, although the orchestrator may facilitate this task.

Orchestrators Chapter 12

[320]

Secure networks and network policies
When running application services, not every service needs to communicate with every
other service in the cluster. Thus, we want the ability to sandbox services from each other,
and only run those services in the same networking sandbox that absolutely need to
communicate with each other. All other services and all network traffic coming from
outside of the cluster should have no possibility of accessing the sandboxed services.

There are at least two ways in which this network-based sandboxing can happen. We can
either use a software-defined network (SDN) to group application services, or we can have
one flat network, and use network policies to control who does and does not have access to
a particular service or group of services.

Role-based access control (RBAC)
One of the most important tasks (next to security) that an orchestrator must fulfill in order
to make it enterprise-ready is to provide role-based access to the cluster and its resources.
RBAC defines how subjects, users, or groups of users of the system, organized into teams,
and so on, can access and manipulate the system. It makes sure that unauthorized
personnel cannot do any harm to the system, nor can they see any of the available resources
in the system that they're not supposed to know of or see.

A typical enterprise might have user groups such as Development, QA,
and Prod, and each of those groups can have one or many users
associated with it. John Doe, the developer, is a member of the
Development group and, as such, can access resources that are dedicated
to the development team, but he cannot access, for example, the resources
of the Prod team, of which Ann Harbor is a member. She, in turn, cannot
interfere with the Development team's resources.

One way of implementing RBAC is through the definition of grants. A grant is an
association between a subject, a role, and a resource collection. Here, a role is comprised of
a set of access permissions to a resource. Such permissions can be to create, stop, remove,
list, or view containers; to deploy a new application service; to list cluster nodes or view the
details of a cluster node; and many more.

A resource collection is a group of logically related resources of the cluster, such as
application services, secrets, data volumes, or containers.

Orchestrators Chapter 12

[321]

Secrets
In our daily life, we have loads of secrets. Secrets are information that is not meant to be
publicly known, such as the username and password combination that you use to access
your online bank account, or the code to your cell phone or your locker at the gym.

When writing software, we often need to use secrets, too. For example, we need a certificate
to authenticate our application service with the external service that we want to access, or
we need a token to authenticate and authorize our service when accessing some other API.
In the past, developers, for convenience, have just hardcoded those values, or put them in
clear text in some external configuration files. There, this very sensitive information has
been accessible to a broad audience, which, in reality, should never have had the
opportunity to see those secrets.

Luckily, these days, orchestrators offer what's called secrets to deal with such sensitive
information in a highly secure way. Secrets can be created by authorized or trusted
personnel. The values of those secrets are then encrypted and stored in the highly available
cluster state database. The secrets, since they are encrypted, are now secure at rest. Once a
secret is requested by an authorized application service, the secret is only forwarded to the
cluster nodes that actually run an instance of that particular service, and the secret value is
never stored on the node but mounted into the container in a tmpfs RAM-based volume.
Only inside the respective container is the secret value available in clear text.

We already mentioned that the secrets are secure at rest. Once they are requested by a
service, the cluster manager, or master, decrypts the secret and sends it over the wire to the
target nodes. So, what about the secrets being secure in transit? Well, we learned earlier that the
cluster nodes use MTLS for their communication, and so the secret, although transmitted in
clear text, is still secure, since data packets will be encrypted by MTLS. Thus, secrets are
secure both at rest and in transit. Only services that are authorized to use secrets will ever
have access to those secret values.

Orchestrators Chapter 12

[322]

Content trust
For added security, we want to make sure that only trusted images run in our production
cluster. Some orchestrators allow us to configure a cluster so that it can only ever run
signed images. Content trust and signing images is all about making sure that the authors
of the image are the ones that we expect them to be, namely, our trusted developers or,
even better, our trusted CI server. Furthermore, with content trust, we want to guarantee
that the image that we get is fresh, and is not an old and maybe vulnerable image. And
finally, we want to make sure that the image cannot be compromised by malicious hackers
in transit. The latter is often called a man-in-the-middle (MITM) attack.

By signing images at the source, and validating the signature at the target, we can
guarantee that the images that we want to run are not compromised.

Reverse uptime
The last point I want to discuss in the context of security is reverse uptime. What do we mean
by that? Imagine that you have configured and secured a production cluster. On this cluster,
you're running a few mission-critical applications of your company. Now, a hacker has
managed to find a security hole in one of your software stacks, and has gained root access
to one of your cluster nodes. That alone is already bad enough but, even worse, this hacker
could now mask their presence on this node, on which they have root access, after all, and
then use it as a base to attack other nodes in your cluster.

Root access in Linux or any Unix-type operating system means that you
can do anything on this system. It is the highest level of access that
someone can have. In Windows, the equivalent role is that of an
administrator.

But what if we leverage the fact that containers are ephemeral and cluster nodes are quickly
provisioned, usually in a matter of minutes if fully automated? We just kill each cluster node
after a certain uptime of, say, 1 day. The orchestrator is instructed to drain the node and
then exclude it from the cluster. Once the node is out of the cluster, it is torn down and
replaced by a freshly provisioned node.

That way, the hacker has lost their base and the problem has been eliminated. This concept
is not yet broadly available, though, but to me it seems to be a huge step toward increased
security and, as far as I have discussed it with engineers who are working in this area, it is
not difficult to implement.

Orchestrators Chapter 12

[323]

Introspection
So far, we have discussed a lot of tasks for which the orchestrator is responsible, and that it
can execute in a completely autonomous way. But there is also the need for human
operators to be able to see and analyze what's currently running on the cluster, and in what
state or health the individual applications are. For all this, we need the possibility of
introspection. The orchestrator needs to surface crucial information in a way that is easily
consumable and understandable.

The orchestrator should collect system metrics from all the cluster nodes and make them
accessible to the operators. Metrics include CPU, memory and disk usage, network
bandwidth consumption, and more. The information should be easily available on a node-
per-node basis, as well as in an aggregated form.

We also want the orchestrator to give us access to logs that are produced by service
instances or containers. Even more, the orchestrator should provide us with exec access to
each and every container if we have the correct authorization to do so. With exec access to
containers, you can then debug misbehaving containers.

In highly distributed applications, where each request to the application goes through
numerous services until it is completely handled, tracing requests is a really important task.
Ideally, the orchestrator supports us in implementing a tracing strategy, or gives us some
good guidelines to follow.

Finally, human operators can best monitor a system when working with a graphical
representation of all the collected metrics and logging and tracing information. Here, we
are speaking about dashboards. Every decent orchestrator should offer at least some basic
dashboard with a graphical representation of the most critical system parameters.

However, human operators are not the only ones concerned about introspection. We also
need to be able to connect external systems with the orchestrator in order to consume this
information. There needs to be an API available, over which external systems can access
data such as cluster state, metrics, and logs, and use this information to make automated
decisions, such as creating pager or phone alerts, sending out emails, or triggering an alarm
siren if some thresholds are exceeded by the system.

Orchestrators Chapter 12

[324]

Overview of popular orchestrators
At the time of writing, there are many orchestration engines out there and in use, but there
are a few clear winners. The number one spot is clearly held by Kubernetes, which reigns
supreme. A distant second is Docker's own SwarmKit, followed by others such
as Apache Mesos, AWS Elastic Container Service (ECS), or Microsoft Azure Container
Service (ACS).

Kubernetes
Kubernetes was originally designed by Google and later donated to the Cloud Native
Computing Foundation (CNCF). Kubernetes was modeled after Google's proprietary Borg
system, which has been running containers on a super massive scale for years. Kubernetes
was Google's attempt to go back to the drawing board, and completely start over and
design a system that incorporates all the lessons that were learned with Borg.

Contrary to Borg, which is proprietary technology, Kubernetes was open sourced early on.
This was a very wise choice by Google, since it attracted a huge number of contributors
from outside of the company and, over only a couple of years, an even more massive
ecosystem evolved around Kubernetes. You can rightfully say that Kubernetes is the
darling of the community in the container orchestration space. No other orchestrator has
been able to produce so much hype and attract so many talented people who are willing to
contribute in a meaningful way to the success of the project as a contributor or an early
adopter.

In that regard, Kubernetes in the container orchestration space looks to me very much like
what Linux has become in the server operating system space. Linux has become the de facto
standard of server operating systems. All relevant companies, such as Microsoft, IBM,
Amazon, Red Hat, and even Docker, have embraced Kubernetes.

And there is one thing that cannot be denied: Kubernetes was designed from the very
beginning for massive scalability. After all, it was designed with Google Borg in mind.

One negative aspect that you could be voiced against Kubernetes is that it is still complex to
set up and manage, at least at the time of writing. There is a significant hurdle to overcome
for newcomers. The first step is steep, but once you have worked with this orchestrator for
a while, it all makes sense. The overall design is carefully thought through and executed
very well.

Orchestrators Chapter 12

[325]

In release 1.10 of Kubernetes, whose general availability (GA) was in March 2018, most of
the initial shortcomings compared to other orchestrators such as Docker Swarm have been
eliminated. For example, security and confidentiality is now not only an afterthought, but
an integral part of the system.

New features are implemented at a tremendous speed. New releases are happening every 3
months or so, more precisely, about every 100 days. Most of the new features are demand-
driven, that is, companies using Kubernetes to orchestrate their mission-critical applications
can voice their needs. This makes Kubernetes enterprise-ready. It would be wrong to
assume that this orchestrator is only for start-ups and not for risk-averse enterprises. The
contrary is the case. On what do I base this claim? Well, my claim is justified by the fact that
companies such as Microsoft, Docker, and Red Hat, whose clients are mostly big
enterprises, have fully embraced Kubernetes, and provide enterprise-grade support for it if
it is used and integrated into their enterprise offerings.

Kubernetes supports both Linux and Windows containers.

Docker Swarm
It is well known that Docker popularized and commoditized software containers. Docker
did not invent containers, but standardized them and made them broadly available, not
least by offering the free image registry—Docker Hub. Initially, Docker focused mainly on
the developer and the development life cycle. However, companies that started to use and
love containers soon also wanted to use them not just during the development or testing of
new applications, but also to run those applications in production.

Initially, Docker had nothing to offer in that space, so other companies jumped into that
vacuum and offered help to the users. But it didn't take long, and Docker recognized that
there was a huge demand for a simple yet powerful orchestrator. Docker's first attempt was
a product called classic swarm. It was a standalone product that enabled users to create a
cluster of Docker host machines that could be used to run and scale their containerized
applications in a highly available and self-healing way.

The setup of a classic Docker swarm, though, was hard. A lot of complicated manual steps
were involved. Customers loved the product, but struggled with its complexity. So, Docker
decided it could do better. It went back to the drawing board and came up with SwarmKit.
SwarmKit was introduced at DockerCon 2016 in Seattle, and was an integral part of the
newest version of the Docker engine. Yes, you got that right; SwarmKit was, and still is to
this day, an integral part of the Docker engine. Thus, if you install a Docker host, you
automatically have SwarmKit available with it.

Orchestrators Chapter 12

[326]

SwarmKit was designed with simplicity and security in mind. The mantra was, and still is,
that it has to be almost trivial to set up a swarm, and that the swarm has to be highly secure
out of the box. Docker Swarm operates on the assumption of least privilege.

Installing a complete, highly available Docker swarm is literally as simple as starting with
docker swarm init on the first node in the cluster, which becomes the so-called leader,
and then docker swarm join <join-token> on all other nodes. join-token is
generated by the leader during initialization. The whole process takes fewer that 5 minutes
on a swarm with up to 10 nodes. If it is automated, it takes even less time.

As I already mentioned, security was top on the list of must-haves when Docker designed
and developed SwarmKit. Containers provide security by relying on
Linux kernel namespaces and cgroups, as well as Linux syscall whitelisting (seccomp), and
the support of Linux capabilities and the Linux security module (LSM). Now, on top of
that, SwarmKit adds MTLS and secrets that are encrypted at rest and in transit.
Furthermore, Swarm defines the so-called container network model (CNM), which allows
for SDNs that provide sandboxing for application services that are running on the swarm.

Docker SwarmKit supports both Linux and Windows containers.

Apache Mesos and Marathon
Apache Mesos is an open source project, and was originally designed to make a cluster of
servers or nodes look like one single big server from the outside. Mesos is software that
makes the management of computer clusters simple. Users of Mesos should not have to
care about individual servers, but just assume they have a gigantic pool of resources at their
disposal, which corresponds to the aggregate of all the resources of all the nodes in the
cluster.

Mesos, in IT terms, is already pretty old, at least compared to the other orchestrators. It was
first publicly presented in 2009, but at that time, of course, it wasn't designed to run
containers, since Docker didn't even exist yet. Similar to what Docker does with containers,
Mesos uses Linux cgroups to isolate resources such as CPU, memory, or disk I/O for
individual applications or services.

Mesos is really the underlying infrastructure for other interesting services built on top of it.
From the perspective of containers specifically, Marathon is important. Marathon is a
container orchestrator that runs on top of Mesos, which is able to scale to thousands of
nodes.

Orchestrators Chapter 12

[327]

Marathon supports multiple container runtimes, such as Docker or its own Mesos
containers. It supports not only stateless, but also stateful, application services, for example,
databases such as PostgreSQL or MongoDB. Similar to Kubernetes and Docker SwarmKit, it
supports many of the features that were described earlier in this chapter, such as high
availability, health checks, service discovery, load balancing, and location awareness,
to name but a few of the most important ones.

Although Mesos and, to a certain extent, Marathon, are rather mature projects, their reach is
relatively limited. It seems to be most popular in the area of big data, that is, to run data-
crunching services such as Spark or Hadoop.

Amazon ECS
If you are looking for a simple orchestrator and have already heavily bought into the AWS
ecosystem, then Amazon's ECS might be the right choice for you. It is important to point
out one very important limitation of ECS: if you buy into this container orchestrator, then
you lock yourself into AWS. You will not be able to easily port an application that is
running on ECS to another platform or cloud.

Amazon promotes its ECS service as a highly scalable, fast container management service
that makes it easy to run, stop, and manage Docker containers on a cluster. Next to running
containers, ECS gives direct access to many other AWS services from the application
services that run inside the containers. This tight and seamless integration with many
popular AWS services is what makes ECS compelling for users who are looking for an easy
way to get their containerized applications up and running in a robust and highly scalable
environment. Amazon also provides its own private image registry.

With AWS ECS, you can use Fargate to have it fully manage the underlying infrastructure,
allowing you to concentrate exclusively on deploying containerized applications, and you
do not have to care about how to create and manage a cluster of nodes. ECS supports both
Linux and Windows containers.

In summary, ECS is simple to use, highly scalable, and well integrated with other popular
AWS services; but it is not as powerful as, say, Kubernetes or Docker SwarmKit, and it is
only available on Amazon AWS.

Orchestrators Chapter 12

[328]

Microsoft ACS
Similar to what we said about ECS, we can claim the same for Microsoft's ACS. It is a
simple container orchestration service that makes sense if you are already heavily invested
in the Azure ecosystem. I should say the same as I have pointed out for Amazon ECS: if
you buy into ACS, then you lock yourself in to the offerings of Microsoft. It will not be easy
to move your containerized applications from ACS to any other platform or cloud.

ACS is Microsoft's container service, which supports multiple orchestrators such as
Kubernetes, Docker Swarm, and Mesos DC/OS. With Kubernetes becoming more and more
popular, the focus of Microsoft has clearly shifted to that orchestrator. Microsoft has even
rebranded its service and called it Azure Kubernetes Service (AKS) in order to put the
focus on Kubernetes.

AKS manages, for you, a hosted Kubernetes or Docker Swarm or DC/OS environment in
Azure, so that you can concentrate on the applications that you want to deploy, and you
don't have to care about configuring the infrastructure. Microsoft, in its own words, claims
the following:

"AKS makes it quick and easy to deploy and manage containerized applications without
container orchestration expertise. It also eliminates the burden of ongoing operations and
maintenance by provisioning, upgrading, and scaling resources on demand, without
taking your applications offline."

Summary
This chapter demonstrated why orchestrators are needed in the first place, and how they
conceptually work. It pointed out which orchestrators are the most prominent ones at the
time of writing, and discussed the main commonalities and differences between the various
orchestrators.

The next chapter will introduce Docker’s native orchestrator, SwarmKit. It will elaborate on
all the concepts and objects that SwarmKit uses to deploy and run a distributed, resilient,
robust, and highly available application in a cluster—on-premises or in the cloud.

Orchestrators Chapter 12

[329]

Questions
Answer the following questions to assess your learning progress:

Why do we need an orchestrator? Provide two or three reasons.1.
Name three to four typical responsibilities of an orchestrator.2.
Name at least two container orchestrators, as well as the main sponsors behind3.
them.

Orchestrators Chapter 12

[330]

Further reading
The following links provide some deeper insight into orchestration-related topics:

Kubernetes—production-grade orchestration: https:/ /kubernetes. io/.

An overview of Docker Swarm mode: https:/ /docs. docker. com/ engine/ swarm/
.

Marathon, A container orchestration platform for Mesos and DC/OS: https:/ /
mesosphere.github.io/marathon/

Containers and orchestration are explained: http:/ /bit. ly/2DFoQgx.

https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl
https://bit.ly/2npjrEl

13
Introduction to Docker Swarm

In the last chapter, we introduced orchestrators. Like a conductor in an orchestra, an
orchestrator makes sure that all of our containerized application services play together
nicely and contribute harmoniously to a common goal. Such orchestrators have quite a few
responsibilities, which we discussed in detail. Finally, we provided a short overview of the
most important container orchestrators on the market.

This chapter introduces Docker's native orchestrator, SwarmKit. It elaborates on all of the
concepts and objects SwarmKit uses to deploy and run distributed, resilient, robust, and
highly available applications in a cluster on premises or in the cloud. This chapter also
introduces how SwarmKit ensures secure applications by using a Software-Defined
Network (SDN) to isolate containers. Additionally, this chapter demonstrates how to
install a highly available Docker Swarm in the cloud. It introduces the routing mesh, which
provides layer-4 routing and load balancing. Finally, it demonstrates how to deploy a first
application consisting of multiple services onto the swarm.

These are the topics we are going to discuss in this chapter:

The Docker Swarm architecture
Swarm nodes
Stacks, services, and tasks
Multi-host networking
Creating a Docker Swarm
Deploying a first application
The Swarm routing mesh

After completing this chapter, you will be able to do the following:

Sketch the essential parts of a highly available Docker Swarm on a whiteboard
Explain in two or three simple sentences to an interested layman what a (swarm)
service is

Introduction to Docker Swarm Chapter 13

[332]

Create a highly available Docker Swarm in AWS, Azure, or GCP consisting of
three manager and two worker nodes
Successfully deploy a replicated service such as Nginx on a Docker Swarm
Scale a running Docker Swarm service up and down
Retrieve the aggregated log of a replicated Docker Swarm service
Write a simple stack file for a sample application consisting of at least two
interacting services
Deploy a stack into a Docker Swarm

The Docker Swarm architecture
The architecture of a Docker Swarm from a 30,000-foot view consists of two main parts—a
raft consensus group of an odd number of manager nodes, and a group of worker nodes
that communicate with each other over a gossip network, also called the control plane. The
following diagram illustrates this architecture:

High-level architecture of a Docker Swarm

The manager nodes manage the swarm while the worker nodes execute the applications
deployed into the swarm. Each manager has a complete copy of the full state of the Swarm
in its local raft store. Managers synchronously communicate with each other and their raft
stores are always in sync.

Introduction to Docker Swarm Chapter 13

[333]

The workers, on the other hand, communicate with each other asynchronously for
scalability reasons. There can be hundreds if not thousands of worker nodes in a Swarm.
Now that we have a high-level overview of what a Docker Swarm is, let's describe all of the
individual elements of a Docker Swarm in more detail.

Swarm nodes
A Swarm is a collection of nodes. We can classify a node as a physical computer or Virtual
Machine (VM). Physical computers these days are often referred to as bare metal. People
say we're running on bare metal to distinguish from running on a VM.

When we install Docker on such a node, we call this node a Docker host. The following
diagram illustrates a bit better what a node and what a Docker host is:

Bare metal and VM types of Docker Swarm nodes

To become a member of a Docker Swarm, a node must be a Docker host. A node in a
Docker Swarm can have one of two roles. It can be a manager or it can be a worker.
Manager nodes do what their name implies; they manage the Swarm. The worker nodes, in
turn, execute the application workload.

Introduction to Docker Swarm Chapter 13

[334]

Technically, a manager node can also be a worker node and hence run application
workload—although that is not recommended, especially if the Swarm is a production
system running mission-critical applications.

Swarm managers
Each Docker Swarm needs to include at least one manager node. For high availability
reasons, we should have more than one manager node in a Swarm. This is especially true
for production or production-like environments. If we have more than one manager node,
then these nodes work together using the Raft consensus protocol. The Raft consensus
protocol is a standard protocol that is often used when multiple entities need to work
together and always need to agree with each other as to which activity to execute next.

To work well, the Raft consensus protocol asks for an odd number of members in what is
called the consensus group. Hence, we should always have 1, 3, 5, 7, and so on manager
nodes. In such a consensus group, there is always a leader. In the case of Docker Swarm,
the first node that starts the Swarm initially becomes the leader. If the leader goes away
then the remaining manager nodes elect a new leader. The other nodes in
the consensus group are called followers.

Now, let's assume that we shut down the current leader node for maintenance reasons. The
remaining manager nodes will elect a new leader. When the previous leader node comes
back online, it will now become a follower. The new leader remains the leader.

All of the members of the consensus group communicate synchronously with each other.
Whenever the consensus group needs to make a decision, the leader asks all followers for
agreement. If a majority of the manager nodes give a positive answer, then the leader
executes the task. That means if we have three manager nodes, then at least one of the
followers has to agree with the leader. If we have five manager nodes, then at least two
followers have to agree.

Since all manager follower nodes have to communicate synchronously with the leader node
to make a decision in the cluster, the decision-making process gets slower and slower the
more manager nodes we have forming the consensus group. The recommendation of
Docker is to use one manager for development, demo, or test environments. Use three
managers nodes in small to medium size Swarms, and use five managers in large to extra
large Swarms. To use more than five managers in a Swarm is hardly ever justified.

Introduction to Docker Swarm Chapter 13

[335]

The manager nodes are not only responsible for managing the Swarm but also for
maintaining the state of the Swarm. What do we mean by that? When we talk about the state
of the Swarm we mean all of the information about it—for example, how many nodes are in
the Swarm and what are the properties of each node, such as name or IP address. We also mean
what containers are running on which node in the Swarm and more. What, on the other
hand, is not included in the state of the Swarm is data produced by the application services
running in containers on the Swarm. This is called application data and is definitely not
part of the state that is managed by the manager nodes:

A Swarm manager consensus group

All of the Swarm states are stored in a high-performance key-value store (kv-store) on each
manager node. That's right, each manager node stores a complete replica of the
whole Swarm state. This redundancy makes the Swarm highly available. If a manager node
goes down, the remaining managers all have the complete state at hand.

If a new manager joins the consensus group, then it synchronizes the Swarm state with the
existing members of the group until it has a complete replica. This replication is usually
pretty fast in typical Swarms but can take a while if the Swarm is big and many
applications are running on it.

Swarm workers
As we mentioned earlier, a Swarm worker node is meant to host and run containers that
contain the actual application services we're interested in running on our cluster. They are
the workhorses of the Swarm. In theory, a manager node can also be a worker. But, as we
already said, this is not recommended on a production system. On a production system, we
should let managers be managers.

Introduction to Docker Swarm Chapter 13

[336]

Worker nodes communicate with each other over the so-called control plane. They use the
gossip protocol for their communication. This communication is asynchronous, which
means that, at any given time, it is likely that not all worker nodes are in perfect sync.

Now, you might ask—what information do worker nodes exchange? It is mostly information
that is needed for service discovery and routing, that is, information about which
containers are running on with nodes and more:

Worker nodes communicating with each other

In the preceding diagram, you can see how workers communicate with each other. To make
sure the gossiping scales well in a large Swarm, each worker node only synchronizes its
own state with three random neighbors. For those who are familiar with Big O notation,
that means that the synchronization of the worker nodes using the gossip protocol scales
with O(0).

Worker nodes are kind of passive. They never actively do something other than run the
workloads that they get assigned by the manager nodes. The worker makes sure, though,
that it runs these workloads to the best of its capabilities. Later on in this chapter, we will
get to know more about exactly what workloads the worker nodes are assigned by the
manager nodes.

Introduction to Docker Swarm Chapter 13

[337]

Stacks, services, and tasks
When using a Docker Swarm versus a single Docker host, there is a paradigm change.
Instead of talking of individual containers that run processes, we are abstracting away to
services that represent a set of replicas of each process, and, in this way, become highly
available. We also do not speak anymore of individual Docker hosts with well-known
names and IP addresses to which we deploy containers; we'll now be referring to clusters of
hosts to which we deploy services. We don't care about an individual host or node
anymore. We don't give it a meaningful name; each node rather becomes a number to us.
We also don't care about individual containers and where they are deployed any
longer—we just care about having a desired state defined through a service. We can try to
depict that as shown in the following diagram:

Containers are deployed to well-known servers

Instead of deploying individual containers to well-known servers like in the preceding
diagram, where we deploy the web container to the alpha server with the IP
address 52.120.12.1, and the payments container to the beta server with the
IP 52.121.24.33, we switch to this new paradigm of services and Swarms (or, more
generally, clusters):

Services are deployed to Swarms

Introduction to Docker Swarm Chapter 13

[338]

In the preceding diagram, we see that a web service and an inventory service are both
deployed to a Swarm that consists of many nodes. Each of the services has a certain
number of replicas: six for web and five for inventory. We don't really care on which node
the replicas will run; we only care that the requested number of replicas is always running
on whatever nodes the Swarm scheduler decides to put them on.

Services
A Swarm service is an abstract thing. It is a description of the desired state of an application
or application service that we want to run in a Swarm. The Swarm service is like a manifest
describing such things as the following:

Name of the service
Image from which to create the containers
Number of replicas to run
Network(s) that the containers of the service are attached to
Ports that should be mapped

Having this service manifest, the Swarm manager then makes sure that the described
desired state is always reconciled if ever the actual state should deviate from it. So, if for
example, one instance of the service crashes, then the scheduler on the Swarm manager
schedules a new instance of this particular service on a node with free resources so that the
desired state is reestablished.

Task
We have learned that a service corresponds to a description of the desired state in which an
application service should be at all times. Part of that description was the number of
replicas the service should be running. Each replica is represented by a task. In this regard,
a Swarm service contains a collection of tasks. On Docker Swarm, a task is the atomic unit
of deployment. Each task of a service is deployed by the Swarm scheduler to a worker
node. The task contains all of the necessary information that the worker node needs to run a
container based on the image, which is part of the service description. Between a task and a
container, there is a one-to-one relation. The container is the instance that runs on the
worker node, while the task is the description of this container as a part of a Swarm service.

Introduction to Docker Swarm Chapter 13

[339]

Stack
Now that we have a good idea about what a Swarm service is and what tasks are, we can
introduce the stack. A stack is used to describe a collection of Swarm services that are
related, most probably because they are part of the same application. In that sense, we
could also say that a stack describes an application that consists of one to many services
that we want to run on the Swarm.

Typically, we describe a stack declaratively in a text file that is formatted using the YAML
format and that uses the same syntax as the already-known Docker Compose file. This
leads to a situation where people sometimes say that a stack is described by a docker-
compose file. A better wording would be: a stack is described in a stack file that uses
similar syntax to a docker-compose file.

Let's try to illustrate the relationship between the stack, services, and tasks in the following
diagram and connect it with the typical content of a stack file:

Diagram showing the relationship between stack, services, and tasks

Introduction to Docker Swarm Chapter 13

[340]

In the preceding diagram, we see on the right-hand side a declarative description of a
sample Stack. The Stack consists of three services called web, payments, and inventory.
We also see that the web service uses the example/web:1.0 image and has four replicas.

On the left-hand side of the diagram, we see that the Stack embraces the three services
mentioned. Each service, in turn, contains a collection of Tasks, as many as there are
replicas. In the case of the web service, we have a collection of four Tasks. Each Task
contains the name of the Image from which it will instantiate a container once the Task is
scheduled on a Swarm node.

Multi-host networking
In Chapter 10, Single-Host Networking, we discussed how containers communicate on a
single Docker host. Now, we have a Swarm that consists of a cluster of nodes or Docker
hosts. Containers that are located on different nodes need to be able to communicate with
each other. Many techniques can help us to achieve this goal. Docker has chosen to
implement an overlay network driver for Docker Swarm. This overlay network allows
containers attached to the same overlay network to discover each other and freely
communicate with each other. The following is a schema for how an overlay network
works:

Overlay network

Introduction to Docker Swarm Chapter 13

[341]

We have two nodes or Docker hosts with the IP
addresses 172.10.0.15 and 172.10.0.16. The values we have chosen for the IP
addresses are not important; what is important is that both hosts have a distinct IP address
and are connected by a physical network (a network cable), which is called the underlay
network.

On the node on the left-hand side we have a container running with the IP
address 10.3.0.2, and on the node on the right-hand side another container with the IP
address 10.3.0.5. Now, the former container wants to communicate with the latter. How
can this happen? In Chapter 10, Single-Host Networking, we saw how this works when both
containers are located on the same node—by using a Linux bridge. But Linux bridges only
operate locally and cannot span across nodes. So, we need another mechanism. Linux
VXLAN comes to the rescue. VXLAN has been available on Linux since way before
containers were a thing.

When the left-hand container sends a data packet, the bridge realizes that the target of the
packet is not on this host. Now, each node participating in an overlay network gets a so-
called VXLAN Tunnel Endpoint (VTEP) object, which intercepts the packet (the packet at
that moment is an OSI layer 2 data packet), wraps it with a header containing the target IP
address of the host that runs the destination container (this makes it now an OSI layer 3
data packet), and sends it over the VXLAN tunnel. The VTEP on the other side of the
tunnel unpacks the data packet and forwards it to the local bridge, which in turn forwards
it to the destination container.

The overlay driver is included in SwarmKit and is in most cases the recommended network
driver for Docker Swarm. There are other multi-node-capable network drivers available
from third parties that can be installed as plugins to each participating Docker host.
Certified network plugins are available from the Docker store.

Creating a Docker Swarm
Creating a Docker Swarm is almost trivial. It is so easy that it seems unreal if you know
what an orchestrator is all about. But it is true, Docker has done a fantastic job in making
Swarms simple and elegant to use. At the same time, Docker Swarm has been proven in use
by large enterprises to be very robust and scalable.

Introduction to Docker Swarm Chapter 13

[342]

Creating a local single node swarm
So, enough imagining — let's demonstrate how we can create a Swarm. In its most simple
form, a fully functioning Docker Swarm consists only of a single node. If you're using
Docker for Mac or Windows, or even if you're using Docker Toolbox, then your personal
computer or laptop is such a node. Hence, we can start right there and demonstrate some of
the most important features of a Swarm.

Let's initialize a Swarm. On the command line, just enter the following command:

$ docker swarm init

And after an incredibly short time, you should see something like the following screenshot:

Output of the Docker Swarm init command

Our computer is now a Swarm node. Its role is that of a manager and it is the leader (of the
managers, which makes sense since there is only one manager at this time). Although it
took only a very short time to finish docker swarm init, the command did a lot of
things during that time. Some of them are as follows:

It created a root Certificate Authority (CA).
It created a key-value store that is used to store the state of the whole Swarm.

Now, in the preceding output, we can see a command that can be used to join other nodes
to the Swarm that we just created. The command is as follows:

$ docker swarm join --token <join-token> <IP address>:2377

Here, we have the following:

<join-token> is a token generated by the Swarm leader at the time the Swarm
was initialized.
 <IP address> is the IP address of the leader.

Introduction to Docker Swarm Chapter 13

[343]

Although our cluster remains simple, as it consists of only one member, we can still ask the
Docker CLI to list all of the nodes of the Swarm. This will look similar to the following
screenshot:

Listing the nodes of the Docker Swarm

In this output, we first see ID that was given to the node. The star (*) that follows ID
indicates that this is the node on which docker node ls was executed—basically saying
that this is the active node. Then, we have the (human-readable) name of the node, its
status, availability, and manager status. As mentioned earlier, this very first node of the
Swarm automatically became the leader, which is indicated in the preceding screenshot.
Lastly, we see which version of the Docker engine we're using.

To get even more information about a node, we can use the docker node
inspect command, as shown in the following screenshot:

Truncated output of the docker node inspect command

Introduction to Docker Swarm Chapter 13

[344]

There is a lot of information generated by this command, so we only present a truncated
version of the output. This output can be useful, for example, when you need to
troubleshoot a misbehaving cluster node.

Creating a local Swarm in VirtualBox or Hyper-V
Sometimes, a single node Swarm is not enough, but we don't have or don't want to use
an account to create a Swarm in the cloud. In this case, we can create a local Swarm in
either VirtualBox or Hyper-V. Creating the Swarm in VirtualBox is slightly easier than
creating it in Hyper-V, but if you're using Windows 10 and have Docker for Windows
running, then you cannot use VirtualBox at the same time. The two hypervisors are
mutually exclusive.

Let's assume we have VirtualBox and docker-machine installed on our laptop. We can
then use docker-machine to list all Docker hosts that are currently defined and may be
running in VirtualBox:

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
default - virtualbox Stopped Unknown

In my case, I have one VM called default defined, which is currently stopped. I can easily
start the VM by issuing the docker-machine start default command. This command
takes a while and will result in the following (shortened) output:

$ docker-machine start default
Starting "default"...
(default) Check network to re-create if needed...
(default) Waiting for an IP...
Machine "default" was started.
Waiting for SSH to be available...
Detecting the provisioner...
Started machines may have new IP addresses. You may need to re-run the
`docker-machine env` command.

Now, if I list my VMs again, I should see the following screenshot:

List of all VMs running in Hyper-V

Introduction to Docker Swarm Chapter 13

[345]

If we do not have a VM called default yet, we can easily create one using
the create command:

docker-machine create --driver virtualbox default

This results in the following output:

Output of docker-machine create

We can see in the preceding output how docker-machine creates the VM from an ISO
image, defines SSH keys and certificates, and copies them to the VM and to the
local ~/.docker/machine directory, where we will use it later when we want to remotely
access this VM through the Docker CLI. It also provisions an IP address for the new VM.

We're using the docker-machine create command with the --driver
virtualbox parameter. The docker-machine can also work with other drivers such as
Hyper-V, AWS, Azure, DigitalOcean, and many more. Please see the documentation of
docker-machine for more information. By default, a new VM gets 1 GB of memory
associated, which is enough to use this VM as a node for a development or test Swarm.

Introduction to Docker Swarm Chapter 13

[346]

If you're on Windows 10 with Docker for Desktop, use the
hyperv driver instead. To be successful though, you need to run as
Administrator. Furthermore, you need to have an external virtual switch
defined on Hyper-V first. You can use the Hyper-V Manager to do so. The
output of the command will look very similar to the one for
the virtualbox driver.

Now, let's create five VMs for a five-node Swarm. We can use a bit of scripting to reduce
the manual work:

$ for NODE in `seq 1 5`; do
 docker-machine create --driver virtualbox "node-${NODE}"
done

The docker-machine will now create five VMs with the names node-1 to node-5. This
might take a few moments, so this is a good time to get yourself a hot cup of tea. After the
VMs are created, we can list them:

List of all the VMs we need for the Swarm

Now, we're ready to build a Swarm. Technically, we could SSH into the first
VM node-1 and initialize a Swarm and then SSH into all the other VMs and join them to
the Swarm leader. But this is not efficient. Let's again use a script that does all of the hard
work:

get IP of Swarm leader
$ export IP=$(docker-machine ip node-1)
init the Swarm
$ docker-machine ssh node-1 docker swarm init --advertise-addr $IP
Get the Swarm join-token
$ export JOIN_TOKEN=$(docker-machine ssh node-1 \
 docker swarm join-token worker -q)

Introduction to Docker Swarm Chapter 13

[347]

Now that we have the join token and the IP address of the Swarm leader, we can ask the
other nodes to join the Swarm as follows:

$ for NODE in `seq 2 5`; do
 NODE_NAME="node-${NODE}"
 docker-machine ssh $NODE_NAME docker swarm join \
 --token $JOIN_TOKEN $IP:2377
done

To make the Swarm highly available, we can now promote, for
example, node-2 and node-3 to become managers:

$ docker-machine ssh node-1 docker node promote node-2 node-3
Node node-2 promoted to a manager in the swarm.
Node node-3 promoted to a manager in the swarm.

