

DevOps Paradox

The truth about DevOps by the people
on the front line

Viktor Farcic

BIRMINGHAM - MUMBAI

DevOps Paradox

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, without
the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or implied.
Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guaran-
tee the accuracy of this information.

Acquisition Editors: Dominic Shakeshaft, Jonathan Malysiak
Project Editor: Kishor Rit
Development Editor: Alex Sorrentino
Technical Editor: Saby D’silva
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Coordinator: Sandip Tadge

First published: August 2019

Production reference: 1290819

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78913-363-9

www.packt.com

Contents
Introduction �� 1
Jeff Sussna ��� 9
Damien Duportal ���35
Kevin Behr ���59
Mike Kail �� 107
James Turnbull �� 127
Liz Keogh �� 145
Julian Simpson �� 179
Andy Clemenko �� 201
Chris Riley ��� 231
Ádám Sándor �� 259
Júlia Biró ��� 283
Damon Edwards �� 313
Kohsuke Kawaguchi �� 341
Sean Hull ��� 363
Bret Fisher ��� 389
Nirmal Mehta ��� 417
Gregory Bledsoe �� 453
Wian Vos ��� 489
Index ��� 520

Introduction – what is the
DevOps paradox?

I love sharing with others. That's my main motivation when
I write a book. There's a hard-to-explain joy in knowing that
our work as authors might be helping others. But strangely,
that's not the case with DevOps Paradox.

This time, my motivation was much more self-serving.
I wrote this book because I personally wanted to understand
what DevOps is. Now if you know anything about me, or have
read any of my multi-book DevOps Toolkit series (https://
www.devopstoolkitseries.com), then you're surely
thinking that I should already know what DevOps is, especially
if I'm trying to spread my knowledge of it through these books.

The thing is, if there's anything that my years of working
in the field have taught me, it's that DevOps is not a well-de-
fined process. There is no set of rules that must be followed. As
I discovered in my journey, and as you'll read in these pages, it's
even questionable whether there is such a thing as a "DevOps
department" or a "DevOps engineer." This ambiguity is exactly
why DevOps is so fascinating to me, and I hope to you, the
reader, as well.

I love going to conferences, but not for the obvious reasons.
I rarely listen to talks. Instead, I tend to roam the corridors
of conference centers and convention halls looking for the
next victim who will allow me to pick his or her brain. The
best thing about conferences is networking. The most interest-
ing conversations are not taking place at scheduled talks, but
rather in corridors and at the after-parties.

DevOps Paradox

3

I consider myself lucky for being able to dedicate an impor-
tant portion of my time attending conferences since I know
that I benefit greatly from those "corridor-talks." I wanted
to do something similar with this book.

This book is called DevOps Paradox. For those of you who
may be wondering what it means, the Oxford English Diction-
ary defines the word "paradox" as:

A seemingly contradictory statement or proposition
which when investigated may prove to be well founded
or true.

Over the course of these interviews, my objective is to look
at these often-contradictory views of what DevOps is, which, as
we will investigate, may prove to be well founded.

What we have right now is an idea that people should work
more closely together and that we should remove the barriers
that slow them down.

As such, anything can be DevOps.
Almost every software company is marketing its products

as "DevOps," and "DevOps engineer" is the most sought-after
role in job listings. That's not to mention the fact that "DevOps
departments" are popping up like mushrooms after the rain.

Yet despite this, almost every person I spoke to in this
book gave me a different answer to the fundamental question
of "What is DevOps?"

DevOps brings sanity into a very chaotic world created by
a misunderstanding that software development is similar to
factory production. DevOps continues where Agile left off, and

Introduction

4

urges us to remove the obstacles that we were often not even
aware existed.

The idea of DevOps builds empathy between team members
that ultimately results in greater cooperation. It's about
culture, but it's also about the processes and the tools. At least,
that's what I originally thought, even though I received very
opposing definitions from the teams I worked with.

To answer the questions I had about DevOps, I asked
a number of DevOps practitioners what they thought DevOps
was. Some of them are industry veterans, while others are
up-and-coming stars. Some are my friends, while others are
people I have admired from afar.

Many of these conversations were recorded via remote sessions,
while others took place in pubs or in conference corridors. When-
ever I could, I did my best to speak with someone face-to-face.

I wanted the interviews to be casual. I did not want people
to answer predefined questions. Instead, my goal was to bring
to a wider audience the types of conversations I normally have
with experts I meet in conferences and in companies I work
with as a consultant. I do believe that some of the best break-
throughs come from corridor-talks. That's the spirit I wanted
to maintain in the interviews.

Each conversation starts with the question "What is DevOps?"
or some variation thereof. It is only meant to be a conversa-
tion-starter and to facilitate something that is an unstructured,
unprepared, and very casual conversation. Think of each inter-
view as a conversation with a friend or an acquaintance that
I've met in a pub. As a matter of fact, a few of them were actu-
ally recorded in a bar over a few beers!

DevOps Paradox

5

In this book, I wanted to share casual conversations with
people who practice and often shape DevOps. My hope is that
we'll get insights into what drives those people and come away
with a better understanding of what makes DevOps so powerful.

The only thing the people I interviewed have in common
is an interest in DevOps itself. You'll see, however, that some
of them have very opposing views of what DevOps actually is
(or is not), and even whether it's a worthwhile pursuit. You
may often feel that what is described by one person contradicts
what others have said. This is intentional and, in my opinion,
reflects the chaos DevOps is trying to tame. It also serves as
a reminder that we are still in the very early stages of adopt-
ing DevOps to our workplace cultures, while trying to navigate
the complexities of the software industry and finding different
solutions to the same problems.

With all that said, I urge you, the reader, to be open-minded.
You've almost certainly heard about DevOps, and many of you
are likely implementing some form of DevOps in your organ-
izations right now. I just ask that you leave what you know
aside. The interviews in this book are likely to turn everything
that you think you know upside-down. They will definitely
challenge your assumptions and your experience. What this
book won't do, however, is tell you on which side of the DevOps
debate to pitch your tent. There is no right or wrong answer
here. This book also won't tell you how to "do" DevOps, though
you may glean some ideas for implementation from the expe-
riences related in these interviews. My goal with this book is
solely to present both sides of the DevOps paradox and leave
the door open for you to make up your own mind.

Introduction

6

How ironic that something designed to break down silos
within organizations and foster cross-departmental collabora-
tion is the subject of so much debate within the IT community!
But that's the crux of the DevOps paradox, isn't it? And that's
why it's such a fascinating topic of conversation. You may not
agree with everything you read in these interviews, but at the
very least they should provoke thought and maybe even debate
within your organizations as you and your teams embark upon
your own DevOps journeys.

Lastly, before we get started, I'd like to thank those who
gave their time to be interviewed, I couldn't be more grateful
for all the great contributions you made. Thank you! This book
wouldn't be what it is without you!

I do my best to be approachable and help people improve
their skills. Feel free to contact me on Twitter (@vfarcic),
to send me an email (viktor@farcic.com), or to join Slack
workspace DevOps20 (http://slack.devops20toolkit.
com/).

DevOps Paradox

7

Viktor Farcic is a Principal Software Delivery Strategist and
Developer Advocate at CloudBees, a member of the Google
Developer Experts and Docker Captains groups, and published
author.

His big passions are DevOps, microservices, continuous
integration, delivery and deployment (CI/CD) and test-driven
development (TDD).

He often speaks at community gatherings and conferences.
He published The DevOps Toolkit Series (https://www.

devopstoolkitseries.com) and Test-Driven Java Devel-
opment (http://www.amazon.com/dp/B00YSIM3SC).

His random thoughts and tutorials can be found in his blog
TechnologyConversations (https://technologyconver-
sations.com/).

1

Jeff
Sussna
Founder and CEO,
Sussna Associates

Introducing Jeff Sussna

In 2011, Jeff Sussna founded Sussna Associates, a company
specializing in corporate workshops, coaching, and strategic
design that enables clients to integrate DevOps. The author
of Designing Delivery: Rethinking IT in the Digital Service
Economy, Jeff has more than 30 years of IT experience, from
software development to IT integration. You can follow him on
Twitter at @jeffsussna.

Viktor Farcic: Hi, Jeff. Before we start talking about DevOps,
could you introduce yourself?

Jeff Sussna: I'm an independent consultant focused on Agile,
DevOps, and coaching design thinking. Through my company,
Sussna Associates, I've been in the IT industry for 30 years
and during that time, I've built systems and led organizations
across the entire development QA (quality assurance) and
operation spectrum.

I was introduced to design thinking and, in particular,
service design and cloud computing in 2008, which was some-
what of an epiphany for me because I realized that in the 21st
century, service is really at the core of cloud computing and IT.
Whether it's infrastructure as a service or software as a service
or microservices, you're talking about service that needs to be
user-centered at every level of the organization.

I've really built that into the heart of my consulting practice,
helping IT teams, whether they're enterprises or start-ups, to
get them to really think in terms of whether it's their users,

DevOps Paradox

13

customers, database team, network team, application team, or
whatever you may have. Because of that, I was responsible for
introducing the idea of empathy into DevOps.

In my opinion, at the heart of what I'm doing is learning
about how development and operations can think in terms
of each other's needs. I brought all of those ideas together in
a book I wrote called Designing Delivery: Rethinking IT in the
Digital Service Economy.

What is
DevOps?

Viktor Farcic: In your view, what's the
meaning of the word "DevOps"? It's as if
nobody has a clear idea of what it is, or at
least everybody's idea is different. Some say
it's about new tools, some claim it's a change
in culture, while others associate it with

a DevOps engineer role. Some even say the word DevOps
doesn't exist. It goes on and on like that as if DevOps is
a conspiracy meant to confuse everyone.

Jeff Sussna: For me, the meaning of "DevOps" is right there
in the word itself. We have to start thinking about development
and operations as part of one larger unified entity. The guiding
principle I used to come to that conclusion again returns to this
idea of service. The way we deliver service is digitally, and the
thing about service is that the way you make it is part of what
you make.

If you look at some of the public relations nightmares that
have occurred in the airline industry over the last couple of
years, flights are being canceled because reservation systems
are going down. There was one incident recently when an airline

Jeff Sussna

14

couldn't check people in because their computer systems went
down, and they were trying to use their cell phones to check
people in.

Viktor Farcic: I think that everyone takes software for
granted these days. We are impatient and expect things to
happen immediately, and if things fail, users just move some-
where else. There's no loyalty anymore.

What many have not yet realized is that it's not only about
the features a piece of software offers, but also the stability of
its systems. Would you agree with that?

Jeff Sussna: More and more, what's happening is that the
user experience of the customer is very powerfully impacted
by operation successes and failures, as much as by features
and functionality. The example I like to use is that we imagine
there's a new restaurant in town. You try it on a Saturday night,
and when you come to work on Monday morning people ask
you how it was, and you say, "Well, the food was great, but
the service was awful." People are a lot less likely to try the
restaurant because they think of the food and the service as
part of one overall experience. In my opinion, DevOps reflects
the idea that we have to think about functionality and opera-
bility together.

"For me, the meaning of 'DevOps' is right there in
the word itself. We have to start thinking about
development and operations as part of one larger
unified entity."

—Jeff Sussna

DevOps Paradox

15

It doesn't matter how wonderful your design or how well
coded your website is, if it's very, very slow or if people are
constantly getting 500 errors, their level of satisfaction
will drop.

You have to think about system architecture and applica-
tion architecture. You have to think about how deployment
happens, and you have to think about security all as part of
one equation. In my mind, DevOps is a portmanteau, which
means that we took two words and smashed them together,
and the reason we smashed them together is that we started to
understand that they're really part of one thing.

Viktor Farcic: Like one big theme instead of departments?

Jeff Sussna: Yes, and one thing that's important to me is the
idea that smashing DevOps together doesn't necessarily mean
that everybody must work for the same manager or VP. Every-
body has to think about their work as part of something larger.
You have to think about your code in terms of, "how will this
code get deployed, how secure will this code be, how efficient
will this code be, and how well will this code scale?"

That doesn't necessarily mean that you have to be the person
who deploys it into production or answers the pager, whatever
the case may be. I work with a lot of enterprises that have this
notion of segregation of duties, and the idea that developers
aren't allowed to push code into production doesn't mean that
they can't do DevOps. If you're a large organization, whether
it's a multinational insurance company or Netflix, with a lot of
layers and a lot of pieces of technology, then maybe there are
a lot of microservices. If not, there's still a lot of applications.

Jeff Sussna

16

The idea that you can have them all as part of one big depart-
ment with one big giant foosball table and one big giant open
office space doesn't really make any sense.

You have to think about DevOps in terms of collaboration
among groups that don't necessarily report to the same person,
don't necessarily sit next to each other in the office, or don't
necessarily even work in the same city, and there's no problem
with that. The problem comes when each group thinks, "Well,
this is my job, and I worry about my job, and anybody else who
wants something from me has to get in line, and I'm just going
to think about my part of the puzzle."

DevOps in
the team
environment

Viktor Farcic: I often see the same thing
happening, with people saying, "This is my
job, but that's not my job." With that being
said, how do you prevent this type of think-
ing if different managers are giving differ-
ent teams different objectives, especially

ones that are not necessarily in line with the global vision
because everybody thinks only, as you said, of their part of
the puzzle?

"You have to think about DevOps in terms of
collaboration among groups that don't necessarily
report to the same person, don't necessarily sit next to
each other in the office, or don't necessarily even work
in the same city."

—Jeff Sussna

DevOps Paradox

17

Jeff Sussna: The way that I coach teams to do it is by getting
them to think of each other as the customers, in the same way
that the company thinks about people who pay the money to
their customers. The network team has customers, and it's
really funny because in DevOps, we engage in this little bit
of magical thinking where we're all thinking, "Well, one key
component of DevOps is the cloud." The cloud solves a bunch
of problems, and I agree with that, but if you think about an
AWS, Azure, or Google Cloud Platform, it's the ultimate silo.
There is no bigger silo than the one between your organization
and AWS.

AWS won't even tell you where the data center is, let alone
who works on your code, your systems, or whatever the case
may be. The thing about these organizations is that they under-
stand they're in the service business and their job is to help you
succeed, and they're continually innovating in order to help
you succeed. I think exactly the same model applies inside the
organization; whether it's split, whether you have two pizza
teams that are cross-functional, or if you have departmental
breakouts – it doesn't really matter. The question has to change
from how do we run the network to how do we help people use
the network, and that's a very, very subtle but very important
and really significant mind shift.

If you're thinking in terms of how do we run the network
and somebody wants an IP address, a DNS entry, or a fire-
wall change, they'll have to get in line behind your process. But
if you put them at the center, and you say, "Okay, our job is
to make sure that these applications can successfully run and
scale on top of our network," then things such as IP addresses,

Jeff Sussna

18

DNS entries, and firewall changes become the core of your job.
So, through that, your job becomes primarily one of thinking
about who are the people who need to use our services and
answering the traditional question of, "Well, how do we make
sure the router doesn't fall over?" It doesn't go away, but it
becomes an implementation detail as opposed to being the
core of your job.

Viktor Farcic: That makes perfect sense. Everyone's work
becomes user-centric, no matter whether those users are exter-
nal or internal. Meanwhile, everyone's job is to help someone,
even when that someone is a colleague from a different
department.

Empathy
in DevOps

You've both written and spoken a lot about
empathy. I'm not sure whether you coined
the term EmpathyOps, but can you elaborate
on what you mean by empathy?

Jeff Sussna: There's a lot of confusion and
anxiety about its meaning, and a lot of people tend to misun-
derstand it. Sometimes people think empathy means wallow-
ing in someone else's pain. In fact, there's actually a philoso-
pher from Yale University who is now putting out the idea that
empathy is actually bad, and that it's the cause of all of the
world's problems and what we need instead is compassion.

From my perspective, that represents a misunderstanding of
both empathy and compassion, but my favorite is when people
say things like, "Sociopaths are really good at empathizing".
My answer to that is, if you have a sociopath in your organiza-
tion, you have a much bigger problem, and DevOps isn't going

DevOps Paradox

19

to solve it. At that point, you have an HR problem. What you
need to distinguish between is emotional empathy and cogni-
tive empathy, and I use cognitive empathy in the context of
DevOps in a very simple way, which is the ability to think about
things as if from another's perspective.

If you're a developer and you think, "What is the experience
of deploying and running my application going to be?" you're
thinking about it from the perspective of the operations person.
If you're an operations person and you're thinking in terms of,
"What is the experience going to be when you need to spin up
a test server in a matter of hours in order to test a hotfix because
all of your testing swim lanes are full of other things, and what
does that mean for my process of provisioning servers?," then
you're thinking about things from the tester's point of view.
And so, to me, that's empathy, and that's empathizing, which
is really at the heart of customer service. It's at the heart of
design thinking, and it's at the heart of product development.
What is it that our customers are trying to accomplish, what
help do they need from us, and how can we help them?

Viktor Farcic: So, everyone has a customer, and we all need to
start thinking about whether our work makes our customer's life
easier or better, no matter whether that customer is internal or
external. We shouldn't hide behind artificial objectives anymore.

"I use cognitive empathy in the context of DevOps in
a very simple way, which is the ability to think about
things as if from another's perspective."

—Jeff Sussna

Jeff Sussna

20

Jeff Sussna: I'll give you an example of that. I actually got
a little grief about this recently because I tend to be a bit of
an AWS fanboy, but the reason for that is that I think they
understand the idea of user-centered innovation better than
anybody else.

A number of years ago, I was helping a client port an applica-
tion from a colocation center to Amazon. It was a fairly simple
app, and it was primarily a forklift port. It was running on
old hardware that was starting to fail, and they didn't want to
manage their hardware anymore. So we said, "Okay, let's just
put it to Amazon." In this case, we were not going to try and
do anything fancy like re-architect the application or anything
like that, but we should take advantage of some of the more
basic Amazon capabilities, like being able to run the web server
auto-scaled across multiple availability zones.

It's a pretty straightforward thing to do, and there's no
reason not to do it. We then came to one piece of our architec-
ture, which was a Memcached server, and we couldn't figure
out how to cluster it. It turned out that in those days, it was
fairly hard to do. There was a product available that was very
expensive, and we weren't sure if it really worked. So, we went
around for a while, before we finally decided, let's not worry
about it; it's a cache, and if the cache falls over, the application
is smart enough to fall back and go straight to the database.
Yes, it'll be slow, but it'll survive until we have a chance to tip
the cache back up. Let's not sweat it, let's just go on with our
work and finish.

We finished, and I think it was something like a few weeks
later when AWS announced a new service called ElastiCache,

DevOps Paradox

21

which was – guess what? – a clustered Memcached server that
ran across data centers. All you had to do was push a couple of
buttons and type a few things into the console, and you could
spin it up as a service. I remember thinking that it was as if
they had been reading our emails.

The point of the story is that Amazon wasn't just resting on
their laurels and saying, "We do infrastructure as a service, and
we do storage and VMs and networking." They were looking at
what it was that their customers were struggling with and how
they could help make it easier. I think that is the essence of
what we're talking about with DevOps: how do I, as a developer,
make operations' lives easier and better, and as an operations
person, how do I make development's life easier and better?

Viktor Farcic: But then what prevents companies from
applying this type of thinking? Is it that they don't want to take
this approach, that they don't see value in this line of thinking,
or is it something else?

Jeff Sussna: I was talking with a client just the other day
about this blockage in their process, to do with deploying code
to a test environment. I started the conversation by asking,
"Why can't developers deploy their own code? It's not produc-
tion. There is no segregation of duty issues." They just hadn't
thought about it. We talked it through, and they said there were
no underlying reasons they couldn't. We would need to make
some technical changes but there were no rules that say they
shouldn't. It's a simple example of making available that which
would make developers' lives easier. I think that expands out
from there.

Jeff Sussna

22

It has to do with the relationship between development and
design, product and development, development and operations,
and security and development. We all need to think from the
perspective of, "How do we help each other better accomplish
what we're trying to accomplish?" Empathy is what enables you
to do this. But empathy is also thinking in terms of, "Forget
about what I'm doing, what is it that you're trying to accomplish
and how could I use my expertise to help you accomplish it?"

Viktor Farcic: When you visit companies, do you see any
recurring themes, or any commonalities between them? Are
they facing the same problems, apart from the obvious of one
company is smaller and the other one is bigger?

The big DevOps
guy versus the
little DevOps guy

Jeff Sussna: I'm surprised at how
common they are, regardless of the
size of the company. For example,
pretty much every single client that
I've had, regardless of size, has
compliance issues.

Maybe they're a start-up, but they're a healthcare start-up,
which means they have to deal with HIPAA (The Health Insur-
ance and Accountability Act of 1996); or maybe they process
credit cards, which means they have to deal with PCI (Payment
Card Industry); or they provide services to the Federal Govern-
ment, which means they have to comply with FedRAMP,
which is as draconian as any of the other compliance rule sets
as you can find. Issues about audits, and segregation duties
and access control; all of those things are common across my
clients, regardless of their size.

DevOps Paradox

23

I see the challenges between development and operations as
being surprisingly universal. I think the main difference is that
in the big companies, the dysfunction tends to be structural,
as in, "I don't like your organization because we have different
VPs and the VPs are competing for power," or something like
that. Or maybe they're not competing for power, but they're
just sort of separate and they're in competition with each other
in some fashion.

There are institutionalized boundaries that keep people
apart. In smaller companies, it tends to be much more personal.
For instance, "I don't trust you because two and a half years
ago, you broke things in a major way and so I don't ever want
you deploying to production ever again," but these sorts of
struggles to trust and to understand are surprisingly universal.

It's funny because in both Agile and DevOps, we talk a lot
about feedback loops and how we can learn faster. If you look
at the three ways of DevOps, you have flow, feedback, and
continuous learning. It's surprising how difficult feedback is.

Viktor Farcic: I think that people tend to adopt practices,
but where they fail is in understanding the goals behind those
practices. As a result, we implement practices but fail to
connect with them and gain any real benefits. Almost everyone
collects feedback these days. The real question is, how many
use that feedback to learn and adapt?

"Pretty much every single client that I've had,
regardless of size, has compliance issues."

—Jeff Sussna

Jeff Sussna

24

Jeff Sussna: I did a workshop with a client, a whole section
of which was dedicated to feedback loops. The client was a very
mature Agile and DevOps organization, and at one point I gave
them an exercise, which was to take some linear processes they
had and reimagine them as circular, feedback-driven processes
in order to see what was different. They all chuckled and nodded
wisely at me. Someone raised their hand and said, "We don't
really have any linear processes anymore; we've made them all
circular," and I said, "Alright, well, indulge me – just try and
see what happens, this may be a very fast and easy exercise."

I'd split the group into four teams, and three of the four
teams independently came to the same conclusion, which they
reported to me very sheepishly after the exercise. They all came
to the conclusion that they were very, very good at collecting
feedback but they didn't actually do anything with it. They
realized they were wasting an incredible amount of time and
energy because they had this whole feedback loop mechanism
that they never really closed all the way. If there's a danger that
I see both with Agile and DevOps, it's that we get really focused
on how fast we can get stuff to production, and we see it as
essentially a push problem. One of the misconceptions I see
about DevOps is that DevOps is about deployment automation.

"If there's a danger that I see both with Agile and
DevOps, it's that we get really focused on how fast we can
get stuff to production, and we see it as essentially a push
problem. One of the misconceptions I see about DevOps
is that DevOps is about deployment automation."

—Jeff Sussna

DevOps Paradox

25

The problem with that is it's one-way, and you don't actu-
ally learn. If you push stuff to production and then all you do
is go and pick the next thing out of your backlog, how are you
really going to know that that's the right next thing to take out
of your backlog unless you pay attention to what's happened
to the thing you've just deployed? I would say the struggle to
really get beyond this sort of an industrial-age approach, of the
kind of pushing products out the factory door, is a universal
challenge.

Viktor Farcic: Isn't that an example of blindly following
processes without understanding the reasoning behind them?
The idea behind short sprints is not to be able to do more work
but to get that feedback sooner and better decide what to do
next. If we just pick up a new item from the backlog, we are
missing the point.

With that being said, let's change the subject. When you
work with teams or companies, what is the approach? Are we
starting from the top, from the bottom, or in the middle?

Jeff Sussna: I start all over the place; it really depends on the
client. I mean, generally, it's anywhere from the CIO to some
director of operations or director of development. It very much
depends. It's an interesting question because what I find is that
at some point, the two have to come together.

There's this interesting question about whether DevOps
requires an executive buy-in or whether it should be a grass-
roots thing. In my experience, it doesn't matter where it starts,
but at some point, it needs both.

I've seen places where, particularly with Agile, a CIO comes

Jeff Sussna

26

back from a conference and says, "We're doing Agile now,"
which is great; the process of actually going from that to an
organization that implements it really doesn't require a lot of
on-the-ground activity. Some of it is very grassroots: propa-
gation of new behaviors and activities. One of the places that
I focus on more and more is what the adoption process looks
like, and in my opinion, in my experience – and I think this
is another place where organizations struggle – changing how
the organization behaves is no different from changing how
your website works, or changing how your continuous integra-
tion pipeline works.

It's something that has to happen over time, and it has to
happen in an Agile way. What I mean by that is that there has
to be learning based on feedback; you can't just drop a plan in
and do it, because what happens is people interact with that
plan, they struggle, they resist, they learn, they make mistakes,
and you find out that your plan maybe needs a little adjust-
ment based on your corporate culture, so it's something that
really has to unfold.

Changing
the culture
around
DevOps

Viktor Farcic: When you try to change the
culture, do you have a plan? I remember
someone told me that you could not really
predict a complex system; the only thing you
can do is poke it and see what comes out.

Jeff Sussna: You're correct in thinking that you can have
techniques that you use to introduce people to your system,
and then you have to relate to what happens when they interact
with those techniques. Everybody is a little bit different.

DevOps Paradox

27

I teach, and when I do a coaching engagement, I always start
with, depending on the size of the organization, anywhere from
a week to a month spending a lot of time doing an embedded
observation to really understand who and where they are. From
there, I start introducing new techniques; whether it be stand-
ups, continuous integration, or automated server provisioning,
it really doesn't matter.

Then the fun starts when we're introducing Kanban. We're
thinking, "That's straightforward – we simply show people
how it works and explain the principal tool." But what actu-
ally happens is that when people start to work with it, they
struggle in ways that are very unique to who they are, what
their personalities are, and what their corporate culture is.
And that's where the real work starts, trying to actually relate
to those. I don't think you can really predict that. That's some-
thing that's very emergent.

Viktor Farcic: Right, we cannot blindly adopt anything since
each of us is very different, as is the culture of each company,
and our projects. To think that we can have such a vast differ-
ence and yet hope that a single solution will solve everyone's
problems is childish, in my view. We all need to gain experi-
ence, understand ourselves, and use that knowledge to discover
what works best for us.

I'm curious about design thinking, which is something
you've mentioned a few times now. Can you elaborate on that?

Jeff Sussna: Design thinking is quite simply the notion that
you can take something about the way designers solve prob-
lems, whether it be graphics, industrial, or user interface

Jeff Sussna

28

designers, and you can extract that into a methodology that
you can then apply to other problems. For example, how would
you introduce DevOps to a new company?

At the heart of design thinking is the notion of user-centered
design, which is based around empathy, but it has particular
techniques for helping you empathize, which are all based on
observing and interacting with your customers.

One of the things that I tell teams even deep within IT is that
if you're going to redesign something – for instance, you're the
database team and you want to redesign the process that appli-
cation teams use to get new database instances – start by just
observing how they do it, and actually go and sit with them and
just watch; and then from that you come up with a solution,
prototype that solution, and get feedback on it.

Too many times IT does this thing where we sort of figure
out what the right solution should be, we build it, and then we
send out these emails saying that we're going to roll it out over
the next three months with training. What we've failed to do
is take the time to understand how well our solution actually
works for the people who are going to be using it.

The idea of design thinking starts with empathetic obser-
vation. It can get more or less formal in terms of how it actu-

"Current Agile and DevOps practices are incomplete
because we don't really have a mechanism to
incorporate true feedback from the people we're trying
to serve."

—Jeff Sussna

DevOps Paradox

29

ally does that, and from there uses a very iterative process of
prototyping, user testing, redesigning, and re-implementing
to, almost in an Agile way, find its way to a solution.

Part of why I talk about design thinking so much is that
I think current Agile and DevOps practices are incomplete
because we don't really have a mechanism to incorporate true
feedback from the people we're trying to serve. But validating
our ideas, beliefs, solutions, and strategies with them is the
reason why I think it's important to incorporate design think-
ing into what we're doing.

Viktor Farcic: How about Agile and DevOps, then? Are they
separate things that you adopt, do they extend across each
other, or are they different names for the same thing? Because
from what you've said, there are things that sound similar
about the two.

Agile
versus
DevOps

Jeff Sussna: DevOps completes the Agile
equation. Agile talks a lot about delivering
value and working code, but the problem is
that by itself, it doesn't actually deliver
anything. Instead, Agile kind of stops when
you have code that's been written and tested,

which nobody can use, so it doesn't do anybody any good.
The reason for that is Agile grew up in the product age when

you would take your code, put it on a CD, and send it to your
customer, who were the ones responsible for actually deploy-
ing and operating it. Those days are pretty much gone now, so
that development and operations elements are really part of
the same equation. Agile can't actually deliver the value unless

Jeff Sussna

30

that code can be deployed, and that deployment environment
can be operated, and the problems can be fixed, including
where new code can be deployed, and so on.

I don't think development without operations is meaningful
anymore; and again, to clarify, when I say "operations," I mean
in the largest sense of overall operability, so that includes not
just running servers or running infrastructure, but also secu-
rity, which is an integral part of that.

If your code or your infrastructure isn't secure, that's prob-
ably worse than if they don't scale. If your code doesn't scale,
your website is slow, or your data entry application is slow, and
that's annoying.

Viktor Farcic: Being slow is definitely better than not being
available at all due to a security exploit that someone has used
to bring your whole cluster down. If my data gets stolen from
your system, not only will I not be your customer anymore, but
I am likely to sue you as well. The part that confuses me is the
talk about DevSecOps, because I come away feeling, like, why
are we even talking about security? Isn't security something
that is mandatory anyway and therefore part of DevOps? Or,
did it somehow become optional and now we need to talk about
including it as a separate practice?

Jeff Sussna: If my personal health data, credit card, or social
security number gets stolen, then that's a lot more than just
annoying. I know that when people talk about DevSecOps,
they talk about rugged DevOps, which is the idea of DevOps
with security built in. But the thing is, would you ever want to
propose doing non-rugged DevOps? I certainly wouldn't.

DevOps Paradox

31

I certainly wouldn't want to go to my CIO and say that
we don't want to do rugged DevOps, we're just going to do
unrugged DevOps, and that we're not going to worry about
security. I wouldn't think that would go down very well. But,
going from there, I think I would say that if we were trying to
be Agile, at this point, you can't really be Agile without extend-
ing that into your operational approach to things.

I think it's more and more questionable how meaningful
Agile and DevOps are without each other. I look forward to
the day when we have a better word that just encompasses the
whole thing, and we don't even worry anymore about whether
there's a division. I mean, if you think about it, the dividing line
between Agile and DevOps is still this strange space between
development and operations, which is what we're trying to
get rid of with DevOps. You could say that if you take DevOps
seriously, you can't really believe in a fundamental separation
between Agile and DevOps.

Viktor Farcic: In your experience, are there expertise groups
that are more or less willing to adopt this line of thinking, or is
that a universal problem for everybody?

Jeff Sussna: I think that more and more people are comfort-
able with the idea of joining Agile and DevOps together from
the perspective of how fast we can get something from the
product manager's brain into production. I think the backside

"I think it's more and more questionable how
meaningful Agile and DevOps are without each other."

—Jeff Sussna

Jeff Sussna

32

of the feedback loop is a lot harder, and I think most people are
still struggling with that, and that's a sin. As I've said before,
I think both Agile and DevOps discussions often share the same
sin, which is we think it's one-directional.

I'll give you an example: I worked with an organization
where I was told by the head of development that they did
sprint demos to show people what they were going to deploy
before they deployed it. The point of a sprint demo is infor-
mation; it's gathering feedback, it's making sure you're about
to deploy the right thing in the right way before you deploy it.
This head of development was approaching the sprint demo in
a pure sense: "well, we're done, and we're going to let you see
it before we ship it, but don't expect us to make any changes or
listen to your feedback." I see that problem all over the place.

Viktor Farcic: It's almost as if I'm giving you permission to
see it but whether you see it or not doesn't matter much to me.

Jeff Sussna: That's exactly right, and I think part of the
benefit of infusing design thinking is that at the very heart of it
is the idea that you're going to show it to somebody, and then
you're going to make changes based on their response to it.

Viktor Farcic: If I understand it right, that means that even
if we go years back, in many places Agile didn't work, because
if it did then that type of thinking would be engraved already,
at least, in parts of an organization.

You mentioned complex systems, and I think that's actually
worth talking about a little bit.

You hit the nail on the head when you said that complex
systems are ones that you can't predict. So, in that sense, you

DevOps Paradox

33

can't plan for them; you can only really probe them and inter-
act with them based on what you learned from that probe.

Jeff Sussna: The systems we are building are complex
systems, so even in enterprises where there are very legacy
environments, I see more and more that they'll have outages
that are caused by interactions between the application, data-
base, network, load balancer, and firewall.

In order to understand the outage, you have to understand
how all of the components interact with each other, and if any
of those had been different, then the outage might have been
different, or it might not have happened at all. What digital
business and the digital economy and all that the fun stuff is
doing is breaking down the boundaries between these differ-
ent systems.

Viktor Farcic: When I see things like this whole idea of
bimodal IT, to me it doesn't actually connect to reality, because
what I see is customer-facing applications that, in order to work
properly, have to interact with ERP, or Enterprise Resource
Planning, systems, and the lack of agility in the ERP system
becomes a blocker to agility in the frontend system.

Nowadays, we have to think about our whole organization
and all of our systems together as this one complex system.

Jeff Sussna: If we can't predict or control complex systems,
what do we do? Do we just give up? No, we have to have the
ability to continually learn. So, why do we need Agile? Why do
we need DevOps? Why do we need design thinking?

Because when we approach them correctly, they give us the
ability to very efficiently, and effectively, continuously learn

Jeff Sussna

34

from each other, from our customers, from our systems, from
our incidents, and I think that's ultimately what we are trying
to accomplish with all of these new practices.

Viktor Farcic: In my experience, when I dig a bit deeper,
beyond what people tell me, I find somehow that the blame is
always the biggest obstacle because when those things happen,
like what you said – for example, an outage – somebody needs
to be blamed for that, and that means nobody's going to give
me enough information so I can learn from it.

Jeff Sussna: Even beyond that, the idea of blame assumes
that you could isolate causes.

Viktor Farcic: Right, which brings us back to the complex
system.

Jeff Sussna: Exactly.

Viktor Farcic: I think that gives us a nice place to wrap up
unless you have anything else to say, Jeff?

Jeff Sussna: No, I don't, but it's been great talking to
you, Viktor. I can't wait to see what everyone else thinks
about DevOps.

2

Damien
Duportal
Træfik's Developer
Advocate

Introducing Damien Duportal

According to Damien, being a DevOps engineer is all about
the people, culture, and tools. Alongside his work at Træfik,
Damien is a training engineer at CloudBees, where he focuses
on the CloudBees Jenkins Platform and Jenkins OSS. You can
follow him on Twitter at @DamienDuportal.

Viktor Farcic: I'm going to ask you a question that I want
to use as a springboard into our discussion of DevOps. Simply
put, what is the Duportal definition of DevOps?

The
Duportal
definition
of DevOps

Damien Duportal: Today, DevOps is
a trendy buzzword that is used to try to
achieve focus on value, and not only for the
technical or cost concerns. At its core,
DevOps is really about how we should work
together in the IT industry. I'm not just

talking about the process, but also about the culture, tools, and
the people involved in it. This is why I said it's a trendy
buzzword because there is no strict definition as you could
have for IT service management.

"DevOps was focused not on the tools themselves but
on the way these tools could achieve either a new way of
working or a breaking down of the barriers between teams
and departments, which means working and talking to
each other, in order to generate cross-team awareness."

—Damien Duportal

DevOps Paradox

39

More recently, DevOps has been taken over by a different
sphere of influence, but initially, for me, it was a movement
that started around the idea of tooling. DevOps was focused
not on the tools themselves but on the way these tools could
achieve either a new way of working or a breaking down of
the barriers between teams and departments, which means
working and talking to each other, in order to generate cross-
team awareness.

I define DevOps as empathy, which I think is the main key
here. DevOps is a way of bringing empathy back into our work,
and the tools—Docker being the most famous, but by no means
the only one—that can help you to do that. But it's important to
understand that when I say empathy, I mean empathy with your
other colleagues, not just between the two sides of DevOps—
development and operations—but also between engineers and
salespeople, executives and employees, and all of the local
departments of an organization that should focus on the global
optimum and not on their local optimum. You need to be aware
of the issues that your other colleagues could be facing and not
just those issues affecting you or your local departments. The
tools are just one way of achieving that, which appeals a lot to
engineers because engineers love their tools.

Can DevOps
bring empathy
back?

Viktor Farcic: So, DevOps is really
using tools to help bring empathy back?

Damien Duportal: Yes! If you have
a tool that helps you to share empathy,
then you have a great foundation

for starting the conversation. Even if this seems boring to

Damien Duportal

40

engineers, at least they'll start talking and listening to each
other. I mean, once they've stopped debating sterile tabs
versus spaces or JavaScript versus Java—or whatever sterile
debate it is—they'll have to focus on the value they're going to
provide. So, this is really how I would sum up DevOps, which
again is about how you bring empathy back and focus on the
value creation and interaction side of IT.

Viktor Farcic: But why is that particularly important?

Damien Duportal: Because of the different human behav-
iors. But more than that, empathy is one of the most advanced
bricks you can have for building human interaction. If we
are able to achieve so many different things—with different
people, different opinions, and different cultures—it's because
we, as humans, are capable of having high levels of empathy.
As soon as you have empathy, you can understand why you
provide value. If you don't, then what's the point of trying to
create value? It will only be from your point of view, and there
are over seven billion other people in the world. So, ultimately,
we need empathy to understand what we are going to do with
our tools.

Viktor Farcic: That's a good one. You mentioned that Docker
is one of those tools; could you expand on that?

"I would sum up DevOps as how you bring empathy
back and focus on the value creation and interaction
side of IT."

—Damien Duportal

DevOps Paradox

41

Damien Duportal: Before I went freelance, I worked as
a developer, but because there were only a few of us, I was
quite close to those working in operations. Despite taking Java
development courses as an engineering graduate, I was always
interested in how we could start coding the infrastructure from
very early on. I can't remember who said this, but I believe it
was someone at Netflix—If you build it, you run it. I love that
mindset and it's what brought me to provisioning tools such as
Docker, SaltStack, Chef, Puppet, and Ansible.

Overcoming
the fear of
change

We used a lot of these tools to help to
bring operations teams' concerns to devel-
opers. Bear in mind that a lot of develop-
ers didn't want to learn these tools, and
what I quickly discovered was that this was
because of fear. Developers were driven

by fear because they didn't understand these new tools and,
because they lacked a lot of knowledge, they were closed off.
They were terrified by the idea of operations knowledge and
failed to actually see that these tools presented a lot of new
things for them to learn and try. But what the developers didn't
realize was that that fear was also present in the operations
people on our teams, and that was just locally.

Viktor Farcic: That fear of change is a really great perspec-
tive, but did you ever manage to remove that fear from both the
development and operations teams?

Damien Duportal: I should add that I can't generalize to
other contexts, but that's how I understood things and behav-
iors from our end. In response to your question, it took me

Damien Duportal

42

three to four years of trying to build a bridge between both
parties and convincing them not to be scared. That bridge was
me saying that we can work together and choose pair program-
ming, even something as simple as sharing a beer after work or
a coffee before, or doing sports together outside of work. Was
it successful? Well, it was helping, but not completely solving
the problem because at the time I lacked the ability to bring
empathy to the team.

When Docker landed, it was as if I had seen the light at the
end of the tunnel because, finally, I had a development tool
produced by a person who shared the same concerns of those
in operations at the heart of the development. That's really the
reason why I used it. The good thing is that whenever a person
started with Docker, they had the same learning curve. Why
was this important? Because it made it visible for everyone
that we all had a lot to learn.

Docker managed to be the bridge because it successfully
broke down the barrier of fear because operations not only saw
what they had to learn, but it turned out that they really liked
learning the new tools. The only thing missing now was the
time to learn. But the time issue was also seen as a potential
investment opportunity, with those in operations thinking that
if they spend time learning Docker, then gradually, the devel-
opers would follow us or our recommendation. At the same
time, on the other side of the bridge, the developers were start-
ing to think along the lines of: "Hey! That tool Docker sounds
good! It could help us. It's easy to use, and it works very fast."
Docker was just a way to turn a lot of this scary-sounding tech-
nology into a fancy tool. So, with that thinking, even marketing
got on board and helped spread awareness of it everywhere.

DevOps Paradox

43

Viktor Farcic: But apart from building a bridge between the
two teams, how was Docker able to create a feeling of empathy
between them?

Damien Duportal: What Docker did was make the learning
curve linear. You were able to start with just a few lines of code
and get something done very easily. Through this, you could
then see that if the coding worked, then it's already gained value.
The teams were able to choose the moment when they would
learn and add more quality or more completeness to what they
wanted to achieve with Docker. This method was quite linear
when compared to whatever tools you could have used before
for finding the gaps. But back then, you had to learn Linux
and Linux configuration, and possibly even Unity or systemd—
all of the distributions—which were all learned in big steps.
This was how I discovered and was subsequently convinced,
in a very short time, that these tools brought empathy.

It reminds me of situations we, as an industry, have been
completely locked on for years, such as an operations person
coming to the development team and saying: "Hey! Nice appli-
cation. Do you know where the application is expected to write
files on the filesystem?" Because, by saying that, it implied the

"Docker managed to be the bridge because it
successfully broke down the barrier of fear because
operations not only saw what they had to learn, but it
turned out they really liked learning the new tools. The
only thing missing now was the time to learn."

—Damien Duportal

Damien Duportal

44

intention was because we have an issue in production right
now, a performance and/or security issue or an audit, and we
needed that information because it's valuable. But in that case,
the communication was just: "We need this, and it's manda-
tory." But all the developers heard was: "Oh, yeah. We want
information that's really boring, and we don't want to search
by ourselves."

Viktor Farcic: So, did Docker remove that barrier?

Docker,
containers,
and the rate
of adoption

Damien Duportal: The message was
totally transformed. By using Docker as
a support for the base communication, we
just removed that barrier. In Docker, you
can just say: "OK. Let's use the read-only
flag," and by default, everything will be

forbidden in writing except when you have an exhaustive list of
the data volume. This is technical stuff, but once you've tackled
the technical problems, you remove the stress, and then you
can start talking. We were in need of Docker because we needed
to remove that stress. You just removed the engineering part
and focused on the discussion of needs in advance, and that's
why Docker was a big game changer here, but it stands on the
shoulders of giants.

In earlier years, this work was being done by the likes of
Puppet and Chef, who were already bringing the development
mindset back to operations. Operations people are just devel-
opers for the system. For example, all kernel developers are
developers, and their operations people help. So, there is no
such thing as operations or development because, at the end

DevOps Paradox

45

of the day, we are all doing the same job. It's just that the
amount of knowledge required for each area is much more
than one person can handle on their own, so we have to parti-
tion that knowledge. But still, the daily job is editing text files,
planning, and testing that that change locally, and then glob-
ally, is the same for everyone. We just have to be reminded of
this, and Docker was a great aid for that.

Viktor Farcic: That's interesting because, if I understand
you correctly, what you said is that Docker made it possible
to implement DevOps without companies having to plan the
change. Basically, Docker made it happen naturally without
any enforcement of the idea that you need to talk to this guy.
Otherwise, the consequences are going to happen.

Damien Duportal: I used to say that Docker was just
uncovering the dust that you hide for a year under the carpet,
and suddenly, you put Docker somewhere, and you can use
it as a maturity indicator. If you put Docker somewhere and
everything explodes, then you don't know how to monitor
Docker, or even how to build an image. If that's the case, the
real question then is what were you doing before Docker? Were
you just covering your eyes and throwing code into production
without thinking about it?

"I used to say that Docker was just uncovering the dust
that you hide for a year under the carpet, and suddenly,
you put Docker somewhere, and you can use it as
a maturity indicator."

—Damien Duportal

Damien Duportal

46

Generally speaking, the issue was that the knowledge was
partitioned across all of the different departments and no one
was sharing. Docker is just there to underline that point. It
would say: "OK. If you're having issues, it's because you are not
able to communicate with each other efficiently. You already
have the knowledge, you already have the skills, but you need
to bring awareness and empathy," and that was a much better
indicator for me.

Viktor Farcic: So, how big do you think the adoption of
containers is these days? Is everybody already using it, or is
the full acceptance of it still pending?

Damien Duportal: I would say it's still pending.

Viktor Farcic: What's stopping everybody from adopting it?

Damien Duportal: I don't have enough experience to give
a definitive answer as I haven't seen that many cases, but what
I have seen over at least the last two years is a failure to take
the time to embrace the change. In layman's terms, this means
DevOps teams are saying: "We're scared of doing that. We are
always on edge in terms of timing. Stop focusing on what is our
value, what we could bring, and what we should remove on our
path, and instead tell us what we should focus on." So, then,
you could say that we might use a container, and this could
help us. It's an investment; we can spend some time now so
that we don't have to spend time later on. That issue is more
about being totally on edge, and not being able to stop, focus,
and breathe. This can, of course, be caused by a number of
things such as a large number of people leaving the company,

DevOps Paradox

47

culture issues, or a big increase in the workload, but they're all
things that shouldn't last for any significant amount of time.

The other thing I saw, mainly with smaller companies, or
where they have people that are already efficient in empathy,
is that, by sharing and being empathic, they don't see the
container as bringing them value. Let's say you have three big
metal machines: what's the point of installing Kubernetes or
Docker Swarm if you already have a load balancer and a few
applications? I would be interested to ask the same question in
two years' time because there are things in motion that cannot
be stopped. I wouldn't say container is the de facto standard;
it's just that things that were in one direction three years ago
have totally changed. But I'm not scared by this because that
would mean you have the mindset of saying, "should we do
that?" Yes, because of blah, blah, blah, or no, because of blah,
blah, blah. If that's going to happen, expect to spend the next
six months, or even years, evaluating your options based on
your current context.

Viktor Farcic: But the idea is that containers will become the
de facto standard, so do we just need more time, or is some-
thing else coming down the line?

Damien Duportal: One thing that containers don't bring to
the table is resource management as we used to have it. I have
an example from the CI/CD world with Jenkins, where it has
been a challenge to use Docker in the same way over the past
few years, and it's still because what you want is to allocate
resources when you need them, and deallocate resources when
you don't need them anymore.

Damien Duportal

48

Back then, containers were thought to be the golden solu-
tion, providing you with an immutable environment that you
could easily start and stop within a few seconds, and then use
the implied infrastructure for running the container, which
could bring you these facilities of scaling horizontally or verti-
cally. Right now, we have a cloud solution, and this is how they
make money in the cloud by providing a platform on which
to run these containers. So, I think this will be the big kick
in the backside, in the sense that now that everyone is selling
platforms for running containers on all of the big guns in the
market, the rest will just follow. It's exactly like where virtual
machines were a decade ago.

Viktor Farcic: Out of interest, what system did you grow up with?

Damien Duportal: I'm too young to have known the tran-
sition to virtual machines. I just know my history. I started
with a PowerPC Mac, and everyone told me that I was running
a virtual PC, and because of that, I was wasting resources. But
two years later, when I started engineering IT boards, every-
one was like: "Oh, look; this metal provides a virtual machine,
so it's easier as I can change it during a run." History is a repe-
tition. Virtualization concepts have existed for 40 years, so
a container is just one way of reusing this concept, and this
technology is just improving the usage.

"What's missing in order to have containers as the de
facto standard? Just a bit of time for everyone to be
convinced that the system is good for them."

—Damien Duportal

DevOps Paradox

49

What's missing in order to have containers as the de facto
standard? Just a bit of time for everyone to be convinced that
the system is good for them. But there are also other factors, for
example, the recruitment and subsequent hiring crisis, which
is resulting in it being difficult to find good engineers. So, that's
not the person with the diploma who solves problems in the IT
area—say, someone like an IT engineer or software engineer
because we already have a lot of them—but it's not enough.
What we require is people with different backgrounds, because
as the container becomes the de facto standard platform, it will
create the required blueprint for everyone to build something,
whatever language, culture, or way of working you come from.
I think it's more a matter of time than anything else.

Software
companies,
vendors, and
conferences

Viktor Farcic: You've mentioned
companies. I know that you go to confer-
ences every once in a while, so I'm wonder-
ing what do you think about software
vendors nowadays? Whenever I go to
a conference, I always see every product

being labeled as DevOps, and I'm getting a bit confused by that
because it's got me thinking, what do they actually mean?

Damien Duportal: It's just a way for those vendors to
find a business model in a fast-changing sector. There are
the debates about the open source or closed source business
models. As you said, everyone at conferences today is selling
DevOps because everyone understands that selling just a single
piece of software is not sustainable. It might have been in the
1980s or 1990s, but not today. As a developer, you need to grow

Damien Duportal

50

the value of what you are providing, or someone else will build
the same software and will just totally roast you in their wake.
When I grew up as an engineer, the pace of new development
was years, but now it's months.

You can start with whatever legendary product you want,
but in a few months' time, someone else will be able to dupli-
cate it even more successfully, or at least for a cheaper price.
So, DevOps is a way of not closing yourself off on the business
marketing side.

It's a loose coupling between the marketing people and engi-
neers because they're not totally sure, so they shove the DevOps
between those two. Maintaining the lines of communication
between these two departments should bring cross-depart-
mental awareness because the engineers have the ideas, some
of which have sales potential while others do not, but they are
valuable internal assets, and marketing need to sell things.

I'm not a marketing person, but at the point where you need
to market the product to someone that doesn't have the engi-
neering background, you need to have some synchronization
between teams. It's much like databases. If you do synchroni-
zation or meetings all of the time, you are locked in, and you
can't go fast. But if you go too fast, you'll have desynchroni-
zation between both the organization and the local optimum
that are not the global optimization of the organization. So,
by using DevOps in marketing as a tight coupling, you say:
"OK, let's put in that blocking keyword, and then we'll see."

Viktor Farcic: You've spent a lot of time teaching. It's got me
wondering: what challenges do you face when you try to teach
people something?

DevOps Paradox

51

Damien Duportal: It's all about the diversity block word.
I said "block word" because it can have a lot of meanings based
on your intention, but the main barrier here is that we are in
desperate need of skilled engineers, and right now, we have
a few ways to teach people how to be engineers and prob-
lem-solving people. What we need are developers, not those
that aren't at that engineer-grade level, but those who are able
to build stuff.

I've lived through the very cool change that saw people
coming from web development who then started to work next
to Java developers, who used to be the backend of the organiza-
tion. You had just enough cases where they were fighting each
other. Those frontend developers with their just-enough typed
language—JavaScript—where you can do whatever you want in
JavaScript, and that's catastrophic. Everyone was focusing on
that, but there were a lot of situations where people were start-
ing to learn from each other.

JavaScript went untyped and took the good things from the
other world, and this is exactly what we need: more people
coming from different backgrounds and different work cultures.
Just to be able to say: "OK, well, you used to do things that way,
but I would have done it this way." We could learn a lot from

"JavaScript went untyped and took the good things
from the other world, and this is exactly what we need:
more people coming from different backgrounds and
different work cultures."

—Damien Duportal

Damien Duportal

52

each other, because it's not only about the person that knows
and the person that doesn't know, it's also about the person
who thinks differently; and that can help you to focus again on
the value, because our brains are all different, and the bigger
barrier in education is teaching to different profiles.

The
education
system

Viktor Farcic: So then, what's your view of
the education system? How do we get it to
teach to so many different profiles?

Damien Duportal: Some people prefer
hands-on practice over reading. For instance,

if someone says that they don't understand your slides about
the network OSI model, that's actually OK. What you should do
then is give them a Raspberry Pi and a keyboard and make them
learn by configuring a TCP/IP, and then they'll go back to learn
the OSI model. We know it's a requirement to have that foun-
dational knowledge and, for now, it's OK. But do you need it
after working in IT or networks for a few years, or do you need
it upfront before doing anything else? It depends, and if we say
we should teach all people like this, we are already in the wrong.

The main challenge is finding teachers who are adapt-
able, and are able to talk to the people in front of them and
say: "OK, you don't understand what I'm saying? I need to
find something else, or I need to ask for help from someone
else, someone in the group maybe." It's not only about being
a teacher or a student. It's about sharing knowledge and learn-
ing from each other. I think I learn as much as my students do
each time, which is fine, and I think we need people that are
not scared of that fact.

DevOps Paradox

53

You just have to look at what's currently happening where
I grew up and where I live—in Western Europe: the educational
system creates that fear. You are the teacher; the students must
address you as a grown-up adult, which I am not at all and will
never be. But that's the case for a lot of people. I feel the best
place for people to learn and share knowledge is in a less formal
environment, but we have some work to do in order to safe-
guard that. Only time and experimentation will help to solve
this issue. Because again, almost all teachers have the skills
and the knowledge. But their ability to share this knowledge is
blocked by their fear of not knowing everything, of not always
having the right answer, of feeling ashamed to say when they
don't know something or that they need help from someone
else. Sometimes we just need to figure out a solution together.
There's absolutely no shame in that.

Viktor Farcic: Because what you're now describing in educa-
tion to me sounds very similar to what you described initially
with the empathy problems faced in companies.

Damien Duportal: Well yes, it does, and that's because,
once you are adaptable to unlearning what you've learned, you
can start solving problems by saying: "OK, let's take a deep
breath and focus on what the problem is that I need to solve."
You might try different ways until you solve it, or equally,
maybe you don't solve it. But whatever you do, you at least
learned something and maybe, along the way, you solved the
issue. I mean, that's the natural cognitive pattern for humans,
and because of that, we need to have it in both education and
work, and not only in the IT sector.