Finally, we can list all of the nodes of the Swarm:

$ docker-machine ssh node-1 docker node ls

We should see the following:

List of all of the nodes of the Docker Swarm on VirtualBox

This is proof that we have just created a highly available Docker Swarm locally on our
laptop or workstation. Let's pull all of our code snippets together and make the whole thing
a bit more robust. The script will look as follows:

alias dm="docker-machine"
for NODE in `seq 1 5`; do
 NODE_NAME=node-${NODE}
 dm rm --force $NODE_NAME
 dm create --driver virtualbox $NODE_NAME
done
alias dms="docker-machine ssh"
export IP=$(docker-machine ip node-1)
dms node-1 docker swarm init --advertise-addr $IP;
export JOIN_TOKEN=$(dms node-1 docker swarm join-token worker -q);

Introduction to Docker Swarm Chapter 13

[348]

for NODE in `seq 2 5`; do
 NODE_NAME="node-${NODE}"
 dms $NODE_NAME docker swarm join --token $JOIN_TOKEN $IP:2377
done;
dms node-1 docker node promote node-2 node-3

The preceding script first deletes (if present) and then recreates five VMs
called node-1 to node-5, and then initializes a Swarm on node-1. After that, the
remaining four VMs are added to the Swarm, and finally, node-2 and node-3 are
promoted to manager status to make the Swarm highly available. The whole script will
take less than 5 minutes to execute and can be repeated as many times as desired. The
complete script can be found in the repository, in the docker-swarm subfolder; it is
called create-swarm.sh.

It is a highly recommended best practice to always script and hence automate operations.

Using Play with Docker to generate a Swarm
To experiment with Docker Swarm without having to install or configure anything locally
on our computer, we can use Play with Docker (PWD). PWD is a website that can be
accessed with a browser and that offers us the ability to create a Docker Swarm consisting
of up to five nodes. It is definitely a playground, as the name implies, and the time for
which we can use it is limited to four hours per session. We can open as many sessions as
we want, but each session automatically ends after four hours. Other than that, it is a fully
functional Docker environment that is ideal for tinkering with Docker or to demonstrate
some features.

Let's access the site now. In your browser, navigate to the website https:/ / labs. play-
with-docker.com. You will be presented with a welcome and login screen. Use your Docker
ID to log in. After successfully going so, you will be presented with a screen that looks like
the following screenshot:

https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com
https://labs.play-with-docker.com

Introduction to Docker Swarm Chapter 13

[349]

Play with Docker window

As we can see immediately, there is a big timer counting down from four hours. That's how
much time we have left to play in this session. Furthermore, we see a + ADD NEW
INSTANCE link. Click it to create a new Docker host. When you do that, your screen
should look like the following screenshot:

PWD with one new node

Introduction to Docker Swarm Chapter 13

[350]

On the left-hand side, we see the newly created node with its IP address (192.168.0.48)
and its name (node1). On the right-hand side, we have some additional information about
this new node in the upper half of the screen and a Terminal in the lower half. Yes, this
Terminal is used to execute commands on this node that we just created. This node has the
Docker CLI installed, and hence we can execute all of the familiar Docker commands on it
such as docker version. Try it out.

But now we want to create a Docker Swarm. Execute the following command in the
Terminal in your browser:

$ docker swarm init --advertise-addr=eth0

The output generated by the preceding command corresponds to what we already know
from our previous trials with the one-node cluster on our workstation and the local cluster
using VirtualBox or Hyper-V. The important information, once again, is the join command
that we want to use to join additional nodes to the cluster we just created.

You might have noted that this time we specified the --advertise-addr parameter in the
Swarm init command. Why is that necessary here? The reason is that the nodes generated
by PWD have more than one IP address associated with them. We can easily verify that by
executing the ip a command on the node. This command will show us that there are
indeed two endpoints, eth0 and eth1, present. We hence have to specify explicitly to the
new to-be swarm manager which one we want to use. In our case, it is eth0.

Create four additional nodes in PWD by clicking four times on the + ADD NEW
INSTANCE link. The new nodes will be called node2, node3, node4, and node5 and will
all be listed on the left-hand side. If you click on one of the nodes on the left-hand side, then
the right-hand side shows the details of the respective node and a Terminal window for
that node.

Select each node (2 to 5) and execute the docker swarm join command that you have
copied from the leader node (node1) in the respective Terminal:

Introduction to Docker Swarm Chapter 13

[351]

Joining a node to the Swarm in PWD

Once you have joined all four nodes to the Swarm, switch back to node1 and list all nodes,
which, unsurprisingly, results in this:

List of all of the nodes of the swarm in PWD

Still on node1, we can now promote, say, node2 and node3, to make the Swarm highly
available:

$ docker node promote node2 node3
Node node2 promoted to a manager in the swarm.
Node node3 promoted to a manager in the swarm.

Introduction to Docker Swarm Chapter 13

[352]

With this, our Swarm on PWD is ready to accept a workload. We have created a highly
available Docker Swarm with three manager nodes that form a Raft consensus group and
two worker nodes.

Creating a Docker Swarm in the cloud
All of the Docker Swarms we have created so far are wonderful to use in development or to
experiment or to use for demonstration purposes. If we want to create a Swarm that can be
used as a production environment where we run our mission-critical applications, though,
then we need to create a—I'm tempted to say—real Swarm in the cloud or on premises. In
this book, we are going to demonstrate how to create a Docker Swarm in AWS.

One way to create a Swarm is by using docker-machine (DM). DM has a driver for AWS. If
we have an account on AWS, we need the AWS access key ID and the AWS secret access
key. We can add those two values to a file called ~/.aws/configuration. It should look
like the following:

[default]
aws_access_key_id = AKID1234567890
aws_secret_access_key = MY-SECRET-KEY

Every time we run docker-machine create, DM will look up those values in that file.
For more in-depth information on how to get an AWS account and how to obtain the two
secret keys, please consult this link: http:/ /dockr. ly/2FFelyT.

Once we have an AWS account in place and have stored the access keys in the
configuration file, we can start building our Swarm. The necessary code looks exactly the
same as the one we used to create a Swarm on our local machine in VirtualBox. Let's start
with the first node:

$ docker-machine create --driver amazonec2 \
 --amazonec2-region us-east-1 aws-node-1

This will create an EC2 instance called aws-node-1 in the requested region (us-east-1 in
my case). The output of the preceding command looks like the following screenshot:

http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT

Introduction to Docker Swarm Chapter 13

[353]

Creating a swarm node on AWS with DM

It looks very similar to the output we already know from working with VirtualBox. We can
now configure our Terminal for remote access to that EC2 instance:

$ eval $(docker-machine env aws-node-1)

This will configure the environment variables used by the Docker CLI accordingly:

Environment variables used by Docker to enable remote access to the AWS EC2 node

For security reasons, Transport Layer Security (TLS) is used for
the communication between our CLI and the remote node. The certificates necessary for
that were copied by DM to the path we assigned to the environment
variable DOCKER_CERT_PATH.

All Docker commands that we now execute in our Terminal will be remotely executed in
AWS on our EC2 instance. Let's try to run Nginx on this node:

$ docker container run -d -p 8000:80 nginx:alpine

We can use docker container ls to verify that the container is running. If so, then let's
test it using curl:

$ curl -4 <IP address>:8000

Introduction to Docker Swarm Chapter 13

[354]

Here, <IP address> is the public IP address of the AWS node; in my case, it would
be 35.172.240.127. Sadly, this doesn't work; the preceding command times out:

Accessing Nginx on the AWS node times out

The reason for this is that our node is part of an AWS Security Group (SG). By default,
access to objects inside this SG is denied. Hence, we have to find out to which SG
our instance belongs and configure access explicitly. For this, we typically use the AWS
console. Go to the EC2 Dashboard and select Instances on the left-hand side. Locate the
EC2 instance called aws-node-1 and select it. In the details view, under Security
groups, click on the docker-machine link, as shown in the following screenshot:

Locating the SG to which our Swarm node belongs

This will lead us to the SG page with the docker-machine SG pre-selected. In the details
section under the Inbound tab, add a new rule for your IP address (the IP address of
workstation):

Introduction to Docker Swarm Chapter 13

[355]

Open access to SG for our computer

In the preceding screenshot, the IP address 70.113.114.234 happens to be the one
assigned to my personal workstation. I have enabled all inbound traffic coming from this IP
address to the docker-machine SG. Note that in a production system you should be very
careful about which ports of the SG to open to the public. Usually, it is ports 80 and 443 for
HTTP and HTTPS access. Everything else is a potential invitation to hackers.

You can get your own IP address through a service such as https:/ / www.whatismyip. com/.
Now, if we execute the curl command again, the greeting page of Nginx is returned.

Before we leave the SG, we should add another rule to it. The Swarm nodes need to be able
to freely communicate on ports 7946 and 4789 through TCP and UDP and on
port 2377 through TCP. We could now add five rules with these requirements
where the source is the SG itself, or we just define a crude rule that allows all inbound
traffic inside the SG (sg-c14f4db3 in my case):

 SG rule to enable intra-Swarm communication

https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/
https://www.whatismyip.com/

Introduction to Docker Swarm Chapter 13

[356]

Now, let's continue with the creation of the remaining four nodes. Once again, we can use a
script to ease the process:

$ for NODE in `seq 2 5`; do
 docker-machine create --driver amazonec2 \
 --amazonec2-region us-east-1 aws-node-${NODE}
done

After the provisioning of the nodes is done, we can list all nodes with DM. In my case, I see
this:

List of all the nodes created by DM

In the preceding screenshot, we can see the five nodes that we originally created in
VirtualBox and the five new nodes that we created in AWS. Apparently, the nodes on AWS
are using a new version of Docker; here, the version is 18.02.0-ce. The IP addresses we
see in the URL column are the public IP addresses of my EC2 instances.

Because our CLI is still configured for remote access to the aws-node-1 node, we can just
run the swarm init command as follows:

$ docker swarm init

To get the join token do the following:

$ export JOIN_TOKEN=$(docker swarm join-token -q worker)

To get the IP address of the leader use the following command:

$ export LEADER_ADDR=$(docker node inspect \
 --format "{{.ManagerStatus.Addr}}" self)

Introduction to Docker Swarm Chapter 13

[357]

With this information, we can now join the other four nodes to the Swarm leader:

$ for NODE in `seq 2 5`; do
 docker-machine ssh aws-node-${NODE} \
 sudo docker swarm join --token ${JOIN_TOKEN} ${LEADER_ADDR}
done

An alternative way to achieve the same without needing to SSH into the individual nodes
would be to reconfigure our client CLI every time we want to access a different node:

$ for NODE in `seq 2 5`; do
 eval $(docker-machine env aws-node-${NODE})
 docker swarm join --token ${JOIN_TOKEN} ${LEADER_ADDR}
done

As a last step, we want to promote nodes 2 and 3 to manager:

$ eval $(docker-machine env node-1)
$ docker node promote aws-node-2 aws-node-3

We can then list all of the Swarm nodes, as shown in the following screenshot:

List of all nodes of our swarm in the cloud

And hence we have a highly available Docker Swarm running in the cloud. To clean up the
Swarm in the cloud and avoid incurring unnecessary costs, we can use the following
command:

$ for NODE in `seq 1 5`; do
 docker-machine rm -f aws-node-${NODE}
done

Introduction to Docker Swarm Chapter 13

[358]

Deploying a first application
We have created a few Docker Swarms on various platforms. Once created, a Swarm
behaves the same way on any platform. The way we deploy and update applications on a
Swarm is not platform-dependent. It has been one of Docker's main goals to avoid vendor
lock-in when using a Swarm. Swarm-ready applications can be effortlessly migrated from,
say, a Swarm running on premises to a cloud-based Swarm. It is even technically possible
to run part of a Swarm on premises and another part in the cloud. It works, yet we have, of
course, to consider possible side effects due to the higher latency between nodes in
geographically distant areas.

Now that we have a highly available Docker Swarm up and running, it is time to run some
workloads on it. I'm using a local Swarm created with docker-machine. We'll start by first
creating a single service. For this, we need to SSH into one of the manager nodes. I
select node-1:

$ docker-machine ssh node-1

Creating a service
A service can be either created as part of a stack or directly using the Docker CLI. Let's first
look at a sample stack file that defines a single service:

version: "3.7"
services:
 whoami:
 image: training/whoami:latest
 networks:
 - test-net
 ports:
 - 81:8000
 deploy:
 replicas: 6
 update_config:
 parallelism: 2
 delay: 10s
 labels:
 app: sample-app
 environment: prod-south

networks:
 test-net:
 driver: overlay

Introduction to Docker Swarm Chapter 13

[359]

In the preceding example, we see what the desired state of a service called whoami is:

It is based on the training/whoami:latest image.
Containers of the service are attached to the test-net network.
The container port 8000 is published to port 81.
It is running with six replicas (or tasks)
During a rolling update, the individual tasks are updated in batches of two, with
a delay of 10 seconds between each successful batch.
The service (and its tasks and containers) is assigned the two
labels app and environment with the values sample-app and prod-
south, respectively

There are many more settings that we could define for a service, but the preceding ones are
some of the more important ones. Most settings have meaningful default values. If, for
example, we do not specify the number of replicas, then Docker defaults it to 1. The name
and image of a service are, of course, mandatory. Note that the name of the service must be
unique in the Swarm.

To create the preceding service, we use the docker stack deploy command. Assuming
that the file in which the preceding content is stored is called stack.yaml, we have the
following:

$ docker stack deploy -c stack.yaml sample-stack

Here, we have created a stack called sample-stack that consists of one service, whoami.
We can list all stacks on our Swarm, whereupon we should get this:

$ docker stack ls
NAME SERVICES
sample-stack 1

If we list the services defined in our Swarm, we get the following output:

List of all services running in the Swarm

Introduction to Docker Swarm Chapter 13

[360]

In the output, we can see that currently, we have only one service running, which was to be
expected. The service has an ID. The format of ID, contrary to what you have used so far for
containers, networks, or volumes, is alphanumeric (in the latter cases it was
always sha256). We can also see that NAME of the service is a combination of the service
name we defined in the stack file and the name of the stack, which is used as a prefix. This
makes sense since we want to be able to deploy multiple stacks (with different names)
using the same stack file into our Swarm. To make sure that service names are unique,
Docker decided to combine service name and stack name.

In the third column, we see the mode, which is replicated. The number of REPLICAS is
shown as 6/6. This tells us that six out of the six requested REPLICAS are running. This
corresponds to the desired state. In the output, we also see the image that the service uses
and the port mappings of the service.

Inspecting the service and its tasks
In the preceding output, we cannot see the details of the 6 replicas that have been created.
To get some deeper insight into that, we can use the docker service ps command. If we
execute this command for our service, we will get the following output:

Details of the whoami service

In the preceding output, we can see the list of six tasks that correspond to the requested six
replicas of our whoami service. In the NODE column, we can also see the node to which each
task has been deployed. The name of each task is a combination of the service name plus an
increasing index. Also note that, similar to the service itself, each task gets an alphanumeric
ID assigned.

Introduction to Docker Swarm Chapter 13

[361]

In my case, apparently task 2, with the name sample-stack_whoami.2, has been
deployed to node-1, which is the leader of our Swarm. Hence, I should find a container
running on this node. Let's see what we get if we list all containers running on node-1:

List of containers on node-1

As expected, we find a container running from the training/whoami:latest image with
a name that is a combination of its parent task name and ID. We can try to visualize the
whole hierarchy of objects that we generated when deploying our sample stack:

Object hierarchy of a Docker Swarm stack

A stack can consist of one to many services. Each service has a collection of tasks. Each task
has a one-to-one association with a container. Stacks and services are created and stored on
the Swarm manager nodes. Tasks are then scheduled to Swarm worker nodes, where the
worker node creates the corresponding container. We can also get some more information
about our service by inspecting it. Execute the following command:

$ docker service inspect sample-stack_whoami

Introduction to Docker Swarm Chapter 13

[362]

This provides a wealth of information about all of the relevant settings of the service. This
includes those we have explicitly defined in our stack.yaml file, but also those that we
didn't specify and that therefore got their default values assigned. We're not going to list
the whole output here, as it is too long, but I encourage the reader to inspect it on their own
machine. We will discuss part of the information in more detail in the The swarm routing
mesh section.

Logs of a service
In an earlier chapter, we worked with the logs produced by a container. Here, we're
concentrating on a service. Remember that, ultimately, a service with many replicas has
many containers running. Hence, we would expect that, if we ask the service for its logs,
Docker returns an aggregate of all logs of those containers belonging to the service. And
indeed, that's what we get if we use the docker service logs command:

Logs of the whoami service

There is not much information in the logs at this point, but it is enough to discuss what we
get. The first part of each line in the log always contains the name of the container
combined with the node name from which the log entry originates. Then, separated by the
vertical bar (|), we get the actual log entry. So, if we would, say, ask for the logs of the first
container in the list directly, we would only get a single entry, and the value we would see
in this case would be Listening on :8000.

The aggregated logs that we get with the docker service logs command are not sorted
in any particular way. So, if the correlation of events is happening in different containers,
you should add information to your log output that makes this correlation possible.
Typically, this is a timestamp for each log entry. But this has to be done at the source; for
example, the application that produces a log entry needs to also make sure a timestamp is
added.

Introduction to Docker Swarm Chapter 13

[363]

We can as well query the logs of an individual task of the service by providing the task ID
instead of the service ID or name. So, querying the logs from task 2 gives us the following
output:

Logs of an individual task of the whoami service

Reconciling the desired state
We have learned that a Swarm service is a description or manifest of the desired state that
we want an application or application service to run in. Now, let's see how Docker Swarm
reconciles this desired state if we do something that causes the actual state of the service to
be different from the desired state. The easiest way to do this is to forcibly kill one of the
tasks or containers of the service.

Let's do this with the container that has been scheduled on node-1:

$ docker container rm -f sample-stack_whoami.2.n21e7ktyvo4b2sufalk0aibzy

If we do that and then do docker service ps right afterward, we will see the following
output:

Docker Swarm reconciling the desired state after one task failed

We see that task 2 failed with exit code 137 and that the Swarm immediately reconciled the
desired state by rescheduling the failed task on a node with free resources. In this case, the
scheduler selected the same node as the failed tasks, but this is not always the case. So,
without us intervening, the Swarm completely fixed the problem, and since the service is
running in multiple replicas, at no time was the service down.

Introduction to Docker Swarm Chapter 13

[364]

Let's try another failure scenario. This time we're going to shut down an entire node and
are going to see how the Swarm reacts. Let's take node-2 for this, as it has two tasks (tasks
3 and 4) running on it. For this, we need to open a new Terminal window and use docker-
machine to stop node-2:

$ docker-machine stop node-2

Back on node-1, we can now again run docker service ps to see what happened:

Swarm reschedules all tasks of a failed node

In the preceding screenshot, we can see that immediately task 3 was rescheduled
on node-1 while task 4 was rescheduled on node-3. Even this more radical failure is
handled gracefully by Docker Swarm.

It is important to note though that if node-2 ever comes back online in the Swarm, the
tasks that had previously been running on it will not automatically be transferred back to it.
But the node is now ready for a new workload.

Deleting a service or a stack
If we want to remove a particular service from the Swarm, we can use the docker
service rm command. If, on the other hand, we want to remove a stack from the Swarm,
we analogously use the docker stack rm command. This command removes all services
that are part of the stack definition. In the case of the whoami service, it was created by
using a stack file and hence we're going to use the latter command:

Removing a stack

Introduction to Docker Swarm Chapter 13

[365]

The preceding command will make sure that all tasks of each service of the stack are
terminated, and the corresponding containers are stopped by first sending SIGTERM, and
then, if not successful, SIGKILL after 10 seconds of timeout.

It is important to note that the stopped containers are not removed from the Docker host.
Hence, it is advised to purge containers from time to time on worker nodes to reclaim
unused resources. Use docker container purge -f for this purpose.

Question: Why does it make sense to leave stopped or crashed containers
on the worker node and not automatically remove them?

Deploying a multi-service stack
In Chapter 11, Docker Compose, we used an application consisting of two services that were
declaratively described in a Docker compose file. We can use this compose file as a
template to create a stack file that allows us to deploy the same application into a Swarm.
The content of our stack file, called pet-stack.yaml, looks like this:

version: "3.7"
services:
 web:
 image: fundamentalsofdocker/ch11-web:2.0
 networks:
 - pets-net
 ports:
 - 3000:3000
 deploy:
 replicas: 3
 db:
 image: fundamentalsofdocker/ch11-db:2.0
 networks:
 - pets-net
 volumes:
 - pets-data:/var/lib/postgresql/data

volumes:
 pets-data:

networks:
 pets-net:
 driver: overlay

Introduction to Docker Swarm Chapter 13

[366]

We request that the web service has three replicas, and both services are attached to the
overlay network, pets-net. We can deploy this application using the docker stack
deploy command:

Deploy the pets stack

Docker creates the pets_pets-net overlay network and then the two
services pets_web and pets_db. We can then list all of the tasks in the pets stack:

List of all of the tasks in the pets stack

Finally, let's test the application using curl. And, indeed, the application works as
expected:

Testing the pets application using curl

The container ID is in the output, where it says Delivered to you by
container 8b906b509a7e. If you run the curl command multiple times, the ID should
cycle between three different values. These are the IDs of the three containers (or replicas)
that we have requested for the web service.

Once we're done, we can remove the stack with docker stack rm pets.

Introduction to Docker Swarm Chapter 13

[367]

The swarm routing mesh
If you have been paying attention, then you might have noticed something interesting in
the last section. We had the pets application deployed and it resulted in the fact that an
instance of the web service was installed on the three nodes, node-1, node-2, and node-3.
Yet, we were able to access the web service on node-1 with localhost and we reached
each container from there. How is that possible? Well, this is due to the so-called Swarm
routing mesh. The routing mesh makes sure that when we publish a port of a service; that
port is then published on all nodes of the Swarm. Hence, network traffic that hits any node
of the Swarm and requests to use a specific port will be forwarded to one of the service
containers by the routing mesh. Let's look at the following diagram to see how that works:

Docker Swarm routing mesh

In this situation, we have three nodes, called Host A to Host C, with the IP
addresses 172.10.0.15, 172.10.0.17, and 172.10.0.33. In the lower-left corner of the
diagram, we see the command that created a web service with two replicas. The
corresponding tasks have been scheduled on Host B and Host C. Task 1 landed on Host B
while task 2 landed on Host C.

Introduction to Docker Swarm Chapter 13

[368]

When a service is created on Docker Swarm, it automatically gets a Virtual IP (VIP)
address assigned. This IP address is stable and reserved during the whole life cycle of the
service. Let's assume that in our case the VIP is 10.2.0.1.

If now a request for port 8080 coming from an external Load Balancer (LB) is
targeted at one of the nodes of our Swarm, then this request is handled by the Linux IP
Virtual Server (IPVS) service on that node. This service makes a lookup with the given
port 8080 in the IP table and will find that this corresponds to the VIP of the web service.
Now, since the VIP is not a real target, the IPVS service will load balance the IP addresses of
the tasks that are associated with this service. In our case, it picked task 2, with the IP
address, 10.2.0.3. Finally, the ingress Network (Overlay) is used to forward the request
to the target container on Host C.

It is important to note that it doesn't matter which Swarm node the external request is
forwarded to by the External LB. The routing mesh will always handle the request correctly
and forward it to one of the tasks of the targeted service.

Summary
In this chapter, we introduced Docker Swarm, which, next to Kubernetes, is the second
most popular orchestrator for containers. We have looked into the architecture of a Swarm,
discussed all of the types of resources running in a Swarm, such as services, tasks, and
more, and we have created services in the Swarm and deployed an application that consists
of multiple related services.

In the next chapter, we are going to explore how to deploy services or applications onto a
Docker Swarm with zero downtime and automatic rollback capabilities. We are also going
to introduce secrets as a means to protect sensitive information.

Questions
To assess your learning progress, please answer the following questions:

How do you initialize a new Docker Swarm?1.
A. docker init swarm
B. docker swarm init --advertise-addr <IP address>
C. docker swarm join --token <join token>

Introduction to Docker Swarm Chapter 13

[369]

You want to remove a worker node from a Docker Swarm. What steps are2.
necessary?
How do you create an overlay network called front-tier? Make the network3.
attachable.
How would you create a service called web from the nginx:alpine image with4.
five replicas, which exposes port 3000 on the ingress network and is attached to
the front-tier network?
How would you scale the web service down to three instances?5.

Further reading
Please consult the following link for more in-depth information about selected topics:

AWS EC2 example at http:/ / dockr.ly/ 2FFelyT

The Raft Consensus Algorithm at https:/ / raft. github. io/

The Gossip Protocol at https:/ /en. wikipedia. org/ wiki/ Gossip_ protocol

VXLAN and Linux at https:/ /vincent. bernat. ch/ en/blog/ 2017- vxlan- linux

http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
http://dockr.ly/2FFelyT
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://en.wikipedia.org/wiki/Gossip_protocol
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux
https://vincent.bernat.ch/en/blog/2017-vxlan-linux

14
Zero-Downtime Deployments

and Secrets
In the previous chapter, we explored Docker Swarm and its resources in detail. We learned
how to build a highly available swarm locally and in the cloud. Then, we discussed Swarm
services and stacks in depth. Finally, we created services and stacks in the swarm.

In this chapter, we will show you how we can update services and stacks running in
Docker Swarm without interrupting their availability. This is called zero-downtime
deployment. We are also going to introduce swarm secrets as a means to securely provide
sensitive information to containers of a service using those secrets.

In this chapter, we will cover the following topics:

Zero-downtime deployment
Storing configuration data in the swarm
Protecting sensitive data with Docker Secrets

After finishing this chapter, you will be able to do the following:

List two to three different deployment strategies commonly used to update a
service without downtime.
Update a service in batches without causing a service interruption.
Define a rollback strategy for a service that is used if an update fails.
Store non-sensitive configuration data using Docker configs.
Use a Docker secret with a service.
Update the value of a secret without causing downtime.

Zero-Downtime Deployments and Secrets Chapter 14

[371]

Technical requirements
The code files for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Learn- Docker- -- Fundamentals- of- Docker- 19. x-Second- Edition. If
you have checked out the repository as indicated in Chapter 2, Setting up a Working
Environment, then you'll find the code at ~/fod-solution/ch14.

Zero-downtime deployment
One of the most important aspects of a mission-critical application that needs frequent
updates is the ability to do updates in a fashion that requires no outage at all. We call this a
zero-downtime deployment. At all times, the application that is updated must be fully
operational.

Popular deployment strategies
There are various ways to achieve this. Some of them are as follows:

Rolling updates
Blue-green deployments
Canary releases

Docker Swarm supports rolling updates out of the box. The other two types of deployments
can be achieved with some extra effort from our side.

Rolling updates
In a mission-critical application, each application service has to run in multiple replicas.
Depending on the load, that can be as few as two to three instances and as many as dozens,
hundreds, or thousands of instances. At any given time, we want to have a clear majority
when it comes to all the service instances running. So, if we have three replicas, we want to
have at least two of them up and running at all times. If we have 100 replicas, we can be
content with a minimum of, say, 90 replicas, being available. By doing this, we can define a
batch size of replicas that we may take down to upgrade. In the first case, the batch size
would be 1 and in the second case, it would be 10.

https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition

Zero-Downtime Deployments and Secrets Chapter 14

[372]

When we take replicas down, Docker Swarm will automatically take those instances out of
the load balancing pool and all traffic will be load balanced across the remaining active
instances. Those remaining instances will thus experience a slight increase in traffic. In the
following diagram, prior to the start of the rolling update, if Task A3 wanted to access
Service B, it could have been load balanced to any of the three tasks of Service B by
SwarmKit. Once the rolling update started, SwarmKit took down Task B1 for updates.
Automatically, this task is then taken out of the pool of targets. So, if Task A3 now requests
to connect to Service B, load balancing will only select from the remaining tasks, that is, B2
and B3. Thus, those two tasks might experience a higher load temporarily:

Task B1 is taken down to be updated

The stopped instances are then replaced by an equivalent number of new instances of the
new version of the application service. Once the new instances are up and running, we can
have the Swarm observe them for a given period of time and make sure they're healthy. If
all is well, then we can continue by taking down the next batch of instances and replacing
them with instances of the new version. This process is repeated until all the instances of
the application service have been replaced.

Zero-Downtime Deployments and Secrets Chapter 14

[373]

In the following diagram, we can see that Task B1 of Service B has been updated to version
2. The container of Task B1 was assigned a new IP address, and it was deployed to another
worker node with free resources:

The first batch being updated in a rolling update

It is important to understand that when the task of a service is updated, in most cases, it
gets deployed to a different worker node than the one it used to live on. But that should be
fine as long as the corresponding service is stateless. If we have a stateful service that is
location- or node-aware and we'd like to update it, then we have to adjust our approach,
but this is outside of the scope of this book.

Now, let's look at how we can actually instruct the Swarm to perform a rolling update of an
application service. When we declare a service in a stack file, we can define multiple
options that are relevant in this context. Let's look at a snippet of a typical stack file:

version: "3.5"
services:
 web:
 image: nginx:alpine
 deploy:
 replicas: 10
 update_config:
 parallelism: 2
 delay: 10s
...

Zero-Downtime Deployments and Secrets Chapter 14

[374]

In this snippet, we can see a section, update_config, with the parallelism and delay
properties. parallelism defines the batch size of how many replicas are going to be
updated at a time during a rolling update. delay defines how long Docker Swarm is going
to wait between updating individual batches. In the preceding case, we have 10 replicas
that are being updated in two instances at a time and, between each successful update,
Docker Swarm waits for 10 seconds.

Let's test such a rolling update. Navigate to the ch14 subfolder of our labs folder and use
the stack.yaml file to create a web service that's been configured for a rolling update. The
service uses an Alpine-based Nginx image whose version is 1.12-alpine. We will update
the service to a newer version, that is, 1.13-alpine.

To start, we will deploy this service to our swarm that we created locally in VirtualBox.
Let's take a look:

First, we need to make sure that we have our Terminal window configured so1.
that we can access one of the master nodes of our cluster. Let's take the leader,
that is, node-1:

$ eval $(docker-machine env node-1)

Now, we can deploy the service using the stack file:2.

$ docker stack deploy -c stack.yaml web

The output of the preceding command looks like this:

Deployment of the web stack

Once the service has been deployed, we can monitor it using the following3.
command:

$ watch docker stack ps web

Zero-Downtime Deployments and Secrets Chapter 14

[375]

We will see the following output:

Service web of the web stack running in Swarm with 10 replicas

If you're working on a macOS machine, you need to make sure your
watch tool is installed. Use the brew install watch command to do so.

The previous command will continuously update the output and provide us with a good
overview of what happens during the rolling update.

Now, we need to open a second Terminal and configure it for remote access for
the manager node of our swarm. Once we have done that, we can execute the docker
command, which will update the image of the web service of the stack, also called web:

$ docker service update --image nginx:1.13-alpine web_web

The preceding command leads to the following output, indicating the progress of the
rolling update:

Screen showing the progress of the rolling update

Zero-Downtime Deployments and Secrets Chapter 14

[376]

The preceding output indicates that the first two batches, each with two tasks, have been
successful and that the third batch is preparing.

In the first Terminal window, where we're watching the stack, we should now see how
Docker Swarm updates the service batch by batch with an interval of 10 seconds. After
the first batch, it should look like the following screenshot:

Rolling update for a service in Docker Swarm

In the preceding screenshot, we can see that the first batch of the two tasks, 8 and 9, has
been updated. Docker Swarm is waiting for 10 seconds to proceed with the next batch.

It is interesting to note that in this particular case, SwarmKit deploys the
new version of the task to the same node as the previous version. This is
accidental since we have five nodes and two tasks on each node.
SwarmKit always tries to balance the workload evenly across the nodes.
So, when SwarmKit takes down a task, the corresponding node has a
smaller workload than all the others, so the new instance is scheduled to
it. Normally, you cannot expect to find the new instance of a task on the
same node. Just try it out yourself by deleting the stack with docker
stack rm web and changing the number of replicas to say, seven, and
then redeploy and update it.

Zero-Downtime Deployments and Secrets Chapter 14

[377]

Once all the tasks have been updated, the output of our docker stack ps web command
will look similar to the following screenshot:

All tasks have been updated successfully

Please note that SwarmKit does not immediately remove the containers of the previous
versions of the tasks from the corresponding nodes. This makes sense as we might want to,
for example, retrieve the logs from those containers for debugging purposes, or we might
want to retrieve their metadata using docker container inspect. SwarmKit keeps the
four latest terminated task instances around before it purges older ones so that it doesn't
clog the system with unused resources.

We can use the --update-order parameter to instruct Docker to start the
new container replica before stopping the old one. This can improve
application availability. Valid values are "start-first" and "stop-
first". The latter is the default.

Once we're done, we can tear down the stack using the following command:

$ docker stack rm web

Zero-Downtime Deployments and Secrets Chapter 14

[378]

Although using stack files to define and deploy applications is the recommended best
practice, we can also define the update behavior in a service create statement. If we just
want to deploy a single service, this might be the preferred way of doing things. Let's look
at such a create command:

$ docker service create --name web \
 --replicas 10 \
 --update-parallelism 2 \
 --update-delay 10s \
 nginx:alpine

This command defines the same desired state as the preceding stack file. We want the
service to run with 10 replicas and we want a rolling update to happen in batches of two
tasks at a time, with a 10-second interval between consecutive batches.

Health checks
To make informed decisions, for example, during a rolling update of a Swarm service
regarding whether or not the just-installed batch of new service instances is running OK or
if a rollback is needed, the SwarmKit needs a way to know about the overall health of the
system. On its own, SwarmKit (and Docker) can collect quite a bit of information. But there
is a limit. Imagine a container containing an application. The container, as seen from the
outside, can look absolutely healthy and carry on just fine. But that doesn't necessarily
mean that the application running inside the container is also doing well. The application
could, for example, be in an infinite loop or be in a corrupt state, yet still running. However,
as long as the application runs, the container runs and from outside, everything looks
perfect.

Thus, SwarmKit provides a seam where we can provide it with some help. We, the authors
of the application services running inside the containers in the swarm, know best as to
whether or not our service is in a healthy state. SwarmKit gives us the opportunity to
define a command that is executed against our application service to test its health. What
exactly this command does is not important to Swarm; the command just needs to return
OK, NOT OK, or time out. The latter two situations, namely NOT OK or timeout, will tell
SwarmKit that the task it is investigating is potentially unhealthy.

Zero-Downtime Deployments and Secrets Chapter 14

[379]

Here, I am writing potentially on purpose and later, we will see why:

FROM alpine:3.6
...
HEALTHCHECK --interval=30s \
 --timeout=10s
 --retries=3
 --start-period=60s
 CMD curl -f http://localhost:3000/health || exit 1
...

In the preceding snippet from a Dockerfile, we can see the keyword HEALTHCHECK. It has
a few options or parameters and an actual command, that is, CMD. Let's discuss the options:

--interval: Defines the wait time between health checks. Thus, in our case, the
orchestrator executes a check every 30 seconds.
--timeout: This parameter defines how long Docker should wait if the health
check does not respond until it times out with an error. In our sample, this is 10
seconds. Now, if one health check fails, SwarmKit retries a couple of times until it
gives up and declares the corresponding task as unhealthy and opens the door
for Docker to kill this task and replace it with a new instance.
The number of retries is defined with the --retries parameter. In the preceding
code, we want to have three retries.
Next, we have the start period. Some containers take some time to start up (not
that this is a recommended pattern, but sometimes it is inevitable). During this
startup time, the service instance might not be able to respond to health checks.
With the start period, we can define how long SwarmKit should wait before it
executes the very first health check and thus give the application time to
initialize. To define the startup time, we use the --start-period parameter. In
our case, we do the first check after 60 seconds. How long this start period needs
to be depends on the application and its startup behavior. The recommendation
is to start with a relatively low value and if you have a lot of false positives and
tasks that are restarted many times, you might want to increase the time interval.
Finally, we define the actual probing command on the last line with the CMD
keyword. In our case, we are defining a request to the /health endpoint of
localhost at port 3000 as a probing command. This call is expected to have
three possible outcomes:

The command succeeds.
The command fails.
The command times out.

Zero-Downtime Deployments and Secrets Chapter 14

[380]

The latter two are treated the same way by SwarmKit. This is the orchestrator telling us that
the corresponding task might be unhealthy. I did say might with intent since SwarmKit
does not immediately assume the worst-case scenario but assumes that this might just be a
temporary fluke of the task and that it will recover from it. This is the reason why we have
a --retries parameter. There, we can define how many times SwarmKit should retry
before it can assume that the task is indeed unhealthy, and consequently kill it and
reschedule another instance of this task on another free node to reconcile the desired state
of the service.

Why can we use localhost in our probing command? This is a very good question, and the
reason is because SwarmKit, when probing a container running in the Swarm, executes this
probing command inside the container (that is, it does something like docker container
exec <containerID> <probing command>). Thus, the command executes in the same
network namespace as the application running inside the container. In the following
diagram, we can see the life cycle of a service task from its beginning:

Service task with transient health failure

First, SwarmKit waits to probe until the start period is over. Then, we have our first health
check. Shortly thereafter, the task fails when probed. It fails two consecutive times but then
it recovers. Thus, health check 4 is successful and SwarmKit leaves the task running.

Zero-Downtime Deployments and Secrets Chapter 14

[381]

Here, we can see a task that is permanently failing:

Permanent failure of a task

We have just learned how we can define a health check for a service in the Dockerfile of
its image. But this is not the only way we can do this. We can also define the health check in
the stack file that we use to deploy our application into Docker Swarm. Here is a short
snippet of what such a stack file would look like:

version: "3.5"
services:
 web:
 image: example/web:1.0
 healthcheck:
 test: ["CMD", "curl", "-f", "http://localhost:3000/health"]
 interval: 30s
 timeout: 10s
 retries: 3
 start_period: 60s
...

In the preceding snippet, we can see how the health check-related information is defined in
the stack file. First and foremost, it is important to realize that we have to define a health
check for every service individually. There is no health check at an application or global
level.

Zero-Downtime Deployments and Secrets Chapter 14

[382]

Similar to what we defined previously in the Dockerfile, the command that is used to
execute the health check by SwarmKit is curl -f http://localhost:3000/health. We
also have definitions for interval, timeout, retries, and start_period. These four
key-value pairs have the same meaning as the corresponding parameters we used in the
Dockerfile. If there are health check-related settings defined in the image, then the ones
defined in the stack file override the ones from the Dockerfile.

Now, let's try to use a service that has a health check defined. In our lab folder, we have a
file called stack-health.yaml with the following content:

version: "3.5"
services:
 web:
 image: nginx:alpine
 healthcheck:
 test: ["CMD", "wget", "-qO", "-", "http://localhost"]
 interval: 5s
 timeout: 2s
 retries: 3
 start_period: 15s

Let's deploy this:

$ docker stack deploy -c stack-health.yaml myapp

We can find out where the single task was deployed to using docker stack ps myapp.
On that particular node, we can list all the containers to find one of our stacks. In my
example, the task had been deployed to node-3:

Displaying the health status of a running task instance

The interesting thing in this screenshot is the STATUS column. Docker, or more precisely,
SwarmKit, has recognized that the service has a health check function defined and is using
it to determine the health of each task of the service.

Zero-Downtime Deployments and Secrets Chapter 14

[383]

Rollback
Sometimes, things don't go as expected. A last-minute fix in an application release may
have inadvertently introduced a new bug, or the new version significantly decreases the
throughput of the component, and so on. In such cases, we need to have a plan B, which in
most cases means the ability to roll back the update to the previous good version.

As with the update, the rollback has to happen in such a way that it does not cause any
outages in terms of the application; it needs to cause zero-downtime. In that sense, a
rollback can be looked at as a reverse update. We are installing a new version, yet this new
version is actually the previous version.

As with the update behavior, we can declare, either in our stack files or in the Docker
service create command, how the system should behave in case it needs to execute a
rollback. Here, we have the stack file that we used previously, but this time with some
rollback-relevant attributes:

version: "3.5"
services:
 web:
 image: nginx:1.12-alpine
 ports:
 - 80:80
 deploy:
 replicas: 10
 update_config:
 parallelism: 2
 delay: 10s

 failure_action: rollback
 monitor: 10s

 healthcheck:
 test: ["CMD", "wget", "-qO", "-", "http://localhost"]
 interval: 2s
 timeout: 2s
 retries: 3
 start_period: 2s

Zero-Downtime Deployments and Secrets Chapter 14

[384]

In this stack file, which is available in our lab as stack-rollback.yaml, we defined the
details about the rolling update, the health checks, and the behavior during rollback. The
health check is defined so that after an initial wait time of 2 seconds, the orchestrator starts
to poll the service on http://localhost every 2 seconds and it retries 3 times before it
considers a task as unhealthy.

If we do the math, then it takes at least 8 seconds until a task will be stopped if it is
unhealthy due to a bug. So, now under deploy, we have a new entry called monitor. This
entry defines how long newly deployed tasks should be monitored for health and whether
or not to continue with the next batch in the rolling update. Here, in this sample, we have
given it 10 seconds. This is slightly more than the 8 seconds we calculated it takes to
discover that a defective service has been deployed, so this is good.

We also have a new entry, failure_action, which defines what the orchestrator will do if
it encounters a failure during the rolling update, such as that the service is unhealthy. By
default, the action is just to stop the whole update process and leave the system in an
intermediate state. The system is not down since it is a rolling update and at least some
healthy instances of the service are still operational, but an operations engineer would be
better at taking a look and fixing the problem.

In our case, we have defined the action to be a rollback. Thus, in case of failure, SwarmKit
will automatically revert all tasks that have been updated back to their previous version.

Blue–green deployments
In Chapter 9, Distributed Application Architecture, we discussed what blue-green
deployments are, in an abstract way. It turns out that, on Docker Swarm, we cannot really
implement blue-green deployments for arbitrary services. The service discovery and load
balancing between two services running in Docker Swarm are part of the Swarm routing
mesh and cannot be (easily) customized.

Zero-Downtime Deployments and Secrets Chapter 14

[385]

If Service A wants to call Service B, then Docker does this implicitly. Docker, given the
name of the target service, will use the Docker DNS service to resolve this name to a virtual
IP (VIP) address. When the request is then targeted at the VIP, the Linux IPVS service will
do another lookup in the Linux kernel IP tables with the VIP and load balance the request
to one of the physical IP addresses of the tasks of the service represented by the VIP, as
shown in the following diagram:

How service discovery and load balancing work in Docker Swarm

Unfortunately, there is no easy way to intercept this mechanism and replace it with a
custom behavior. But this would be needed to allow for a true blue-green deployment of
Service B, which is the target service in our example. As we will see in Chapter 16,
Deploying, Updating, and Securing an Application with Kubernetes, Kubernetes is more flexible
in this area.

That being said, we can always deploy the public-facing services in a blue-green fashion.
We can use interlock 2 and its layer 7 routing mechanism to allow for a true blue-green
deployment.

Canary releases
Technically speaking, rolling updates are a kind of canary release. But due to their lack of
seams, where you could plug customized logic into the system, rolling updates are only a
very limited version of canary releases.

Zero-Downtime Deployments and Secrets Chapter 14

[386]

True canary releases require us to have more fine-grained control over the update process.
Also, true canary releases do not take down the old version of the service until 100% of the
traffic has been funneled through the new version. In that regard, they are treated like blue-
green deployments.

In a canary release scenario, we don't just want to use things such as health checks as
deciding factors regarding whether or not to funnel more and more traffic through the new
version of the service; we also want to consider external input in the decision-making
process, such as metrics that are collected and aggregated by a log aggregator or tracing
information. An example that could be used as a decision-maker includes conformance to
service-level agreements (SLAs), namely if the new version of the service shows response
times that are outside of the tolerance band. This can happen if we add new functionality to
an existing service, yet this new functionality degrades the response time.

Storing configuration data in the swarm
If we want to store non-sensitive data such as configuration files in Docker Swarm, then we
can use Docker configs. Docker configs are very similar to Docker secrets, which we will
discuss in the next section. The main difference is that config values are not encrypted at
rest, while secrets are. Docker configs can only be used in Docker Swarm, that is, they
cannot be used in your non-Swarm development environment. Docker configs are mounted
directly into the container's filesystem. Configuration values can either be strings or binary
values up to a size of 500 KB.

With the use of Docker configs, you can separate the configuration from Docker images and
containers. This way, your services can easily be configured with environment-specific
values. The production swarm environment has different configuration values than the
staging swarm, which in turn has different config values than the development or
integration environment.

We can add configs to services and also remove them from running services. Configs can
even be shared among different services running in the swarm.

Now, let's create some Docker configs:

First, we start with a simple string value:1.

$ echo "Hello world" | docker config create hello-config -
rrin36epd63pu6w3gqcmlpbz0

Zero-Downtime Deployments and Secrets Chapter 14

[387]

The preceding command creates the Hello world configuration value and uses
it as input to the config named hello-config. The output of this command is
the unique ID of this new config that's being stored in the swarm.

Let's see what we got and use the list command to do so:2.

$ docker config ls
ID NAME CREATED
UPDATED
rrin36epd63pu6w3gqcmlpbz0 hello-config About a minute ago
About a minute ago

The output of the list command shows the ID and the NAME of the config we just
created, as well as its CREATED and (last) updated time. But since configs are non-
confidential, we can do more and even output the content of a config, like so:

$ docker config docker config inspect hello-config
[
 {
 "ID": "rrin36epd63pu6w3gqcmlpbz0",
 "Version": {
 "Index": 11
 },
 "CreatedAt": "2019-11-30T07:59:20.6340015Z",
 "UpdatedAt": "2019-11-30T07:59:20.6340015Z",
 "Spec": {
 "Name": "hello-config",
 "Labels": {},
 "Data": "SGVsbG8gd29ybGQK"
 }
 }
]

Hmmm, interesting. In the Spec subnode of the preceding JSON-formatted
output, we have the Data key with a value of SGVsbG8gd29ybGQK. Didn't we just
say that the config data is not encrypted at rest? It turns out that the value is just
our string encoded as base64, as we can easily verify:

$ echo 'SGVsbG8gd29ybGQK' | base64 -d
Hello world

So far, so good.

Zero-Downtime Deployments and Secrets Chapter 14

[388]

Now, let's define a somewhat more complicated Docker config. Let's assume we are
developing a Java application. Java's preferred way of passing configuration data to the
application is the use of so-called properties files. A properties file is just a text file
containing a list of key-value pairs. Let's take a look:

Let's create a file called my-app.properties and add the following content to it:1.

username=pguser
database=products
port=5432
dbhost=postgres.acme.com

Save the file and create a Docker config called app.properties from it:2.

$ docker config create app.properties ./my-app.properties
2yzl73cg4cwny95hyft7fj80u

Now, we can use this (somewhat contrived) command to get the clear text value
of the config we just created:

$ docker config inspect app.properties | jq .[].Spec.Data | xargs
echo | base64 -d
username=pguser
database=products
port=5432
dbhost=postgres.acme.com

This is exactly what we expected.

Now, let's create a Docker service that uses the preceding config. For simplicity,3.
we will be using the nginx image to do so:

$ docker service create \
 --name nginx \
 --config source=app.properties,target=/etc/my-
app/conf/app.properties,mode=0440 \
 nginx:1.13-alpine

p3f686vinibdhlnrllnspqpr0
overall progress: 1 out of 1 tasks
1/1: running [==>]
verify: Service converged

Zero-Downtime Deployments and Secrets Chapter 14

[389]

The interesting part in the preceding service create command is the line that
contains --config. With this line, we're telling Docker to use the config named
app.properties and mount it as a file at /etc/my-
app/conf/app.properties inside the container. Furthermore, we want that file
to have the mode 0440 assigned to it.

Let's see what we got:

$ docker service ps nginx
ID NAME IMAGE NODE DESIRED STATE
CURRENT STATE ...
b8lzzwl3eg6y nginx.1 nginx:1.13-alpine node-1 Running Running
2 minutes ago

In the preceding output, we can see that the only instance of the service is running
on node node-1. On this node, I can now list the containers to get the ID of the
nginx instance:

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS ...
bde33d92cca7 nginx:1.13-alpine "nginx -g 'daemon of…" 5
minutes ago Up 5 minutes 80/tcp ...

Finally, we can exec into that container and output the value of the /etc/my-
app/conf/app.properties file:

$ docker exec bde33 cat /etc/my-app/conf/app.properties
username=pguser
database=products
port=5432
dbhost=postgres.acme.com

No surprise here; this is exactly what we expected.

Docker configs can, of course, also be removed from the swarm, but only if they
are not being used. If we try to remove the config we were just using previously,
without first stopping and removing the service, we would get the following
output:

$ docker config rm app.properties
Error response from daemon: rpc error: code = InvalidArgument desc
= config 'app.properties' is in use by the following service: nginx

Zero-Downtime Deployments and Secrets Chapter 14

[390]

We get an error message in which Docker is nice enough to tell us that the config
is being used by our service called nginx. This behavior is somewhat similar to
what we are used to when working with Docker volumes.

Thus, first, we need to remove the service and then we can remove the config:

$ docker service rm nginx
nginx
$ docker config rm app.properties
app.properties

It is important to note once more that Docker configs should never be
used to store confidential data such as secrets, passwords, or access keys
and key secrets.

In the next section, we will discuss how to handle confidential data.

Protecting sensitive data with Docker
secrets
Secrets are used to work with confidential data in a secure way. Swarm secrets are secure at
rest and in transit. That is, when a new secret is created on a manager node, and it can only
be created on a manager node, its value is encrypted and stored in the raft consensus
storage. This is why it is secure at rest. If a service gets a secret assigned to it, then the
manager reads the secret from storage, decrypts it, and forwards it to all the containers who
are instances of the swarm service that requested the secret. Since node-to-node
communication in Docker Swarm uses mutual transport layer security (TLS), the secret
value, although decrypted, is still secure in transit. The manager forwards the secret only to
the worker nodes that a service instance is running on. Secrets are then mounted as files
into the target container. Each secret corresponds to a file. The name of the secret will be the
name of the file inside the container, and the value of the secret is the content of the
respective file. Secrets are never stored on the filesystem of a worker node and are instead
mounted using tmpFS into the container. By default, secrets are mounted into the container
at /run/secrets, but you can change that to any custom folder.

Zero-Downtime Deployments and Secrets Chapter 14

[391]

It is important to note that secrets will not be encrypted on Windows
nodes since there is no concept similar to tmpfs. To achieve the same level
of security that you would get on a Linux node, the administrator should
encrypt the disk of the respective Windows node.

Creating secrets
First, let's see how we can actually create a secret:

$ echo "sample secret value" | docker secret create sample-secret -

This command creates a secret called sample-secret with the sample secret value
value. Please note the hyphen at the end of the docker secret create command. This
means that Docker expects the value of the secret from standard input. This is exactly what
we're doing by piping the sample secret value value into the create command.

Alternatively, we can use a file as the source for the secret value:

$ docker secret create other-secret ~/my-secrets/secret-value.txt

Here, the value of the secret with the name other-secret is read from a file called ~/my-
secrets/secret-value.txt. Once a secret has been created, there is no way to access the
value of it. We can, for example, list all our secrets to get the following output:

List of all secrets

In this list, we can only see the ID and NAME of the secret, plus some other metadata, but the
actual value of the secret is not visible. We can also use inspect on a secret, for example, to
get more information about other-secret:

Zero-Downtime Deployments and Secrets Chapter 14

[392]

Inspecting a swarm secret

Even here, we do not get the value of the secret back. This is, of course, intentional: a secret
is a secret and thus needs to remain confidential. We can assign labels to secrets if we want
and we can even use a different driver to encrypt and decrypt the secret if we're not happy
with what Docker delivers out of the box.

Using a secret
Secrets are used by services that run in the swarm. Usually, secrets are assigned to a service
at creation time. Thus, if we want to run a service called web and assign it a secret, say,
api-secret-key, the syntax would look as follows:

$ docker service create --name web \
 --secret api-secret-key \
 --publish 8000:8000 \
 fundamentalsofdocker/whoami:latest

This command creates a service called web based on the
fundamentalsofdocker/whoami:latest image, publishes the container port 8000 to
port 8000 on all swarm nodes, and assigns it the secret called api-secret-key.

Zero-Downtime Deployments and Secrets Chapter 14

[393]

This will only work if the secret called api-secret-key is defined in the swarm;
otherwise, an error will be generated with the text secret not found: api-secret-
key. Thus, let's create this secret now:

$ echo "my secret key" | docker secret create api-secret-key -

Now, if we rerun the service create command, it will succeed:

Creating a service with a secret

Now, we can use docker service ps web to find out on which node the sole service
instance has been deployed, and then exec into this container. In my case, the instance has
been deployed to node-3, so I need to SSH into that node:

$ docker-machine ssh node-3

Then, I list all my containers on that node to find the one instance belonging to my service
and copy its container ID. We can then run the following command to make sure that
the secret is indeed available inside the container under the expected filename containing
the secret value in clear text:

$ docker exec -it <container ID> cat /run/secrets/api-secret-key

Once again, in my case, this looks like this:

A secret as a container sees it

Zero-Downtime Deployments and Secrets Chapter 14

[394]

If, for some reason, the default location where Docker mounts the secrets inside the
container is not acceptable to you, you can define a custom location. In the following
command, we mount the secret to /app/my-secrets:

$ docker service create --name web \
 --name web \
 -p 8000:8000 \
 --secret source=api-secret-key,target=/run/my-secrets/api-secret-key \
 fundamentalsofdocker/whoami:latest

In this command, we are using the extended syntax to define a secret that includes the
destination folder.

Simulating secrets in a development environment
When working in development, we usually don't have a local swarm on our machine. But
secrets only work in a swarm. So, what can we do? Well, luckily, this answer is really simple.
Due to the fact that secrets are treated as files, we can easily mount a volume that contains
the secrets into the container to the expected location, which by default is at
/run/secrets.

Let's assume that we have a folder called ./dev-secrets on our local workstation. For
each secret, we have a file named the same as the secret name and with the unencrypted
value of the secret as the content of the file. For example, we can simulate a secret called
demo-secret with a secret value of demo secret value by executing the following
command on our workstation:

$ echo "demo secret value" > ./dev-secrets/sample-secret

Then, we can create a container that mounts this folder, like this:

$ docker container run -d --name whoami \
 -p 8000:8000 \
 -v $(pwd)/dev-secrets:/run/secrets \
 fundamentalsofdocker/whoami:latest

Zero-Downtime Deployments and Secrets Chapter 14

[395]

The process running inside the container will be unable to distinguish these mounted files
from the ones originating from a secret. So, for example, demo-secret is available as a file
called /run/secrets/demo-secret inside the container and has the expected value demo
secret value. Let's take a look at this in more detail in the following steps:

To test this, we can exec a shell inside the preceding container:1.

$ docker container exec -it whoami /bin/bash

Now, we can navigate to the /run/secrets folder and display the content of the2.
demo-secret file:

/# cd /run/secrets
/# cat demo-secret
demo secret value

Next, we will be looking at secrets and legacy applications.

Secrets and legacy applications
Sometimes, we want to containerize a legacy application that we cannot easily, or do not
want to, change. This legacy application might expect a secret value to be available as an
environment variable. How are we going to deal with this now? Docker presents us with the
secrets as files but the application is expecting them in the form of environment variables.

In this situation, it is helpful to define a script that runs when the container is started (a so-
called entry point or startup script). This script will read the secret value from the
respective file and define an environment variable with the same name as the file, assigning
the new variable the value read from the file. In the case of a secret called demo-secret
whose value should be available in an environment variable called DEMO_SECRET, the
necessary code snippet in this startup script could look like this:

export DEMO_SECRET=$(cat /run/secrets/demo-secret)

Zero-Downtime Deployments and Secrets Chapter 14

[396]

Similarly, let's say we have a legacy application that expects the secret values to be present
as an entry in, say, a YAML configuration file located in the /app/bin folder and called
app.config, whose relevant part looks like this:

...

secrets:
 demo-secret: "<<demo-secret-value>>"
 other-secret: "<<other-secret-value>>"
 yet-another-secret: "<<yet-another-secret-value>>"
...

Our initialization script now needs to read the secret value from the secret file and
replace the corresponding placeholder in the config file with the secret value. For demo-
secret, this could look like this:

file=/app/bin/app.conf
demo_secret=$(cat /run/secret/demo-secret)
sed -i "s/<<demo-secret-value>>/$demo_secret/g" "$file"

In the preceding snippet, we're using the sed tool to replace a placeholder with a value in
place. We can use the same technique for the other two secrets in the config file.

We put all the initialization logic into a file called entrypoint.sh, make this file
executable and, for example, add it to the root of the container's filesystem. Then, we define
this file as ENTRYPOINT in the Dockerfile, or we can override the existing ENTRYPOINT of
an image in the docker container run command.

Let's make a sample. Let's assume that we have a legacy application running inside a
container defined by the fundamentalsofdocker/whoami:latest image that expects a
secret called db_password to be defined in a file, whoami.conf, in the application folder.
Let's take a look at these steps:

We can define a file, whoami.conf, on our local machine that contains the1.
following content:

database:
 name: demo
 db_password: "<<db_password_value>>"
others:
 val1=123
 val2="hello world"

Zero-Downtime Deployments and Secrets Chapter 14

[397]

The important part is line 3 of this snippet. It defines where the secret value has to
be put by the startup script.

Let's add a file called entrypoint.sh to the local folder that contains the2.
following content:

file=/app/whoami.conf
db_pwd=$(cat /run/secret/db-password)
sed -i "s/<<db_password_value>>/$db_pwd/g" "$file"

/app/http

The last line in the preceding script stems from the fact that this is the start
command that was used in the original Dockerfile.

Now, change the mode of this file to an executable:3.

$ sudo chmod +x ./entrypoint.sh

Now, we define a Dockerfile that inherits from the
fundamentalsofdocker/whoami:latest image.

Add a file called Dockerfile to the current folder that contains the following4.
content:

FROM fundamentalsofdocker/whoami:latest
COPY ./whoami.conf /app/
COPY ./entrypoint.sh /
CMD ["/entrypoint.sh"]

Let's build the image from this Dockerfile:5.

$ docker image build -t secrets-demo:1.0 .

Once the image has been built, we can run a service from it. But before we can do6.
that, we need to define the secret in Swarm:

$ echo "passw0rD123" | docker secret create demo-secret -

Now, we can create a service that uses the following secret:7.

$ docker service create --name demo \
 --secret demo-secret \
 secrets-demo:1.0

Zero-Downtime Deployments and Secrets Chapter 14

[398]

Updating secrets
At times, we need to update a secret in a running service since secrets could be leaked out
to the public or be stolen by malicious people, such as hackers. In this case, we need to
change our confidential data since the moment it is leaked to a non-trusted entity, it has to
be considered as insecure.

Updating secrets, like any other update, has to happen in a way that requires zero-
downtime. Docker SwarmKit supports us in this regard.

First, we create a new secret in the swarm. It is recommended to use a versioning strategy
when doing so. In our example, we use a version as a postfix of the secret name. We
originally started with the secret named db-password and now the new version of this
secret is called db-password-v2:

$ echo "newPassw0rD" | docker secret create db-password-v2 -

Let's assume that the original service that used the secret had been created like this:

$ docker service create --name web \
 --publish 80:80
 --secret db-password
 nginx:alpine

The application running inside the container was able to access the secret at
/run/secrets/db-password. Now, SwarmKit does not allow us to update an existing
secret in a running service, so we have to remove the now obsolete version of the secret and
then add the new one. Let's start with removal with the following command:

$ docker service update --secret-rm db-password web

Now, we can add the new secret with the following command:

$ docker service update \
 --secret-add source=db-password-v2,target=db-password \
 web

Please note the extended syntax of --secret-add with the source and target
parameters.

Zero-Downtime Deployments and Secrets Chapter 14

[399]

Summary
In this chapter, we learned how SwarmKit allows us to update services without requiring
downtime. We also discussed the current limits of SwarmKit in regard to zero-downtime
deployments. In the second part of this chapter, we introduced secrets as a means to
provide confidential data to services in a highly secure way.

In the next chapter, we will introduce the currently most popular container orchestrator,
Kubernetes. We'll discuss the objects that are used to define and run a distributed, resilient,
robust, and highly available application in a Kubernetes cluster. Furthermore, this chapter
will familiarize us with MiniKube, a tool that's used to locally deploy a Kubernetes
application, and also demonstrate the integration of Kubernetes with Docker for macOS
and Docker for Windows.

Questions
To assess your understanding of the topics that were discussed in this chapter, please
answer the following questions:

In a few simple sentences, explain to an interested layman what zero-downtime6.
deployment means.
How does SwarmKit achieve zero-downtime deployments?7.
Contrary to traditional (non-containerized) systems, why does a rollback in8.
Docker Swarm just work? Explain this in a few short sentences.
Describe two to three characteristics of a Docker secret.9.
You need to roll out a new version of the inventory service. What does your10.
command look like? Here is some more information:

The new image is called acme/inventory:2.1.
We want to use a rolling update strategy with a batch size of two tasks.
We want the system to wait for one minute after each batch.

You need to update an existing service named inventory with a new password11.
that is provided through a Docker secret. The new secret is called
MYSQL_PASSWORD_V2. The code in the service expects the secret to be called
MYSQL_PASSWORD. What does the update command look like? (Note that we do
not want the code of the service to be changed!)

Zero-Downtime Deployments and Secrets Chapter 14

[400]

Further reading
Here are some links to external sources:

Apply rolling updates to a service, at https:/ /dockr. ly/ 2HfGjlD

Managing sensitive data with Docker secrets, at https:/ /dockr. ly/ 2vUNbuH

Introducing Docker secrets management, at https:/ /dockr. ly/ 2k7zwzE

From env variables to Docker secrets, at https://bit.ly/2GY3UUB

https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2HfGjlD
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2vUNbuH
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://dockr.ly/2k7zwzE
https://bit.ly/2GY3UUB

4
Section 4: Docker, Kubernetes,

and the Cloud
In this section, you will successfully deploy, run, monitor, and troubleshoot your highly
distributed applications in Kubernetes, either on-premises or in the cloud.

This section comprises the following chapters:

Chapter 15, Introduction to Kubernetes
Chapter 16, Deploying, Updating, and Securing an Application with Kubernetes
Chapter 17, Monitoring and Troubleshooting an App Running in Production
Chapter 18, Running a Containerized App in the Cloud

15
Introduction to Kubernetes

 In the previous chapter, we learned how SwarmKit uses rolling updates to achieve zero
downtime deployments. We were also introduced to Docker configs, which are used to
store nonsensitive data in clusters and use this to configure application services, as well as
Docker secrets, which are used to share confidential data with an application service
running in a Docker Swarm.

In this chapter, we're going to introduce Kubernetes. Kubernetes is currently the clear
leader in the container orchestration space. We will start with a high-level overview of the
architecture of a Kubernetes cluster and then discuss the main objects used in Kubernetes to
define and run containerized applications.

This chapter covers the following topics:

Kubernetes architecture
Kubernetes master nodes
Cluster nodes
Introduction to MiniKube
Kubernetes support in Docker for Desktop
Introduction to pods
Kubernetes ReplicaSet
Kubernetes deployment
Kubernetes service
Context-based routing
Comparing SwarmKit with Kubernetes

After finishing this chapter, you will be able to do the following:

Draft the high-level architecture of a Kubernetes cluster on a napkin
Explain three to four main characteristics of a Kubernetes pod
Describe the role of Kubernetes ReplicaSets in two to three short sentences

Introduction to Kubernetes Chapter 15

[403]

Explain two or three main responsibilities of a Kubernetes service
Create a pod in Minikube
Configure Docker for Desktop in order to use Kubernetes as an orchestrator
Create a deployment in Docker for Desktop
Create a Kubernetes service to expose an application service internally (or
externally) to the cluster

Technical requirements
The code files for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Learn- Docker- -- Fundamentals- of- Docker- 19. x-Second- Edition.
Alternatively, if you cloned the GitHub repository that accompanies this book to your
computer, as described in Chapter 2, Setting Up a Working Environment, then you can find
the code at ~/fod-solution/ch15.

Kubernetes architecture
A Kubernetes cluster consists of a set of servers. These servers can be VMs or physical
servers. The latter are also called bare metal. Each member of the cluster can have one of two
roles. It is either a Kubernetes master or a (worker) node. The former is used to manage the
cluster, while the latter will run an application workload. I have put the worker in
parentheses since, in Kubernetes parlance, you only talk about a node when you're talking
about a server that runs application workloads. But in Docker parlance and in Swarm, the
equivalent is a worker node. I think that the notion of a worker node better describes the role
of the server than a simple node.

In a cluster, you have a small and odd number of masters and as many worker nodes as
needed. Small clusters might only have a few worker nodes, while more realistic clusters
might have dozens or even hundreds of worker nodes. Technically, there is no limit to how
many worker nodes a cluster can have; in reality, though, you might experience a
significant slowdown in some management operations when dealing with thousands of
nodes. All members of the cluster need to be connected by a physical network, the so-
called underlay network.

https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition

Introduction to Kubernetes Chapter 15

[404]

Kubernetes defines one flat network for the whole cluster. Kubernetes does not provide any
networking implementation out of the box; instead, it relies on plugins from third parties.
Kubernetes just defines the Container Network Interface (CNI) and leaves the
implementation to others. The CNI is pretty simple. It basically states that each pod
running in the cluster must be able to reach any other pod also running in the cluster
without any Network Address Translation (NAT) happening in-between. The same must
be true between cluster nodes and pods, that is, applications or daemons running directly
on a cluster node must be able to reach each pod in the cluster and vice versa.

The following diagram illustrates the high-level architecture of a Kubernetes cluster:

High-level architecture diagram of Kubernetes

Introduction to Kubernetes Chapter 15

[405]

The preceding diagram is explained as follows:

On the top, in the middle, we have a cluster of etcd nodes. etcd is a distributed
key-value store that, in a Kubernetes cluster, is used to store all the state of the
cluster. The number of etcd nodes has to be odd, as mandated by the Raft
consensus protocol, which states which nodes are used to coordinate among
themselves. When we talk about the Cluster State, we do not include data that is
produced or consumed by applications running in the cluster; instead, we're
talking about all the information on the topology of the cluster, what services are
running, network settings, secrets used, and more. That said, this etcd cluster is
really mission-critical to the overall cluster and thus, we should never run only a
single etcd server in a production environment or any environment that needs to
be highly available.
Then, we have a cluster of Kubernetes master nodes, which also form a
Consensus Group among themselves, similar to the etcd nodes. The number of
master nodes also has to be odd. We can run cluster with a single master but we
should never do that in a production or mission-critical system. There, we should
always have at least three master nodes. Since the master nodes are used to
manage the whole cluster, we are also talking about the management plane.
Master nodes use the etcd cluster as their backing store. It is good practice to put
a load balancer (LB) in front of master nodes with a well-known Fully Qualified
Domain Name (FQDN), such as https://admin.example.com. All tools that
are used to manage the Kubernetes cluster should access it through this LB rather
than using the public IP address of one of the master nodes. This is shown on the
left upper side of the preceding diagram.
Toward the bottom of the diagram, we have a cluster of worker nodes. The
number of nodes can be as low as one and does not have an upper limit.
Kubernetes master and worker nodes communicate with each other. It is a
bidirectional form of communication that is different from the one we know from
Docker Swarm. In Docker Swarm, only manager nodes communicate with
worker nodes and never the other way around. All ingress traffic accessing
applications running in the cluster should go through another load balancer.
This is the application load balancer or reverse proxy. We never want external
traffic to directly access any of the worker nodes.

Now that we have an idea about the high-level architecture of a Kubernetes cluster, let's
delve a bit more deeply and look at the Kubernetes master and worker nodes.

Introduction to Kubernetes Chapter 15

[406]

Kubernetes master nodes
Kubernetes master nodes are used to manage a Kubernetes cluster. The following is a high-
level diagram of such a master:

Kubernetes master

At the bottom of the preceding diagram, we have the Infrastructure, which can be a VM
on-premise or in the cloud or a server (often called bare metal) on-premise or in the cloud.
Currently, Kubernetes masters only run on Linux. The most popular Linux distributions,
such as RHEL, CentOS, and Ubuntu, are supported. On this Linux machine, we have at
least the following four Kubernetes services running:

API server: This is the gateway to Kubernetes. All requests to list, create, modify,
or delete any resources in the cluster must go through this service. It exposes a
REST interface that tools such as kubectl use to manage the cluster and
applications in the cluster.
Controller: The controller, or more precisely the controller manager, is a control
loop that observes the state of the cluster through the API server and makes
changes, attempting to move the current or effective state toward the desired
state if they differ.
Scheduler: The scheduler is a service that tries its best to schedule pods on
worker nodes while considering various boundary conditions, such as resource
requirements, policies, quality of service requirements, and more.
Cluster Store: This is an instance of etcd that is used to store all information
about the state of the cluster.

Introduction to Kubernetes Chapter 15

[407]

To be more precise, etcd, which is used as a cluster store, does not necessarily have to be
installed on the same node as the other Kubernetes services. Sometimes, Kubernetes
clusters are configured to use standalone clusters of etcd servers, as shown in the
architecture diagram in the previous section. But which variant to use is an advanced
management decision and is outside the scope of this book.

We need at least one master, but to achieve high availability, we need three or more master
nodes. This is very similar to what we have learned about the manager nodes of a Docker
Swarm. In this regard, a Kubernetes master is equivalent to a Swarm manager node.

Kubernetes masters never run application workloads. Their sole purpose is to manage the
cluster. Kubernetes masters build a Raft consensus group. The Raft protocol is a standard
protocol used in situations where a group of members needs to make decisions. It is used in
many well-known software products such as MongoDB, Docker SwarmKit, and
Kubernetes. For a more thorough discussion of the Raft protocol, see the link in the Further
reading section.

As we mentioned in the previous section, the state of the Kubernetes cluster is stored in
etcd. If the Kubernetes cluster is supposed to be highly available, then etcd must also be
configured in HA mode, which normally means that we have at least three etcd instances
running on different nodes.

Let's state once again that the whole cluster state is stored in etcd. This includes all the
information about all the cluster nodes, all the replica sets, deployments, secrets, network
policies, routing information, and so on. It is, therefore, crucial that we have a robust
backup strategy in place for this key-value store.

Now, let's look at the nodes that will be running the actual workload of the cluster.

Cluster nodes
Cluster nodes are the nodes with which Kubernetes schedules application workloads. They
are the workhorses of the cluster. A Kubernetes cluster can have a few, dozens, hundreds,
or even thousands of cluster nodes. Kubernetes has been built from the ground up for high
scalability. Don't forget that Kubernetes was modeled after Google Borg, which has been
running tens of thousands of containers for years:

Introduction to Kubernetes Chapter 15

[408]

Kubernetes worker node

A worker node can run on a VM, bare metal, on-premise, or in the cloud. Originally,
worker nodes could only be configured on Linux. But since version 1.10 of Kubernetes,
worker nodes can also run on Windows Server. It is perfectly fine to have a mixed cluster
with Linux and Windows worker nodes.

On each node, we have three services that need to run, as follows:

Kubelet: This is the first and foremost service. Kubelet is the primary node agent.
The kubelet service uses pod specifications to make sure all of the containers of
the corresponding pods are running and healthy. Pod specifications are files
written in YAML or JSON format and they declaratively describe a pod. We will
get to know what pods are in the next section. PodSpecs are provided to kubelet
primarily through the API server.
Container runtime: The second service that needs to be present on each worker
node is a container runtime. Kubernetes, by default, has used containerd since
version 1.9 as its container runtime. Prior to that, it used the Docker daemon.
Other container runtimes, such as rkt or CRI-O, can be used. The container
runtime is responsible for managing and running the individual containers of a
pod.
kube-proxy: Finally, there is the kube-proxy. It runs as a daemon and is a simple
network proxy and load balancer for all application services running on that
particular node.

Now that we have learned about the architecture of Kubernetes and the master and worker
nodes, it is time to introduce the tooling that we can use to develop applications targeted at
Kubernetes.

Introduction to Kubernetes Chapter 15

[409]

Introduction to Minikube
Minikube is a tool that creates a single-node Kubernetes cluster in VirtualBox or Hyper-V
(other hypervisors are supported too) ready to be used during the development of a
containerized application. In Chapter 2, Setting Up a Working Environment, we learned
how Minikube and kubectl can be installed on our macOS or Windows laptop. As stated
there, Minikube is a single-node Kubernetes cluster and thus the node is, at the same time,
a Kubernetes master as well as a worker node.

Let's make sure that Minikube is running with the following command:

$ minikube start

Once Minikube is ready, we can access its single node cluster using kubectl. We should
see something similar to the following:

Listing all nodes in Minikube

As we mentioned previously, we have a single-node cluster with a node called minikube.
The version of Kubernetes that Minikube is using is v1.16.2 in my case.