Damien Duportal

54

I mean, we know how farmers are doing things. For instance,
you cannot be a farmer for 40 years and always have the exact
same routine because the climate is constantly changing. You
don't know whether you'll have ice next year, whether it will be
too sunny, or whether you'll have enough water, and so, you
have to adapt; that's the natural way.

Viktor Farcic: Do you ever get requests from people asking
you to teach them how to become DevOps engineers?

Damien Duportal: No, never. I mean, how should I answer
that question? Talk to each other, and say: "Hey, you're almost
a DevOps engineer"?

Viktor Farcic: The only reason I'm asking this is that I don't
truly understand what a DevOps engineer is. I see the word
everywhere, and in fact, I get DevOps engineer job offers all of
the time. But at the heart of it, I still don't understand what it
is they would be expecting me to do.

Damien Duportal: In my first company, I was a DevOps
engineer for one year, and I still don't know what my role was.
So, I agree with you in that there is no such thing as a DevOps
engineer, or even a DevOps team. The main purpose of DevOps
is to focus on value, and by that I mean finding the optimum
for the organization and the value it will bring.

"In my first company, I was a DevOps engineer for
one year, and I still don't know what my role was.
So, I agree with you in that there is no such thing as
a DevOps engineer, or even a DevOps team."

—Damien Duportal

DevOps Paradox

55

So, if you build an organization that only has the support of
the organization focusing on the value, then what's the job of
the other? What are they doing? You just put the keywords in,
but in fact, what you need is someone who has the speaking
skills and empathy. So, maybe a good place to start would be
with an empathy engineer?

Viktor Farcic: Whenever something new comes along and
becomes popular, there is always a hype around it. And then,
even before that hype has diminished, there's a new product
or a new tool right behind it that's generating even more hype.
But right now, I don't know what's next. What's the next big
thing? Is there anything coming after DevOps?

What's
next after
DevOps?

Damien Duportal: Not yet, but to be
honest, I still haven't gained enough experi-
ence in my professional life to be able to
make that kind of prediction. I would not
have been able to predict Red Hat being
bought by someone else. When Sacha

Labourey did that, I was like: that guy is completely crazy,
though in fact, he just has way more experience than I have.

Right now, in the technology sector, we have the Internet
of Things stuff, and so maybe a security engineer will be the
next big thing, because when the smart fridge that everyone
owns gets hacked, all of the milk and beers you had in it will
be ruined. So, maybe this could be the new trend? It's like the
Ghostbusters; it would be the security engineer coming out
because your fridge has been hacked.

Viktor Farcic: I mean, when IoT, and I'm not saying even if,
but when IoT is all around us, we might see the same pattern.

Damien Duportal

56

A long time ago, we had people coming to our house to fix our
computers, but now we don't do that anymore because we have
laptops that we throw away when they don't work. But maybe
that will come back, kind of like a person that fixes your house,
in a retro way, bringing back the old school stuff of someone
fixing your home.

Damien Duportal: People that were thrown by force outside
the IT world—for example, people building a house—might be
able to come back into the hype because you, Viktor, might
need someone to break down the wall of your house because
no one can unhack your door. So, you'll need someone with
a hammer to deconstruct the wall.

Viktor Farcic: Let me out! I cannot go through the door!

Damien Duportal: Ha! I think we're all going to have a lot
of fun with the new trend.

On Amazon,
Microsoft,
and Google

Viktor Farcic: There's one last ques-
tion before we go, which is based on the
way companies such as Amazon, Micro-
soft, and Google are working. Are they
eating away the need for skilled people?
I mean, we're in 2019, and you don't need

to develop your own machine learning now as Google gives it
to you. Likewise, you don't need to transcribe as Google does it
for you, and that's just two of multiple possible examples. So,
what is the relation between the services and what we're doing?

Damien Duportal: For me, it's like drying a river. Those
companies need skilled people, and the few that they've

DevOps Paradox

57

currently hired are being paid a lot. But right now, the ques-
tion is: why are these people skilled? It's because they gained
experience and knowledge over the years. But how did they do
that? Because the companies that hired them gave them oppor-
tunities.

It's like the COBOL time. At this moment in time, a skilled
person—unless they build the new Terminator or supercom-
puter—will want to focus on something else in their life before
they retire. But when they stop, what are we going to do at
that moment? Because if we dry the river, we don't have water
anymore. I think that's exactly what is happening.

But since things are changing a lot, I think there will be
an ever-growing number of Red Hat-type companies or new
companies that will emerge because, on the other hand, we
have increased capabilities to build whatever we want. So, a lot
of new, differently skilled engineers will emerge and will build
alternatives. I really trust human nature to do that.

But the last thing I'll say is that you always have resistance.
We were talking earlier about the transcript for this interview.
In my case, I'm willing to pay you a few bucks to have it done
because I don't want to spend my time doing it. But at the same
time, I know a bunch of people that would say, "Oh no, I'm

"But since things are changing a lot, I think there will
be an ever-growing number of Red Hat-type companies
or new companies that will emerge because…we have
increased capabilities to build whatever we want."

—Damien Duportal

Damien Duportal

58

going to use AWS! I'm going to buy a Raspberry Pi and do it
with no network at all."

I'm sure if you go to DevOps functions all across the world,
you will find people that will build things themselves, and one
of these people will be the next Alphabet executive. The issue
is that, right now, they are drying out, but it's short term, and
we have enough resilience for solving that problem.

Viktor Farcic: Let's end it there. It's been great talking
to you.

3

Kevin
Behr
Chief Scientific
Officer – PraxisFlow

Introducing Kevin Behr

As CSO of PraxisFlow, Kevin Behr spends his time working
with clients who seek to develop their DevOps process. His 25
years of experience have been driven by a passion for engaging
with the complex problems that large IT organizations face,
and how we can use DevOps to solve them. You can follow
Kevin on Twitter at @kevinbehr.

The
journey to
DevOps

Viktor Farcic: Hi Kevin, you've been
involved with many topics that have become
central to DevOps since your early childhood
working with your father. How did your
father's work prepare you for DevOps?

Kevin Behr: Well, it's exactly 30 years since I first got
formally involved in the world of computing. In my earlier
years, I had the fortune of growing up with my father, Harold
Behr, one of the cofounders of the Association of Field Service
Managers, or AFSM. For those who don't know, AFSM was one
of the first global groups dedicated to global service manag-
ers. AFSM would discuss topics that are still related to DevOps
today, such as how mainframe computing was going to be
serviced, as well as discussing availability and continuity of
value for customers.

I was seven years old when I started building small digital
computers, working on vacuum tube equipment. I was about
ten years old when I started working with midranges and main-
frames, in the context of repair. My dad ran a team that would

DevOps Paradox

63

charter jets to fly to their customers whenever their mainframes
went down, and they would fix them at night, so that they'd
hopefully be ready and working by the time morning came. If
they had an outage happen on a Friday, I would often go with
them if they flew out in the evening. Even back then, it was
a fun thing that I could do with computers and with my father.

Viktor Farcic: You were fixing mainframes at ten years old?

Kevin Behr: My job would be to hold the solder and heat
sinks. This was a time back when you could actually service
and fix these beasts! One guy would be on the phone with IBM
Armonk, or whatever mainframe company they were dealing
with, and they'd be getting traces to test for certain voltages
and impedances on the boards. Then, they would solder and
replace the bad components. I was better at soldering than most
of them, because I had small hands so I could get into places,
but they mostly had me hold on to heat sinks and make RS–
XXX cables while they chain smoked, muttered fresh obsceni-
ties, and squinted through reading glasses while soldering.

Viktor Farcic: And by the time you graduated high school,
you were in business with your father servicing mainframes.
How did all that sit with your education commitments?

Kevin Behr: Yes, when I was about 18, we were taking vaca-
tions in Moab, Utah. But, like a lot of places where you'd go
for a vacation, there was no work. In our case, that meant that
there were no computer services or consulting companies or
anything like that. So, my dad and I started a small computer
consulting company. We went out to businesses, government

Kevin Behr

64

and schools, and we built computers! It was just becoming
possible back then to build cloned computers for the first time,
and so we went right ahead and manufactured our own comput-
ers. And we serviced them, right along with any mainframes
and minis that needed servicing in the area. I also picked up
some work with a company that had a contract with the state.
I had a pager, and when they gave me a call, I would go fix the
mainframes and Wang OIS systems.

A few years later, my CS professor asked me how much
I made in those years; I told him it was anywhere between
$35,000 to $40,000, which was pretty good in the 1980s. My
professor then grabbed me by the arm and said, "Leave and
get out!" When I asked him why, he said something important
to me:

"I'm not saying this because you're a bad student, Kevin,
you're an exemplary student. And I'm not saying this because
you're asking a lot of questions about who is going to manage
all these people we are teaching. I'm saying this to you, Kevin,
because you're right: somebody needs to go and write this
curriculum. But to do that, they have to do it from empiri-
cal experience. Somehow, Kevin, you have to work your way
through these organizations and write your learnings."

And while I didn't set out with that purpose, I did drop out—
and I've taken the exact path that my CS professor advised!

Viktor Farcic: What did you do right after dropping out
of college?

Kevin Behr: Over the next several years, I held every job in
an IT operation. I got to know what it's like to be a network

DevOps Paradox

65

engineer, and what it's like to be a system administrator, and
what it's like to be the lowly guy who checks the disk array fault
lights, the fans, and the filters on the air-conditioning. From
rotating the backup tapes to programming firewalls. I did all
those jobs.

I also went to school to develop software. I'm a lazy and slow
developer, but I made sure that I understood everything, from
the bottom of the stack to the top of the stack. I started with the
B language as we used to joke—as in assembler—which means
staring at a lot of binary, which is hard for us dyslexics.

I found during this period that the more I worked, the more
disillusioned and confused I became about the folks who were
managing the technology. It seemed like companies were just
promoting technical people who had been there for a while up into
management positions. In many cases, those people were not very
good at what they were doing. They were not trained to do those
things, and they often didn't want to be managing those things.

Viktor Farcic: But if you want a raise in your salary, then you
need to become a manager. It's like for a long time you might
want to continue being a coder but then, five years later, you
need more money, so you think about becoming a manager.

Kevin Behr: But back then, there was literally no help or
support for the people going into technical management

"The more I worked, the more disillusioned and
confused I became about the folks who were managing
the technology."

—Kevin Behr

Kevin Behr

66

positions. There was nobody to mentor these technology
managers, nobody to answer their questions, and there was no
documentation for them to read. There just wasn't anything for
them at all, and I found this very strange, especially when you
reflect for a moment on how much emphasis there is around
most executive positions to prove competency, education, and
experience; and to provide training and documentation to
ensure professional standards.

This was very strange, and it affected my view of CIOs
profoundly, because I didn't see CIOs making any decisions on
their own. I stopped seeing it as an equal partnership between
CEO and CIO as the parents of a company. The CIO job looked
more like a babysitter than a parent.

Viktor Farcic: That's a great way to describe it.

Kevin Behr: In my view, the CIO wasn't a peer with a real
position in most companies during the 1980s and 1990s. The
CIO essentially worked for everybody else.

The management of information systems during the early
1980s involved a lot of finance people, and, of course, technol-
ogy originally came into businesses through finance—to help
them calculate numbers and construct books and records. The
first computer from IBM was a time clock that was designed to
track people's working hours. Technology solutions had always
had the backing of finance groups.

It was therefore very interesting and very curious when
finance proceeded in the 1980s and 1990s to kick technology
out of finance! I remember seeing this happening when the PC
first came out. At that time, I was a mainframe guy, so was

DevOps Paradox

67

biased, but, like a lot of people at IBM back then, I believed that
desktop PCs were just business cards for the mainframes. So,
I just sat in front of them every day. Computer. IBM. Computer.
IBM. I didn't believe that PCs would amount to much.

Then, suddenly, we had client-server computing in the 1980s
and 1990s. As far as I'm concerned, client-server destroyed
computing and set us back 40 years. The issue with client-server
was that we already had all those capabilities in mainframes,
but they worked better, faster and were actually less expensive
by the time you counted all the people, weird contractors, and
vendors that you would need. But finance made the mistake of
only looking at the purchase price of the computer.

Viktor Farcic: You could say that finance became its own
worst enemy. But a mainframe cost a lot more than a PC, so the
client-server idea must have been very attractive?

Kevin Behr: Yes, sure, but then there was another false
assumption: that you could run the PC all by yourself because...
it's personal. The reality is that when you have 100,000
personal computers, it is not personal anymore. You then need
to manage all those PCs, and they are all distributed!

So, I kept seeing this disconnect between technology and
organizations, and the disconnect between CIOs and CEOs,
become greater and greater. It was not until some years later,
through the 2000s and 2010s, that DevOps was working to
heal this disconnect.

Bridging the
CEO–CTO gap

Viktor Farcic: It's interesting
how those first phases of your career
related to a history before DevOps,

Kevin Behr

68

including those tensions and disconnects you talk about that
DevOps tries to address of course. Did your next career step, as
CTO at IP Services, take you closer to DevOps as we talk about
it today?

Kevin Behr: Yes, in the 2000s, I was the CTO at a company
called IP Services, which could best be described as an
early MSP and outsourcer for infrastructure. It provided
mission-critical infrastructure for large fortune and global 500
companies. While I was at IP Services, we had to develop ways
to manage across various systems of control, because we would
have auditors from every client wanting to come in and inspect
our operations.

At this time, I started collaborating and working with Gene
Kim, another kindred DevOps mind. We were both CTOs
reporting to a CEO, and we both experienced a very specific
process of adopting and adapting our thinking to meet the
challenges in our work.

Viktor Farcic: Did this experience help the disconnect you
mentioned earlier, between CTOs and CEOs in organizations?

Kevin Behr: Yes, we noticed how CEOs often describe things
with word pictures, using primary colors, and numbers from
0 to 9. On the face of it, this CEO language can feel super-re-
ductive and oversimplified, and that's certainly how it would
sometimes feel for Gene and myself, because we were both
engineers at heart. And the point here is that, as CTOs, it took a
lot of work for us to learn this CEO language and its associated
CEO mental frameworks. But that's what it takes sometimes.

I also remember Gene and I agreeing how humor can help

DevOps Paradox

69

heal a disconnect. Gene found this great book called Throwing
the Elephant, by Stanley Bing, and together we began to appre-
ciate how Bing discussed "managing up" in a tongue-in-cheek
way, like humor, from a Zen perspective.

Listening and finding common links with other people was
another important lesson for us during that time. Gene and
I would often meet at a restaurant/bar called Pazos in Port-
land, Oregon, where we would each describe common scenar-
ios about our respective executives and clients. We found that
we had a lot of passion and many common questions about
our industry.

Viktor Farcic: Such as?

Kevin Behr: Well, we might say "How come Client A has all
of these problems?" They have the same amount of money, and
a lot of the same talent as Client B; and yet here we are, with
Client B doing so much better. Why?

Gene and I were very passionate about these types of ques-
tions, and we convinced our bosses to let us put our pith helmets
on. As Gene used to like to say, we were like old explorers cata-
loging plants and animals for the first time. Our world was
business of course, and so we would study high-performing
companies to see what they did differently.

We shared a lot of what we learned at the first Security and
Audit Controls That Work workshop in 2003 that Gene and
Stephen Northcutt chaired, and I gave the talk Blood, Sweat
and Visible Ops, which was later memorialized in a book with
Gene Kim and George Spafford called Visible Ops, which came
out in late 2004.

Kevin Behr

70

Viktor Farcic: Why did you decide to use ITIL in your Visible
Ops book?

Kevin Behr: We decided to use the language of ITIL because
ITIL was a standard process language that a lot of people
understood. We'd also mapped into ITIL all the actions that
we'd been watching those different companies doing.

Our objective was to be able to compare the patterns of activ-
ity between successful and less successful companies using
ITIL. What we discovered was that a lot of companies were
doing things completely differently from the others—most crit-
ically, around how they managed risk and change. The more
successful companies usually had the most effective change
management processes.

A great example of the positive effect of good change manage-
ment was at a client where we went in to change what was called
a WAR, a work authorization request. The management of this
client didn't like change because it was dangerous—and they
happened to run one of the largest financial institutions. But
the funny thing was that this client made way more changes
than low-performing clients, and I was like wow! Their risk
surface was much greater, and yet, they had almost no failed
changes. Or, if they did, they were reversed very quickly and
there was almost no impact to production.

We saw such high-performing clients as this one, and we
saw low-performing clients, where both would be similarly
skilled, and have similar budgets. The ITIL analysis showed
that the key difference was the way that different clients were
managing the change process that was integrated with release
and incident processes. It turned out that 80% of failures

DevOps Paradox

71

were caused by things people did, and so the incidents are the
results, and the changes are what we intended. We therefore
started measuring things such as change success rate, and how
do you know your process works? Is it successful?

But one of the things that we found about high perform-
ers is that they tended to have fewer controls than low
performers. That was a big surprise. We were like "Hey! Wait
a minute here!"

Viktor Farcic: Do you mean less control over people?

Kevin Behr: No, it was all about fewer process controls, such
as from a management intersection or audit standpoint. So,
we're there thinking our client has like 15 controls in here,
while the other client has almost 40 from COBIT. And I'm
like... this doesn't make any sense at all!

As we looked harder at this, we saw that the people with
fewer controls were building purpose-built processes: they
knew what their process had to do and where the risks really
were. Meanwhile, low performers were reading best practices
and they thought more controls were better for the auditors.
And the lower performers treated every change the same way:
they'd get a bunch of people in the room, and they'd talk about
it, but that didn't make the outcome any more reliable.

The high performers were seeing changes as releases. They
were looking at their whole infrastructure as if it were a plat-
form; and as though they were releasing a new piece to this
platform. They were looking at everything more holistically,
and so they would track the interdependencies. They were
doing a lot of things that were really and simply just in the

Kevin Behr

72

change process, the incident management process, the release
process. They had these processes integrated in such a way
where you knew the outcomes of every step, and it was all very
tightly integrated.

So, let's say you had an incident. You could see the last
problem that somebody had on the ticket, and you could see
the last change that was made on the ticket because 80% of
the outages were caused by changes. But, 80% of the time it
took to solve a problem was spent just figuring out what had
changed, with the other 20% used to do the work to actually fix
it. What we discovered was that a lot of these high performers
were eliminating change as a causal factor in the first minutes
of the problem, giving them a much higher chance of a very,
very low mean time to restore service and have a better shot at
staying within their SLO error budgets.

Viktor Farcic: And so, you discovered a first DevOps pattern?

Kevin Behr: That's right! What distinguished high-perform-
ing clients wasn't anything to do with them having fewer fail-
ures in those scenarios. We discovered that it is what compa-
nies do with their failures that tests their organizational

"[The high performers] were looking at everything
more holistically, and so they would track the
interdependencies. [...] They had these processes
integrated in such a way where you knew the outcomes
of every step, and it was all very tightly integrated."

—Kevin Behr

DevOps Paradox

73

resilience; and, more importantly, how resilient they really are
in small teams.

Making it
safe to fail

So now, we started to notice these DevOps
patterns in our studies, for example, where
people were willing to focus on learning
together versus blaming and co-designing
resilience. Designing systems that are safe to

fail is borrowing thinking from flight simulators. The average
learner needs to crash several planes in the simulator before
flying in real life. The point is to decouple deployment from
activation so that we can learn for free without affecting our
customers' experience.

When you look at continuous deployment and continuous
delivery, we're putting code out there faster. In some cases,
code is on a unit test, and then committed, and then through
static code analysis, integration tests, fast regression stack
and—Bam! Production! Well, why do we do that? Because
we know that we have options: blue green deployments, dark
deployments, feature toggles, flags, and switches. So, we can
turn something off in production if it causes a problem by
itself, and effectively flip it back to the way it was. Many have
adopted blue/green deployments, which let the teams run
the old system at the same time as the new system from the
same database. They don't cut over to the new system until it's
working and there's zero downtime.

With these new patterns, ideas can arise for engineers to
fail safely. That's quite the opposite to what the industry had
always said before, which was that we must rely on fortification,
such as redundant data centers. Sure, all the metal, namely the

Kevin Behr

74

big servers, can make us feel good, because everything's fault
tolerant. But the DevOps generation says that it's all going to
fail. So instead, give me a resilient and safe-to-fail system so
we can move at will, break things, and learn fast!

Viktor Farcic: Saying that everything fails sooner or later is
admitting the truth!

Kevin Behr: Right, so what do you do when it fails? How fast
can you make it invisible? So that it doesn't matter. Because
Cobb's thinking, along with DevOps, starts to make a different
set of possibilities appear!

The heart
of DevOps is
democratizing
the work

Viktor Farcic: Are you saying that
DevOps patterns are the heart of
DevOps?

Kevin Behr: While those DevOps
patterns are vital to DevOps, what I really

believe to be the heart of DevOps, and what I think we've lost
touch with today, is what, in the 1940s and 1950s, was a move-
ment and a discipline called STS, or socio-technical systems.

Social-technical systems started with some sociologists, and
it was one of the big-funded projects immediately post World
War II. I do actually give a talk about STS, called DevOps and
Its Roots in Coal Mining. It's kind of a joke, but one of the big

"Give me a resilient and safe-to-fail system so we can
move at will, break things, and learn fast!"

— Kevin Behr

DevOps Paradox

75

things that they had to do after World War II was figure out
how to make more coal to help power the war recovery. There
was a conflict because all the coal companies wanted to keep
the price of coal high, while the British government wanted
lower coal prices so that coal and oil could power post-war
reconstruction. It was in the national interest to get as much
out of the mines as possible.

To help achieve this, the British government hired two soci-
ologists, Eric Trist and Elliott Jacques, to look at all the mines
and figure out which ones were the most productive and what
made them more productive. Trist and Jacques discovered that
all the low-productivity mines were highly automated, and that
automation didn't create the expected returns on productivity.
Across many different styles of mines, they found one mine
design that really stood out, because it put out more coal per
day than any other design—by many multiples. This most highly
productive mine design also had fewer significant injuries than
any other mine type, and had iron-clad, strong team morale!

Trist and Jacques also found that this productive type of
mine had 100% attendance, and people were coming in every
day. And that was odd, because for most mines, 30% of the
workforce wouldn't show up on any working day, because coal
mining was dangerous and there were a lot of other jobs avail-
able most days in post-war Britain.

To find out why this highly productive mine had 100%
attendance, Trist and Jacques talked to the people after their
shifts, but they still couldn't find anything different. So, they
went down the mine themselves with the coal miners. At the
top, the shift leader would meet all the coal miners to talk about

Kevin Behr

76

everything they were supposed to do. But then, as they were
down in the mine with the miners, Trist and Jacques imme-
diately noticed something different: the group democratized
the work.

Viktor Farcic: Okay. That's a twist.

Kevin Behr: What the miners were concerned with was:
"What is the whole task?" Not what is the thing I'm supposed
to do, and the thing you're supposed to do... but what is the
whole thing that we're supposed to get done?

In one particular case, this might mean saying that we're
going to need somebody to do the dynamite, or that we've got
to blow up some holes here, and we need a safety person to
make sure everything goes okay; or that we're going to need
someone to do the jackhammer. They all had these different
roles, and so their conversations sounded something like,
"Hey, who didn't drink last night? You? No? Okay, you're doing
explosives today."

Through this dialog, they would figure out how to divide the
whole task into role-based work. They became self-organized
and self-regulating based on who was the most capable person
on the day to perform each important role.

In addition, another priority they had was to teach each
other enough about each other's job so that if they got hurt
in an accident, the team could pick up and still do what it
needed to do to save everybody. So, they all learned a little
bit of each other's job, enough to where they could do it. My
question to you, Viktor, is, are you seeing the piece of modern
DevOps here?

DevOps Paradox

77

Viktor Farcic: You're talking about self-sufficient teams?

Kevin Behr: Yes, and you know what? They did it! The funny
thing is that their bosses never knew the difference, because
their bosses were above ground where it was safe; they would
never come down into the actual mines. So, when the miners
knew what the whole task was, they literally self-organized
based on capability. Like actual democratization of work.

But it wasn't only that; they were also cross-training each
other. Are you familiar with the Pareto principle?

Viktor Farcic: Yes, it's the 80/20 rule to most of us.

Kevin Behr: Now, the inverse Pareto principle is very power-
ful. It says that there's 20% of something you can learn that
will allow you to do close to 80% of the task. The inverse Pareto
principle often works both ways, and so, what these coal miners
were doing, I theorize, is that they were learning the inverse
Pareto of each other's jobs. And that is what DevOps is!

We talk about people who are full-stack, but very rarely are
we going to find someone who could actually do everybody's
job. So, why not spread that out? What's really there isn't the
tools or the technologies that they use, but the way they decide
to interact around the day's work.

I listened to Patrick Dubois give a talk about his work on
a contract, I believe it was with a government agency, and he

"DevOps is [...] helping each other understand enough of
each other's work, so that we can think about what's next."

— Kevin Behr

Kevin Behr

78

developed a piece of code that he needed to get into produc-
tion. He talked about how hard that was. There was a small job
to do, but the operations people made it so hard, and Patrick
was saying "Why can't we work together?" And so, to me, that's
what DevOps is.

DevOps is working across those lines, helping each other
understand enough of each other's work, so that we can think
about what's next. But the key word is empathy. Caring across
boundaries.

Empathy and
culture in an
organization

Viktor Farcic: You're not the first
person in this book I've talked to who has
said that empathy is so important to
DevOps.

Kevin Behr: What do we mean when we
talk about empathy in DevOps? We're saying that we under-
stand what it feels like to do what you're doing and that I'll
never do that to you again. So, let's build a system together that
will allow us to never be there.

DevOps to me has evolved into a lot of tools because we're
humans, and humans love tools of all kinds. As a species,
we've defined ourselves by our tools and technologies. And, as
a species, we also talk about culture a lot, but, to my mind,
culture is a rearview mirror. Culture is just all the things that
we've done: our organizational disposition.

The way to change culture is to do things differently. Let's
not wait for culture, because culture is in the rearview mirror:
it's the past. If you're in a transition, then what are you transi-
tioning toward and what does that mean about how you need
to act?

DevOps Paradox

79

The very interesting thing about DevOps is that while
frequently, its mission is to create a change in the culture of an
organization, this change requires far more than coordination:
it also requires pure collaboration, and co-laboring. These can
be particularly awkward to achieve given the likelihood that
we haven't worked with the people in an organization before.
And it can become intensely awkward, when those people may
have already made villains out of each other because they
couldn't get what they wanted. The goal of the DevOps process
is to create a new culture, despite these challenges.

Viktor Farcic: Yes, part of the DevOps puzzle is how we can
achieve pure collaboration in the middle of very awkward situ-
ations, with people we don't know very well.

Kevin Behr: What people don't understand is that DevOps
is hard. Working across those lines is hard. We don't have to
do DevOps, it's optional—and so doing DevOps is hard. But
changing culture means changing the way we do things in
organizations. If we keep doing things differently, then we'll
look back and we'll see that our culture has changed.

Viktor Farcic: Exactly, but these things also take some time.

Kevin Behr: Yes, if we do things differently for two weeks
and we then look back and conclude that this didn't change
our culture, the issue is certainly that people didn't understand
the relationship between what they've always done versus what
they're doing now. DevOps empathy enables cultural change
because it enables behavioral change.

Viktor Farcic: And DevOps also enables collaboration.

Kevin Behr

80

Kevin Behr: Yes, collaboration is beneficial to both parties.
From a game theory perspective: if I maximize my utility, then
you do too. But also, from the non-rational and relational
standpoint of human beings, there is the benefit of building
strength through diversity. When we look at technology teams,
we can tell from a DevOps standpoint whether they're together,
as a team, or apart.

Viktor Farcic: Are most technology teams you see together
or apart?

Kevin Behr: In America, many large enterprise companies
have adopted DevOps, but what we tend to encounter there in
reality are "special teams" within those organizations; or tech-
nology groups that are "paramilitary organizations" as it were.
These types of technology groups don't have to follow the same
rules as everybody else, and so they tend to be successful in
their short term because they have fewer constraints. And, of
course, we can make pilots for them that have low bars; and
can set very easy things for these teams to jump over.

I've talked to a lot of CIOs and enterprises, and they love this
idea of DevOps having agile infrastructure, and agility all the
way through their value stream. The main issue is that those

"The goal of the DevOps process is to create a new
culture. [...] But changing culture means changing the
way we do things in organizations. If we keep doing
things differently, then we'll look back and we'll see
that our culture has changed."

— Kevin Behr

DevOps Paradox

81

CIOs just don't know how to manage DevOps. Do I have teams?
Do I have a VP? My response is always the same, and I say,
"Listen, I think of DevOps more like this: you can now have
teams working on projects together."

But consider volunteer fire departments. Do you have those
in Spain?

Viktor Farcic: I know they exist.

Kevin Behr: So, in America, some towns can't afford to
professionally pay for firemen, and so they have volunteers that
all wear radios. If there's a fire, they'll all get a signal on the
radio that's very loud, and they'll go driving like crazy to the
fire station, get in the trucks, and go out and deal with the fire.

This is called a crew, and in a crew, there's a very important
set of understandings. The first is that these people have a day
job, and so one minute they might be doing some accounting,
but in the next minute, if they get the signal, then they run: now
they're a firefighter. The second understanding is that when
they are being a firefighter, perhaps on their way to a fire, they
already know what to do; they are pre-trained. Much like the
scenario with the miners, when they need to be firefighters,
they already know their roles and responsibilities.

My point here is that many of the successful DevOps inter-
actions I see also involve a crew that assembles. There's some
infrastructure, some developers, and some security people,
who all get on the team; they know their roles, and they know
the mission. They get it done. Bam!

Viktor Farcic: And then you want to start spreading the
success of that team!

Kevin Behr

82

Kevin Behr: Yes! Every five times that the team is together,
you should add another crew. They won't be great at the start,
but they'll be learning.

The broad idea here is to create a playbook of signals so that
we can let an organization know when collaboration is impor-
tant. Of course, it takes some level of ability to make sense
out of what's happening around you. This means that, as engi-
neers, we sometimes have to look up from the keyboard, or
take off our headphones, and notice what's actually happening.

Viktor Farcic: You believe that DevOps has a social compo-
nent then?

Kevin Behr: Yes, the idea with socio-technical systems is
that people come before the technology; and that the technol-
ogy serves the people. This is in contrast with when we talk
about techno-socio, which means the machines dictate how
we organize, how we work, and how we even lay out the way
we work.

What I observe is that DevOps has its roots in socio-tech-
nical empathy. This comes from individuals such as Patrick
Dubois saying: "Why can't we work together?" Likewise, indi-
viduals such as Andrew Clay Shafer, who suggests that all our
infrastructure should be agile, and essentially code.

"As engineers, we sometimes have to look up from the
keyboard, or take off our headphones, and notice what's
actually happening."

— Kevin Behr

DevOps Paradox

83

I remain close to Andrew, and I talked briefly to Patrick on
Twitter quite a while ago. To me, their work is certainly part
of a socio-technical system: where people work together and
share. We're going to automate stuff on the machines, so we
have more time to experiment, learn and collaborate on the
important things.

Viktor Farcic: In that sense, tools have an important place in
your idea that DevOps helps to create a socio-technical system?

Kevin Behr: Yes, it's obvious how important tools have now
become in DevOps, and the reason for this is because people are
learning how to perform many of the techniques that DevOps
people tend to like to do—from continuous delivery, continu-
ous integration, continuous deployment, or automated testing.
In many cases, we've now got tools in front of people.

So today, when you see people talking about how to do
DevOps, the first thing that they mention is a toolchain; and
I'm saying to myself, "So now you're organizing your team
around the tools?" This doesn't seem right.

Viktor Farcic: Is that the fundamental misunderstanding of
what DevOps is about?

Kevin Behr: Yes, it's like the difference between Brandy and
Courvoisier. All Courvoisiers are Brandies, but not all Brandies
are Courvoisier.

You can be working with some teams, across boundaries, on
a very technical project. And everyone may even be collaborat-
ing in a DevOps style. But the teams are usually too focused
on the tooling, and the tooling is dictating how the teams are
working together. The tooling may even start to create divides.

Kevin Behr

84

Sometimes, when I'm working with an organization, I talk
about archetypes, or stereotypes. When I do this, I use the
Winnie the Pooh story. I believe that all of Christopher Robin's
friends... Pooh Bear, Rabbit, Tigger, all of them, are differ-
ent manifestations of Christopher Robin himself. It's kind of
an interesting way of exploring different parts of Christopher
Robin's personality. And then I like to say that product manag-
ers are like Tigger because they're very excited about the thing
I'm going to do. The developers are more like Rabbit, while
the infrastructure people are like Eeyore, because they walk
around saying "thanks for noticing me." My point is that teams
are a mixture of different personalities.

In most teams, you've got a group of people who are very
excited about new things, and a group who are not so excited,
because all those new things seem to hurt them. For example,
people in operations are often very skeptical, because they've
been told a lot of things about how great everything is going
to be, and yet they get pager calls at 02:30 in the morning to
fix something they just deployed. Naturally, operations people
tend to develop skepticism over time.

When you manage to introduce empathy to a team, the
development and the operations people seem finally to come
together. You suddenly hear someone in operations say, "Oh,
can we do that differently? When you threw that thing at me
last time, it gave me a black eye and I had to stay up for four
days straight!" And the developer is like, "It did? How did it do
that? Next time, if something happens, please call me, I want
to come help." That empathy of figuring out what went wrong,
and working together, is what builds trust.

DevOps Paradox

85

Trust is
key to
successful
DevOps

Viktor Farcic: So trust is key to your vision
of successful DevOps teams?

Kevin Behr: Yes, trust is vital. I'm
convinced, for example, that the US military
operates on the principle that you will move

at the speed of your collective trust. You'll see this same prin-
ciple at work within your company or in your own team. When
you're frustrated that you can't get things done, you should
immediately assess the level of trust around you. Ask yourself,
"Are things transactional here?" For example, if you place an
order, do I then give you a plate? Or do we have a relationship,
and do we have trust?

I have a story I use to explore trust. I read an article where
there was a conversation between a US General, who was in
a foreign country, and a General from that poorer country.
The General from the poorer country says to the US General,
"You're not a very good General!" The US General is curious to
know why he's not a very good General, and the conversation
went something like this:

US General: "Why don't you think I'm a very good
General?"

"That empathy of figuring out what went wrong,
and working together, is what builds trust."

— Kevin Behr

Kevin Behr

86

Second General: "Because when you hand your soldiers
weapons, you know that they're not going to shoot
at you."

US General: "Yes, we build, and have trust."

Second General: "And when you give people 30 tanks,
they're not going to sell them on eBay."

US General: "Yes. We have trust."

Second General: "So, you don't have to do very much—
and so you must not be very good at this!"

Viktor Farcic: I love that!

Kevin Behr: But then you know what the General said? He
said, "I guess you're right!" So now, the US military oper-
ates on a different principle: mission command. It's no longer
command-and-control at every layer. With mission command,
the leaders state what they want the outcome to be, but not how
we can do it. The leaders define signs of success and failure,
and then they get their people to back-brief them, so that they
all stay in sync.

Staying in sync is vital of course, because when the situation
changes on the ground, the plan isn't necessarily going to stay
the same. The team are able to improvise because they under-
stand the intent of the commander, so they can find new ways
of fulfilling that goal.

Viktor Farcic: That's brilliant.

DevOps Paradox

87

Kevin Behr: Right, and so when we use an intent style of
management, it allows DevOps teams to figure out how to
do things themselves; and they know better, because they're
closer to the work and they are guided by the intent and signs
of success and failure.

With an intent style of management, we're also doing some-
thing that Reed Hastings, CEO of Netflix, talks about, which is
developing team judgment. We're not just telling the team to
go here or there and then just having them check to see whether
they've arrived. Teams don't learn anything that way; they tend
to just stop while people are shooting at them or until their
leader tells them to move.

Viktor Farcic: There's a lot of pressure for teams to be effi-
cient, of course. Managers want certainty, but we know from
the military battlefield that the best plans will not always go as
expected. Mission command does fix uncertainty. It's a way to
try to deal with it, right?

Kevin Behr: Yes, what the managers want to know is exactly
when the plan is going to work! In organizations where we have
resilience-based engineering, the expectations are, of course,
that things will break. The first step is to acknowledge that
things break, and the second step is to recognize that it's very
important how we deal with things when they do break—both
during, and afterward.

First then, how do we solve the problem in front of us?
Then, as we fix what is broken, we regain our morale and our
strength. Sometimes, this involves taking a couple of days off
after we've been up awake for two nights straight.

Kevin Behr

88

The next step is, how do we get our passion back? We need
to apply that passion to make sure these things never happen.
It's a constant process of celebration, defeat, victory, celebra-
tion, and defeat.

In the United States, this process tends to create a lot of
burnout. We have a lot of pressure put on people, and they
work a lot of hours that they shouldn't need to work. Technol-
ogy jobs are not only difficult technically, they're also a difficult
lifestyle. If you are alone and isolated in a hard job, and you
don't have people to collaborate with, and you have impossible
deadlines, and unreasonable coworkers, then you're going to
be depressed. You're not going to do your best work, and you're
going to leave the company... which leads to even bigger issues,
because we all know that software developers and good infra-
structure people are hard to find.

Viktor Farcic: Those people can find another job in a week,
so they will leave.

Kevin Behr: I try to explain this to company leaders, and
they're like: "Well, we're going to cut costs." But there are a lot
of ways you can cut costs; the first thing is to become more
effective, because only then you can become truly efficient. If
you're trying to be efficient before you're effective, then, in the
long run, it will always cost more.

It doesn't have to be this way. I have found that when these
teams begin to work together, and as people get drawn into
new levels of collaboration and coordination, those people who
were alone, those people who were depressed, and those people
who have been working too hard, they get empathy from the

DevOps Paradox

89

people around them. Suddenly you start to hear things like,
"Oh, I know what that feels like," and "Oh, I know that woman,
and the next time that happens to her like that, maybe we'll go
get a coffee together so we can encourage her to keep at it."

Viktor Farcic: When I was a developer, I don't think I ever
even met an infrastructure person. How could I have ever
possibly developed an empathy with someone when I wasn't
even sure that person existed? For all I knew, there could
just have been a script running that was making me wait for
a long time!

Kevin Behr: A human "for-next" loop!

Viktor Farcic: Yes, because for all I knew, I've never met an
infrastructure person.

Kevin Behr: That's such a good point, because if we don't
even get to meet someone, how can we build empathy? And
it's not enough to only meet people during problem situations,
or on conference firefighting calls, because those are not the
places to build empathy.

Viktor Farcic: I've met some people only when they yell at me.

"...as people get drawn into new levels of collaboration
and coordination, those people who were alone, those
people who were depressed, and those people who have
been working too hard, they get empathy from the
people around them."

—Kevin Behr

Kevin Behr

90

Kevin Behr: Yes, which creates negative reinforcement and
deprecates social capital. One of the first and most important
things you do with a new situation is ask your key vendors
to support company social events for the teams. You'd be
surprised; a lot of teams want to engage. Organizations can
find creative ways to get people together.

Earning
the right to
be heard

One very subversive way to get people
together is to start a Lean Coffee approach
to meetings. If you can convince a grumpy
Eeyore to come to your Lean Coffee meeting
and you just ask and listen, then you're

already creating change. The change issue you're solving when
you do this is that people want to be heard and they want to
feel some interest or empathy from other people before they
want to listen. But it's important, during change, to earn the
right to be heard among each other—by first listening.

If somebody who has dealt with the operations and infra-
structure side can come to the Lean Coffee, then everyone can
listen to what that operations person is saying. People in both
the development and the operations groups are likely to be
cynical at first. To make progress, somebody must be able to
start trusting. Team members must trust at first, and listen,
and listen, and continue to listen. People need to remove their
filters, and they will find it helpful to imagine that the other

"It's important, during change, to earn the right
to be heard among each other—by first listening."

—Kevin Behr

DevOps Paradox

91

person has positive intent in what they're saying, even though
it may not sound like it at first. This is something many have
been able to do in Lean Coffees. You put all your topics out,
and you vote on the topics. If we have a new member, I have
a bias to make sure new members talk and get it.

If it's your first time on a Lean Coffee, you get to talk about
what you want, and everyone will listen. I think when people
feel heard, they are usually more apt to listen to you. Honestly,
have you ever noticed how much people talk over each other?
We're so busy trying to show each other that we know what
we're all talking about and that we're smart that we often
missing the point. I see that creep into a lot of things. So yes,
you're right, Viktor: getting together when you're not having
a problem is massively important.

Viktor Farcic: How else can we help people collaborate?

Kevin Behr: I like to use Toyota Kata to help people learn
how to collaborate. Toyota Kata was first established in 2009
by Mike Rother. It's a simple way to improve a problem situa-
tion, and it gives us a scientific method to do this.

You begin the Toyota Kata method by defining a target
condition, something that should be in good order to have an
optimum or positive result. Only then do you look at the actual
condition you're starting with.

Next, you say: "If we are going to solve this problem, what's
the first obstacle we're going to run into when we try to achieve
the target condition?" You make a small list, and then you think
about the people that are involved in that problem.

What I'll often do then is bring some infrastructure people

Kevin Behr

92

and some software developers together, and we'll give them
a common problem. We'll ask them to use Kata together to
solve the problem. They will then run experiments together,
and typically the first one won't go so great; the second one–
hmm; and the third one—no fights.

Viktor Farcic: Nobody's hurt.

Kevin Behr: Correct! They start solving some problems
together, and they start to appreciate each other's abilities to
solve problems. The operations and development teams may
speak different languages to each other, but what I found is that
Kata standardizes the language and the patterns around the
problem. This allows the operations and development teams
to enter a collaborative problem solving sequence, because the
language barrier is smaller.

The Improvement Kata is a great way to teach infrastructure
people about Agile and Lean. I once ran an Improvement Kata
with a group of product managers and software developers.
The problem was that the product managers were just making
up things for dates. This had led the developers to think "This
has to be done here, and that has to be done there." Then on
the other side, the product managers thought the developers
were overestimating everything to build themselves safety—
which is a pretty common problem.

While I was working with that group, I said to them, "Your
goal is that you want a measurable target condition. You want
an average cycle time for a story, and your average story is
one day size." I then said, "You want your cycle time for these
sprints to go down by 20 percent." The infrastructure people

DevOps Paradox

93

said things such as, "So what does that have to do with us?"
Meanwhile, the product managers said, "How can we improve?
That's up to them!" And the developers replied, "You set
the deadlines!"

So, the team went immediately into conflict. But I told them
that none of that was important right at that moment, because
the reality was that both teams contributed to hitting the target
condition. So, using the Improvement Kata, we looked at
obstacle one; what is it, and what's the first thing we're going
to run into?

Engineers are usually awesome at finding problems, because
they tell you all the problems you're going to have; and so, once
you get them focused on the problem, they will obliterate it. If
engineers have got a problem in their head, they take it home,
and they can't stop thinking about it; they can't let go of it until
they crush it.

Viktor Farcic: That's something I agree with from my own
experience as an engineer.

Kevin Behr: Once engineers have put their heads into an
issue, they come back with an idea, and then we want to tell
somebody. But while a lot of that is about personalities, and
perhaps who is most outgoing, it's also about making space for
the person who is quiet, so that they can say what they need
to say.

In the situation I just mentioned with the product manag-
ers and developers, a product manager finally came back and
said, "Listen, I realize that what we've been doing is asking
you to estimate something, and then turning your estimate

Kevin Behr

94

into a commitment, which isn't fair because I don't like it when
people do that to me."

That doesn't seem fair does it? To hold someone to an esti-
mate, when they've never previously done the thing that they're
being asked to do. In which case, would it be fairer for me to
ask you, "How long would it take if everything went right?",
and then I checked in with you when that time happens? That
way, you don't build a buffer, I'm not holding you to this, and
all I'm going to do is check in with you. So, what would that do?

Let's think about this some more. If a project manager came
up to you like in the old days and said, "How long does it take
you to do this?", you may reply, "Well, I've never done that
before. But I did something kind of like that, and it took me
two days. The thing you're asking me to do today is a bit harder,
so maybe I'll say that it's three days. And then, to be on the
safe side, I'll say that it will take five days." The person you're
talking to in those old days then says to you, "Okay, I'll come
and see you on Friday then," and they'll know you'll be done
when they arrive. So, the project manager comes back on the
Friday, and you say to them, "Ah, it's going to take me another
day, maybe two." Now at this point, the project manager must
go back and move all the things around on the plan. It pushes
the date out, which often causes a lot of fear.

Now, let's try that differently. This time, the project manager
says to you, "Tell me what you can do if everything goes right,
and I'll just check in with you, there's no commitment." So,
the project manager comes back on day two, and they ask you,
"How is it going?" You might say, "Well, I'm going to need
another day and a half." The project manager replies, "Okay,

DevOps Paradox

95

that sounds great, but you're pretty sure about that?" And
you're like, "Yes, that's a commitment. It's time now for me
to do this, and I know what I'm doing." The project manager
comes back, and it's done. Please take note that in this second
sequence, the project manager finds out that you need more
time on day two—instead of day five!

Viktor Farcic: Exactly.

Kevin Behr: If you're a project manager, or if you're running
sprints and you're a scrum master, then naturally you add the
usual buffer that people will incorporate in almost every task.
Then, as long as your due date is after your buffer, all you
need to do is manage every little instance where you lose some
time by finding some extra time somewhere else in the whole
project.

What you're doing in that sequence, most often, is finish-
ing ahead of time! This is called Critical Chain, which Goldratt
invented. Critical Chain basically asks you to identify your most
constrained resource in a project, and it then subordinates all
the other project elements to that constrained resource.

We called it the Brent Paradox in The Phoenix Project. What
we encountered there was a very fortunate situation where one
of the product managers had read Critical Chain, the book by
Goldratt. This project manager was like: "It's so unfair that
developers get yelled at when they can't meet an estimate." And
suddenly, we saw all these things that we hadn't seen before:
we had no estimates, and we had all these different groups of
people reacting to that problem. We also had different people
thinking about their management style in various ways, and

Kevin Behr

96

different people interpreting in their own ways what it was that
we were even trying to commit to!

Viktor Farcic: That's a very divisive situation you're describing.

Kevin Behr: Yes absolutely, because when something unex-
pected happens, all those groups of people will feel pressure to
take the blame or the credit.

There is an alternative, of course, which is that you give people
the ability to trust each other through experience of working
together. Then, when problems do happen, people are a lot more
able to withstand the blow of the problem, because socially they
have a basic understanding of who can do what. They will then
know what you're good at, and what I'm not good at, and begin
to cooperate. I don't know about you, Viktor, but I would rather
be in a terrible problem with people I know and trust!

Viktor Farcic: That's not just you, Kevin! I think that's true
for everybody. You would have to be a real psycho to face prob-
lems with people you don't know or trust.

Kevin Behr: Right! So, you'd have to be a management
person, because, at the end of the day, a lot of things that
people in higher management do are without compassion, or
empathy. They have no idea what difficulties that causes for
people below them.

"In DevOps, we ask ourselves how we can create an
environment that's resilient."

— Kevin Behr

DevOps Paradox

97

In DevOps, we ask ourselves how we can create an envi-
ronment that's resilient. We don't all need to be best friends,
but we do need to have a working relationship together, and
it needs to not focus on blame.

The Yin
and Yang
of DevOps

A key part of building a no-blame culture
is about how to do the postmortem. How do
you do the retrospectives correctly, so that
blame is not an issue? How do you create
the environment where, if somebody makes

a mistake and it causes an outage, that they raise their own
hand and say, "Hey that was me, I did that, and what do I need
to learn because that happened?" Through that kind of atti-
tude, the whole team will learn.

What you do in the postmortem stays in the room, because
the team trusts each other, and they'll solve it. I find that a lot
of organizations don't build trust this way, and people in those
organizations tend to be focused instead on building security
for themselves in their jobs. The result is that those people will
sometimes be opposed to each other.

Viktor Farcic: This is surely related to what you were saying
at the very beginning of this discussion: that companies were,
or still are, too much focused on how to prevent problems from
happening, and how problems will be solved? To me, what you
just said is the human side of the same coin.

Kevin Behr: Exactly right. It's a Yin and Yang situation. To
me, watching what's going on with DevOps and the confusion
about its meaning is astonishing. I recently read that 80% of
IT managers are interested in DevOps. They then asked those

Kevin Behr

98

same people if they were confused about what DevOps means,
and 80% of them again raised their hands! That's a bad combi-
nation—but, you know, we do this in all kinds of other aspects
of life as well; it's a human quality!

Viktor Farcic: Yes, wherever I go, in most cases, I see
a complete misunderstanding of DevOps, at least from my
perspective, and, like you, I happen to think that the problem
is in human nature itself.

DevOps isn't as easy to understand as an idea such as Scrum,
because with Scrum, you just come in every day at nine o'clock
and stand on your feet for fifteen minutes. The Scrum is very
precisely defined: what you do, when you do it, and how you
do it.

When it comes to DevOps, you hear people say, "You need
to solve problems together to do DevOps." And that's all they
say, which leaves everyone wondering what it really means to
solve those problems. You then hear, "Should I buy Jira? Is
that what you're telling me?" So, they go and buy Jira, and then
say, "Now we're DevOps."

Kevin Behr: "Now we're DevOps," exactly! That's the joke!
I did an engagement in Germany, and they were having this
same problem: those people thought they were doing DevOps!
They had a very, very detailed plan about where everything
should go, with procedures and policies. But when I asked
them, "What happens when you say you are doing DevOps,"
they replied, "Oh, that's what we do when there's no playbook."
It's just like you describe, Viktor—they completely misunder-
stood what DevOps is.

DevOps Paradox

99

Gene Kim and his team wrote a book called The DevOps
Cookbook to show people how to do some new things in
DevOps, but also to introduce some of the thinking behind
DevOps. As I've already said, what I feel is often missing is
that basic empathy and compassion, and if you go to a DevOps
Days conference, you'll hear about empathy. Empathy is still
my number one priority.

So, if you're doing DevOps, then the job of leaders is to enable
empathy, learning, and judgment. If you're doing DevOps, then
leaders can spend less time managing how people do the job,
and less time seeking evidence about the way people are doing
and thinking about the job. If I'm a leader, and I can help you
develop your mind, then I don't have to keep checking on you.
I'd rather have fewer people with fewer rules, and people who
have better judgment. The more rules you need to have, this is
a sign that maybe you don't trust people or trust people's judg-
ment. We already talked about how important trust is.

Viktor Farcic: The whole point would be that we enable
people to use their brain. Like they would take the approach
of saying, "From now on, I'll allow you to actually solve the
problem—instead of just applying steps A, B, and C."

"If you're doing DevOps, then the job of leaders is to
enable empathy, learning, and judgment…then leaders
can spend less time managing how people do the job,
and less time seeking evidence about the way people are
doing and thinking about the job."

—Kevin Behr

Kevin Behr

100

Kevin Behr: Yes, because then you enable people to turn the
more holistic, problem-solving parts of their brain on then.
You don't just want their lizard brain, or limbic brain, turned
on—because it's not just about survival.

In fact, one of the early pioneers in the socio-technical
systems approach, a guy called Eric Trist, went as far as to
say that learning on the job is a human right, and that if you
don't practice this right, then you're a machine, and you should
really be replaced by a machine. But if people cannot provide
an environment for you to learn while you're working, you
might as well get a job somewhere else.

The good news is that many technology professionals are
very fortunate in this sense. Not everyone is so lucky of course,
but there are ways to learn no matter where you are, and even
if the company or its managers hinders you, you can still learn.
If the company helps you and you have the desire to learn, and
maybe you happen to have someone you can collaborate with,
then—suddenly, you have a real chance to learn and maybe to
solve something together.

This is something that people do not understand, the higher
up you move in an organization. As Russell Ackoff says, and I'm
paraphrasing: the lower you move in an organization toward
the line workers, the more they know about fewer things. And
yet, the higher up you move in the organization, the less you
know about more things!

Engineers always love that joke, but it's true. As you move
up an organization, you must generalize more, and you must
have a lot more knowledge. But the other thing is that when
you're an individual, you can solve the problems yourself in

DevOps Paradox

101

many cases—because you can work on something. When you're
a manager or even a director, you find that you must instead
build consensus, collaboration, and teams to solve problems.
You realize that your problems are not problems you can solve
by yourself.

For instance, I have to go talk to marketing if I'm in sales
and I want to run a promotion, because I need them to tell
people about it; and I need the permission of the CEO, but
I also need to talk to the CFO to make sure we have money.
There's a natural path of collaboration to get something done.

Toyota,
the Taylor
Principles,
and Kanban

Viktor Farcic: This reminds me of
Taylor, back in the late 1980s and early
1990s.

Kevin Behr: Yes, the division of labor,
right? Now Taylor got us a long way. Taylor

got us to Toyota, and Toyota started with Taylor principles. A
lot of people do not realize how much of Toyota's management
system was scientific management.

Viktor Farcic: What I'm surprised about is how nobody
stopped to consider whether it was actually a good idea to
apply Taylor's principles to software development. Because if
I'm doing the same thing today as yesterday, which is the only
way to apply Taylorism, then I really suck at my job.

Kevin Behr: Oh, I'm not saying that it was good. What I want
to say is that it was better than what was there before, even if it
was optimized around the idea of mass production.

Viktor Farcic: Exactly.

Kevin Behr

102

Kevin Behr: Right now, we're in a different era of mass
customization, with totally different thinking. But you're right,
the thinking that was in place when the Taylor management
style was a fad was very different from today. Nonetheless,
Taylorism did get us to the beginning of Toyota, and to the
mass production we saw in Ford.