Now, let's try to deploy a pod to this cluster. Don't worry about what a pod is for now; we
will delve into all the details about it later in this chapter. For the moment, just take it as-is.

We can use the sample-pod.yaml file in the ch15 subfolder of our labs folder to create
such a pod. It has the following content:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx:alpine
 ports:
 - containerPort: 80
 - containerPort: 443

Introduction to Kubernetes Chapter 15

[410]

Use the following steps to run the pod:

First, navigate to the correct folder:1.

$ cd ~/fod/ch15

Now, let's use the Kubernetes CLI called kubectl to deploy this pod:2.

$ kubectl create -f sample-pod.yaml
pod/nginx created

If we now list all of the pods, we should see the following:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 51s

To be able to access this pod, we need to create a service. Let's use the sample-3.
service.yaml file, which has the following content:

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
spec:
 type: LoadBalancer
 ports:
 - port: 8080
 targetPort: 80
 protocol: TCP
 selector:
 app: nginx

Again, don't worry about what exactly a service is at this time. We'll explain this4.
later. Let's just create this service:

$ kubectl create -f sample-service.yaml

Now, we can use curl to access the service:5.

$ curl -4 http://localhost

We should receive the Nginx welcome page as an answer.

Before you continue, please remove the two objects you just created:6.

$ kubectl delete po/nginx
$ kubectl delete svc/nginx-service

Introduction to Kubernetes Chapter 15

[411]

Kubernetes support in Docker for Desktop
Starting from version 18.01-ce, Docker for macOS and Docker for Windows have started
to support Kubernetes out of the box. Developers who want to deploy their containerized
applications to Kubernetes can use this orchestrator instead of SwarmKit. Kubernetes
support is turned off by default and has to be enabled in the settings. The first time
Kubernetes is enabled, Docker for macOS or Windows will need a moment to download all
the components that are needed to create a single-node Kubernetes cluster. Contrary to
Minikube, which is also a single-node cluster, the version provided by the Docker tools
uses containerized versions of all Kubernetes components:

Kubernetes support in Docker for macOS and Windows

The preceding diagram gives us a rough overview of how Kubernetes support has been
added to Docker for macOS and Windows. Docker for macOS uses hyperkit to run a
LinuxKit-based VM. Docker for Windows uses Hyper-V to achieve the result. Inside the
VM, the Docker engine is installed. Part of the engine is SwarmKit, which enables Swarm-
Mode. Docker for macOS or Windows uses the kubeadm tool to set up and configure
Kubernetes in that VM. The following three facts are worth mentioning: Kubernetes stores
its cluster state in etcd, thus we have etcd running on this VM. Then, we have all the
services that make up Kubernetes and, finally, some services that support the deployment
of Docker stacks from the Docker CLI into Kubernetes. This service is not part of the
official Kubernetes distribution, but it is Docker-specific.

Introduction to Kubernetes Chapter 15

[412]

All Kubernetes components run in containers in the LinuxKit VM. These containers can be
hidden through a setting in Docker for macOS or Windows. Later in this section, we'll
provide a complete list of Kubernetes system containers that will be running on your
laptop, if you have Kubernetes support enabled. To avoid repetition, from now on, I will
only talk about Docker for Desktop instead of Docker for macOS and Docker for Windows.
Everything that I will be saying equally applies to both editions.

One big advantage of Docker for Desktop with Kubernetes enabled over Minikube is that
the former allows developers to use a single tool to build, test, and run a containerized
application targeted at Kubernetes. It is even possible to deploy a multi-service application
into Kubernetes using a Docker Compose file.

Now, let's get our hands dirty:

First, we have to enable Kubernetes. On macOS, click on the Docker icon in the1.
menu bar; or, on Windows, go to the command tray and select Preferences. In
the dialog box that opens, select Kubernetes, as shown in the following
screenshot:

Enabling Kubernetes in Docker for Desktop

Introduction to Kubernetes Chapter 15

[413]

Then, tick the Enable Kubernetes checkbox. Also, tick the Deploy Docker Stacks2.
to Kubernetes by default and Show system containers (advanced) checkboxes.
Then, click the Apply & Restart button. Installing and configuring of Kubernetes
takes a few minutes. Now, it's time to take a break and enjoy a nice cup of tea.
Once the installation is finished (which Docker notifies us of by showing a green3.
status icon in the Settings dialog), we can test it. Since we now have two
Kubernetes clusters running on our laptop, that is, Minikube and Docker for
Desktop, we need to configure kubectl to access the latter.

First, let's list all the contexts that we have:

List of contexts for kubectl

Here, we can see that, on my laptop, I have the two contexts we mentioned previously.
Currently, the Minikube context is still active, flagged by the asterisk in the CURRENT
column. We can switch to the docker-for-desktop context using the following
command:

Changing the context for the Kubernetes CLI

Now, we can use kubectl to access the cluster that Docker for Desktop just created. We
should see the following:

The single-node Kubernetes cluster created by Docker for Desktop

Introduction to Kubernetes Chapter 15

[414]

OK, this looks very familiar. It is pretty much the same as what we saw when working with
Minikube. The version of Kubernetes that my Docker for Desktop is using is 1.15.5. We
can also see that the node is a master node.

If we list all the containers that are currently running on our Docker for Desktop, we get the
list shown in the following screenshot (note that I use the --format argument to output
the Container ID and Names of the containers):

Kubernetes system containers

In the preceding list, we can identify all the now-familiar components that make up
Kubernetes, as follows:

API server
etcd
Kube proxy
DNS service
Kube controller
Kube scheduler

There are also containers that have the word compose in them. These are Docker-specific
services and allow us to deploy Docker Compose applications onto Kubernetes. Docker
translates the Docker Compose syntax and implicitly creates the necessary Kubernetes
objects, such as deployments, pods, and services.

Introduction to Kubernetes Chapter 15

[415]

Normally, we don't want to clutter our list of containers with these system containers.
Therefore, we can uncheck the Show system containers (advanced) checkbox in the
settings for Kubernetes.

Now, let's try to deploy a Docker Compose application to Kubernetes. Navigate to the
ch15 subfolder of our ~/fod folder. We deploy the app as a stack using the docker-
compose.yml file:

$ docker stack deploy -c docker-compose.yml app

We should see the following:

Deploying the stack to Kubernetes

We can test the application, for example, using curl, and we will see that it is running as
expected:

Pets application running in Kubernetes on Docker for Desktop

Now, let's see exactly what Docker did when we executed the docker stack
deploy command. We can use kubectl to find out:

Introduction to Kubernetes Chapter 15

[416]

Listing all Kubernetes objects created by docker stack deploy

Docker created a deployment for the web service and a stateful set for the db service. It also
automatically created Kubernetes services for web and db so that they can be accessed
inside the cluster. It also created the Kubernetes svc/web-published service, which is
used for external access.

This is pretty cool, to say the least, and tremendously decreases friction in the development
process for teams targeting Kubernetes as their orchestration platform

Before you continue, please remove the stack from the cluster:

$ docker stack rm app

Also, make sure you reset the context for kubectl back to Minikube, as we will be using
Minikube for all our samples in this chapter:

$ kubectl config use-context minikube

Now that we have had an introduction to the tools we can use to develop applications that
will eventually run in a Kubernetes cluster, it is time to learn about all the important
Kubernetes objects that are used to define and manage such an application. We will start
with pods.

Introduction to Kubernetes Chapter 15

[417]

Introduction to pods
Contrary to what is possible in Docker Swarm, you cannot run containers directly in a
Kubernetes cluster. In a Kubernetes cluster, you can only run pods. Pods are the atomic
units of deployment in Kubernetes. A pod is an abstraction of one or many co-located
containers that share the same Kernel namespaces, such as the network namespace. No
equivalent exists in Docker SwarmKit. The fact that more than one container can be co-
located and share the same network namespace is a very powerful concept. The following
diagram illustrates two pods:

Kubernetes pods

In the preceding diagram, we have two pods, Pod 1 and Pod 2. The first pod contains two
containers, while the second one only contains a single container. Each pod gets an IP
address assigned by Kubernetes that is unique in the whole Kubernetes cluster. In our case,
these are the following IP addresses: 10.0.12.3 and 10.0.12.5. Both are part of a private
subnet managed by the Kubernetes network driver.

A pod can contain one to many containers. All those containers share the same Linux kernel
namespaces, and in particular, they share the network namespace. This is indicated by the
dashed rectangle surrounding the containers. Since all containers running in the same pod
share the network namespace, each container needs to make sure to use their own port
since duplicate ports are not allowed in a single network namespace. In this case, in Pod
1, the main container is using port 80 while the supporting container is using port 3000.

Introduction to Kubernetes Chapter 15

[418]

Requests from other pods or nodes can use the pod's IP address combined with the
corresponding port number to access the individual containers. For example, you could
access the application running in the main container of Pod 1 through 10.0.12.3:80.

Comparing Docker container and Kubernetes pod
networking
Now, let's compare Docker's container networking and Kubernetes pod networking. In the
following diagram, we have the former on the left-hand side and the latter on the right-
hand side:

Containers in a pod sharing the same network namespace

When a Docker container is created and no specific network is specified, then the Docker
engine creates a virtual ethernet (veth) endpoint. The first container gets veth0, the next
one gets veth1, and so on. These virtual ethernet endpoints are connected to the Linux
bridge, docker0, that Docker automatically creates upon installation. Traffic is routed from
the docker0 bridge to every connected veth endpoint. Every container has its own network
namespace. No two containers use the same namespace. This is on purpose, to isolate
applications running inside the containers from each other.

Introduction to Kubernetes Chapter 15

[419]

For a Kubernetes pod, the situation is different. When creating a new pod, Kubernetes first
creates a so-called pause container whose only purpose is to create and manage the
namespaces that the pod will share with all containers. Other than that, it does nothing
useful; it is just sleeping. The pause container is connected to the docker0 bridge
through veth0. Any subsequent container that will be part of the pod uses a special feature
of the Docker engine that allows it to reuse an existing network namespace. The syntax to
do so looks like this:

$ docker container create --net container:pause ...

The important part is the --net argument, which uses container:<container name>as
a value. If we create a new container this way, then Docker does not create a new veth
endpoint; the container uses the same one as the pause container.

Another important consequence of multiple containers sharing the same network
namespace is the way they communicate with each other. Let's consider the following
situation: a pod containing two containers, one listening at port 80 and the other at
port 3000:

Containers in pods communicating via localhost

Introduction to Kubernetes Chapter 15

[420]

When two containers use the same Linux kernel network namespace, they can
communicate with each other through localhost, similarly to how, when two processes are
running on the same host, they can communicate with each other through localhost too.
This is illustrated in the preceding diagram. From the main container, the containerized
application inside it can reach out to the service running inside the supporting container
through http://localhost:3000.

Sharing the network namespace
After all this theory, you might be wondering how a pod is actually created by Kubernetes.
Kubernetes only uses what Docker provides. So, how does this network namespace share
work? First, Kubernetes creates the so-called pause container, as mentioned previously.
This container has no other function than to reserve the kernel namespaces for that pod and
keep them alive, even if no other container inside the pod is running. Let's simulate the
creation of a pod, then. We start by creating the pause container and use Nginx for this
purpose:

$ docker container run -d --name pause nginx:alpine

Now, we add a second container called main, attaching it to the same network namespace
as the pause container:

$ docker container run --name main -dit \
 --net container:pause \
 alpine:latest /bin/sh

Since pause and the sample container are both parts of the same network namespace, they
can reach each other through localhost. To show this, we have to exec into the main
container:

$ docker exec -it main /bin/sh

Introduction to Kubernetes Chapter 15

[421]

Now, we can test the connection to Nginx running in the pause container and listening on
port 80. The following what we get if we use the wget utility to do so:

Two containers sharing the same network namespace

The output shows that we can indeed access Nginx on localhost. This is proof that the
two containers share the same namespace. If that is not enough, we can use the ip tool to
show eth0 inside both containers and we will get the exact same result, specifically,
the same IP address, which is one of the characteristics of a pod where all its containers
share the same IP address:

Displaying the properties of eth0 with the ip tool

Introduction to Kubernetes Chapter 15

[422]

If we inspect the bridge network, we can see that only the pause container is listed. The
other container didn't get an entry in the Containers list since it is reusing the pause
container's endpoint:

Inspecting the Docker default bridge network

Next, we will be looking at the pod life cycle.

Introduction to Kubernetes Chapter 15

[423]

Pod life cycle
Earlier in this book, we learned that containers have a life cycle. A container is initialized,
run, and ultimately exited. When a container exits, it can do this gracefully with an exit
code zero or it can terminate with an error, which is equivalent to a nonzero exit code.

Similarly, a pod has a life cycle. Due to the fact that a pod can contain more than one
container, this life cycle is slightly more complicated than that of a single container. The life
cycle of a pod can be seen in the following diagram:

The life cycle of Kubernetes pods

When a Pod is created on a cluster node, it first enters into the pending status. Once all the
containers of the pod are up and running, the pod enters into the running status. The pod
only enters into this state if all its containers run successfully. If the pod is asked to
terminate, it will request all its containers to terminate. If all containers terminate with exit
code zero, then the pod enters into the succeeded status. This is the happy path.

Now, let's look at some scenarios that lead to the pod being in the failed state. There are
three possible scenarios:

If, during the startup of the pod, at least one container is not able to run and fails
(that is, it exits with a nonzero exit code), the pod goes from the pending state
into the failed state.
If the pod is in the running status and one of the containers suddenly crashes or
exits with a nonzero exit code, then the pod transitions from the running state
into the failed state.
If the pod is asked to terminate and, during the shutdown at least one of the
containers, exits with a nonzero exit code, then the pod also enters into
the failed state.

Now, let's look at the specifications for a pod.

Introduction to Kubernetes Chapter 15

[424]

Pod specifications
When creating a pod in a Kubernetes cluster, we can use either an imperative or a
declarative approach. We discussed the difference between the two approaches earlier in
this book but, to rephrase the most important aspect, using a declarative approach signifies
that we write a manifest that describes the end state we want to achieve. We'll leave out the
details of the orchestrator. The end state that we want to achieve is also called the desired
state. In general, the declarative approach is strongly preferred in all established
orchestrators, and Kubernetes is no exception.

Thus, in this chapter, we will exclusively concentrate on the declarative approach.
Manifests or specifications for a pod can be written using either the YAML or JSON
formats. In this chapter, we will concentrate on YAML since it is easier to read for us
humans. Let's look at a sample specification. Here is the content of the pod.yaml file,
which can be found in the ch12 subfolder of our labs folder:

apiVersion: v1
kind: Pod
metadata:
 name: web-pod
spec:
 containers:
 - name: web
 image: nginx:alpine
 ports:
 - containerPort: 80

Each specification in Kubernetes starts with the version information. Pods have been
around for quite some time and thus the API version is v1. The second line specifies the
type of Kubernetes object or resource we want to define. Obviously, in this case, we want to
specify a Pod. Next follows a block containing metadata. At a bare minimum, we need to
give the pod a name. Here, we call it web-pod. The next block that follows is the spec
block, which contains the specification of the pod. The most important part (and the only
one in this simple sample) is a list of all containers that are part of this pod. We only have
one container here, but multiple containers are possible. The name we choose for our
container is web and the container image is nginx:alpine. Finally, we define a list of ports
the container is exposing.

Once we have authored such a specification, we can apply it to the cluster using the
Kubernetes CLI, kubectl. In a Terminal, navigate to the ch15 subfolder and execute the
following command:

$ kubectl create -f pod.yaml

Introduction to Kubernetes Chapter 15

[425]

This will respond with pod "web-pod" created. We can then list all the pods in the
cluster with kubectl get pods:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
web-pod 1/1 Running 0 2m

As expected, we have one of one pods in the running status. The pod is called web-pod, as
defined. We can get more detailed information about the running pod by using the
describe command:

Describing a pod running in the cluster

Introduction to Kubernetes Chapter 15

[426]

Please note the pod/web-pod notation in the previous describe command. Other variants
are possible; for example, pods/web-pod, po/web-pod. pod and po are aliases of pods.
The kubectl tool defines many aliases to make our lives a bit easier.

The describe command gives us a plethora of valuable information about the pod, not the
least of which is a list of events that happened and affected this pod. The list is shown at the
end of the output.

The information in the Containers section is very similar to what we find in a docker
container inspect output.

We can also see a Volumes section with an entry of the Secret type. We will discuss
Kubernetes secrets in the next chapter. Volumes, on the other hand, will be discussed next.

Pods and volumes
In Chapter 5, Data Volumes and Configuration, we learned about volumes and their purpose:
accessing and storing persistent data. Since containers can mount volumes, pods can do so
as well. In reality, it is really the containers inside the pod that mount the volumes, but that
is just a semantic detail. First, let's see how we can define a volume in Kubernetes.
Kubernetes supports a plethora of volume types, so we won't delve into too much detail
about this. Let's just create a local volume implicitly by defining
a PersistentVolumeClaim called my-data-claim:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: my-data-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi

We have defined a claim that requests 2 GB of data. Let's create this claim:

$ kubectl create -f volume-claim.yaml

Introduction to Kubernetes Chapter 15

[427]

We can list the claim using kubectl (pvc is a shortcut for PersistentVolumeClaim):

List of PersistentStorageClaim objects in the cluster

In the output, we can see that the claim has implicitly created a volume called pvc-<ID>.
We are now ready to use the volume created by the claim in a pod. Let's use a modified
version of the pod specification that we used previously. We can find this updated
specification in the pod-with-vol.yaml file in the ch12 folder. Let's look at this
specification in detail:

apiVersion: v1
kind: Pod
metadata:
 name: web-pod
spec:
 containers:
 - name: web
 image: nginx:alpine
 ports:
 - containerPort: 80
 volumeMounts:
 - name: my-data
 mountPath: /data
 volumes:
 - name: my-data
 persistentVolumeClaim:
 claimName: my-data-claim

In the last four lines, in the volumes block, we define a list of volumes we want to use for
this pod. The volumes that we list here can be used by any of the containers of the pod. In
our particular case, we only have one volume. We specify that we have a volume called my-
data, which is a persistent volume claim whose claim name is the one we just created.
Then, in the container specification, we have the volumeMounts block, which is where we
define the volume we want to use and the (absolute) path inside the container where the
volume will be mounted. In our case, we mount the volume to the /data folder of the
container filesystem. Let's create this pod:

$ kubectl create -f pod-with-vol.yaml

Introduction to Kubernetes Chapter 15

[428]

Then, we can exec into the container to double-check that the volume has mounted by
navigating to the /data folder, creating a file there, and exiting the container:

$ kubectl exec -it web-pod -- /bin/sh
/ # cd /data
/data # echo "Hello world!" > sample.txt
/data # exit

If we are right, then the data in this container must persist beyond the life cycle of the pod.
Thus, let's delete the pod and then recreate it and exec into it to make sure the data is still
there. This is the result:

Data stored in volume survives pod recreation

Now that we have a good understanding of pods, let's look into how those pods are
managed with the help of ReplicaSets.

Kubernetes ReplicaSet
A single pod in an environment with high availability requirements is insufficient. What if
the pod crashes? What if we need to update the application running inside the pod but cannot afford
any service interruption? These questions and more indicate that pods alone are not enough
and we need a higher-level concept that can manage multiple instances of the same pod. In
Kubernetes, the ReplicaSet is used to define and manage such a collection of identical pods
that are running on different cluster nodes. Among other things, a ReplicaSet defines which
container images are used by the containers running inside a pod and how many instances
of the pod will run in the cluster. These properties and many others are called the desired
state.

Introduction to Kubernetes Chapter 15

[429]

The ReplicaSet is responsible for reconciling the desired state at all times, if the actual state
ever deviates from it. Here is a Kubernetes ReplicaSet:

Kubernetes ReplicaSet

In the preceding diagram, we can see a ReplicaSet called rs-api, which governs a number
of pods. The pods are called pod-api. The ReplicaSet is responsible for making sure that, at
any given time, there are always the desired number of pods running. If one of the pods
crashes for whatever reason, the ReplicaSet schedules a new pod on a node with free
resources instead. If there are more pods than the desired number, then the ReplicaSet kills
superfluous pods. With this, we can say that the ReplicaSet guarantees a self-healing and
scalable set of pods. There is no limit to how many pods a ReplicaSet can hold.

ReplicaSet specification
Similar to what we have learned about pods, Kubernetes also allows us to either
imperatively or declaratively define and create a ReplicaSet. Since the declarative
approach is by far the most recommended one in most cases, we're going to concentrate on
this approach. Here is a sample specification for a Kubernetes ReplicaSet:

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: rs-web
spec:
 selector:
 matchLabels:
 app: web
 replicas: 3
 template:
 metadata:
 labels:
 app: web
 spec:
 containers:
 - name: nginx
 image: nginx:alpine

Introduction to Kubernetes Chapter 15

[430]

 ports:
 - containerPort: 80

This looks an awful lot like the pod specification we introduced earlier. Let's concentrate on
the differences, then. First, on line 2, we have the kind, which was Pod and is
now ReplicaSet. Then, on lines 6–8, we have a selector, which determines the pods that
will be part of the ReplicaSet. In this case, it is all the pods that have app as a label with
the value web. Then, on line 9, we define how many replicas of the pod we want to run;
three, in this case. Finally, we have the template section, which first defines the metadata
and then the spec, which defines the containers that run inside the pod. In our case, we
have a single container using the nginx:alpine image and exporting port 80.

The really important elements are the number of replicas and the selector, which specifies
the set of pods governed by the ReplicaSet.

In our ch15 folder, we have a file called replicaset.yaml that contains the preceding
specification. Let's use this file to create the ReplicaSet:

$ kubectl create -f replicaset.yaml
replicaset "rs-web" created

If we list all the ReplicaSets in the cluster, we get the following (rs is a shortcut
for replicaset):

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
rs-web 3 3 3 51s

In the preceding output, we can see that we have a single ReplicaSet called rs-web whose
desired state is three (pods). The current state also shows three pods and tell us that all
three pods are ready. We can also list all the pods in the system. This results in the
following output:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
rs-web-6qzld 1/1 Running 0 4m
rs-web-frj2m 1/1 Running 0 4m
rs-web-zd2kt 1/1 Running 0 4m

Here, we can see our three expected pods. The names of the pods use the name of the
ReplicaSet with a unique ID appended for each pod. In the READY column, we can see how
many containers have been defined in the pod and how many of them are ready. In our
case, we only have a single container per pod and, in each case, it is ready. Thus, the overall
status of the pod is Running. We can also see how many times each pod had to be
restarted. In our case, we don't have any restarts.

Introduction to Kubernetes Chapter 15

[431]

Self-healing
Now, let's test the magic powers of the self-healing ReplicaSet by randomly killing one of
its pods and observing what happens. Let's delete the first pod from the previous list:

$ kubectl delete po/rs-web-6qzld
pod "rs-web-6qzld" deleted

Now, let's list all the pods again. We expect to see only two pods, right? Wrong:

List of pods after killing a pod of the ReplicaSet

OK; evidently, the second pod in the list has been recreated, as we can see from
the AGE column. This is auto-healing in action. Let's see what we discover if we describe the
ReplicaSet:

Describe the ReplicaSet

Introduction to Kubernetes Chapter 15

[432]

And indeed, we find an entry under Events that tells us that the ReplicaSet created the
new pod called rs-web-q6cr7.

Kubernetes deployment
Kubernetes takes the single-responsibility principle very seriously. All Kubernetes objects
are designed to do one thing and one thing only, and they are designed to do this one thing
very well. In this regard, we have to understand Kubernetes ReplicaSets and
Deployments. A ReplicaSet, as we have learned, is responsible for achieving and
reconciling the desired state of an application service. This means that the ReplicaSet
manages a set of pods.

Deployment augments a ReplicaSet by providing rolling updates and rollback
functionality on top of it. In Docker Swarm, the Swarm service incorporates the
functionality of both ReplicaSet and Deployment. In this regard, SwarmKit is much more
monolithic than Kubernetes. The following diagram shows the relationship of a
Deployment to a ReplicaSet:

Kubernetes deployment

In the preceding diagram, the ReplicaSet is defining and governing a set of identical pods.
The main characteristics of the ReplicaSet are that it is self-healing, scalable, and always
does its best to reconcile the desired state. Kubernetes Deployment, in turn, adds rolling
updates and rollback functionality to this. In this regard, a deployment is really a wrapper
object to a ReplicaSet.

Introduction to Kubernetes Chapter 15

[433]

We will learn more about rolling updates and rollbacks in the Chapter 16, Deploying,
Updating, and Securing an Application with Kubernetes.

In the next section, we will learn more about Kubernetes services and how they enable
service discovery and routing.

Kubernetes service
The moment we start to work with applications consisting of more than one application
service, we need service discovery. The following diagram illustrates this problem:

Service discovery

In the preceding diagram, we have a Web API service that needs access to three other
services: payments, shipping, and ordering. The Web API should never have to care about
how and where to find those three services. In the API code, we just want to use the name
of the service we want to reach and its port number. A sample would be the following
URL http://payments:3000, which is used to access an instance of the payments
service.

In Kubernetes, the payments application service is represented by a ReplicaSet of pods. Due
to the nature of highly distributed systems, we cannot assume that pods have stable
endpoints. A pod can come and go on a whim. But that's a problem if we need to access the
corresponding application service from an internal or external client. If we cannot rely on
pod endpoints being stable, what else can we do?

Introduction to Kubernetes Chapter 15

[434]

This is where Kubernetes services come into play. They are meant to provide stable
endpoints to ReplicaSets or Deployments, as follows:

Kubernetes service providing stable endpoints to clients

In the preceding diagram, in the center, we can see such a Kubernetes Service. It provides a
reliable cluster-wide IP address, also called a virtual IP (VIP), as well as a reliable Port
that's unique in the whole cluster. The pods that the Kubernetes service is proxying are
determined by the Selector defined in the service specification. Selectors are always based
on labels. Every Kubernetes object can have zero to many labels assigned to it. In our case,
the Selector is app=web; that is, all pods that have a label called app with a value of web
are proxied.

In the next section, we will learn more about context-based routing and how Kubernetes
alleviates this task.

Introduction to Kubernetes Chapter 15

[435]

Context-based routing
Often, we want to configure context-based routing for our Kubernetes cluster. Kubernetes
offers us various ways to do this. The preferred and most scalable way at this time is to use
an IngressController. The following diagram tries to illustrate how this ingress controller
works:

 Context-based routing using a Kubernetes ingress controller

In the preceding diagram, we can see how context-based (or layer 7) routing works when
using an IngressController, such as Nginx. Here, we have the deployment of an
application service called web. All the pods of this application service have the following
label: app=web. Then, we have a Kubernetes service called web that provides a stable
endpoint to those pods. The service has a (virtual) IP of 52.14.0.13 and exposes
port 30044. That is, if a request comes to any node of the Kubernetes cluster for the
name web and port 30044, then it is forwarded to this service. The service then load-
balances the request to one of the pods.

Introduction to Kubernetes Chapter 15

[436]

So far, so good, but how is an ingress request from a client to
the http[s]://example.com/web URL routed to our web service? First, we have to define
routing from a context-based request to a corresponding <service name>/<port>
request. This is done through an Ingress object:

In the Ingress object, we define the Host and Path as the source and the (service)1.
name, and the port as the target. When this Ingress object is created by the
Kubernetes API server, then a process that runs as a sidecar
in IngressController picks this change up.
The process modifies the configuration the configuration file of the Nginx reverse2.
proxy.
By adding the new route, Nginx is then asked to reload its configuration and3.
thus will be able to correctly route any incoming requests to
http[s]://example.com/web.

In the next section, we are going to compare Docker SwarmKit with Kubernetes by
contrasting some of the main resources of each orchestration engine.

Comparing SwarmKit with Kubernetes
Now that we have learned a lot of details about the most important resources in
Kubernetes, it is helpful to compare the two orchestrators, SwarmKit and Kubernetes, by
matching important resources. Let's take a look:

SwarmKit Kubernetes Description
Swarm Cluster Set of servers/nodes managed by the respective orchestrator.

Node Cluster
member

Single host (physical or virtual) that's a member of the
Swarm/cluster.

Manager
node Master Node managing the Swarm/cluster. This is the control plane.

Worker
node Node Member of the Swarm/cluster running application workload.

Container Container**
An instance of a container image running on a node.
**Note: In a Kubernetes cluster, we cannot run a container
directly.

Task Pod

An instance of a service (Swarm) or ReplicaSet (Kubernetes)
running on a node. A task manages a single container while a
Pod contains one to many containers that all share the same
network namespace.

Introduction to Kubernetes Chapter 15

[437]

Service ReplicaSet Defines and reconciles the desired state of an application service
consisting of multiple instances.

Service Deployment A deployment is a ReplicaSet augmented with rolling updates
and rollback capabilities.

Routing
Mesh Service

The Swarm Routing Mesh provides L4 routing and load
balancing using IPVS. A Kubernetes service is an abstraction
that defines a logical set of pods and a policy that can be used to
access them. It is a stable endpoint for a set of pods.

Stack Stack **

The definition of an application consisting of multiple (Swarm)
services.
**Note: While stacks are not native to Kubernetes, Docker's tool,
Docker for Desktop, will translate them for deployment onto a
Kubernetes cluster.

Network Network
policy

Swarm software-defined networks (SDNs) are used
to firewall containers. Kubernetes only defines a single flat
network. Every pod can reach every other pod and/or node,
unless network policies are explicitly defined to constrain inter-
pod communication.

Summary
In this chapter, we learned about the basics of Kubernetes. We took an overview of its
architecture and introduced the main resources that are used to define and run applications
in a Kubernetes cluster. We also introduced Minikube and Kubernetes support in Docker
for Desktop.

In the next chapter, we're going to deploy an application into a Kubernetes cluster. Then,
we're going to be updating one of the services of this application using a zero downtime
strategy. Finally, we're going to instrument application services running in Kubernetes with
sensitive data using secrets. Stay tuned!

Questions
Please answer the following questions to assess your learning progress:

Explain in a few short sentences what the role of a Kubernetes master is.1.
List the elements that need to be present on each Kubernetes (worker) node.2.

Introduction to Kubernetes Chapter 15

[438]

We cannot run individual containers in a Kubernetes cluster.3.

A. Yes
B. No

Explain the reason why the containers in a pod can use localhost to4.
communicate with each other.
What is the purpose of the so-called pause container in a pod?5.
Bob tells you "Our application consists of three Docker images: web, inventory,6.
and db. Since we can run multiple containers in a Kubernetes pod, we are going
to deploy all the services of our application in a single pod." List three to four
reasons why this is a bad idea.
Explain in your own words why we need Kubernetes ReplicaSets.7.
Under which circumstances do we need Kubernetes deployments?8.
List at least three types of Kubernetes service and explain their purposes and9.
their differences.

Introduction to Kubernetes Chapter 15

[439]

Further reading
Here is a list of articles that contain more detailed information about the various topics that
we discussed in this chapter:

The Raft Consensus Algorithm: https:/ /raft. github. io/

Docker Compose and Kubernetes with Docker for Desktop: https:/ /dockr. ly/
2G8Iqb9

Kubernetes Documentation: https:/ /kubernetes. io/ docs/ home/

https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://dockr.ly/2G8Iqb9
https://dockr.ly/2G8Iqb9
https://dockr.ly/2G8Iqb9
https://dockr.ly/2G8Iqb9
https://dockr.ly/2G8Iqb9
https://dockr.ly/2G8Iqb9
https://dockr.ly/2G8Iqb9
https://dockr.ly/2G8Iqb9
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

16
Deploying, Updating, and

Securing an Application with
Kubernetes

In the previous chapter, we learned about the basics of the container orchestrator,
Kubernetes. We got a high-level overview of the architecture of Kubernetes and learned a
lot about the important objects used by Kubernetes to define and manage a containerized
application.

In this chapter, we will learn how to deploy, update, and scale applications into a
Kubernetes cluster. We will also explain how zero downtime deployments are achieved to
enable disruption-free updates and rollbacks of mission-critical applications. Finally, we
will introduce Kubernetes secrets as a means to configure services and protect sensitive
data.

This chapter covers the following topics:

Deploying a first application
Defining liveness and readiness
Zero downtime deployments
Kubernetes secrets

After working through this chapter, you will be able to do the following:

Deploy a multi-service application into a Kubernetes cluster
Define a liveness and readiness probe for your Kubernetes application service
Update an application service running in Kubernetes without causing downtime
Define secrets in a Kubernetes cluster
Configure an application service to use Kubernetes secrets

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[441]

Technical requirements
In this chapter, we're going to use Minikube on our local computer. Please refer to Chapter
2, Setting Up a Working Environment, for more information on how to install and use
Minikube.

The code for this chapter can be found here: https:/ /github. com/PacktPublishing/
Learn-Docker---Fundamentals- of- Docker- 19.x- Second- Edition/ tree/ master/ ch16/
probes.

Please make sure you have cloned this book's GitHub repository, as described in Chapter
2, Setting Up a Working Environment.

In your Terminal, navigate to the ~/fod/ch16 folder.

Deploying a first application
We will take our pets application, which we first introduced in Chapter 11, Docker
Compose, and deploy it into a Kubernetes cluster. Our cluster will be Minikube, which, as
you know, is a single-node cluster. However, from the perspective of a deployment, it
doesn't really matter how big the cluster is and where the cluster is located in the cloud, in
your company's data center, or on your personal workstation.

Deploying the web component
Just as a reminder, our application consists of two application services: the Node-based
web component and the backing PostgreSQL database. In the previous chapter, we learned
that we need to define a Kubernetes Deployment object for each application service we
want to deploy. Let's do this first for the web component. As always in this book, we will
choose the declarative way of defining our objects. Here is the YAML defining
a Deployment object for the web component:

https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch16/probes

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[442]

Kubernetes deployment definition for the web component

The preceding deployment definition can be found in the web-deployment.yaml file in
the ~/fod/ch16 folder. The lines of code are as follows:

On line 4: We define the name for our Deployment object as web.
On line 6: We declare that we want to have one instance of the web component
running.
From line 8 to 10: We define which pods will be part of our deployment, namely
those that have the app and service labels with values of pets and web,
respectively.
On line 11: In the template for the pods starting at line 11, we define that each
pod will have the app and service labels applied to them.
From line 17: We define the single container that will be running in the pod. The
image for the container is our well-known fundamentalsofdocker/ch11-
web:2.0 image and the name of the container will be web.
ports: Finally, we declare that the container exposes port 3000 for TCP-type
traffic.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[443]

Please make sure that you have set the context of kubectl to Minikube. See Chapter
2, Setting Up a Working Environment, for details on how to do that.

We can deploy this Deployment object using kubectl:

$ kubectl create -f web-deployment.yaml

We can double-check that the deployment has been created again using our Kubernetes
CLI. We should see the following output:

Listing all resources running in Minikube

In the preceding output, we can see that Kubernetes created three objects – the deployment,
a pertaining ReplicaSet, and a single pod (remember that we specified that we want one
replica only). The current state corresponds to the desired state for all three objects, so we
are fine so far.

Now, the web service needs to be exposed to the public. For this, we need to define a
Kubernetes Service object of the NodePort type. Here is the definition, which can be found
in the web-service.yaml file in the ~/fod/ch16 folder:

Definition of the Service object for our web component

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[444]

The preceding lines of codes are as follows:

On line 4: We set the name of this Service object to web.
On line 6: We define the type of Service object we're using. Since
the web component has to be accessible from outside of the cluster, this cannot be
a Service object of the ClusterIP type and must be either of
the NodePort or LoadBalancer type. We discussed the various types of
Kubernetes services in the previous chapter, so will not go into further detail
about this. In our sample, we're using a NodePort type of service.
On lines 8 and 9: We specify that we want to expose port 3000 for access
through the TCP protocol. Kubernetes will map container
port 3000 automatically to a free host port in the range of 30,000 to 32,768. Which
port Kubernetes effectively chooses can be determined using the kubectl get
service or kubectl describe command for the service after it has been created.
From line 10 to 12: We define the filter criteria for the pods that this service will
be a stable endpoint for. In this case, it is all the pods that have the
app and service labels with the pets and web values, respectively.

Now that we have this specification for a Service object, we can create it using kubectl:

$ kubectl create -f web-service.yaml

We can list all the services to see the result of the preceding command:

The Service object created for the web component

In the preceding output, we can see that a service called web has been created. A
unique clusterIP of 10.99.99.133 has been assigned to this service, and the container
port 3000 has been published on port 31331 on all cluster nodes.