What a lot of people don't know is that Toyota's whole
production system (TPS) came out of a period of bankruptcy.
Toyota hired Taiichi Ohno, in 1950, when the bank owned
them. The bank had said to Toyota, "You cannot make a car
unless you have an order," to which Toyota had replied, "Why
not?" The bank's point, here, was that Toyota had made so
many cars that nobody wanted to buy, that they'd now spent all
their money, and were now bankrupt. The bank was saying to
Toyota that the only way they could really know that a car they
built would sell was if that car had already been sold. So, what
did Toyota do? They developed the pull system, and one-by-
one flow, as a system goal.

Viktor Farcic: That's certainly one way to think about it.

Kevin Behr: But the important thing is that Toyota did all
that at the lowest cost, because the one-by-one flow is not cheap
at the beginning. By the end, they'd figured out how to make it
cheaper, and continually cheaper, and cheaper, and cheaper,
and cheaper. Toyota did not have any big bang moments
during this sequence—they achieved everything through the
daily application of Improvement Katas.

Viktor Farcic: Including the invention of Kanban, though?

DevOps Paradox

103

Kevin Behr: I mean, there was a point in the 1970s where
Taiichi Ohno was running around saying, "The point of Kanban
is to not need Kanban," and people's heads were exploding! His
point was that if you're constantly looking at a board, or looking
at a card, then you're not looking around you. But Kanban is
intended as a problem-solving method, for a specific problem,
for a while; Toyota would then use the Kata to grow out of that.

One day, Toyota realized that Kanban was powerful, and
so... everything was Kanban! There were all these cards flash-
ing around the Toyota plants, and all these signals, and Taiichi
Ohno would say, "This is too much motion and waste." In the
end, Toyota figured out how to have a lot less motion and
waste. I think we go through that cycle in all kinds of techno-
logical breakthroughs.

Viktor Farcic: Where, if something is good, then a lot more
must be better?

Kevin Behr: Yes, and I think we're there with DevOps right
now. You see people trying to add things to the portmanteau
of DevOps, such as DevSecOps—with more and more things
coming soon.

The optimal
environment
for DevOps

This is all cross-functional collabora-
tion, and so the management questions
become: What can you do to get out of the
way? And how can you make it possible for
people that don't normally talk to talk, and

under good circumstances? When they hear the vision, or when
they hear their direction, you can bring people into working
groups, and say to the infrastructure people, how are you going

Kevin Behr

104

to help developers? Or developers, how are you going to help
infrastructure people to do this, right? That is leadership.

Viktor Farcic: But DevOps has been largely a grassroots
movement, and leadership hasn't known what to do with
DevOps, right?

Kevin Behr: No, management doesn't know what to do with
DevOps. They come back after a random meeting and say,
"I want three DevOps, give me that! And now we need a VP
of DevOps!"

Viktor Farcic: The funny thing is that this isn't even a joke!
I've really met one of these "VPs of DevOps"!

Kevin Behr: Oh, I've met several of them! I must, of course,
respect the fact that they're in a leadership position, but I don't
necessarily understand why they exist. The DevOps idea is that
you're supposed to be building teams with higher and higher
levels of trust and judgment, and that's supposed to move
through the organization too!

Organizations don't understand the environment that
DevOps requires in order to flourish. In our corporate HR- and
finance-driven models, structures, and organizational charts,

"Management doesn't know what to do with DevOps.
They come back after a random meeting and say,
'I want three DevOps, give me that! And now we need
a VP of DevOps!'"

— Kevin Behr

DevOps Paradox

105

we can feel trapped in those positions. We must understand
that those positions are social constructs.

For example, I point out to people in HR that their organi-
zation chart is just a hypothesis. I ask them, "Is this your best
idea of how to organize the office work? How do you know
that it works? Where are the tests?" Because if an organization
chart doesn't work, then someone should change it.

One of the ways I look for flexibility in an organization is by
looking at how long it has been structured this way. Who can
change it here? Could somebody, say a developer, walk up and
say, "We have a problem. Our organization is keeping me from
talking to this person, but I need to talk to this person, because
we have a problem." And will anybody listen to them when they
say this?

Viktor Farcic: Chances are... probably not.

Kevin Behr: And because we like our boxes, and our pictures,
and our compliance, and our work councils, and all those kinds
of things, we then feel forced to participate. But what I've been
showing people is that the organization chart is only an idea.
The organization chart does not know about the project you
have right now, nor the problem that you have right now. If the
organization chart is preventing you from taking the correct
actions, then maybe it's time to sit back as a team and ask
whether there's a better way to do things. Maybe you don't
need permission to just get it done, or maybe you say, "Oh,
sorry, I didn't know that I couldn't work with my neighbor."

Viktor Farcic: Exactly.

Kevin Behr

106

Kevin Behr: I think a lot of times, we assume that the way
we can work is based on boxes and charts, and I think we need
to test and raze those assumptions. People who control organ-
izational structure need to be more fluid around the possibil-
ities for the organization. After all, organizations are always
in transition toward something; they simply can't and won't
remain the same.

Viktor Farcic: Are you optimistic that organizations can
therefore improve?

Kevin Behr: Yes, I have strong hope for DevOps in organ-
izations, because the environment in which DevOps can
thrive also exists in other systems. I believe that people in the
DevOps community are starting to see the larger organizational
system. And once you see DevOps in the larger system picture
of business, you see everything differently. I'm hoping that the
DevOps community starts to look up and see that they're in
this larger system, and how that system is itself part of an even
larger system. I'm hoping that more organizations see that our
only chance of steering our systems is by doing so together.

"People in the DevOps community are starting to see
the larger organizational system. And once you see
DevOps in the larger system picture of business, you see
everything differently."

—Kevin Behr

4

Mike Kail
CTO at Everest

Introducing Mike Kail

Over 25 years, Mike Kail has experience in a wide range of IT
fields, including scalability, network architecture, security,
software as a service, and cloud deployment. His DevOps area
of focus includes empathy, integrity, teamwork, and resilience.
You can follow him on Twitter at @mdkail.

Viktor Farcic: Hi, Mike. I want to start with what may seem
like a really silly question: what is DevOps? Everyone I've
spoken to has given me a different answer, with some saying
it's a process, others saying that it's a tool, and others that it's
being a DevOps engineer. What's your view?

What is
DevOps?

Mike Kail: I certainly don't view DevOps as
a tool or a job title. In my view, at the core,
DevOps is a cultural approach to leveraging
automation and orchestration to streamline
code development, infrastructure and appli-
cation deployments, and subsequently, the

managing of those resources.

Viktor Farcic: You've spoken in the past about DevSecOps.
Is that the next iteration of DevOps?

"I certainly don't view DevOps as a tool or a job title.
In my view, at the core, DevOps is a cultural approach
to leveraging automation and orchestration."

—Mike Kail

DevOps Paradox

111

The next
iteration
of DevOps

Mike Kail: As the industry has evolved,
there are companies that have transformed
into a culture of DevOps. In that situation,
the question is, how do we shift left and bring
them into the continuous integration and
deployment pipeline? We need to inject

security testing earlier on in the process from CodeCommit to
the building and delivery stages. Security needs to be treated
as a continuous loop instead of as a periodic approach to testing
and compliance.

Viktor Farcic: Does that mean that by evolving toward
including security, the industry is almost falling behind by not
including it from the very beginning?

Mike Kail: Unfortunately, for the most part, security has
always been a periodic set of tasks or processes. For example,
when you did a pen test once a quarter, you might have done
static code analysis every now and then, but they're all done
manually. You need to think about how you start leveraging
automation to make it part of that continuous CI/CD (Contin-
uous Integration/Continuous Delivery) pipeline, ensuring you
use the best tools to do that.

You'll also require security engineers to start better under-
standing the software development process. They don't have to
be developers themselves per se, but they need to understand
at least what's going on. Developers also need to have some
awareness about security, although it's never going to be top of
mind or top priority. They have features and other reasons as
to why they want to do high-velocity development, but they at

Mike Kail

112

least need to understand the security aspect and to start think-
ing about it as early on as possible.

Viktor Farcic: In other words, you're baking security into
your process and not treating it as an afterthought.

Mike Kail: Exactly! It's similar to the grandparent or parent
test that we can implement when we're using Microsoft Word
or Google Docs to write a long document. As you're typing, the
program will do the spelling and grammar checks for you so
you don't run the risk of having your project delayed because
of errors that you need to correct when you're about to publish
the document.

The same can be applied to security, SQL injection, and
cross-site scripting, which are always in the OWASP Top 10 set
of vulnerabilities that keep surfacing over and over again.

Viktor Farcic: Brilliant, I love it. Depending on whom we
ask, it's been a couple of years since DevOps really became
a thing. This gets me thinking: as an industry, would you say we
are at the top of the hard cycle? You've worked with a number
of companies, so I would love to know if you see companies as
part of the story of whether we're adopting DevOps, or whether
it has already been adopted.

Mike Kail: I still think it's early days for the cultural trans-
formation within DevOps. We've seen the early adopters and

"I still think it's early days for the cultural
transformation within DevOps."

—Mike Kail

DevOps Paradox

113

leaders show the benefits of DevOps and what it can do to
transform your business. But right now, everybody's trying to
figure out how they get to that place, and I think that's why we
still have a lot of misconceptions about what DevOps really is.

Look at it this way: if I just call my team of engineers DevOps
engineers, then I'm doing DevOps. You have to approach the
idea from the cultural perspective, and then, from there, lever-
age one of the core tenets of DevOps—that being measure-
ment—to see where you are and how it's actually helping trans-
form your business. DevOps is not a panacea.

Viktor Farcic: That's my impression of the situation, because
when I visit companies, I always get the sense that in most
cases, a random team was renamed "DevOps." What was once
the tooling or CI/CD team is now a DevOps team, and when
I ask people what they now do differently, quite often they
don't know how to answer me.

Mike Kail: A long time ago, I was a Unix system and network
administrator. I've seen through my work there that title infla-
tion can take place. If I wanted to make more money, I wouldn't
be a system administrator; I'd be a systems architect. Both site
reliability engineers and DevOps engineers only exist to justify
more pay without the benefits of the cultural transformation.

A true DevOps culture, with a team of engineers, means that
they can articulate what they're doing differently, as well as
actually show you because they measure it. They have metrics
around the efficiency of how many deployments they are
doing today versus what they were doing several months ago.
However, what benefits the business from seeing these metrics

Mike Kail

114

versus just piling on more deployments won't necessarily
equate to whatever is actually driving the business. To achieve
that, they have to have that business focus as well.

Viktor Farcic: Does that mean that people who want to be
in the DevOps industry need to learn new skills, or do we need
people with different abilities?

The evolution
of DevOps
culture

Mike Kail: I think the evolution of
DevOps culture is an ongoing thing. It's
not like, all of a sudden, I go from being
an operations person to a DevOps person
because I did some automation. We have
to understand that everybody needs

some software development skills, whether it's scripting, pair
coding, or implementing proper tooling in the CI/CD chain.
But at the end of the day, you have to have an engineer mental-
ity, and I think that's probably what we're saying.

The technology landscape is always evolving, whether it's
through new infrastructure, or a new CO tool coming out to
help you manage your fleet better. It understands Kubernetes,
Mesos, or the myriad of other container orchestration plat-
forms out there. It's also the wider question of how you make
those platforms more efficient by the standard of DevOps
cultural components.

"The technology landscape is always evolving, whether
it's through new infrastructure, or a new CO tool
coming out to help you manage your fleet better."

—Mike Kail

DevOps Paradox

115

Viktor Farcic: I recently spoke with a friend on a similar
subject, and he described it as the DevOps industry needing to
remove the silos between departments. It's not because they're
inefficient, but because when people start working together,
they begin developing a level of empathy and start feeling
each other's pain that in the end leads to better collaboration
on different solutions.

Mike Kail: Exactly; otherwise, it's this "us versus them"
mentality, which gets DevOps either implicitly or explicitly put
into the culture. You're then not working to move the business
forward. Instead, you're working on looking better, or having
your team be more efficient, and at the end of the day, that
doesn't really matter. What matters is your company's metric,
whether it's revenue, customer delight, or something else.

First you break down the silos, flatten the organization, and
eliminate the hierarchy, which is disarming for many, and then
you figure out if you have the right people from a personal-
ity and collaboration perspective versus those with pure engi-
neering skills. Softer skills like empathy matter, as does proper
communication, owning your failures, not punishing mistakes,
and learning from those mistakes and failures quickly.

Viktor Farcic: That's a really good point. People often ask
why they can't have DevOps where developers, those testing
the products, sysadmins, and all the different people from
different silos work together. But on the other hand, there's
that story about infrastructure being a commodity, and
not mattering that much anymore. Is that something you
agree with?

Mike Kail

116

Mike Kail: I still think you need to understand the various
components of infrastructure and where different CPU,
memory, or disk configurations matter.

Infrastructure,
cost, and the
cloud

You need to think about infrastruc-
ture as a set of components. How do you
assemble those components and then
interact with them? In addition to that,
how do you keep everything evolving?

Infrastructure is much more elastic—to use a cloud term—than
static, as it was before. Applications that live on top of that used
to have the monolithic stacks or classic three-tiered architec-
ture, but nowadays with containers, VMs, and microservic-
es-based architectures, that's changed rapidly. It's why every-
body needs to understand from an engineering perspective how
the application or a set of services behave. It's also why they
keep tracking that and looking for anomalies, because that's
how you make sure that the site or your service is more reliable.

Viktor Farcic: What prevents companies from going to the
cloud? Many of those that I've communicated with still tend to
reject it, or maybe I'm just unlucky with the companies I work with.

Mike Kail: No, it's not just you. I think it's a classic combi-
nation of fear, uncertainty, and doubt. People fear insecurity
in the public cloud for various reasons, whether it's a fact or
a rumor. For example, there's a fear of jobs going away. If
I manage the metal in a data center, how do I now do that
in the cloud? Is it more self-service? This is the exact reason
why you have to keep evolving your skills to be more engineer-
ing-centric than just a maintainer of pets.

DevOps Paradox

117

Other factors are at play here as well: doubt and cost. You
get a shock when you receive the monthly bill from your
public cloud IS provider because while you may have shifted
your application, you failed to do any proper refactoring of it.
Your on-premises was overprovisioned—which is also some-
thing you didn't factor that cost into—and is now running on
expensive, virtual machines in the public cloud. You're wasting
a bunch of resources.

You should use that opportunity to move to the public cloud
and look at re-architecting how you can make your deploy-
ments more efficient, because there's a bunch of other cost
levers. Having managed a dozen or so owned-and-operated
global data centers, I know there's a lot of costs that people
never factor in. There's the obvious cost of employing people
24/7, but you also need to factor in the cost of power cooling.
You'll find that, typically, you've overprovisioned the metal
because you're a large, successful company, and you have to
manage the peak. You can't just deploy rack and stack servers
on demand, much like you can deploy cloud infrastructure on
demand. There's really a lot of implicit costs that have never
been shown in a Total Cost of Ownership model of on-premises
versus cloud.

Viktor Farcic: I have the same impression that whenever

"People fear insecurity in the public cloud for various
reasons, whether it's a fact or a rumor."

—Mike Kail

Mike Kail

118

I discuss prices, people somehow compare the cost of cloud
versus the cost of only having servers.

Mike Kail: From my experience, it's always the apples-ver-
sus-oranges comparison. Companies just look at that monthly
bill, and fail to understand the shift from CAPEX to OPEX, or
they haven't articulated that with their CFO well enough, if at
all. You can't just say, "I'm moving to the cloud, and I'm done,"
and then get the bill, because you don't understand the secu-
rity controls in place, or how to manage them properly.

Whether true or perceived, lack of visibility is also a challenge.
I can't see my servers, and I can't just walk into the data center.
I may have people doing shadow cloud deployments, so there
are more instances running than I know about. You also have to
have proper governance around cloud usage, and I think people
don't go into that with their eyes wide open and prepared.

Viktor Farcic: I get the impression that DevOps is moving
away from being operations-based and becoming more devel-
opment-oriented as we're developing data centers. Nowadays,
everybody's becoming a software developer, not only those
coding your applications.

Mike Kail: Yeah, it goes back to Marc Andreessen's mani-
festo of software leading the world, because we're moving to
software-defined everything. Software-defined infrastruc-
ture, networking, and security. There are a few companies
now doing software-defined power, power leveling, and load
leveling. I think everything is becoming programmatic, which
is why—once again, going back to my common thread—every-
body needs to have an engineering or a developer mindset.

DevOps Paradox

119

Viktor Farcic: That might then be similar to what we were
experiencing a while ago with testing. The idea that when
automation became a thing, testers who don't know how to
write code became very defensive or scared. Maybe something
similar is happening with operations right now.

Mike Kail: That and security as well. Because at the base
of the stack, both QA testing—classic QA testing and security
testing—are very similar. You're looking for anomalies and
issues, whether there are security vulnerabilities or there's
other application issues or bugs. Those have all been manual
processes, and they delayed the overall deployment process,
which causes that contention, which leads you to be defensive
of what you're doing, instead of being collaborative.

Viktor Farcic: That's like moving from acting as a gatekeeper
or a policeman to being more of a collaborator.

Mike Kail: It's about moving from being a blocker to an
enabler. How do you still provide your testing—whether it's
security or performance—as fast as possible to not add friction
to the deployment and delivery processes?

Viktor Farcic: True. No conversation these days can exclude
Kubernetes containers in some regard. Do you have any opinion

"Everything is becoming programmatic, which
is why—once again, going back to my common
thread—everybody needs to have an engineering or
a developer mindset."

—Mike Kail

Mike Kail

120

on that? Is Kubernetes really going to become the one ring to
rule them all?

Mike Kail: I'm a big believer and supporter of Kubernetes in
general, I'll start with that. But if you take a survey, many, if
not most, enterprises are still struggling with virtualizing and
moving to cloud virtual machines.

The leap across the chasm to get to containers is a long one.
You can't just deploy your application in Kubernetes, Mesos,
or whatever your container orchestration environment is. Now
you magically have microservices, an auto-scaling application
that is resilient, performant, and cost-effective. There's no
magic. I think there are very few container-native applications,
especially outside of Silicon Valley.

Jumping
into the
valley

Viktor Farcic: Does that mean companies
should not jump into whatever is "today"? If
you're not into virtualization, don't jump
into containers. If you're not into cloud-na-
tive applications, don't think about deploy-
ing to cloud.

Mike Kail: I think you first have to ask yourself, "Why are we
doing that, and why does that matter for our business?" You
need to tie that to potential results versus it being the newest
and coolest technology that's going to make you cooler than
Facebook, because that won't happen.

As developers or DevOps cultural employees, we tend to
become overly enamored of technology. Just look at how Kuber-
netes is so cool or how containers and clouds are so great. But
you need to tie that back to why you are doing this. Why does

DevOps Paradox

121

it matter for the business, and what benefits is this application
going to have from being cloud-native or container-native?

I'm a big pro-cloud, pro-software-defined person, and
I think there's plenty of ways to justify that. But you need to
make sure that your culture is ready for that technical trans-
formation, and that you have the right people to handle the
process and technology components.

Viktor Farcic: How often do you think that companies actu-
ally even understand the reasoning behind it? Do they jump
into those things because they really understand why they
want to do it or is somebody coming and saying, "Thou shalt
become Agile!"

Mike Kail: I think there's probably a lot of dictatorships that
take a stick-versus-carrot approach. You have some people, or
a team, inside the company that says, "Look. We're going to
do Agile," or, "We're going to do DevOps." This is not the right
approach.

Much like a start-up trying to raise funding, you have to go
in and do a proper presentation. You go to the higher-ups and
tell them what you're proposing and why. You show the effi-
ciencies and keep making sure that it's not a one-and-done
situation and that everybody's on board for this continual
transformation and evolution.

"As developers or DevOps cultural employees, we tend
to become overly enamored of technology."

—Mike Kail

Mike Kail

122

Viktor Farcic: In other words, people should come to you,
rather than you telling people where to go?

Mike Kail: I think it's asynchronous. It's not me or some-
body internally preaching at people. It's actually getting them
engaged and collaborating, which is the biggest part of a DevOps
culture. Without collaboration, you don't have anything.

Viktor Farcic: You mentioned Silicon Valley a couple
of times. Do you see a big difference inside and outside of
the Valley?

Mike Kail: I do. I think in the Valley, we're the first to hear
about the latest hype. For example, Docker's been around for
some time, but in the last two years of my travels it seemed
that no one really understood what a container was. I went to a
group of executives at an organization and asked them to give
me a definition of a container. If there were 15 people in the
room, I'd get 12 different answers, including some arguments
as well.

Viktor Farcic: But if there's a big gap, do you think that those
running behind can actually catch up? I'd really be interested
in knowing if there's hope for digital transformation. Is there a
chance that big enterprises will really become competitive, or
is it a lost battle?

Mike Kail: It's somewhat of a religious topic because it really
comes down to the internal workings of the given company.
I've seen too many large enterprises get in their own way, and
they're still mired in this annual budgetary cycle mentality. I'm

DevOps Paradox

123

pretty sure Amazon doesn't operate that way. I'll put my hands
up and say I've got no intimate knowledge of Amazon's inner
workings, but as fast as they move, they're not doing an annual
budget cycle and kicking the can down the road when it comes
to new transformation and transformative initiatives.

Too many enterprises are just content with the status quo or
the soundbite because, mentally, that's the way they've always
done things. Until you remove or change that mindset, there's
no amount of technology that can help you.

Viktor Farcic: It reminds me of that truism: every company
is a software company. Now, assuming that you think that's
true, how does this coincide with externalizing your world?
Because, obviously, nobody externalizes core business.

Mike Kail: Are you talking about open source initiatives?

Viktor Farcic: No. Not open source—for example, say you're
a big bank or insurance firm that outsources all your software
development to a third party. I'm trying to figure out how
somebody can say that software is important when they don't
develop it in house.

Mike Kail: I think you need to keep the core IP or crown
jewels of your business close to your chest, and not outsource,
offshore, or nearshore them. You need to protect, to some
degree, the core features of your business, or at least what
gives you strategic differentiation. Maybe you can then rely on
third-party developers for everything else.

I think a lot of people believe that offshoring or passing work

Mike Kail

124

to third-party developers is less expensive, but I think given
time zone challenges and, in particular, language and cultural
barriers, that's not often the case. It's like on-premises versus
cloud: people don't compare apples and apples.

Viktor Farcic: True. Is that because it's like counting the
price per head, not per the outcome?

Mike Kail: Exactly!

What's
next after
DevOps?

Viktor Farcic: So, what's coming next?
I don't know if you want to look a month
down the line or even several years, but
where are we going as an industry?

Mike Kail: We hear the word "bubble"
mentioned a lot, but compared to the real bubble of 1999/2000,
today's technology is pervasive in all of our lives in Silicon
Valley. If I look at buzzwords, I think blockchain will start
becoming more and more prevalent. Once people understand
where it's applicable, it will be a game-changing technology
in a bunch of different sectors. However, there will be scaling
and growing challenges that I don't think a lot of people have
thought about.

Not to conflate blockchain with cryptocurrency, but I think
we'll see cryptocurrency becoming much more well-formed, as
we've seen more recently. For example, only the other day, the
payment company Square announced they're allowing trading
in crypto, which will allow new businesses and opportunities
to be built around that.

DevOps Paradox

125

The other area, which is still in its early stages, is artificial
intelligence. How do we leverage AI in positive ways for busi-
ness and humanity in order to remove biases from them?

Viktor Farcic: Theoretically, that should actually also affect
engineering. Are we moving in a direction where we'll end up
programming AI so AI can program everything else?

Mike Kail: I think every role I've had in my technology career
has eventually gone away. Again, as we mentioned before,
there's that fear. Realistically, I think it's still a long way before
AI eliminates all our jobs. Quite the opposite, actually: I'm
more of the mindset that AI will create more opportunities.

We want to eliminate the menial tasks by leveraging some
machine learning—which is a component of AI—to make your
job more efficient. Then you can spend time on higher-order
things. I think that's what we'll see, and when people under-
stand that, they'll be successful. The ones who sit around worry-
ing about their job or position going away are the ones that are
probably not going to be long for that position in general.

Viktor Farcic: As we wrap up this interview, is there anything
you would like to add that we haven't covered yet?

Mike Kail: I think my closing message is that we're all still
early in the DevOps transformation. There are still plenty of

"I think we'll see cryptocurrency becoming much more
well-formed, as we've seen recently."

—Mike Kail

Mike Kail

126

cultural opportunities out there to make a difference and actu-
ally make things much more efficient.

Viktor Farcic: It's not really a standalone project then, but
more a never-ending story.

Mike Kail: I'd describe it as transformation or continuous
evolution. You're never done transforming the DevOps sector.
There's always an area of the business or aspects to improve
upon with respect to performance.

Viktor Farcic: That's why I don't like the term "digital trans-
formation." For some reason, it sends a message to my brain
that this is something with a definite start and ending.

Mike Kail: It's not a project with a finite endpoint. I'll go
back and use the Amazon example. I would guess that they're
always thinking about digital transformation, and there's
plenty of inefficient parts of our society and world that could
be improved by digital transformation.

5

James
Turnbull
Chief Technology Officer –
Microsoft for Startups

Introducing James Turnbull

James Turnbull leads a team of "CTOs in residence" at Micro-
soft who help start-ups build the right architecture and teams in
order to be successful. A seasoned engineering and infrastruc-
ture author, James has published a series of books on those
subjects. You can follow him on Twitter at @kartar.

What is
DevOps?

Viktor Farcic: Hello, James. I wanted to
start our discussion with a question: what
does DevOps mean to you? It's a question
that I find fascinating because everyone I've
interviewed for this book has given me
a different answer.

James Turnbull: I'm not sure that there is a single descrip-
tion for DevOps anymore. I started talking about DevOps in
2009, and although I wasn't at the first DevOps event in Ghent,
Belgium, that year, I was at the next one.

I think when it first started out, DevOps was really about
trying to build bridges between operations and their functions
and developers and their functions, which largely focused
around the moment of handover where the code goes from
being in development to being deployed and in production.
Then from there, we analyzed a lot of the problems with that
particular challenge and identified that some of the issues
were cultural, some were technological, like automation and
tooling, while other issues were process-oriented.

DevOps Paradox

131

These days, I think DevOps is a lot of different things to
a lot of different people. I think if you work in marketing,
there was a time when you just relabeled all your tools as your
DevOps toolkit. It's 2019, and you still see a lot of companies
with a DevOps page, or they outright call themselves "DevOps
something" – as to whether those tools are DevOps or not,
I'm not sure.

At the end of the day, DevOps is about ensuring that applica-
tions and products are built in a cross-functional way, so that
product engineers, designers, operations, security, and busi-
ness people all have a common understanding of their mission,
which is to build products for their organizations that hope-
fully make that organization money.

Viktor Farcic: That makes sense. You mentioned DevOps
tools, and at least when I visit companies and attend confer-
ences, every single tool has the word DevOps attached to it. It's
kind of as if nobody can sell anything without DevOps, which
leads me to think: is there even such a thing as DevOps tools?

James Turnbull: No, I don't think there is. I believe there
are tools that make the process of being a cross-functional
team better. I would argue that for many companies, Slack
is a DevOps tool because it's an easy way for companies to
communicate across teams.

"These days, I think DevOps is a lot of different things
to a lot of different people."

—James Turnbull

James Turnbull

132

I would also say Puppet might be a DevOps tool, even Chef, Salt,
Ansible, or Docker, because they all enable automation and
workflow that makes it easier to manage and move assets and
code around. Any tool that facilitates building that cross-func-
tionality is probably a DevOps tool to the point where the term
is likely meaningless.

What's the
best stack
available
today?

Viktor Farcic: You're a very technically
oriented, hands-on person. All of your books,
at least those that I've read, are highly tech-
nical, which gets me wondering whether you
have a favorite stack. I saw that you wrote
a lot about Puppet and Terraform. Is one

replacing another? Moreover, where do you see the industry
moving to now?

James Turnbull: I'm probably less technical than I used to
be. I've moved between a lot of different roles; these days, I'm
primarily a people leader. I'm a CTO, and I've been a VP of
engineering for a number of years, so I dabble in this space in
my spare time, but I wouldn't consider myself a practicing SRE
or a practicing Systems Engineer anymore.

In terms of things like Puppet and Terraform, I think they
do different things. Terraform is clearly an infrastructure build
tool, and if you want to build a virtual private cloud (VPC) and
a bunch of Amazon EC2 instances and a bunch of other things
hooking them all together, then Terraform is the ideal tool.
If you want to configure those assets and deploy the applica-
tion on top of it, then I think Puppet, or another configuration
management tool, is a more appropriate choice.

DevOps Paradox

133

Viktor Farcic: How about the O'Reilly conferences? Do you
see any trends there? Can you predict what's coming next, at
least within DevOps or infrastructure-related subjects?

James Turnbull: We've changed the purpose of Velocity
considerably over the last couple of years. The future is really
in distributed systems. I think that monolithic applications
that are based in a single geography are the dodo of the infra-
structure and architecture world. They have a long tail, and
it will take a long time for them to go away, but people who
are building new systems really need to think about whether
that is the most appropriate way to develop their application
or their service.

I think there's a couple of reasons for that, one of them obvi-
ously being that monolithic applications tend to move slowly,
and speed to market really matters now, as does your ability
to deploy a new feature, a new capability, or a new offering of
some kind that actually makes a marked difference, as does
performance, and scaling, and availability. Monolithic appli-
cations are notoriously not great at that.

The second reason is that I think customer expectation is
much higher now. The last couple of generations of folks, who

"Customers have very high expectations about the
performance of applications and services, which
are significantly changing the way that data is
distributed."

—James Turnbull

James Turnbull

134

are probably the third generation who grew up as sort of inter-
net natives or cloud natives, have never known a time where
they didn't have data on their phones. Customers have very
high expectations about the performance of applications and
services, which are significantly changing the way that data
is distributed. For example, no longer is the optimum model
for a lot of applications a large centralized data center; it is,
in fact, an edge computing-centric distributed application
where the data for a particular cohort of customers is closer to
those customers rather than your core infrastructure. I think,
overall, what we see now is that, for the next two or three years
at least, distributed systems will be the focus of infrastructure
and application development, and certainly the backend.

Monoliths and
microservices

Viktor Farcic: You mentioned mono-
liths and microservices. Can you explain
why they've only become popular now? I
mean, obviously, microservices have
existed for a number of years. Is that
because our needs changed or the tools

that we have access to changed? It's not that that concept didn't
exist for a long time, but everybody only started talking about
them recently.

James Turnbull: When I first started out in the indus-
try, there was a concept called service-oriented architecture.
Primarily, it was a way to break services into individual fault
domains that allowed them to scale, manage, and interact on
their own. The definition of service was pretty broad. It gener-
ally didn't resemble a microservice.

DevOps Paradox

135

But I think a couple of things have happened, namely that
virtualization, the cloud, and containers have enabled micros-
ervices architecture. They're very easy tools to allow someone
to build those services.

I think the reason those services have also become popular
is that if you are building an application that is designed to be
retail and customer facing, and you want that application to be
able to move fast, then building independent services that are
easy to iterate on is significantly easier than building a giant
monolith where, at some point in time, you'll lose the ability to
reason about the model. You will lose the ability to understand
the model as a whole, and you will lose the ability to make
changes to the model without potentially impacting other
things, whereas microservices with appropriate protocols and
APIs can be versioned and managed, and canary-deployed and
rolled out.

Viktor Farcic: Do you have any contact or experience
with security in that model? Because I hear security is kind
of a concern, especially when joined with containers.

James Turnbull: I was a security engineer for a few years,
so I see containers as having some security challenges. Obvi-
ously, a container is not as robust as a virtual machine in the
sense that the walls between compute resources are consider-
ably thinner. For example, in most cases, a container repre-
sents a process separation versus a hypervisor separation. But
I think that, realistically, a lot of it comes down to how you
deploy your services, and how you build your environment.

James Turnbull

136

If you put security architecture up front and apply security
in depth at both an application and infrastructure level, and
you design it into your environment, then a lot of the common
issues that have tripped people up in the past start to become
less of a concern. There's a lot of work being done around
building zoned security models and deploying like-risk-level
workloads together. You deploy your cluster of marketing web
servers together, but not on the same host as your payroll
system. There's a lot of common-sense stuff that has been done
for years and years, and that, I think, makes a large number of
the security concerns in that space not as severe as they look.

Viktor Farcic: When I look at the software, at least as you
describe it in the books you've written, it's always open source.
Do you see that as the death of closed source? Or does closed
source even exist anymore?

James Turnbull: I think the same thing that's happening
to the customer is also happening to software in other places.
I like open source software because I like the ability to control
my own destiny. I also believe in composable applications. The
fundamental principle of a Unix application is small, compos-
able tools that I can put together and build a stack of, and I'm
very attracted to that model. For myself, and a lot of other
people who are probably reasonably experienced engineers,
I like choosing a stack where I can take a bit of Kubernetes and
a bit of Prometheus, and maybe a bit of this and a bit of that,
and I can combine them together to provide me with a stack
that I like and can work with.

DevOps Paradox

137

I still think a lot of companies, particularly enterprise
companies, want someone to talk to if something goes wrong
with a product or an application. They want a neck to choke, or
someone to be able to provide them with support and indem-
nification, so I think there's definitely still a market for closed
source enterprise software. But I'm not convinced that the
demand is as large as it used to be. More and more people are
building things that are primarily open source. When there's
open source at the core of it, they're selling additional bits
of technology or functionality that is either closed source or
commercial in some way on top of that. If you look at a signif-
icant number of the movements happening around orchestra-
tion tools, then at the heart of it, a lot of them are Kubernetes
and then other things are built around or on top of that.

Kubernetes,
RHEL, and
Ubuntu

Viktor Farcic: You mention Kubernetes.
Do you think Kubernetes will affect oper-
ating systems? Are we going to continue
seeing RHEL and Ubuntu dominating the
market?

James Turnbull: I don't think so. I personally think the oper-
ating system is dead; I don't see a purpose for it. I want to build
composable things that just use the system-level resources that
I care about, whether they are disk, CPU, or memory. I want to

"I like open source software because I like the ability
to control my own destiny."

—James Turnbull

James Turnbull

138

be able to take libraries or middleware from a selection of stuff
and then combine those without needing a huge surface area
of other materials. I think that we'll see more and more things
that are shaped like Alpine and CoreOS, where the operating
system is largely a black box, or you're getting a piece of the
operating system where you don't configure any of it, as a lot
of it's not exposed to you.

I still think that people will want some sort of support.
They'll want somebody to be able to talk to when something
breaks. I just wonder if it might be at a different level of abstrac-
tion that they wish to support. Do they need a RHEL support
account or do they need a support account for a particu-
lar workload, application server, or a stack running on, say,
OpenShift? Again, this is a long tail problem, so I suspect it'll
be a number of years before this is over, but I don't see the
operating system market having a long future.

Viktor Farcic: Do you think that it will be replaced with new
operating systems like CoreOS, or will it be the do-it-yourself
unikernel type?

James Turnbull: I think unikernel is a possibility. With
serverless stuff, you don't really care about the underlying
hardware, or whether you should run AWS Lambda or Azure,
for example. It doesn't really matter whether that's Ubuntu,
Fedora, or RHEL – it's not relevant to you. Therefore, I think
we'll see things where it's either hidden from the end user
because it's a black box to them, because they never need to
change anything in it, or it's a segment, a slice of the operating
system rather than a whole operating system.

DevOps Paradox

139

Viktor Farcic: You mentioned serverless. I often hear
concerns about people being vendor-locked-in. Do you feel
that's a valid concern?

James Turnbull: I mean, that's what those cloud vendors
want you to do. They want you to buy all of the pieces of their
product and lock you into their ecosystem, so I do think that's
a concern.

Over time, we'll see more and more things look like stand-
ards, like, to a large extent, a RESTful API, GraphQL API, or
a function of some kind where it's very easy to create sort of
patterns for. Whether that runs on top of Azure Functions
or Lambda, it might just be a bit of deployment functional-
ity rather than changes to the core code of the function itself.
I'd be curious, because I haven't written very much outside of
Azure and AWS to see if you could write a function that had
multiple backends and multiple deployment paths that were
essentially identical. I suspect it would be pretty easy.

Viktor Farcic: How about schedulers? I mean, with Kuber-
netes, I saw 2017 as being more about schedules. Do you think
that's over, or are we going to continue seeing multiple solu-
tions? Right now, is Kubernetes the only thing or is there
is still Swarm and Mesos?

"You still need a reasonable amount of infrastructure-
centric knowledge to run Kubernetes, and scheduling
is not a trivial tool to build.

—James Turnbull

James Turnbull

140

James Turnbull: I think that's a hard question to answer
because I don't think the market has shaken itself out yet. I like
Kubernetes, Mesos, and things like Nomad, but I suspect for
the vast majority of people, these tools are at the wrong level of
abstraction. You still need a reasonable amount of infrastruc-
ture-centric knowledge to run Kubernetes, and scheduling is not
a trivial tool to build. I think there's a long way to go before you
can think about Kubernetes or any of those other orchestration
tools as more platform as a service where a developer can just
push the workload at a black box like Heroku, and it'll just work.

I think that'll happen as some of the clouds start to roll out
tools like the Amazon, Azure, or Google Kubernetes services,
where if you take something like Amazon's EC2 Fargate product,
where you don't manage the instances anymore, combine that
with AKS, their Kubernetes product, and suddenly it's heading
very close to a continuous delivery and integration model where
I just push container images with some metadata about how
many of them, and maybe wired into some metrics or some-
thing to scale or shrink them, and then it's fine. I think that's
probably where we're going, but I think we're a little way off
from that being a realistically useful tool for a vast audience.

Viktor Farcic: Are there any other subjects you would like to
discuss or comment upon?

James Turnbull: I think there's a fascinating discussion happen-
ing at the moment about the definition of monitoring. Monitoring
has traditionally been very infrastructure-centric, where you'd
have a machine out there that monitors the CPU and the memory
and the disk, and maybe some transactions and error rates.

DevOps Paradox

141

Today, though, we see two things happening: one, we see much
more framework-oriented monitoring; for example, things like
Google's four golden signals or Brendan Gregg's USE method,
Utilization Saturation and Errors. Then, we are also seeing
observability-centric things like tracing and end-to-end analy-
sis of performance. I'm really interested to see what tools will
emerge in that space in the next couple of years.

Viktor Farcic: I get the impression that they are not catch-
ing up with the increase in services we are running today.

James Turnbull: I agree. I think that it's an aspect of moni-
toring that has always been a bit of an afterthought or a reac-
tive thing that happens after something goes wrong. I believe
we are now starting to see that injected a bit earlier into the
development process, so the monitoring, metrics, and exposing
metrics can be consumed by health checks, which are happen-
ing more often, in which case it'll be super interesting to see
what tools and changes in infrastructure emerge out of that.

I think a lot of people still have legacy Nagios installations,
and it will be interesting to see what replaces those in the next
five years.

Viktor Farcic: Do you think then that tools like Prometheus
are already getting there, or we are going to see something
even more radically different?

James Turnbull: I think Prometheus is an exciting avenue,
for certain types of services like microservices, contain-
er-driven applications, and Kubernetes.

James Turnbull

142

However, I'm not necessarily convinced it's a very good fit
everywhere. But then again, I don't think any tool is a univer-
sal panacea, so I think we'll see a lot more from Prometheus. It
has a bright future.

I think we'll also see a lot more of tracing-style tools. In addi-
tion, we'll see a second or third wave of SaaS tools. The first wave
tools, which were simple things like probing tools where you
would connect to a service, and if it returns an HTTP response
with a 200 exit code, then it's up, and maybe you sample a little
bit of data to confirm that it's doing the right thing. And then
in the second and third generations there are things like New
Relic and Dynatrace, which were more APM tools.

In the next wave of SaaS services, we'll see a combina-
tion, a hybrid of infrastructure-level monitoring, middleware
application-level monitoring, performance-level monitoring,
transaction-level tracing, and then layered on top some busi-
ness-level monitoring. I don't know what those tools are yet,
but I think there is definitely some interesting stuff that will
happen in that space.

Viktor Farcic: Since we talked about Prometheus, it might be
worthwhile mentioning that you wrote a book about it. Where
can we get it?

"I think we'll see a lot more from Prometheus. It has
a bright future."

—James Turnbull

DevOps Paradox

143

James Turnbull: The book is called Monitoring with
Prometheus (https://prometheusbook.com), and there's
a discount code, TALKINGDEVOPS, that'll give the readers
25 percent off.

Viktor Farcic: I think we can agree that the future will be
a fascinating space. Thank you.

6

Liz Keogh
Lean and Agile coach
and trainer

Introducing Liz Keogh

A holder of the Gordon Pask Award, given by the Agile Alli-
ance, Liz Keogh specializes in Cynefin, and putting Agile at
Scale in context. Liz embraces the many risks inherent in soft-
ware delivery, driving collaboration and transparency between
teams. You can follow her on Twitter at @lunivore.

Viktor Farcic: I want to start by asking what exactly do we
mean when we say DevOps? I was also wondering though if
you could touch upon the relationship, if there is one, between
DevOps and Agile.

The relationship
between DevOps
and Agile

Liz Keogh: DevOps used to be when
you did Agile with a small team; back
then, it was just developers in small,
cross-functional teams who were
writing code directly for the custom-
ers. The customers would give the

DevOps team their requirements; the developers would then
develop the code and give it back to the customers. Now you've
got much larger enterprise organizations where operations is
a separate department, and possibly even a separate company
within the larger group, and yet you still want to ship stuff.
I always say that DevOps is a good start.

DevOps Paradox

149

Agile generally starts with the development teams. You've
likely got some business analyst types, testers, and developers
all writing the code, and then they think they're done. Except
they're not done, because they still haven't actually shipped the
product yet. Operations is the next stage of that.

The way you engage with your customers hasn't really
changed, but if you can actually get to the point where you
can ship stuff reliably to the customer and get feedback from
people on how it's going, then you're doing well. It's the differ-
ence between changing direction within the team and actu-
ally changing direction with whatever you put out there. I'm
personally a massive fan of the Agile Fluency Model.

Viktor Farcic: Does that mean that Agile somehow excluded
operations, or is that why DevOps was not Agile?

Liz Keogh: I don't know quite what's happened, except that
Agile has generally always been a development-focused thing.
The Scrum framework talks about cross-functional teams,
but I guess it's because of the nature of enterprise that we've
always put things into these horizontally sliced departments
within both large-scale enterprises, and even some small-
scale companies who've got their little fledgling departments.

"DevOps used to be when you did Agile with a small
team; back then, it was just developers in small, cross-
functional teams who were writing code directly for the
customers."

—Liz Keogh

Liz Keogh

150

As soon as you compartmentalize, you've created a gap between
development and operations that needs to be bridged.

When I was working with ThoughtWorks, a community
of individuals whose purpose was to revolutionize software
design, creation, and delivery, I had rudimentary Linux admin
skills, and I mean really rudimentary. I actually started as
a sysadmin, but it was within Windows in 1998, so it wasn't as
though much advanced skill was necessary. But now you look
at all the specialist skills required to get stuff shipped, plus
what it takes to make things maintainable and to be able to
monitor things, to be able to back them up, and all the rest
of the things you need, and it's generally beyond my skills as
a developer.

Nowadays, you've got Puppet, Chef, Docker, and Kubernetes;
these are all tools I've never even touched because they've come
along in the time since I've stepped away from doing hands-on
development. I only tend to do hands-on development as part
of my consulting work now, but you look at these specialist
skills that they've got and it's really tempting to say, "Okay,
well, that's your bit—we'll do our bit as development, and then
we'll give it to you, and you'll ship it for us, and that'll be great."

When you actually look at what's needed to make some-
thing reliable, and maintainable, and to stop those people
having phone calls at 4:00 a.m. because something you wrote
as a developer broke, then there's a ton of things that you
can do to help each other. Operations can talk to developers
about what they need, and developers can speak with opera-
tions about what they're going to do to help. That's really what
DevOps is: adults talking to each other and working together.

DevOps Paradox

151

I've spoken to people in enterprises who say, "I can't do
DevOps because operations is a separate department." But if
you're reporting a bug in production, all you need to do is put
your name on the bug report, and you've started off well: you're
in operations.

If you're a developer, you just have to say, "Hey, if you have
any problems with this bit of code, come and talk to me—don't
just write a report, we're up here, why don't you come and talk
to the team, and we'll help you fix it?" It's that attitude to ship-
ping software. That's what DevOps really is: an attitude change
and the building up of a relationship.

Viktor Farcic: That's a brilliant point. It's as if you went
back in time and replaced the word "Ops" with "a tester of the
problems we're trying to solve with Agile." Those guys don't
speak to each other; they live in different departments.

Liz Keogh: Exactly!

Viktor Farcic: I've heard you speak quite frequently about
the Cynefin framework. Could you explain what it is?

The
Cynefin
framework

Liz Keogh: The Cynefin framework is very
much about making sense of different situa-
tions and how you approach them. For that
reason, it's called a "sense-making device."
Think of it this way: there are five ordered

"That's what DevOps really is: an attitude change and
the building up of a relationship."

—Liz Keogh

Liz Keogh

152

domains – simple (or obvious), complicated, complex, chaotic,
and disorder. The boundaries between them are fuzzy. In the
simple, or obvious, domain, problems are easily solved because
the solutions are obviously apparent and easily categorized.

Take a landlady in the pub. I say, "What do you do when the
beer runs out?" She responds by saying, "Well, I change the
barrel, obviously."

When problems enter the complicated domain, they require
expertise. A watchmaker can fix your watch, a car mechanic
can fix your car, and that's great—both of those have predict-
able outcomes. In the complicated domain, problems can be
analyzed and solved only if you've got the relevant expertise.

The problem is that human beings crave certainty. We want
predictability. We like knowing what's going to happen next.
In all of our evolutionary experience, unpredictable things
typically spell disaster, and that's chaotic, which, within the
Cynefin framework, puts us in the chaotic domain. Chaos is
accident and emergency, it's your house burning down, it's
people bleeding to death. Chaos is a transient domain, however,
which means it resolves itself really quickly. It doesn't like to
stick around for long, but, unfortunately, it might not resolve
itself in your favor. Chaos is also the domain of urgent oppor-
tunity, but it's normally a really bad place to be, and that's the
problem, because there's a bunch of stuff that isn't predictable,
or chaotic either. And this is the complex domain within which
a lot of software development takes place.

We have to allow things to emerge. We know where we've
got to when we look back with hindsight. This is called "corre-
lated in retrospect." You can see where you've got to, but you

DevOps Paradox

153

couldn't have predicted the outcome. Anybody on Agile projects
working in combination with the business, getting their feed-
back and changing direction, will be experienced with that, to
an extent. Take, for example, the fact that you're working in
a very high-uncertainty environment. You're doing product
development or creating new products. One of the things that
Toyota frequently does, for instance, is concurrent set-based
engineering. They'll try three different types of engines at the
same time, and from that, they work out which aspects of their
engine they want to settle on for that new car. The complexity
thinkers, or particularly the Cynefin thinkers, call these "paral-
lel probes."

Viktor Farcic: Could you explain what a probe is and how it
relates to DevOps? I mean, how does this fold into the world
that we live in today?

Liz Keogh: A probe is something that's safe to fail. As you get
more and more innovative, you'll get higher and higher levels
of uncertainty in what you're doing. Your variance increases,
as do the chances of getting something wrong. You're guaran-
teed to make discoveries, though you won't make them in the
safety of the team anymore. Many of these discoveries will take
place in production, and you can't help it because things are so
new and unpredictable.

"I regard DevOps as absolutely essential for innova-
tion, at scale certainly."

—Liz Keogh

Liz Keogh

154

What you need to be able to do then is to change direction
really, really quickly, and this is where my focus in DevOps
is. A lot of people think of DevOps as a path to predictability
rather than a safety net that allows you to do unpredictable,
high-discovery things. I regard DevOps as absolutely essential
for innovation, at scale certainly.

You need to have those automated tests, like the probes, not just
because they're catching things, but because they provide living
documentation and they keep the code easy to change. What's
probably more important is that you want monitoring in place; you
really want great relationships with operations, so that when those
discoveries do come along, and when you do have a bug in produc-
tion, and something does go haywire, you can spot it really quickly
and you can roll back. This is where this idea of phoenix servers
comes from, where you can release these bugs to one server, see
how it goes, and if it doesn't work, you just trash your server. This
is where the world is going now, where we can actually just play
and see what's happening out there. We're used to playing as chil-
dren in safe-to-fail places; this is how we learn as kids. Now we're
kids in the playground of production, and it's still important that
it's safe to fail out there. That's why I love DevOps so much.

Viktor Farcic: DevOps kind of allows you to deploy to produc-
tion and fail fast. Effectively, you're validated in production
instead of in a testing environment.

"It's still important that it's safe to fail out there. That's
why I love DevOps so much."

—Liz Keogh

DevOps Paradox

155

Liz Keogh: The thing is, there's a balance between getting
it right and making it okay to get it wrong. I always say if it's
something that's reasonable for you to predict, then you should
probably try and get it right. As an example, you should use
a production-like environment where you can run your tests
using production-like data.

You won't be able to do it for everything unless you're actu-
ally going to have exactly the same customer base, data, and
software landscape, which you never do; then you're going to
end up testing some stuff in production. There's no way around
that, so then you've got to have really good stuff in place to spot
when it goes wrong.

Viktor Farcic: You would then have to have exactly the same
users as well if we follow the same logic, no?

Liz Keogh: Exactly!

Behavior-driven
development
(BDD)

Viktor Farcic: You're big on BDD.
Can you explain to us, for those who
may not know, what it is?

Liz Keogh: BDD came about as
a replacement for test-driven develop-

ment (TDD). TDD wasn't really about testing, because anyone
who's done TDD would say that you wrote the test before
there was even any code. Essentially, you're not really testing
anything; you're describing how the code you're about to write
is going to work, why it's going to be valuable to you, while
coming up with some examples of how you want to use it.

When we actually start thinking of them as just examples

Liz Keogh

156

of behavior, that's class-level behavior. You would say, "Here's
an example of how my class behaves." But then you've got your
system: "Here's an example of how my system behaves, here's
an example of my application in use," and we call those scenar-
ios. It's the same. You take your scenarios, and now you've got
an example of how you think your system is going to work.

When things are predictable, they require expertise, and
having the conversation around those scenarios is a really
great way of gathering that expertise yourself and picking up
a language that people want to use around it so that you all have
a common language, which they call a ubiquitous language.
When things are really uncertain, those scenarios provide what
we call coherence, so it's a realistic reason for thinking that
what you're about to do is a good idea. You might decide that
that example doesn't quite match what you're thinking, or it
might turn out that customers don't quite want to use it that
way, and then you'll have to change your scenario. The more
uncertain you get, the more important it is to have the conver-
sations that just explore, and the less important it is to put
the automation around them, because automation is a commit-
ment, and if you're committing to stuff that's changing, it's an
over-investment on your end.

You want to commit as little as possible until you reckon you
have a good understanding of the problem that you're trying
to solve, and then when you understand the problem, you can
start writing those scenarios, automating them, and having
a stab at what you think the solution ought to look like. But
sometimes it takes learning by doing, and you actually have to
try something out and then you understand it.

DevOps Paradox

157

There's a lot of spiking and prototyping these days compared
to when I started doing software development.

Viktor Farcic: I'm guessing you started on Waterfall. Could
you take us through your experience with that?

Liz Keogh: So, yes, when I started, I was on a Waterfall
project, and we had three years' worth of development, and
I believe before that, there was a year and a half's worth of
analysis. I was in a basement for three years working on this
thing, and we did not ship at all in those three years, but now
we're able to ship. Diana Larsen and James Shore, the people
behind the Agile Fluency Model, call it to release at will. In
this model, you're able to release when you want to if you get
this stuff right, which means you can change direction really,
really quickly. This also means that spiking and prototyping is
probably more important than it used to be, while automating
is actually less important, though the conversations you have
are still important.

These conversations around those scenarios—around what
you think this might do for people, how they might use it, what
other stakeholders need to be considered and how it's going
to work for them, what other outcomes we need, and what
contexts are going to be in and out of scope—are still really

"There's a lot of spiking and prototyping these
days compared to when I started doing software
development."

—Liz Keogh

Liz Keogh

158

crucial, while also being very lightweight. They don't take long
to have.

I always recommend starting with the conversations and
only moving to the tools when you've gotten really good at
having those conversations. It only takes about a month to
retrofit scenarios around a small code base while you're still
developing it; obviously, it's not a month of full-time work. If
you started with the tools, put them down and then have some
conversations. You'll come back having a better understanding
once you've had those conversations around the scenarios.

Viktor Farcic: If we're inviting operations to the party, does
it mean that BDD is extending in that direction as well?

Liz Keogh: A little bit, but you're still going to want to talk
through examples of the kinds of things they want. Generally,
their examples will focus on monitoring; it will be, "What if we
have a bug like this? What should we do?" They're going to be
examples of how you want to use that relationship.

The best conversations I've had are not about what the
software should be but rather how we as teams are going to
work together to quickly solve any potential issues that might
come up after the software's release. It's the human aspect that
I really enjoy. This is where the complexity stuff—Cynefin—
really comes into play, because human systems are what we
call complex adaptive systems. They're systems in which the
agents of the system can change the system itself.

While you might be able to look at the behavior of soft-
ware and go, "Okay, that's relatively predictable," as soon as
you've got two groups of people working together, you'll need

DevOps Paradox

159

to be a bit more forgiving and a little more mindful of how
that relationship is building, what's going on with it, what's not
working, and how you fix what's not working.

I really like it when the conversations and the scenarios
switch from how the software is going to behave to how we're
going to behave as human beings. Having said that, if you've
been diligent in how you monitor things, you'll have exam-
ples of the kinds of thresholds at which you're going to trigger
your monitoring, and can ask questions about what it's going
to look like: "Are you going to email me or am I going to get
a notification on my pager?" You can have those conversations
as well, but BDD isn't the only way to develop software, and
it's certainly not the only way to test things. There are tons of
great testing practices that have nothing whatsoever to do with
BDD. When people think of testing and BDD synonymously,
they miss out on all the other things that testers do.

I love my testers because they make it safe for me to fail.
I think it's the inherent nature of humans to pick one thing and
then go with it. For example, I adopted BDD, and it used to be
BDD and nothing else. The same thing happened for almost
everything else; everything needs to be a container today.