If we want to test this deployment, we need to find out what IP address Minikube has, and
then use this IP address to access our web service. The following is the command that we
can use to do this:

$ IP=$(minikube ip)
$ curl -4 $IP:31331/
Pets Demo Application

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[445]

OK, the response is Pets Demo Application, which is what we expected. The web
service is up and running in the Kubernetes cluster. Next, we want to deploy the database.

Deploying the database
A database is a stateful component and has to be treated differently to stateless
components, such as our web component. We discussed the difference between stateful and
stateless components in a distributed application architecture in detail in Chapter
9, Distributed Application Architecture, and Chapter 12, Orchestrators.

Kubernetes has defined a special type of ReplicaSet object for stateful components. The
object is called a StatefulSet. Let's use this kind of object to deploy our database. The
definition can be found in the ~fod/ch16/db-stateful-set.yaml file. The details are as
follows:

A StatefulSet for the DB component

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[446]

OK, this looks a bit scary, but it isn't. It is a bit longer than the definition of the deployment
for the web component due to the fact that we also need to define a volume where the
PostgreSQL database can store the data. The volume claim definition is on lines 25 to 33.
We want to create a volume with the name pets-data that has a maximum size equal to
100 MB. On lines 22 to 24, we use this volume and mount it into the container
at /var/lib/postgresql/data, where PostgreSQL expects it. On line 21, we also declare
that PostgreSQL is listening at port 5432.

As always, we use kubectl to deploy the StatefulSet:

$ kubectl create -f db-stateful-set.yaml

Now, if we list all the resources in the cluster, we will be able to see the additional objects
that were created:

The StatefulSet and its pod

Here, we can see that a StatefulSet and a pod have been created. For both, the current
state corresponds to the desired state and thus the system is healthy. But that doesn't mean
that the web component can access the database at this time. Service discovery won't work
so far. Remember that the web component wants to access the db service under the
name db.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[447]

To make service discovery work inside the cluster, we have to define a
Kubernetes Service object for the database component too. Since the database should only
ever be accessible from within the cluster, the type of Service object we need is ClusterIP.
Here is the specification, which can be found in the ~/fod/ch16/db-service.yaml file:

Definition of the Kubernetes Service object for the database

The database component will be represented by this Service object and it can be reached by
the name db, which is the name of the service, as defined on line 4. The database
component does not have to be publicly accessible, so we decided to use a Service object of
the ClusterIP type. The selector on lines 10 to 12 defines that this service represents a
stable endpoint for all the pods that have the according labels defined, that is, app:
pets and service: db.

Let's deploy this service with the following command:

$ kubectl create -f db-service.yaml

Now, we should be ready to test the application. We can use the browser this time to enjoy
the beautiful animal images:

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[448]

Testing the pets application running in Kubernetes

172.29.64.78 is the IP address of my Minikube. Verify your address using the minikube
ip command. Port number 32722 is the number that Kubernetes automatically selected for
my web Service object. Replace this number with the port that Kubernetes assigned to your
service. You can get the number by using the kubectl get services command.

Now, we have successfully deployed the pets application to Minikube, which is a single-
node Kubernetes cluster. We had to define four artifacts to do so, which are as follows:

A Deployment and a Service object for the web component
A StatefulSet and a Service object for the database component

To remove the application from the cluster, we can use the following small script:

kubectl delete svc/web
kubectl delete deploy/web
kubectl delete svc/db
kubectl delete statefulset/db

Next, we will be streamlining the deployment.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[449]

Streamlining the deployment
So far, we have created four artifacts that needed to be deployed to the cluster. This is only
a very simple application, consisting of two components. Imagine having a much more
complex application. It would quickly become a maintenance nightmare. Luckily, we have
several options as to how we can simplify the deployment. The method that we are going
to discuss here is the possibility of defining all the components that make up an application
in Kubernetes in a single file.

Other solutions that lie outside of the scope of this book would include the use of a package
manager, such as Helm.

If we have an application consisting of many Kubernetes objects such
as Deployment and Service objects, then we can keep them all in one single file and
separate the individual object definitions by three dashes. For example, if we wanted to
have the Deployment and the Service definition for the web component in a single file,
this would look as follows:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: web
spec:
 replicas: 1
 selector:
 matchLabels:
 app: pets
 service: web
 template:
 metadata:
 labels:
 app: pets
 service: web
 spec:
 containers:
 - image: fundamentalsofdocker/ch11-web:2.0
 name: web
 ports:
 - containerPort: 3000
 protocol: TCP

apiVersion: v1
kind: Service
metadata:
 name: web
spec:

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[450]

 type: NodePort
 ports:
 - port: 3000
 protocol: TCP
 selector:
 app: pets
 service: web

Here, we have collected all four object definitions for the pets application in the
~/fod/ch16/pets.yaml file, and we can deploy the application in one go:

Using a single script to deploy the pets application

Similarly, we have created a script called ~/fod/ch16/remove-pets.sh to remove all the
artifacts of the pets application from the Kubernetes cluster:

Removing pets from the Kubernetes cluster

With this, we have taken our pets application we introduced in Chapter 11, Docker
Compose, and defined all the Kubernetes objects that are necessary to deploy this
application into a Kubernetes cluster. In each step, we have made sure that we got the
expected result, and once all the artifacts existed in the cluster, we showed the running
application.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[451]

Defining liveness and readiness
Container orchestration systems such as Kubernetes and Docker swarm make it
significantly easier to deploy, run, and update highly distributed, mission-critical
applications. The orchestration engine automates many of the cumbersome tasks such as
scaling up or down, asserting that the desired state is maintained at all times, and more.

But, the orchestration engine cannot just do everything automagically. Sometimes, we
developers need to support the engine with some information that only we can know
about. So, what do I mean by that?

Let's look at a single application service. Let's assume it is a microservice and let's call it
service A. If we run service A containerized on a Kubernetes cluster, then Kubernetes can
make sure that we have the five instances that we require in the service definition running
at all times. If one instance crashes, Kubernetes can quickly launch a new instance and thus
maintain the desired state. But, what if an instance of the service does not crash, but is
unhealthy or just not ready yet to serve requests? It is evident that Kubernetes should know
about both situations. But it can't, since healthy or not from an application service
perspective is outside of the knowledge of the orchestration engine. Only we application
developers can know when our service is healthy and when it is not.

The application service could, for example, be running, but its internal state could have
been corrupted due to some bug, it could be in an endless loop, or in a deadlock situation.
Similarly, only we application developers know if our service is ready to work, or if it is
still initializing. Although it is highly recommended to keep the initialization phase of a
microservice as short as possible, it often cannot be avoided if there is a significant time
span needed by a particular service so that it's ready to operate. Being in this state of
initialization is not the same thing as being unhealthy, though. The initialization phase is an
expected part of the life cycle of a microservice or any other application service.

Thus, Kubernetes should not try to kill our microservice if it is in the initialization phase. If
our microservice is unhealthy, though, Kubernetes should kill it as quickly as possible and
replace it with a fresh instance.

Kubernetes has a concept of probes to provide the seam between the orchestration engine
and the application developer. Kubernetes uses these probes to find out more about the
inner state of the application service at hand. Probes are executed locally, inside each
container. There is a probe for the health – also called liveness – of the service, a startup
probe, and a probe for the readiness of the service. Let's look at them in turn.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[452]

Kubernetes liveness probe
Kubernetes uses the liveness probe to decide when a container needs to be killed and when
another instance should be launched instead. Since Kubernetes operates at a pod level, the
respective pod is killed if at least one of its containers reports as being unhealthy.
Alternatively, we can say it the other way around: only if all the containers of a pod report
to be healthy, is the pod considered to be healthy.

We can define the liveness probe in the specification for a pod as follows:

apiVersion: v1
kind: Pod
metadata:
 ...
spec:
 containers:
 - name: liveness-demo
 image: postgres:12.10
 ...
 livenessProbe:
 exec:
 command: nc localhost 5432 || exit -1
 initialDelaySeconds: 10
 periodSeconds: 5

The relevant part is in the livenessProbe section. First, we define a command that
Kubernetes will execute as a probe inside the container. In our case, we have a PostresSQL
container and use the netcat Linux tool to probe port 5432 over TCP. The nc localhost
5432 command is successful once Postgres listens at it.

The other two settings, initialDelaySeconds and periodSeconds, define how long
Kubernetes should wait after starting the container until it first executes the probe and how
frequently the probe should be executed thereafter. In our case, Kubernetes waits for 10
seconds prior to executing the first probe and then executes a probe every 5 seconds.

It is also possible to probe an HTTP endpoint instead of using a command. Let's assume
we're running a microservice from an image, acme.com/my-api:1.0, with an API that has
an endpoint called /api/health that returns status 200 (OK) if the microservice is
healthy, and 50x (Error) if it is unhealthy. Here, we can define the liveness probe as
follows:

apiVersion: v1
kind: Pod
metadata:
 ...

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[453]

spec:
 containers:
 - name: liveness
 image: acme.com/my-api:1.0
 ...
 livenessProbe:
 httpGet:
 path: /api/health
 port: 3000
 initialDelaySeconds: 5
 periodSeconds: 3

In the preceding snippet, I have defined the liveness probe so that it uses the HTTP
protocol and executed a GET request to the /api/health endpoint on port 5000 of
localhost. Remember, the probe is executed inside the container, which means I can use
localhost.

We can also directly use the TCP protocol to probe a port on the container. But wait a
second – didn't we just do that in our first sample, where we used the generic liveness
probe based on an arbitrary command? Yes, you're right, we did. But we had to rely on the
presence of the netcat tool in the container to do so. We cannot assume that this tool is
always there. Thus, it is favorable to rely on Kubernetes to do the TCP-based probing for us
out of the box. The modified pod spec looks like this:

apiVersion: v1
kind: Pod
metadata:
 ...
spec:
 containers:
 - name: liveness-demo
 image: postgres:12.10
 ...
 livenessProbe:
 tcpSocket:
 port: 5432
 initialDelaySeconds: 10
 periodSeconds: 5

This looks very similar. The only change is that the type of probe has been changed from
exec to tcpSocket and that, instead of providing a command, we provide the port to
probe.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[454]

Let's try this out:

Navigate to the ~/fod/ch16/probes folder and build the Docker image with1.
the following command:

$ docker image build -t fundamentalsofdocker/probes-demo:2.0 .

Use kubectl to deploy the sample pod that's defined in probes-demo.yaml:2.

$ kubectl apply -f probes-demo.yaml

Describe the pod and specifically analyze the log part of the output:3.

$ kubectl describe pods/probes-demo

During the first half minute or so, you should get the following output:

Log output of the healthy pod

Wait at least 30 seconds and then describe the pod again. This time, you should4.
see the following output:

Log output of the pod after it has changed its state to Unhealthy

The last two lines are indicating the failure of the probe and the fact that the pod is going to
be restarted.

If you get the list of pods, you will see that the pod has been restarted a number of times:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
probes-demo 1/1 Running 5 7m22s

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[455]

When you're done with the sample, delete the pod with the following command:

$ kubectl delete pods/probes-demo

Next, we will have a look at the Kubernetes readiness probe.

Kubernetes readiness probe
Kubernetes uses a readiness probe to decide when a service instance, that is, a container, is
ready to accept traffic. Now, we all know that Kubernetes deploys and runs pods and not
containers, so it only makes sense to talk about the readiness of a pod. Only if all containers
in a pod report to be ready is the pod considered to be ready itself. If a pod reports not to be
ready, then Kubernetes removes it from the service load balancers.

Readiness probes are defined exactly the same way as liveness probes: just switch the
livenessProbe key in the pod spec to readinessProbe. Here is an example using our
prior pod spec:

 ...
spec:
 containers:
 - name: liveness-demo
 image: postgres:12.10
 ...
 livenessProbe:
 tcpSocket:
 port: 5432
 failureThreshold: 2
 periodSeconds: 5
 readinessProbe:
 tcpSocket:
 port: 5432
 initialDelaySeconds: 10
 periodSeconds: 5

Note that, in this example, we don't really need an initial delay for the liveness probe
anymore since we now have a readiness probe. Thus, I have replaced the initial delay entry
for the liveness probe with an entry called failureThreshold, which is indicating how
many times Kubernetes should repeat probing in case of a failure until it assumes that the
container is unhealthy.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[456]

Kubernetes startup probe
It is often helpful for Kubernetes to know when a service instance has started. If we define a
startup probe for a container, then Kubernetes does not execute the liveness or readiness
probes, as long as the container's startup probe does not succeed. Once again, Kubernetes
looks at pods and starts executing liveness and readiness probes on its containers if the
startup probes of all the pod's containers succeed.

When would we use a startup probe, given the fact that we already have the liveness and
readiness probes? There might be situations where we have to account for exceptionally
long startup and initialization times, such as when containerizing a legacy application. We
could technically configure the readiness or the liveness probes to account for this fact, but
that would defeat the purpose of these probes. The latter probes are meant to provide quick
feedback to Kubernetes on the health and availability of the container. If we configure for
long initial delays or periods, then this would counter the desired outcome.

Unsurprisingly, the startup probe is defined exactly the same way as the readiness and
liveness probes. Here is an example:

spec:
 containers:
 ..
 startupProbe:
 tcpSocket:
 port: 3000
 failureThreshold: 30
 periodSeconds: 5
 ...

Make sure that you define the failureThreshold * periodSeconds product so that it's
big enough to account for the worst startup time.

In our example, the max startup time should not exceed 150 seconds.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[457]

Zero downtime deployments
In a mission-critical environment, it is important that the application is always up and
running. These days, we cannot afford any downtime anymore. Kubernetes gives us
various means of achieving this. Performing an update on an application in the cluster that
causes no downtime is called a zero downtime deployment. In this section, we will present
two ways of achieving this. These are as follows:

Rolling updates
Blue-green deployments

Let's start by discussing rolling updates.

Rolling updates
In the previous chapter, we learned that the Kubernetes Deployment object distinguishes
itself from the ReplicaSet object in that it adds rolling updates and rollbacks on top of the
latter's functionality. Let's use our web component to demonstrate this. Evidently, we will
have to modify the manifest or description of the deployment for the web component.

We will use the same deployment definition as in the previous section, with one important
difference – we will have five replicas of the web component running. The following
definition can also be found in the ~/fod/ch16/web-deploy-rolling-v1.yaml file:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: web
spec:
 replicas: 5
 selector:
 matchLabels:
 app: pets
 service: web
 template:
 metadata:
 labels:
 app: pets
 service: web
 spec:
 containers:
 - image: fundamentalsofdocker/ch11-web:2.0
 name: web
 ports:

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[458]

 - containerPort: 3000
 protocol: TCP

Now, we can create this deployment as usual and also, at the same time, the service that
makes our component accessible:

$ kubectl create -f web-deploy-rolling-v1.yaml
$ kubectl create -f web-service.yaml

Once we have deployed the pods and the service, we can test our web component with the
following command:

$ PORT=$(kubectl get svc/web -o yaml | grep nodePort | cut -d' ' -f5)
$ IP=$(minikube ip)
$ curl -4 ${IP}:${PORT}/
Pets Demo Application

As we can see, the application is up and running and returns the expected message, Pets
Demo Application.

Now. our developers have created a new version, 2.1, of the web component. The code of
the new version of the web component can be found in the ~/fod/ch16/web folder, and
the only change is located on line 12 of the server.js file:

Code change for version 2.0 of the web component

The developers have built the new image as follows:

$ docker image build -t fundamentalsofdocker/ch16-web:2.1 web

Subsequently, they pushed the image to Docker Hub, as follows:

$ docker image push fundamentalsofdocker/ch16-web:2.1

Now, we want to update the image that's used by our pods that are part of
the web Deployment object. We can do this by using the set image command of kubectl:

$ kubectl set image deployment/web \
 web=fundamentalsofdocker/ch16-web:2.1

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[459]

If we test the application again, we'll get a confirmation that the update has indeed
happened:

$ curl -4 ${IP}:${PORT}/
Pets Demo Application v2

Now, how do we know that there hasn't been any downtime during this update? Did the
update really happen in a rolling fashion? What does rolling update mean at all? Let's
investigate. First, we can get a confirmation from Kubernetes that the deployment has
indeed happened and was successful by using the rollout status command:

$ kubectl rollout status deploy/web
deployment "web" successfully rolled out

If we describe the deployment web with kubectl describe deploy/web, we get the
following list of events at the end of the output:

 List of events found in the output of the deployment description of the web component

The first event tells us that, when we created the deployment, a ReplicaSet
called web-769b88f67 with five replicas was created. Then, we executed
the update command. The second event in the list tells us that this meant creating a
new ReplicaSet called web-55cdf67cd with, initially, one replica only. Thus, at that
particular moment, six pods existed on the system: the five initial pods and one pod with
the new version. But, since the desired state of the Deployment object states that we want
five replicas only, Kubernetes now scales down the old ReplicaSet to four instances, which
we can see in the third event.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[460]

Then, again, the new ReplicaSet is scaled up to two instances and, subsequently, the
old ReplicaSet scaled was down to three instances, and so on, until we had five new
instances and all the old instances were decommissioned. Although we cannot see any
precise time (other than 3 minutes) when that happened, the order of the events tells us that
the whole update happened in a rolling fashion.

During a short time period, some of the calls to the web service would have had an answer
from the old version of the component, and some calls would have received an answer
from the new version of the component, but, at no time would the service have been down.

We can also list the ReplicaSet objects in the cluster and will get confirmation of what I said
in the preceding section:

Listing all the ReplicaSet objects in the cluster

Here, we can see that the new ReplicaSet has five instances running and that the old one
has been scaled down to zero instances. The reason that the old ReplicaSet object is still
lingering is that Kubernetes provides us with the possibility of rolling back the update and,
in that case, will reuse that ReplicaSet.

To roll back the update of the image in case some undetected bug sneaked into the new
code, we can use the rollout undo command:

$ kubectl rollout undo deploy/web
deployment "web"
$ curl -4 ${IP}:${PORT}/
Pets Demo Application

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[461]

I have also listed the test command using curl in the preceding snippet to verify that the
rollback indeed happened. If we list the ReplicaSets, we will see the following output:

Listing ReplicaSet objects after rollback

This confirms that the old ReplicaSet (web-769b88f67) object has been reused and that the
new one has been scaled down to zero instances.

Sometimes, though, we cannot, or do not want to, tolerate the mixed state of an old version
coexisting with the new version. We want an all-or-nothing strategy. This is where blue-
green deployments come into play, which we will discuss next.

Blue-green deployment
If we want to do a blue-green style deployment for our component web of the pets
application, then we can do so by using labels creatively. First, let's remind ourselves how
blue-green deployments work. Here is a rough step-by-step instruction:

Deploy the first version of the web component as blue. We will label the pods1.
with a label of color: blue to do so.
Deploy the Kubernetes service for these pods with the color: blue label in2.
the selector section.
Now, we can deploy version 2 of the web component, but, this time, the pods3.
have a label of color: green.
We can test the green version of the service to check that it works as expected.4.
Now, we flip traffic from blue to green by updating the Kubernetes service for5.
the web component. We modify the selector so that it uses the color:
green label.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[462]

Let's define a Deployment object for version 1, blue:

Specification of the blue deployment for the web component

The preceding definition can be found in the ~/fod/ch16/web-deploy-blue.yaml file.
Please take note of line 4, where we define the name of the deployment as web-blue to
distinguish it from the upcoming deployment, web-green. Also, note that we have added
the label color: blue on lines 11 and 17. Everything else remains the same as before.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[463]

Now, we can define the Service object for the web component. It will be the same as the one
we used before but with a minor change, as shown in the following screenshot:

Kubernetes service for the web component supporting blue-green deployments

The only difference regarding the definition of the service we used earlier in this chapter is
line 13, which adds the color: blue label to the selector. We can find the preceding
definition in the ~/fod/ch16/web-svc-blue-green.yaml file.

Then, we can deploy the blue version of the web component with the following command:

$ kubectl create -f web-deploy-blue.yaml
$ kubectl create -f web-svc-blue-green.yaml

Once the service is up and running, we can determine its IP address and port number and
test it:

$ PORT=$(kubectl get svc/web -o yaml | grep nodePort | cut -d' ' -f5)
$ IP=$(minikube ip)
$ curl -4 ${IP}:${PORT}/
Pets Demo Application

As expected, we get the response Pets Demo Application. Now, we can deploy the
green version of the web component. The definition of its Deployment object can be found
in the ~/fod/ch16/web-deploy-green.yaml file and looks as follows:

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[464]

Specification of the deployment green for the web component

The interesting lines are as follows:

Line 4: Named web-green to distinguish it from web-blue and allow for
parallel installation
Lines 11 and 17: Have the color green
Line 20: Now using version 2.1 of the image

Now, we're ready to deploy this green version of the service. It should run separately from
the blue service:

$ kubectl create -f web-deploy-green.yaml

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[465]

We can make sure that both deployments coexist like so:

Displaying the list of Deployment objects running in the cluster

As expected, we have both blue and green running. We can verify that blue is still the
active service:

$ curl -4 ${IP}:${PORT}/
Pets Demo Application

Now comes the interesting part. We can flip traffic from blue to green by editing the
existing service for the web component. To do so, execute the following command:

$ kubectl edit svc/web

Change the value of the label color from blue to green. Then, save and quit the editor. The
Kubernetes CLI will automatically update the service. When we now query the web service
again, we get this:

$ curl -4 ${IP}:${PORT}/
Pets Demo Application v2

This confirms that the traffic has indeed switched to the green version of the web
component (note the v2 at the end of the response to the curl command).

If we realize that something went wrong with our green deployment and the new version
has a defect, we can easily switch back to the blue version by editing the service web again
and replacing the value of the label color with blue. This rollback is
instantaneous and should always work. Then, we can remove the buggy green deployment
and fix the component. When we have corrected the problem, we can deploy
the green version once again.

Once the green version of the component is running as expected and performing well, we
can decommission the blue version:

$ kubectl delete deploy/web-blue

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[466]

When we're ready to deploy a new version, 3.0, this one becomes the blue version. We
update the ~/fod/ch16/web-deploy-blue.yaml file accordingly and deploy it. Then, we
flip the service web from green to blue, and so on.

We have successfully demonstrated, with our component web of the pets application, how
blue-green deployment can be achieved in a Kubernetes cluster.

Kubernetes secrets
Sometimes, services that we want to run in the Kubernetes cluster have to use confidential
data such as passwords, secret API keys, or certificates, to name just a few. We want to
make sure that this sensitive information can only ever be seen by the authorized or
dedicated service. All other services running in the cluster should not have any access to
this data.

For this reason, Kubernetes secrets have been introduced. A secret is a key-value pair where
the key is the unique name of the secret and the value is the actual sensitive data. Secrets
are stored in etcd. Kubernetes can be configured so that secrets are encrypted at rest, that is,
in etcd, and in transit, that is, when the secrets are going over the wire from a master node
to the worker nodes that the pods of the service using this secret are running on.

Manually defining secrets
We can create a secret declaratively the same way as we can create any other object in
Kubernetes. Here is the YAML for such a secret:

apiVersion: v1
kind: Secret
metadata:
 name: pets-secret
type: Opaque
data:
 username: am9obi5kb2UK
 password: c0VjcmV0LXBhc1N3MHJECg==

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[467]

The preceding definition can be found in the ~/fod/ch16/pets-secret.yaml file. Now,
you might be wondering what the values are. Are these the real (unencrypted) values? No,
they are not. And they are also not really encrypted values, but just base64-encoded values.
Thus, they are not really secure, since base64-encoded values can be easily reverted to clear
text values. How did I get these values? That's easy: follow these steps:

Use the base64 tool as follows to encode the values:1.

Creating base64-encoded values for the secret

Using the preceding values, we can create the secret and describe it:2.

Creating and describing the Kubernetes secret

In the description of the secret, the values are hidden and only their length is3.
given. So, maybe the secrets are safe now? No, not really. We can easily decode
this secret using the kubectl get command:

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[468]

Kubernetes secret decoded

As we can see in the preceding screenshot, we have our original secret values
back.

Decode the values you got previously:4.

$ echo "c0VjcmV0LXBhc1N3MHJECg==" | base64 --decode
sEcret-pasSw0rD

Thus, the consequences are that this method of creating a Kubernetes is not to be used in
any environment other than development, where we deal with non-sensitive data. In all
other environments, we need a better way to deal with secrets.

Creating secrets with kubectl
A much safer way to define secrets is to use kubectl. First, we create files containing the
base64-encoded secret values similar to what we did in the preceding section, but, this time,
we store the values in temporary files:

$ echo "sue-hunter" | base64 > username.txt
$ echo "123abc456def" | base64 > password.txt

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[469]

Now, we can use kubectl to create a secret from those files, as follows:

$ kubectl create secret generic pets-secret-prod \
 --from-file=./username.txt \
 --from-file=./password.txt
secret "pets-secret-prod" created

 The secret can then be used the same way as the manually created secret.

Why is this method more secure than the other one, you might ask? Well, first of all, there is
no YAML that defines a secret and is stored in some source code version control system,
such as GitHub, which many people have access to and so can see and decode the secrets.
Only the admin that is authorized to know the secrets ever sees their values and uses them
to directly create the secrets in the (production) cluster. The cluster itself is protected by
role-based access control so that no unauthorized persons have access to it, nor can they
possibly decode the secrets defined in the cluster.

Now, let's see how we can actually use the secrets that we have defined.

Using secrets in a pod
Let's say we want to create a Deployment object where the web component uses our
secret, pets-secret, that we introduced in the preceding section. We can use the
following command to create the secret in the cluster:

$ kubectl create -f pets-secret.yaml

In the ~/fod/ch16/web-deploy-secret.yaml file, we can find the definition of
the Deployment object. We had to add the part starting from line 23 to the original
definition of the Deployment object:

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[470]

Deployment object for the web component with a secret

On lines 27 through 30, we define a volume called secrets from our secret, pets-
secret. Then, we use this volume in the container, as described on lines 23 through 26.
We mount the secrets in the container filesystem at /etc/secrets and we mount the
volume in read-only mode. Thus, the secret values will be available to the container as files
in the said folder. The names of the files will correspond to the key names, and the content
of the files will be the values of the corresponding keys. The values will be provided in
unencrypted form to the application running inside the container.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[471]

In our case, since we have the username and password keys in the secret, we will find two
files, named username and password, in the /etc/secrets folder in the container
filesystem. The username file should contain the value john.doe and the password file
should contain the value sEcret-pasSw0rD. Here is the confirmation:

Confirming that secrets are available inside the container

On line 1 of the preceding output, we exec into the container where the web component
runs. Then, on lines 2 to 5, we list the files in the /etc/secrets folder, and, finally, on
lines 6 to 8, we show the content of the two files, which, unsurprisingly, show the secret
values in clear text.

Since any application written in any language can read simple files, this mechanism of
using secrets is very backward compatible. Even an old Cobol application can read clear
text files from the filesystem.

Sometimes, though, applications expect secrets to be available in environment variables.
Let's look at what Kubernetes offers us in this case.

Secret values in environment variables
Let's say our web component expects the username in
the environment variable, PETS_USERNAME, and the password in PETS_PASSWORD. If this is
the case, we can modify our deployment YAML so that it looks as follows:

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[472]

Deployment mapping secret values to environment variables

On lines 23 through 33, we define the two environment
variables, PETS_USERNAME and PETS_PASSWORD, and map the corresponding key-value
pair of pets-secret to them.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[473]

Note that we don't need a volume anymore; instead, we directly map the individual keys of
our pets-secret into the corresponding environment variables that are valid inside the
container. The following sequence of commands shows that the secret values are indeed
available inside the container in the respective environment variables:

Secret values are mapped to environment variables

In this section, we have shown you how to define secrets in a Kubernetes cluster and how
to use those secrets in containers running as part of the pods of a deployment. We have
shown two variants of how secrets can be mapped inside a container, the first using files
and the second using environment variables.

Summary
In this chapter, we have learned how to deploy an application into a Kubernetes cluster and
how to set up application-level routing for this application. Furthermore, we have learned
how to update application services running in a Kubernetes cluster without causing any
downtime. Finally, we used secrets to provide sensitive information to application services
running in the cluster.

In the next chapter, we are going to learn about different techniques that are used to
monitor an individual service or a whole distributed application running on a Kubernetes
cluster. We will also learn how we can troubleshoot an application service that is running in
production without altering the cluster or the cluster nodes that the service is running
on. Stay tuned.

Deploying, Updating, and Securing an Application with Kubernetes Chapter 16

[474]

Questions
To assess your learning progress, please answer the following questions:

You have an application consisting of two services, the first one being a web API1.
and the second one being a DB, such as Mongo DB. You want to deploy this
application into a Kubernetes cluster. In a few short sentences, explain how you
would proceed.
Describe in your own words what components you need in order to establish2.
layer 7 (or application level) routing for your application.
List the main steps needed to implement a blue-green deployment for a simple3.
application service. Avoid going into too much detail.
Name three or four types of information that you would provide to an4.
application service through Kubernetes secrets.
Name the sources that Kubernetes accepts when creating a secret.5.

Further reading
Here are a few links that provide additional information on the topics that were discussed
in this chapter:

Performing a rolling update: https:/ / bit.ly/ 2o2okEQ

Blue-green deployment: https:/ /bit. ly/ 2r2IxNJ
Secrets in Kubernetes: https:/ / bit. ly/2C6hMZF

https://bit.ly/2o2okEQ
https://bit.ly/2o2okEQ
https://bit.ly/2o2okEQ
https://bit.ly/2o2okEQ
https://bit.ly/2o2okEQ
https://bit.ly/2o2okEQ
https://bit.ly/2o2okEQ
https://bit.ly/2o2okEQ
https://bit.ly/2o2okEQ
https://bit.ly/2r2IxNJ
https://bit.ly/2r2IxNJ
https://bit.ly/2r2IxNJ
https://bit.ly/2r2IxNJ
https://bit.ly/2r2IxNJ
https://bit.ly/2r2IxNJ
https://bit.ly/2r2IxNJ
https://bit.ly/2r2IxNJ
https://bit.ly/2r2IxNJ
https://bit.ly/2C6hMZF
https://bit.ly/2C6hMZF
https://bit.ly/2C6hMZF
https://bit.ly/2C6hMZF
https://bit.ly/2C6hMZF
https://bit.ly/2C6hMZF
https://bit.ly/2C6hMZF
https://bit.ly/2C6hMZF
https://bit.ly/2C6hMZF

17
Monitoring and Troubleshooting

an App Running in Production
In the previous chapter, we learned how to deploy a multi-service application into a
Kubernetes cluster. We configured application-level routing for the application and
updated its services using a zero-downtime strategy. Finally, we provided confidential data
to the running services by using Kubernetes Secrets.

In this chapter, you will learn the different techniques used to monitor an individual service
or a whole distributed application running on a Kubernetes cluster. You will also learn how
you can troubleshoot an application service that is running in production, without altering
the cluster or the cluster nodes on which the service is running.

The chapter covers the following topics:

Monitoring an individual service
Using Prometheus to monitor your distributed application
Troubleshooting a service running in production

After working through this chapter, you will be able to do the following:

Configure application-level monitoring for a service.
Use Prometheus to collect and centrally aggregate relevant application metrics.
Troubleshoot a service running in production using a special tools container.

Technical requirements
In this chapter, we're going to use Minikube on our local computer. Please refer to Chapter
2, Setting Up a Working Environment, for more information on how to install and use
Minikube.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[476]

The code for this chapter can be found at: https:/ /github. com/ PacktPublishing/ Learn-
Docker---Fundamentals- of- Docker- 19. x- Second- Edition/ tree/ master/ ch17.

Please make sure you have cloned the GitHub repository as described in Chapter 2, Setting
Up a Working Environment.

In your Terminal, navigate to the ~/fod/ch17 folder.

Monitoring an individual service
When working with a distributed mission-critical application in production or in any
production-like environment, then it is of utmost importance to gain as much insight as
possible into the inner workings of those applications. Have you ever had a chance to look
into the cockpit of an airplane or the command center of a nuclear power plant? Both the
airplane and the power plant are samples of highly complex systems that deliver mission-
critical services. If a plane crashes or a power plant shuts down unexpectedly, a lot of
people are negatively affected, to say the least. Thus the cockpit and the command center
are full of instruments showing the current or past state of some part of the system. What
you see is the visual representation of some sensors that are placed in strategic parts of the
system, and constantly collect data such as the temperature or the flow rate.

Similar to the airplane or the power plant, our application needs to be instrumented with
"sensors" that can feel the "temperature" of our application services or the infrastructure
they run on. I put the temperature in double quotes since it is only a placeholder for things
that matter in an application, such as the number of requests per second on a given RESTful
endpoint, or the average latency of request to the same endpoint.

The resulting values or readings that we collect, such as the average latency of requests, are
often called metrics. It should be our goal to expose as many meaningful metrics as possible
of the application services we build. Metrics can be both functional and non-functional.
Functional metrics are values that say something business-relevant about the application
service, such as how many checkouts are performed per minute if the service is part of an e-
commerce application, or which are the five most popular songs over the last 24 hours if
we're talking about a streaming application.

Non-functional metrics are important values that are not specific to the kind of business the
application is used for, such as what is the average latency of a particular web request or
how many 4xx status codes are returned per minute by another endpoint, or how much
RAM or how many CPU cycles a given service is using.

https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch17
https://github.com/fundamentalsofdocker/labs/tree/2nd-edition/ch16/probes

Monitoring and Troubleshooting an App Running in Production Chapter 17

[477]

In a distributed system where each part is exposing metrics, some overarching service
should be collecting and aggregating the values periodically from each component.
Alternatively, each component should forward its metrics to a central metrics server. Only
if the metrics for all components of our highly distributed system are available for
inspection in a central location are they of any value. Otherwise, monitoring the system
becomes impossible. That's why pilots of an airplane never have to go and inspect
individual and critical parts of the airplane in person during a flight; all necessary readings
are collected and displayed in the cockpit.

Today one of the most popular services that is used to expose, collect, and store metrics is
Prometheus. It is an open source project and has been donated to the Cloud Native
Computing Foundation (CNCF). Prometheus has first-class integration with Docker
containers, Kubernetes, and many other systems and programming platforms. In this
chapter, we will use Prometheus to demonstrate how to instrument a simple service that
exposes important metrics.

Instrumenting a Node.js-based service
In this section, we want to learn how to instrument a microservice authored in Node
Express.js by following these steps:

Create a new folder called node and navigate to it:1.

$ mkdir node && cd node

Run npm init in this folder, and accept all defaults except the entry point,2.
which you change from the index.js default to server.js.
We need to add express to our project with the following:3.

$ npm install --save express

Now we need to install the Prometheus adapter for Node Express with the4.
following:

$ npm install --save prom-client

Add a file called server.js to the folder with this content:5.

const app = require("express")();

app.get('/hello', (req, res) => {
 const { name = 'World' } = req.query;
 res.json({ message: `Hello, ${name}!` });

Monitoring and Troubleshooting an App Running in Production Chapter 17

[478]

});

app.listen(port=3000, () => {
 console.log(`Example api is listening on http://localhost:3000`);
});

This is a very simple Node Express app with a single endpoint: /hello.

To the preceding code, add the following snippet to initialize the Prometheus6.
client:

const client = require("prom-client");
const register = client.register;
const collectDefaultMetrics = client.collectDefaultMetrics;
collectDefaultMetrics({ register });

Next, add an endpoint to expose the metrics:7.

app.get('/metrics', (req, res) => {
 res.set('Content-Type', register.contentType);
 res.end(register.metrics());
});

Now let's run this sample microservice:8.

$ npm start

> node@1.0.0 start C:\Users\Gabriel\fod\ch17\node
> node server.js

Example api is listening on http://localhost:3000

We can see in the preceding output that the service is listening at port 3000.

Let's now try to access the metrics at the /metrics endpoint, as we defined in8.
the code:

$ curl localhost:3000/metrics
...
process_cpu_user_seconds_total 0.016 1577633206532

HELP process_cpu_system_seconds_total Total system CPU time spent in
seconds.
TYPE process_cpu_system_seconds_total counter
process_cpu_system_seconds_total 0.015 1577633206532

HELP process_cpu_seconds_total Total user and system CPU time spent in
seconds.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[479]

TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 0.031 1577633206532
...
nodejs_version_info{version="v10.15.3",major="10",minor="15",patch="3"} 1

What we get as output is a pretty long list of metrics, ready for consumption by a
Prometheus server.

This was pretty easy, wasn't it? By adding a node package and adding a few trivial lines of
code to our application startup, we have gained access to a plethora of system metrics.