Viktor Farcic: How about the relationship between Agile
and DevOps? What are your thoughts on that? Does DevOps
replace Agile? Does it complement it, or is it conflicting?

Liz Keogh: Agile is just an anchor term to help people look up
different practices, knowledge, experience, stories, and to find
a community. They're all related.

Is DevOps part of that? It's definitely related to it, and

Liz Keogh

160

if you've got a cross-functional team, then yes, absolutely,
it's related to it. I'm a massive Kanban fan, and when we do
Kanban, we start from where we are right at this moment. I've
got people doing Kanban just in the testing phase of big Water-
fall projects, so you don't need that cross-functional team
anymore, and the advantage to that is that you can just start
wherever you are. You don't need to rearrange the structure of
the organization or worry about the line management; you can
just start improving.

The way you do this is to look at the value stream and see
where the parts are that you can improve. The big obvious one
is development and operations working together. Your devel-
opment team, which is probably cross-functional, and then
your operations team. You want them working better, and you
want them handing over more smoothly; that's the ideal situa-
tion. Even if they're a separate organization, or even if they are
a completely separate department and they've got different line
management or different KPIs, they can still work together.

Consulting
with Agile
or DevOps

Viktor Farcic: When you consult for
companies with Agile or DevOps, do you
have a prescriptive type of approach? For
instance, thou shalt do Scrum!

"The way you do this [start improving] is to look at the
value stream and to see where the parts are that you
can improve. The big obvious one is development and
operations working together."

—Liz Keogh

DevOps Paradox

161

Liz Keogh: Thou shalt learn Cynefin because it's pretty much
the first thing I teach. After that, if you want to start with
Scrum, go ahead. I think Scrum is a great way to get started,
especially if it's a new project and you don't have anything in
play already.

Typically, large organizations have already done a bunch of
analysis work. We talk about how great it would be if we had
this flexible scope, but most organizations have already done
three months' worth of UX research and analysis, and it tends
to constrain things. So, let's slice it up vertically; let's work out
what the most important bits are and deliver those first—where
are the risky bits, where are the highest-uncertainty bits, and
where's the new stuff?

Let's do those first and do it early. Let's spike it out and
see what it looks like, and then see what it would actually take
to ship this. What else do we need to get this new thing that
you're really interested in live, but also, what's the smallest
way we can actually deliver that?

Somebody on Twitter asked for a different term for minimum
viable product (MVP), and I told them it means no smaller
than the minimum functionality that you can ship because I'm
yet to meet anybody aggressive enough that's actually shipping
something valuable fast. You can ship really small things and
learn a lot from them, or at least get them into a state where
you could just click a button and ship them. I've had people
say, "Oh, but, you know, we're not allowed to change our data-
bases in production." Well, great, change them in your own
environment and then provide the scripts to operations.

There are ways of managing this, and there are things that

Liz Keogh

162

operations need: there are places where they're having pain.
I spoke to one team, and they'd been up until 4:00 a.m. fixing
bugs, trying to work out why things were falling over, and
desperately trying to get releases out. When there are five
teams all trying to release at the same time, these poor people
are not happy. There's a lot that we can do to make them happy
as developers, and all I want to see is us reaching out going,
"Hey, how do we avoid you being woken up at 4:00 a.m. again?"

There are some people who are really big fans of giving
pagers to the actual developers and making them wake up
at 4:00 a.m.—I don't really have the experience to deal with
things at 4:00 a.m. and I wouldn't have a clue where to start,
but just having the conversation around what it would take so
that you didn't have to wake people up at 4:00 a.m., and what
you can do to help—that would be nice.

Viktor Farcic: Indeed. Judging from what you've said so
far, you seem to put a much bigger emphasis on transform-
ing or improving the people and culture rather than relying on
the tools.

Liz Keogh: This is about delivering software, and it turns
out that focusing on people is the best way to do that. I don't
want people to think I'm fluffy; I'm not interested in people for
people's sake.

"This is about delivering software, and it turns out that
focusing on people is the best way to do that."

—Liz Keogh

DevOps Paradox

163

When I'm talking to enterprises and organizations, my focus
is on delivering, and getting people to work together is part of
delivering. It turns out that all the things that you reckon make
a really great workplace—that motivate people and result in
having some fun at work—are also the things that help deliv-
ery. If you focus on delivery, you'll end up doing the right
thing by the people anyway. You can use it as a nice test; if
you're finding that yelling at people is the way you're getting
things done, then there's probably something wrong with
your process.

Viktor Farcic: When you try to help organizations improve,
how do you make certain predictions about how they'll behave?

Liz Keogh: Some things will be fiercely resisted. When that
happens, don't worry about it; try something else. There will
always be some things that you can change, and if you find the
things that you can change—this is the heart of Cynefin and of
what probing really means—focus on that and on the people
who can help you effect that change. Don't worry about that
which is out of your control.

If you find one person who's managed to get BDD working
in a project, now you know there's organizational support for
BDD. If you find that one person has also managed to have a
conversation with somebody over in operations, you can get
those two people to do a presentation on what they learned
together. Anything you find that works toward positive change,
support it, amplify it, jump on it, and make a big deal of it,
because every little bit of positive change buys some room for
positive change elsewhere, until one day you find that the bits

Liz Keogh

164

that were resistant are now no longer, and everybody's cloud-
based, and you're not even sure how that happened.

I spend most of my time now as a consultant just wandering
around going, "Wow, that's awesome," and then asking how we
do it more, how we do it bigger, and how we do it elsewhere,
while spreading those good stories.

Viktor Farcic: Are there certain types of expertise, experts,
or departments that are more defensive, or others that are
easier to work with, or do you find it to be more or less on the
same ground everywhere?

Liz Keogh: It depends on the organization. Every organi-
zation has their tribes. If you read Great Boss Dead Boss, by
Ray Immelman, you'll learn about tribal behavior and organ-
izations. I found it so absolutely true that anywhere where
you see a tribe being threatened, that tribe has strengthened
their borders.

I've had one situation where backend developers were learn-
ing to do a bit of UI work, and the UI developers strengthened
their borders. In fact, I've seen this in about three different
places now where UI developers strengthened the borders
of their tribe. Now, for me at ThoughtWorks, that would be
completely bizarre because I was a frontend developer working
on Swing and desktop apps. I only did a bit of web, but I knew
how to write some HTML, CSS, and some basic JavaScript.

I could correct a typo and change a color, but the idea that
it's somebody else's domain seems so strange to me. But when
you find that people feel threatened, and they feel like their
expertise is being devalued, and then they'll strengthen the

DevOps Paradox

165

borders of their little tribe, and suddenly you've got, "UI devel-
opers are more awesome than backend developers," and you've
got a schism within your organization. The trick is to make
your internal tribes feel valued and secure.

You want development and operations to both feel like they
can work together because they're both skilled professionals,
and they both have deep experience. With DevOps, all you're
doing is bridging those two groups; you're not tearing them
apart, you're not chucking everybody into cross-functional
teams because every team must have an operations person in
it. This is one of the reasons why I think Kanban works better
than Scrum in some situations and certainly when you're
dealing with enterprises. You want to be mindful and respect-
ful of those groups; you don't want the organization as a whole
to feel threatened.

This is where John Kotter's sense of urgency really comes
in. In his talks, Kotter discusses the need for creating a sense
of urgency around your competition. He talks about how hard
it is to go up against Amazon, Google, or Facebook. He also
discusses how your threats are not coming from inside your
organization, but outside of it. What you want is for everybody
within your organization to be working together against the
external threats and not against each other.

"You want development and operations to both feel
like they can work together because they're both skilled
professionals, and they both have deep experience.
With DevOps, all you're doing is bridging those two
groups; you're not tearing them apart."

—Liz Keogh

Liz Keogh

166

Viktor Farcic: I love that. I might be mistaken, but I remem-
ber once hearing you say that there's more to delivery than
development and operations. What did you mean by that?

Liz Keogh: When I look at an end-to-end value stream in an
enterprise situation, what I usually do is say, "Okay, let's put
the development team in the middle."

The customers have a need, or maybe some customer repre-
sentative has an idea about how to help them and how to make
things better, or maybe even some stakeholder has something
they want, who gets between them and the development team.
Can they just go to a development team and say, "Hey could
you do this for me?" Probably not, because there's going to be
some level of prioritization.

I've worked for companies in the past where you wasted
precious time jumping through various interdepartmental
hoops to either get funding or be allowed to get a project off the
ground or to move on to the next phase. You'd be getting your
team of developers together while waiting for various board
approvals. Six months could pass by before the developers
even got a sniff at the code, and then on the way out—and this
is typically what we see from Agile—by the time we get hold of
the project, all of the previous work had already been done.

The reality is that there are all kinds of people who get
between your development team and actually releasing some-
thing. If you've got a low-trust business who are not exactly
used to getting what they want from IT, you've probably got
some user acceptance testing group somewhere as well who are
going to test the hell out of your software.

What I tend to do as a consultant is draw this on the board,

DevOps Paradox

167

and I say value streams are made of people. I identify all the
different groups of people involved in getting something live,
and then I get the person who brought me in to draw a dotted
line around their area of influence.

Viktor Farcic: Getting people involved seems like a great
way to make organizations aware, but surely implementing this
between multiple teams and getting them to make the actual
change takes a long time.

Liz Keogh: What I usually find if I'm being brought in for
DevOps is that it doesn't go as far as operations. There's
a bunch of other groups for whom it doesn't go that far as
well, and usually operations is about 10 different teams that
don't talk to each other. There will be one team for pen testing,
another for monitoring, another for analytics, and yet another
team for support.

You're going to end up being the people who bring those
groups together as well, so, Dev and Ops: great start. If you can
get those teams working together, you'll start finding that your
portfolio and your governance needs to be addressed.

Now you also start finding your funding model, and then
finally you'll get the business on board, and the business will
go, "Hold on—if we can do these small things now, can we just
do this experiment? Can we just do this one small thing?"

Then you're innovating, which is a point that it takes years
for a large organization to even get to. I think that sometimes
when people bring in things like the Scaled Agile Framework
and large-scale Scrum and impose them on an organization and
restructure everything, the habits of a lifetime are still there

Liz Keogh

168

and the stories being told are still the same stories. You don't
change the stories just by restructuring things; you change the
stories by creating great relationships. And yes, Dev and Ops is
a good start for that, but it is only a start.

Viktor Farcic: You mentioned innovation. How do you foster
that? When I visit companies, I always get the same response:
"We would like to do this and we would like to try that, but we
don't have time."

Fostering
innovation

Liz Keogh: There's a couple of things you
can do: one is to make sure things are safe to
fail. If it's not safe to fail, nobody's going to
try anything that might fail, and so DevOps,
at least a good DevOps culture, makes things
safe to fail. If you can't get innovation, focus

on how we make sure it's safe to fail, how we get good quality
in production, how we get the things that you can get right
right, and then make sure it's okay to get things wrong.

You can focus on continuous delivery and then continuous
deployment, and that's great—get your phoenix servers up and
running. Then there's the other thing you can do. There's a thing
called the shallow dive into chaos, which Cognitive Edge teaches
as part of their Cynefin training. It involves taking people and
splitting them up so that you get a divergence of ideas, and the
idea, like chaos, is to create an urgent opportunity, but it's also
a place where you have nothing to lose. When you can't talk

"A good DevOps culture makes things safe to fail."

—Liz Keogh

DevOps Paradox

169

to other people, the ideas you come up with on your own tend
to be crazier than the ideas that you come up with if you're
in a group. When people are in groups, they want consensus.
I actually spend a bit of time splitting up consensus cultures.

You need to make it safe to fail and then create a forgiving
system where you have permission to try things. You do that by
getting people to try things on their own or in very small groups,
so that it doesn't matter if there's a bit of rework and dupli-
cation. Usually, the cost of delay eclipses the cost of rework,
and I think a lot of people don't see that. People don't see how
quickly they could move if you weren't waiting for everybody
to agree on what the right thing to do is. So, you need to make
it okay to do the wrong thing.

Viktor Farcic: Does anybody stand out to you in this situa-
tion, where they say it's okay to do the wrong thing?

Liz Keogh: Chris Matts does. He started the Real Options
movement, and he's my guru for real options. He says that if
you're faced with two different situations, and you're not sure
which is the right one, rather than doing a whole bunch of anal-
ysis that doesn't work in complexity, pick the one that's easiest
to change. If it turns out to be wrong, you can change it. But if
it turns out to be right, then that's great.

It's that kind of thinking. It's about how we move forward
without having to go to absolutely everybody else in the organ-
ization and pick their brains for what they think is the right
thing. And again, once you get started with that, and once
people realize that it's safe to do that and you start support-

Liz Keogh

170

ing them, and you start going around saying, "Wow that's
awesome," other people will want to try things too, and you
start building a culture where people will try things out and do
the right thing as well.

Viktor Farcic: If I understood correctly, delivery is a team
effort, but innovation is more individual?

Liz Keogh: Coming up with the ideas is certainly individ-
ual or small team-based. There's actually a great talk by Jabe
Bloom called The Value of Social Capital, in which he refers
to Ronald S. Burt's structural holes. The holes where people
aren't connected is where innovation comes from. Everybody
is too over-connected, and you get massive stability, but you
can't try new things, so you have to shake it up—for instance,
getting individual development groups to try things. If you
want to move to Git, don't agree to move to Git as an organi-
zation; get one small team to try it out, and they can tell you
whether or not it's worthwhile.

If you want to try a particular BDD tool, get two teams to
try two different tools. You might end up having to rewrite one
of them, or use two different tools for a few years until one of
them dies out, but it's better than not moving, and it's better
than six months of analysis to see whether it will work. Instead,
you learn by doing. So, do some stuff. Fostering that culture is
how you foster innovation.

Viktor Farcic: We've spoken quite a lot about including
people and fostering collaboration, so I wanted to ask you why
there aren't more women in the field.

DevOps Paradox

171

Diversity, gender roles,
and representation
in DevOps

Liz Keogh: You know, I'm
not the right person to ask.
Every time somebody asks me
what the difference is between
a team with a woman on it and
a team without one, I say

I don't know because I've never been on a team without
a woman on it. I'm not an expert; being a woman does not
make me an expert on what it's like to be a woman in develop-
ment—I couldn't possibly tell you. I do know that nobody told
me I wasn't supposed to be there.

I started programming when I was seven years old because
my dad left the BBC computer lying around with the manual,
which was illustrated with beautiful colored robots. It was delib-
erately marketed to kids. So, I had an early start. For almost as
long as I can remember, I had computers, and I think maybe
that's the secret: it's just making sure that you're supporting
girls as they come up through school, and making sure they
have a role model as well. That's one of the things I've taken
on board.

I always hated being the token female. Everybody says how
they want more female speakers. But my response to that is,
"How about you just get me because I'm really good at talking
about DevOps and Cynefin or something? But no, you want
a female speaker." It took me a long time to realize that having
a female role model is actually important to girls, and to young
women coming into the industry as well. However, I've taken
that on board somewhat reluctantly, as I don't really want to be
a speaker for quality and gender diversity.

Liz Keogh

172

I want to be a speaker for Cynefin and BDD, but sometimes
the gender diversity stuff, the sexism, and the sexual harass-
ment becomes a thing because all of that stuff gets in the way.
So, then I have to be a speaker about that as well. But it's not
what I want to be speaking about. My passion is delivering
software and doing it as a woman, but that means I've had to
talk about these other issues too.

The difference
between the self-
taught engineer
and the schooled
engineer of today

Viktor Farcic: Switching
gears, you mentioned that you
started with computers when
you were seven. Do you have
any thoughts about the differ-
ence between the self-taught

engineers or schooled engineers of today? More broadly speak-
ing, how do you see education in today's world?

Liz Keogh: I didn't know what I didn't know. Back then, I was
a little bit more disciplined than a hacker. I have a fairly ordered
mind when it comes to programming, so I got taught how to test
my software, and I very quickly realized I was second-guessing
myself if I wrote the tests afterward. At first, I was writing the

"How about you just get me because I'm really good at
talking about DevOps and Cynefin or something? But
no, you want a female speaker. It took me a long time
to realize that having a female role model is actually
important to girls, and to young women coming into
the industry as well."

—Liz Keogh

DevOps Paradox

173

tests around empty interfaces, and just making them compile,
which, of course, is a lot like TDD now. There were no IDEs
back when I started professional coding. We were all working
in whatever text editors we had. I think it was Vi or Emacs or
something like that, and you compiled on the command line.

IDEs didn't exist, I didn't know about things like design
patterns, and I definitely didn't know about domain-driven
design. I didn't know there were communities out there where
you could learn, and the internet was fledgling. It was 1998
when I graduated, so the internet was still in its infancy;
companies didn't all have domain names, and they didn't
have addresses.

Viktor Farcic: But that's all changed in the 20 years since
then—the internet has exploded.

Liz Keogh: Exactly. Now the internet is everything, and
you've got access to so much more information, and so much
more around what good programming could look like. I've got
some friends who are working in academia, and as part of their
academia, they program, and by and large, they still haven't
caught up with modern programming practices. They're not
learning TDD or BDD, or about DevOps. But they know those
things exist. All you need to do is reach out because there are
people who will help you.

For instance, Stack Overflow and the Stack Exchange
network is fantastic, and it's not even just true of developers
and operations, or Dev and Ops; it's true of anybody in a lead-
ership position. There's a PM Stack Exchange, places where you
can learn about psychology. Wikipedia is phenomenal because

Liz Keogh

174

there's so much free information on there. I used to have to go
to a library and check out a book when I was at school, but you
don't have to do that anymore. You've got the whole of human
knowledge on tap, and all it takes is finding out what it is that
you don't know, and what of that you want to know, because
there's more than you can possibly learn in a lifetime.

Viktor Farcic: How do you know what you don't know?
I think that that might be the problem, because if I've never
heard about BDD, how do I know that I don't know about it?
I'm inventing an example.

Liz Keogh: You find somebody who is working in the space
that you want to be working in, and you ask them, "What is it
that I don't know? Where would you start?" If you're working
in a new place and you don't have access to expertise, you
learn by trying it out. I was there pretty much very early on in
BDD, and I worked on the story of JBehave, which was the first
English system-level BDD natural language tool. We learned
by trying. JBehave 1.0 was not usable, nobody ever used it.

I very recently tweeted a blog by David Chelimsky, in which
he took the Ruby version of JBehave that was written as RSpec
Story Runner and converted it to plain text. That's obviously

"You've got the whole of human knowledge on tap, and
all it takes is finding out what it is that you don't know,
and what of that you want to know, because there's
more than you can possibly learn in a lifetime."

—Liz Keogh

DevOps Paradox

175

the precursor for Cucumber, JBehave 2, and all of the English
language tools that followed. In that case, you learn by doing,
and it's okay to get it wrong. It's okay to create something
that nobody uses because maybe it will lead to something that
people do use.

Viktor Farcic: To close this up, I'm going to ask you a ques-
tion that I hate being asked. What do you see in the future?

The future

Liz Keogh: Mars. I want to go to Mars.
I would love to see the human race on Mars,
and I know Elon Musk is still chasing that.

So, what do I think we're going to see?
I think we're going to see more cars in space,
and more large-scale experimentation where

it's safe to fail. I think that the future is going to be really excit-
ing. I think companies are going to be held a little bit more
accountable for their ethics, which means no more behavior
like Uber, and no more Volkswagen emission scandals. That
being said, I want to see transparency in organizations. I think
that we're going to see some of the large banks dying off, and
I genuinely think that you're going to start seeing mergers as
banks die.

There's no way that people with money will support the level
of waste that I see in some of the big enterprises. Capitalism
will result in those things merging together, and I'm really,
really hoping that that happens in a good way. I think that
there's probably some space to make it happen in a good way, to
make investment more transparent, to make the world a better

Liz Keogh

176

place. I think we're probably going to see an economic crash in
the next five years just because the wealth is so concentrated
and it's such a level of concentration that human society just
resists that.

In the last year or so I've also had a chance to look at the
IPCC report on climate change. That's less exciting but more
urgent. So right now, my focus is on that. I'm still hopeful
that companies will step up to deal with it; that we'll see new
emerging technologies that will help too. It's going to be hard,
but there's a lot we can do from our end.

Viktor Farcic: So, you think that there's going to be a big
blowout in the next few years?

Liz Keogh: I think when you have a sense of urgency, you
have chaos. It buys you a lot of space for innovation and a lot of
space for trying things out, because you have nothing to lose.

I have a feeling we're going to see some really exciting things
in the next 10 years. We've got blockchain, we've got a bunch of
new tools coming into play, we've got great DevOps practices,
and we've got a whole open source ecosystem available that did
not exist when I started programming. Java was free, and that
was about it. I've been in IT for 20 years now, and I've seen
so many changes already. I think the next 20 years is going
to be even bigger than that. In another 20 years' time, I don't
think the world's going to be recognizable from what I knew
20 years ago.

Viktor Farcic: Do you think then that the traditional,
slow-moving, rigid enterprises will survive that future?

DevOps Paradox

177

Liz Keogh: They'll survive the commoditized stuff, and stuff
that's really boring and very, very predictable, but the way
people provide electricity and provide water—there won't be
a lot of money in it. Simon Wardley says it with respect to his
mapping; everything moves to the right. You see it with Cynefin
as well, and everything moves clockwise. It becomes stable,
and then you build on the stable stuff. Everything's going to
be stabilizing, so the innovative stuff that we're used to seeing
right now—we think of DevOps as being innovative—it's going
to be just the way that software is done. People will ask, "Why
would you do it any other way?"

You'll have DevOps out of the box; you'll have Google servers
that will be really cheap, and so why wouldn't you use them?
Nobody's going to have their own infrastructure. If you build
your own infrastructure and you're not working with Google,
Facebook, or some other large company, people will be asking,
"What are you doing? Are you genuinely configuring a server
by hand? Why would you do that?" It will be that level of crazy.
We're not there yet, but we will be.

Viktor Farcic: I might be a bit more skeptical than that,
because I have the impression that when I go and visit enter-
prises, I get answers along the lines of, "We're all Agile," and

"In another 20 years' time, I don't think the
world's going to be recognizable from what I knew
20 years ago."

—Liz Keogh

Liz Keogh

178

then you spend the day with them and you realize, they've only
just started Agile.

Liz Keogh: Try not using the word Agile. I don't use the
word Agile when I do my consulting; I focus on delivery and
talk about uncertainty and predictability and things like that.
I focus on the awesome.

When you do see something moving—when you do see some-
thing really great—focus on that, spread it, and tell stories.
Encourage other people to tell stories, because stories have
power and are a really great way of getting change working.

Viktor Farcic: Is there anything else that you would like
to share?

Liz Keogh: Somebody once asked me what my favorite thing
and worst thing about working in software development was.
I said the worst thing was the human tendency to see patterns
in uncertainty that don't exist, and then move forward getting
things wrong. The best thing is the human ability to see patterns
in uncertainty that don't exist so they can move forward. Those
two things go hand in hand. So, the same things that trip us up
are the things that allow us to move forward, and I think it's
worth just celebrating that.

7

Julian
Simpson
Global Security and
Platforms Manager,
Fuel50

Introducing Julian Simpson

Julian Simpson worked at Neo4j until August 2018, where he
helped deliver projects across both DevOps and continuous
delivery. In August 2018, Julian moved to Fuel50, where he's
now a Global Security and Platforms manager with a focus on
building out the company's platform. Julian is also an organ-
izer at DevOpsDaysNZ. You can follow him on Twitter at
@builddoctor.

Defining
DevOps

Viktor Farcic: I want to start by asking
you a two-fold question. First, how would
you define DevOps, and then how has that
definition played out in your career?

Julian Simpson: I used to be a Unix
systems administrator. In that role, I spent a lot of time during
the dot-com boom building Solaris servers and arguing with
developers. This conflict between system administrators
and developers carried on for the next three to four years of
my career.

During this time, two things became obvious to me. Firstly,
the approach of building systems by hand seemed wrong, and
secondly, it really seemed counterproductive to handle this
conflict. While I can be sucked into a good fight, it didn't seem
like a positive way to go about things. Eventually, in 2002,
I discovered the CFEngine project and started building all my
systems with CFEngine, in order to rebuild those builds.

DevOps Paradox

183

This was combined with Solaris Jumpstart, which was an
awesome technology to have at the time, because from the
hardware point of view, I could just build a machine anytime
I wanted to. I could also iterate over builds and store that source
in version control, practices that evolved into DevOps. An
important thing to add is that I discovered the Agile movement
in 2004; I consider the DevOps movement to have evolved as
a natural progression of the Agile movement.

Viktor Farcic: That's how I typically describe it too. While
I agree that DevOps is an evolution of Agile, the conflicts you
described are something that I see today between developers,
QA, security and everybody else involved. What do you think
are the causes of those conflicts?

Julian Simpson: I think it's all about structural conflict
within organizations. To me, it seems insane that, as an indus-
try, we set up teams that have conflicting goals and then
expect them to resolve the conflict as if it's something about
them rather than the game they've been asked to play. You're
keeping the system secure, up, and available, and your job is to
deliver it as fast as you possibly can.

I don't know if it's just folk wisdom or whether there's actual
research we can rely on, but it seems that there are a lot of
teams out there that go out of their way to deliver the wrong

"I consider the DevOps movement to have evolved
as a natural progression of the Agile movement."

—Julian Simpson

Julian Simpson

184

thing very quickly, but at the cost of security or availability. If
all those things are causing you to sweat, then actually working
together on the details of what features to deliver in a project
and giving the entire team the incentive to deliver it securely
and in such a way that you can keep it available, to me, seems
like an obvious way to go about things.

The difference
between DevOps
and Agile

Viktor Farcic: Let's talk more
about the evolution from Agile to
DevOps. What exactly did you mean
by that?

Julian Simpson: I came to the
Agile movement reasonably late in its development. I wasn't
around to see some of the earlier Agile projects, but my under-
standing is that we solved some of the problems of how we
know what to build and how we should go about planning and
delivering the build in an iterative fashion. Once you've solved
that problem, there are engineering challenges, such as inte-
gration. There's no excuse for having a huge merge phase at the
end of your project now because continuous integration has
been a thing since at least the late 1990s.

You'll find other problems that you didn't have originally
because you probably weren't succeeding anyway. I've only just

"DevOps is the response to solving problems that you
have when you're successful in the earlier stages of your
project's evolution."

—Julian Simpson

DevOps Paradox

185

tried to phrase this now, but maybe DevOps is the response to
solving problems that you have when you're successful in the
earlier stages of your project's evolution?

If you're getting better at writing both the correct and
the most appropriate software at the time and deploying it,
suddenly you have all these other operational considerations
to think of. To me, if you have a deployment problem, it's prob-
ably a good problem to have.

Viktor Farcic: Exactly, and it changes if part of your pipeline
suddenly becomes much faster. Then, as you said, you encoun-
ter the problem on the next page.

Julian Simpson: I'm a big fan of the theory of constraints, so
that absolutely rings true. I believe that you need to optimize
across the entire value chain rather than optimizing based on
cost, which is what a lot of projects do.

Viktor Farcic: Cost per department, to make it even more
complicated.

Julian Simpson: Exactly. I've worked on several projects for
consultancies where the departmental politics didn't come into
it so much as just the day rates of all these developers, which
were obvious to the project managers. So, they would optimize
for developer utilization rather than anything else.

Viktor Farcic: Something like an optimization Excel sheet,
when you change two numbers and then suddenly, you're
more optimized.

Julian Simpson: I saw that on projects where it was entirely

Julian Simpson

186

feasible for the developers to run all the acceptance tests on
their development systems. I think they should have been
doing it at the time because we had a huge Continuous Integra-
tion (CI) and QA bottleneck, so the sensible thing to do would
be for each pair to run those tests before they pushed, thereby
easing up on the bottleneck later. This was a very hard message
to get across to project managers.

Viktor Farcic: I recently discovered that you go by the name
of The Build Doctor? How did you get that name?

Julian Simpson: I had a little niche between 2004 and 2008
where I would fix people's Ant builds. At the time, I was very
proficient with Apache Ant, to the point that I'd written an
article in a book about refactoring Ant build files. The tool isn't
so popular now, but back then I was wondering if I was going
to move on from consultancy, or if I would just build my own
personal brand. I thought, okay, build doctor – I already fix
this stuff for a living, so I'll build a brand based on that. But
right now, it's kind of on hold.

Viktor Farcic: What are you up to now?

Julian Simpson: I've been working for Neo4j, formerly
known as Neo Technology, since 2012. Within the company,
I've worked in the engineering, marketing, and IT depart-
ments. I've found myself doing everything from working on the
product to deploying our full-stack website on Amazon.

Right now, I'm working on internal IT projects and writing
internal apps. In fact, this morning I've been writing scripts to
delete Dropbox accounts.

DevOps Paradox

187

Viktor Farcic: So, what makes Neo4j such a great company?

Julian Simpson: Simply put, the people.

Viktor Farcic: Could you elaborate on that? Because, relat-
ing this back to your field of work and the concept of DevOps,
in your opinion, is there such a thing as a DevOps team?

Julian Simpson: When I started at Neo4j, I worked with the
Swedish team. As a company, we tended to optimize for good
people and good attitudes, and we've had an almost uncon-
sciously very good selection of people in that way.

DevOps teams,
DevOps problems,
and configuration
management teams

But can we have something
called a DevOps team? I don't
believe so. You might spin up
a team to solve a DevOps problem,
but then I wouldn't even say

we specifically have a DevOps problem. I'd say you just have
a problem. My original thinking about the movement from
2009 onward, when the name was coined, was that it would be
about collaboration and perhaps the tools would sort of come
out of that collaboration.

I expected that a configuration management tool would be
adopted by developers, so it was possible for a systems person
and a developer to collaborate, but I didn't expect that a bunch
of classic systems administration teams would just rebrand

"Can we have something called a DevOps team? I don't
believe so."

—Julian Simpson

Julian Simpson

188

to DevOps because there were similarities with some of the
tools. I didn't expect to have what I'd traditionally think of as
a configuration management team become a DevOps team. To
a certain extent, I think the only difference is with outsourced
platforms now because we've always had someone running
what you would call a platform.

Viktor Farcic: That's what confuses me. On the one hand,
hardly anybody disagrees that DevOps is mostly about collab-
oration. But then you have a huge number of DevOps teams,
which to me sounds completely contradictory. If you create
another team, you're creating another silo that will probably
not actually help in collaboration at all.

Julian Simpson: I don't see much difference between what
you call a DevOps team now and what a configuration manage-
ment team used to be. The only difference is that the DevOps
team today takes on what a systems or a Unix administration
team might have done back in the day: the same basic struc-
ture with a new name for the team in the middle.

If you're going to have that DevOps team, I would expect that
you'd be able to take the developers and operations teams from
the outside and rotate them through with the goal of downsiz-
ing or disbanding that team or just replacing it with one or two
people who are responsible for running the infrastructure that
your pipelines run on.

Viktor Farcic: My theory, judging from the companies I've
visited, is that the DevOps team is the team who was the fastest
to change the title.

DevOps Paradox

189

Julian Simpson: It becomes a branding or a status thing
rather than a useful exercise in collaboration.

Viktor Farcic: I've worked for a software company, and they
don't help either. If you go to a conference, every single tool
from 10 years ago is now a DevOps tool. They're all saying that
if you buy this tool, you're going to become DevOps-certified.

Julian Simpson: Absolutely, and the incentive to do so is
too strong. I even suggested that CITCON rebrand and at least
talk about DevOps more, because I see them as one of these
sorts of prototypical conferences.

One of the inspirations for Jez Humble and Dave Farley's
book, Continuous Delivery, was that we had a DevOps team
effectively via eight people, including myself, Chris Read, Dan
North, Tim Harding, and several others. Our job was just to
bridge the gap between a bunch of contractors on day rates,
consultants, and the operations team, who were probably too
overloaded to take much of that on. We're either paying back
technical debt or working on how to get the code from CI/CD
back into production, while passing all of the risk management
and internal controls that they needed. That did disband; it
scaled up to solve a problem, and then once most of those
problems were solved, it became just me for a while, before
even I left.

"It [DevOps] becomes a branding or a status thing
rather than a useful exercise in collaboration."

—Julian Simpson

Julian Simpson

190

Viktor Farcic: Almost everybody gives me a different expla-
nation, though I must say that I liked yours the most. I read
in one of your blog posts that the full definition of DevOps is
common sense. So, if DevOps is a theory and had existed, say,
since the dawn of time, and we know there's a need for oper-
ations and development to collaborate in one way or another,
why do you think DevOps became a thing so relatively recently?

Julian Simpson: I think that DevOps has always been a thing.
I found it interesting that when I used to work at Thought-
Works, Martin Fowler and Rebecca Parsons, their CTO, had
both worked as system administrators at universities. I think
DevOps used to be just a thing that someone on the team did.
The developers that I used to work with were super competent
at whatever Unix system you'd be deploying.

A lot of my experience is very geared toward Unix. I did a
talk the other day at a company that was mostly .NET, and
while I'm not sure my message really got across because their
problems are slightly different, I think someone will always
solve those problems. But then I think with the dot-com and
the Y2K boom, we literally forgot because, remember, Linux on
the desktop wasn't really a thing.

You still had a lot of people deploying on to Unix, and I don't
think macOS was very popular in development shops at all,
so there was barely any command line being done. My experi-
ence, at least, is that everyone wanted to be given a Windows
machine and an IDE and be told to get some code delivered,
and they didn't even have the tools to work on the problem
in a different OS. I believe a lot of my conflict with develop-
ers stemmed from the fact that they pretty much just needed

DevOps Paradox

191

Java. I think the marketing of the "compile once and run every-
where" mantra contributed to the problem as well. Microsoft's
"visual everything" mantra also contributed to a lack of under-
standing of what was going on.

You had this incredible demand for developers to be solving
important problems such as, "Will airliners fall out of the sky
on the turn of the millennium?" or less important problems like
Pets.com. Lots of inexperienced developers joined the industry
and simply didn't have the skills to work on those problems, so
they tended to be thrown over the fence even more frequently
to an operations team.

Conveniently, the Y2K and dot-com boom era ended after
I started working on software projects. I used to work tech
support, so I may be totally ignorant of a couple of decades
before that, but my feeling is that we made it very bad in the
early noughties.

Viktor Farcic: Back when everybody became a programmer.

Julian Simpson: Exactly! We always joked about those
people who would go back to selling life insurance once the
dot-com boom was over. For them, it was possible to cram in
some certificates and then start contracting for a daily rate that
wasn't huge but was a huge advantage over a lot of normal jobs,
such as selling life insurance.

Viktor Farcic: Wasn't that also the era when software
vendors started being aggressive with the UI approach to
things? I mean, you've got Adobe Dreamweaver, where you can
drag and drop things and suddenly you've created a web page.
You also have VSB, and Oracle ESB where you can also drag,

Julian Simpson

192

drop, and create all the iterations. I hear that it's part of the
"anybody can do this" marketing idea.

Julian Simpson: That was the point I was making about
Microsoft's marketing around branding everything visually. I
worked at one company where there were a lot of dominant
developers, and we were using Perforce. It was quite compli-
cated to roll back and commit in Perforce, and in the end, the
best thing to do would have been to write a script. I would then
put the script together for you, which you could just run and
revert that commit.

The person I was working for said no because he believed
everything should be visual. This was a firm belief. If he
couldn't click on a button and drop down a bit of text then it
was too much and went against their beliefs. Microsoft wanted
to encourage that; they wanted to differentiate against Unix.
This all took place during the GPL-is-viral days, so I believe
that selling products with GUIs didn't help one bit.

I have found that's the litmus test for somebody if you're
trying to work out where their skills lie. If they don't have
a GUI to nudge them in the right place, it's very interesting
to see how they solve a problem.

Viktor Farcic: Do you think that's still a thing? I have the
impression that the industry, especially from 2017, is moving

"I think there is a realization that the GUI phase was
a bit wrong, and I think that encourages developers
to explore the command line more."

—Julian Simpson

DevOps Paradox

193

away from all UI-based things. If you look at Docker and Kuber-
netes, it's completely command line. Everything is moving
back toward Unix basics.

Julian Simpson: I haven't spent any time playing with the
new version of Windows, but the fact that they have Windows
PowerShell Core shows they've changed. I was really, really
surprised when I saw Scott Hanselman deploy to Azure with
a git push a few years ago. I think there is a realization that
the GUI phase was a bit wrong, and I think that encourages
developers to explore the command line more, which has
changed my job. My job used to be understanding how build
scripts worked and how the Unix or Linux production environ-
ment worked, which I think a lot of people are just getting now.

Viktor Farcic: When you mentioned Unix and Linux envi-
ronments, do you think that we're finally seeing some changes
there? It's one of the areas that hasn't changed in a while, for
better or worse.

The evolution
of containers

Julian Simpson: I think containers
have changed a lot because you have this
constant migration of value up the stack.

Viktor Farcic: What do you mean by
that?

Julian Simpson: We used to keep this business logic and
store procedures in the database, but it moved into code running
above the database. I think we're a long way from seeing where
the container thing is going to end up, but it seems like that's
the biggest change. No one's interested in the host OS anymore.

Julian Simpson

194

Viktor Farcic: You mean as if it's not the lowest denomina-
tor anymore?

Julian Simpson: Yeah, I think in some ways it's incredibly
helpful that whether you're looking at containers or platform
as a service, people can deliver code using them. I haven't been
that interested in the gory details of container runtimes; I'm
just happy that if I want to roll out something, I can deploy
it on ECS, or whatever container runtime as a service exists.

Viktor Farcic: I think CloudBees have one, don't they?

Julian Simpson: Yes, at CloudBees, it's mostly Jenkins-re-
lated, but we are now kind of going 100% Kubernetes.

I think in a way, containers are fulfilling the promise Java
gave a long time ago: run anywhere. Microsoft Windows is still
shaky in this regard, but it's getting there as well.

I also think it helps that no container vendor told anybody that
they would be able to run containers on silicon in the way they
promised in the 1990s. As you said, they didn't come through with
those. I think you're right that my job used not just to be running
Jenkins or whatever other CI server the project had chosen to use,
but also configuring the environments for that. Now you can say
that every build runs in a container. Well, yes, a lot of those prob-
lems have just vanished. If you can build a container to represent
a production runtime with a blank wall, well, perfect.

Looking into
the future

Viktor Farcic: Exactly. I hate this next
question because I get asked it all the time,
but I'm going to ask you anyway: where do
you see the future?

DevOps Paradox

195

Julian Simpson: I honestly don't have an answer for that.
I think the public cloud is one area to keep an eye on. The
benefit of such a massive arms race taking place between
Amazon, Microsoft, Ali Cloud, IBM, and Google Cloud, is that
for us developers who just want to deliver stuff, our choices are
going to be amazing.

I think the way that Amazon, in particular, is doing a lot
around networking, so that I can extend an Amazon VPC
bridge with my local network if I need to, will be interesting.
I should probably be able to outsource an awful lot of IT stuff
to Amazon and just focus on writing things that matter, and
then obviously competing with Amazon when they write it too.

Viktor Farcic: When I asked a friend of mine a similar ques-
tion, he also started with the cloud. His theory is that having
incompetent people that do the same thing every single day will
mean that they'll eventually lose their jobs because of Amazon
and Azure. It will be kind of a great filter of people who do
valuable jobs and people who just do "something."

Julian Simpson: I can see that quite easily. We all know
people who show up to their IT job and do what they're asked
to do and then go home again. I think there is a huge risk to
their careers when the inevitable automation takes place. Some

"We all know people who show up to their IT job and
do what they're asked to do and then go home again.
I think there is a huge risk to their careers when the
inevitable automation takes place."

—Julian Simpson

Julian Simpson

196

people will literally have their careers automated away. The
adage "go away, or we'll replace you with a very small shell
script" will never be truer.

Viktor Farcic: Exactly. The other thing that confuses me
is that I heard the same theory about how people will be
replaced with shell script 15 years ago, and it's still somehow
not happening.

Julian Simpson: I think what's different now is that the
shell script will just be calling the AWS CLI.

Addressing
vendor
lock-in

Viktor Farcic: Are you concerned at all
with vendor lock-in? The idea that compa-
nies can basically take over and lock you in
forever and ever?

Julian Simpson: I think I'm concerned.
I guess as these companies try to differentiate all their services,
there will be an inevitable kind of lock-in effect from that. It's
obviously in everybody's interest to keep you locked into their
platforms. But if they try to sell the same vanilla product, then
it's a race to the bottom.

As a result, these companies will try to differentiate things.
I mean, if I were a CTO of a company that relied heavily on one
cloud platform, I'd be looking to mitigate against that risk; for
example, possibly by just running a percentage of my work-
load elsewhere so that I have the skills to manage a different
platform. I think the problem with being able to outsource
everything is that you also outsource your skills atrophy,
as a person and as an organization.

DevOps Paradox

197

Viktor Farcic: That shouldn't be much different than the
problems we've had with mainframes or the problems we had
when everybody was outsourcing everything.

But as I was saying, on the one hand, I hear a lot of concerns
about vendor lock-in, but on the other hand, I'm not sure
that it's any different than when companies were outsourcing
everything before, or when they were running mainframes,
which were all vendor lock-ins. Somehow we, or at least some
of us, still managed to get through those issues.

Julian Simpson: I don't think it's going to be as bad as one
of the historical vendor lock-ins of the past, such as the Bell
Telephone Company, something that had to be broken up as
a monopoly. I think it's going to be the price you pay for taking
the convenience of a vendor's offerings.

Viktor Farcic: That's very interesting.

Julian Simpson: If you just say that it's most convenient to
run on Azure and then you only develop those skills in-house,
then yes, I think it'll be very easy to just default to lock-in, and
that could lead to an expensive exit. I think it's probably a net
positive that you don't have to build platforms anymore.

I've worked in several jobs where I had to install SPARC
systems in offices, and it's annoying. I think for anyone who
wants to deliver software or services, it's probably better that

"If I were a CTO of a company that relied heavily on
one cloud platform, I'd be looking to mitigate against
that risk."

—Julian Simpson

Julian Simpson

198

they don't have to employ someone to move servers around the
office, rack them, then install them and try to make them work.
That was the thing I did in the 1990s, and I think that what we
have now is certainly much better. I think there's incredible
value in being able to rent your IT services by the minute.

Viktor Farcic: If you exclude the big companies such as
Netflix, Google, and Apple, what do you think about building
a private cloud? Does it make sense and is it a viable option?

Julian Simpson: I would probably bet against my own ability
to deliver a private cloud. I'm sure I could do that, but trying to
keep that secure in this kind of security threat environment is
probably a much harder challenge than it ever was. I am amazed
at some of the security issues we've seen over the last few years.

Viktor Farcic: Do you think we have more security problems
or are those problems just more visible now?

Julian Simpson: I think they're more visible today, and
I think that security research seems to follow the trends as well.
Once someone discovers one vulnerability, then there are more
eyeballs looking for similar vulnerabilities. They seem to come
out in waves. But I think as things become more connected,
then security is a concern that wasn't as visible as before. The
idea that your corporate network isn't a safe place wasn't an
assumption we had 15 years ago.

Culture and
collaboration

Viktor Farcic: That's a valid point.
In closing, do you have any parting
ideas and words, or is there anything
that comes to mind that I forgot to ask?

DevOps Paradox

199

Julian Simpson: No, I think we've covered what I think is
most important, which is the culture. I'm super pleased that we
haven't really discussed automation or any of the tools, except
as examples of something else. To me, DevOps is all about
culture and collaboration.

Viktor Farcic: Does that mean the culture shapes the tools
or do tools shape the culture, or both? I mean, can you adopt
one without the other?

Julian Simpson: My guess is no, because people's expecta-
tions must change. I think the tools they use and the culture
in which those tools are used are tightly linked. If you could
change the culture, then the tools might change consequently,
or vice versa. But I think it's more than that.

Lindsay Holmwood did a talk at DevOpsDays 2016 in
Wellington, New Zealand, where he pointed out that culture is
kind of invisible and what you really have are artifacts that kind
of tell you about culture. Archaeologists would dig something
up and then make some assumption, and it's the same here.
I think we see things every day that tell us what our company
culture is, and maybe the tool is just an artifact of the culture.

Viktor Farcic: I haven't heard that one before, but I love it.

Julian Simpson: Yeah. This is entirely stolen from Lindsay,

"To me, DevOps is all about culture and collaboration."

—Julian Simpson

Julian Simpson

200

so it'll be great if you talk to him. If your company has a need
for massive amounts of control, then you're probably not going
to go with distributed version control systems, or you probably
want to use some rational product for capturing requirements.
Even the phrase "capturing requirements" probably has some
kind of cultural impact. I guess my parting words would be that
I think tools possibly tell you what your culture is.

Viktor Farcic: I love it. I really love it.

8

Andy
Clemenko
Senior Solutions
Engineer at Docker

Introducing Andy Clemenko

Andy Clemenko is a senior solutions engineer and architect
at Docker, Inc. He's also a technologist and DevOps analyst,
with a focus on helping organizations make the transition from
traditional development practices to a modern set of culture,
tooling, and processes that increase the release frequency
and quality of software. You can follow him on Twitter
at @clemenko.

Viktor Farcic: I want to jump right into our discussion with
the one question I'm asking everyone: what is DevOps?

What is
DevOps?

Andy Clemenko: DevOps is a lifestyle. It's
all about being able to adapt to new technol-
ogies, not only from a developer point of
view, but also an operations point of view,
while still being nimble. That's not to say
DevOps is only that. There are a lot of other

concepts built into it, which is why I call it a lifestyle. Beyond
being able just to adapt, you've also got containers, twelve-fac-
tor apps, declarative infrastructure, and infrastructure as code.
Yes, you've got all of these buzzwords around it, but at the end
of the day, it's just a lifestyle. It's about being nimble, retool-
ing, and moving forward.

Viktor Farcic: So, how does Andy Clemenko fit tools into
that picture? Because, in today's field, I'm finding that every
tool is a DevOps tool.

DevOps Paradox

205

Andy Clemenko: To a certain extent, the tools almost
don't matter, because you can hand a carpenter any hammer
and they'll still be successful. Within DevOps, you give any
DevOps or SRE engineer (whatever you want to call it these
days) a tool—whether it's OCI, Rocket, Docker, Kube, Swarm,
Jenkins, or GitLab, it doesn't matter—and they should be able
to work with it. But again, it's about being nimble and open-
minded enough to embrace the next thing, which will look
entirely different.

Viktor Farcic: Speaking of tools, I'm fascinated by containers.
Do you think it's a coincidence that, as an industry, we've started
talking about containers, microservices, and DevOps all at the
same time? Is that pure luck or is there some relation behind it?

Andy Clemenko: I would say that it's a coincidence. Contain-
ers helped to accelerate that DevOps lifestyle adoption but,
having worked on large Hadoop clusters, and having seen the
DevOps methodologies with Puppet, Chef, Salt, and Ansible,
what we've just done is effectively retooled and brought our
tools up in abstraction layers. We're no longer orchestrating at
the operating system layer. Instead, we're orchestrating at the
cluster level.

"DevOps is a lifestyle. It's all about being able to adapt
to new technologies, not only from a developer point of
view, but also an operations point of view."

—Andy Clemenko

Andy Clemenko

206

But that correlation helped accelerate the move up. It's still
the same now, regardless of whether you're working in industry,
government, or anywhere really. There's this idea that when you
have a development team and an operations team, they throw
shit over fences. That DevOps lifestyle is about bringing those
two teams and their functions together. Forget teams, because
one team with the ability to effect change is quicker than two
teams trying to do the same thing. It's in this acceleration that
I think containers play a part. Honestly, what I'm trying to say
is that it's about soft skills. It's about the people, it's about the
teams, and it has nothing to do with the tooling, just like how
Docker, DevSecOps, and GitOps are all just buzzwords. We're
going to get to a point where whatever object you're creating—
whether it's a container, a VM, or a JAR, it doesn't matter—has
the metadata within it that says how it should be shipped, and
who should approve its life cycle.

Viktor Farcic: That makes sense.

Andy Clemenko: But I remember last year, during a demo
at KubeCon, a practitioner-driven conference, Brendan Burns
did a presentation on self-deploying images, where your object
understands not only what it needs to be in order to be healthy,
but where it needs to go and, who needs to approve its use and
security provenance. So, now you've got an audit trail built in,
and you're wrapping that object with as much embedded meta-
data as possible.

Viktor Farcic: So, it's almost as if we are switching toward
communication through code and metadata? I don't need to
tell you what I want, as it's all self-contained in my artifact.

DevOps Paradox

207

Andy Clemenko: Exactly, and as a builder, or as a team
building those objects, you can describe what it should do,
while having the opportunity to divert it. But today, if I give
you a Docker image, you can do whatever you want with it.
I love the idea that, in the future, I could give you a Docker
image that I could lock so that only you could run it, and thus
you can't execute into it, and you can't do funny things with it.
But it's also got a security provenance, so you know that some-
body gave it to me and then I gave it to you—through cryptog-
raphy—so there's at least an audit trail.

The next phase, at least in the way I see it, is having these
objects really be, I'm not going to say self-aware, but at least
have more meaningful metadata around security, provenance,
and deployment. What if, instead of having a docker run
command that was word wrapped three times with passing in
volumes and stuff, you just did docker run, and the container
itself goes, "Hey, I should have this, where is it? I should have
this variable, and you haven't given it to me. Can I have it?"
A more self-aware state is kind of a weird way to describe it.

Describing
the company
of today

Viktor Farcic: Switching gears a little,
if you were to start a company today, what
would it look like? How would people
behave and interact with it?

Andy Clemenko: I'm a big fan of smaller
companies, where the lines between teams are blurred. So, if
I'm starting a start-up, I want to make sure that our internal IT
understands our product, and that everybody can work collabo-

Andy Clemenko

208

ratively. I think once you start getting over a couple of hundred
people in size, that's when the fences immediately go up.

Something I hear time and time again from customer inter-
action is, "Oh, that's the networking team. They'll get to it when
they can." With these fences, you have different North Stars,
different goals, or you have different strategies or managers.
I'm a fan of a flat organization with cross-functional teams.
Like today, you might be interested in monitoring and helping
with a customer solution, but that doesn't mean that internal
IT can't take advantage of it.

Viktor Farcic: But are these fences inevitable, then, or are
they just more familiar? I wonder myself because I'm yet to see
a big company that works like that, which is something I would
love to see.

Andy Clemenko: I think you get pockets, but unfortunately
the counter to that cross-functional team is organizational
stability. Because, if you've got a team, you'll find that, as your
company grows, you're going to have pockets of these teams.
So, the question arises about how you organize them? For lack
of a better term, how do you control them, and how do you
make sure that they're all moving together? The way you do
that is you basically give each team a North Star, which starts
to create those vertical fences.

The thing with that is that it's just organizationally tough,
and the problem is a lot of people end up in middle manage-
ment. Because of that, there's a vested interest in keeping
middle management alive. Look at it from the perspective of
a 300-employee company threshold. One threshold is 100, the

DevOps Paradox

209

second is 300, and then it's about 500 to 600 or possibly even
closer to 1,000. But for me, in my ideal company, I like staying
in the range of a couple of hundred employees.

Case in point is that I got an email last night saying, "Hey,
I know you're in Raleigh next Wednesday. Can you be in
Houston on Thursday?" I replied saying that I'm up for it; as
long as they approved my travel requests, I'd be there, and I'd
get it done. It's not my team, not my region, but they need help,
so let's go.

Viktor Farcic: That's dedication!

Personalities,
honesty, and
breathing the
environment

Andy Clemenko: The other thing is
that right now there are two types of
personalities in all industries. It's either
type A or type B, quite literally. Those As
are going to go in and do what it takes to
get the job done. To use an overused

term, for As, it's "mission, mission, mission." Meanwhile, type
Bs are, to a certain extent, going to sit back and just push the
button. I see it in all walks of life.

I'm a volunteer firefighter on the side, and I see it in the
fire service; I see it in corporate, and I see it in government.
In fact, I see it everywhere. The trick is that if you really want
to keep that cross-functional team and culture going, you need
to find those people that are willing to go the extra mile. Not
every day, because that gets out of control. But find those
people that are willing to do it, that show gumption and go
do it, and then worry about complaining about it or getting
compensation later.

Andy Clemenko

210

Viktor Farcic: That's very interesting, because I've had
conversations with people who have said, "Oh, the company
where I work is growing, and as we're growing, I'm starting to
question whether I'm going to move on to something else, for
the same precise reasons." I then often get a follow-up ques-
tion along the lines of, "Oh, but if you grow to 1,000, that's
great because more people will equate that growth with better
business and stuff like that." I never really understood that
because then you have to ask, what's in it for me? It's not my
company. Why is it better if we are 1,000 rather than 200?

Andy Clemenko: If you're looking at it from a purely finan-
cial point of view, if there are two companies, one with 10
employees and another with 1,000 employees, who is making
the most money? The answer is the person at the top. So, the
bigger the company, the more revenue there is, and the more
the stock's worth.

Are you directly incentivized to do it? At the end of the day,
is money really your incentive? I wear a hoodie, and I'm an
engineer with a degree in engineering who wants to solve prob-
lems and build some cool stuff; that's literally it. I'm in a place
now where I help customers to solve problems and build cool

"Those As are going to go in and do what it takes to
get the job done. To use an overused term, for As, it's
'mission, mission, mission.' Meanwhile, type Bs are,
to a certain extent, going to sit back and just push the
button. I see it in all walks of life."

—Andy Clemenko

DevOps Paradox

211

stuff—I'm helping, and I love it. Do I see an extra dime if we sell
an extra widget? Not directly. Maybe indirectly, at the end of
the year. But that's not my personal North Star. I think it takes
a certain kind of CEO to pump the brakes and not assume
that massive expansion is going to solve all of the problems.
Because, in my mind, not all growth is good.

Viktor Farcic: I guess it depends on what you're after. I feel the
same in that I'm definitely after money, up to a point. I cannot
live on 100 bucks a month; but there is a limit that I reach
where I'm kind of like, "OK, it doesn't really make a difference
anymore," unless I've got ambitions to buy a chopper or some-
thing like that.

Finding your
North Star

Andy Clemenko: It's your North Star!
Putting the brakes on this interview, I want
to ask what do you see? I know our discus-
sion has focused on me, but what do you
see in terms of company size and embrac-
ing DevOps?

Viktor Farcic: In regard to company size, I feel similar to
you in that the bigger the company gets, the less fun I have
working in it.

Andy Clemenko: It's great that you see things the same way
as me.

Viktor Farcic: I think that's kind of my definition. I feel
that being in software engineering is, in a way, a privilege. My
feeling for that is because we are one of the very few profes-
sions that we usually join for fun and can continue having fun.

Andy Clemenko

212

At the end of the day, as long as I'm having fun, it's excellent.
It's just that I feel that the bigger we are, the less fun I have.

I visit a lot of companies where I feel there's no hope. I work
with them for a short period of time and show them how to do
this and that. But then, I'll come back a year later and ask them
what they're doing, and then they ask me, "What do you mean,
'Tell you what we're doing?' You were here last year; you know
what we're doing!"

Andy Clemenko: That's the thing—nothing's changed.
In terms of buzz phrases or buzzwords, bureaucracy is the
anti-pattern to both DevOps and the DevOps lifestyle. I just
want to do the DevOps lifestyle equation, but there's really
a need for bureaucracy in these big organizations because you
have to be able to organize that many people at some level.
Otherwise, it's going to be the Wild West. You've got to be
a better start-up. I really think we need to break up those big
companies and keep them small. A CEO would have to have the
courage not to grow to 10,000 employees because when you
do, you're going to lose nimbleness, and the ability to adapt not
only to this lifestyle but also, as the wind changes, to any new
North Star that comes out.

But, unfortunately, money is power. What we need is the
money that the big companies have in order to fund the little
guys. It's like this weird symbiotic relationship that's not
mutually beneficial; there's a gap somewhere. I'm on a contract
right now that's 1,200 hours in, or 50 days, and our team has
literally spent 500 hours of that time over the last two months
getting our laptops and saying, "Hey, we need an NFS share;
we need Windows VMs." We're very much in a state of saying

DevOps Paradox

213

we need this and that. The issue is that the company's response
is, "Yeah; it's coming, man. Let's investigate." I've got a laptop
here for them, which is always on VPN. Cool, that works great,
but all of a sudden, I can't SSH into Linux boxes, and then
they're blaming us for turning stuff off.

I mean, I can bounce and jump through—I'm a geek—but
this is clearly a firewall issue. So, then the natural response
is, "Well, we'll open a ticket." Fine, but now you've got to wait
six weeks for the networking team to get around to it. I'd be
there saying to the networking team, "Hey, guys, do you want
this project to be successful?" To which the company responds,
"OK, we'll accept your million-dollar check, but now our
employees are getting frustrated and annoyed because we're
not doing anything."

Viktor Farcic: But before I had a feeling that when I'm in
those situations, it's like, you're not wasting my time because
I'm getting paid for this, but you're completely wasting your
money. At the end of the day, I get paid, so I don't care. But
then I came to realize that maybe the perspectives are differ-
ent. Actually, what I consider completely irrelevant—zero
improvement—is a big deal.

Andy Clemenko: I guess it's about the DevOps lifestyle, and
I think it's also about moving forward. It's about taking a step,
and even if it's a tiny step that went from three months to two
months, that's still a step forward. Spiritually, I feel frustrated
when I'm not moving forward, whether it's with a company,
life, financials, or whatever. I like that forward movement. I do
believe that there's a certain extent where companies feel good

Andy Clemenko

214

about at least moving forward, even though it's not where you
and I ideally would like to get them.

One of the things I do when I start an engagement is try
to establish a North Star, whether it's a short-term, mid-term,
or long-term project. It could be a bunch of North Stars, or it
could be a series, but at least you know where you ultimately
want to go. Because, that way, at any point in time, you can ask
yourself, "Am I in line or am I perpendicular? If I'm perpen-
dicular, what's the cause of that?" Because sometimes you have
to go back to find a new path, and that's fine, but you have to
understand at least that you are going backward, away from
your ultimate goal.

Unfortunately, the issue is that some of these companies
just say, "We want DevOps." That's their goal, but you're
there thinking about how they don't understand what DevOps
actually is. My favorite is when companies say that they want
Docker, which is something they say all the time. But the ques-
tion is what does Docker mean to them?

I joke about the Docker lifestyle because Docker is not just
containers. It's CI/CD. It's version control. Some of these places
don't have sustained version control either through monitoring
or logging. It's ELK and Splunk and Prometheus and Grafana.

"The issue is that, some of these companies just say,
'We want DevOps.' That's their goal, but you're there
thinking about how they don't understand what
DevOps actually is."

—Andy Clemenko

DevOps Paradox

215

It's all about these aggregate systems that you bolt on to your
infrastructure. In fact, it's even a little bit of Puppet or Ansible.
It's understanding Kubernetes YAMLs, to which all I'll say is,
"Lord, help us!"

Viktor Farcic: Exactly!

Understanding
what you're
buying

Andy Clemenko: But it's also
Jenkins, GitLab, and all of these things.
Take the project I'm on now, for
example. We need version control, and
we need a CI system. So, I asked the
client, "What have you got?" They're

like, "Well, this team over there has—" I ask, "Do you have
a central?" They respond by saying, "No, we don't have
a central." They may then ask, "But can we stand up on our
own?" But that's not really their job. What's going to end up
happening then is you'll need to go to another team and ask
them, "Do you understand what you're buying?"

A classic example is that you buy a car and drive it off a lot,
but 200 miles later, you scratch your head because the vehi-
cle's stopped working. You didn't realize you have to put gas
into it, or that you have to change the tires, put oil into it, and
clean the car, along with the rest of the maintenance. You may
think of just going back and getting another car. But no, you've
got to understand what you're buying.

Viktor Farcic: Exactly. I feel like one of the significant diffi-
culties I have is that when I'm with a customer—let's say their
goal is a continuous delivery pipeline—I feel that I shouldn't

Andy Clemenko

216

cheat them and that maybe I should tell them that they should
not pursue, in this case, continuous delivery.

Andy Clemenko: I've had specific conversations with
customers and have said something along those lines, that
maybe containers aren't the right thing for them. If they're
not willing to build a CI system or version control, and subse-
quently they're not willing to understand all of these things
that make up the DevOps lifestyle, then maybe it's not the right
thing for them.

It comes off sometimes the wrong way, but I pride myself on
being honest to my customers and saying, "Look. You're going
to need this, this, this, and this." In fact, I did it yesterday at
an integrator. I wrote a laundry list on the board of what they
need to provide because they're building a reference architec-
ture—infrastructure, monitoring, logging, and CI/CD—and
they're coming at it from a dev angle, so they're more worried
about CI/CD, but I'm telling them that providing CI/CD is only
one thing, because, hey, you're building awesome widgets, but
where do they go? How are they executed? It's not useful if you
can't deploy it efficiently.

Viktor Farcic: But sometimes, I don't think it's only to do
with willingness or even ability.

Andy Clemenko: If your goal is to do the bare minimum,
then keep doing that. Likewise, if that's working for you, great.
But just don't get in the way of those who want to make a change
and move forward.

DevOps Paradox

217

You've got to be brave enough to say to those people that
maybe you should just stay in the past. Perhaps you should just
stick with Windows Server 2003 and not worry about contain-
ers, DevOps, and CI/CD, because these are lifestyles. Custom-
ers don't necessarily like the truth all of the time, but I would
rather be honest with my customers up front and not try to
manipulate them. I think honesty creates a healthier relation-
ship because it establishes long-term trust, and sometimes, it
has facilitated change within a customer. Every once in a while,
a slap in the face might not be a bad idea.

Viktor Farcic: Absolutely, at least for an academic or
salesperson.

Andy Clemenko: I was on a sales call yesterday, and it was
just "sell, sell, sell." All this company cared about was moving
forward. So, the question is, which Docker engine should they
use for their Jenkins server? I feel it comes down to the fact
of asking yourself whether you absolutely need the support.
Is your corporate policy such that you absolutely have to have
support? Because if it is, then we can just sell you two licenses
for nodes and that's $1,500 a node per year. It's so tiny that it's
like a rounding error for most of their budgets.

My response is you could run CE, and the amount of support
you're actually going to need is going to be pretty much zero
because I build CE with CI systems all of the time. The compa-
ny's response was for us to send them a quote. The downside
is we couldn't sell professional services, including the full
product suite. But you know what? At the end of the day, at
least the customer feels they've gotten an honest answer from
the sales guy and me.

Andy Clemenko

218

Viktor Farcic: Earlier, you mentioned Kubernetes YAML.
In fact, I believe you said, "Lord, help us!" Why do you say
that exactly?

On Kubernetes,
Docker, and
lowering the
barrier to entry

Andy Clemenko: Any time there's a
new technology, developers have to
lower the barrier to entry, especially
for changing. For changing abstraction
views and for changing tooling, you've
got to make it easy. Rancher did

a fantastic job of making orchestration easy. They had to
catalog, and my God, it was great.

I had a company director once who wasn't a computer geek
at all. To be able to deploy a ghost blog server by clicking two
buttons blew his mind. You just have to make that barrier to
entry really low. The problem I see with Kubernetes right now
is that the YAML in itself uses spec four times in a single object
type. YAML format is fine, and everyone can do the vertical
lines and, in their code, get the spacing right.

But its overall structure? Well, a customer yesterday was
talking about Swarm versus Kubernetes, and how you can

"Customers don't necessarily like the truth all of the
time, but I would rather be honest with my customers
up front and not try to manipulate them. I think
honesty creates a healthier relationship because it
establishes long-term trust, and sometimes, it has
facilitated change within a customer."

—Andy Clemenko

DevOps Paradox

219

take a single object in Swarm, and it describes the ingress
URL-FQDN, it represents the number of replicas, and it repre-
sents the number of ports and the volumes in it and one object—
in Kubernetes speak, that's seven. That gets a little frustrating;
not to mention that right now there are 37 top-level objects
in Kubernetes. And then there's my favorite one known as
the CRD, the custom one. If our theories are good enough for
you, you can make one of your own, and we'll just work with
it. Kelsey Hightower said that Kubernetes is not the endgame.
Somebody needs to come along, and I'll tip the hat to IBM and
Red Hat that OpenShift became an opinionated Kubernetes.
That's cool, but that's not Kubernetes, and I think it's unfair
for them to sell it as Kubernetes.

Viktor Farcic: Right, so, in your opinion, what needs to come
along to address that?

Andy Clemenko: Someone needs to come along and really
say that we're all going to use Kubernetes underneath. We
understand the Kubernetes YAML, but we're going to simplify
it and make our own converter app to format on top of it.

That'll translate to the lower-level primitives, to the
37 top-level objects, such that the developer just says, "Here's
my image," or better than that, "We talked about the metadata
being transient with the image, but here's my image. Here's
the number of replicas, here's the network it should be on,
and here are the ports it's listening on—the number, and very
simply, within 5-20 lines, it's minimal."

Look at Helm: they've been trying to do that, but Helm in itself
is complicated. You've got to it pull charts. I'm not even looking

Andy Clemenko

220

at Helm, and people are saying that Helm's easy. But, no, it's not.
You see it time and time again as you help these companies to
understand the DevOps lifestyle—these tools are wicked hard.

Viktor Farcic: It's easy until it doesn't do exactly what you
want, and then it becomes a nightmare.

Andy Clemenko: Look at the hype cycle around Kubernetes.
I've got customers that are saying, "We want Kubernetes!"
To which I say, "Are you doing something specific? Are you
pulling? Why specifically do you need Kubernetes?" This is
a question they can't answer because they don't have an answer
to it. It really comes down to somebody up high having seen it
in CIO Weekly, or it's the buzzword right now, and they've got
to have it. Then you actually start showing them that YAML,
or the fact that in order to tie an ingress controller to a service
that sits in front of a deployment, you have to have an ingress
object. That's four objects now.

Viktor Farcic: The reason why I'm asking is that when
I jumped into Docker, I felt that it was one of the very few
technology tools that I can use for everybody in a company. If
you're a tester, then it's useful for you, and if you're a developer,
then it's also useful for you, just as if you're an operator. At
that time, Docker was almost a communication tool. It's useful
for everybody, and the entry point is easy. I can explain it to
my mother. But then along comes Kubernetes, which I admire
because Kubernetes is extremely powerful and extensible, and
it allows you to do anything, including make coffee. But now,
I'm not actually able to explain what Kubernetes is anymore
unless a person decides to dedicate their life to Kubernetes.

DevOps Paradox

221

Andy Clemenko: It's a religion.

Viktor Farcic: Because of the complexity associated with
it, I feel Kubernetes cannot be just another tool in your tool-
belt. You need to be dedicated to it. So, in my book, it's useless
for developers because they're never going to learn what-
ever they need to learn for Kubernetes. Though maybe I'm
a bit pessimistic.

Andy Clemenko: No, I agree with you, because that's some-
thing I see too. The exciting thing for us at Docker is the fact
that Solomon Hykes didn't invent containers; let's be honest.
We've had zones, we've had attributed, and we've had encap-
sulation technologies in the past. All that he and his team were
able to do was merely make Docker run in a simpler form, and
that, to me, was the pivotal moment. I really think what we
need is an operational platform—a framework—to be simple,
and that's why I'm excited about Kubernetes being imple-
mented into Docker Enterprise.

If only we could take an Apple-like approach to it: let's make
it simple; let's make it work, and let's lower that barrier to entry
and move forward, then, hopefully, we can abstract on top of
Kube just enough. Leave the door open if somebody wants to
look behind and use kubectl all day long, but abstract it just

"Solomon Hykes didn't invent containers; let's be
honest. […] All that he and his team were able to do was
merely make Docker run in a simpler form, and that, to
me, was the pivotal moment."

—Andy Clemenko

Andy Clemenko

222

a little bit to make it simple enough to work. When we talked
about lifers versus go-getters and big companies, I think that
the minute you have a barrier to entry slightly higher than an
inch, it's enough to cause a lot of resistance. If you want to effect
change at a company, you've got to make that resistance—the
possibility of resistance—zero. I guess that's almost like a math-
ematical function. The closer to a zero amount of resistance you
get, the higher the probability of change within the organization.
Because I know when I first started looking at Docker, I saw it as
a threat, at least from a sysadmin's point of view.

Viktor Farcic: You really saw it as a threat? What's changed
since then? Because you're now a senior solution engineer at
Docker, so your initial perception must have been wrong.

Andy Clemenko: At the time, I saw Docker as a threat because
developers could just do things that required sysadmins. Thus,
my knee-jerk reaction was that Docker is just anti-sysadmin.
But that was until my first docker run. Then a lightbulb went
off, and I had the epiphany of, "Holy shit! I need to go and
work for this excellent company. I'm in!" But again, you've got
to make the barrier to entry as low as possible.

Have you ever seen a new developer's eyes when you show
them that 1,700-line Kubernetes YAML to deploy Prometheus
and Grafana? I did it yesterday, and their jaw hit the floor.

Viktor Farcic: I know what you mean; that's a face I see all
the time. People will often call me and say, "Viktor, can you
help us with this and that?," or they tell me that they want to
jump into Kubernetes, and after the first half an hour it's all
excitement, but then the reality sets in.

DevOps Paradox

223

I think it's interesting in the context of this discussion we're
having about DevOps. But I think Kubernetes fosters the crea-
tion of those roles, and sysadmins will be able to use it.

What I would like to see in the future is for us, as an industry,
to stop talking about Kubernetes and see that there is some-
thing on top of it that only a few people know about. I guess it's
more or less what you described for Docker E.

Andy Clemenko: There is a thing with kernel develop-
ers today; there will always be extreme experts at each layer,
but the number of people directly interacting with that layer
becomes very small.

Viktor Farcic: Because you're not working with it.

Andy Clemenko: Exactly, there's no need.

Viktor Farcic: I'm running Mac right now while I speak to
you. I don't know what's behind it, because I don't care.

Andy Clemenko: That's a good point. I believe it was Scott
McNealy from Sun, who talked years ago about Sun Grid deploy-
ing and debuting SAS Grid effectively. He said that, when you
plug in your hairdryer, you don't need to know about nuclear
energy. You just want to plug in your hairdryer, and you just

"I honestly don't even care whether this container is
OCI-compliant. At the end of the day, I just want it to
work. I want it to be portable. I want it to be secure.
And I want it to be easy."

—Andy Clemenko

Andy Clemenko

224

want it to work. So, apply the same thing today, because I don't
care what orchestrator is underneath—I honestly don't even
care whether this container is OCI-compliant. At the end of the
day, I just want it to work. I want it to be portable. I want it to
be secure. And I want it to be easy.

Looking to
the future

Viktor Farcic: So, what's next, then?

Andy Clemenko: In the near future, I see
serverless picking up some momentum, but I'm
still waiting for serverless to be actually written
into the lower-level orchestrator directly, and

not as it currently is, which is as an extra layer on top. To me,
serverless is just a rapid reaction scheduler, to some extent.

Elias Pereira has done some really awesome stuff with
OpenVAS, to the point where it's got self-autoscaling of
containers because it's deploying its own Prometheus. To me,
conceptually, having similar functions at multiple layers seems
redundant. So, let me ask this: if we can take OpenVAS and
build it into the lower orchestrator, why don't we build into
right into Kube or right into Swarm?

At least that way I'm advocating for a 38 top-level object.
But the idea, though, is that if you have more batch processes
like serverless, they can still use the same schedule. You don't
need to build on top of them and add all of this extra stuff to do
the same thing. My point is, I would love to see an orchestrator
just be able to say, "OK. 1 through 5 are long-running; 6 and
7 are serverless." And again, we talked about that self-aware
nature. What if you had a container that says, "If I haven't been
used in 10 minutes, turn me off"?

DevOps Paradox

225

In that case, you don't even have to have a separate object
for serverless or daemons. The thing is self-aware, and it says,
"Hey, I haven't been used. Spin me down." It tells the orches-
trator, "I'm not busy, so turn me off," and then when the next
request comes in, the orchestrator says, "Wake up." There you
go. Why not? I say let's blur those lines. Wouldn't you say that
makes it simple? Let me ask you, Viktor, do you remember the
moment when you did your first docker run?

Viktor Farcic: That's what I'm saying. My first reaction when
I was running Docker was, "OK, I started 10 minutes ago, and
I already understand how it works. I don't know what's behind
the scenes, but it works."

Andy Clemenko: And you were able to do a docker run and
see your web page, resulting in you having that lightbulb moment,
which is what we need for all of the DevOps tools. That's how
change is really going to happen—with these lightbulb moments.

Viktor Farcic: Exactly, but going back to serverless, would
you place your bets on something along the lines of what you've
explained, or something similar to Lambdas with cloud propri-
etaries and all of those things?

Andy Clemenko: I wouldn't place any bet because comput-
ing today happens everywhere. It happens on your watch, it
happens in your datacenter, and it also happens in someone
else's data center. There'll always be this balance between
on-premises and the cloud, and serverless and full daemon, or
whatever you want to call it—server/serverless. It might not be
50/50; they'll flow. I think there'll always be both because of

Andy Clemenko

226

security and financial reasons. Too many times I hear custom-
ers saying that corporate policy says we can't touch the inter-
net, so they're fully air-gapped. You can't use Amazon, you
can't use Azure, or there's a project team building a VPN to
the VPC, who'll dedicate a link, and all of that good stuff. But
there'll always be this balance, and, indeed, all we're doing is
just shifting responsibilities.

So, do I think serverless is going to take over? No, but I think
it's going to consume anywhere up to 20% of the container space
today. But guess what? What format on the backend is serverless?

Viktor Farcic: Kubernetes?

Andy Clemenko: So, it's the same underlying fundamen-
tal object, and the same construct. So, why can't we just make
the construct more self-aware, whether it's a batch job—which
serverless technically is—or a long-running daemon that's
constantly serving traffic?

Viktor Farcic: Because my current concern with serverless
is that I need to choose which platform to use and then almost
stick with it forever. I would technically have liked what you
just described—tell me how to explain something and then tell
me whether it will run as Lambda, Azure function, or VAS. But
that shouldn't be my concern.

"My current concern with serverless is that I need to
choose which platform to use and then almost stick with
it forever."

—Viktor Farcic

DevOps Paradox

227

Andy Clemenko: It shouldn't be, but for me, it's a process.
Fundamentally, inside the container, it's just a process
executing whatever—whether it's wrapped in a Lambda func-
tion, Azure, an OpenVAS container, or a long-running Kube
container, it's still just a process. The process doesn't care what
it's encapsulated in. It doesn't know that it's not a conscious
being where it spins up and it goes, "I'm alive! I'm dead. I'm
alive! I'm dead." It just runs.

Having to build separate frameworks is creating, in my
mind, more confusion. Granted, there's job security. But again,
it's not a low barrier to entry; although, having played with
it, OpenVAS is pretty darn slick. It's straightforward to create
a function, it's straightforward to integrate it, and it's effort-
less to execute it, not to mention it's got autoscaling and all
of these fun things. But again, I'd love to see that completely
integrated with a single orchestrator.

I'll give Amazon a lot of credit. I don't like what they're
building, so to speak, but I'll give them a lot of credit for lower-
ing the barrier to entry. They've made it too easy to consume
databases in VMs and object stores. But if you actually dig into
it, it's incredibly complicated, with CloudFormation templates
and all of the IM policies and security groups. I personally
don't use AWS or any of that stuff because it's too complicated
and annoying.

Viktor Farcic: But when you said they made it too easy, my
first thought was that it used to be, but nowadays it's not.

Andy Clemenko: Actually, you're right.

Andy Clemenko

228

Viktor Farcic: I prefer DigitalOcean now, because it has what
I need, and it doesn't have 50,000 other things that I don't
need but am encumbered with anyway.

Andy Clemenko: I'm a huge DigitalOcean fan.

Viktor Farcic: To be honest, I've worked a lot with AWS, and
I still don't fully understand how it works. But now that I think
about it, nobody does; it's just madness. I have a feeling that
they went in the same trajectory as we described earlier for
Kubernetes stuff, but it's becoming heavier and heavier.

Andy Clemenko: Exactly, and I think one of the disservices
or discredits to Amazon is that they've made AWS very sticky
because of how complicated it is, and to a certain extent, Kuber-
netes is going down that same path. It's very sticky because
once you get it, you don't want to use anything else. Just look
at the fact that if you put "AWS architect" on your resume or
"certified Kubernetes" on your resume, your phone will not
stop ringing. That's good for the person whose resume that is,
but, you know, I think it leaves a lot of the little guys out of the
market to a certain extent.

Viktor Farcic: But, you know, if being AWS-certified is in
high demand, that means that it's actually too complicated,
because I don't think that anybody says, unlike with Kuber-
netes, that they're a container-certified person.

Andy Clemenko: Or that I'm certified in Docker and Kube.

Viktor Farcic: But what do you get certified for in Docker? It
only takes two days to get certified.

DevOps Paradox

229

Andy Clemenko: Our certification is at a basic understand-
ing of registry, and push and pull, and things like that. But you
can absolutely learn it and pass the exam in a week or two; it's
not hard.

Viktor Farcic: Exactly. Anyway, I know we're out of time
now. It's been great talking to you, Andy. Thank you so much
for your time.

9

Chris Riley
Author and
DevOps Analyst

Introducing Chris Riley

Based in the Greater Denver Area, Chris Riley is a self-pro-
claimed bad coder turned editor of Sweetcode.io at Fixate IO,
a content marketing firm for those who sell to technical audi-
ences. Through this, he's involved with DevOps, SecOps, big
data, machine learning, and blockchain. He's a member of the
DevOps Institute Board of Regents, a position he's held for over
four years. You can follow him on Twitter at @HoardingInfo.

Viktor Farcic: I know your career has mainly revolved
around your work as an analyst. But you're also the editor of
Sweetcode. How did you get to where you are?

A bad coder
turned
industry
analyst

Chris Riley: My answer can best be
summed up by the fact that I'm a bad
coder turned industry analyst. While
I couldn't make it as a coder, I had a big
passion for software development prac-
tices, building applications, and the

processes around that. So, instead of trying to transform my
skill set and become a better coder, what I decided to do was
really focus on understanding the industry. So, I became
a DevOps analyst in addition to being the editor of Sweetcode.

Career-wise, my last employer was a company called
CloudShare, which was a DevTest environment specifically
for large line-of-business application development; in other
words, a SharePoint-, SAP-, or Oracle-type application. At
CloudShare, I worked in product management, so I was

DevOps Paradox

235

essentially driving the direction of the product and keeping tabs
on the market.

I'm also doing a lot of write-ups for DevOps.com, O'Reilly,
and TechTarget. My content focuses on how organizations
assimilate modern development practices and a lot of cheer-
leading to enterprises to encourage them to make a move.
I became very familiar with the market, which included
playing with a lot of the tools myself. But after that, I started
Sweetcode, which is now a more developer-focused site with
a lot of really strong tactical content.

What is
DevOps?

Viktor Farcic: I'd like to start with a ques-
tion that will probably sound very silly to
you: what is DevOps?

Chris Riley: I believe very passionately
that DevOps is not a thing that you can simply do. You don't
just say that, on a specific time and date, you "did" DevOps.
"Doing DevOps" should never be a phrase anybody ever utters
because you're never "done" with DevOps.

DevOps is not a thing; it's a principle, it's a practice, and it's
what you use to drive all of your decisions on how you build your
delivery chain. That means it encompasses everything from the

"You don't just say that, on a specific time and date,
you 'did' DevOps. 'Doing DevOps' should never be
a phrase anybody ever utters because you're never
'done' with DevOps."

—Chris Riley

Chris Riley

236

dreaded word "culture" to implementation. A great example is
if you walk into the door of Slack and take a look at their devel-
opment environment. You might say, "Wow, look at you guys:
your developers are supporting their own code. If they build it,
they support it, and you're releasing hundreds of times a day.
You guys have continuous delivery—this is amazing! You guys
have done it, you have hit the jackpot—you are DevOps."

You can't say that because the "you are DevOps" element is
not actually a thing. As we saw with Slack, they have been and
always will be trying to figure out how to do a better job. That's
what DevOps is. They're always thinking how they can do some-
thing better, even though, from an outsider's point of view, it
might look like they have the best development environment
and delivery chain in the world. They're still thinking, "How
can we do this better? What can we automate more? What can
we make go faster? How can we do more releases?" If you're
concerned about better-quality software and releasing it faster
and more frequently, then you're "doing DevOps," and you don't
even need to call it DevOps. That's what I think DevOps is.

Viktor Farcic: I feel as if you're describing an extended
version of Agile, or at least something similar to that.

Chris Riley: I disagree. While Agile was more cut and dried,
with clearly a more defined system of operations, DevOps is
a bit more ethereal and philosophical. The reason that's so
important is because of Agile, or even before that, what we
learned with Waterfall development practices.

If you're an organization that thinks you're going to take on
a project to implement DevOps, and that, by the end of the day,

DevOps Paradox

237

you're going to be doing workable DevOps, what you're actu-
ally going to have is a DevOps shop. What happens is, as soon
as you've done that, the DevOps shop is no longer DevOps. It's
dead, because, for instance, CloudBees has acquired Codeship
and suddenly you need to reconsider how you're doing continu-
ous integration because, possibly, you're using a different release
automation tool, and now you need to consider, "Is my release
automation tool different, or is there a new generation out?"

If you architect your delivery chain too rigidly and say, "This
is our DevOps delivery chain," to the point that you can't adapt
the next thing that comes out, you're not practicing DevOps.
In DevOps, you're always looking forward. You're always
looking at what's next, with the idea being that we don't end
up in a cycle where six months down the road, after building
something, we're then saying, "Oh, man, this is old. We need to
retool again because so much is changing, and it's better, and
we weren't prepared for that, and we didn't know things were
going to change," which would be the most ridiculous state-
ment in the tech field, period.

That's where I'm uncomfortable about DevOps being a prin-
ciple and philosophy, because it makes it much harder to
manage and build a DevOps environment. It becomes a very
large people problem, and people problems are the hardest
problems to solve. You can't ignore that fact.

"You really can't get a certification in the principles
and the philosophy of DevOps. As soon as you think you
can, you have already alienated the environment."

—Chris Riley

Chris Riley

238

Viktor Farcic: I completely agree. That's why I get a bit disap-
pointed when I go to conventions, as you do, and I see all of
those commercials advertising every tool that I knew from three
years ago as being DevOps-certified. It's very much, "Buy this,
and you become DevOps." I don't know if you have the same
feeling, but I'm freaking out because it's too commercialized.

Chris Riley: I'm a regent of the DevOps Institute. They started
by offering courses on the high-level aspects of DevOps and
culture, but they have since adapted and are now focusing a lot
on tactics. You really can't get a certification in the principles
and the philosophy of DevOps. As soon as you think you can,
you have already alienated the environment. What you can get
certified in are the specific processes and implementations.

Even in release automation, things are changing. It's not
a static environment.

The speed
of change

Viktor Farcic: You're right about the speed
of change being tremendous. In today's
world, it's impossible to follow. If we stick
with your Jenkins examples, in a couple of
years' time, it moved from one container
scheduler to another, it got a few hundred

new plugins, new UIs, ditched the old way of defining jobs in
favor of the everything-as-code philosophy, and so on. Jenkins
is only one of many examples. I'm lucky that my job allows me
to spend more time learning new tech than most other people,
and yet I have a constant feeling of falling behind.

Moving on, though, I saw that you're very focused on
transitions from one culture to another. You've spoken with

DevOps Paradox

239

a range of people, from those in big enterprises to those in small
start-ups. Have you seen any patterns or differences between
the approaches?

Chris Riley: It's changed a lot in the last four years from
when I had the initial conversations with an enterprise, when
most people were opportunistic and saying, "Oh, yeah, we're
considering DevOps. That's good. We know something new is
coming." Then, you had this bifurcation of the small start-ups
building bottom-up DevOps shops or principles.

I shouldn't say that because I just said DevOps is not a thing.
In the early days of DevOps, it was almost as if you had this
exclusive members-only DevOps club where enterprises need
not apply. The mindset was, "Hey, let's leave this to the secret
club of people who know how to release software really fast."
But then it changed very, very quickly, and enterprises very
quickly jumped on board. However, the huge wave of adop-
tion didn't actually come until Docker. When Docker came out,
it felt like Docker was already behind, so enterprises picked up
the pace a little bit, and you saw a lot more adoption because
Docker was so pervasive.

What I should say is containers were so pervasive that
enterprises accepted and bought into DevOps immediately.
So, it happened very quickly. The bifurcation was not as
big. What's big is that enterprises don't have the luxury of
just ripping out everything and starting over, whereas start-
ups can tool their entire delivery chain to be in line with the
DevOps methodology.

Chris Riley

240

DevOps in
the tech
industry

Viktor Farcic: Sometimes there is an
advantage in starting late. Start-ups created
now don't have the baggage that bigger and
older companies have. Not being able to
erase history often slows us down, and in an
industry like ours, where everything can

change from one day to another, being a start-up without
legacy applications can be a huge advantage.

With that frame of mind, how do you promote new values,
processes, and tools? I guess it doesn't matter whether it is
DevOps or something else; there should be a mechanism that
a company can use to propagate change.

Chris Riley: The coolest thing I've seen in enterprises, and it
works really well, is adoption via stewardship. These companies
have built—and I hate this term—Centers of Excellence, where
they will build an awesome DevOps environment and culture
somewhere within the organization. It will do a great job of
cranking out the code for maybe a very small, not super-crit-
ical mission application, and they will use that, and they will
steward it across the organization.

Some organizations use it as a political thing, and they will
steward more naturally, such as promoting internally, whereas

"Application development will generally buy into
DevOps, as will most organizations. If they don't, then
you have an HR problem."

—Chris Riley

DevOps Paradox

241

other organizations make a structure out of it. In fact, there's
a very large media company in the US where that's exactly what
they do.

They have this small DevOps environment that invests in
tools and the processes. They say, "Hey, development teams!
We have a thousand small development teams (I don't know if
it's a thousand, but it's a lot of small 10- and 20-person devel-
opment teams). All of you out there are doing your thing, and
you're doing it your way and that's fine. However, if you want
us to support you, which means both budget and technical
support, then you're going to have to use one of the tools that
the DevOps team created." That's a very natural driver rather
than having to say, "Oh, we probably should get on board with
it," and they do.

With this particular media company, it's a little bit easier
because their development teams are so separate from each
other. They have a development team for each media site that
they own. There's a lot of them, so it's a little bit easier because
they're already structured with the two teams, versus, say,
a bank that is structured with one monolithic team. Even in
large banks, what they have is called the shared services divi-
sion, and that's a buttered layer between IT and application
development and the shared services that will buy into DevOps.

Application development will generally buy into DevOps, as
will most organizations. If they don't, then you have an HR
problem. The hard part is integrating with the IT team. What
shared services do is approve processes and tools. They nego-
tiate with IT on what could be used and what can't be used on
behalf of the developers, and it works. It's a big effort, but it all

Chris Riley

242

works at the end of the day.
And I think that's really cool because enterprise adoption is

always an excuse, but I don't think it is anymore because a lot
of people will just say, "Yes, DevOps is really cool, but we're too
big." The whole "We're too big" response isn't adequate, but
I think a lot of enterprises have tuned into that.

Viktor Farcic: When I hear companies use "We're too big" as
an excuse—and I hear it quite often—my first thought is always,
"No, your culture isn't ready. The type of organization structure
or the communication within your company is not aligned."

Chris Riley: Yes, and unless these companies initiate
a DevOps strategy, they're going to fall behind the competition.
Eventually, they're just not going to have a choice, because
somebody's application is going to be better. For instance,
Amazon is going to come and enter healthcare, which is now
what Amazon is talking about doing. So, now hospitals have to
worry about having ease of use and quality applications.

Viktor Farcic: When those things happen, when somebody
truly disrupts the industry, that results in the industry's need
to suddenly change for the better. It leaves me wondering
whether it's already too late when that happens.

Chris Riley: It is, and it isn't. This isn't related to DevOps,
but before Satya Nadella came on board as the current CEO at
Microsoft, it felt as though Microsoft was too late. And then
they did it, but they could do it because they had the money.
It's the sheer power of cash behind them.

You know, what's funny to me is that there's a very large

DevOps Paradox

243

financial institution that's famous in the DevOps space for
building its own open source DevOps tool. But a small division
within this organization already reaches out to the DevOps
community on a regular basis—and they're not even connected
to the group who are developing this tool—asking consultants
to come in and explain to them what DevOps is. It's absolutely
baffling. You have an entire team that's going around talking
about how amazing the DevOps is, who have built their own
tool, and it's great, but the team developing the tool doesn't
even know this other division exists! But back to your point.
It's like your structure is broken; you have a communication
problem that means something is seriously wrong.

Viktor Farcic: Exactly. Have you ever been in a situation
where somebody says, "Oh we tried it and we failed. This does
not work, and this was all a waste of effort?"

Chris Riley: Oh, yeah, the partial-attempt-and-failure
response. It's akin to saying you're too big.

What I do is ask, "What aspect of the DevOps methodology
did you try to input? Did you try to go directly to continuous
delivery? Because that's not a good idea. Why don't you auto-
mate testing first? Let's automate something smaller. Don't
go to canary releases tomorrow and tell me, "Oh, we did the
canary release thing; it released some software too fast and
people were pissed." If you say that, then my response would
simply be, "Why did you pick that? Automate something else."

Viktor Farcic: I've heard the story that nobody can skip
through time if you don't know what automation is. They say
that you're going to fail to implement containers because your

Chris Riley

244

gap is going to be too big to jump into something.

Chris Riley: I don't think you can jump in there, and more
widely, that mentality has been a problem all along, where
people think that a tool is going to solve the problem. They
think Jenkins is a release automation tool in the DevOps
market, and that if they buy into it then they've done DevOps
right, because Jenkins is going to bring DevOps to their organ-
ization, and then they're done. That mentality never works. If
you expect the tool to do it for you, then you're wrong.

Bottom-
up or top-
down?

Viktor Farcic: That's why I think it's very
dangerous when you buy into tools that
promise certain cultural changes just by
existing. In your view, then, what works
better: bottom-up or top-down? And more
specifically, when there's an initiative, where

should it come from?

Chris Riley: I'm going to answer that a little bit differently
because I think both questions, in their own ways, are critical.
But that being said, if I had to pick one, I would say bottom-up.
If you have an issue with bottom-up development, as in you
have a developer who's telling you they don't want to focus
on building the application and they don't want to get it out
the door faster, then you have the wrong developer. If that's
your problem, then that presents you with a bigger challenge,
because you shouldn't have to explain to a developer why build-
ing an application and speed to market are good.

For that reason, when looking at bottom-up versus top-down,
I think 90% of the effort is top-down because that's where the

DevOps Paradox

245

biggest hurdle is. This is something that's very common in
quality assurance teams, or Quality Engineering (QE) teams,
who are driven to do something new because they believe in
automation. They have this holistic point of view of the entire
delivery chain. They see everything. But QE teams never have
a budget, ever, and they have to justify to research and devel-
opment teams (R&D), who may have to then justify to some-
body else in order to gain the budgets to get functional testing
tools for Selenium, for instance.

That's the hardest part. And when these people go to those
decision makers, if those decision makers don't understand the
value of DevOps, they may not say it's dumb; but they may
say you can't do that, or they may just be dismissive because
they don't understand how it's going to impact the bottom line.
It's becoming easier to explain, because you can very easily see
a lot of industries now point to very high-quality applications
that are getting better customer satisfaction, more customer
engagement, and actually impacting the bottom line.

That's changing minds, and sometimes, changing minds is
impossible. But you also have the problem of compensation
structures. If the operations teams are compensated for making
sure stuff never breaks, then they're in a direct conflict of inter-

"A lot of industries now point to very high-quality
applications that are getting better customer
satisfaction, more customer engagement, and actually
impacting the bottom line."

—Chris Riley

Chris Riley

246

est with the developers who are compensated for making sure
that they get the application out of the door. Operations don't
want anything to change, ever, because when things change,
things can break.

When IT operations are focused on the fact that they don't
want developers to release anything, they're naturally going
to become a bottleneck. So, compensation and organizational
structures can only be changed from the top down. Going from
100-person development teams to 5- to 10-person develop-
ment teams is just another big structural change that can only
happen top-down. I just think that's where the effort goes, and
the effort has to be spent.

Viktor Farcic: When you mentioned developer teams, do
you refer to self-sufficient teams that can develop and operate?

Chris Riley: I know there are different ways of approaching
this, but the cool thing about containers and microservices is that
they're not just infrastructure tools; they're also application archi-
tecture tools. If you start to consider building and breaking your
application down into services, you naturally run into the fact
that we need smaller development teams because, for example,
you don't need 100 people writing a login service. You only need
two. I think this new architecture naturally takes organizations
that way, which is cool, but they have to be ready for that change.
That being said, I still gravitate toward the small teams that have
a DevOps engineer, developers, and quality assurance folk.

I have not, with the exception of some very rare environ-
ments, bought into the idea that if you build it, then you also
test it and support it. I do think if you test it, you need to test

DevOps Paradox

247

your own code, but somebody else is creating the automa-
tion. I don't think that it's appropriate to go to a developer
and say, "You need to write Selenium scripts for your code,"
because it will never get done. Somebody else has to be doing
that. I still think that there is a need for that QE unit, either
a team that butters across all developers or individuals within
smaller teams.

DevOps
departments

Viktor Farcic: What do you think
about DevOps departments then? I'm
seeing quite a lot of them today, espe-
cially in enterprises. When I take a closer
look at these enterprises, I'm told they're
going to form this DevOps department

that will be in charge of doing DevOps for the whole company.

Chris Riley: Going back to that large media company I refer-
enced earlier, that's what they do. They implement but they're
not responsible for implementing organization-wise. They're
more responsible for knowing both what the best practices and
the best tools are. What they do implement organization-wise
are things such as chatbots, integrations with AWS or whatever
the cloud provider is, and things that truly are tools that you
would use because what they're integrating with is global.

Everybody uses Slack, so they can create things for Slack.
Everybody is using the same cloud, so they can create things
for this cloud. That's where I think you have a DevOps depart-
ment. I don't think it's necessarily true that you go into any
organization and say, "We need to form a DevOps department,"
and then that's the answer to the problem.

"DevOps engineer," as a title, makes sense to me, but I don't

Chris Riley

248

think you necessarily have DevOps departments, nor do you
seek that out. Instead, I think DevOps is a principle that you
spread throughout your entire development organization. You
should look to reform your organization in a way that supports
those initiatives versus just saying that you need to build this
DevOps unit, and there you go, you're done—you're DevOps.
Because by doing that, you really have to empower that unit,
and most organizations aren't willing to do that. You can't just
set people off on a race to build DevOps and then not give them
the tools to actually do it. I think that's normally what happens
next if you just build a DevOps organization.

Viktor Farcic: In my view, having a DevOps department
creates another silo. I heard once—and it's a description
that I really like—that DevOps is all about empathy, and that
by joining different people together in the same team, you
develop empathy in people, and they finally understand each
other's pain.

Chris Riley: The only problem with saying things like that
is the CFO doesn't give a shit about empathy, and the person
with the money may not care about that at all. The HR depart-
ment might, but that's the problem with selling anything. You
have to speak their language, and the CFO is going to respond
to money. Either you're saving us money, or you're making

"'DevOps engineer,' as a title, makes sense to me, but
I don't think you necessarily have DevOps departments,
nor do you seek that out."

—Chris Riley

DevOps Paradox

249

us more money, and I think DevOps is doing both, which is
cool. I think what's nice about that explanation is the fact
it doesn't seem insurmountable. It's kind of like how Pixar
was structured.

After Steve Jobs started at Pixar, he structured all of the work
environments where the idea was to create chance encoun-
ters among the employees, so that the graphic designer of one
movie would talk to the application developer of another, even
when they don't even have any real reason to interact with
each other. The way they did it at Pixar was that, as every-
body has to go to the bathroom, they put the bathrooms in a
large communal area where these people are going to run into
each other—that's what created that empathy. They under-
stand what each other's job is. They're excited about each
other's movies. They're excited about what they're working on,
and they're aware of that in everything they do. It's a really
good explanation.

Viktor Farcic: I agree that CFOs and the young people very
high up on the corporate ladder mostly understand money.
How do you translate that? What do you say and what will you
earn if you do DevOps? How is it translated into money and
how do you measure it?

Chris Riley: Sometimes it seems like it doesn't measure
directly. When I talk to organizations who are building line-
of-business applications and the internal applications they
use to do their job, I explain things differently because, in
that context, user satisfaction doesn't matter as much. Their
users aren't paying them, and they're not going to up and leave.

Chris Riley

250

They're going to do what they're told.
There is something to be said for customer satisfaction.

Coming from the SharePoint space, this is something I know
very well. If people inside the organization don't like Share-
Point, they won't use SharePoint. By virtue of not using Share-
Point, you're not hitting your initiative. So, users do matter,
as does user experience, which is both look and feel as well
as keeping things up to date and addressing issues when they
come up. If somebody has a bug, it gets fixed.

Typically, in the line-of-business scenario, it's going to take
you at least three months to fix that bug, by which point your
customers—who are typically internal users who hate their
jobs—are less productive. That effect then snowballs. So, that's
the line-of-business case.

If you're a bank, you're trying to not lose customers, because
it's a highly competitive market, and by default, everybody
hates banks. Firstly, you'll want to create a customer experi-
ence that reduces costs because people are not engaging with
your branches and calling your customer support line as much.
Secondly, you can release new offerings—the new checking
account, whatever it is—faster, which means that you can get
customers of those offerings faster and engage more of them.
All of these things are not going to be deliverable unless you
have a really powerful application, and that powerful applica-
tion is going to have bugs because bugs happen. You need to
be able to respond to those bugs because the customer today is
highly critical, and you can't change the customer.

You're also going to have to adapt to how your customer
uses applications and what they expect. What they expect is an

DevOps Paradox

251

app that works. They want to see you making frequent changes,
resolving problems faster, and being responsive to their usage
behavior. All of this is an expectation now, and unless you're an
organization that thinks you're powerful enough to change the
world's user behavior, you need to be able to respond to that
because, if you don't, you'll lose customers no matter what you
do; or at the very least, you're just going to have angry custom-
ers who are going to need more support, which, in turn, is going
to be more expensive for you to work with your customer base,
and it's going to be harder to sell them new things.

Viktor Farcic: That's a valid point and one I find quite
interesting.

Chris Riley: Really, any organization can relate to the bottom
line of either losing customers and not being able to compete,
or not being able to execute on new initiatives fast enough. It's
all boiling down to that day. To me, it seems like a no-brainer.
If you're in a room with somebody who's really going to fight
against this, then all I can think is, "OK, it's going to happen to
you whether you know it or not."

Take Apple, for instance. Apple is going into banking in
a very sneaky way. It's going to creep up on these banks with
Apple Pay because now, with Apple Pay, I can send you a text
message with money. If you don't have a linked card, you now
have credit with Apple and an account with Apple, and they're
just doing that because they can. It should scare the banks.

I think it's exactly like, "OK, it'll happen to you, and you're
going to regret it." You'll lose your job, but then, at the next
company you go into, you're going to be the biggest DevOps

Chris Riley

252

champion in that company because of the experience you had
in your previous job.

Viktor Farcic: While I agree with you on many of the things
we've spoken about, I have the impression that you are mostly
referring to in-house development. Do you have any thoughts
about what happens to companies that externalize their soft-
ware, making it a commodity?

Outsourcing
and the
commoditization
of software

Chris Riley: That's an interesting
point, and I'm going to be bold.
I don't want to alienate an industry,
but I think that these outsourced
companies have hopefully embraced
DevOps because they have to support

their customers, as well as because they want to build applica-
tions faster and better.

That being said, I believe that technology is becoming such a
core component of business these days that it's a huge mistake
to outsource your application development. I just don't think
it's something that companies should be doing. Having expe-
rienced something like that before, I know how it works and
I know the negotiations that happen because you have to
succumb to the development firm's limitations, skill sets, or
whatever it is. Making changes and the complexity around
that is difficult. I just don't think that any organization should
consider outsourcing unless something is just not financially
feasible. But you have to be honest with yourself when you say
that you're building a mediocre application if it's an issue of
money, and you have to be OK with that, and you have to know

DevOps Paradox

253

that, at some point in time, you're going to have to make the
switch back from outsourcing.

For example, there's a company that builds an influencer
marketing platform, and the first three versions of it were not
great, mainly because it was super buggy. But the platform
solved a problem, people were interested, it worked, and they
got customers—but it wasn't great. This company then decided
to go in-house, and when they went in house, they focused on
hiring a development manager that understood DevOps and
everything changed. Because of that switch, their application
quality went through the roof. It just was awesome, and this is
a very small company, and now their platform is very cool.

Viktor Farcic: I think it's only a question of whether
a company has already realized that they're a software company.
If they are, then software development is a core business, and
nobody disputes that you do not externalize core business. It's
all about whether a company is aware that every company is
a software company today.

With that being said, I'm curious about trust. How do you trust
an external company will do such important work well? Can you
outsource development and yet maintain control and quality?

"I think that these outsourced companies have hopefully
embraced DevOps because they have to support their
customers, as well as because they want to build
applications faster and better."

—Chris Riley

Chris Riley

254

Chris Riley: You see the same on a dating site, which is typi-
cally fully outsourced. I think this is interesting from a SecOps
and application development perspective. AshleyMadison.com
is a great example. All of their development was outsourced,
and we've all seen how that worked out for them. They blindly
accepted what was being developed, and it turned out to be
a massive exploit and just really dumb. I believe it should be
illegal for organizations not to encrypt passwords in their data-
base. If you do that, then you should be breaking some sort of
law, because it's not fair to any of your users, because you don't
have control over that data when you outsource, really.

I just believe that organizations need to have their devel-
opment in-house and the only reason to outsource is if it's
just not financially possible. If it's not financially possible,
you have to realize you're only going to outsource for a short
amount of time.

Viktor Farcic: To be honest, you have to question the
concept of financial feasibility when you've seen how much
work a single good developer can do, even though they might
be expensive.

Chris Riley: No doubt. We've experienced this at Sweet-
code, and that's why I'm kind of impassioned about it. We have
a platform internally that we use to streamline the process of
doing research, deciding what we want to write about based on
that research, finding one of our contributors to write it, and
then writing it and publishing it.

We have a platform that streamlines the process, so it takes
less manual effort to get it done. We have written this platform

DevOps Paradox

255

three times now. The first time I wrote it, it sucked really bad.
The second time, we went to an outsourced company. I know
enough about application development as I'm really good at
architecture, so I was in a luxurious position where I could
review their code because I knew what was going on. Most
organizations don't have this. I realized the quality was horri-
ble. The thing worked, but the quality was so bad that any new
developer coming on board was not going to be able to take it
on. In that situation, the best option was to rewrite.

The only thing I would say is that, for those who don't know
anything about application development and have a great
idea, they may have to turn to a firm for expertise, and that's
a bad position to be in. I mean, if you're a founder, it's almost
like every company has to have an application, just as every
start-up has to have a technical founder.

Viktor Farcic: Does that mean if I externalize something,
then that something is probably a thing that I don't consider
within the realm of my core business? That sounds to me as if
it translates into, "Oh, software is not really important for me.
Let me put it in the same box as cleaning services," or some-
thing along those lines.

"For those who don't know anything about application
development and have a great idea, they may have to
turn to a firm for expertise, and that's a bad position to
be in."

—Chris Riley

Chris Riley

256

Chris Riley: You're right—I mean, what do we outsource at
our company? We outsource our legal, which is actually pretty
damn important, our bookkeeping, our CPA, and our HR. We
are not in the business of law or accounting or HR.

You're absolutely right that they're all good quality services,
but it's not important enough for us, for the product and the
offering that we're building, to try to bring those in-house.
I think you're right, though, that if you don't give it enough
consideration, then you just don't care.

Viktor Farcic: To finish up, I was wondering whether you
had any advice for those just starting their DevOps journey.

Starting your
journey in
DevOps

Chris Riley: The DevOps culture will
come no matter what. It could come with
a bloody mess or some kumbaya moment,
but it will come on its own as long as organ-
izations focus on automation and releasing
better applications sooner.

For that reason, I don't recommend that organizations
waste time talking about communication or culture. Instead,
I think they should be putting quotas on the number of releases
a day, response time to issues, and the percentage of automa-
tion. They should make these objectives tied to bonuses and
job performance.

If the organization pushes the needle to have more frequent
releases and better application quality, then they will figure out
the culture, and they'll figure out how to communicate better,
because these will all be major barriers.

DevOps Paradox

257

Some will figure it out via employee attrition, and others
after lots of arguments. But at the same time, that same organ-
ization would have distorted the lessons of culture to begin
with, had it been taught top-down.

Viktor Farcic: That's brilliant. Thank you very much for
your time.

10

Ádám
Sándor
Cloud technology
consultant

Introducing Ádám Sándor

Ádám works to improve software delivery rates in business
by utilizing cloud technologies. A certified ScrumMaster and
Certified Kubernetes Administrator, Ádám spends much of his
time involved in the technologies of DevOps. You can follow
him on Twitter at @adamsand0r.

Viktor Farcic: To start, could you tell us what, in your
opinion, is DevOps, and how do you use DevOps in your career?

What is
DevOps,
and how
is it used?

Ádám Sándor: I'm a Java developer turned
cloud-native consultant currently working for
Container Solutions, an Amsterdam-based
consultancy company, where we help compa-
nies adapt to cloud-native technologies while
exploring the best practices in DevOps.

I believe that DevOps is a way of developing software where
you break down the barriers between the people who develop
software and the people who run the software in production.
Ideally, this would mean that a single team can be responsi-
ble for running their own software in production, which can
improve the time it takes to fix problems. DevOps can also
improve the design of software because developers get plenty
of feedback—which allows them to design solutions in such
a way that they will be able to run those solutions. I very much
believe this is part of the "you build it, you run it" philosophy.

Viktor Farcic: But why would anyone want to do that?

DevOps Paradox

263

Ádám Sándor: Because DevOps helps speed up the deliv-
ery of software, while reducing the risk of deploying it and
breaking something. DevOps also helps meet a growing need
to improve customer satisfaction by being able to quickly
deliver new features and to fix any problems that customers
are experiencing.

Viktor Farcic: So, how do you start implementing the
DevOps process?

Ádám Sándor: At Container Solutions, where I'm a cloud
technology consultant, we begin by conducting a discovery
process: two of us go to a company that is already working with
an idea. We enter the discovery process after some pre-sales
meetings, and so as a result, we already have an idea of what
their problems are, and what they would like to solve. The issue
is usually focused on their software delivery process. Over the
course of a couple of days, we conduct workshops that explore
the company's software landscape, their delivery processes,
and their overall architecture. This lets us learn about what's
going on in the company and verify whether the problems
that the client has identified are the actual problems that
they need to deal with. It's important to make sure that we're
out to solve their actual problems, rather than provide some

"DevOps is a way of developing software where you
break down the barriers between the people who
develop software and the people who run the software
in production."

—Ádám Sándor

Ádám Sándor

264

quick reactions to some bad things that might have happened
to our client.

A good comparison here would be a doctor who sees a patient
with a headache but doesn't just give the patient some aspirin
because their head hurts—instead, they listen to the patient
and they might discover that the patient needs to change their
diet. In the context of the companies I work with, one company
might invite us to install Kubernetes so their software develop-
ment becomes more efficient. But we look carefully and we see
that the delivery of their software passes through three depart-
ments. First, the developers develop the software. Then it goes
to the testing department, before it's finally transferred to the
operations department. Now, that process right there is the real
problem! Kubernetes won't improve that company's software
delivery. The company's problem, in this case, is not software
based, and so we try to convince them to break down these
barriers and make teams responsible for their production envi-
ronment. Once that problem is solved, we might still bring in
Kubernetes to more efficiently implement the new processes.