Now let's define our own custom metric. Let it be a Counter object:

Add the following code snippet to server.js to define a custom counter called1.
my_hello_counter:

const helloCounter = new client.Counter({
 name: 'my_hello_counter',
 help: 'Counts the number of hello requests',
});

To our existing /hello endpoint, add code to increase the counter:2.

app.get('/hello', (req, res) => {
 helloCounter.inc();
 const { name = 'World' } = req.query;
 res.json({ message: `Hello, ${name}!` });
});

Rerun the application with npm start.3.
To test the new counter, let's access our /hello endpoint twice:4.

$ curl localhost:3000/hello?name=Sue

We will get this output when accessing the /metrics endpoint:5.

$ curl localhost:3000/metrics

...
HELP my_hello_counter Counts the number of hello requests
TYPE my_hello_counter counter
my_hello_counter 2

The counter we defined in code clearly works and is output with the HELP text we
added.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[480]

Now that we know how to instrument a Node Express application, let's do the same for a
.NET Core-based microservice.

Instrumenting a .NET Core-based service
Let's start by creating a simple .NET Core microservice based on the Web API template.

Create a new dotnet folder, and navigate to it:1.

$ mkdir dotnet && cd dotnet

Use the dotnet tool to scaffold a new microservice called sample-api:2.

$ dotnet new webapi --output sample-api

We will use the Prometheus adapter for .NET, which is available to us as a3.
NuGet package called prometheus-net.AspNetCore. Add this package to the
sample-api project, with the following command:

$ dotnet add sample-api package prometheus-net.AspNetCore

Open the project in your favorite code editor; for example, when using VS Code4.
execute the following:

$ code .

Locate the Startup.cs file, and open it. At the beginning of the file, add a5.
using statement:

using Prometheus;

Then in the Configure method add the endpoints.MapMetrics() statement6.
to the mapping of the endpoints. Your code should look as follows:

public void Configure(IApplicationBuilder app, IWebHostEnvironment
env)
{
 ...
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 endpoints.MapMetrics();
 });
}

Monitoring and Troubleshooting an App Running in Production Chapter 17

[481]

Note that the above is valid for version 3.x of .NET Core. If you're on an
earlier version, the configuration looks slightly different. Consult the
following repo for more details, at https:/ /github. com/ prometheus- net/
prometheus- net.

With this, the Prometheus component will start publishing the request metrics of7.
ASP.NET Core. Let's try it. First, start the application with the following:

$ dotnet run --project sample-api

info: Microsoft.Hosting.Lifetime[0]
 Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
 Now listening on: http://localhost:5000
...

The preceding output tells us that the microservice is listening at
https://localhost:5001.

We can now use curl to call the metrics endpoint of the service:8.

$ curl --insecure https://localhost:5001/metrics

HELP process_private_memory_bytes Process private memory size
TYPE process_private_memory_bytes gauge
process_private_memory_bytes 55619584
HELP process_virtual_memory_bytes Virtual memory size in bytes.
TYPE process_virtual_memory_bytes gauge
process_virtual_memory_bytes 2221930053632
HELP process_working_set_bytes Process working set
TYPE process_working_set_bytes gauge
process_working_set_bytes 105537536
...
dotnet_collection_count_total{generation="1"} 0
dotnet_collection_count_total{generation="0"} 0
dotnet_collection_count_total{generation="2"} 0

https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net
https://github.com/prometheus-net/prometheus-net

Monitoring and Troubleshooting an App Running in Production Chapter 17

[482]

What we get is a list of system metrics for our microservice. That was easy: we only needed
to add a NuGet package and a single line of code to get our service instrumented!

What if we want to add our own (functional) metrics? This is equally straightforward.
Assume we want to measure the number of concurrent accesses to
our /weatherforecast endpoint. To do this, we define a gauge and use it to wrap the
logic in the appropriate endpoint with this gauge. We can do this by following these steps:

Locate the Controllers/WeatherForecastController.cs class.1.
Add using Prometheus; to the top of the file.2.
Define a private instance variable of the Gauge type in the3.
WeatherForecastController class:

private static readonly Gauge weatherForecastsInProgress = Metrics
 .CreateGauge("myapp_weather_forecasts_in_progress",
 "Number of weather forecast operations ongoing.");

Wrap the logic of the Get method with a using statement:4.

[HttpGet]
public IEnumerable<WeatherForecast> Get()
{
 using(weatherForecastsInProgress.TrackInProgress())
 {
 ...
 }
}

Restart the microservice.5.
Call the /weatherforecast endpoint a couple of times using curl:6.

$ curl --insecure https://localhost:5001/weatherforecast

Use curl to get the metrics, as earlier in this section:7.

$ curl --insecure https://localhost:5001/metrics

HELP myapp_weather_forecasts_in_progress Number of weather
forecast operations ongoing.
TYPE myapp_weather_forecasts_in_progress gauge
myapp_weather_forecasts_in_progress 0
...

Monitoring and Troubleshooting an App Running in Production Chapter 17

[483]

You will notice that there is now a new metric
called myapp_weather_forecasts_in_progress available in the list. Its value will be
zero, since currently you are not running any requests against the tracked endpoint, and a
gauge type metric is only measuring the number of ongoing requests.

Congratulations, you have just defined your first functional metric. This is only a start;
many more sophisticated possibilities are readily available to you.

Node.js or .NET Core-based application services are by no means special. It is just as
straightforward and easy to instrument services written in other languages, such as Java,
Python, or Go.

Having learned how to instrument an application service so that it exposes important
metrics, let's now have a look how we can use Prometheus to collect and aggregate those
values to allow us to monitor a distributed application.

Using Prometheus to monitor a distributed
application
Now that we have learned how to instrument an application service to expose Prometheus
metrics, it's time to show how we can collect the metrics and forward them to a Prometheus
server where all metrics will be aggregated and stored. We can then either use the (simple)
web UI of Prometheus or a more sophisticated solution like Grafana to display important
metrics on a dashboard.

Unlike most other tools that are used to collect metrics from application services and
infrastructure components, the Prometheus server takes the load of work and periodically
scrapes all the defined targets. This way applications and services don't need to worry
about forwarding data. You can also describe this as pulling metrics versus pushing them.
This makes Prometheus servers an excellent fit for our case.

We will now discuss how to deploy Prometheus to Kubernetes, followed by our two
sample application services. Finally, we will deploy Grafana to the cluster, and use it to
display our customer metrics on a dashboard.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[484]

Architecture
Let's have a quick overview of the architecture of the planned system. As mentioned before,
we have our microservices, the Prometheus server, and Grafana. Furthermore, everything
will be deployed to Kubernetes. The following diagram shows the relationships:

High-level overview of an application using Prometheus and Grafana for monitoring

In the top center of the diagram, we have Prometheus, which periodically scrapes metrics
from Kubernetes, shown on the left. It also periodically scrapes metrics from the services, in
our case from the Node.js and the .NET sample services we created and instrumented in the
previous section. Finally, on the right-hand side of the diagram, we have Grafana that is
pulling data periodically from Prometheus to then display it on graphical dashboards.

Deploying Prometheus to Kubernetes
As indicated, we start by deploying Prometheus to Kubernetes. Let's first define the
Kubernetes YAML file that we can use to do so. First, we need to define a Kubernetes
Deployment that will create a ReplicaSet of Prometheus server instances, and then we
will define a Kubernetes service to expose Prometheus to us, so that we can access it from
within a browser tab or that Grafana can access it. Let's do it:

Create a ch17/kube folder, and navigate to it:1.

$ mkdir -p ~/fod/ch17/kube && cd ~/fod/ch17/kube

Monitoring and Troubleshooting an App Running in Production Chapter 17

[485]

Add a file called prometheus.yaml to this folder.2.
Add the following code snippet to this file; it defines Deployment for3.
Prometheus:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: prometheus-deployment
 labels:
 app: prometheus
 purpose: monitoring-demo
spec:
 replicas: 2
 selector:
 matchLabels:
 app: prometheus
 purpose: monitoring-demo
 template:
 metadata:
 labels:
 app: prometheus
 purpose: monitoring-demo
 spec:
 containers:
 - name: prometheus
 image: prom/prometheus
 volumeMounts:
 - name: config-volume
 mountPath: /etc/prometheus/prometheus.yml
 subPath: prometheus.yml
 ports:
 - containerPort: 9090
 volumes:
 - name: config-volume
 configMap:
 name: prometheus-cm

Monitoring and Troubleshooting an App Running in Production Chapter 17

[486]

We are defining a replica set with two instances of Prometheus. Each instance is
assigned the two labels: app: prometheus and purpose: monitoring-demo
for identification purposes. The interesting part is in the volumeMounts
of container spec. There we mount a Kubernetes ConfigMap object, called
prometheus-cm containing the Prometheus configuration, into the container to
the location where Prometheus expects its configuration file(s). The volume of
the ConfigMap type is defined on the last four lines of the above code snippet.

Note that we will define the config map later on.

Now let's define the Kubernetes service for Prometheus. Append this snippet to4.
the file:

kind: Service
apiVersion: v1
metadata:
 name: prometheus-svc
spec:
 type: NodePort
 selector:
 app: prometheus
 purpose: monitoring-demo
 ports:
 - name: promui
 protocol: TCP
 port: 9090
 targetPort: 9090

Please note the three dashes (---) at the beginning of the snippet are
needed to separate individual object definitions in our YAML file.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[487]

We call our service prometheus-svc and make it a NodePort (and not just a
service of the ClusterIP type) to be able to access the Prometheus web UI from
the host.

Now we can define a simple configuration file for Prometheus. This file basically5.
instructs the Prometheus server which services to scrape metrics from and how
often to do so. First, create a ch17/kube/config folder:

$ mkdir -p ~/fod/ch17/kube/config

Please add a file called prometheus.yml to the last folder, and add the following6.
content to it:

scrape_configs:
 - job_name: 'prometheus'
 scrape_interval: 5s
 static_configs:
 - targets: ['localhost:9090']
 - job_name: dotnet
 scrape_interval: 5s
 static_configs:
 - targets: ['dotnet-api-svc:5000']
 - job_name: node
 scrape_interval: 5s
 static_configs:
 - targets: ['node-api-svc:3000']
 labels:
 group: 'production'

In the preceding file, we define three jobs for Prometheus:

The first one called prometheus scrapes metrics every five
seconds from the Prometheus server itself. It finds those metrics
the at localhost:9090 target. Note that by default the metrics
should be exposed at the /metrics endpoint.
The second job called dotnet scrapes metrics from a service found
at dotnet-api-svc:5000, which will be our .NET Core service
that we have defined and instrumented previously.
Finally, the third job does the same for our Node service. Note that
we also have added a group: 'production' label to this job.
This allows for further grouping of jobs or tasks.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[488]

Now we can define the ConfigMap object in our Kubernetes cluster, with the7.
next command. From within the ch17/kube folder execute the following:

$ kubectl create configmap prometheus-cm \
 --from-file config/prometheus.yml

We can now deploy Prometheus to our Kubernetes server with the following:8.

$ kubectl apply -f prometheus.yaml

deployment.apps/prometheus-deployment created
service/prometheus-svc created

Let's double-check that the deployment succeeded:9.

$ kubectl get all

NAME READY STATUS
RESTARTS AGE
pod/prometheus-deployment-779677977f-727hb 1/1 Running 0
24s
pod/prometheus-deployment-779677977f-f5l7k 1/1 Running 0
24s

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none>
443/TCP 28d
service/prometheus-svc NodePort 10.110.239.245 <none>
9090:31962/TCP 24s

NAME READY UP-TO-DATE AVAILABLE
AGE
deployment.apps/prometheus-deployment 2/2 2 2
24s

NAME DESIRED CURRENT
READY AGE
replicaset.apps/prometheus-deployment-779677977f 2 2
2 24s

Monitoring and Troubleshooting an App Running in Production Chapter 17

[489]

Keep a close eye on the list of pods, and make sure they are all up and running.
Please also note the port mapping of the prometheus-svc object. In my case,
the 9090 port is mapped to the 31962 host port. In your case, the latter may be
different, but it will also be in the 3xxxx range.

We can now access the web UI of Prometheus. Open a new browser tab, and10.
navigate to http://localhost:<port>/targets where <port> in my case is
31962. You should see something like this:

Prometheus web UI showing the configured targets

In the last screenshot, we can see that we defined three targets for Prometheus.
Only the third one in the list is up and accessible by Prometheus. It is the
endpoint we defined in the configuration file for the job that scrapes metrics from
Prometheus itself. The other two services are not running at this time, and thus
their state is down.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[490]

Now navigate to Graph by clicking on the respective link in the top menu of the11.
UI.
Open the metrics drop-down list, and inspect all the listed metrics that12.
Prometheus found. In this case, it is only the list of metrics defined by the
Prometheus server itself:

Prometheus web UI showing available metrics

With that, we are ready to deploy the .NET and the Node sample services, we created
earlier, to Kubernetes.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[491]

Deploying our application services to Kubernetes
Before we can use the sample services we created earlier and deploy them to Kubernetes,
we must create Docker images for them and push them to a container registry. In our case,
we will just push them to Docker Hub.

Let's start with the .NET Core sample:

Locate the Program.cs file in the .NET project and open it.1.
Modify the CreateHostBuilder method so it looks like this:2.

Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.UseUrls("http://*:5000");
 });

Add Dockerfile with the following content to the ch17/dotnet/sample-api3.
project folder:

FROM mcr.microsoft.com/dotnet/core/aspnet:3.1 AS base
WORKDIR /app
EXPOSE 5000

FROM mcr.microsoft.com/dotnet/core/sdk:3.1 AS builder
WORKDIR /src
COPY sample-api.csproj ./
RUN dotnet restore
COPY . .
RUN dotnet build -c Release -o /src/build

FROM builder AS publisher
RUN dotnet publish -c Release -o /src/publish

FROM base AS final
COPY --from=publisher /src/publish .
ENTRYPOINT ["dotnet", "sample-api.dll"]

Create a Docker image by using this command from within the4.
dotnet/sample-api project folder:

$ docker image build -t fundamentalsofdocker/ch17-dotnet-api:2.0 .

Monitoring and Troubleshooting an App Running in Production Chapter 17

[492]

Note that you may want to replace fundamentalsofdocker with your
own Docker Hub username in the preceding and subsequent command.

Push the image to Docker Hub:5.

$ docker image push fundamentalsofdocker/ch17-dotnet-api:2.0

Now we do the same with the Node sample API:

Add Dockerfile with the following content to the ch17/node project folder:1.

FROM node:13.5-alpine
WORKDIR /app
COPY package.json ./
RUN npm install
COPY . .
EXPOSE 3000
CMD ["npm", "start"]

Create a Docker image by using this command from within the ch17/node2.
project folder:

$ docker image build -t fundamentalsofdocker/ch17-node-api:2.0 .

Note once again that you may want to
replace fundamentalsofdocker with your own Docker Hub username in
the preceding and subsequent command.

Push the image to Docker Hub:3.

$ docker image push fundamentalsofdocker/ch17-node-api:2.0

With this, we are ready to define the necessary Kubernetes objects for the
deployment of the two services. The definition is somewhat lengthy and can be
found in the ~/fod/ch17/kube/app-services.yaml file in the repository.
Please open that file and analyze its content.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[493]

Let's use this file to deploy the services:

Use the following command:1.

$ kubectl apply -f app-services.yaml

deployment.apps/dotnet-api-deployment created
service/dotnet-api-svc created
deployment.apps/node-api-deployment created
service/node-api-svc created

Double-check that the services are up and running using the kubectl get2.
all command. Make sure all the pods of the Node and .NET sample API
services are up and running.
List all Kubernetes services to find out the host ports for each application service:3.

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
dotnet-api-svc NodePort 10.98.137.249 <none>
5000:30822/TCP 5m29s
grafana-svc NodePort 10.107.232.211 <none>
8080:31461/TCP 33m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
28d
node-api-svc NodePort 10.110.15.131 <none>
5000:31713/TCP 5m29s
prometheus-svc NodePort 10.110.239.245 <none>
9090:31962/TCP 77m

In my case, the .NET API is mapped to port 30822 , and the Node API to
port 31713. Your ports may differ.

Use curl to access the /metrics endpoint for both services:4.

$ curl localhost:30822/metrics
HELP process_working_set_bytes Process working set
TYPE process_working_set_bytes gauge
process_working_set_bytes 95236096
HELP process_private_memory_bytes Process private memory size
TYPE process_private_memory_bytes gauge
process_private_memory_bytes 186617856
...

$ curl localhost:31713/metrics
HELP process_cpu_user_seconds_total Total user CPU time spent in

Monitoring and Troubleshooting an App Running in Production Chapter 17

[494]

seconds.
TYPE process_cpu_user_seconds_total counter
process_cpu_user_seconds_total 1.0394399999999997 1578294999302
HELP process_cpu_system_seconds_total Total system CPU time spent
in seconds.
TYPE process_cpu_system_seconds_total counter
process_cpu_system_seconds_total 0.3370890000000001 1578294999302
...

Double-check the /targets endpoint in Prometheus to make sure the two5.
microservices are now reachable:

Prometheus showing all targets are up and running

Monitoring and Troubleshooting an App Running in Production Chapter 17

[495]

To make sure the custom metrics we defined for our Node.js and .NET services6.
are defined and exposed, we need to access each service at least once. Thus use
curl to access the respective endpoints a few times:

access the /weatherforecast endpoint in the .NET service
$ curl localhost:31713/weatherforecast

and access the /hello endpoint in the Node service
$ curl localhost:30822/hello

The last step is to deploy Grafana to Kubernetes so that we have the ability to create
sophisticated and graphically appealing dashboards displaying key metrics of our
application services and/or infrastructure components.

Deploying Grafana to Kubernetes
Now let's also deploy Grafana to our Kubernetes cluster, so that we can manage this tool
the same way as all the other components of our distributed application. As the tool that
allows us to create dashboards for monitoring the application, Grafana can be considered
mission-critical and thus warrants this treatment.

Deploying Grafana to the cluster is pretty straightforward. Let's do it as follows:

Add a new file called grafana.yaml to the ch17/kube folder.1.
To this file, add the definition for a Kubernetes Deployment for Grafana:2.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: grafana-deployment
 labels:
 app: grafana
 purpose: monitoring-demo
spec:
 replicas: 1
 selector:
 matchLabels:
 app: grafana
 purpose: monitoring-demo
 template:
 metadata:
 labels:
 app: grafana
 purpose: monitoring-demo
 spec:

Monitoring and Troubleshooting an App Running in Production Chapter 17

[496]

 containers:
 - name: grafana
 image: grafana/grafana

There are no surprises in that definition. In this example, we are running a single
instance of Grafana, and it uses the app and purpose labels for identification,
similar to what we used for Prometheus. No special volume mapping is needed
this time since we are only working with defaults.

We also need to expose Grafana, and thus add the following snippet to the3.
preceding file to define a service for Grafana:

kind: Service
apiVersion: v1
metadata:
 name: grafana-svc
spec:
 type: NodePort
 selector:
 app: grafana
 purpose: monitoring-demo
 ports:
 - name: grafanaui
 protocol: TCP
 port: 3000
 targetPort: 3000

Once again, we are using a service of the NodePort type to be able to access the
Grafana UI from our host.

We can now deploy Grafana with this command:4.

$ kubectl apply -f grafana.yaml

deployment.apps/grafana-deployment created
service/grafana-svc created

Let's find out what the port number will be, over which we can access Grafana:5.

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
dotnet-api-svc NodePort 10.100.250.40 <none>
5000:30781/TCP 16m
grafana-svc NodePort 10.102.239.176 <none>

Monitoring and Troubleshooting an App Running in Production Chapter 17

[497]

3000:32379/TCP 11m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
28d
node-api-svc NodePort 10.100.76.13 <none>
3000:30731/TCP 16m
prometheus-svc NodePort 10.104.205.217 <none>
9090:31246/TCP 16m

Open a new browser tab, and navigate to http://localhost:<port> where6.
<port> is the port you identified in the previous step, and in my case is 32379.
You should see something like this:

Login screen of Grafana

Login with the default admin username, and the password is also admin. When7.
asked to change the password click the Skip link for now. You will be redirected
to the Home dashboard.
On the Home Dashboard, click on Create your first data source, and select8.
Prometheus from the list of data sources.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[498]

Add http://prometheus-svc:9090 for the URL to Prometheus, and click the9.
green Save & Test button.
In Grafana, navigate back to the Home dashboard, and then select the New10.
dashboard.
Click Add query, and then from the Metrics drop-down menu, select the custom11.
metric we defined in the .NET sample service:

Selecting the .NET custom metric in Grafana

Change the value of Relative time from 1h to 5m (five minutes).12.
Change the dashboard refresh rate found in the upper-right corner of the view to13.
5s (five seconds).
Repeat the same for the custom metric defined in the Node sample service, so14.
that you will have two panels on your new dashboard.
Modify the dashboard and its panels to your liking by consulting the15.
documentation at https:/ / grafana. com/ docs/ grafana/ latest/ guides/
getting_ started/ .
Use curl to access the two endpoints of the sample services, and observe the16.
dashboard. It may look like this:

https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/
https://grafana.com/docs/grafana/latest/guides/getting_started/

Monitoring and Troubleshooting an App Running in Production Chapter 17

[499]

Grafana dashboard with our two custom metrics

Summarizing, we can say that Prometheus is a good fit to monitor our microservices
because we just need to expose a metrics port, and thus don't need to add too much
complexity or run additional services. Prometheus then is in charge of periodically scraping
the configured targets, so that our services don't need to worry about emitting them.

Troubleshooting a service running in
production
It is a recommended best practice to create minimal images for production that don't
contain anything that is not absolutely needed. This includes common tools that are usually
used to debug and troubleshoot an application, such as netcat, iostat, ip, or others. Ideally, a
production system only has the container orchestration software such as Kubernetes
installed on a cluster node with a minimal OS, such as Core OS. The application container
in turn ideally only contains the binaries absolutely necessary to run. This minimizes the
attack surface and the risk of having to deal with vulnerabilities. Furthermore, a small
image has the advantage of being downloaded quickly, using less space on disk and in
memory and showing faster startup times.

But this can be a problem if one of the application services running on our Kubernetes
cluster shows unexpected behavior and maybe even crashes. Sometimes we are not able to
find the root cause of the problem just from the logs generated and collected, so we might
need to troubleshoot the component on the cluster node itself.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[500]

We may be tempted to SSH into the given cluster node and run some diagnostic tools. But
this is not possible since the cluster node only runs a minimal Linux distro with no such
tools installed. As a developer, we could now just ask the cluster administrator to install all
the Linux diagnostic tools we intend to use. But that is not a good idea. First of all, this
would open the door for potentially vulnerable software now residing on the cluster node,
endangering all the other pods that run on that node, and also open a door to the cluster
itself that could be exploited by hackers. Furthermore, it is always a bad idea to give
developers direct access to nodes of a production cluster, no matter how much you trust
your developers. Only a limited number of cluster administrators should ever be able to do
so.

A better solution is to have the cluster admin run a so-called bastion container on behalf of
the developers. This bastion or troubleshoot container has all the tools installed that we
need to pinpoint the root cause of the bug in the application service. It is also possible to
run the bastion container in the host's network namespace; thus, it will have full access to
all the network traffic of the container host.

The netshoot container
Nicola Kabar, a former Docker employee, has created a handy Docker image called
nicolaka/netshoot that field engineers at Docker use all the time to troubleshoot
applications running in production on Kubernetes or Docker Swarm. We created a copy of
the image for this book, available at fundamentalsofdocker/netshoot. The purpose of
this container in the words of the creator is as follows:

"Purpose: Docker and Kubernetes network troubleshooting can become complex. With
proper understanding of how Docker and Kubernetes networking works and the right set
of tools, you can troubleshoot and resolve these networking issues. The netshoot
container has a set of powerful networking troubleshooting tools that can be used to
troubleshoot Docker networking issues."

 - Nicola Kabar

Monitoring and Troubleshooting an App Running in Production Chapter 17

[501]

To use this container for debugging purposes, we can proceed as follows:

Spin up a throwaway bastion container for debugging on Kubernetes, using the1.
following command:

$ kubectl run tmp-shell --generator=run-pod/v1 --rm -i --tty \
 --image fundamentalsofdocker/netshoot \
 --command -- bash

 bash-5.0#

You can now use tools such as ip from within this container:2.

bash-5.0# ip a

On my machine, this results in an output similar to the following if I run the pod
on Docker for Windows:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 2: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default
qlen 1000
 link/sit 0.0.0.0 brd 0.0.0.0
 4: eth0@if263: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UP group default
 link/ether 52:52:9d:1d:fd:cc brd ff:ff:ff:ff:ff:ff link-
netnsid 0
 inet 10.1.0.71/16 scope global eth0
 valid_lft forever preferred_lft forever

To leave this troubleshoot container, just press Ctrl + D or type exit and then hit3.
Enter.
If we need to dig a bit deeper and run the container in the same network4.
namespace as the Kubernetes host, then we can use this command instead:

$ kubectl run tmp-shell --generator=run-pod/v1 --rm -i --tty \
 --overrides='{"spec": {"hostNetwork": true}}' \
 --image fundamentalsofdocker/netshoot \
 --command -- bash

If we run ip again in this container, we will see everything that the container5.
host sees too, for example, all the veth endpoints.

Monitoring and Troubleshooting an App Running in Production Chapter 17

[502]

The netshoot container has all the usual tools installed that an engineer ever needs to
troubleshoot network-related problems. Some of the more familiar ones are ctop,
curl, dhcping, drill, ethtool, iftop, iperf, and iproute2.

Summary
In this chapter, you learned some techniques used to monitor an individual service or a
whole distributed application running on a Kubernetes cluster. Furthermore, you
investigated troubleshooting an application service that is running in production without
having to alter the cluster or the cluster nodes on which the service is running.

In the next and final chapter of this book, you will gain an overview of some of the most
popular ways of running containerized applications in the cloud. The chapter includes
samples on how to self-host and use hosted solutions and discuss their pros and cons. Fully
managed offerings of vendors such as Microsoft Azure and Google Cloud Engine are
briefly discussed.

Questions
To assess your learning progress, please answer the following questions:

Why is it important to instrument your application services?1.
Can you describe to an interested layperson what Prometheus is?2.
Exporting Prometheus metrics is easy. Can you describe in simple words how3.
you can do this for a Node.js application?
You need to debug a service running on Kubernetes in production.4.
Unfortunately, the logs produced by this service alone don't give enough
information to pinpoint the root cause. You decide to troubleshoot the service
directly on the respective Kubernetes cluster node. How do you proceed?

Monitoring and Troubleshooting an App Running in Production Chapter 17

[503]

Further reading
Here are a few links that provide additional information on the topics discussed in this
chapter:

Kubernetes Monitoring with Prometheus: https:/ /sysdig. com/ blog/
kubernetes- monitoring- prometheus/

Prometheus Client Libraries: https:/ /prometheus. io/ docs/ instrumenting/
clientlibs/

The netshoot container: https:/ /github. com/ nicolaka/ netshoot

https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot
https://github.com/nicolaka/netshoot

18
Running a Containerized App in

the Cloud
In the previous chapter, we learned how to deploy, monitor, and troubleshoot an
application in production.

In this chapter, we will give an overview of some of the most popular ways of running
containerized applications in the cloud. We will explore self-hosting and hosted solutions
and discuss their pros and cons. Fully managed offerings from vendors such as Microsoft
Azure and Google Cloud Engine will be briefly discussed.

Here are the topics we will be discussing in this chapter:

Deploying and using Docker Enterprise Edition (EE) on Amazon Web Services
(AWS)
Exploring Microsoft's Azure Kubernetes Service (AKS)
Understanding Google Kubernetes Engine (GKE)

After reading this chapter, you will be able to do the following:

Create a Kubernetes cluster in AWS using Docker EE
Deploy and run a simple distributed application in a Docker EE cluster in AWS
Deploy and run a simple distributed application on Microsoft's AKS
Deploy and run a simple distributed application on GKE

Running a Containerized App in the Cloud Chapter 18

[505]

Technical requirements
We are going to use AWS, Microsoft Azure, and Google Cloud in this chapter. Therefore, it
is necessary to have an account for each platform. If you do not have an existing account,
you can ask for a trial account for all of these cloud providers.

We'll also use the files in the ~/fod-solution/ch18 folder of our labs repository from
GitHub at https://github. com/ PacktPublishing/ Learn- Docker- -- Fundamentals- of-
Docker-19.x-Second- Edition/ tree/ master/ ch18.

Deploying and using Docker EE on AWS
In this section, we're going to install Docker Universal Control Plane (UCP) version 3.0.
UCP is part of Docker's enterprise offering and supports two orchestration engines, Docker
Swarm and Kubernetes. UCP can be installed in the cloud or on-premises. Even hybrid
clouds are possible with UCP.

To try this, you need a valid license for Docker EE or you can claim a free test license on
Docker Store.

Provisioning the infrastructure
In this first section, we are going to set up the infrastructure needed to install Docker UCP.
This is relatively straightforward if you are somewhat familiar with AWS. Let's do this by
following these steps:

Create an Auto Scaling group (ASG) in AWS using the Ubuntu 16.04 server1.
AMI. Configure the ASG to contain three instances of size t2.xlarge. Here is
the result of this:

https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-Docker-19.x-Second-Edition/tree/master/ch18

Running a Containerized App in the Cloud Chapter 18

[506]

ASG on AWS ready for Docker EE

Once the ASG has been created, and before we continue, we need to open the
security group (SG) a bit (which our ASG is part of) so that we can access it
through SSH from our laptop and also so that the virtual machines (VMs) can
communicate with each other.

Running a Containerized App in the Cloud Chapter 18

[507]

Navigate to your SG and add two new inbound rules, which are shown here:2.

AWS SG settings

In the preceding screenshot, the first rule allows any traffic from my personal laptop (with
the IP address 70.113.114.234) to access any resource in the SG. The second rule allows
any traffic inside the SG itself. These settings are not meant to be used in a production-like
environment as they are way too permissive. However, for this demo environment, they
work well.

Next, we will show you how to install Docker on the VMs we just prepared.

Installing Docker
After having provisioned the cluster nodes, we need to install Docker on each of them. This
can be easily achieved by following these steps:

SSH into all three instances and install Docker. Using the downloaded key, SSH1.
into the first machine:

$ ssh -i pets.pem ubuntu@<IP address>

Here, <IP address> is the public IP address of the VM we want to SSH into.

Running a Containerized App in the Cloud Chapter 18

[508]

Now we can install Docker. For detailed instructions, refer to https:/ / dockr. ly/2.
2HiWfBc. We have a script in the ~/fod/ch18/aws folder called install-
docker.sh that we can use.
First, we need to clone the labs GitHub repository to the VM:3.

$ git clone
https://github.com/PacktPublishing/Learn-Docker---Fundamentals-of-D
ocker-19.x-Second-Edition.git ~/fod
$ cd ~/fod/ch18/aws

Then, we run the script to install Docker:4.

$./install-docker.sh

Once the script is finished, we can verify that Docker is indeed installed5.
using sudo docker version. Repeat the preceding code for the two other VMs.

sudo is only necessary until the next SSH session is opened to this VM
since we have added the ubuntu user to the docker group. So, we need
to exit the current SSH session and connect again. This time, sudo should
not be needed in conjunction with docker.

Next, we will show how to install Docker UCP on the infrastructure we just prepared.

Installing Docker UCP
We need to set a few environment variables, as follows:

$ export UCP_IP=<IP address>
$ export UCP_FQDN=<FQDN>
$ export UCP_VERSION=3.0.0-beta2

Here, <IP address> and <FQDN> are the public IP address and the public DNS name of
the AWS EC2 instance we're installing in UCP.

After that, we can use the following command to download all the images that UCP needs:

$ docker run --rm docker/ucp:${UCP_VERSION} images --list \
 | xargs -L 1 docker pull

https://dockr.ly/2HiWfBc
https://dockr.ly/2HiWfBc
https://dockr.ly/2HiWfBc
https://dockr.ly/2HiWfBc
https://dockr.ly/2HiWfBc
https://dockr.ly/2HiWfBc
https://dockr.ly/2HiWfBc
https://dockr.ly/2HiWfBc

Running a Containerized App in the Cloud Chapter 18

[509]

Finally, we can install UCP:

Installing UCP 3.0.0-beta2 on a VM in AWS

Now, we can open a browser window and navigate to https://<IP address>. Log in
with your username, admin, and password, adminadmin. When asked for the license,
upload your license key or follow the link to procure a trial license.

Once logged in, on the left-hand side under the Shared Resources section, select Nodes and
then click on the Add Node button:

Running a Containerized App in the Cloud Chapter 18

[510]

Adding a new node to UCP

In the subsequent Add Node dialog box, make sure that the node type is Linux and
the Worker node role is selected. Then, copy the docker swarm join command at the
bottom of the dialog box. SSH into the other two VMs you created and run this command
to have the respective node join the Docker swarm as a worker node:

Joining a node as a worker to the UCP cluster

Running a Containerized App in the Cloud Chapter 18

[511]

Back in the web UI of UCP, you should see that we now have three nodes ready, as shown
here:

List of nodes in the UCP cluster

By default, worker nodes are configured so that they can only run the Docker Swarm
workload. This can be changed in the node details, though. In this, three settings are
possible: Swarm only, Kubernetes only, or mixed workload. Let's start with Docker Swarm
as the orchestration engine and deploy our pets application.

Using remote admin for the UCP cluster
To be able to manage our UCP cluster remotely from our laptop, we need to create and
download a so-called client bundle from UCP. Proceed with the following steps:

In the UCP web UI, on the left-hand side under admin, select the My1.
Profile option.
In the subsequent dialog, select the New Client Bundle option and2.
then Generate Client Bundle:

Generating and downloading a UCP client bundle

Running a Containerized App in the Cloud Chapter 18

[512]

Locate the downloaded bundle on your disk and unzip it.3.
In a new Terminal window, navigate to that folder and source the env.sh file:4.

$ source env.sh

You should get an output similar to this:

Cluster "ucp_34.232.53.86:6443_admin" set.
User "ucp_34.232.53.86:6443_admin" set.
Context "ucp_34.232.53.86:6443_admin" created.

Now, we can verify that we can indeed remotely access the UCP cluster by, for
example, listing all the nodes of the cluster:

Listing all the nodes of our remote UCP cluster

In the next section, we will look at how to deploy the pets application as a stack using
Docker Swarm as the orchestration engine.

Deploying to Docker Swarm
It is now time to deploy our distributed application to our cluster orchestrated by Docker
Swarm. Follow these steps to do so:

In the Terminal, navigate to the ~/fod/ch18/ucp folder and create1.
the pets stack using the stack.yml file:

Deploying the pets stack into the UCP cluster

Running a Containerized App in the Cloud Chapter 18

[513]

In the UCP web UI, we can verify that the stack has been created:2.

The pets stack listing in the UCP web UI

To test the application, we can navigate to Services under the main3.
menu, Swarm. The list of services running in the cluster will be displayed as
follows:

Details of the 'web' services of the pets stack

In the preceding screenshot, we see our two services, web and db, of
the pets stack. If we click on the web service, its details are displayed on the
right-hand side. There we find an entry, Published Endpoints.

Running a Containerized App in the Cloud Chapter 18

[514]

Click on the link and our pets application should be displayed in the browser.4.

When done, remove the stack from the console with the following:

$ docker stack rm pets

Alternatively, you can try to remove that stack from within the UCP web UI.

Deploying to Kubernetes
From the same Terminal that you used to remotely access the UCP cluster to deploy the
pets application as a stack using Docker Swarm as the orchestration engine, we can now try
to deploy the pets application to the UCP cluster using Kubernetes as the orchestration
engine.

Make sure you're still in the ~/fod/ch18/ucp folder. Use kubectl to deploy the pets
application. First, we need to test that we can get all the nodes of the cluster with the
Kubernetes CLI:

Getting all the nodes of the UCP cluster using the Kubernetes CLI

Apparently, my environment is configured correctly and kubectl can indeed list all the
nodes in the UCP cluster. That means I can now deploy the pets application using the
definitions in the pets.yaml file:

Creating the pets application in the UCP cluster using the Kubernetes CLI

Running a Containerized App in the Cloud Chapter 18

[515]

We can list the objects created by using kubectl get all. In a browser, we can then
navigate to http://<IP address>:<port> to access the pets application, where <IP
address> is the public IP address of one of the UCP cluster nodes and <port> is the port
published by the web Kubernetes service.