Viktor Farcic: How often do you find people go to the doctor
with the wrong symptoms? Do people even know what's wrong
with their technology processes to begin with?

Ádám Sándor: It's hard for me to put a number on how
many times people come to us with the wrong symptoms, but
it happens both ways, and sometimes the customer can be very
right. Sometimes they've done their homework and they come
to us with a good idea of what their problems are and how to
solve them. They can still be struggling to reach the next step

DevOps Paradox

265

of actually implementing solutions though, and in those cases
it's usually because they don't have all the knowledge they need
in-house. That's where we can help in those situations.

At other times, clients can be very wrong about their symp-
toms, even to the level where we can't help them because
they're simply not ready to change. In those extreme scenar-
ios, a company can be grasping at straws for new technology
to solve their problems without actually identifying the real
issues at hand.

Kubernetes – the
solution to all of
our problems?

Viktor Farcic: My understanding
is that you mostly work with Kuber-
netes, which means you're into the
latest and greatest. Is that a concern
for you?

Ádám Sándor: We've never had
experience with this technology failing, so in that sense, it's
not an issue in that it's the latest and greatest. We never advise
customers to jump into something, even though we are surfing
on the edge of new technology and watching out for everything
that's coming our way. Usually, we recommend technologies
that have already proven themselves for at least a year and that
we know will work for the customer.

Viktor Farcic: Does that mean everybody should move
to Kubernetes? What does it involve? I imagine it's not only
creating new Docker images and YAML files. Let's say that
I'm a company that has existed for a long time and I have
everything, how does it look for me?

Ádám Sándor

266

Ádám Sándor: For such a company it will start with a proof
of concept to prove internally whether Kubernetes works for
you. Depending on your short term plans this will either focus
on moving a legacy application to Kubernetes or creating
something new using technologies the company plans to move
towards. Whether a company wants to move some or all of it's
legacy applications to Kubernetes can depend on many factors.
What I would point out is that it's not impossible or even unde-
sirable to do so.

Kubernetes is actually a surprisingly good system for support-
ing legacy applications, for example, with simple things like
being able to inject configuration into a pod using files. You
can very easily simulate a configuration files-based environ-
ment to old-school services that require huge config files, and
so containers are a pretty backward-compatible technology.

Viktor Farcic: Another thing I'm curious about is if your
site has a horribly managed legacy infrastructure with poorly
designed applications, and you want to move them to contain-
ers and the cloud, would you first move them to Kubernetes on
site and then switch to the cloud, or first move into the cloud
without Kubernetes, or both?

"Kubernetes is actually a surprisingly good system
for supporting legacy applications, for example, with
simple things like being able to inject configuration
into a pod using files."

—Ádám Sándor

DevOps Paradox

267

Ádám Sándor: If possible use a cloud provider. They will do
the heavy lifting of managing Kubernetes and other services
you use freeing up your resources to focus on more busi-
ness-centric tasks. But there can be valid reasons not to do
that—heavy investments into a new datacenter, regulations
about data storage, and so on.

Viktor Farcic: Wouldn't that create a defensive politic?
Because if you have an army of engineers in charge of infrastruc-
ture on site, what do we do with them if we move everything?
Will there be space for all of them?

Ádám Sándor: I don't know if there will be space for all of
them, but I've never seen a project where people would have
to be fired because there's simply no need for them anymore.
Yes, with a cloud provider you don't need to run Kubernetes.
But actually, there is plenty of work in setting up development
and deployment tooling, and systems to track what's deployed
where. This is the more business centric work I mentioned -
ditch low value add work for stuff that will bring more direct
value to your business.

Exploring the
motivations
for change

Viktor Farcic: What do you think is
driving all of these requests for improve-
ment? Are they driven by the competition
or by a genuine interest in new
technology?

Ádám Sándor: I think the biggest motivation we see—and
what most companies are missing—is the ability to release
software fast. They realize that they should release new

Ádám Sándor

268

software every half year, but they need to come to this reali-
zation before the competition is already gaining on them and
put the proper processes in place early enough so the produc-
tion pipeline is filled. It's this big pressure in today's market
that ends up making engineers leave because, frankly, it's just
a horrible environment to work in.

There is also an excitement for new technologies because
when companies in the market are looking for engineers, their
HR department feels that new recruits will ask, "OK, what tech-
nologies are you using?" And when they hear that what's being
used isn't the very latest iteration, these new recruits won't be
interested in working for the company. What management still
feels most acutely is that when they have a new idea, by the
time they get it into production, it's already way too late.

Viktor Farcic: I've heard before that one of the motivations
is not management's motivation for improvement, but actually
attracting and keeping talent.

Ádám Sándor: Definitely!

Viktor Farcic: Does this mean that engineers are getting picky?

Ádám Sándor: Engineers are getting picky. If they're any
good at their job, they won't join a company where they will be
manually installing Linux servers.

"What management still feels most acutely is that
when they have a new idea, by the time they get it into
production, it's already way too late."

—Ádám Sándor

DevOps Paradox

269

Viktor Farcic: I'm just thinking that it's kind of contradic-
tory with the politics of externalizing development to a third
party because you can get on one site and then decide to ship
everything to someone else.

Ádám Sándor: I think the "let's ship everything" mindset
exists because the outsourcing trend isn't as strong as it was
before. I'm no expert on this, because I've worked in only
a small part of the market, but I have seen companies insourc-
ing, as well as those who outsource but build up long-term
development teams in cheaper countries. They don't think of
those development teams as disposable labor, but know they
are building them up for long-term use while attempting to
integrate them into the company as first-class employees.

I think that companies and people are realizing that they
need to attract people in order to keep people. Even if you don't
have the challenge of hiring staff in another country, usually in
Eastern Europe or India, there is just so much that needs to be
known about the company, its products, and the current state
of its applications and infrastructure. The process of hiring
is expensive anyway. You want to retain employees for a long
time, and you want to hire good people because people who are
unskilled are even more expensive to train. You can hire someone
on a cheap salary but then spend half a year getting them up to
speed, which is going to cost a lot of money, and even more time.

Viktor Farcic: Is it the economy then that's driving compa-
nies away from outsourcing?

Ádám Sándor

270

Ádám Sándor: I think it's also the new way of development
for the whole DevOps culture: the idea that you build it, you run
it, and that what the team owns is really a product. You marry
the team to the product. The product owner, the designers,
and the business analysts—everybody's a part of the product
team. You want to keep them engaged with that product in
the long-term because they really understand it. Companies
really started valuing this long-term engagement, and that just
doesn't work with outsourcing, or hiring disposable people.

Viktor Farcic: So, what's next? Is there anything coming
next, or will we ride Kubernetes for a while to come?

A future
beyond
Kubernetes

Ádám Sándor: I'm quite surprised that
the next thing is so slow to arrive, and
that's probably because Kubernetes is not
yet that widespread within the industry.
But I do believe the next thing will be
products built on top of Kubernetes, once

Kubernetes becomes more widely used. But until then, Kuber-
netes is kind of at an impasse because it's a higher-level service
than virtual machines and low-level networking.

I believe it's going to be either Kubernetes integrating more
and more stuff, so it morphs into something that's somewhat
different than it is now, or other products that will be built on
top of it. But I don't see any of those products coming along
any time soon. I think Helm is a good example, but that's not
a commercial product.

DevOps Paradox

271

Viktor Farcic: If you want to run Kubernetes on site, would
you recommend that I run it on top of a VM, or bare metal?

Ádám Sándor: I honestly don't have an informed opinion on
that. Theoretically, it's much more efficient to run Kubernetes
on bare metal, but the low-level networking stuff might just be
too hard. Maybe it's best to let solutions like VMware take care
of a lot of the really low-level hardware stuff; in which case,
it's better that they speed up VMs. I don't think Kubernetes is
mature in this environment, but again, I'm no expert.

Viktor Farcic: Do have any experience with or an opinion
about unikernels?

Ádám Sándor: I don't have much experience. All I see is that
they're a great idea. If you just look at it from a high level, they
could totally beat containers because they feature the good
parts of containers while running on hypervisors, which are
basically what public clouds are—giant hypervisors.

But what I also see is that unikernels don't seem to mature
fast enough to attract enough attention. The tooling is simply
not there. Actually, cloud providers don't let you run what-
ever you want on their hypervisors, just their own VM images.
So again, theoretically, it could go there, but practically, it's

"Kubernetes is not yet that widespread within the
industry. But I do believe the next thing will be
products built on top of Kubernetes…until then,
Kubernetes is kind of at an impasse."

—Ádám Sándor

Ádám Sándor

272

not really happening at the moment, and I don't have enough
industry insight to know whether, secretly, Amazon is working
on something or not.

Viktor Farcic: How about other cloud providers? This is
something that I agree with, and correct me if I'm wrong, but
for most of us, it doesn't make sense not to use cloud providers
like AWS or Google because they're commoditized and know
better than we what they do. What does that mean for the
future of all the software and vendors built around capturing
infrastructure and configuration management tools?

Ádám Sándor: I don't think configuration management tools
will become obsolete because of cloud providers. You would
totally provision your AWS infrastructure using Puppet, Chef,
or Ansible.

Viktor Farcic: But should you, or even could you do that?

Ádám Sándor: As it stands, I don't think using Puppet, Chef,
and Ansible makes a difference whether you use it with a cloud
provider or with your on-site infrastructure. It's VMware who
is on the spot with this; they are the competition to the cloud
providers.

The problem with Puppet, Chef, and Ansible is that they don't
really push you towards better infrastructure. They're just a nicer
way of restricting the level of abstraction they provide on the
operating system. That doesn't lead to a better way of deploying
software; it's basically just nicer than writing a script that SSHs
into machines and runs some other script there. But it's not that
much nicer, so you don't get immutable infrastructure.

DevOps Paradox

273

If you launch a thousand machines and want to run the same
Puppet stuff on them, three will fail, and what do you do with
that? You have no way to deal with this stuff, and it will take
a really long time to speed up any machine, so basically, just
these tools by their nature are the wrong thing. If we stay in the
world of virtual machines, then the right solution is pre-baking
images and then managing them.

That's where Docker comes in, because it's a hassle to
install and to pre-bake virtual machines. There is nothing like
a golden image and extending, so Docker comes in and solves
that problem, but instead of doing it with virtual machines,
they're doing it by building container images.

Viktor Farcic: Does that mean that their potential use from
this would be building these images?

Ádám Sándor: It could be. But then, when you are building
an image, nobody needs to use Ansible in a Docker file, even
though they could, but I think nobody feels a great need to
do that. Actually, we go back to scripting, because it's enough.

Viktor Farcic: From my understanding, I like those tools
because no matter the state of my server, it would converge the
image into the desired state.

Ádám Sándor: If I'm building images then I know the initial
state, Vanilla Ubuntu...

Viktor Farcic: Exactly. I'm not sure I see why I wouldn't just
run a shell script. I need apt-get to install this; I don't need
to check whether this is installed because I know it's not.

Ádám Sándor

274

Ádám Sándor: The funny thing is that, actually, these tools
sort of work. Kubernetes does the same thing; it converges
the state to where it should be. In that sense, it's not doing
anything different from Ansible. Kubernetes actually works
so much better because it does it on a whole different level of
abstraction. When you already have pre-built images and you
just need to orchestrate instances of those images, then you
can do the dynamic state management, and you're okay.

Nobody's crying for immutable Kubernetes clusters, but all
the crap that you do inside the operating system, the low-level
things like putting a file here, copying another there, and
setting a flag here, that's the stuff that you do want to pre-bake
and get done with and never touch again, unless you build
another new image.

Viktor Farcic: That means you follow that logic with immuta-
bility and pre-baking images. Does that then mean not always,
but sometimes, actually using ConfigMaps in Kubernetes would
be the wrong thing to do, if the idea is immutability?

Ádám Sándor: Yes, immutability needs to stop somewhere.
Kubernetes itself is a super-dynamic system so, yes, it's abso-
lutely contradicting immutability. But simply put, immutability
makes sense up to a certain degree. I have seen super-configur-
able applications, and if you put those applications in a Docker
container, you'll have 150 environment variables to configure
that image, and that's not really where you want to be with
your infrastructure.

Viktor Farcic: Do we need those things?

DevOps Paradox

275

Ádám Sándor: You really want just to have a few very specific
things that are different between environments. Get them,
configure them, and don't touch the rest unless you are build-
ing something like a database image, which of course needs to
be working in thousands of environments. But then, if that's
the case, you can again lock down some parameters and build
your own image from it that only changes those parameters for
each environment you actually require. Ideally, all your envi-
ronments would be exactly the same, and you should look at
that state and then just drift away a little bit from that, just as
little as possible.

Viktor Farcic: What would be a little? A number of replicas?

Ádám Sándor: Number of replicas, user passwords, what-
ever. Just these very basic things. Certificates, public host-
names, and so on.

Ubuntu and
Red Hat in this
new world

Viktor Farcic: I like discussing the
question of what's becoming obsolete.
That brings me back to operating
systems. Do we need Ubuntu or Red Hat
in this new world?

Ádám Sándor: Simply put, yes, we do. There are currently
two places to use operating systems right now. One is on the
server that is running the containers, and the other is inside
a container. So, on the server that's running the containers, we
already see a shift towards very minimalistic operating systems
where they just do the bare minimum.

Ádám Sándor

276

Viktor Farcic: I'm thinking of platforms like Rancher
and CoreOS.

Ádám Sándor: Exactly. Take CoreOS, for example. It's very
minimal and just launches containers, that's all. It runs Docker,
and that's it, the OS inside the container.

Viktor Farcic: Is that even an OS?

Ádám Sándor: Well, we can call it an OS because it acts like
one. But of course, it steals the kernel from the actual machine
it's running on, while still pretending to be an OS. It's really
an OS in the sense that all the tools are installed, and all the
programs are in the Linux distribution. Do we need all that
stuff? Often, we don't. Yes, they're nice to have for debugging
reasons, and they're nice to have around for more legacy appli-
cations, but the legacy is in the very weakest sense because
installing a JVM on a bare Linux where just the kernel lives is
very difficult.

So, it's probably alright to have a bit of a Linux distribu-
tion around it. Maybe in the future somebody could produce
a very minimal image that really only has what the JVM needs.
That would be nice because it'd be more secure and smaller,
but I really think that one of the main reasons why Docker
has become so popular is that it's so backward-compatible
in the sense that you are inside the image, you're just doing

"[Do we need Ubuntu or Red Hat in this new world?]
Simply put, yes, we do."

—Ádám Sándor

DevOps Paradox

277

Linux stuff. It's very easy to get there, so it provides the good
stuff without sacrificing much. The fact that there are some
programs in there that aren't really used is not such a big issue.

Viktor Farcic: I presume then that, in a way, it will be
a threat to companies like Red Hat, because you just named
Ansible and Red Hat as being less relevant.

Ádám Sándor: Red Hat knows that, and that's why they're
building OpenShift, and then Red Hat Atomic Linux to
run OpenShift.

Red Hat was the smart one who recognized Kubernetes early
on and jumped on board. Now they're at the point where they
can practically get rid of their own Linux distribution because
they have the new things on OpenShift. Meanwhile, Ubuntu
and Zeus are both trying to get on board, and the issue is that
they are nowhere near the level where Red Hat is, and that's
why Red Hat is already at the point where they can buy CoreOS,
their biggest competition in this space.

Viktor Farcic: What do you prefer? Vanilla Kubernetes?
Or do you prefer to layer on top of it?

"Red Hat was the smart one who recognized Kubernetes
early on and jumped on board. Now they're at the
point where they can practically get rid of their own
Linux distribution because they have the new things
on OpenShift."

—Ádám Sándor

Ádám Sándor

278

Ádám Sándor: I do like OpenShift. If somebody is willing to
pay for it, then both the support and security it provides are
worth it. Kubernetes is like Linux. There are countless people
committing to it and a lot going on, so nobody adheres to strict
governance, which is completely fine. But let's say you want to
build an internal cloud for your bank. You want to be sure of
its security, though of course nobody can guarantee it abso-
lutely. The features and security that Red Hat provides with
OpenShift make sense.

Viktor Farcic: If I'm not willing to pay, should I go with
OpenShift Origin or Kubernetes?

Ádám Sándor: I think you have to choose what you value
more. If it's a fast pace with new features and completely open
source, then you are going to want to go with Kubernetes,
versus the slower pace, greater stability, and lack of openness
that you get with OpenShift. OpenShift does, however, feature
extra features like CI/CD pipelines and a nice GUI, which
some might value. But then again, some might not. So that's
your trade-off. OpenShift Origin is open source, of course, but
you're not going to be fixing bugs in it.

Viktor Farcic: What comes to your mind?

Ádám Sándor: Cloud provider comparison.

Viktor Farcic: What do you think about the rest, outside of
the three big guys? Microsoft Azure, for example.

Ádám Sándor: I don't know the rest of the pack very well—
but currently with any cloud provider I would look at the quality

DevOps Paradox

279

of their managed Kubernetes and serverless offerings, because
you will need those to build modern software. But Google Cloud
doesn't seem to be able to capture a large market share even
though their Kubernetes offering is the best out there.

Viktor Farcic: I think a lot of readers will be shocked by
the fact that there is an area in which Google is considered
a small player.

Ádám Sándor: It's weird, but true. Google really messed up
in the public cloud space. A few years ago their strategy totally
broke down. Funnily enough, Amazon's new thing is how they
also tried to skip containers and to define the future, which is
the whole idea of lambdas. It's a super-restricted programming
model but has great scaling and is very cloud-native. Google
actually kind of did the same with App Engine back in the day.
They put all their bets on an attempt to go serverless, but it was
simply too early. They were like, "we're not doing this primitive
stuff where you just spin up virtual machines because network-
ing is just like VMware." They provide a proper programming
model and a special database where you'll be super-tied-into
the cloud, but very cloud-native, very easy from the cloud
providers' perspective to run your application in a cheap way.

It was a great idea, except people said, "I just want to go
to a GUI, click and spin up a VM, and then do the exact same
stuff I've been doing for 20-plus years." It's slowly changing
now Docker containers are popular, because you can still do
the same stuff you were doing before but in an ever-so-slightly
different way.

Ádám Sándor

280

Viktor Farcic: Correct me if I'm wrong, but doesn't Kuber-
netes sit on top of a provider and abstract whatever the provider
is doing? Theoretically, if it's stable, my Kubernetes is going to
do the same things no matter if I'm running on Azure, AWS,
or Google. But isn't that a threat to the business? What will be
a differentiator? What prevents me as a user from going from
one to another?

Ádám Sándor: Price. If Kubernetes becomes that much of
a commodity, then it's just going to be the price. But there's
more to it than that. It's also the services around it. How is
the machine learning stuff? That's where they are really going
to differentiate and try to hook you with things like lambda,
where they can also lock you into their code execution.

Viktor Farcic: But would they really care about additional
services outside Kubernetes?

Ádám Sándor: Of course—there is a lot of stuff Kubernetes
just doesn't do. Databases, machine learning, DNS, and others.
The ecosystem of the cloud provider absolutely matters. So
does the depth of integration of that ecosystem with Kuber-
netes and the quality of the Kubernetes offering itself.

Viktor Farcic: The services offered are what differentiates

"Docker containers are popular because you can still do
the same stuff you were doing before but in an ever-so-
slightly different way."

—Ádám Sándor

DevOps Paradox

281

or will differentiate one provider from another. I assume there
will be no provider that's better at all the services than any
other. One will be better at machine learning, another will be
better at big data, and stuff like that. But does this mean that
the future consists of us running our cluster or clusters spread
across multiple platforms?

Does the future
revolve around
clusters?

Ádám Sándor: For a larger company
that might make sense, but there is
a pretty big cost involved because the
whole management of the cloud itself
varies. For example, there might be
differences in the API or the UI.

If you're on Google Cloud and you're running your applica-
tions on Google Kubernetes Engine, just managing the stuff
that is not inside Kubernetes is not rocket science because the
APIs and everything are pretty nice, but you will have plenty of
code, terraform, or whatever was written that is dealing with
that part. It's not that easy to just import part of your appli-
cation over to Azure or AWS and write some CloudFormation
and deal with the pricing and the whatnot. You have to be
sufficiently big to be able to utilize these kinds of synergies, as
long as you understand that it's not going to be easy to just use
multiple providers.

Viktor Farcic: That's a great point. I know that other contrib-
utors in this book have also raised the issue of vendor lock-in.
But sadly, I know we're out of time now. I just wanted to thank
you for taking the time to talk to me today.

Ádám Sándor

282

Ádám Sándor: No problem at all, I've really enjoyed it.
Thank you.

11

Júlia Biró
Site Reliability
Engineer at Contentful

Introducing Júlia Biró

Júlia is an experienced infrastructure and tooling engineer
with interests in scalable systems, automation, and DevOps.
Her experience at companies including Prezi, Ericsson, and
currently Contentful give her a wealth of knowledge of how
DevOps is integrated into modern IT practices. You can follow
her on Twitter at @nellgwyn21.

Viktor Farcic: I know you've worked in DevOps for most of
your career, Julia, so I was wondering if we could begin with
an overview of your experiences with DevOps and how you got
involved in it?

The
lightbulb
moment

Júlia Biró: I was born and raised in
Hungary and trained as a mathematician.
I wanted to see if I could take my favorite
subject from school and turn it into a career.
That turned out to be not such a smart idea.
I was not cut out to do math as a career, and

I found myself being more interested in the more practical
problems. Because of that, in the end, someone suggested that
I might want to learn programming, and this is how I gravi-
tated towards the IT sector.

Once I was committed, I started training as a software engi-
neer, and eventually, I was lucky enough to join a wonderful
company called Prezi, where I was a very junior engineer placed
on the infrastructure/DevOps team. It was as if a light bulb had
switched on within me. I suddenly found myself knowing that

DevOps Paradox

287

this kind of engineering was what I wanted to do, and from
that moment three and a half years ago, I would say I became
a DevOps engineer.

The dictionary
definition of
DevOps

Viktor Farcic: Now imagine that we're
looking up the word DevOps in the
dictionary. What definition would
we find?

Júlia Biró: In my dictionary, you would
find that DevOps is an idea of the functions and responsibili-
ties of teams running services in a company, and the corre-
sponding set of tools to make that happen. There is this fancy
name for it, the DevOps toolchain, but it's just a buzzword. It's
really whatever anyone wants to understand it as.

Viktor Farcic: Could you expand on what you mean about it
being a buzzword?

Júlia Biró: It's the idea that DevOps is a silver bullet that will
make you successful, and that if you adopt DevOps, then every-
one will be so much happier. But to really adapt to what DevOps
is would be akin to changing three of your internal organs or
becoming an animal. It's a really deep structural change that is
hard to make unless you are starting very small and have this
idea of going towards that ideal from the very beginning. You

"DevOps is an idea of the functions and responsibilities
of teams running services in a company, and the
corresponding set of tools to make that happen."

—Júlia Biró

Júlia Biró

288

also must have the flexibility to do it from the start. So, unless
you have all of that, then it's very hard to achieve, although
there are examples of that happening.

Viktor Farcic: From what I understand, you worked at Erics-
son, which is fairly big, before you worked in Prezi, which is
comparatively relatively small. Did you see a difference?

Júlia Biró: Very much, though I don't consider Ericsson, at
least the parts where I worked, to be DevOps in any sense of
the word, partly because the product that I was working on was
very different. I don't see how DevOps works with products
that have 15-year life cycles and two-year release cycles, which
is the case with software that runs on the kind of infrastruc-
ture Ericsson produces. I'm not saying it's impossible. It's just
I haven't seen it.

What I have seen up close though is that leaders in DevOps
practices seem to have adopted the DevOps mentality from
the point when their company was very small, and as a result,
they grew with determination. But it isn't that they decided to
change a big thing into DevOps.

Viktor Farcic: Your profile says that you enable teams to take
full ownership of their product. What do you mean by that?

"There's this concept in DevOps that the team should
own their service, from writing and testing the code to
running it, and to the point where they should actually
react if something is not functioning well."

—Júlia Biró

DevOps Paradox

289

Júlia Biró: There's this concept in DevOps that the team
should own their service, from writing and testing the code to
running it, and to the point where they should actually react if
something is not functioning well. This is an idea of DevOps
that I think is benefiting companies that are doing that.

The first prerequisite for that is that a service needs to
be ownable, meaning in size and in complexity. It should be
small enough for a reasonable team to own it, which is true
for microservices. Then the idea is that one team should do
everything, not that someone writes some code, and then sepa-
rately someone else tests it, another person deploys and runs
it, while a third team wakes up in the middle of the night when
it breaks. I believe most companies will benefit if they move
towards the full ownership model because then teams can be
more active and creative in developing new things, and at the
end of the day, they will have better quality products because
there is less friction between the teams and a bunch of tools
that can help them make that happen.

Viktor Farcic: I assume that you're not talking about
a 100-person team.

Júlia Biró: To me, a team is a number of people who can
reasonably cooperate in an organic way without someone
telling them what to do. From my experience, I don't see how
100 people can do this together. Again, I'm not saying it is
impossible, but I have no experience with teams this size.

Viktor Farcic: So, in that case, you have relatively small
teams, but with a greatly increased amount of expertise they
need to cover. Because that one small team needs to be capable

Júlia Biró

290

of testing and deploying, along with all kinds of other things.
How do those teams get that knowledge? When I speak with
some teams, all I get from them is that "My people know how
to write Java getters and setters."

Júlia Biró: Maybe you just give the team a piece of paper and
tell them to build a Turing complete machine on that and go
from there. Just joking! There's this idea of a full stack engi-
neer, who can write both frontend code and backend code in
a service client architecture. But the key here is to provide
structured and well-documented tooling that people can actu-
ally use. It's the same way that you learn to use your washing
machine and your coffee maker, or in our case, how you learn
to use your CI, and your deployment tools. You need to make
them easy, well documented, and well maintained.

What the DevOps or infrastructure team does is take away
the complexity and provide DevOps as a service to the company,
and to the other teams who are still doing the owning. The
teams are still in ownership of what gets deployed when it gets
deployed, and where it will be deployed, but they don't need
a lot of access or knowledge to do that.

There are areas where it's easier to do this because the CI
systems are very clickable and the UI is very good. Admittedly,
creating tools with good user interfaces for other tasks take
more effort. You can create a deployment system where you
click a button and it's deployed, then you click another button
and it's revoked. On the other hand, there are tasks where UI is
not enough, and your team will need to acquire new knowledge.
For example, in configuration management, if you want your
teams to handle the environment that their service is running,

DevOps Paradox

291

they'll need to learn some kind of configuration management
tool, which is usually, "Oh my god, I need to understand what
an OS is*," which will definitely require a bit more knowledge
than just writing JavaScript, unless you go serverless with
Lambda (*Since the recording of this interview, the pressure
for teams to understand and manage running environments
have seriously decreased, owing to the spreading of container-
ized platforms and serverless.).

Viktor Farcic: The thing is, when you go serverless with
something like Lambda, there is no turning back.

Júlia Biró: But soon, serverless and Lambda will have their
own complex management tooling. There is always this emerg-
ing layer of hiding complexity and the need to control that by
building very, very complex things from that and then that
itself becomes complex.

Viktor Farcic: Now that you're a site reliability engineer, do
you find that there's a difference between a site reliability engi-
neer and a DevOps engineer?

Site reliability
engineering
versus DevOps

Júlia Biró: In my understanding, site
reliability engineering is a subset of
DevOps engineering, a very specific
subset with very different goals.
A DevOps engineer's job is to make the
other teams effective and to help this

full ownership principle, while a site reliability engineer is
a very simple metric that defines the success of my work, which
is the uptime of the site.

Júlia Biró

292

In my job, I provide the tools for the other teams so that they
can operate their systems in a way that achieves high availa-
bility. My toolkit provides them with good tooling and good
guidelines for testing, monitoring, alerting, easy deployment,
and easy reversion. At the end of the day, I'm making sure
that they themselves can run their services in a reliable way by
owning that knowledge—from how to make good tests all the
way to knowing how to handle incidents in an effective way.

Viktor Farcic: On the one hand, it would be managing tools,
but on the other hand, it would be teaching.

Júlia Biró: That's exactly it! A DevOps engineer's job is to
provide not only tools but also the best practices for teams. For
example, it's within the DevOps realm to provide a good local
development environment or a good testing environment for
the organization.

As a site reliability engineer, I'm not that interested in the
local development environments; that is not my realm. Where
I am now, I haven't even seen our local development environ-
ment, and I've been there for five months now. But it is very
much within my focus what kind of monitoring they should
be doing. Monitoring should automatically be installed for
a service. In fact, I have a constant barrage of questions that
I should be answering, like how do I empower the other teams

"A DevOps engineer's job is to make the other teams
effective and to help this full ownership principle."

—Júlia Biró

DevOps Paradox

293

to create their own monitoring? How can they set up alerts very
easily? How can they create good dashboards? What makes
dashboards good? How is it going to be always available and
providing the right information?

You can only expect teams to run their service responsibly
if they have tools for that, while also having all the know-how
and the concepts around it. It's very much my job to provide
that. To give you an example, I am pushing right now for my
company to adopt a new, more effective process for incident
handling, because if we handle incidents better, then it means
those incidents are going to be shorter, which is going to raise
our availability and generally improve the company's uptime.

Viktor Farcic: Correct me if I'm wrong, but if the develop-
ment teams have the ultimate responsibility for what they're
doing, do they have a say or a choice in the sense of, for
example, making the decision of whether or not to use Kuber-
netes? I mean it doesn't matter really if the team says no, it's
my responsibility, I'm going to use something else. Is that
their choice?

Júlia Biró: There are multiple points of view here. One is
that the homogeneity of the stack and in the tools is usually
beneficial in a company because it enables cross-pollination,
mobility between teams, building and spreading of knowhow
and expertise, and code writing. So, all of these are pointing
towards it being better if we are all speaking the same language.

But on the other hand, with the heterogeneity of tasks we
have, you might find that there is a better tool for the job. In
general, the sense of freedom (and autonomy) is not to be under-

Júlia Biró

294

estimated. The approaches that I saw working well have one or
two standard stacks that are supported. If you choose a different
tool, then it's on you to get to the same level of quality, but if your
team has the time for it, then why not? Right now, at Prezi, there
are two standard stacks. There is tooling, monitoring, testing,
whatever around it, and if you choose to do another stack for
a user-facing service, then you need to build, for example,
inter-service communication, client libraries, and so on.

The other thing that is important is to have a produc-
tion-readiness checklist, with very specific acceptance criteria.
You can help people by giving them an easy, simple choice:
diverging from the standard has an expense. You have the
teams pay for it and not the whole company, and the rest is just
quality and process control in the classic sense of the word. Do
whatever you want, just make sure you meet the criteria, and
your tools are compatible, and then it's okay.

Viktor Farcic: So what would you say if I said that it's as
if you could choose your responsibility, but it's in somebody
else's interest to actually make it tempting and interesting for
you to use, to the point where you don't really want to move
away from it much?

Júlia Biró: It doesn't mean that you are not going to move
away, because if it's very important for your user experience
that you are actually going to provide tooling around the third
stack, then other people will start to use it. It's just that the
main goal you want to achieve is that people can very easily
create a new service and own it, and so you want to spare them
the work that they don't need to do.

DevOps Paradox

295

This is what all the standard stacks and tooling are there
for, but also the know-how for the same tool. You don't want
people to solve the same problem of what is the best way to
test or monitor a service 60 times independently of each other.
What you want to do is give them good solutions and if they
don't work, then they can look for their own solutions or they
can raise the problem with you. But your end goal is to reduce
friction and reuse knowledge wherever you can.

Viktor Farcic: I'm curious to know, where are the women in
DevOps? I don't see them much in the field.

Women in
DevOps…
or the lack
thereof

Júlia Biró: Well, you're talking
to one! That being said, historically speak-
ing since the mid-1980s, the ratio of
women in STEM and tech fields has
dropped. There's this great article
(https://www.npr.org/sections/

money/2014/10/21/357629765/when-women-stopped-

coding) by the National Public Radio about why that's the
case, and I would really recommend it to any of your readers.

But nowadays, we find that there is a rising tendency, partly
owing to the attention of diversity gaps and partly owing to
the will of the industry, for the other half of the population
to try to become engineers too. They realized that the same
ratio of women is going to be good at programming. But here's
the thing: currently, the easiest way to get into tech and code
learning is via the frontend. From my own experience, when
I first tried to program it was just HTML and CSS, which is not
even programming.

Júlia Biró

296

Most of the incentives that are inviting women into tech are
starting in the frontend, where they'll be introduced to fron-
tend or dynamic websites, and languages and frameworks like
HTML+CSS, JavaScript, Python+Django, and Ruby on Rails.
Why those languages? Probably because they're the easiest to
try at home since you can become a very good frontend devel-
oper at your kitchen table. But infrastructure orchestration is
not something you can do without some resources, and some
problems only appear over a certain scale. It's a field that just
needs some time for people to see into.

The veterans in DevOps used to be real system administra-
tors crawling between servers and configuring routers, which
is not what they do anymore. But new people are coming from
other areas of software engineering and IT, and simply put,
most of the women who are present in the field are predom-
inantly at the beginning of their careers, so they are more on
the frontend side, but they are seeping in slowly and stead-
ily. Actually, it's not just me saying that. There's this great
developer survey from Stack Overflow (https://insights.
stackoverflow.com/survey/2017#developer-pro-

file-developer-role-and-gender) which shows this.

"The veterans in DevOps used to be real system
administrators crawling between servers and
configuring routers, which is not what they do
anymore. But new people are coming from other areas
of software engineering and IT."

—Júlia Biró

DevOps Paradox

297

Viktor Farcic: The reason I asked is that I know you're doing
a lot of out-of-office activities with the likes of Rails Girls and
Django Girls.

Júlia Biró: The various events I'm volunteering for are all
aimed at inviting more women into tech. I'm working with
organizations that are very emphatically extending this invi-
tation, it's not about teaching skills to girls and girls only; it's
more about letting the girls or women know that they should
try tech because it's a fun thing to do.

I do this in all kinds of ways, such as participating in Rails
Girls and Django Girls, which are open source workshops
for women. These are one-day workshop events for build-
ing a dynamic web app from scratch attended by people who
usually have zero previous knowledge of programming. The
fun comes into it by the fact that at the end of the day they've
created something that that they can actually show their fami-
lies because it's deployed on the internet on real servers. The
goal of these workshops is to give this feeling of how it works
when you create something with technology. After attending
these workshops, some women I know have actually changed
their careers, and learned Python or Rails, and eventually
became professional developers who now have totally legit
careers in tech.

Another area where I'm working is taking the same concepts
but aiming them at kids. It's said that by age 13, a girl realizes
that math and technology aren't girly things. In fact, this article
(https://www.theguardian.com/society/2017/
sep/20/children-are-straitjacketed-into-gen-

der-roles-in-early-adolescence-says-study) is a

Júlia Biró

298

very important read about how we're straitjacketing gender
roles in the early teenage years. What these programs are
trying to do is get to these girls before that. We're trying to
give them a very good experience with technology by creating
stuff, where they learn that, Wow, this can be for me. If they
happen to enjoy it, great, and if they don't, then no big deal; all
they did was spend a day in a workshop with 15 other people
and visited a cool office.

Viktor Farcic: Have you ever tried anything that aimed to
get girls involved with tech from a high school age so that they
could carry it through to a college degree?

Júlia Biró: Yes! There was a version of the kid's workshop
where we did a 10-week course in Processing (https://
processing.org/) for high school girls. I'm very proud that
some of my former pupils from that course are already training
as engineers.

But it's important to note that it's not just women who are
not getting this invitation to join the tech world. I have also
taught at art universities because I think that programming can
be a creative tool in art, and I wanted to give this tool to artists.
During this period, we were teaching introductory program-
ming courses to artists, and some of them really liked it, and
some of them even tried to use it in their work.

The organization that I'm working with in Hungary is
Skool (skool.org.hu)—a project of the Technology Educa-
tion Foundation—which works with young girls. They have a
program where they are working with kids in children's homes,
which is amazing because they're usually a group of young

DevOps Paradox

299

people who don't get an invitation into tech, but now they are
getting 10-week courses in the children's home.

Viktor Farcic: That's really brilliant.

Júlia Biró: It really is, because diversity does not just have
to be about getting more women in the field. It's also about
having more people from diverse backgrounds, like reaching
out to underprivileged children. Tech can be a social mobil-
ity fast elevator. Within a very small amount of time you can
grow your earning potential a lot. All you need is a laptop and
a connection to the internet, and you can become a wonderful
engineer if you have the talent for it. But some people don't
even have access to those basic tools. Trying to give access to
those entry-level tools is part of the job. But it is also impor-
tant to recognize that being underprivileged has serious nega-
tive impact on the skills necessary for learning, so it is not just
a laptop that is missing.

Viktor Farcic: Moving on, what do you think will happen
next in tech? If you were to predict the future, what are the
bottlenecks of today that need to be solved, and what are the
major obstacles you see us facing today?

"Diversity does not just have to be about getting
more women in the field. It's also about having more
people from diverse backgrounds, like reaching out to
underprivileged children."

—Júlia Biró

Júlia Biró

300

The future of tech
and the challenges
we face

Júlia Biró: This might sound
naive, but complexity is one of the
biggest obstacles that we're going
to face in the near future. Even
when we are using standard
tooling, our infrastructure is made

up of so many different pieces, and we want to do it right. We
want to document it all anyway, so we do it in Terraform. It's
just complexity itself.

My gut feeling is that Terraform is a ticking bomb because
it's hard to make and test modifications on it, and it's just as
equally hard to find your way around it. Basically, Terraform is
a new programming language that has multiple bugs.

You can also experience complexity when you want to make
modifications to a service in a microservices environment. At
Contentful, although we have a local development environ-
ment, I needed to start six surrounding services to run locally
so the servers would start and I could test it. This complexity is
related to what the human mind can hold, which is why I think
this is now a bottleneck.

Scaling used to be a bottleneck 15 years ago, but not
anymore. If you do it well then with reasonable limits and with
infrastructure scaling, it's actually a very, very easy thing now;
it's just the pace in which technologies change that is creating
a bottleneck now. Once you become a certain size, changing
technology is very, very difficult. But this is not a new problem.
People will be stuck on Kubernetes the same way they were
stuck on Java.

DevOps Paradox

301

Viktor Farcic: You mentioned the pace of—I don't know
whether to call it new stuff being developed or innovation—but
the pace has increased. How do you follow that?

Júlia Biró: I actually feel bad about not following it.

Viktor Farcic: But if the pace is increasing, are we going to
become superhumans?

Júlia Biró: I don't know, and that's why I'm saying it's
a bottleneck. As new problems and technologies arise, tech-
nologies themselves become more quickly outdated. But at the
same time the next and better tools are becoming available at
a faster pace. Though this actually has a huge benefit, because
no one has to have more than two years' experience with a
given tool, and so it doesn't really matter whether you're in the
field for two years or 20 years. It means that at the end of the
day it's going to be increasingly easier to access this field.

For example, I don't need to have been a hands-on system
administrator for 10 years to become an effective infrastructure
or site reliability engineer. Unlike me, many of my colleagues,
who have 10 more years' experience than me, half of that as
systems administrators running the internet in the golden
days. It'll probably be a psychological limit to how fast compa-
nies can adopt new technologies, and it will not be faster than
that. But regarding your question about the learning, It's like
everything else. If people put their lives to it and spend eight
hours working and then another eight reading about the next
thing, then they're going to be super good at it.

Júlia Biró

302

Viktor Farcic: Does that mean if a company is able to follow
the trends, then people working there need to have free time
for studying and learning?

Júlia Biró: Of course! I always say that my job is to under-
stand the new thing, and then automate it away. All the prob-
lems that I have ever solved should be automated or at least
documented, so I don't need to figure the answer out again.
Preferably, if I have the time, automated, so no one else has to
think about them again. And of course there is time for things
like conferences because the rest is just programming, which,
of course, is not just programming but also a skill. It's always
going to be another layer of abstraction and another set of
complexity that we will need to handle and get the tools for.

The inevitability
of increasing
complexity

Viktor Farcic: Does that mean
increasing complexity is unavoidable?

Júlia Biró: Exactly, just evolution.

Viktor Farcic: I like that one.

Júlia Biró: Here's the thing. Once you can do something, you
put two of those together, and then by the time you have put
five together, you feel like, "Oh, this is terrible," and you auto-
mate it. Then by the 22nd time you realize that you want that
particular instance to be slightly different and that you want
to put an if there. You basically want to control it with varia-
bles in a full programming language and then, bam! You have
created another layer of complexity.

DevOps Paradox

303

But once you have a programming language with it, there's
nothing that's going to stop you from having 5,000, instead of
50. It's easy to say, "Here I have another layer." After that, all
you need to do is teach everyone about that and put that into
the code, and from there, code review and from there move
onto testing and developing an entire environment for that.

Viktor Farcic: You mentioned the complexity of legacy
applications. Is there a moment when it doesn't make sense
to maintain something anymore? For instance, say you've got
a legacy system written in COBOL or Java. If you want to reduce
complexity at some point in time, you need to start over. But at
the same time, nobody wants to throw away five years' worth
of applications.

Júlia Biró: You could always refactor it into smaller pieces if
you can factor it away, and that seems to be the DevOps idea
right now. Not to throw away the monolith and replace it, but
to actually break it down into smaller pieces. And, of course,
the smaller pieces give complexity, but inside of them, they are
more containable and accessible.

Viktor Farcic: So, we are replacing one complexity with
another.

Júlia Biró: Yes, basically that's what is happening. But the
advantage of this is that replacing it results in a more dividable
and parallelizable complexity. If you have a monolith and you
have 100 people working on it, then all 100 of them need to
have the complexity of that monolith in their heads. If you can
break it down to 10 pieces, then 90 people will have to know

Júlia Biró

304

the complexity of one-tenth, and maybe some dependencies,
and 10 people will need to have the complexity of the DevOps
toolchain or running microservices.

Viktor Farcic: As we begin to wrap up this conversation, is
there anything you would like to talk about that I've not asked
you about yet?

Júlia Biró: In my career, I came from one company where
I really experienced DevOps, infrastructure, and site reliabil-
ity, along with all these new concepts. I then joined Contentful
in May 2018 just after it experienced a big burst of growth, and
it took some time (about a year) for it to adjust to its new size
and for the necessary tools and processes to emerge. In the
year since, it has really caught up.

Thinking
pragmatically

What interests me right now is that
these differences make me think really
pragmatically about what is done, why
it is done, and what it is that I should
import from Prezi and initiate at

Contentful. For example, what are the DevOps ideas that are
obtainable and worth obtaining for my new company? I see
that because, for example, my Contentful stack has younger
and fresher technologies than the stack at Prezi. Yet, on the
other hand, some of the toolings are much more mature, and
the complexity is crushing.

What makes me tick in my daily work is my belief that
Contentful will grow, and I chose to follow it because I want
to be in there while it's growing, and I want to facilitate
that growth.

DevOps Paradox

305

Viktor Farcic: Would you say that it's easier to promote
things when in one situation over another? Is it easier with
a well-established stack or a young company with less?

Júlia Biró: It's quite different. For example, one of the signs
of maturity is that by the time I left Prezi, there was a very
well-defined process of how to promote ideas. A year ago, when
I first started trying to promote ideas at Contentful, I didn't
even know which was the right platform to start on. A year
later, there is definitely a clear process. On the other hand,
because there are only half as many engineers and layers at
Contentful, I really only need to convince two or three people
over lunch, and then something may get started.

I don't have a preference for this or that. With Prezi, I
needed to learn a lot of tools. For example, as a member of the
team who was responsible for the monitoring pipeline, which
itself consisted of six different microservices. And that was just
monitoring, and that was hard. Now at Contentful, I often feel
that we don't have a real structured concept of working out
where we are going.

The worst thing is that I'm constantly thinking we have no
idea how we are doing this really. I say it not like we don't know
what technology to use, but that we don't know how we want to
use that technology. All these things are mushy and undefined,

"One of the signs of maturity is that by the time I left
Prezi, there was a very well-defined process of how to
promote ideas."

—Júlia Biró

Júlia Biró

306

and that gives you a lot of uncertainty, which is hard for me to
deal with because I don't deal with uncertainty very well. So,
for me, this is the challenge. But on the other hand, if I set my
mind to tidy up things, then it's very easy because all I need to
do sometimes is just write down something and try to get the
others to follow or agree on it. Just creating processes is almost
as effective as creating tools, because it can already fix things.

Viktor Farcic: Here's a question. Every company thinks that
they are special and they're doing things in a special way. Yet,
there are some commonly proven things that work better than
others. Our industry is so heterogeneous that actually we still
don't know what works better than others. Or is it the case that
companies are simply uninformed and incapable, or is it some-
thing else altogether?

Júlia Biró: No, I don't think we are so heterogeneous actually.
As I was looking to change jobs, it was very easy for me to find a
company that uses 60 percent of the same tools as my previous
company; the only difference was that they were used in slightly
different ways. The beauty of the microservices architecture is
actually that the diversity is contained inside the microservice
and then, as an engineer, standard problems mean that you can
have standard solutions, and it's an advantage.

There was an idea at Prezi, which I think makes sense, that
you should focus your efforts on the specific problem domain
in which your expertise and your service area lie. You should
try to solve the other problems as easily and in as standard a
way as possible. In Prezi, that meant that we have our very own
special solutions for rendering visualizations and other things,

DevOps Paradox

307

but we don't want to reinvent the wheel when it comes to moni-
toring because we are a visual communications company and
not a monitoring company.

At Contentful, we are making sure that your content is both
easily editable while still being highly available, because this is
our expertise and this is our service, there's a big emphasis on
usability. We are not a monitoring company. We are not going
to invest a lot of effort into monitoring. It's not that we are not
going to do it, it's just that we are not going to write our own
solution in it from scratch because our monitoring problems
are standard and standard tooling should handle it.

Viktor Farcic: So, you should focus on your specialty and
then try to get the rest in through a standard way. But what
confuses me is that it's a bit contradictory because, on the
one hand, we can agree we should have standards, so we don't
waste our time, but on the other hand, if things are changing
on a daily basis, you're never increasing speed, and thus stand-
ards cannot also be long-lasting.

Júlia Biró: Usually every problem domain has a smallish set
of standard solutions that you can choose from, maybe three
to five, that are very well documented and very well supported.
But like you said, the bottleneck always moves. All new solu-
tions are about improving some bottleneck, but they're not
solving the same problem over and over again. They are solving
the next problem.

Viktor Farcic: So, whenever we solve a problem, there is
another one to solve, and so actually the ever-increasing speed
of new processes and tools are a reflection of us raising the bar.

Júlia Biró

308

Júlia Biró: For example, there are currently five big tools in
container scheduling and orchestration. I don't think there's
going to be 50 industry standards in that thing, and the new
technology is not going to be about container orchestration
anymore. It's going to be about something else, something on
top of it.

Viktor Farcic: Like a cake?

Júlia Biró: Always like a cake. For example, once virtual
machines become an easily accessible resource, you can
grow your infrastructure to the point where you need to have
personal negotiations with AWS about how much of the resid-
ual nodes you are using. People will probably have 6 billion
Kubernetes clusters, but then after that, it will just become an
easily scalable resource again, and then the complexity will go
somewhere else.

Viktor Farcic: I agree.

Júlia Biró: I mean, people are still writing UNIX tools, but
that's because we are using UNIX tools that are 30 years old,
on a daily basis. Why? Because they are in every bit of software
that we write, and we are not adopting new standards on that
one because they are the same standard solutions. For servers,
you use NGINX, HAProxy, or Apache server, and they all do
the same stuff and then you know, it's OK, it works, you don't
need to have a sixteenth one.

Viktor Farcic: That's brilliant. I am wondering, though,
what makes you click?

DevOps Paradox

309

The engineering
constant

Júlia Biró: I've had the privilege of
working with some very experienced
engineers, like yourself for example.
I'm also very new at this, but we've
already said that technologies change
a lot and I am very interested in seeing

what is the "engineering constant".
What are the things that will probably come with experi-

ence? They're not really knowledge of specific technologies,
but skills, thinking patterns, and best practices that can be
used overall and don't get outdated. Whether some of those
are something that can be picked up to the benefit of my work
without having to spend five years learning two or three single
technologies in depth. The question from all this is, "What are
the things that I can learn without having to spend 10 years in
tech, and which will not get outdated?"

Viktor Farcic: You can learn Kubernetes in a year.

Júlia Biró: But Kubernetes will get outdated in around three
to five years' time.

Are there
constants
in the tech
industry?

Viktor Farcic: I'm kidding. But is there
such a thing that will never become outdated?
If you move outside of tech, is anything
cultural that is continuously changing our
perception of everything? Are there such
things as constants in the tech industry?

Júlia Biró: There are basic ideas, such as the depiction of
female beauty, which seems to be a very constant thing in the

Júlia Biró

310

past around 3,000 to 5,000 years in art and across the entire
world. Methods for manipulating masses (for making a bigger
part of your population stand on your side) are also mostly
unchanging ever since the history of written politics.

Viktor Farcic: OK, fair enough, you can have that.

Júlia Biró: I do feel that as I talk to engineers around me who
might have experiences from different fields, there are some
approaches that they apply uniformly, regardless of the field or
of the actual problem. Approaches that don't change. Whether
you're doing programming in 1983, 2003, or in 2013, some-
times the questions are the same, but the answers are differ-
ent, and then the solutions are different. I'm interested in that
part, the part that separates engineering from programming.

Viktor Farcic: But isn't that partly a sign of immaturity in
our industry?

Júlia Biró: It's partly a sign of maturity, and I see that all
around me. It's also something I learn mostly from people who
have more experience in the field than me. But I also think that
it is something that can be made conscious and that it's some-
thing that you can steal a bit, so you try to use it even when you
don't have that experience.

Viktor Farcic: It was not long ago that I spoke with an acquaint-
ance of mine, who is an architect, and I was telling him how only
yesterday we were using Java, and today we're using Go, and god
only knows what's tomorrow. He explained to me, "Yeah, because
what I do as an architect has existed for a couple of thousand
years and we've had time to figure it out, and you haven't."

DevOps Paradox

311

Júlia Biró: I mean, the laws of aesthetics are not changing,
but the way in which buildings are built has changed very much
in the last two centuries because of the change of materials.

Viktor Farcic: But you just said, architecture has existed for
two centuries, and we've only been around for 50 years.

Júlia Biró: No, and here's the thing. An ex-colleague of mine
who works in a remote-only company with all senior engineers
told a story: "We're going to dinner. We meet once a year in
person, and we go to this off-site/team-building event, and
we try to architect problems. It's ridiculous the amount of
advancement you can get by asking, 'what is the problem we
are trying to solve?'"

That's like a super simple trick that senior engineers do.
They're not letting themselves be dragged into the small details
or down rabbit holes, but from time to time they take a step
back and try to ask, "Are we getting closer, and could there
be a shorter way?" This all comes with maturity, but if you're
sneaky like me, then you try to use it early. I'm interested in
these things. Basically, is there a fast track to becoming a senior
engineer? This would be my interest. Because I don't have that
much time.

"That's like a super simple trick that senior engineers
do. They're not letting themselves be dragged into
the small details or down rabbit holes, but from time
to time they take a step back and try to ask, 'Are we
getting closer, and could there be a shorter way?'"

—Júlia Biró

Júlia Biró

312

Viktor Farcic: That's a great point of view. Thank you for
sparing some time to talk to me today.

12

Damon
Edwards
Cofounder and Chief
Product Officer of
Rundeck, Inc.

Introducing Damon Edwards

When Damon Edwards founded Rundeck, Inc., he helped
create a platform that transformed thousands of global IT
operations by enabling them to run more efficiently and scale
much faster, all while maintaining security. These are hall-
marks of the DevOps journey. You can follow Damon on Twitter
at @damonedwards.

The journey
to DevOps

Viktor Farcic: I'd like to start with
a quick introduction. Can you tell us a little
about yourself and how you got into
DevOps?

Damon Edwards: Between 2005 and
2007, I was a part of a boutique consulting organization that
focused on what are now called deployment pipelines. Back
then, web-scale services were still a fairly new idea, but we were
experts in configuring and deploying applications at scale.

When the industry started to become more cloud-oriented,
whether it was virtualized in VMware or the nascent AWS
EC2, everything became part of the software stack. We found
that this actually suited us as we mostly came from an opera-
tions-heavy background. Between 2007 and 2009, it became
obvious that scale was no longer the issue; the technical aspect
of deployment was becoming a solved problem.

The challenge, as we were being told by our customers, was
they wanted to be able to get things done more quickly, moving
at a pace where they can learn and outpace their competitors.

DevOps Paradox

317

This led us to become accidental Lean consultants, with clients
saying, "This automation works great, but we've noticed that
we're not as fast as those other people who have the same auto-
mation. Why aren't we getting any better while they are?"

That's what got us into the whole Lean movement. We were
looking back, past Agile, at things like the Toyota Produc-
tion System, Deming, Goldratt, and more, decoding why one
organization gets stuff done, goes faster, and produces things
of higher quality when other organizations can't. We were self-
taught and learned a lot through the trial-and-error method
as there wasn't much of a body of knowledge around applying
these techniques across the full development and operations
life cycle.

Viktor Farcic: From the timeline that you're talking about,
it seems that was right at the same time the DevOps movement
took off. You must have been at ground zero when this whole
concept first kicked off.

Damon Edwards: I was, along with people like Patrick Debois,
John Willis, Andrew Shafer, and John Allspaw, right as Patrick
lit the DevOps spark by organizing the first DevOps Days. In
fact, I was the one that sent the email to get Gene Kim, known
then primarily as the author of Visible Ops, to come to the first
DevOps Days, a conference he had never heard of before.

"We were especially interested in DevOps in the
enterprise because that is where DevOps problems—the
ones that are really sticky and problematic—really live."

—Damon Edwards

Damon Edwards

318

What my colleague Alex Honor and I brought to the conver-
sation was an enterprise-centric, operations-first perspective.
A lot of people were interested in extending Agile all the way
through deployment, but instead, we were more interested in
operations reaching back toward development. We were espe-
cially interested in DevOps in the enterprise because that is
where DevOps problems—the ones that are really sticky and
problematic—really live.