We have created a cluster of three VMs in an AWS ASG and have installed Docker and
UCP 3.0 on them. We then deployed our famous pets application into the UCP cluster, once
using Docker Swarm as the orchestration engine and once Kubernetes.

Docker UCP is a platform-agnostic container platform that offers a secure enterprise-grade
software supply chain in any cloud and on-premises, on bare metal, or in virtualized
environments. It even offers freedom of choice when it comes to orchestration engines. The
user can choose between Docker Swarm and Kubernetes. It is also possible to run
applications in both orchestrators in the same cluster.

Exploring Microsoft's Azure Kubernetes
Service (AKS)
To experiment with Microsoft's container-related offerings in Azure, we need an account on
Azure. You can create a trial account or use an existing account. You can get a free trial
account here: https:/ /azure. microsoft. com/en- us/free/ .

Microsoft offers different container-related services on Azure. The easiest one to use is
probably Azure Container Instances, which promises the fastest and simplest way to run a
container in Azure, without having to provision any virtual machines and without having
to adopt a higher-level service. This service is only really useful if you want to run a single
container in a hosted environment. The setup is quite easy. In the Azure portal
(portal.azure.com), you first create a new resource group and then create an Azure
container instance. You only need to fill out a short form with properties such as the name
of the container, the image to use, and the port to open. The container can be made
available on a public or private IP address and will be automatically restarted if it crashes.
There is a decent management console available, for example, to monitor resource
consumption such as CPU and memory.

The second choice is Azure Container Service (ACS), which provides a way to simplify the
creation, configuration, and management of a cluster of VMs that are preconfigured to run
containerized applications. ACS uses Docker images and provides a choice between three
orchestrators: Kubernetes, Docker Swarm, and DC/OS (powered by Apache Mesos).
Microsoft claims that their service can be scaled to tens of thousands of containers. ACS is
free and you are only charged for computing resources.

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
http://portal.azure.com

Running a Containerized App in the Cloud Chapter 18

[516]

In this section, we will concentrate on the most popular offering, based on Kubernetes. It is
called AKS and can be found here: https:/ /azure. microsoft. com/ en- us/services/
kubernetes-service/ . AKS makes it easy for you to deploy applications into the cloud and
run them on Kubernetes. All the difficult and tedious management tasks are handled by
Microsoft and you can concentrate fully on your applications. What that means is that you
will never have to deal with tasks such as installing and managing Kubernetes, upgrading
Kubernetes, or upgrading the operating system of the underlying Kubernetes nodes. All
this is handled by the experts at Microsoft Azure. Furthermore, you will never have to deal
with etc or Kubernetes master nodes. This is all hidden from you, and the only things you
will interact with are the Kubernetes worker nodes that run your applications.

Preparing the Azure CLI
That said, let's start. We assume that you have created a free trial account or that you are
using an existing account on Azure. There are various ways to interact with your Azure
account. We will use the Azure CLI running on our local computer. We can either
download and install the Azure CLI natively on our computer or run it from within a
container running on our local Docker for Desktop. Since this book is all about containers,
let's select the latter approach.

The latest version of the Azure CLI can be found on Docker Hub. Let's pull it:

$ docker image pull mcr.microsoft.com/azure-cli:latest

We will be running a container from this CLI and executing all subsequent commands from
within the shell running inside this container. Now, there is a little problem we need to
overcome. This container will not have a Docker client installed. But we will also run some
Docker commands, so we have to create a custom image derived from the preceding image,
which contains a Docker client. The Dockerfile that's needed to do so can be found in
the ~/fod/ch18 folder and has this content:

FROM mcr.microsoft.com/azure-cli:latest
RUN apk update && apk add docker

On line 2, we are just using the Alpine package manager, apk, to install Docker. We can
then use Docker Compose to build and run this custom image. The corresponding docker-
compose.yml file looks like this:

version: "2.4"
services:
 az:
 image: fundamentalsofdocker/azure-cli
 build: .

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/

Running a Containerized App in the Cloud Chapter 18

[517]

 command: tail -F anything
 working_dir: /app
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 - .:/app

Please note the command that is used to keep the container running, as
well as the mounting of the Docker socket and the current folder in the
volumes section.

If you are running Docker for Desktop on Windows, then you need to
define the COMPOSE_CONVERT_WINDOWS_PATHS environment variable to
be able to mount the Docker socket. Use
export COMPOSE_CONVERT_WINDOWS_PATHS=1 from a Bash shell or
$Env:COMPOSE_CONVERT_WINDOWS_PATHS=1 when running PowerShell.
Please refer to the following link for more details: https:/ /github. com/
docker/ compose/ issues/ 4240.

Now, let's build and run this container:

$ docker-compose up --build -d

Then, let's execute into the az container and run a Bash shell in it with the following:

$ docker-compose exec az /bin/bash

bash-5.0#

We will find ourselves running in a Bash shell inside the container. Let's first check the
version of the CLI:

bash-5.0# az --version

This should result in an output similar to this (shortened):

azure-cli 2.0.78
...
Your CLI is up-to-date.

OK, we're running on version 2.0.78. Next, we need to log in to our account. Execute this
command:

bash-5.0# az login

https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240
https://github.com/docker/compose/issues/4240

Running a Containerized App in the Cloud Chapter 18

[518]

You will be presented with the following message:

To sign in, use a web browser to open the page
https://microsoft.com/devicelogin and enter the code <code> to
authenticate.

Follow the instructions and log in through the browser. Once you have successfully
authenticated your Azure account, you can go back to your Terminal and you should be
logged in, as indicated by the output you'll get:

[
 {
 "cloudName": "AzureCloud",
 "id": "<id>",
 "isDefault": true,
 "name": "<account name>",
 "state": "Enabled",
 "tenantId": "<tenant-it>",
 "user": {
 "name": "xxx@hotmail.com",
 "type": "user"
 }
 }
]

Now, we are ready to first move our container images to Azure.

Creating a container registry on Azure
First, we create a new resource group named animal-rg. In Azure, resource groups are
used to logically group a collection of associated resources. To have an optimal cloud
experience and keep latency low, it is important that you select a data center located in a
region near you. You can use the following command to list all regions:

bash-5.0# az account list-locations

[
 {
 "displayName": "East Asia",
 "id": "/subscriptions/186760ad-9152-4499-b317-
c9bff441fb9d/locations/eastasia",
 "latitude": "22.267",
 "longitude": "114.188",
 "name": "eastasia",
 "subscriptionId": null
 },

Running a Containerized App in the Cloud Chapter 18

[519]

 ...
]

This will give you a rather long list of all possible regions you can select from. Use the
name, for example, eastasia, to identify the region of your choice. In my case, I will be
selecting westeurope. Please note that not all locations listed are valid for resource groups.

The command to create a resource group is simple; we just need a name for the group and
the location:

bash-5.0# az group create --name animals-rg --location westeurope

{
 "id": "/subscriptions/186760ad-9152-4499-b317-
c9bff441fb9d/resourceGroups/animals-rg",
 "location": "westeurope",
 "managedBy": null,
 "name": "animals-rg",
 "properties": {
 "provisioningState": "Succeeded"
 },
 "tags": null,
 "type": "Microsoft.Resources/resourceGroups"
}

Make sure that your output shows "provisioningState":
"Succeeded".

When running a containerized application in production, we want to make sure that we can
freely download the corresponding container images from a container registry. So far, we
have always downloaded our images from Docker Hub. But this is often not possible. For
security reasons, the servers of a production system often have no direct access to the
internet and thus are not able to reach out to Docker Hub. Let's follow this best practice and
assume the same for our Kubernetes cluster that we are going to create in an instant.

So, what can we do? Well, the solution is to use a container image registry that is close to
our cluster and that is in the same security context. In Azure, we can create an Azure
container registry (ACR) and host our images there. Let's first create such a registry:

bash-5.0# az acr create --resource-group animals-rg --name <acr-name> --sku
Basic

Running a Containerized App in the Cloud Chapter 18

[520]

Note that <acr-name> needs to be unique. In my case, I have chosen the name
fodanimalsacr. The (shortened) output looks like this:

{
 "adminUserEnabled": false,
 "creationDate": "2019-12-22T10:31:14.848776+00:00",
 "id": "/subscriptions/186760ad...",
 "location": "westeurope",
 "loginServer": "fodanimalsacr.azurecr.io",
 "name": "fodanimalsacr",
 ...
 "provisioningState": "Succeeded",

After successfully creating the container registry, we need to log in to that registry using the
following:

bash-5.0# az acr login --name <acr-name>

Login Succeeded
WARNING! Your password will be stored unencrypted in
/root/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-sto
re

Once we are successfully logged in to the container registry on Azure, we need to tag our
containers correctly so that we can then push them to ACR. Tagging and pushing images to
ACR will be described next.

Pushing our images to ACR
Once we have successfully logged in to ACR, we can tag our images such that they can be
pushed to the registry. For this, we need to get the URL of our ACR instance. We can do so
with this command:

$ az acr list --resource-group animals-rg \
 --query "[].{acrLoginServer:loginServer}" \
 --output table

AcrLoginServer

fodanimalsacr.azurecr.io

Running a Containerized App in the Cloud Chapter 18

[521]

We now use the preceding URL to tag our images:

bash-5.0# docker image tag fundamentalsofdocker/ch11-db:2.0
fodanimalsacr.azurecr.io/ch11-db:2.0
bash-5.0# docker image tag fundamentalsofdocker/ch11-web:2.0
fodanimalsacr.azurecr.io/ch11-web:2.0

Then, we can push them to our ACR:

bash-5.0# docker image push fodanimalsacr.azurecr.io/ch11-db:2.0
bash-5.0# docker image push fodanimalsacr.azurecr.io/ch11-web:2.0

To double-check that our images are indeed in our ACR, we can use this command:

bash-5.0# az acr repository list --name <acr-name> --output table

Result

ch11-db
ch11-web

Indeed, the two images we just pushed are listed. With that, we are ready to create our
Kubernetes cluster.

Creating a Kubernetes cluster
Once again, we will be using our custom Azure CLI to create the Kubernetes cluster. We
will have to make sure that the cluster can access our ACR instance, which we just created
and is where our container images reside. So, the command to create a cluster named
animals-cluster with two worker nodes looks like this:

bash-5.0# az aks create \
 --resource-group animals-rg \
 --name animals-cluster \
 --node-count 2 \
 --generate-ssh-keys \
 --attach-acr <acr-name>

This command takes a while, but after a few minutes, we should receive some JSON-
formatted output with all the details about the newly created cluster.

To access the cluster, we need kubectl. We can easily get it installed in our Azure CLI
container using this command:

bash-5.0# az aks install-cli

Running a Containerized App in the Cloud Chapter 18

[522]

Having installed kubectl, we need the necessary credentials to use the tool to operate on
our new Kubernetes cluster in Azure. We can get the necessary credentials with this:

bash-5.0# az aks get-credentials --resource-group animals-rg --name
animals-cluster

Merged "animals-cluster" as current context in /root/.kube/config

After the success of the preceding command, we can list all the nodes in our cluster:

bash-5.0# kubectl get nodes

NAME STATUS ROLES AGE VERSION
aks-nodepool1-12528297-vmss000000 Ready agent 4m38s v1.14.8
aks-nodepool1-12528297-vmss000001 Ready agent 4m32s v1.14.8

As expected, we have two worker nodes up and running. The version of Kubernetes that is
running on those nodes is 1.14.8.

We are now ready to deploy our application to this cluster. In the next section, we are going
to learn how we can do this.

Deploying our application to the Kubernetes
cluster
To deploy the application, we can use the kubectl apply command:

bash-5.0# kubectl apply -f animals.yaml

The output of the preceding command should look similar to this:

deployment.apps/web created
service/web created
deployment.apps/db created
service/db created

Now, we want to test the application. Remember that we had created a service of type
LoadBalancer for the web component. This service exposes the application to the internet.
This process can take a moment, as AKS, among other tasks, needs to assign a public IP
address to this service. We can observe this with the following command:

bash-5.0# kubectl get service web --watch

Running a Containerized App in the Cloud Chapter 18

[523]

Please note the --watch parameter in the preceding command. It allows us to monitor the
progress of the command over time. Initially, we should see output like this:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
web LoadBalancer 10.0.124.0 <pending> 3000:32618/TCP 5s

The public IP address is marked as pending. After a few minutes, that should change to
this:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
web LoadBalancer 10.0.124.0 51.105.229.192 3000:32618/TCP 63s

Our application is now ready at the IP address 51.105.229.192 and port number 3000.
Note that the load balancer maps the internal port 32618 to the external port 3000; this was
not evident to me the first time.

Let's check it out. In a new browser tab, navigate to http://51.105.229.192:3000/pet
and you should see our familiar application:

Our sample application running on AKS

Running a Containerized App in the Cloud Chapter 18

[524]

With that, we have successfully deployed our distributed application to Kubernetes hosted
in Azure. We did not have to worry about installing or managing Kubernetes; we could
concentrate on the application itself.

Now that we are done experimenting with the application, we should not forget to delete
all resources on Azure to avoid incurring unnecessary costs. We can delete all resources
created by deleting the resource group as follows:

bash-5.0# az group delete --name animal-rg --yes --no-wait

Azure has a few compelling offerings regarding the container workload, and the lock-in is
not as evident as it is on AWS due to the fact that Azure does mainly offer open source
orchestration engines, such as Kubernetes, Docker Swarm, DC/OS, and Rancher.
Technically, we remain mobile if we initially run our containerized applications in Azure
and later decide to move to another cloud provider. The cost should be limited.

It is worth noting that, when you delete your resource group, the Azure
Active Directory service principal used by the AKS cluster is not removed.
Refer to the online help for details on how to delete the service principal.

Next on the list is Google with their Kubernetes Engine.

Understanding GKE
Google is the inventor of Kubernetes and, to this date, the driving force behind it. You
would therefore expect that Google has a compelling offering around hosted Kubernetes.
Let's have a peek into it now. To continue, you need to either have an existing account with
Google Cloud or create a test account here: https:/ /console. cloud. google. com/
freetrial. Proceed with the following steps:

In the main menu, select Kubernetes Engine. The first time you do that, it will1.
take a few moments until the Kubernetes engine is initialized.
Next, create a new project and name it massai-mara; this may take a moment.2.
Once this is ready, we can create a cluster by clicking on Create Cluster in the3.
popup.
Select the Your first cluster template on the left-hand side of the form.4.
Name the cluster animals-cluster, select the region or zone that's closest to5.
you, leave all other settings in the Create a Kubernetes Cluster form with their
default values, and click on Create at the bottom of the form.

https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial
https://console.cloud.google.com/freetrial

Running a Containerized App in the Cloud Chapter 18

[525]

It will again take a few moments to provision the cluster for us. Once the cluster has been
created, we can open Cloud Shell by clicking on the shell icon in the upper-right corner of
the view. This should look similar to the following screenshot:

The first Kubernetes cluster ready and Cloud Shell open in GKE

We can now clone our labs GitHub repository to this environment with the following
command:

$ git clone https://github.com/PacktPublishing/Learn-Docker---
Fundamentals-of-Docker-19.x-Second-Edition.git ~/fod
$ cd ~/fod/ch18/gce

We should now find an animals.yaml file in the current folder, which we can use to
deploy the animals application into our Kubernetes cluster. Have a look at the file:

$ less animals.yaml

Running a Containerized App in the Cloud Chapter 18

[526]

It has pretty much the same content as the same file we used in the previous chapter. The
two differences are these:

We use a service of type LoadBalancer (instead of NodePort) to publicly
expose the web component.
We do not use volumes for the PostgreSQL database since configuring
StatefulSets correctly on GKE is a bit more involved than in Minikube. The
consequence of this is that our animals application will not persist the state if
the db pod crashes. How to use persistent volumes on GKE lies outside the scope
of this book.

Also, note that we are not using Google Container Registry to host the container images but
are instead directly pulling them from Docker Hub. It is very easy, and similar to what we
have learned in the section about AKS, to create such a container registry in Google Cloud.

Before we can continue, we need to set up gcloud and kubectl credentials:

$ gcloud container clusters get-credentials animals-cluster --zone europe-
west1-b

Fetching cluster endpoint and auth data.
kubeconfig entry generated for animals-cluster.

Having done that, it's time to deploy the application:

$ kubectl create -f animals.yaml

deployment.apps/web created
service/web created
deployment.apps/db created
service/db created

Once the objects have been created, we can observe the LoadBalancer service web until it
is assigned a public IP address:

$ kubectl get svc/web --watch

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
web LoadBalancer 10.0.5.222 <pending> 3000:32139/TCP 32s
web LoadBalancer 10.0.5.222 146.148.23.70 3000:32139/TCP 39s

The second line in the output is showing the situation while the creation of the load
balancer is still pending, and the third one gives the final state. Press Ctrl + C to quit the
watch command. Apparently, we got the public IP address 146.148.23.70 assigned and
the port is 3000.

Running a Containerized App in the Cloud Chapter 18

[527]

We can then use this IP address and navigate to http://<IP address>:3000/pet, and
we should be greeted by the familiar animal image.

Once you are done playing with the application, delete the cluster and the project in the
Google Cloud console to avoid any unnecessary costs.

We have created a hosted Kubernetes cluster in GKE. We have then used Cloud Shell,
provided through the GKE portal, to first clone our labs GitHub repository and then
the kubectl tool to deploy the animals application into the Kubernetes cluster.

When looking into a hosted Kubernetes solution, GKE is a compelling offering. It makes it
very easy to start, and since Google is the main driving force behind Kubernetes, we can
rest assured that we will always be able to leverage the full functionality of Kubernetes.

Summary
In this final chapter of the book, you first got a quick introduction to how to install and use
Docker's UCP, which is part of Docker's enterprise offering on AWS. Then, you learned
how to create a hosted Kubernetes cluster in AKS and run the animals application on it,
followed by the same for Google's own hosted Kubernetes offering, GKE.

I am honored that you selected this book, and I want to thank you for accompanying me on
this journey, where we explored Docker containers and container orchestration engines. I
hope that this book has served as a valuable resource on your learning journey. I wish you
all the best and much success when using containers in your current and future projects.

Questions
To assess your knowledge, please answer the following questions:

Give a high-level description of the tasks needed to provision and run Docker1.
UPC on AWS.
List a few reasons why you would select a hosted Kubernetes offering, such as2.
Microsoft's AKS or Google's GKE, to run your applications on Kubernetes.
Name two reasons when using a hosted Kubernetes solution, such as AKS or3.
GKE, to consider hosting your container images in the container registry of the
respective cloud provider.

Running a Containerized App in the Cloud Chapter 18

[528]

Further reading
The following articles give you some more information related to the topics we discussed in
this chapter:

Install individual Docker EE components on Linux servers at https:/ / dockr. ly/
2vH5dpN

Azure Container Service (AKS) at https:/ /bit. ly/ 2JglX9d

Google Kubernetes Engine at https:/ / bit.ly/ 2I8MjJx

https://dockr.ly/2vH5dpN
https://dockr.ly/2vH5dpN
https://dockr.ly/2vH5dpN
https://dockr.ly/2vH5dpN
https://dockr.ly/2vH5dpN
https://dockr.ly/2vH5dpN
https://dockr.ly/2vH5dpN
https://dockr.ly/2vH5dpN
https://bit.ly/2JglX9d
https://bit.ly/2JglX9d
https://bit.ly/2JglX9d
https://bit.ly/2JglX9d
https://bit.ly/2JglX9d
https://bit.ly/2JglX9d
https://bit.ly/2JglX9d
https://bit.ly/2JglX9d
https://bit.ly/2JglX9d
https://bit.ly/2I8MjJx
https://bit.ly/2I8MjJx
https://bit.ly/2I8MjJx
https://bit.ly/2I8MjJx
https://bit.ly/2I8MjJx
https://bit.ly/2I8MjJx
https://bit.ly/2I8MjJx
https://bit.ly/2I8MjJx
https://bit.ly/2I8MjJx

Assessments

Chapter 1
Here are some sample answers to the questions presented in this chapter:

The correct answers are D and E.1.
A Docker container is to IT what a shipping container is to the transportation2.
industry. It defines a standard on how to package goods. In this case, goods
are the application(s) developers write. The suppliers (in this case, the
developers) are responsible for packaging the goods into the container and
making sure everything fits as expected. Once the goods are packaged into a
container, it can be shipped. Since it is a standard container, the shippers can
standardize their means of transportation, such as lorries, trains, or ships. The
shipper doesn't really care what's in a container. Also, the loading and unloading
process from one transportation means to another (for example, train to ship) can
be highly standardized. This massively increases the efficiency of
transportation. Analogous to this is an operations engineer in IT, who can take a
software container built by a developer and ship it to a production system and
run it there in a highly standardized way, without worrying about what's in the
container. It will just work.
Some of the reasons why containers are game changers are as follows:3.

Containers are self-contained and thus if they run on one system,
they run anywhere that a container can run.
Containers run on premises and in the cloud, as well as in
hybrid environments. This is important for today's typical enterprises
since it allows a smooth transition from on premises to the cloud.
Container images are built or packaged by the people who know best
– the developers.
Container images are immutable, which is important for good
release management.
Containers are enablers of a secure software supply chain based
on encapsulation (using Linux namespaces and cgroups), secrets,
content trust, and image vulnerability scanning.

Assessments

[530]

Any given container runs anywhere where containers can run for the following4.
reasons:

Containers are self-contained black boxes. They encapsulate not
only an application but all its dependencies, such as libraries
and frameworks, configuration data, certificates, and so on.

Containers are based on widely accepted standards such as OCI.

The answer is B. Containers are useful for modern applications as well as to5.
containerize traditional applications. The benefits for an enterprise when doing
the latter are huge. Cost savings in the maintenance of legacy apps of 50% or
more have been reported. The time between new releases of such legacy
applications could be reduced by up to 90%. These numbers have been publicly
reported by real enterprise customers.
50% or more.6.

Containers are based on Linux namespaces (network, process, user, and so7.
on) and cgroups (control groups).

Chapter 2
Here are some sample answers to the questions presented in this chapter:

docker-machine can be used for the following scenarios:1.
To create a VM on various providers such as VirtualBox, Hyper-V,1.
AWS, MS Azure, or Google Compute Engine that will serve as a
Docker Host.
To start, stop, or kill a previously generated VM.2.
To SSH into a local or remote Docker Host VM created with this tool.3.
To re-generate certificates for the secure use of a Docker Host VM.4.

A. True. Yes, with Docker for Windows, you can develop and run Linux2.
containers. It is also possible, but not discussed in this book, to develop and run
native Windows containers with this edition of Docker for Desktop. With the
macOS edition, you can only develop and run Linux containers.

Assessments

[531]

Scripts are used to automate processes and hence avoid human errors. Building,3.
testing, sharing, and running Docker containers are tasks that should always be
automated to increase their reliability and repeatability.
The following Linux distros are certified to run Docker: RedHat Linux (RHEL),4.
CentOS, Oracle Linux, Ubuntu, and more.
 The following Windows OS are certified to run Docker: Windows 10 Pro,5.
Windows Server 2016, and Windows Server 2019

Chapter 3
Here are some sample answers to the questions presented in this chapter:

The possible states of a Docker container are as follows:1.
created: A container that has been created but not started
restarting: A container that is in the process of being restarted
running: A currently running container
paused: A container whose processes have been paused
exited: A container that ran and completed
dead: A container that the Docker engine tried and failed to stop

We can use docker container ls (or the old, shorter version, docker ps) to2.
list all containers that are currently running on our Docker host. Note that this
will NOT list the stopped containers, for which you need the extra parameter--
all (or -a).
To list all IDs of containers, running or stopped, we can use docker container3.
ls -a -q, where -q stands for output ID only.

Chapter 4
Here are some sample answers to the questions presented in this chapter:

The Dockerfile could look like this:1.

FROM ubuntu:19.04
RUN apt-get update && \
 apt-get install -y iputils-ping
CMD ping 127.0.0.1

Assessments

[532]

Note that in Ubuntu, the ping tool is part of the iputils-ping package. Build
the image called pinger—for example— with docker image build -t my-
pinger.

2. The Dockerfile could look like this:

FROM alpine:latest
RUN apk update && \
 apk add curl

Build the image with docker image build -t my-alpine:1.0.

3. The Dockerfile for a Go application could look like this:

FROM golang:alpine
WORKDIR /app
ADD . /app
RUN cd /app && go build -o goapp
ENTRYPOINT ./goapp

You can find the full solution in the ~/fod/ch04/answer03 folder.

4. A Docker image has the following characteristics:

1. It is immutable.
2. It consists of one-to-many layers.
3. It contains the files and folders needed for the packaged application to run.

5. C. First, you need to log in to Docker Hub; then, tag your image correctly with
the username; and finally, push the image.

Chapter 5
Here are some sample answers to the questions presented in this chapter:

The easiest way to play with volumes is to use the Docker Toolbox because when directly
using Docker for Desktop, the volumes are stored inside a (somewhat hidden) Linux VM
that Docker for Desktop uses transparently.
Thus, we suggest the following:

$ docker-machine create --driver virtualbox volume-test
$ docker-machine ssh volume-test

Assessments

[533]

And now that you're inside a Linux VM called volume-test, you can do the following
exercise:

To create a named volume, run the following command:1.

$ docker volume create my-products

Execute the following command:2.

$ docker container run -it --rm \
 -v my-products:/data:ro \
 alpine /bin/sh

To get the path on the host for the volume, use this command:3.

$ docker volume inspect my-products | grep Mountpoint

This (if you're using docker-machine and VirtualBox) should result in this:

"Mountpoint": "/mnt/sda1/var/lib/docker/volumes/myproducts/_data"

Now execute the following command:

$ sudo su
$ cd /mnt/sda1/var/lib/docker/volumes/my-products/_data
$ echo "Hello world" > sample.txt
$ exit

Execute the following command:4.

$ docker run -it --rm -v my-products:/data:ro alpine /bin/sh
/ # cd /data
/data # cat sample.txt

In another terminal, execute this command:

$ docker run -it --rm -v my-products:/app-data alpine /bin/sh
/ # cd /app-data
/app-data # echo "Hello other container" > hello.txt
/app-data # exit

Execute a command such as this:5.

$ docker container run -it --rm \
 -v $HOME/my-project:/app/data \
 alpine /bin/sh

Assessments

[534]

Exit both containers and then, back on the host, execute this command:6.

$ docker volume prune

The answer is B. Each container is a sandbox and thus has its very own7.
environment.
Collect all environment variables and their respective values in a configuration8.
file, which you then provide to the container with the --env-file command-
line parameter in the docker run command, like so:

$ docker container run --rm -it \
 --env-file ./development.config \
 alpine sh -c "export"

Chapter 6
Here are some sample answers to the questions presented in this chapter:

Possible answers: a) Volume mount your source code in the container; b) use a1.
tool that automatically restarts the app running inside the container when code
changes are detected; c) configure your container for remote debugging.
You can mount the folder containing the source code on your host in the2.
container.
If you cannot cover certain scenarios easily with unit or integration tests and if3.
the observed behavior of the application cannot be reproduced when the
application runs on the host. Another scenario is a situation where you cannot
run the application on the host directly due to the lack of the necessary language
or framework.
Once the application is running in production, we cannot easily gain access to it4.
as developers. If the application shows unexpected behavior or even crashes, logs
are often the only source of information we have to help us reproduce the
situation and pinpoint the root cause of the bug.

Assessments

[535]

Chapter 7
Here are some sample answers to the questions presented in this chapter:

Pros and cons:1.
Pro: We don't need to have the particular shell, tool, or language
required by the task installed on our host.
Pro: We can run on any Docker host, from Raspberry Pi to a
mainframe computer; the only requirement is that the host can run
containers.
Pro: After a successful run, the tool is removed without leaving any
traces from the host when the container is removed.
Con: We need to have Docker installed on the host.
Con: The user needs to have a basic understanding of Docker
containers.
Con: Use of the tool is a bit more indirect than when using it natively.

Running tests in a container has the following advantages:2.
They run equally well on a developer machine than on a test or CI
system.
It is easier to start each test run with the same initial conditions.
All developers working with the code use the same setup, for
example, versions of libraries and frameworks.

Here, we expect a diagram that shows a developer writing code and checking it3.
in, for example, GitHub. We then want to see an automation server such as
Jenkins or TeamCity in the picture that is either periodically polling GitHub for
changes or the GitHub triggers the automation server (with an HTTP callback) to
create a new build. The diagram should also show that the automation server
then runs all tests against the built artifacts and, if they all succeed, deploys the
application or service to an integration system where it is again tested, for
example, with a few smoke tests. Once again, if those tests succeed, the
automation server should either ask a human for approval to deploy to
production (this equals to continuous delivery) or the automation server should
automatically deploy to production (continuous deployment).

Assessments

[536]

Chapter 8
Here are some sample answers to the questions presented in this chapter:

You could be working on a workstation with limited resources or capabilities, or1.
your workstation could be locked down by your company so that you are not
allowed to install any software that is not officially approved. Sometimes, you
might need to do proof of concepts or experiments using languages or
frameworks that are not yet approved by your company (but might be in the
future if the proof of concept is successful).
Bind-mounting a Docker socket into a container is the recommended method2.
when a containerized application needs to automate some container-related
tasks. This can be an application such as an automation server such as Jenkins
that you are using to build, test, and deploy Docker images.

Most business applications do not need root-level authorizations to do their job.3.
From a security perspective, it is hence strongly recommended to run such
applications with the least necessary access rights to their job. Any unnecessary
elevated privileges could possibly be exploited by hackers in a malicious attack.
By running the application as a non-root user, you make it more difficult for
potential hackers to compromise your system.
Volumes contain data and the lifespan of data most often needs to go far beyond4.
the life cycle of a container or an application, for that matter. Data is often
mission-critical and needs to be stored safely for days, months, even years. When
you delete a volume, you irreversibly delete the data associated with it. Hence,
make sure you know what you're doing when deleting a volume.

Chapter 9
Here are some sample answers to the questions presented in this chapter:

In a distributed application architecture, every piece of the software and1.
infrastructure needs to be redundant in a production environment, where the
continuous uptime of the application is mission-critical. A highly distributed
application consists of many parts and the likelihood of one of the pieces failing
or misbehaving increases with the number of parts. It is guaranteed that, given
enough time, every part will eventually fail. To avoid outages of the application,
we need redundancy in every part, be it a server, a network switch, or a service
running on a cluster node in a container.

Assessments

[537]

In highly distributed, scalable, and fault-tolerant systems, individual services of2.
the application can move around due to scaling needs or due to component
failures. Thus, we cannot hardwire different services with each other. Service A,
which needs access to Service B, should not have to know details such as the IP
address of Service B. It should rely on an external provider of this information.
DNS is such a provider of location information. Service A just tells it that it wants
to talk to Service B and the DNS service will figure out the details.
A circuit breaker is a means to avoid cascading failures if a component in a3.
distributed application is failing or misbehaving. Similar to a circuit breaker in
electric wiring, a software-driven circuit breaker cuts the communication
between a client and a failed service. The circuit breaker will directly report an
error back to the client component if the failed service is called. This gives the
system the opportunity to recover or heal from failure.
A monolithic application is easier to manage that a multi-service application4.
since it consists of a single deployment package. On the other hand, a monolith is
harder to scale to account for increased demand. In a distributed application,
each service can be scaled individually and each service can run on optimized
infrastructure, while a monolith needs to run on infrastructure that is OK for all
or most of the features implemented in it. Maintaining and updating a monolith
is much harder than a multi-service application, where each service can be
updated and deployed independently. The monolith is often a big, complex, and
tightly coupled pile of code. Minor modifications can have unexpected side
effects. (Micro-) Services, on the other hand, are self-contained, simple
components that behave like black boxes. Dependent services know nothing
about the inner workings of the service and thus do not depend on it.
A blue-green deployment is a form of software deployment that allows for zero5.
downtime deployments of new versions of an application or an application
service. If, say, Service A needs to be updated with a new version, then we call
the currently running version blue. The new version of the service is deployed
into production, but not yet wired up with the rest of the application. This new
version is called green. Once the deployment succeeds and smoke tests have
shown it's ready to go, the router that funnels traffic to blue is reconfigured to
switch to green. The behavior of green is observed for a while and if everything
is OK, blue is decommissioned. On the other hand, if green causes difficulties,
the router can simply be switched back to blue and green can be fixed and later
redeployed.

Assessments

[538]

Chapter 10
Here are some sample answers to the questions presented in this chapter:

The three core elements are sandbox, endpoint, and network.1.
Execute this command:2.

$ docker network create --driver bridge frontend

 Run this command:3.

$ docker container run -d --name n1 \
 --network frontend -p 8080:80 nginx:alpine
$ docker container run -d --name n2 \
 --network frontend -p 8081:80 nginx:alpine

Test that both NGINX instances are up and running:

$ curl -4 localhost:8080
$ curl -4 localhost:8081

You should be seeing the welcome page of NGINX in both cases.

To get the IPs of all attached containers, run this command:4.

$ docker network inspect frontend | grep IPv4Address

You should see something similar to the following:

"IPv4Address": "172.18.0.2/16",
"IPv4Address": "172.18.0.3/16",

To get the subnet used by the network, use the following (for example):

$ docker network inspect frontend | grep subnet

You should receive something along the lines of the following (obtained from
the previous example):

"Subnet": "172.18.0.0/16",

The host network allows us to run a container in the networking namespace5.
of the host.
Only use this network for debugging purposes or when building a system-6.
level tool. Never use the host network for an application container running a
production environment!

Assessments

[539]

The none network is basically saying that the container is not attached to7.
any network. It should be used for containers that do not need to communicate
with other containers and do not need to be accessed from outside.
The none network could, for example, be used for a batch process running in a8.
container that only needs access to local resources such as files that could be
accessed via a host mounted volume.
Traefik can be used to provide Layer 7 or application-level routing. This is9.
especially useful if you want to break out functionality from a monolith with a
well-defined API. In this case, you have a need to reroute certain HTTP calls to
the new container/service. This is just one of the possible usage scenarios, but it's
also the most important one. Another one could be to use Traefik as a load
balancer.

Chapter 11
Here are some sample answers to the questions presented in this chapter:

The following code can be used to run the application in detached or daemon1.
mode:

$ docker-compose up -d

Execute the following command to display the details of the running service:2.

$ docker-compose ps

This should result in the following output:

Name Command State Ports

mycontent_nginx_1 nginx -g daemon off; Up
0.0.0.0:3000->80/tcp

The following command can be used to scale up the web service:3.

$ docker-compose up --scale web=3

Assessments

[540]

Chapter 12
Here are some sample answers to the questions presented in this chapter:

A mission-critical, highly available application that is implemented as a highly1.
distributed system of interconnected application services that are just too
complex to manually monitor, operate, and manage. Container orchestrators
help in this regard. They automate most of the typical tasks, such as reconciling a
desired state, or collecting and aggregating key metrics of the system. Humans
cannot react quick enough to make such an application elastic or self-healing.
Software support is needed for this in the form of the mentioned container
orchestrators.
A container orchestrator frees us from mundane and cumbersome tasks such as2.
the following:

Scaling services up and down
Load balancing requests
Routing requests to the desired target
Monitoring the health of service instances
Securing a distributed application

The winner in this space is Kubernetes, which is open sourced and owned by the3.
CNCF. It was originally developed by Google. We also have Docker Swarm,
which is proprietary and has been developed by Docker. AWS offers a container
service called ECS, which is also proprietary and tightly integrated into the AWS
ecosystem. Finally, Microsoft offers AKS, which has the same pros and cons as
AWS ECS.

Chapter 13
Here are some sample answers to the questions presented in this chapter:

The correct answer is as follows:1.

$ docker swarm init [--advertise-addr <IP address>]

The --advertise-addr is optional and is only needed if you the host have
more than one IP address.

On the worker node that you want to remove, execute the following command:2.

 $ docker swarm leave

Assessments

[541]

On one of the master nodes, execute the command $ docker node rm -f<node
ID>, where <node ID> is the ID of the worker node to remove.

The correct answer is as follows:3.

$ docker network create \
 --driver overlay \
 --attachable \
 front-tier

The correct answer is as follows:4.

$ docker service create --name web \
 --network front-tier \
 --replicas 5 \
 -p 3000:80 \
 nginx:alpine

The correct answer is as follows:5.

$ docker service update --replicas 3 web

Chapter 14
Here are some sample answers to the questions presented in this chapter:

Zero-downtime deployment means that a new version of a service in a1.
distributed application is updated to a new version without the application
needing to stop working. Usually, with Docker SwarmKit or Kubernetes (as we
will see), this is done in a rolling fashion. A service consists of multiple instances
and those are updated in batches so that the majority of the instances are up and
running at all times.
By default, Docker SwarmKit uses a rolling updated strategy to achieve zero-2.
downtime deployments.
Containers are self-contained units of deployment. If a new version of a service is3.
deployed and does not work as expected, we (or the system) need to only roll
back to the previous version. The previous version of the service is also deployed
in the form of self-contained containers. Conceptually, there is no difference in
rolling forward (update) or backward (rollback). One version of a container is
replaced by another one. The host itself is not affected by such changes in any
way.

Assessments

[542]

Docker secrets are encrypted at rest. They are only transferred to the services and4.
containers that use the secrets. Secrets are transferred encrypted due to the fact
that the communication between swarm nodes uses mutual TLS. Secrets are
never physically stored on a worker node.
The command to achieve this is as follows:5.

$ docker service update --image acme/inventory:2.1 \
 --update-parallelism 2 \
 --update-delay 60s \
 inventory

6. First, we need to remove the old secret from the service, and then we need to
add the new version to it (directly updating a secret is not possible):

$ docker service update \
 --secret-rm MYSQL_PASSWORD \
 inventory
$ docker service update \
 --secret-add source=MYSQL_PASSWORD_V2, target=MYSQL_PASSWORD \
 inventory

Chapter 15
Here are some sample answers to the questions presented in this chapter:

The Kubernetes master is responsible for managing the cluster. All requests1.
to create objects, reschedule pods, manage ReplicaSets, and more happen on the
master. The master does not run the application workload in a production or
production-like cluster.
On each worker node, we have the kubelet, the proxy, and container runtime.2.
The answer is A. Yes. You cannot run standalone containers on a Kubernetes3.
cluster. Pods are the atomic units of deployment in such a cluster.
All containers running inside a pod share the same Linux kernel network4.
namespace. Thus, all processes running inside those containers can
communicate with each other through localhost in a similar way to how
processes or applications directly running on the host can communicate with
each other through localhost.

Assessments

[543]

The pause container's sole role is to reserve the namespaces of the pod for5.
containers that run in it.
This is a bad idea since all containers of a pod are co-located, which means6.
they run on the same cluster node. Also, if multiple containers run in the same
pod, they can only be scaled up or down all at once. However, the different
components of the application (that is, web, inventory, and db) usually have
very different requirements with regard to scalability or resource consumption.
The web component might need to be scaled up and down depending on the
traffic and the db component, in turn, has special requirements regarding storage
that the others don't have. If we do run every component in its own pod, we are
much more flexible in this regard.
We need a mechanism in order to run multiple instances of a pod in a cluster and7.
make sure that the actual number of pods running always corresponds to the
desired number, even when individual pods crash or disappear due to network
partition or cluster node failures. The ReplicaSet is the mechanism that provides
scalability and self-healing to any application service.
We need deployment objects whenever we want to update an application8.
service in a Kubernetes cluster without causing downtime to the service.
Deployment objects add rolling updates and rollback capabilities to ReplicaSets.
Kubernetes service objects are used to make application services participate9.
in service discovery. They provide a stable endpoint to a set of pods (normally
governed by a ReplicaSet or a deployment). Kube services are abstractions
that define a logical set of pods and a policy regarding how to access them. There
are four types of Kube service:

ClusterIP: Exposes the service on an IP address that's only accessible
from inside the cluster; this is a virtual IP (VIP).
NodePort: Publishes a port in the range 30,000–32,767 on every
cluster node.
LoadBalancer: This type exposes the application service externally
using a cloud provider's load balancer, such as ELB on AWS.
ExternalName: Used when you need to define a proxy for a cluster's
external service such as a database.

Assessments

[544]

Chapter 16
Here are some sample answers to the questions presented in this chapter:

Assuming we have a Docker image in a registry for the two application1.
services, the web API and Mongo DB, we then need to do the following:

Define a deployment for Mongo DB using a StatefulSet; let's call this
deployment db-deployment. The StatefulSet should have one replica
(replicating Mongo DB is a bit more involved and is outside the scope
of this book).
Define a Kubernetes service called db of the ClusterIP type for db-
deployment.
Define a deployment for the web API; let's call it web-
deployment. Let's scale this service to three instances.
Define a Kubernetes service called api of the NodePort type for web-
deployment.
If we use secrets, then define those secrets directly in the cluster using
kubectl.
Deploy the application using kubectl.

To implement layer 7 routing for an application, we ideally use an2.
IngressController. The IngressController is a reverse proxy such as Nginx that
has a sidecar listening on the Kubernetes Server API for relevant changes and
updating the reverse proxy's configuration and restarting it if such a change has
been detected. Then, we need to define Ingress resources in the cluster that
define the routing, for example, from a context-based route
such as https://example.com/pets to <a service name>/<port> or a
pair such as api/32001. The moment Kubernetes creates or changes this Ingress
object, the IngressController's sidecar picks it up and updates the proxy's
routing configuration.
Assuming this is a cluster internal inventory service, then we do the following:3.

When deploying version 1.0, we define a
deployment called inventory-deployment-blue and label the pods
with a label of color: blue.
We deploy the Kubernetes service of the ClusterIP type called
inventory for the preceding deployment with the selector
containing color: blue.

Assessments

[545]

When we're ready to deploy the new version of the payments service,
we define a deployment for version 2.0 of the service and
call it inventory-deployment-green. We add a label of color:
green to the pods.
We can now smoke test the "green" service and when everything is
OK, we can update the inventory service so that the
selector contains color: green.

Some forms of information that are confidential and thus should be provided to2.
services through Kubernetes secrets include passwords, certificates, API key IDs,
API key secrets, and tokens.
Sources for secret values can be files or base64-encoded values.3.

Chapter 17
Here are some sample answers to the questions presented in this chapter:

We cannot do any live debugging on a production system for performance and1.
security reasons. This includes interactive or remote debugging. Yet application
services can show unexpected behavior to code defects or other infrastructure-
related issues such as network glitches or external services that are not available.
To quickly pinpoint the reason for the misbehavior or failure of a service, we
need as much logging information as possible. This information should give us a
clue about, and guide us to, the root cause of the error. When we instrument a
service, we do exactly this — we produce as much information as reasonable in
the form of log entries and published metrics.

Prometheus is a service that is used to collect functional or non-functional2.
metrics that are provided by other infrastructure services and most importantly
by application services. Since Prometheus itself is pulling those metrics
periodically from all configured services, the services themselves do not have to
worry about sending data. Prometheus also defines the format in which the
metrics are to be presented by the producers.

Assessments

[546]

To instrument a Node.js-based application service we need to do the following3.
four steps:

Add a Prometheus adapter to the project. The maintainers of1.
Prometheus recommend the library called siimon/prom-client.
Configure the Prometheus client during startup of the application. This2.
includes the definition of a metrics registry.
Expose an HTTP GET endpoint/metrics where we return the collection3.
of metrics defined in the metrics registry.
Finally, we define custom metrics of the counter, gauge,4.
or histogram type, and use them in our code; for example, we
increase a metric of the counter type each time a certain endpoint is
called.

Normally in production, a Kubernetes cluster node only contains a minimal OS4.
to keep its attack surface as limited as possible and to not waste precious
resources. Thus we cannot assume that the tools typically used to troubleshoot
applications or processes are available on the respective host. A powerful and
recommended way to troubleshoot is to run a special tools or troubleshoot
container as part of an ad hoc pod. This container can then be used as a bastion
from which we can investigate network and other issues with the troubled
service. A container that has been successfully used by many Docker field
engineers at their customers site is netshoot.

Chapter 18
Here are some sample answers to the questions presented in this chapter:

To install UCP in AWS, we do the following:1.
Create a VPC with subnets and an SG.
Then, provision a cluster of Linux VMs, possibly as part of an ASG.
Many Linux distributions are supported, such as CentOS, RHEL, and
Ubuntu.
Next, install Docker on each VM.
Finally, select one VM on which to install UCP
using the docker/ucp image.
Once UCP is installed, join the other VMs to the cluster either
as worker nodes or manager nodes.

Assessments

[547]

Here are a few reasons to consider a hosted Kubernetes offering:2.
You do not want to, or do not have the resources to, install and
manage a Kubernetes cluster.
You want to concentrate on what brings value to your business, which
in most cases is the applications that are supposed to run on
Kubernetes and not Kubernetes itself.
You prefer a cost model where you pay only for what you need.
The nodes of your Kubernetes cluster are automatically patched and
updated.
Upgrading the version of Kubernetes with zero downtime is easy and
straightforward.

The two main reasons to host container images on the cloud provider's container3.
registry (such as ACR on Microsoft Azure) are these:

The images are geographically close to your Kubernetes cluster and
thus the latency and transfer network costs are minimal.
Production or production-like clusters are ideally sealed from the
internet, and thus the Kubernetes cluster nodes cannot access Docker
Hub directly.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Continuous Delivery with Docker and Jenkins - Second Edition
Rafał Leszko

ISBN: 978-1-83855-218-3

Learn how to clean your data and ready it for analysis

Get to grips with docker fundamentals and how to dockerize an application for
the CD process
Learn how to use Jenkins on the Cloud environments
Scale a pool of Docker servers using Kubernetes
Create multi-container applications using Docker Compose
Write acceptance tests using Cucumber and run them in the Docker ecosystem
using Jenkins
Publish a built Docker image to a Docker Registry and deploy cycles of Jenkins
pipelines using community best practices

https://www.packtpub.com/virtualization-and-cloud/continuous-delivery-docker-and-jenkins-second-edition

Other Books You May Enjoy

[549]

Mastering Docker Enterprise
Mark Panthofer

ISBN: 978-1-78961-207-3

Understand why containers are important to an enterprise
Understand the features and components of Docker Enterprise 2
Find out about the PoC, pilot, and production adoption phases
Get to know the best practices for installing and operating Docker Enterprise
Understand what is important for a Docker Enterprise in production
Run Kubernetes on Docker Enterprise

https://www.packtpub.com/virtualization-and-cloud/mastering-docker-enterprise

Other Books You May Enjoy

[550]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET application
 debugging 161, 162, 163, 164
.NET C# application
 instrumenting 168, 169, 170, 171
.NET Core-based service
 implementing 480, 481, 482, 483
.NET
 auto-restarting, working 150, 151, 152, 153,

155

A
Accelerated Processing Unit (APU) 318
ACR
 images, pushing to 520, 521
ADD keyword 85, 86
admin tasks
 executing, in container 180, 181, 182
affinity 318
Amazon ECS 327
Amazon Elastic Container Registry (ECR) 106
Apache Mesos 326
application services
 deploying, to Kubernetes 491, 492, 493, 495
application updates
 about 258
 blue-green deployments 259
 canary releases 260
 irreversible data changes 260
 rollback 261
 rolling updates 258
application, with Prometheus and Grafana for

monitoring
 high-level overview 484
application
 building 304, 306

 deploying 441
 deploying, to Kubernetes 514, 515
 deploying, to Kubernetes cluster 522, 524
 pushing 304, 306
applications, deploying on Docker Swarms
 about 358
 desired state, reconciling 363, 364
 multi-service stack, deploying 365, 366
 service logs 362, 363
 service tasks, inspecting 360, 361, 362
 service, creating 358, 360
 service, deleting 364
 service, inspecting 360, 361, 362
 stack, deleting 364
Auto Scaling group (ASG) 505
auto-restarting
 for .NET 150, 151, 152, 153, 155
 for Node.js 145, 146, 147
 for Python 147, 148, 149
availability zones 315
Azure CLI
 preparing 516, 517
Azure Container Service (ACS) 324, 515
Azure Kubernetes Service (AKS) 328
 exploring 515, 516
 reference link 516
Azure portal
 URL 515
Azure
 container registry, creating on 518, 520

B
blue-green deployment 259, 384, 385, 461, 462,

463, 464, 465
bridge network
 working with 267, 268, 269, 270, 271, 272,

273, 274, 275, 276, 277

[552]

C
canary releases 260, 385, 386
chief information officer (CIO) 319
chief technology officer (CTO) 319
Chocolatey
 about 25
 installing, on Windows 25
 URL 25
circuit breaker 255
Cloud Native Computing Foundation (CNCF) 324,

477

cloud
 Docker Swarm, creating 352, 353, 354, 355,

357

cluster 246
cluster nodes 407, 408
CMD keyword 87
code editor
 selecting 27
code
 auto restarting 145
 evolving 138
 instrumenting, to produce meaningful logging

information 165
 testing, in running container 138, 140, 141
Command Line Interface (CLI) 34
common vulnerabilities and exposures (CVEs) 14
Community Edition (CE) 17, 34
complex Dockerfile 89, 90
configuration data
 storing, in Docker Swarm 386, 387, 389, 390
configuration files
 using 131, 132
container images
 environment variables, defining in 133, 134
container layer
 modifying 112
container logs
 logging drivers mechanism 63
 retrieving 62, 63
Container Network Interface (CNI) 404
container network model (CNM)
 about 326
 endpoints 265
 exploring 264

 network 265
 sandbox 264
container plumbing 70
container ports
 managing 281, 282, 283
container registry
 creating, on Azure 518, 520
container runtime 408
container-specific logging driver
 using 64
containerd 71
containers
 about 11, 12, 13, 122
 anatomy 66
 architecture 18, 19
 benefits 16
 configuring 129, 130
 data, sharing between 122, 123
 development environment, running 234, 235,

237, 238
 environment variables, defining for 130, 131
 inspecting 57, 59
 line-by-line debugging 155
 listing 53, 54, 55
 need for 14, 15
 removing 57
 running 47, 48
 simple admin tasks, executing 180, 181, 182
 starting 49, 51, 55, 56
 stopping 55, 56
context-based routing 435, 436
continuous integration (CI) 293
control groups (cgroups) 14, 69
COPY keyword 85, 86
copy-on-write technique 77

D
DaemonSet 313
data volumes
 creating 112
 mounting 112
data
 sharing, between containers 122, 123
database
 about 445

[553]

 deploying 445, 446, 447, 448
declarative
 versus imperative 293
default logging driver
 modifying 65, 66
defensive programming
 error handling 254
 logging 253
 retries 253
deployment strategies
 about 371
 blue-green deployment 384, 385
 canary releases 385, 386
 health checks 378, 379, 380, 381, 382
 rollback 383, 384
 rolling updates 371, 372, 373, 374, 375, 376,

378

deployment
 streamlining 449, 450
desired state 424
distributed application architecture
 about 246, 247, 248
 patterns and best practices 248
distributed application, in production
 application updates 258
 logging 257
 monitoring 258
 running 257
 tracing 257
distributed application
 deploying, to Docker Swarm 512, 513
 monitoring, with Prometheus 483
DNS service 250
Docker CE, for Linux distribution
 reference link 34
Docker CE
 about 17
 installing, on Linux 34
Docker commands
 output, filtering 225
 output, formatting 224
Docker Compose overrides
 using 306, 307
Docker Compose
 used, for building images 295, 296, 297

 used, for running multi-service app 298, 299,
301, 302

Docker container networking
 versus Kubernetes pod networking 418, 420
Docker EE
 about 18
 deploying 505
 using, on AWS 505
Docker engine 19
Docker for Desktop
 installing 29, 31
 installing, on macOS 31, 32
 installing, on Windows 33
Docker Hub
 reference link 306
Docker images
 building 90, 91, 92, 94
Docker Machine (DM) 352
Docker pro
 applications security, tightening 228, 230
 read-only filesystem 228
 resources consumed by container, limiting 227
Docker secrets
 used, for protecting sensitive data 390
Docker Swarm
 about 325, 326
 application, deploying 358
 architecture 332, 333
 configuration data, storing 386, 387, 389, 390
 creating 341
 creating, in cloud 352, 353, 354, 355, 357
 distributed application, deploying to 512, 513
 stack 339, 340
 task 338
Docker Toolbox
 installing 34
 installing, on macOS 35, 36
 installing, on Windows 36
 setting up 37, 38, 40
Docker Trusted Registry (DTR) 18
Docker UCP
 infrastructure, provisioning 505, 507
 installing 508, 509, 510
Docker
 build process, optimizing 225

[554]

 environment clean, keeping 220, 221
 high-level architecture 67
 installation link 231
 installing 507, 508
 products 17
 running, in Docker 221
 tips and tricks 220
 using, to power CI/CD pipeline 203, 205, 206,

207, 208, 209, 211, 212, 213, 214, 216
Dockerfiles
 ADD keyword 85, 86
 best practices 96, 97, 98
 CMD keyword 87, 88, 89
 COPY keyword 85, 86
 ENTRYPOINT keyword 87, 88, 89
 FROM keyword 83, 84
 multi-step builds 94, 95
 RUN keyword 84
 used, for creating images 82, 83
 WORKDIR keyword 86

E
Elastic Container Service (ECS) 324
Enterprise Edition (EE) 17
Enterprise Service Bus (ESB) 100
ENTRYPOINT keyword 87, 89
environment variables
 at build time 134
 defining, for containers 130, 131
 defining, in container images 133, 134
 secret values 471, 473
evolving code
 mounting, in running container 142, 143, 144

F
FROM keyword 83, 84
Fully Qualified Domain Name (FQDN) 405

G
general availability (GA) 325
geo awareness 318
Git
 installing 26
GKE 524, 525, 527
Grafana

 deploying, to Kubernetes 495, 496, 498
grants 320
graph drivers 78
Graylog Extended Log Format (GELF) 64

H
health checks 378, 379, 380, 381, 382
Homebrew
 installing, on macOS 24, 25
 URL 24
host network 277, 278
host volumes
 using 124, 125, 126
HTTP-level routing
 microservice, extracting 287
 monolith, containerizing 284, 286
 reverse proxy, using 283
 Traefik, used to reroute traffic 288, 290
Hyper-V
 local Swarm, creating 344, 345, 346, 348

I
image namespaces 105, 107
image registries 105
images
 about 74
 building, with Docker Compose 295, 296, 297
 copy-on-write technique 77
 creating 78
 creating, interactively 78, 80, 82
 creating, with Dockerfiles 82, 83
 graph drivers 78
 layered filesystem 74, 75
 loading 98
 pushing, to ACR 520, 521
 pushing, to registry 108, 109
 saving 98
 sharing 105
 shipping 105
 tagging 105
 volumes, defining in 126, 127, 128
 writable container layer 76, 77
imperative
 versus declarative 293
Infrastructure as a Service (IaaS) 18

[555]

integration tests
 for Node.js application 186, 187, 188, 189, 190,

191, 193, 195, 196
introspection 323
IP address management (IPAM) 269

J
Jaeger
 URL 172
 using, for monitoring 172, 173, 175, 176
 using, for troubleshooting 172, 173, 175, 176
Jenkins
 URL 203

K
kube-proxy 408
kubectl
 testing 42
 used, for creating secrets 468
Kubelet 408
Kubernetes cluster
 application, deploying to 522, 524
 creating 521, 522
Kubernetes contexts
 reference link 42
Kubernetes deployment 432
Kubernetes master nodes 406, 407
Kubernetes pod networking
 versus Docker container networking 418, 420
Kubernetes pods
 about 417
 life cycle 423
 network namespace, sharing 420, 421
 specification 424, 426
Kubernetes ReplicaSet
 about 428
 self-healing 431
 specification 429, 430
Kubernetes service 433, 434
Kubernetes
 about 324, 325
 application services, deploying to 491, 492, 493,

495

 application, deploying to 514, 515
 architecture 403, 404, 405

 Grafana, deploying to 495, 496, 498
 liveness probe 452, 453, 454
 Prometheus, deploying to 484, 486, 487, 488,

490

 readiness probe 455
 secrets 466
 startup probe 456
 support, in Docker for Desktop 411, 413, 414,

416

 support, in Docker for macOS 411, 413, 415,
416

 versus SwarmKit 436

L
layered filesystem 74, 75
legacy app
 base image, identifying 102
 build instructions 100
 building 103
 configuration 101
 containerizing 99
 Dockerfile, authoring 102
 external dependencies, analyzing 100
 secrets 101
 secrets, using 395, 396, 397
 source code, locating 100
 sources, assembling 102
 start command, defining 103
Linux bridge 269
Linux command shell 23
Linux namespaces 67, 68, 69
Linux security module (LSM) 326
Linux
 Docker CE, installing on 34
 VS Code, installing on 28
liveness probe, Kubernetes 452, 453, 454
liveness
 defining 451
load balancer (LB) 405
load balancing 252, 315
local single node swarm
 creating 342, 344
local Swarm
 creating, in Hyper-V 344, 345, 346, 348
 creating, in VirtualBox 344, 345, 346, 348

[556]

 generating, with Play with Docker (PWD) 348,
350, 352

location awareness 318

M
macOS
 Docker for Desktop, installing on 31, 32
 Docker Toolbox, installing on 35, 36
 Homebrew, installing on 24, 25
 Minikube, installing on 41
 VS Code, installing on 27
man-in-the-middle (MITM) attack 14, 322
Marathon 327
metrics 476
microservice
 extracting 287
Microsoft ACS 328
Minikube
 about 409, 410
 installing 41
 installing, on macOS 41
 installing, on Windows 41
 testing 41
Moby project 16, 17
Modernize Traditional Apps (MTA) 99
monolith
 containerizing 284, 286
multi-host networking 340, 341
multi-service app
 running 294, 295
 running, with Docker Compose 298, 299, 301,

302

Mutual Transport Layer Security (MTLS) 319

N
named pipe 223
netshoot container 500, 501
network 246, 264
Network Address Translation (NAT) 404
Network File System (NFS) 116
network firewalling 266, 267
network namespace
 container, running in 279, 280
node 246
Node.js application

 debugging 156, 157, 158, 160
 integration tests 186, 187, 188, 189, 190, 191,

193, 194, 195, 196
Node.js-based service
 instrumenting 477, 478, 479
Node.js
 auto-restarting, working 145, 146, 147
null network 277, 278

O
official images 108
Open Container Initiative (OCI) 70
Open Container Project (OCP) 70
orchestrator, security
 about 319
 content trust 322
 cryptographic node identity 319
 network policies 320
 reverse uptime 322
 role-based access control (RBAC) 320
 secrets 321
 secure communication 319
 secure networks 320
orchestrator, tasks
 about 311
 affinity 318
 desired state, reconciling 311, 312
 global services 312
 introspection 323
 load balancing 314
 location awareness 318
 replicated services 312
 routing 314
 scaling 315
 security 319
 self-healing system 316
 service discovery 313
 zero downtime deployments 317
orchestrators
 about 309, 310, 311
 Amazon ECS 327
 Apache Mesos 326
 Docker Swarm 325, 326
 Kubernetes 324, 325
 Marathon 327

[557]

 Microsoft ACS 328
 need for 309, 310, 311
 overview 324
overlay network 340

P
package manager
 using 24
patterns and best practices, distributed application

architecture
 circuit breaker pattern 255
 defensive programming 253
 health check 255
 load balancing 252
 loosely coupled components 248
 redundancy 254
 routing 251
 service discovery 249
 stateful, versus stateless 249
Play with Docker (PWD)
 about 348
 used, for generating local Swarm 348, 350, 352
pod
 secrets, using in 469, 471
port 246
PowerShell
 for Windows 24
Prometheus
 deploying, to Kubernetes 484, 486, 487, 488,

489

 used, for monitoring distributed application 483
Python application
 instrumenting 166, 167, 168
Python
 auto-restarting, working 147, 148, 149

Q
quality assurance (QA) 108

R
random trivia question container
 running 51, 52, 53
readiness probe, Kubernetes 455
readiness
 defining 451

Red Hat Enterprise Linux (RHEL) 50, 84
registry
 images, pushing to 108
remote admin
 using, for UCP cluster 511, 512
remote container
 accessing, via HTTPS 239, 242
 code editor, running 239, 241
RESTful (REST) API 16
return on investment (ROI) 104
reverse proxy
 used, for HTTP-level routing 284
role-based access control (RBAC) 18
rollback 261, 383, 384
rolling updates 258, 317, 371, 372, 373, 374,

375, 376, 378, 457, 458, 459, 460, 461
round-robin algorithm 252
routing 251, 314
RUN keyword 84
runC 70
running container
 evolving code, mounting in 142, 143, 144
 meta information, executing in 59, 60
 Terminal's standard input, attaching to 60, 61,

62

S
scaling 315
secret values
 in environment variables 471, 473
secrets
 about 101, 321, 466
 creating 391, 392
 creating, with kubectl 468
 defining, manually 466, 467, 468
 simulating, in development environment 394,

395

 updating 398
 using 392, 394
 using, for legacy applications 395, 396, 397
 using, in pod 469, 471
self-healing system 316
sensitive data
 protecting, with Docker secrets 390
service discovery 313

service, running in production
 troubleshooting 499
service-level agreements (SLAs) 386
service
 about 246
 monitoring 476, 477
 scaling 302, 303, 304
smoke tests 259
Software Development Kit (SDK) 94
software-defined network (SDN) 320, 437
solid-state drive (SSD) 318
stack 339, 340
startup probe, Kubernetes 456
Swarm managers 334, 335
Swarm nodes 333, 334
Swarm routing mesh 367, 368
Swarm service 337, 338
Swarm workers 335, 336
SwarmKit
 about 378
 versus Kubernetes 436
System Under Test (SUT) 184

T
tag 105
tasks 338
teletypewriter (TTY) 78
Terminal
 accessing, via HTTPS 230, 233
 running, in remote container 230, 233
test containers
 using 183, 184, 185
Testcontainers project 196, 197, 198, 199, 200,

201

traditional applications
 Dockerizing, benefits 104
Traefik
 used, to reroute traffic 288, 290
Transport Layer Security (TLS) 101, 353, 390

U
UCP cluster
 remote admin, using for 511, 512

underlay network 341, 403
union filesystem (Unionfs) 70
Universal Control Plane (UCP) 18, 505
Universal Unique Identifier (UUID) 248

V
virtual ethernet (veth) 270
Virtual Extensible LAN (VXLan) 265
virtual machines (VMs) 13, 246, 506
VirtualBox
 local Swarm, creating 344, 345, 346, 348
volumes
 about 426, 427
 accessing, created with Docker for Desktop 119,

120, 121
 creating 113, 114, 115, 116
 defining, in images 126, 127, 128
 mounting 116, 117, 118
 removing 118
VS Code extensions
 installing 29
VS Code
 about 27
 installing, on Linux 28
 installing, on macOS 27
 installing, on Windows 28
VXLAN Tunnel Endpoint (VTEP) 341

W
web component
 deploying 441, 442, 443, 444
Windows
 Chocolatey, installing on 25
 Docker for Desktop, installing on 33
 Docker Toolbox, installing on 36
 Minikube, installing on 41
 VS Code, installing on 28
WORKDIR keyword 86
writable container layer 76, 77

Z
zero downtime deployment 317, 371, 457

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Motivation and Getting Started
	Chapter 1: What Are Containers and Why Should I Use Them?
	What are containers?
	Why are containers important?
	What's the benefit for me or for my company?
	The Moby project
	Docker products
	Docker CE
	Docker EE

	Container architecture
	Summary
	Questions
	Further reading

	Chapter 2: Setting Up a Working Environment
	Technical requirements
	The Linux command shell
	PowerShell for Windows
	Using a package manager
	Installing Homebrew on macOS
	Installing Chocolatey on Windows

	Installing Git
	Choosing a code editor
	Installing VS Code on macOS
	Installing VS Code on Windows
	Installing VS Code on Linux
	Installing VS Code extensions

	Installing Docker for Desktop
	Installing Docker for Desktop on macOS
	Installing Docker for Desktop on Windows
	Installing Docker CE on Linux

	Installing Docker Toolbox
	Installing Docker Toolbox on macOS
	Installing Docker Toolbox on Windows
	Setting up Docker Toolbox

	Installing Minikube
	Installing Minikube on macOS and Windows
	Testing Minikube and kubectl

	Summary
	Questions
	Further reading

	Section 2: Containerization, from Beginner to Black Belt
	Chapter 3: Mastering Containers
	Technical requirements
	Running the first container
	Starting, stopping, and removing containers
	Running a random trivia question container
	Listing containers
	Stopping and starting containers
	Removing containers

	Inspecting containers
	Exec into a running container
	Attaching to a running container
	Retrieving container logs
	Logging drivers
	Using a container-specific logging driver
	Advanced topic – changing the default logging driver

	Anatomy of containers
	Architecture
	Namespaces
	Control groups (cgroups)
	Union filesystem (Unionfs)
	Container plumbing
	runC
	Containerd

	Summary
	Questions
	Further reading

	Chapter 4: Creating and Managing Container Images
	What are images?
	The layered filesystem
	The writable container layer
	Copy-on-write
	Graph drivers

	Creating images
	Interactive image creation
	Using Dockerfiles
	The FROM keyword
	The RUN keyword
	The COPY and ADD keywords
	The WORKDIR keyword
	The CMD and ENTRYPOINT keywords
	A complex Dockerfile
	Building an image
	Multi-step builds
	Dockerfile best practices

	Saving and loading images

	Lift and shift: Containerizing a legacy app
	Analysis of external dependencies
	Source code and build instructions
	Configuration
	Secrets
	Authoring the Dockerfile
	The base image
	Assembling the sources
	Building the application
	Defining the start command

	Why bother?

	Sharing or shipping images
	Tagging an image
	Image namespaces
	Official images
	Pushing images to a registry

	Summary
	Questions
	Further reading

	Chapter 5: Data Volumes and Configuration
	Technical requirements
	Creating and mounting data volumes
	Modifying the container layer
	Creating volumes
	Mounting a volume
	Removing volumes
	Accessing volumes created with Docker for Desktop

	Sharing data between containers
	Using host volumes
	Defining volumes in images
	Configuring containers
	Defining environment variables for containers
	Using configuration files
	Defining environment variables in container images
	Environment variables at build time

	Summary
	Questions
	Further reading

	Chapter 6: Debugging Code Running in Containers
	Technical requirements
	Evolving and testing code running in a container
	Mounting evolving code into the running container

	Auto restarting code upon changes
	Auto-restarting for Node.js
	Auto-restarting for Python
	Auto-restarting for .NET

	Line-by-line code debugging inside a container
	Debugging a Node.js application
	Debugging a .NET application

	Instrumenting your code to produce meaningful logging information
	Instrumenting a Python application
	Instrumenting a .NET C# application

	Using Jaeger to monitor and troubleshoot
	Summary
	Questions
	Further reading

	Chapter 7: Using Docker to Supercharge Automation
	Technical requirements
	Executing simple admin tasks in a container
	Using test containers
	Integration tests for a Node.js application
	The Testcontainers project

	Using Docker to power a CI/CD pipeline
	Summary
	Questions
	Further reading

	Chapter 8: Advanced Docker Usage Scenarios
	Technical requirements
	All of the tips and tricks of a Docker pro
	Keeping your Docker environment clean
	Running Docker in Docker
	Formatting the output of common Docker commands
	Filtering the output of common Docker commands
	Optimizing your build process
	Limiting resources consumed by a container
	Read-only filesystem
	Avoid running a containerized app as root

	Running your Terminal in a remote container and accessing it via HTTPS
	Running your development environment inside a container
	Running your code editor in a remote container and accessing it via HTTPS
	Summary
	Questions
	Further reading

	Section 3: Orchestration Fundamentals and Docker Swarm
	Chapter 9: Distributed Application Architecture
	Understanding the distributed application architecture
	Defining the terminology

	Patterns and best practices
	Loosely coupled components
	Stateful versus stateless
	Service discovery
	Routing
	Load balancing
	Defensive programming
	Retries
	Logging
	Error handling

	Redundancy
	Health checks
	Circuit breaker pattern

	Running in production
	Logging
	Tracing
	Monitoring
	Application updates
	Rolling updates
	Blue-green deployments
	Canary releases
	Irreversible data changes
	Rollback

	Summary
	Questions
	Further reading

	Chapter 10: Single-Host Networking
	Technical requirements
	Dissecting the container network model
	Network firewalling
	Working with the bridge network
	The host and null network
	The host network
	The null network

	Running in an existing network namespace
	Managing container ports
	HTTP-level routing using a reverse proxy
	Containerizing the monolith
	Extracting the first microservice
	Using Traefik to reroute traffic

	Summary
	Questions
	Further reading

	Chapter 11: Docker Compose
	Technical requirements
	Demystifying declarative versus imperative
	Running a multi-service app
	Building images with Docker Compose
	Running an application with Docker Compose

	Scaling a service
	Building and pushing an application
	Using Docker Compose overrides
	Summary
	Questions
	Further reading

	Chapter 12: Orchestrators
	What are orchestrators and why do we need them?
	The tasks of an orchestrator
	Reconciling the desired state
	Replicated and global services
	Service discovery
	Routing
	Load balancing
	Scaling
	Self-healing
	Zero downtime deployments
	Affinity and location awareness
	Security
	Secure communication and cryptographic node identity
	Secure networks and network policies
	Role-based access control (RBAC)
	Secrets
	Content trust
	Reverse uptime

	Introspection

	Overview of popular orchestrators
	Kubernetes
	Docker Swarm
	Apache Mesos and Marathon
	Amazon ECS
	Microsoft ACS

	Summary
	Questions
	Further reading

	Chapter 13: Introduction to Docker Swarm
	The Docker Swarm architecture
	Swarm nodes
	Swarm managers
	Swarm workers

	Stacks, services, and tasks
	Services
	Task
	Stack

	Multi-host networking
	Creating a Docker Swarm
	Creating a local single node swarm
	Creating a local Swarm in VirtualBox or Hyper-V
	Using Play with Docker to generate a Swarm
	Creating a Docker Swarm in the cloud

	Deploying a first application
	Creating a service
	Inspecting the service and its tasks
	Logs of a service
	Reconciling the desired state
	Deleting a service or a stack
	Deploying a multi-service stack

	The swarm routing mesh
	Summary
	Questions
	Further reading

	Chapter 14: Zero-Downtime Deployments and Secrets
	Technical requirements
	Zero-downtime deployment
	Popular deployment strategies
	Rolling updates
	Health checks
	Rollback
	Blue–green deployments
	Canary releases

	Storing configuration data in the swarm
	Protecting sensitive data with Docker secrets
	Creating secrets
	Using a secret
	Simulating secrets in a development environment
	Secrets and legacy applications
	Updating secrets

	Summary
	Questions
	Further reading

	Section 4: Docker, Kubernetes, and the Cloud
	Chapter 15: Introduction to Kubernetes
	Technical requirements
	Kubernetes architecture
	Kubernetes master nodes
	Cluster nodes
	Introduction to Minikube
	Kubernetes support in Docker for Desktop
	Introduction to pods
	Comparing Docker container and Kubernetes pod networking
	Sharing the network namespace
	Pod life cycle
	Pod specifications
	Pods and volumes

	Kubernetes ReplicaSet
	ReplicaSet specification
	Self-healing

	Kubernetes deployment
	Kubernetes service
	Context-based routing
	Comparing SwarmKit with Kubernetes
	Summary
	Questions
	Further reading

	Chapter 16: Deploying, Updating, and Securing an Application with Kubernetes
	Technical requirements
	Deploying a first application
	Deploying the web component
	Deploying the database
	Streamlining the deployment

	Defining liveness and readiness
	Kubernetes liveness probe
	Kubernetes readiness probe
	Kubernetes startup probe

	Zero downtime deployments
	Rolling updates
	Blue-green deployment

	Kubernetes secrets
	Manually defining secrets
	Creating secrets with kubectl
	Using secrets in a pod
	Secret values in environment variables

	Summary
	Questions
	Further reading

	Chapter 17: Monitoring and Troubleshooting an App Running in Production
	Technical requirements
	Monitoring an individual service
	Instrumenting a Node.js-based service
	Instrumenting a .NET Core-based service

	Using Prometheus to monitor a distributed application
	Architecture
	Deploying Prometheus to Kubernetes
	Deploying our application services to Kubernetes
	Deploying Grafana to Kubernetes

	Troubleshooting a service running in production
	The netshoot container

	Summary
	Questions
	Further reading

	Chapter 18: Running a Containerized App in the Cloud
	Technical requirements
	Deploying and using Docker EE on AWS
	Provisioning the infrastructure
	Installing Docker
	Installing Docker UCP
	Using remote admin for the UCP cluster
	Deploying to Docker Swarm
	Deploying to Kubernetes

	Exploring Microsoft's Azure Kubernetes Service (AKS)
	Preparing the Azure CLI
	Creating a container registry on Azure
	Pushing our images to ACR
	Creating a Kubernetes cluster
	Deploying our application to the Kubernetes cluster

	Understanding GKE
	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