If you're a small organization or even a high-scale, single-
purpose-built web organization, your DevOps problems all
have simple answers. Yes, it takes effort and thoughtfulness,
but the path forward is clear. All you need to do is get everyone
into the same room, tell them to stop doing it the old way, and
instead do it the new way, and your problems will generally go
away with straightforward effort.

Now, try that in a large, complex enterprise where you have
multiple business lines usually gathered—some by acquisition
and some by organic growth—over decades. You have one of
everything of every kind of technology, in addition to having a
huge spread of people, skills, mindsets, and processes, and it's
this large, distributed organization with thousands of people
across dozens of political structures all over the globe where
it's difficult to implement system changes. That's a whole
different animal that's very hard to deal with; those are the big
nasty DevOps problems.

Viktor Farcic: You're now based at Rundeck. Can you talk a
bit about your work there?

DevOps Paradox

319

Rundeck,
Inc. and
DevOps

Damon Edwards: Rundeck was born as
an open source project in 2010. It filled a gap
in the automation toolchain and had what we
thought was a modest and helpful commu-
nity, so we kept it going. Around 2014, we
discovered there was something special

going on. The first indicator was that we had all of these large,
household-name companies calling us for help with Rundeck,
and not our consulting services. They would say, "We know
that you're consultants, and maybe we'll get to that later, but
we're using Rundeck, and we need help here and there."

Eventually, we figured out that Rundeck was being used by
companies to fix the operations end of their DevOps problems.
After enough people told us that Rundeck changed their lives,
Alex Honor, Greg Schuler, and myself, the three founders of
Rundeck Inc, decided to shut down the consulting company
and focus on Rundeck. The deciding factor was that we could
help a lot more people at scale with a product company than we
ever could as consultants.

Viktor Farcic: I have a very rudimentary understanding
about Rundeck. Correct me if I'm wrong, but from my under-
standing, it's kind of like a task executor.

Damon Edwards: Technically, that's correct but it's not
the exciting use case. Self-service operations are the big value
of Rundeck. Operations teams will use Rundeck within their
team to create standard operating procedures out of all of the
various scripts, tools, commands, and APIs they already have.
That delivers a lot of efficiency gains within a team, but things

Damon Edwards

320

really get interesting when they use the access control feature
to give people outside of operations access to those procedures,
because that's when they can really rethink how their organi-
zation works.

Viktor Farcic: So, teams use it, but self-service is the main
goal?

Damon Edwards: Yes, but teams see a lot of benefits from
standardizing how they work. The standardization encourages
ongoing improvement and experimentation; this is a known
Lean technique. Instead of me having a bunch of scripts, you
having a bunch of scripts, and someone else having a bunch
of scripts, let's put them all into Rundeck. Let's collaborate
and say, "Hey, let's just come up with a good way to do these
things." So, plug in whatever you have now—scripts, tools,
commands, APIs—and Rundeck provides the workflow, noti-
fications, error-handling, user input management, the UI, the
API, the logging, and much more.

Rundeck's access control features are really what got people
excited because now they're saying, "Well, hey, let's enable
teams to do operations activities that traditionally don't do
operations activities." A simple example is the classic DevOps
idea of letting developers do restarts in production environ-
ments. It's a pretty shocking concept in most enterprises. How
are you going to do that? You can't give them logins to produc-
tion environments and say, "Here are your SSH keys, sudo
access, and some scripts... good luck!" because that doesn't
cut it in the enterprise. It's a complicated enough problem and
involves so many groups that most people give up.

DevOps Paradox

321

But now, with Rundeck, developers can just say, "Well,
let's use Rundeck. Plug in the restart script, run the health
checks to make sure it worked, and run the commands to quit
the monitoring and manipulate the load balancers. Then, put
some extra guardrails around it like constraining user input
options, notifications, and error handling." Then they would
use Rundeck's access control to safely give the development
team the ability to do restarts in production. Likewise, you
could just give them the permissions to watch the trusted SRE
do restarts in production. Either way, they have better control
and visibility, which enables them to distribute the ability to
perform operations tasks throughout the broader organization.

This self-service capability unlocks all these DevOps organi-
zational changes that you see being driven in forward-thinking
enterprises. They want to decouple and push control closer to
these delivery teams so they can move faster, and operations
just stay out of their way.

Viktor Farcic: It's like centralized management with a strong
focus on the empowerment of the rest of the organization.

Damon Edwards: That's an interesting way to put it. We
recognize that the expertise and capability of operations are
not going anywhere, but the idea that there is a central opera-
tions organization that does all of the "operations work" can't
keep up with today's demands. You need a mechanism where
control is distributed, but there are operations experts who
maintain oversight.

That's something that shows up in the Rundeck design
philosophy as well. We don't want to be another thing that

Damon Edwards

322

moves the bits around because you've already got plenty of
things out there that do that well, whether it's Chef, Puppet,
Ansible, or container orchestrators. We let people use what
they want to use and then create the logical procedures out of
it that need to span all of those different tools. I think we have
all lived under this delusion that one automation tool is going
to rule them all, but what we did was embrace the idea that
heterogeneity is the preferred reality. Let people do what they
need to do to get their job done and focus on helping them to
coordinate that work and make it safe.

Viktor Farcic: What are your thoughts on the commerciali-
zation of DevOps and the wider idea of DevOps tools?

The
commercialization
of DevOps

Damon Edwards: It is definitely
an interesting topic, because people
love to throw their hope into tools.
First, it was Puppet. Then, it was Chef.
More recently, it was Ansible, but
now it's cloud-native and serverless.

Each new automation tool is going to take over the world, but then
the special project team working on it moves on and it becomes
legacy. Now we have one of everything. Meanwhile, someone is
saying that if they can bring in another new tool, then that will
solve all their problems. It's a cycle that has always been there.

"Let people do what they need to do to get their job done
and focus on helping them to coordinate that work and
make it safe."

—Damon Edwards

DevOps Paradox

323

Nowadays, there are a lot of companies with DevOps initi-
atives, and their people are following the pattern that they've
always followed and are looking for a DevOps tool to help
them. I don't blame the vendors for offering their tools up as
DevOps tools, because most of them are perfectly fine tools
that solve specific problems. But don't be surprised when your
DevOps problems don't go away, and you have yet another tool
to support.

If anything, there's a Lean lesson in this; you're going to need
to let teams make the choices for the tools that they feel like
they need to use. They need to worry about how they integrate,
worry about the toolchain architecture, or worry about how
you let others plug their tools into other people's tools. This
has been a major design point for Rundeck since we first recog-
nized the heterogeneous nature of the enterprise as something
to be embraced.

Premature optimization or tool standardization is actually
bad for the organization. If you're forcing a team to do some-
thing they don't want to do, and they have a good reason for
not wanting to do it, then you're just putting an unnecessary
burden or friction on top of that team. Heterogeneity is not
only a fact of life; we think it's actually a feature. Let the teams
do what they need to do in order to be successful, and just

"If anything, there's a Lean lesson in this; you're going
to need to let teams make the choices for the tools that
they feel like they need to use."

—Damon Edwards

Damon Edwards

324

worry about how they integrate it with the rest of the organi-
zation, making sure the right security and compliance controls
are in place.

Viktor Farcic: I completely agree. From my own experience,
I'm still having trouble finding a big enterprise that is actu-
ally bent that way. I've always had the impression that that's
what it's like with DevOps. Everybody talks about DevOps, and
every single company in the world has a DevOps initiative—yet
nobody's doing it.

Damon Edwards: Changing how you work is very difficult
in itself. For those who are owning the change, it can feel risky
and scary. That's not just from an organization point of view;
I'm talking from the personal perspective as well.

Here's an example. You tell people, "Okay, we are going
to distribute operational capabilities to delivery teams, so
we should make these delivery teams cross-functional. That
means we take the headcount out of operations and convert it
into more of an SRE skillset. We'll leave some SREs taking care
of both the platforms and the specialties that we can't distrib-
ute for practical reasons in central teams." That's the idea of
cross-functional teams, and it sounds logical, but what are you
doing on a human and political level? You're taking away head-
count from one group and giving it to another.

A secret that few will admit in large enterprises is that it's
really difficult to know what anybody else is doing. Execu-
tives in large organizations need indirect measures to identify
performance at different levels of management. Say you're at
the director level of a theoretical company—you're four to five

DevOps Paradox

325

levels down from the C level, and you're three to four levels up
from the people with their hands on the keyboards, and the
senior executives want to know if you are any good: "Is Viktor
any good? Is he going places or has his career topped out?"

Viktor Farcic: It's great that we're getting into the day-to-
day discussion of DevOps, but one thing I would love to know
is how it would work in this theoretical company.

Damon Edwards: By traditional corporate measures, they
might say, "Oh, Viktor seems pretty good. He keeps getting
more headcount and more budget. Viktor must be doing some-
thing right; we should keep an eye on that Victor, he's going
places."

You're a rational human being. You care about your career
and your family depends on your career. What's the last thing
you're going to want to do? Give up a budget or people! You've
been conditioned throughout your career to know these are
signals that you're either a weak or bad manager. Suddenly,
you are a lot warier of an idea to move people out from under
you and into other teams. Organizational change is difficult
because people have personal and political motivations that
often don't align with those of the organization, which is what
I find to be the number-one problem.

Viktor Farcic: Then, what's the second problem?

Damon Edwards: The second problem is that much of the
rewards in corporate culture are designed around delivery. For
instance, you landed a huge sale, or you cemented a key part-
nership—here's your bonus. You delivered a major IT project,

Damon Edwards

326

took us to the cloud, or you delivered the new Foo service we
promised Wall Street, so here's your raise. News of delivery
makes it all the way to the boardroom, and so delivery on busi-
ness-oriented projects is another way to get yourself on that
up-and-comer list.

So, now imagine that you're a development leader incen-
tivized to deliver. You want that glory and the spoils, right?
The last thing you want to do is anything that's not deliver-
ing! Taking on a bunch of SREs and a shared responsibility
for production services means that you're being judged on and
committing resources to something other than delivery.

The right thing for the company to do is to stick with the
stuff you've built, keep it running, and evolve it to meet the
customer's future needs. But, personally, you're compelled to
say, "Forget it, it's done, let someone else worry about that and
get me on to a whole new project," because then you'll be Viktor
who delivered customer value X last year and then delivered
customer value Y this year, which is a fast track to promotion.

The reality of all of this is that it's very hard to change how
people work, which means it's very hard to change large enter-
prises. You'll have a much easier time if you can just bring in
that DevOps thing by just painting some existing boxes on the
organization chart with some DevOps freshness.

"The reality of all of this is that it's very hard to change
how people work, which means it's very hard to change
large enterprises."

—Damon Edwards

DevOps Paradox

327

This is how DevOps has been pigeonholed as a new name
for release and systems engineering in so many enterprises.
They're not actually doing what makes the DevOps high
performers very successful, which is changing how they funda-
mentally operate. There are a lot of vendors out there who will
gladly reinforce this behavior. Why complicate the sale? Just
let them do a "DevOps" paint job and declare victory. At the
end of the day, this really isn't a technology organizational
culture problem; this is a business culture problem.

Netflix works the way it does because of the technology
organization; that's how they run their entire business. Amazon
works the way it does because that's how Amazon runs their
entire business. The same is true of Google. Unless your busi-
ness wants to change how it operates and what it incentivizes,
don't expect the technology organization to act much differ-
ently. We can still make a lot of improvements within the walls
of the technology organization; just don't expect the business
head to be wagged by the technology tail. They still have to
figure it out on their own.

Viktor Farcic: At least from what I've seen, the business side
that makes the decision is still used to making that same deci-
sion for software development as they are for making any other
decision.

Damon Edwards: A valid point, because they just see the
world from what they do and they're working to their incen-
tives. Because of that, they'll be running things according to
their current beliefs. Too many times, you'll see a technology
organization telling the business how they should be run and

Damon Edwards

328

that they need to do things in what is described as the right way,
and when the business doesn't do it, there are generally some
grumblings about "idiots." Well, the thing is that the business
sees it their way too. They know what they need, and they think
their way is the rational way to do it, and if the technology side
disagrees, then they are being whiney or just don't get it.

Of course, conflict ensues. Everyone thinks they're the
rational ones and that what they're doing is best for the
company, which is something that we really have to keep in
mind. Very few people anywhere in the world show up to their
job saying, "How can I screw things up and what stupid thing
can I do today?"

Viktor Farcic: But in big companies, are people really trying
to do the best for their company? I say this because, the way I
see it, big companies are actually a collection of smaller compa-
nies, whether you call them silos, departments, companies—
whatever you want. Do you have the impression that actually
doing right for your department is not necessarily right for
your company?

Damon Edwards: Most people think they're doing the right
thing, but I think you bring up a good point. Perspective and
context really matter from a business viewpoint. You can look
at a big company as more of a portfolio of companies, because
the parts can often live somewhat in business isolation, and
that isolation encourages siloed behavior. In that situation,
you wind up with people who only see a small piece of the
larger puzzle, and with that limited view, they do their best
for that piece of the puzzle, but not their best for the overall

DevOps Paradox

329

business. To the people in the other pieces of the puzzle, they
might think those others aren't acting in the best interest of the
company, but those people only have their own limited view.
This same silo problem repeats itself all the way down to the
classic development and operations divide we see today.

Viktor Farcic: That's very true, because if you go even
deeper, everybody has their own objectives. What is the objec-
tive of operations? Never to go down. How do you never go
down? Well, by never deploying a new release. I mean, devel-
opers want to release every second because they don't care if
we go down.

Damon Edwards: Exactly. It's easy to think about the thing
you are being paid to do and not strive to see the end-to-end
system; or equally, it's easy to be accidentally disincentivized
to not act in the best interests of the end-to-end system.

The most striking way to illustrate this is to ask how the
customer sees your organization. They see a point of trans-
action and perhaps a horizontal line of everything that has
to happen to make that transaction happen. They don't care
about your functional silos or who does what. Does it satisfy
them? Is it giving them the functionality that they wanted at
the right price? Are the right features at the right price at the
right time for them? That's what they care about; it's a very
horizontal view.

But how do we think about work internally? We think about
it by job function and whatever is printed on our business
cards, which is usually a vertical, functionally aligned view.
It's generally human nature to group like with like. Let's put

Damon Edwards

330

developers with developers, operators with operators, testers
with testers, and security with security. Then from there, let's
manage those people for their own efficiency inside those
groups. What happens is that as soon as you do that, people
lose sight of what the customer cares about, which is the
end-to-end capability. That's what happens when people opti-
mize, not realizing that they are doing a localized optimization
and actually deoptimizing the whole end-to-end system. The
problems just fall from there.

Perceptions of
quality and its
impact on work

Viktor Farcic: Do you think, then,
that those people get incentivized based
on the customer's perception of quality?

Damon Edwards: Ideally. But do
they know what that is? Do they know

how their work actually fits in the whole system, and how that
impacts this quality? Let's use an example of a siloed fire-
wall team.

This firewall team might just offer the best firewall rule
changes in the Western Hemisphere. Their job is to make sure
they make only the best and safest rule changes. They do this
by offering limited change windows. If you give them your fire-
wall rule change by Tuesday at 2:00 p.m., then by Thursday at
4:00 p.m., your change will be complete.

Now, imagine I'm a developer and I need a change. I may
well be thinking that while I'm not a firewall expert, I'm going
to try to figure out what to write on this support ticket. I submit
the ticket on Monday, but then it gets kicked back to me on
Wednesday because of some problem with my request. I do

DevOps Paradox

331

a few go-arounds with a network admin to figure out how to
request what I want, but then it turns out that I've missed the
window and have to wait until next Thursday.

The support team won't do it sooner as it isn't a produc-
tion service yet, so now I have to wait until the change takes
place. The problem there is that you've now got everybody
waiting on this firewall rule change because they're working in
this disconnected, isolated manner. The optimization for the
firewall change rules was made from the firewall team's siloed
perspective, not the perspective of the end-to-end system.

Viktor Farcic: Definitely. It's like that quote: if you want to
really understand a society, you need to understand its prison
system. To me, this translates to the ticketing systems you just
mentioned. If you want to see how Agile or Lean a company is,
just go to their ticketing system.

Damon Edwards: Ha! I've never likened the ticket systems
to a prison, but I can see where you are going with that. The
destructive tendencies of silos and ticket queues really play an
important part in the Rundeck view of the world.

We noticed back in our consulting days that ticket queues
accelerate silo effects, where people lose shared context, start
to focus inward, and optimize for their siloed view. In the end,
the company suffers, even though everybody looks really busy
and their individual areas are highly efficient.

Viktor Farcic: All of those request queues just add all kinds
of economic cost to the company because you're injecting
delays; you're adding breaks in context.

Damon Edwards

332

Damon Edwards: Exactly. We know from other fields that
work queues cause delays, quality problems, increased over-
head, demoralization, decreased learning, and greater risks.
For some reason, IT operations ignore this and act as if tick-
et-driven request queues are expensive or cause destructive
behaviors.

Viktor Farcic: Yet the ticket system has become the way that
we run our lives, especially in operations.

Damon Edwards: Exactly. I mean, the ticket system was
originally called the trouble ticket, because it was supposed to
be for when something went wrong. It was there to handle the
exceptions. But along the way, it has become the way that we
govern work and grant permission for operations to do their
work.

What we've ended up doing is taking organizations who
want to be high-velocity learning organizations and drop-
ping ticket-driven request queues all across that value stream.
We're taking the queues that are at the epicenter of our exist-
ing bottlenecks, delays, bad hand-offs, and knowledge loss and
we're spreading them everywhere. It feels like a real industry
blind spot.

A big theme of ours has always been that you've got to design
your organization and the underlying work in a way that limits
the number of handoffs. You must get rid of the need to hand off
work to other teams as much as possible, and doing that often
means driving more toward cross-functional teams. However,
the cross-functional team idea has its limits, and there are situ-
ations where you just can't get rid of those handoffs.

DevOps Paradox

333

This is especially true in operations. We're not going to be
able to have enough of those people from that great firewall
rule-changing team to put one on every team, we're not going
to have enough security people, and we're not going to have
enough systems engineers, database administrators (DBAs),
or storage experts. If that's the case, then we're going to have
to take what they do and turn them into pull-based, self-ser-
vice interfaces. This means that other teams, when they need
those operational activities, will have a self-service interface,
whether it be a GUI, API, or command line, to do what they
need to do, get fast feedback from the system, and move on.

Viktor Farcic: You mean, for example, getting a virtual
machine when you need one?

Damon Edwards: Yes, that would be a low-level example.
I shouldn't need to open a ticket for somebody to go do it for
me, because I have an API or a web button and I can get what
I want, and it builds from there. How do you let environment
teams do schema updates without a DBA ticket? How do you
let developers do their own restarts or health checks in produc-
tion? How do you let business analysts run their own catalog
update procedures?

The key idea is that self-service operations can't only be the
ability to push the button to run something. The people who
would want to push the button are going to need the ability to
define their own buttons, just like in Amazon EC2 where you
can define your own Amazon Machine Images. EC2 would've
been useless if they told you the five types of instances that you
can spin up and that was it. Let people define their own proce-

Damon Edwards

334

dures, and they can still have security and operations do code
reviews on those buttons.

In the EC2 example, they make it useful because they give
you the framework and guardrails that allow you to take charge
and be useful. The self-service model is not just the ability to
push the button, but is also the ability of those teams to define
the button; it's a strong design pattern.

The best
definition
of DevOps

Viktor Farcic: This question is going to
sound silly, but I like it because everybody
gives me a different answer. We've already
mentioned it countless times throughout our
discussion, but what is DevOps?

Damon Edwards: The best definition that I've heard is from
Adam Jacob. He says that DevOps is a cultural and professional
movement, focused on how we build and operate high-velocity
organizations, born from the experience of its practitioners.

I think that's as good as any description because I think it
captures the essence of the DevOps movement. DevOps really
is an umbrella over a bunch of evolving problems and solu-
tions, all based on the idea of creating higher-velocity and
higher-quality organizations. Trying to make it a more detailed

"DevOps is a cultural and professional movement,
focused on how we build and operate high-velocity
organizations, born from the experience of its
practitioners."

—Adam Jacob (quoted by Damon Edwards)

DevOps Paradox

335

description than that loses the point because DevOps is a move-
ment, not a static thing.

I think people who try to make it more specific than that are
inventing something that was never really there. That's fine,
they can try to do that, and perhaps they'll bring something new
to the movement, and everyone will benefit. But they shouldn't
complain if the movement ignores them. I think it was Charity
Majors who I first heard describe DevOps as an open source
movement; the community goes where the community goes.

Viktor Farcic: That's a great definition.

Damon Edwards: It works for a lot of people and keeps them
focused on what matters: improving how technology organiza-
tions work and the lives of the people inside those organiza-
tions. Definition battles in DevOps are useless.

Viktor Farcic: What do you think about the commercializa-
tion of DevOps? When I go to conferences, there's no software
anymore that doesn't have a DevOps sticker attached to it.

Damon Edwards: I have mixed feelings about it, because
at first, I was more of a purist and declared that it just doesn't
make sense to label everything as DevOps. It's like saying a
person is Agile or that a robot was going to make a factory
Lean. But over time, I've softened my stance—partially because
I've realized that the market eventually decides that those tools
are just slapping the DevOps label on the box, only to get found
out. I've also realized that it at least signifies at the macro level
that the industry needs to change how it works because if even
the tools vendors are talking about it, then a lot more execu-

Damon Edwards

336

tives will listen.

Viktor Farcic: Aren't most of these vendors making the claim
that DevOps is all about deployment?

Damon Edwards: A lot of vendors are pushing that narra-
tive because that is what they sell. It's not all of them, but
there are many that do. That's probably the one negative of the
tools-vendors jumping into DevOps; it plays into the urge for
enterprises to just apply a fresh coat of DevOps paint to their
old processes. If DevOps is just deployment, then we can just
make it an engineering project and not worry about dealing
with those messy things called people.

This also plays into how large companies like to solve prob-
lems. The higher you get in the food chain, especially in large
companies, the more transactional management becomes.
They'll say, "Tell me the problem. Tell me what check I need
to sign and tell me what I get out of it. I'll weigh that against
the other checks and sign the ones I think are the right ones."
Tools fit into that model well, and the vendors know that. To
be fair, I'm a software vendor, and I know that. However, we
think that the tools-vendors who last are the ones who actually
solve problems and are clear about what problems they can
and can't solve. "Buy my tool, and I'll solve your DevOps prob-

"If DevOps is just deployment, then we can just make
it an engineering project and not worry about dealing
with those messy things called people."

—Damon Edwards

DevOps Paradox

337

lems" isn't possible unless you frame DevOps into very narrow
and largely unhelpful terms. We didn't all get dressed up to
just move some software bits around faster.

Viktor Farcic: To me, that sounds like the reverse of Scrum.
People jumped into the Scrum way thinking that changing
people's human processes will solve the problem, and now we
have the reverse of that: buy this tool, and it's going to solve
your human problem.

Damon Edwards: That's a really interesting way to look
at it. I think the parallels go even deeper. How many compa-
nies "went Scrum" without really changing how they worked?
They bought the tools, did some minor training, and then just
Scrum-washed their existing Waterfall processes and mindset.
Those who did that eventually joined the "Scrum didn't work;
it must not be working" backlash. We are going to undoubt-
edly see the same thing with DevOps, with SRE, and any other
movements that come along. It's just how it is.

Viktor Farcic: That's kind of normal, but perhaps your
expectations are too high. Let's say you accomplish 15 percent
of something. That's still 15 percent of something.

Damon Edwards: That's a fair point. We can lose sight of the
net positive. At least people are recognizing that they have prob-
lems and they're trying something. My concern is when they use
those efforts to declare a premature victory. Actually, nothing
has changed, that or they use it as fake proof that it didn't work.

Viktor Farcic: There are always people like that, which
reminds me that a long time ago when one of the QA managers

Damon Edwards

338

came to me, and I was pushing for automation, they said, "I've
found the test case that is not automatable. This is all kind of
worthless." But to me I'm like, "You've found one, so what?"

Damon Edwards: Humans are tricky, and changing how
humans work is downright hard.

The
industry
today

Viktor Farcic: I heard a theory that a big
part of our problem in the industry is that we
are carried today by people not appreciating
operations. Kind of like, with Agile, suddenly
we now have rockstars. The industry is
saying, "It's a rockstar developer, that's a

rockstar tester, that's a rockstar product owner," but nobody
ever mentions operators in any context of a positive prize.

Damon Edwards: There might be something to that. I'm not
sure if it's that certain people get rockstar status, but I'm more
concerned with the mistreatment of so many IT workers than I
am with the cushy lives of a few.

You can go to the far-flung corporate technology centers
all over the world, really, and there are a lot of people in this
business only because it pays better than selling insurance. I
mean, that's it. They just want to get through their day, provide
for their families, and get to their kids' sporting events on the

"I'm more concerned with the mistreatment of so many
IT workers than I am with the cushy lives of a few."

—Damon Edwards

DevOps Paradox

339

weekends, and here they are in organizations that are highly
dysfunctional doing what is often demoralizing, repetitive
work. They're burning out left and right because of all the pres-
sure and the conflict that's hoisted upon them.

That's a lot of human potential that could be put to better
use. If we can tap into better ways of working, then that will
be good for the individual and great for the company's bottom
line. This is why I am so bullish on topics like Lean, DevOps,
and SRE; the focus is on how people work and how to make it
better.

Viktor Farcic: I think this is a great place to leave our conver-
sation.

Damon Edwards: We've certainly covered a lot of ground.
I've really enjoyed this.

Viktor Farcic: Me too. Cheers, thanks.

13

Kohsuke
Kawaguchi
Creator of the Jenkins
software project

Introducing Kohsuke Kawaguchi

A respected developer and popular speaker, Kohsuke Kawagu-
chi is perhaps best known for creating Jenkins, a CI platform
that has become a widely adopted and successful communi-
ty-driven open source project. Kohsuke's principles behind
the Jenkins community—extensibility, inclusiveness, and
low barriers to participation—are many of the driving factors
in DevOps. You can follow him on Twitter at @kohsukekawa.

Viktor Farcic: Before we delve into our conversation about
DevOps, could you tell us a little about yourself?

Kohsuke Kawaguchi: I'm probably best known as the
creator of the Jenkins project, which started at the CI server,
and is now more broadly used in the general computational
industry and automation. Currently, I'm the CTO of Cloud-
Bees, a company that's involved in a number of things, among
which is productizing Jenkins, and helping companies through
their digital transformation.

What is
DevOps?

Viktor Farcic: So then, a simple question
for you: what is DevOps?

Kohsuke Kawaguchi: If I'm totally
honest, I feel like DevOps is a bit of an over-
used word today. In fact, even I sometimes

wonder what people really mean by it. What DevOps is truly
depends on several factors. I personally associate DevOps with

DevOps Paradox

345

this growing trend of, over the last few decades, more automa-
tion and shorter and shorter feedback cycles.

In the last five years, this automation feedback cycle has
become all-encompassing in everything from writing code to
managing Quality Assurance (QA) in order to push it out to
production and run it. I think people generally default to prac-
tices like that and then call it DevOps. When I talk to these
people working in the larger enterprises, I think they immedi-
ately see DevOps as erasing the organizational boundaries that
are in place, which I think is obviously an important problem
for them. I know some people like to emphasize that point and
make it more of an organizational thing.

The DevOps
toolkit and its
organizational
impact

Viktor Farcic: Moving on to the DevOps
toolkit, what tools do you see as empow-
ering workers? Do you think that some
tools fit better than others into whatever
definition of DevOps people have?

Kohsuke Kawaguchi: In the context of broader automation
that goes across a number of different things and this ever-ex-
panding need for automation with human control, the tool
is obviously the primary means of enabling automation. I know
a lot of Jenkins users see the world that way.

Software developers like myself enjoy inventing tools.
That's what we do. So, given that world view, it's only natural
that we come up with our own tools to bridge those gaps and

"I feel like DevOps is a bit of an overused word."

—Kohsuke Kawaguchi

Kohsuke Kawaguchi

346

expand automation even more, because without automation,
you can't create shorter feedback cycles, which is a critical
part of DevOps. For me, this is the interesting part. It feels
closer to what we can solve, as opposed to the organizational
structure problem in enterprises, which is not only dictated
by those technical concerns, but lots of other factors. For
example, there's a good compliance reason why development
and operations are separate; it's because it's seen, historically,
as a well-maintained compliance necessity. Fundamentally,
it's not a technology fight.

Viktor Farcic: You're the creator of Jenkins, one of the most
popular open source tools out there, and you're also the CTO of a
company that, as you said yourself, works with enterprise compa-
nies. Do you think that there is a significant difference between
how the tools and processes operate on smaller greenfield open
source-type companies versus those found in enterprises?

Kohsuke Kawaguchi: The kinds of problems and chal-
lenges that the enterprise people need to deal with are just in
a different layer from the smaller guys. For the smaller folks,
time is money. As I said before, these smaller operations often
don't have too many people on staff to begin with, so they have
a lot more flexibility in choosing how they work.

"There's a good compliance reason why development
and operations are separate; it's because it's seen,
historically, as a well-maintained compliance
necessity. Fundamentally, it's not a technology fight."

—Kohsuke Kawaguchi

DevOps Paradox

347

Compliance is usually not as real; it doesn't mean you can
ignore it, but you can fly under the radar. In other enterprises,
when provisioning new employees, the segregation you have
to think about is like optimizing for a global, not just a local,
team. It's no wonder one group feels the other group is a bit
of an idiot. They each have different challenges.

Viktor Farcic: As an example, when I go to different booths
at DockerCon, it's "DevOps, DevOps, DevOps." All of the soft-
ware vendors have some form of DevOps associated with them
now. What do you think is driving that?

Kohsuke Kawaguchi: I want to say two things.
First, if I look at the decade-long march toward more auto-

mation that I talked about, then we're talking about more than
just DevOps. It now includes infrastructure, services, VMs,
or software-defined networks. In this broad trend, you can
include a practice such as continuous integration, which, at
this point, is about 10 years old. Today, DevOps is used as the
go-to label for this march. I think this march will continue, but
at some point, it'll take on a different name.

Second, we, the engineers, might roll our eyes at the fact that
everyone is saying DevOps and twisting its meaning to what-
ever fits their agenda, but we also underestimate the impor-
tance of communicating this stuff in a way that a broader audi-
ence understands, which is very difficult to do.

In order to achieve changes that we know are necessary, as
engineers, you have to rally your organization, which means
communicating with people who are not engineers. Terms such

Kohsuke Kawaguchi

348

as "DevOps" are rather useful ways of capturing the ideas, and
when a lot of people say the same thing in different ways, it
puts some weight behind the credibility of the idea. In a way,
therefore, all of these vendors saying "DevOps" are doing
us a favor.

Viktor Farcic: I've heard a lot lately about those organiza-
tional changes where they're moving everything to the left.
What do you think about that? I mean, tools to me are obvious,
in that you pick a tool that does the job; you learn how to use
it and implement it. In your view, what are the other changes
that need to be applied?

Kohsuke Kawaguchi: Yeah, there are obviously things
at the technology level as you say, and then there's other chal-
lenges. One example I can give you is that the infrastructure
around the Jenkins product itself has only a somewhat limited
capacity, so when we wanted to shift more QA to the left, we
could only do so much. In other words, it takes money, and
that's a hard thing to come by in an open source project.

Then, there's a challenge fundamental to QA. QA is actu-
ally a never-ending challenge to automate most things, and
it's not easy. I used to work on a compiler, and so I used to
think naively that testing was super easy—that it's actually
completely deterministic. I have an input, I run it through the
program, and I get output. I then compare that with what the
output should be and then I'm done. But most of the interest-
ing apps that people are writing are very difficult to actually
measure out in this way.

DevOps Paradox

349

Once, I went to a car manufacturer where they had this tower
full of headlights. They were testing a little microcontroller that
controlled the headlights. Imagine the challenge of mounting
them up on a tower, verifying that a light actually turned on,
resetting the hardware, and so on. All of that is work. Just on
the technology front, there are still tremendous challenges like
that. Every time we want to do more QA, there's a never-end-
ing list of problems like this that need to be tackled.

Viktor Farcic: Not to mention those organizational chal-
lenges if you're in those companies.

Kohsuke Kawaguchi: Exactly! You have those people in
different groups, and you are used to operating in certain ways,
and your left-shifting happens at a different pace and at differ-
ent parts of the project. If you think about somebody who is
working on an operations team and is interfacing 100 different
operations teams, and only one wants to do things differently,
the reaction is, "Look, I can't accommodate things just for you."

Those things can always be challenging. I'll give you another
example of faster delivery creating a friction downstream. The
marketing team: the things they do, such as running marketing
campaigns or events, are more compatible with big releases.
You don't want to issue a press release just for one feature,
right? Same thing with the customer-facing guys. They don't

"QA is actually a never-ending challenge to automate
most things."

—Kohsuke Kawaguchi

Kohsuke Kawaguchi

350

want to bombard customers with communication. You want to
batch things up. As engineering work becomes more continu-
ous, those people also need to change the way they work. That's
nothing new; it's not as if I made this amazing discovery that
nobody else knew before. It's easier said than done.

The hype
around
containers

Viktor Farcic: Speaking of technology, all
the hype over the last couple of years has
been about containers. How do you see that
fitting into this whole picture?

Kohsuke Kawaguchi: When I worked at
Sun Microsystems, we had our own operating system there
called Solaris. I remember an internal conference where they
talked about this thing called Solaris Zones. They would say,
"Oh, we can split the user space into different portions, and
we can allocate different CPU sizes, RAM, and so on to them.
They will be like a different set of computers with virtually zero
overhead." So now, looking back, I can see that what they were
doing was actually putting in place the building blocks of what
became containers.

The Solaris guys must have designed this feature, fully aware
of the impact it can create. But it had zero traction. There were
a number of other similar examples. The thing that I took away
from Solaris is that we, as open source engineers, often tend to
think that if you just put the code out there and explain what it
does, then other like-minded developers are able to look at it
and get the same perspective as yours and then be able to use
it. It turns out that's completely not true, and that's something
I didn't appreciate before.

DevOps Paradox

351

The Solaris guys put all of the nuts, bolts, and engines
together to do this new hard thing of isolations and they
expected the rest of us to grok the point of it, and we didn't.
It took this certain packaging and positioning for the main-
stream to really see the value of it, so that was, for me, an inter-
esting history lesson.

Viktor Farcic: But what are your views on containers? That's
obviously a key part of everything that we do in this field.

Kohsuke Kawaguchi: Obviously, I think containers are
great. I just can't believe we still have to actually say they're a
good thing, but this landscape is moving very rapidly. I remem-
ber going to one of the DockerCon conferences and feeling like
these guys are going to be the next VMware, as they will own the
corporations and the large enterprises that are going to deploy
containers in the hundreds of thousands. Yet, within just a few
years, what we have discovered is the interest in layers moved
up. Containers are considered a good thing, but now it's only as
exciting as Unicode. Everyone uses it and nobody cares.

I was shocked at the pace of the amazing work in this space.
Right now, I think that Kubernetes is all the rage. But, on the
horizon, if you look at what Amazon is trying to do, they are essen-
tially hiding Kubernetes almost like an implementation detail.

"Obviously, I think containers are great. I just can't
believe we still have to actually say they're a good
thing, but this landscape is moving very rapidly."

—Kohsuke Kawaguchi

Kohsuke Kawaguchi

352

As soon as something dominates one layer, that dominance
immediately moves the conversation upstack. Now, people
will be talking about all of the higher-level values, integrating
those, and how to hide them behind. Unicode and TCP—it's all
the same. I think this is already happening with Kubernetes.
That's what I mean by "boring."

Viktor Farcic: The point of good technology is that if it
becomes boring, but everybody still uses it, then it's accom-
plishing its mission.

Kohsuke Kawaguchi: I think that's the ultimate hall of fame
for engineers—achieving "good technology" that's become so
boring nobody talks about it. I live in San Jose, so I occasionally
cross the Golden Gate Bridge, which is a magnificent piece of
engineering. I have no idea who built it, but I'm sure that a lot of
hard engineering work went into it. Most people don't pause to
think about the work involved, even though they benefit from it.

Sometimes, I feel that the world should recognize these
people's work more, but then I also think these people proba-
bly don't need the validation from the whole world. I bet they
know they've done a great work.

Conferences,
open source,
and the US
versus China

Viktor Farcic: Right now, you're the
CTO of CloudBees, where you're in charge
of technology. I'm curious; how do you
follow up with all of that? I'm asking this
simply because I don't know how to do it
myself. Every time I visit a conference,

I have the impression that I need another year just to learn
what each of those programs does.

DevOps Paradox

353

Kohsuke Kawaguchi: I wish I knew the answer. I, too,
struggle with keeping up with what's going on. I find it useful
to go to conferences because people there are trying to explain
things to you, as opposed to expecting you to grok things on
your own. At the same time, in the grand scheme of things,
people like you and I are probably good at making sense of the
rough bits out there, so from that perspective, going to confer-
ences is a bit of a waste of time because we'd probably learn
a lot more on our own in the same amount of time it takes to
travel. Also, when you are a producer of a technology, confer-
ences are great ways to hear from people who are using the
product. It's always worthwhile to listen to them.

Another reason I go to conferences is that I personally
can't watch a recorded video. I just can't keep my attention
for anything longer than a minute. I start watching a YouTube
video and then within 15 seconds I start multitasking, and
then, next thing you know, I completely lose track of what the
video is saying. If I could fix that about myself, I'd be a lot more
efficient in ingesting information.

I also think there's some truth in the idea of "tested by time." If
I continue to hear about something for a long period of time, then
it's probably worth paying attention. It's the same with "word of
mouth." If people you trust are excited about something, it's prob-
ably worth paying attention, too. I think, realistically, those are the
only ways that normal people can use to filter signal from noise.

Viktor Farcic: I don't know how they manage, and maybe
they don't. What's your feeling about open source? When you
started your career, it wasn't a thing, but now it is. Is there still
a future in projects that are closed source from the start?

Kohsuke Kawaguchi

354

Kohsuke Kawaguchi: Before we go into that, I just need to
correct you. Open source has been around for a good amount
of time, long before I started Jenkins. I think it still demon-
strates my previous point about finding more viable ways
to socialize DevOps. I really do believe that, fundamentally,
open source is a better way of developing software. I've seen
first-hand a number of proprietary software defeated by open
source. We've talked about Sun and Solaris, so there's my case.

When I think about what made open source so success-
ful, I think a key is that open source allowed new ideas from
anywhere to be tested out more rapidly and thus quickly
converging into a better working solution. Innovations happen
everywhere, and that was a key differentiator.

But I feel, nowadays, there's another emerging differentia-
tor in the different axis, which is the scale of the problem that
they are dealing with.

Viktor Farcic: Can you clarify that a bit?

Kohsuke Kawaguchi: I've spent a good chunk of my profes-
sional career in Japan. In the worldwide software development
market, Japan has about 10 to 15 percent share, so it's no small
chunk, but it's not a majority either. Because of the various
challenges related to language and time zone, Japanese soft-
ware companies are by and large only solving the problems for
their domestic market. It's a closed market.

Japan has around 100 million people. If you're running
a service and you're serving the entirety of Japan, your scaling
challenge is capped at 100 million. I attended developer
conferences in China and what I realized is that even though

DevOps Paradox

355

their domestic market is just as closed, it is far bigger. So, their
biggest service companies are facing and solving the kinds
of scaling problems that Japanese companies haven't even
thought of.

I was quite impressed that China was talking about how
they need machine learning to help our operations. In Japan,
that's a science fiction problem, whereas in China, that's a real
problem today. The only other market in the world that rivals
that is the United States. So, I'm convinced that our technol-
ogy landscape in the next decade will be a duopoly between the
US and China.

Because of the scale, when a new problem first gets discov-
ered in those markets, they get solved, and they become avail-
able to the rest of the world, so the rest of the world doesn't
get to really innovate.

What I'm trying to say is that the exposure to challenges at
the frontier is becoming as big a differentiator as open source,
if not more. I said innovations used to happen everywhere, but
I feel innovations are happening closer to challenges of large
markets. People say end user companies are now the source of
innovations, not vendors, and I think this is for the same reason.
So that's something of a prospect that I try to keep in mind.

"I was quite impressed that China was talking about
how they need machine learning to help our operations.
In Japan, that's a science fiction problem, whereas
in China, that's a real problem today."

—Kohsuke Kawaguchi

Kohsuke Kawaguchi

356

DevOps
in the next
ten years

Viktor Farcic: Where do you see DevOps
going in the next ten years?

Kohsuke Kawaguchi: I wish I had a better
sense of the future to say interesting things
about it. Like I've been saying, I would say

the obvious direction is more automation.
There will be more demand for software and technology all

over the world. For example, every time I have to go through
the airport and show my driver's license to authenticate myself
to the system, I think, this should be a solvable problem.
So, yeah, there will be more software, and there will be more
automation.

I guess I just can't get away from automation! Beyond that,
I think data and machine learning should play a central role
in the way we develop software as well. Those technologies
have been disrupting so many things, it's silly to think our own
profession is immune from that. But I don't know how quickly
those things will happen. If I had that magic 8-ball, I'd be
working on it and not talking to you now.

Viktor Farcic: You've mentioned automation a couple of
times. When I visit companies, there's always a huge number
of people doing repetitive manual tasks over and over again.
I was even involved in conversations where people are ques-
tioning automation, which completely doesn't make sense

"There will be more software, and there will be more
automation."

—Kohsuke Kawaguchi

DevOps Paradox

357

to me. What's not to like about automation? Why aren't we
automated already?

Kohsuke Kawaguchi: Yeah, that's funny. The truth is
sometimes I feel the same way. I feel like, as the outsider,
we're landing into some places, and we do sometimes under-
estimate the rationality of the status quo. There's always more
to it than what meets the eyes—consideration for things I don't
understand, nuances that I don't get, the context, those sorts
of things. I don't think it hurts for us to be a little humbler
to those things. I'm not surprised if my parents think that our
work is completely automatable. You go to the office, you sit
in front of a computer, and then you come back. You seem to
be repeating that every single day. What's not automatable
about that?

Viktor Farcic: Exactly.

Kohsuke Kawaguchi: We need to be careful because we
might be falling into that trap ourselves when we look at other
people. That is not to say nobody is doing repetitive manual
tasks that should be replaced. I'm sure there are some people
who resist changes and what not. But my first reaction is always
to assume that they see something I don't. So, I don't know.
Personally, I don't come across people who genuinely perform
this repetitive work. Most of the time, I think people see their
work as not overly repetitive.

The other interesting perspective is, if you think of Japan,
they've got traditional cultural things such as the tea ceremony,
kendo, or judo. These are art forms, where they emphasize
repetition, following the certain kata and repeating the same

Kohsuke Kawaguchi

358

tasks to perfection. You start by mimicking a master, then you
slowly develop your own style. What might look like circling in
the same place to untrained eyes is actually a spiral movement
upwards. What's implicit is the respect to the wisdom that your
predecessors have built. There's also something deeply satis-
fying about the feeling of "this time I did it better than the
last time." I think it's a key to motivate oneself for a long run.
I think those are beautiful, though maybe it's just a part of the
Asian psyche.

Viktor Farcic: As we start to wrap up, I would love to know, is
there anything that really excites you in the industry right now?

Kohsuke Kawaguchi: As technology people, we're always
excited to play with new toys. So, I guess playing with these
new tools and new services is one thing that really excites me.
Yesterday, I was playing with Google's new text-to-speech
engine, which was pretty good. It's a kind of a black magic, and
that's cool, then I think about all of the things that we could
do with that, such as an audiobook, voice navigation while
driving, or whatever. You just never know what comes out of
it. New technology is always fun like that.

I do enjoy playing with these toys, but at the same time,
some mundane problems also excite me. I go and see larger
companies struggling with the problem of deploying their large
hairy software quickly. Everyone has this problem of tests
not being very reliable, or that they have too many tests and,
most of the time, they are not doing anything useful. They are
starting to question whether running all these tests is actually
useful. I'm interested in seeing whether we can intelligently

DevOps Paradox

359

pick the subset of tests to run in the right order. I have a feeling
that we can reduce the average turnaround time by an order
of magnitude.

Another example of a mundane problem is the way that we
track bugs, do the code change and then we get that verified.
It's something that happens everywhere, and it's held together
by people manually communicating and collaborating. I feel
like some of them are ready for automation.

The connection
between cross-
stitching, Lego,
and DevOps

I guess one person's mundane
problem is somebody else's excit-
ing challenge. Aside from that,
cross-stitching.

Viktor Farcic: Cross-stitching?
What exactly do you mean by that?

Kohsuke Kawaguchi: Cross-stitching is needlework.
I started doing this because my wife picked it up and I thought
it would be good to have a common hobby with her. It's gener-
ally an old woman's hobby. Let me explain cross-stitching in
a way that geeks understand. Imagine a screen, and there are
the pixels. Each pixel can be a different color. That's how we
build graphics. Cross-stitching is the exact same thing; it's just
on the piece of cloth, instead of a screen, and instead of pixels,
you're using colored threads. It's just the analog version of
a video screen. So, I stitch some video game characters and
so on for fun.

Now, obviously, the actual stitching is incredibly manual and
repetitive. I feel like I should be able to automate this. If there's
a programmable machine, as in a sewing machine, I want to

Kohsuke Kawaguchi

360

see whether I can control it to do the right things. A machine
that takes a JPEG or a PNG as an input, then it would cross-
stitch things for me. I think that'd be awesome. That would
allow me to say, I master everything about cross-stitching, and
then I can move on to another hobby. I wish I could do some-
thing like that. I have never been able to find anybody in the
cross-stitching community who has any passion for this kind of
automation. Most fans of cross-stitching are there for enjoying
conversations with others while they are stitching things, and
so for them, the idea of automation is horrifying. They would
say, what's the point of doing it? That's why I'm itching to find
a venue in which to talk about it.

If I get to do that, Lego will probably be the next.

Viktor Farcic: Lego and DevOps? That's a conversation that
I wasn't expecting to have with you.

Kohsuke Kawaguchi: I'm a big Lego fan, and among the
Lego community, you can have a never-ending conversation
about how to sort and store your Lego blocks. You build some-
thing, and then you disassemble the model you've built. Most
of you put Lego pieces in a big packet when you were small, and
then you grow out of Lego and move on to something else. But
for the rest of us who never grew out of Lego, and who continue
to buy more and more Lego sets, the pieces get too many to just
fit in the one packet. It'll take forever to find pieces you want.

I have several drawers full of Lego blocks, and as I was
sorting them, naturally I started to think, "Wow, there's so
many pieces, I need to automate this." People are actually
doing that sort of thing. So, they build the machine, not just

DevOps Paradox

361

the software. It has a webcam that takes a picture of a brick
on a conveyer belt, it matches the shape against a catalog, and
then some sort of nozzle blows the air to push the piece into the
right bin. That kind of automation is really fun, but then again,
I just find myself trying to automate everything and anything
possible. It's just how I am wired. I don't know if every other
software developer feels the same. This story has no conclu-
sion, but that's what excites me.

Viktor Farcic: I have the impression there's a fear that if you
do those things, then you're automating yourself out of a guar-
anteed job position.

Kohsuke Kawaguchi: Wouldn't that be perfect? Because
now I can die since I've completely automated myself! Of
course, we know there's really no such thing as fully auto-
mating yourself away on anything, not even cross-stitching.
I mean, what software development teaches us is that if you
solve one problem by automation, you then get to face the next
problem, and this ladder never ends. That's kind of fun for me.

Take cross-stitching, for example, if I someday manage to
produce an ultimate cross-stitching machine like I described,
the next thing I'll start thinking about is probably how do
I automate the management of my inventory of threads. At that
point, I can stitch any design, so I'm pretty sure I will be using
threads like crazy, at an unimaginable scale. Today, it takes
a trip to a local store to get threads of the right color, which
can take several days. That's okay when a stitching project is
taking months, but not if it only takes 15 minutes. So, how do
you optimize that?

Kohsuke Kawaguchi

362

Or think about all the secondary problems that the Minecraft
people get hang up on. I had a mod that can create a program-
mable robot inside a Minecraft world, so I could program
it to do mining or building. Once you automate the mining part,
then great, but we have this almost infinite inventory of raw
iron ore, and then you start to think, "Oh, now I need to auto-
mate the smelting part. Otherwise, I'm smelting this forever,"
and so you kind of keep going like that.

Viktor Farcic: That's the freakiest story I've heard.

Kohsuke Kawaguchi: I hope it'll be at least somewhat
entertaining to people who are reading this.

Viktor Farcic: Oh, I think it will be. I mean, for many people,
I think relating it to both Lego and Minecraft will be a really
good way of relating DevOps to the real world.

Kohsuke Kawaguchi: Thanks, Victor. This was fun. I'm
looking forward to seeing your book.

Viktor Farcic: Thank you for taking the time to talk to me.

"What software development teaches us is that if you
solve one problem by automation, you then get to face
the next problem, and this ladder never ends. That's
kind of fun for me."

—Kohsuke Kawaguchi

14

Sean Hull
Cloud Architect

Introducing Sean Hull

A seasoned industry advisor, author, speaker, and entrepre-
neur with over 20 years' of experience, Sean Hull specializes
in DevOps cloud automation, scalability, Docker, and Kuber-
netes. His experience scales from small start-ups to Fortune
500 companies. You can follow him on Twitter at @hullsean.

Sean Hull
and the
world of
databases

Viktor Farcic: To kick things off, tell us
a little bit about yourself and how you got
involved in DevOps.

Sean Hull: I'm based in New York, and
I've been working in technology and along-

side start-ups for over a decade. I got my start back when I did
database work, scalability, and performance tuning for high-
scale websites, such as the Hollywood Reporter and Billboard,
sites that got a hundred million unique visitors per month. Back
when Amazon started getting bigger, a lot of start-up compa-
nies were either migrating to the cloud or natively deploying
their applications in the cloud, and so I saw an opportunity
there to specialize in automation.

My background really is in Unix and Linux, and so it was
a good match for me to shift gears and pivot in that direc-
tion, but I still do a lot of database-related work with MySQL,
Postgres, and Redshift. These days I also do a lot of Python
programming and all the automation stuff like CloudForma-
tion and Terraform, which allows you to script all the objects

DevOps Paradox

367

in your cloud or in your AWS account, and that in turn allows
you to version all the changes that you're making.

Viktor Farcic: I always get asked the same question in every
talk I do: what do we do with databases?

Sean Hull: I read articles sometimes about people trying to
put MySQL databases inside of a Docker container and the
horrible performance that results, so that's absolutely a good
question. A lot of the types of things that automation attempts
to remedy with repeatability and so forth don't necessarily
apply equally to databases. For instance, if you have a large
MySQL database made up of users and activity, those tables
have evolved over time. I mean, you have inserts, you have
deletes, and the database tunes and optimizes a lot of that I/O
to the disk based on usage.

Now, if you were to go ahead and rebuild that database,
the layout on the disk would be different. So, the presump-
tion is that a rebuilt database is exactly the same as the other,
which isn't necessarily the case. In microservices, when you do
a backup, you have to either version or timestamp all of those
backups, and then the question arises of how do you restore
across your entire application at a particular point in time. It
might potentially become much more difficult when you have
10 microservices databases if you wanted to restore them all.

Dev versus
Ops – how
to define
DevOps

Viktor Farcic: Moving on to a more
general subject, how would you define
DevOps? I've gotten a different answer
from every single person I've asked.

Sean Hull

368

Sean Hull: I have a lot of opinions about it actually. I wrote
an article on my blog a few years ago called The Four-Letter
Word Dividing Dev and Ops, with the implication being that
the four-letter word might be a swear word, akin to the devel-
opment team swearing at the operations team, and the opera-
tions team swearing at the development team. But the four-let-
ter word I was referring to was "risk."

To summarize my article, in my view, the development and
the operations teams of old were separate silos in business,
and they had very different mandates. Developers are tasked
with writing code to build a product and to answer the needs
of the customers, while directly building change into and facil-
itating a more sophisticated product. So, their thinking from
day to day is about change and answering the requirements of
the products team.

On the other hand, the operations team's mandate is stabil-
ity. It's "I don't want these systems going down at 2:00 a.m."
So, over the long term, the operations teams are thinking about
being as conservative as possible and having fewer moving
parts, less code, and less new technologies. The simpler your
stack is, the more reliable it is and the more robust and less
likely it is to fail. I think the traditional reason why developers
and operations teams were separated into silos was because
of those two very different mandates.

They're two different ways of prioritizing your work and
your priorities when you think about the business and the
technology. However, the downside was that those teams
didn't really communicate very well, and they were often at
each other's throats, pushing each other in opposite directions.

DevOps Paradox

369

But to answer your question, "What is DevOps?," I think of it
as a cultural movement that has made efforts to allow those
teams to communicate better, and that's a really good thing.

Viktor Farcic: What about infrastructure?

Sean Hull: What I see happening is that as the infrastructure
code has caught on, a lot of companies don't have operations
at all, or DBAs, or even operations teams. All they have are
developers. That's fine insofar as you can build the infrastruc-
ture, but we've lost some of that mindset of stability, reliabil-
ity, and the conservative thinking that would have come out of
the operations teams. And now everything is on a developer's
shoulders to not only write the code but often to deploy the
infrastructure as well.

In larger companies, there is a separate DevOps team, so
hopefully, they still carry some of those operations, but I'm
thinking in terms of keeping things simple. "What is DevOps?"
is an interesting question. I think it means different things
to different people.

Viktor Farcic: I agree. Everybody has a different answer,
so nobody knows what it is. What you just said leads me
to an interesting, or rather horrifying—I don't know which—
case that I once heard. I was speaking with a guy who said,
"Oh I love that. That's really interesting for us because if we

"It [DevOps] means different things to different people."

—Sean Hull

Sean Hull

370

implement the serverless approach, we can get rid of all the
operations because we would have no servers." What do you
think of that?

Sean Hull: Actually, that's a great question, but it's a bit more
complicated than that. I wrote an article called The 30 Ques-
tions To Ask a Serverless Fanboy where I talked in-depth about
the question of whether we have to worry about anything if
we're serverless. While being serverless definitely does simplify
operations, there's still a lot to be mindful of. For instance, in a
serverless framework, you may have one service to do authen-
tication, and another, let's say DynamoDB or Firebase, as your
data store. And then you have your Lambda functions that are
running. As you add more components into the mix, you have
more surface areas that become vulnerable to malicious code.

For example, in the traditional three-tier, the database is
hidden behind a VPC. But in serverless, that database is on
the internet, so how do you test and deploy your API gateway
changes? In a traditional application, you have the web server,
and you deploy your application code and so forth—while in
serverless, you have to deploy the API gateway configuration.

For Lambda, there's a serverless framework that takes
a serverless YAML file that you can configure the API gateway
for and then when you deploy it, it will do all that for you
using CloudFormation. But testing is another area that's more
complex in serverless applications. You can test locally to some
degree, but it's quite a bit different than testing an application
that runs with the database on which you can run those web
servers and databases locally.

DevOps Paradox

371

Viktor Farcic: But with serverless, you're typically tying into
a database somewhere else, so where do you run that develop-
ment database?

Sean Hull: You may not be able to have all those components
running locally, because it turns out the serverless frame-
work has built stubs to provide Amazon-types of resources
running locally on your computer. In terms of the management
of a serverless framework, I definitely think that serverless
simplifies certain things but makes other things more complex.

Exploring
serverless
functions, SQL,
and the cloud

Viktor Farcic: How do you load-test
serverless functions?

Sean Hull: You're paying every time
that function is called, so do you really
want to load-test it on a hundred thou-

sand customers? I don't know. Then, there are timeout ques-
tions. You have resource limitations across your AWS account,
so maybe you're going to hit a wall because you can only run
a certain number of Lambda functions for the month, or you
have 10 Lambda functions, and one function runs off the rails,
which then takes all the other ones offline because you've hit
some resource limit.

I think that there are still things to manage, for sure. I think
that DevOps, infrastructure as code, and serverless have
changed the nature of systems administration, site reliability
engineers, and operational engineers. It changes their day-to-
day jobs, but I still think there's a lot of work to do.

Sean Hull

372

Viktor Farcic: How can we integrate database processes
with all the automation that we're doing?

Sean Hull: Database management is quite a bit more complex
than automating, say, a web server deployment, a caching
server, Memcached, Redis, or even a search server or any of the
other types of components. There's definitely more complex-
ity. Another thing too with continuous integration is that your
code is often deployed with code that affects the database.

For example, maybe you have a user's table, and a cell phone
number, and you want to add a work phone number. So, you
write the code around that, and then you write the DDL, the
SQL statements that add the column, and you deploy those
together, with the Python or Node.js code along with SQL.
Those are called migrations. So, you're migrating the version
of the database forward in time so that now that table can
support that additional column.

The thing is, migration scripts typically include a roll forward
and a roll backward script. But with a database, you can see how
with code that's no problem. You roll back to an older version.
That's not a big deal. However, if you roll back the database
now, you may have data in that additional column.

"DevOps, infrastructure as code, and serverless have
changed the nature of systems administration, site
reliability engineers, and operational engineers."

—Sean Hull

DevOps Paradox

373

If you've just added a work phone number, and maybe
10,000 of your users added their work phone numbers, if you
roll back, you would drop that column and lose the data.

In some cases, roll forward and rollback scripts are managed
by a DBA or somebody who's tasked with managing the data-
base. But if you're an enterprise who's built your own applica-
tion, then you don't have the luxury of that. Maybe you write
your code blindly, and it drops the column, and you lose data?
That's just another example of how the automation that we do
in other parts of the enterprise doesn't necessarily always work
the same way around with the database tier.

Viktor Farcic: As I said, it's not my expertise, but I always
have the impression that I would prefer not to have a rollback
feature at all rather than having people relying on such a thing
with databases. It seems more dangerous than actually having
any real value. The moment that the first transaction enters
your system, how do you roll back? You can't.

Sean Hull: That's definitely a complicated question, and one
that lots of folks have thought about. But at the same time, it
used to be that database schema changes were done sort of ad
hoc, in that you'd hand the script to the DBA and say, "Hey,
add these columns," and it was not tightly bound to the version
control system, because it's hard to do that. Databases don't
have versioned schemas—at least MySQL and Postgres don't—
and as far as I know, Redshift doesn't either. So, at this point,
they're not really supporting that.

Viktor Farcic: Do you have a preferred tool, or just plain
SQL, when you're doing migrations?

Sean Hull

374

Sean Hull: Some languages support that. For example, Ruby
has migrations built in, so when you're making code changes
you can also deploy SQL. The response is that those chunks of
SQL DDL (data definition language) commands are then set
alongside the other branches of code, so that when you check
out a particular version of the application, you're also checking
out a version of the database.

Viktor Farcic: How about zero-downtime deployments of
applications, where people are using a blue-green deployment
or rolling updates, which effectively means that you will have
multiple versions of your application running at the same time.
How do you handle that on a database level?

Sean Hull: That's another good question. A lot of companies
are using Amazon Relational Database Service (RDS) now.
It's a managed MySQL, Postgres, or Oracle, and because it's
managed, you don't have access to the command line, or to the
server itself.

A few years back, I was working for a company called ROBO,
and I had to do a database upgrade of RDS. With a MySQL
installation, you log into the command line, and you have
direct access to the MySQL instance. With this, you can restart
it in a matter of seconds, and with replication you can have
two masters. One is read-only, and you're replicating data back
and forth so that you can do both zero-downtime deployments
and zero-downtime upgrades while having the database set in
read-only mode for a very short period of time.

My experience in trying to upgrade RDS was that it took at
least five minutes to restart after the upgrade and we didn't

DevOps Paradox

375

really have much visibility in terms of what was going on
behind the scenes because Amazon controlled the server. We
only had access to the MySQL database; we didn't have access
to the instance, so we couldn't really see what the status of that
restart and that upgrade was, and whether it was held up by
something such as corrupted data.

Viktor Farcic: So, how did you deal with that?

Sean Hull: We ran through a number of fire drills, and
created the database on another AWS account, then upgraded
it and timed it to see how long it took. It's a very cumbersome
way to go about upgrading a database, and not only was it not
zero downtime, it was in fact guaranteed downtime. There
was no real way to avoid that. For some start-ups it's worth
it because you have this managed solution: the database is
always running, you have a dashboard, and you can see what's
going on.

However, if you don't have a database expert around
to manage your database, it's a lot simpler. But if you do have a
DBA, it's much better to roll your own MySQL or Postgres and
manage it because you can reduce your downtime quite a bit.

Viktor Farcic: How about the other case? Let's say we're
not upgrading the database, but instead, are rolling out
a new release of an application that speaks to the database
and potentially changes the schema. In that case, we would
have two releases of an application that potentially requires
a different schema. Let's say that release 1 and release 2 intro-
duced a new column. Do you have any suggestions about how
to handle that?

Sean Hull

376

Sean Hull: Yes, so the migration scripts that I was talking
about before, alongside your code changes; so, when you check
out that newer version of the application, you would also check
out a newer version of the SQL and the DDL statements that
add that column. So, if you're starting from scratch, you would
start from a database dump and then apply all the migration
scripts that point to that.

Viktor Farcic: Would those changes need to be back-
ward-compatible with the previous version of the application,
or would you just go straight ahead with a new schema?

Sean Hull: Usually you're rolling forward. If you were to go
backward, you may or may not need to apply the dropped column
because, for example, in the case where I described before, we
added the user's cell phone and work phone numbers. If you
go back to a previous version of the application, it just won't
access the work phone.

It won't be a problem if that extra column is there, except
in one particular case if you do select * in your application,
and the select * is very frowned upon for exactly that reason.
If you're selecting star and you change the database columns,
you're going to get a different number of columns back, and
your code could break. You never want to use a select star; you
want to specify all the columns that you're accessing.

Viktor Farcic: Definitely. So, in your experience, when
companies you've worked with are migrating to the cloud,
what would you identify as the biggest problem that's waiting
around the corner for them?

DevOps Paradox

377

Sean Hull: I think the biggest obstacle is cultural; everything
is done completely differently in the cloud now. In the tradi-
tional computing world, you have physical servers where you
set up the server, you give it a name, plug it into your network,
and you configure all those things the same way you would in
the real world. It's almost like physical things have names.

Before we had managed hosting, people had a cage or a closet
in their business, and you could physically see the machine to
plug a cable into. But in the cloud, everything's virtualized, and
that ends up being a completely new paradigm that doesn't
only challenge the business people, it also challenges the tech-
nology people to think in a new way.

Viktor Farcic: You say challenges, like security?

Sean Hull: Yes, let's take security. In AWS, you have VPCs,
and it's like virtual networking, so you can set up private and
public subnets, and you can control access to servers inside of
those subnets through two methods: one being security groups,
and the other being access control lists. That's very different
from the way you would control access to servers in the old
world where you need to have a firewall, which the networking
team manages and configures, and/or you would have a fire-
wall on each server like, for example, iptables.

In the Amazon world, it's definitely as sophisticated, but
the configuration of those firewalls is in the form of security

"I think the biggest obstacle is cultural; everything
is done completely differently in the cloud now."

—Sean Hull

Sean Hull

378

groups and ACLs on your VPC, so its virtualized networking
is very powerful, but it's also very complex and troubleshoot-
ing is difficult. When you try to access the server, and you get
no response, and you're trying to figure out what could be the
cause of that through debugging and troubleshooting, those
problems are big challenges.

But back to your question, the biggest challenge to migrat-
ing to the cloud is that for enterprises, there's a big learning
curve, not only in understanding how an EC2 server spins up
and how it uses disk, but how it accesses Amazon's Elastic
Block Store (EBS), how it stores files in S3, and how you write
Lambda functions that respond to events taking action in that
environment. It's a completely new paradigm and a new set of
technologies, so it's a big learning curve for both the engineers
and the business folks.

Viktor Farcic: I've seen quite a few of these tools that tell
you if you buy our tool, we're going to transfer whatever you
have to the cloud. For example, Docker announced in the last
DockerCon that they're going to put in containers without
a single change and everything will work. What do you think
about that?

Sean Hull: Salespeople often simplify things quite a bit in
order to sell a product; in my experience, the devil is in the
detail. It's not to say that an automation tool like that might
not be valuable and useful. It might be a good first step to
getting your application in the cloud, and it might be an easier
way than to rebuild everything one by one. But I doubt that it's
going to work magically just with one script.

DevOps Paradox

379

EC2 instances, for example, have different performance
characteristics, not only in terms of the disk I/O, memory, and
CPU, but in smaller instances, they actually throttle network
access so you might spin up an instance and it just might not
behave well. It might take time. In fact, all sorts of things could
happen. You might have written MySQL scripts that assume
you have root access to the server and then you rebuild that
in an RDS and you get errors because you don't have access to
those resources on the RDS. There's a lot of things to consider.

Viktor Farcic: How about applications? Say I'm a company
and I have OpenFrame applications that were developed in the
last 10 years. Does that require some kind of changing para-
digm or architecture? What are your thoughts on that?

Sean Hull: It may. For example, a lot of applications might
use shared storage. Amazon now has something called Elastic
File System (EFS), which is meant to mirror the functional-
ity that you see in traditional datacenters. But really, the right
way to do it is to store your assets and your content on S3, but
S3 didn't exist in those old applications in that environment,
so you have to rewrite portions of your application to use S3.
I worked with a media publishing company last year that used
an NFS server to store some of their content.

"A number of years have passed since a lot of companies
were locked in with Oracle, and so much time has
passed that there's a new generation of folks that
haven't been bitten by that."

—Sean Hull

Sean Hull

380

The right way to do that would be to use the plugin—in this
case, it was WordPress—to access those files in S3. But they
wanted to move it to Amazon with a fewer number of changes.
For the short term, we set up EFS, which is Amazon's version
of NFS. The only reason Amazon built EFS in the cloud is
because, exactly as in the use case you're talking about where
you have applications, you're moving them, and you don't want
to. The native way to do it in Amazon would be to store it in S3
because S3 has life cycle control and infrequent access. It also
has Glacier and all the rest so that would be the native way to
do it in the cloud.

Vendor lock-in,
AWS, and keeping
up with the
DevOps world

Viktor Farcic: With the compa-
nies you work with, do they express
concern about vendor lock-in, for
example, when they go to Amazon?

Sean Hull: Yes, actually I think
a number of years have passed since a lot of companies were
locked in with Oracle, and so much time has passed that there's
a new generation of folks that haven't been bitten by that.
I sense that there's less fear right now around Amazon lock-in
than maybe there should be. There are tools like Terraform
that can plug into Google Cloud; it can talk to the IBM Cloud,
Azure, and AWS, among others, so you can deploy resources in
any of those clouds if you've built your infrastructure code in
Terraform. Terraform is like a layer on top of CloudFormation
that implements that stuff in a generic way.

Viktor Farcic: What's your take on container schedulers:
Kubernetes, Mesos, Swarm, and so on?

DevOps Paradox

381

Sean Hull: I haven't done much with Kubernetes and Docker
Swarm. Docker is awesome, and containerization has been
around for a long time, since the late 1970s. In fact, I think
there was an original BSD project that really popularized
containers, but obviously, Docker is the modern version that
everybody knows so well, and it does a lot of powerful things.

You can spin up development environments and QA test
very easily, and so you can encapsulate all the code to rebuild
everything you need to get your application working, and that
makes everything more repeatable, and so forth. I don't think
containers are going away anytime soon because they serve
a really big need.

Viktor Farcic: I have the impression that the speed with
which new things are coming is only increasing. How do you
keep up with it, and how do companies you work with keep up
with all that?

Sean Hull: I don't think they do keep up. I've gone to a lot
of companies where they've never used serverless. None of
their engineers know serverless at all. Lambda, web tasks, and
Google Cloud functions have been out for a while, but I think
there are very few companies that are able to really take advan-
tage of them. I wrote another article blog post called Is Amazon
Web Services Too Complex for Small Dev Teams? where I sort
of implied that it is.

I do find a lot of companies want the advantage of on-de-
mand computing, but they really don't have the in-house exper-
tise yet to really take advantage of all the things that Amazon
can do and offer. That's exactly why people aren't up to speed

Sean Hull

382

on the technology, as it's just changing so quickly. I'm not sure
what the answer is. For me personally, there's definitely a lot
of stuff that I don't know. I know I'm stronger in Python than
I am with Node.js. Some companies have Node.js, and you
can write Lambda functions in Java, Node.js, Python, and Go.
So, I think Amazon's investment in new technology allows the
platform to evolve faster than a lot of companies are able to
really take advantage of it.

Viktor Farcic: That was my impression when I heard the
announcements from their conference. I was like, it would take
me a year just to go, and if I would dedicate a year, I would
still have trouble keeping up with everything they announced
in just a single day.

Sean Hull: I had a customer recently ask me if I have experi-
ence with Lambda. I said, "Yes," and he said, "We want to use
something called Lambda@Edge," and I said, "I have no idea
what Lambda@Edge is as I've never even heard of it." It turned
out Lamba@Edge is a product released four or five months ago
that is actually kind of cool. Normally, in your applications,
your content is either fed off of the web server or in S3, and
then you have CDNs that can then fetch that content and keep
it closer to where the traffic is coming from.

"Amazon's investment in new technology allows the
platform to evolve faster than a lot of companies are
able to really take advantage of it."

—Sean Hull

DevOps Paradox

383

Say I'm hosting an application in New York, but I have
a customer in Japan, and they're hitting that piece of content.
They would hit a CDN endpoint that's closer to Japan, and
therefore the application would be quicker. All the graphical
images and CSS and the other things that it can cache, it would
keep them cached at the endpoint. Lambda@Edge allows you
to write Lambda code that executes at the edge, so you can
examine a cookie that the user authenticated with and then see
at the CDN if they have permission to access something. You
can write Lambda code that executes at the edge, hence further
speeding up your application. If most of your application is in
Lambda, you'd be completely distributed at point, and you'd
see really huge performance improvement there.

Viktor Farcic: I haven't even heard about Lambda@Edge
until today.

Sean Hull: Lambda@Edge exposes four new events: there's
both a before and after endpoint, and a before and after origin,
so you can respond just like any other Lambda code would
respond to events in the AWS world, and Lambda@Edge
exposes those four new events to allow you to write code that
runs at the CDN endpoint.

The future
of DevOps
and closing
remarks

Viktor Farcic: I'm going to ask you
a question now that I hate being asked, so
you're allowed not to answer. Where do you
see the future, let's say a year from now?

Sean Hull: I see more fragmentation
happening across the technology landscape, and I think that

Sean Hull

384

that is ultimately making things more fragile because, for
example, with microservices, companies don't think twice
about having Ruby, Python, Node.js, and Java. They have
10 different stacks, so when you hire new people, either you
have to ask them to learn all those stacks or you have to hire
people with each of those individual areas of expertise. The
same is true with all these different clouds with their own sets
of features: there's a fragmentation happening.

Let's look at the iPhone as an example. Think about how
complex application testing is for Android versus the iPhone.
I mean, you have hundreds of different smartphones that
run Android, all with different screen sizes, different hard-
ware, different amounts of memory, and the underlying
stuff. Some may even have some extra chips that others don't
have, so how do you test your application across all those
different platforms?

When you have fragmentation like that, it means the appli-
cations end up not working as well. I think the same thing is
happening across the technology spectrum today that happened
10 to 15 years ago, where for your database backend there was
Oracle, SQL Server, MySQL, and Postgres. Maybe somebody

"You have hundreds of different smartphones that
run Android, all with different screen sizes, different
hardware, different amounts of memory, and the
underlying stuff. […] How do you test your application
across all those different platforms?"

—Sean Hull

DevOps Paradox

385

who's a DB2 enterprise customer uses DB2, but now there
are hundreds of open source databases, graph databases, and
DynamoDB versus Cassandra, and so on and so on. There's no
real deep expertise in any of those databases.

What ends up happening is you have cases like what happened
with customers who were using MongoDB. They found out the
hard way about all of the weird behaviors and performance
problems it had, because there just weren't people around with
deep knowledge of what was happening behind the scenes,
whereas in Oracle's space, for example, there are career DBAs
that are performance experts that specialize in Oracle inter-
nals, so you can hire somebody to solve particular problems in
that space.

There aren't, as far as I know, a lot of people with MongoDB
internals expertise. You'd have to call MongoDB themselves;
maybe they have a few engineers that they can send out, so
what's the future? I see a lot of fragmentation and complex-
ity, and that makes the internet and internet applications more
fragile, more brittle, and more prone to failure.

Viktor Farcic: Do you think that trend will continue, or will
it kind of reverse itself?

Sean Hull: I don't know if it would or how it could reverse
itself; it seems like it's a more general trend of all human
knowledge. Look at science and the different specializations;
that have gotten more complex across the spectrum, and
I think that complexity can lead to very unexpected surprises.

For example, I recently read a research paper that talked
about depression among teens. I know this is a long side note,

Sean Hull

386

but the researchers believe teenage depression is related to the
overuse of smartphone devices, because they're messing up
how people socialize. I think that more complex fragmentation
across the technology spectrum can lead to very unexpected
surprises. I don't know how we wrestle that and how we rein
that in, because it just seems to be growing more and more
every day.

Viktor Farcic: I share the same impression. I think that
nothing ever goes away, like how we still have mainframes to
think about as well. But to finish up, is there anything else you
would like to talk about?

Sean Hull: Not long ago I wrote an article titled How is Auto-
mation Impacting the DBA Role?. I was talking to a colleague
of mine who works in the Oracle space, and they were lament-
ing how things are changing so quickly, and a lot of compa-
nies don't hire a traditional DBA role anymore. That's partly
because there are managed services like Amazon RDS that
simplify that process, so you don't need a dedicated resource
person just for that role.

To summarize, in the article I wrote that there's a lot of
opportunity for people with deep database knowledge, but they
need to step up, pivot, and present their skills and their knowl-
edge and frame it in a new way.

I do think that deep database knowledge is very valuable
for companies, especially as they adopt microservices and try
to put databases into containers, and you have other weird
performance issues around multi-tenant, Amazon-related
stuff. I think someone who has deep database knowledge and

DevOps Paradox

387

performance should still be able to apply that and be of value
in today's technology landscape. I just think it's a matter of
packaging it and selling yourself in a new way.

Viktor Farcic: I have the same impression. I think it actu-
ally goes way beyond specific examples like databases. I feel
the same thing is happening in other areas, and I'm seeing
more and more Java developers who actually know how to
write getters and setters and stuff like that. I have the impres-
sion that's happening all around, and to me, this is a very big
warning that we might get into trouble.

Sean Hull: I think what is happening is that hiring manag-
ers are starting to realize that they're not going to find some-
body with the exact specific skill that they're looking for, and
they have to look for a more general skillset and someone with
more general computing understanding and knowledge. Once
they've found them, they need to ask, "Hey, do you want to step
up and learn this new stuff, or do you feel confident to solve
this problem?"

Viktor Farcic: That's a great place to end the interview.
Thank you.

15

Bret
Fisher
Docker Captain
and Cloud Sysadmin

Introducing Bret Fisher

Bret Fisher is a freelance DevOps and Docker consultant,
Udemy instructor, trainer, speaker, and open source volunteer.
He also teaches courses on Docker and container technology.
You can follow him on Twitter at @BretFisher.

What is
DevOps?

Viktor Farcic: I want to start by asking
if you could give us the elevator pitch as to
who you are, and how you're involved with
the DevOps community.

Bret Fisher: Firstly, I would say that I'm
a DevOps consultant who mainly focuses on Docker. That
being said, I'm actually a Docker Captain, who both works and
teaches the program. I guess you could say I live and breathe
Docker 24/7.

Viktor Farcic: Last night, I was talking to three self-pro-
claimed DevOps engineers who were all from different compa-
nies. You'd think they would all describe their jobs in the same
way, but they didn't. In fact, each of them described their
jobs using different terms. So, my question for you is, and
it's something I've asked everyone in this book, what the heck
is DevOps?

Bret Fisher: The definition of DevOps today is not what
people who do DevOps actually do, so it's funny that you've
asked me this question. People have asked me to inject more

DevOps Paradox

393

DevOps into my Docker course because they're self-proclaimed
beginners in DevOps. But they're actually not beginners of
DevOps, they're beginners in IT.

If John or Jane, who are just starting out in IT, comes to me
saying that they want to do DevOps, I find it difficult to do.
Why? Because, to me, DevOps is something you can only do
after you've been in operations or in development for a while,
because you have to know both in some form before you really
get the overarching idea of DevOps. You can't really be a part
of DevOps if you're new to either area.

Viktor Farcic: So, really nobody knows what DevOps actu-
ally is?

Bret Fisher: To me, DevOps is literally if you're a developer,
you're working with operations, and you're sharing the same
concerns around the concept of getting the software off of the
developer's laptop, into production, and everything in between.
Then, after the software is in production, the job of DevOps
is making sure that the project remains up and that you can
update it reliably, and that there's this continuous feedback
loop between everyone involved in the process. The loop is how
the software is getting from the developer all the way through
to the servers and then getting updated in an ever-increasingly
faster loop.

"The definition of DevOps today is not what people who
do DevOps actually do."

—Bret Fisher

Bret Fisher

394

But let's, for a minute, imagine that I'm in a DevOps team
with you. If, in the future, we're still shipping software at the
same pace that we're shipping it now, I would say that we're
not doing very well as a team. We should be optimizing and
making the system more efficient, assuming of course that we
wanted to go faster. If the company's not trying to go faster,
then that's fine. I find it funny that DevOps is now becom-
ing this entryway thing for people want to get into technol-
ogy. Everybody's saying that technology is awesome and that
DevOps is something we all should be doing, but I just don't
see how that works. If I don't know how to be a developer, and
I don't know how to be operations, then how could I possibly
do both of them and DevOps?

Viktor Farcic: That's the issue I keep coming across. I'm
continuously meeting people who are just starting their IT
journey. At that stage of their career, they know nothing about
anything. They're starting from scratch.

It would be as if my first introduction to IT is me saying:
"I'm going to become a DevOps engineer." It's as if I'm choos-
ing whether I'm going to become a tester. I'm going to become
a developer, and I really don't understand how that happened.
You said earlier that you do Docker courses, but to me, when
you've completed them, you're certified DevOps, and you have
an ability to say: "I'm a certified DevOps beginner."

Bret Fisher: If someone said that he or she was new in the
industry and wanted to get into DevOps, then I could hire them
with the idea of training them towards that specific goal. If
I had to make them a DevOps engineer, their first job would

DevOps Paradox

395

obviously be to learn the developing language that the team is
running and effectively become a very junior developer.

I would stick the newbie on the build team, so they would
have to be someone involved with using Jenkins and either
building or testing the app and automating that part. For me,
that's the only role where they don't have to develop the code
but, instead, have to understand the code just a little bit. They
don't really have to know the operations, but they're going to
have to talk to the operators, and as a result, they're going to
learn a little bit of the operators' pain.

Fast-forward a year: I would now say that you've done all
that for a while, let's actually have you be responsible for some
servers, and from there, you get a little bit of operations sysad-
min experience. Fast-forward another year, and now you can
say: "OK, maybe you can start focusing on DevOps-related
issues." People that are new to operations find it a tough thing
because they don't understand software and servers, which
raises the question of what exactly are they operating?

I'm sure there are some job descriptions out there that say
they're looking for a junior DevOps engineer. I just have to ask,
who would do that job well? Is it somebody who's a developer
and likes to tinker with servers, or is it a server admin who

"If I had to make them a DevOps engineer, their first
job would obviously be to learn the developing language
that the team is running and effectively become a very
junior developer."

—Bret Fisher

Bret Fisher

396

knows a little bit about how to script and code? I really don't
know, but what I do know is that I don't have a good answer
to your question. What's funny is that there are all of these
courses that say you can do DevOps now, but all they do is
teach you a tool like Jenkins, which doesn't make you DevOps.

Right here,
right now

Viktor Farcic: I find that interesting
because, when I've gone to conferences—say,
over the last two years—all I'm seeing is
every single vendor and every single product
being labeled as DevOps. Yes, it has already
existed for years, but today, every single

product is called a DevOps product. Just look at Jenkins.
I know that you go to a lot of conferences, so I was wondering
what your thoughts are on this?

Bret Fisher: DevOps is like the new cloud. Remember when
we were all joking in 2013 about what is the cloud? All we knew
was that it's just servers on the internet. That's all it is. But we
had this new term, and everybody had to use it. All of these
companies came out with all of these products, and they all had
the word "cloud" in it somewhere.

So, now, what is the cloud? The cloud doesn't mean anything.
It's just the internet. I feel like that's what the word DevOps is
going toward, though I must put my hands up as I'm guilty
of this because my course has DevOps in the title.

Viktor Farcic: Even my previous books have DevOps in their
title—the DevOps Toolkit series.

Bret Fisher: My title is DevOps Dude, simply because

DevOps Paradox

397

it works. I get more requests to interview for jobs on LinkedIn
simply because DevOps is in my title.

Viktor Farcic: I can tell you if I named my books Opera-
tions Toolkit, instead of DevOps Toolkit, it would just sell
seven copies, and six of those seven copies would be bought by
my relatives. But let's shift focus onto containers. I don't ever
recall seeing something becoming so popular so quickly, so I'm
left wondering why is that?

Bret Fisher: Whenever I do a Docker 101 talk, I talk about
how we've been around in IT for a long time, and that, in the
past, we never got paid for it, but actually we were still doing
it. We were doing it just for fun, but now we get paid to do it
for fun. I was in technology back when we took out the main-
frame and put in PCs, which were actually just DOS operating
systems. We also had to actually put mice on the PCs because
they were going to get Windows, which is something we then
had to install on the machines—machines that didn't have the
internet. Then, eventually, we finally got the TCP/IP suite of
communication protocols and were able to simply plug up all
of the computers to the internet.

Then, after the internet, we had virtualization, and during
those times, I was the guy in the big company with half a million
employees that was walking around saying, "Virtualization
is the future." Meanwhile, everyone else was saying, "You're
stupid, you're crazy, the servers will run slow, we're never going
to be able to build security." It's the same arguments we hear
today for containers, and last year, for the cloud. Now, with the
cloud, it's basically all about putting our data on the internet.

Bret Fisher

398

You're taking your data out of the data center, putting it on the
internet, and letting someone else take care of it. Even though
that was 11 years ago when Amazon's AWS service launched,
it's still happening today. Even though we were all like, "Oh,
everybody's going to be there." The truth is, not everyone is
there yet.

Viktor Farcic: Out of interest, what would you say is today's
version of the cloud?

Bret Fisher: I would say containers. It was only three years
ago when I changed my entire career to focus on containers.
Why? Because I've been a part of enough of these transitions
to know that this is the next one. If you look at these waves,
every single one of them—from mainframe to PC, PC to the
internet, PC to virtualization, virtualization to cloud, and now
containers—seems to happen faster than the one before it.
At least, that's my theory.

Virtualization took a decade, but it was taken on pretty
quickly. But moving to the cloud for a lot of companies happened
much quicker than virtualization. Today, we're seeing contain-
ers having a much faster adoption rate, at least when compared
to virtualization. I think that's the nature of where we're at in
the industry, and so whatever the next thing is going to be, it's
going to happen faster than containers.

Viktor Farcic: And when I think about it, it's probably going
to last a shorter amount of time as well.

Bret Fisher: It might just as well last that long. But here's
the thing: it might be more volatile, where we'll eventually get

DevOps Paradox

399

containers that will be so good that we won't even need most
virtualization. Maybe in the future, virtualization will become
unnecessary.

Viktor Farcic: But then, if it's happening so fast, how can
humanity keep up with that?

Bret Fisher: It doesn't.

Viktor Farcic: Each time I read about the next release
of something—say, Docker—I feel like I'm in a position where
I haven't even finished with the last one, and yet there's
already a new one to learn, and I end up having no idea
what's going on.

Skipping
a generation –
a good or bad idea?

Bret Fisher: Exactly, so you'll
have companies that skip
a generation. For example,
company X might now be doing
virtualization. They didn't really
do cloud, so they skipped it, but

now they're going to do containers instead of just virtualiza-
tion in the cloud.

Viktor Farcic: But can you do that? Is jumping a generation
a good idea?

Bret Fisher: Not without your pain increasing. The pain
increases because you're part of a team, and organizational
learning means that we've both got to know that you're never
a silo of knowledge. The entire team has to learn together and
so, even if you were to hire a container expert, in a good-sized

Bret Fisher

400

organization, it's going to take them years to get the entire
team up to speed on all of that tech.

If the companies aren't doing cloud yet and you're going
to take them to the cloud, but now they're also going to do
containers too, that's going to suck. They're probably going to
make more mistakes, but it's still going to get there, eventually.
You're just going to incur more pain and more suffering. Laura
Frank, the Director of Engineering at CloudBees, actually has
a new term for this. She calls it the laggard tax.

If you've ever seen that bell chart diagram where you have
your people up at the front when the technology first starts,
then there's also the people at the very beginning of it and,
after that, the majority of us, and finally, there are the laggards.
Laura describes laggard tax as being if you're so slow to adopt
the technology—let's say, as in our case, the cloud—it's actu-
ally going to cost you more in the long term because you might
have to completely skip a generation of technology. But the
thing is, none of these are absolutes. We still have people using
mainframes, and we still have people that are not fully virtual-
ized. There are still companies out there running 10-year-old
servers that were never virtualized.

"We still have people using mainframes, and we still
have people that are not fully virtualized. There are
still companies out there running 10-year-old servers
that were never virtualized."

—Bret Fisher

DevOps Paradox

401

Viktor Farcic: I know people, and I'm not joking, who are
still graduating in the COBOL language.

Bret Fisher: Even looking forward a decade, there will still
be people that are not yet doing containers, and instead only
doing virtualization or something along those lines.

There was a good session at GOTO Chicago a couple of
weeks ago where the keynoter talked about how 30 years ago
in technology, life was great because you could be someone
who, if you were fully invested in the community, knew a little
bit about most things. You could know a good amount about
most languages and most technologies. But what stood out was
how he said that now no one knows anything about anything.
We all have just a fraction of the knowledge available about
current technology. Even in a team, you probably don't even
know a tenth of the languages out there. How can we possibly
make educated decisions fully aware of everything that's avail-
able to us? The answer is just we don't.

As an industry, we're stumbling through the dark, only engag-
ing with whatever works for us right here and now. There's no
right or wrong until you've been hacked and then you're wrong.
The number one way to fail in this industry is to just wait until
your product has been hacked, and then suddenly everybody
will blame you for everything at that point. But until you've
been hacked, as long as it works, it doesn't really matter.

"No one knows anything about anything."

—Bret Fisher

Bret Fisher

402

I believe it was back at GOTO where I got on a rant about how
you walk in the average company—and by "average", I don't
mean the Google- or Netflix-type companies—and you start
critiquing all of the different parts of their technology stack.
There's going to be at least a half a dozen things at that company
that would be front-page-worthy. Company A still stores their
passwords in a spreadsheet, while company B doesn't even
monitor their most critical DNS servers. Or company C has had
the same root password for their servers for the past five years,
while in that time period, 30 people have been fired from the
company, and yet they've never changed the password. You're
going to find these issues in every company. If it's all that mixed
up, if it's all horrible, or if it's simply just luck that we're not all
doomed to crash and fail, then I think, at the end of the day, all
that really matters is getting stuff to work and doing the best
you can at that moment. It's never going to be perfect, and it's
never going to be great.

Using
containers

Going back to your earlier question
though, I think that the definition of DevOps
itself inherently means compromise. The
operations and developers at any company
have to compromise to get the stuff to work

together and to go faster. Maybe that's compromising on secu-
rity or on testing. Maybe our testing lifecycle isn't four weeks'
worth of user testing anymore; maybe it's just four days before
we go to production? But in a lot of cases, we can't just speed
things up without making some sort of eventual compromise
that every party involved in would be okay with.

DevOps Paradox

403

Viktor Farcic: Let's talk more about you, Bret. From my
understanding, most of the time, you're helping companies
or people adapt to using containers. Do you think we should
be shipping everything in containers? As someone who's so
invested in the concept, do you ever sit back and say that, actu-
ally, no, this stays as it is—we're not going to use containers?

Bret Fisher: Obviously, we can say that, technically,
everything can run in a container. The real question that needs
to be asked is about how much pain and suffering you want
to go through in order to make your "thing" run in a container.

In my own experience, if I'm starting a project with a client,
I'll look at whatever tool or technology they're going to run, and
together, we'll try to imagine what the end goal is. If that's in
a container, how will that make their product or service better?
If their goal is a database and we only update that database's
engine once every six months, they don't need to patch it every
month. They're not moving it around in the environment, it's
already on a server with redundant power supplies, redundant
memory, redundant switching, and redundant NICs, which
is a lot of data centers.

A lot of private data centers are still very hardware redun-
dancy focused, unlike the cloud where it's the complete

"I will always prefer the thing that they're going to
update every day/week versus the thing that's just
going to sit there reliably and never change for months
at a time."

—Bret Fisher

Bret Fisher

404

opposite. For me, I will always prefer the thing that they're
going to update every day/week versus the thing that's just
going to sit there reliably and never change for months at
a time. Usually, that means your web APIs or your new worker
jobs for your PHP workers on the backend of your system are
constantly changing; those are always the things that I try to
get them to do first. Then, by the time we get to the things that
require really big and complicated databases, the companies
are usually out of money, and so we won't ever do those things,
and they'll stay where they are.

A lot of companies, especially if it's a new product or app,
will containerize the database to begin with. But I'm always
telling them, "Don't make this database the first thing you
put in a container!" Anything with persistent data is always
going to be harder no matter what you do, whether it's in or
out of a container, so I would try to avoid that at first. But if it's
brand new, and if I can give them a Docker file that they can
put in a container—even if it's not in orchestration, it's just on
a server in a container and that's the only thing on that server,
and it never moves—then that's fine. I'll be happy. Because, at
least, at that point, it's in a container and they're not writing
shell scripts to do apt-get installs of MySQL.

Viktor Farcic: Let's say somebody doesn't know anything
about containers. Would you recommend still teaching them
to start from the beginning, in a similar way to what we expe-
rienced with containers four years ago? Let's get them started
with containers, then move onto schedulers, or should they
just jump straight into schedulers? Where should the newbie
go today?

DevOps Paradox

405

Bret Fisher: I would always want to teach them the local-
host. I feel that maybe because it's universal, even if you're
not a developer, and you're just a sysadmin, showing how
your Mac/Windows machine can run an Ubuntu container or
a CentOS container and then having all of those tools right
there in front of you so that you don't have to figure out how to
put curl on your Windows desktop. I feel like that is valuable
for everybody regardless of your background.

Maybe I'm a traditionalist, and I don't want to teach you an
orchestrator because I feel that sometimes, by teaching orches-
tration first, it would be like telling you the solution before you
even know the problem. To me, it's like if you're a Windows
admin in a data center. Traditionally, you would use something
like System Center for Microsoft or some big enterprisey server
management tool, but if you're new to server admin, showing
you that tool at the start would be confusing. To the newbie,
it would seem very complex, because the newbie doesn't even
know how to run one server much less a thousand servers. If
I'm teaching you that tool and you don't even know how to
manage one or two servers, I feel like the tool that's going to
help you to manage a thousand servers isn't going to seem
very useful.

"Maybe I'm a traditionalist, and I don't want to teach
you an orchestrator because I feel that sometimes, by
teaching orchestration first, it would be like telling you
the solution before you even know the problem."

—Bret Fisher

Bret Fisher

406

Viktor Farcic: It's kind of a doubt that I have. I've been in
a number of situations where I explain containers and then it
turns out that I'm explaining it to somebody who is very new
to IT in general. "What's the benefit of me explaining this to
you?" I feel like asking them, "How can you see the benefit if
you haven't experienced the pain first?"

Bret Fisher: That's tough, but it's possible. If you go back
to 2013, you'll remember that Solomon Hyke, who founded
Docker, talked about why we all teach Docker. He talked about
the matrix from hell with all of the little question marks in the
boxes, and he also explained the matrix of hell and why we
have all of these systems and patches for various things.

Let's say you want to install a Ruby app on my local machine and
my development team has a mixture of both Windows, Mac, and
Linux machines. But then, I also have servers that are Linux, and
some of those servers are in the cloud running a different distribu-
tion of Linux, and I have a different package manager. Now I have
all of these different environments. My goal is to install the same
thing on all of them and to ensure it works exactly the same way
when you hear someone describe that. Hopefully, this will make
sure that you realize you have two options. You can think: "OK,
that sounds very painful," or equally, "I could just do this one
thing and keep doing it over and over." So maybe, if you're brand
new, you should go through that whole "why Docker?" thing.

Viktor Farcic: Yeah, shouldn't that be included in courses?
That's kind of like saying: "I'm going to make you do everything
without Docker to realize how beneficial Docker is, or even
containers in general."

DevOps Paradox

407

Bret Fisher: Exactly, it's like saying that, first, we're going to
do this on Ubuntu. We're going to install your Node.js app on
Ubuntu, and then we're going to use Node v10, which means
you can't use the latest apt-get. Sorry, but you're going to have
to go get something else. You have to build it yourself, and then
we're going to make you do it on CentOS. After that, we're going
to make you do it on Red Hat, Enterprise, and Linux. Oh, and
by the way, we're also going to make you do it all on Windows.
But we're not done yet. After all four of those, we're now going
to do it on Docker on those same four systems. That's going
to waste a lot of their time. And the simple fact is, they may
not want to do that at all. But maybe you would just be good
enough to show an installation document that says: This is
what you would have to do. You just show them these 12 pages
of documentation for how to do this, and maybe that's enough.

The future
of the OS

Viktor Farcic: I have the impression that
many OSes, apart from being Docker contain-
ers, made us question quite a few things,
such as do we even need Ubuntu and
Red Hat?

Bret Fisher: That's the distribution issue. The Linux distri-
butions don't want to hear the fact that they're becoming less
relevant, but the truth is that they are becoming less relevant.
I have no doubt that several of them will succeed in making
themselves more relevant in the container space, and that
they'll come up with tools that will make it worth me using
Ubuntu to run containers instead of choosing something else.
To an extent, it's already true today because I would choose one

Bret Fisher

408

over the other simply because it comes with a more modern
kernel that's going to work better with Docker. If you've got
a five-year-old kernel that's still on the 3 series, I know I'm not
going to prefer you just because I now have to go and update
the kernel before I even want to put Docker on it. So that's
step one.

Viktor Farcic: Back to your question about learning the
basics first, and learning the problem before you can learn the
solution. I've been saying this about things such as TCP/IP, for
example. You've been around long enough to know that when
we got started, we were reading a book literally called TCP/IP.

Bret Fisher: I've actually been trying to suppress that
memory, and you've just brought it back. Thanks!

Viktor Farcic: I remember that the book was actually called
TCP/IP Unleashed, and it was either the 4th or 5th edition
because they just kept re-releasing the books because that's how
we all learned before the age of Google. This meant that, for
years and years, I kept thinking I was lucky to build networks for
the first time. We were switching mainly from IPX to TCP/IP,
Thicknet and Thinnet, and all of these different protocols and
standards to Ethernet. Because of that, I had to learn about TCP
packet size, headers, different protocols, and all of that stuff.

"The Linux distributions don't want to hear the fact
that they're becoming less relevant, but the truth is that
they are becoming less relevant."

—Bret Fisher

DevOps Paradox

409

Bret Fisher: But today, the issue is that you can ask anyone
younger than 30 years old to break down what the OSI layers
are and they're probably not going to know any of it, yet they
can still get employed and do the work.

Viktor Farcic: Which is a good thing.

Bret Fisher: It's both a good thing and a bad thing at the
same time. I was convinced for the longest time that, even-
tually, we're going to have this world where very few people
even understand how networks work. It's all going to start to
just crumble underneath the weight of the lack of knowledge.
In your team, when things start to go wrong, you're thinking
we don't know how any of this other stuff that we use works
because it's always just worked.

It's like public infrastructure. How many of us know how
to fix an electrical grid? None of us do. Yet, when it breaks,
we're all wishing we really could help. But we haven't yet had
a problem, so I don't know. Maybe it's just not a big issue.
When I interview people though, I still ask them questions
like, "Which layer of the OSI stack does a switch operate on?"
or "Which one does a router operate?"

Viktor Farcic: Do you ever get the answer?

Bret Fisher: Sometimes, but it really depends on who you
ask. If they're going to be a developer, they're not going to care
about that. But if I'm hiring a sysadmin or something, then
they should. They all have to really think about it, because to
me, it's the foundation of how everything talks to everything
else. If you don't even know the basics of that, how could you
possibly troubleshoot a computer even in Docker?

Bret Fisher

410

We're creating all of these virtual networks in Docker, but
then the minute you have an IP address conflict, suddenly you
must start caring about subnets and subnet masking.

Viktor Farcic: It opens an issue.

Bret Fisher: Yes, which is for somebody else to solve.

Viktor Farcic: I have a feeling that this is actually where we
are moving in the industry. I see the same thing with program-
ming. Nobody knows how to program anymore, and instead,
we all just know how to use the libraries to do stuff.

Bret Fisher: That's a good point. If you're doing nothing but
libraries, and you had to write it all by yourself, how would you
do it? It sounds like we both learned originally by copying code
out of books, which is how I learned BASIC.

Viktor Farcic: I don't know whether it was happening in
your part of the world, but when I was a kid, I would get those
computer magazines that featured around four to five pages of
code that you would read and write.

Bret Fisher: I don't remember the name of the magazines,
but I do remember my dad bringing home this huge 3-inch
book, and within it, there would be five or six programs. What
I do remember is spending an entire weekend never going
outside, just sitting at the computer typing from the book, line
for line, just to make an app or game.

Viktor Farcic: Let me guess, it's not a strongly typed
language. You needed to finish it before you could discover
if something was wrong?

DevOps Paradox

411

Bret Fisher: Yes! Because if it didn't work, you had to go
through line by line, all 600 of them. This was done on the
Tandy color computer, TRS-80. The biggest problem was that
the saving device was a tape recorder. Because of this, you had
to plug in an analog line, which would make a sound like a
modem to record to the tape. The only way to know if your save
worked was to turn the computer off and then back on, play
back the tape and then hope your program ran. If it didn't run,
you had to type all 600 lines of it all over again.

I just remember the weekend that I left the computer on
overnight because I wasn't finished. I recorded it to tape on
Sunday, I played it back, and it didn't work. I had the sound
up too loud or something, and there was distortion. So, I had
to retype the whole program just to play it again, which was a
horrible way to learn.

Viktor Farcic: I found myself telling the stories in terms of
saying: "You kids have no idea what you're doing." But then I
find myself thinking I sound like my mother saying this new
generation has no idea what to do.

Bret Fisher: Yeah, your story is boring, but you're exactly
right, and that's why this story is boring. Because everybody's
first website is very exciting, no matter how old you are. That
first time you make a program or anything you've coded work,
it's always super exciting to you, and it's always incredibly
boring to everyone else.

Looking into
the future

Viktor Farcic: If you had a crystal
ball, where would you predict we're
going to be in the next year, next decade,

Bret Fisher

412

or even further out? Obviously, now the leading-edge tech is
containers, but what's coming after?

Bret Fisher: I think it's going to take us a long time before
orchestration is normal.

Viktor Farcic: I mean, with that, we're just starting.

Bret Fisher: It's a lot harder now than it's going to be, and it
has to get a lot easier before most people are going to use it. I'm
really a fan of the whole one container per VM concept, such as
Clear Containers with Linux. VMware is doing a little bit of it,
Microsoft's doing it, and Docker's doing it with the LinuxKit.
I don't necessarily know if we're going to end up with a world
where it's a lot of just one container per VM or if it's going to be
this world of mini containers in a VM. But I think locked-down
apps, whatever the future of containers is, will be the norm.

It'll be weird in 10 years for you to be a software company
that sells software that doesn't ship in some form of container
image. I mean, it's kind of weird now, depending on where you
are in the industry. It'd be very normal to download images.
It wouldn't surprise me if we somehow got to the point where
we had a bunch of package managers that were downloading.
Right now, you have to use docker pull to get a Docker image,

"I don't know what the next thing is, and I don't have
the pulse on what's going to replace containers. But
I think it's going to take us a long time to come up with
a new concept at the OS level."

—Bret Fisher

DevOps Paradox

413

but I can see it as the future apt-get. The future of yum is it's
downloading of images, tarballs of container images, and it's
running containerd or something in the background, but that's
just normal for those apps.

But I think it's going to take us a lot longer. I don't know what
the next thing is, and I don't have the pulse on what's going to
replace containers. But I think it's going to take us a long time
to come up with a new concept at the OS level. Everyone talks
about unikernels, but I'm not entirely convinced.

Viktor Farcic: I haven't heard anybody really talk about
using unikernels.

Bret Fisher: No, I think the distribution wars are over. The
future is roll-your-own distribution. All of the distribution
packages will become much more modular, and so it won't
really matter what distribution you're running. I love the
LinuxKit idea. That's something I'm behind.

Viktor Farcic: Likewise.

Bret Fisher: I hope that the idea of building your own distri-
bution catches on and that it becomes more mainstream and
popular. I'd love to be able to say that I'm on DigitalOcean,
or I'm on AWS—wherever I am—and just have my preferred
distribution. I would have a YAML file that makes it, and I
just give it to this instead of me choosing Ubuntu, Amazon, or
CentOS. I'd just upload my YAML, and then they'll make my
OS for me and put it on a virtual machine. I don't know that
it's going to be the future, but I'd love for that to be possible.

Bret Fisher

414

Viktor Farcic: Is serverless computing going to kill
containers?

Bret Fisher: I personally think serverless and containers
go hand-in-hand. You really can't do serverless well without
containers.

Viktor Farcic: Thank you! You're the first one to say that.
I try to explain to people how serverless and containers support
each other, and they all look at me like, no.

Bret Fisher: Serverless is to me containers as a service.

Viktor Farcic: But does that mean everything below the level
of orchestrators and containers is going to be commodities?
Do you even have to care about what's happening below it, for
instance, the operating systems that you commented on?

Bret Fisher: I really don't think so. We've had this talk
before. If we're looking out, five years is a long time. I mean,
five years ago, there were no container orchestrators. Five
years would be two to three times the current lifecycle of these
tools. So, certainly.

Let me back that up. For me, any new tool that I'm going to
recommend to someone has to be able to replace at least one
other tool. It can't be a net add because nobody has any time
for anything new. They can't add another tool to their stack if it
doesn't replace at least one—if not ideally two—tools, it's very
unlikely they're going to adopt it. But right now, I don't feel
like orchestrators will really replace any single tool completely.

DevOps Paradox

415

Viktor Farcic: That's very true.

Bret Fisher: I still need Ansible, Chef, or Puppet to deploy
my servers. But now, you look at something like InfraKit, which
has not yet taken off, but is like a Terraform plus Swarm. It's
basically the idea that the same tool could be my orchestrator
and yet also deploy my infrastructure and manage the infra-
structure all at the same time. That sounds like a better play
and a better pitch to someone.

Now, you've got this tool that you already manage your
infrastructure with, but it's a real big pain to do updates to
that infrastructure. So, what if I gave you a tool that does that,
plus updates and daily automated management of everything?
Maybe that's where we end up in five years. I know today it
can manage your infrastructure, but that's not the always-on
default option.

Perhaps, eventually, whatever tool we're using will be the
same tool to create your infrastructure, update your infra-
structure, and deploy your apps. All of those things happen
by default without any extra packages or any extra tools on
top of it. It just comes as a single distribution of tools. I feel
like that's the only way we're going to get people to adopt it.
Because you've got to get rid of something. And maybe that
means you truly have tools that aren't being used anymore.
Like, we can get rid of Puppet, Chef, or Ansible, and we only
really need this tool.

Viktor Farcic: Because that's kind of a problem. I have the
impression that I'm yet to find a big enterprise company that ever
removed anything. Maybe I was unlucky, but I've never seen that.

Bret Fisher

416

Closing
thoughts

Bret Fisher: The last thing I'll say is that
it's both hard, and rare. A tool has to be
extremely awesome in order to be a net add,
on top of everything you're already currently
doing Docker did that. Docker was beneficial
enough by itself that you could still use your

Ansibles and your Puppets. You were also able to still have
your VMware, all of your apt-get and other package install
tools such as your npms, and your composer. What you had
was this extra tool in the stack and people used it. It's not going
to happen very often, so whatever's next probably won't be
able to do that. But again, I don't know, and it might just be
because I'm skeptical.

Viktor Farcic: Great! I know we're out of time now, so I just
wanted to say thank you for taking the time to talk to me today.
I really enjoyed talking to you, and I hope to talk to you soon.

Bret Fisher: No problem! It's been great talking to you
too, Viktor.

16

Nirmal
Mehta
Technology Consultant

Introducing Nirmal Mehta

Nirmal Mehta is Chief Technologist in the Strategic Innova-
tions Group at Booz Allen Hamilton specializing in research,
implementation, and integration of emerging technologies to
Booz Allen's federal government client base. He leads the firm's
efforts in digital research and development, immersive machine
intelligence, and emerging technology strategy. In addition, he
is a containerization subject matter expert and thought leader
for DevOps practices. He was the lead architect on the high-pro-
file GSA Integrated Award Environment AWS cloud platform,
implementing a first-of-its-kind production open source,
data-centric, microservices-based distributed application in
the public sector. He is passionate about machine learning,
immersive tech, open source, DevOps, and integrating emerg-
ing technologies to answer client needs. He focuses on bringing
leading edge technologies to enterprise systems for commercial
and public sector clients. He is a member of Docker Captains
group. You can follow him on Twitter at @normalfaults,
on LinkedIn at https://www.linkedin.com/in/

nirmalkmehta/, and on the web: https://nirmal.io.

Viktor Farcic: I want to start by simply asking you to
say a little bit about yourself, Nirmal, and your relationship
with DevOps.

Nirmal Mehta: Throughout my career I've had the opportu-
nity to see many organizations follow IT transformation paths,
and through those experiences, I've seen what works and what

DevOps Paradox

421

doesn't in our industry. I strive to distribute knowledge around
emerging technologies, methodologies, and solutions—espe-
cially through DevOps!

Viktor Farcic: So Nirmal, what does "DevOps" mean to you?

The meaning
of DevOps

Nirmal Mehta: DevOps is the applica-
tion of process improvement techniques
from the last century to our modern
IT culture. If I had to offer a fuller defini-
tion, I'd say that DevOps is an IT operat-
ing model that focuses on using tools and

cultural change to streamline and automate the delivery of IT
services. It's modeled after optimized manufacturing models
from the last century by the likes of W. Edwards Deming.

More simply, DevOps is transforming the culture of an organ-
ization into a mindset of achieving a shared goal, versus the
tribes that are traditionally set up in an organization.

Viktor Farcic: Thanks, Nirmal, it's interesting to see how
everyone has such different ways to define DevOps. So, what
do you think is the difference between DevOps and Agile?

Nirmal Mehta: I think the twelve principles of Agile are
guidelines. More importantly, I don't think Agile was meant to
be commercialized and taken over as it has been to the extent

"DevOps is transforming the culture of an organization
into a mindset of achieving a shared goal, versus the
tribes that are traditionally set up."

—Nirmal Mehta

Nirmal Mehta

422

we see today. I think the organizations that are adopting Agile
have been overthinking it a little.

DevOps, on the other hand, is Agile applied across the whole
organization, rather than just its developer process. Perhaps
my distinction is merely semantic, but broadly speaking you
could say that DevOps encompasses Agile methodologies.
DevOps is like a superset.

Viktor Farcic: Yes, I think DevOps is like inviting more
expertise to an organization, or even more automation. This
can open new positions in an organization, of course—and
sometimes I see an absurd number of DevOps engineers in an
organization. I honestly don't even know what one of these is—
how would you define a DevOps engineer?

What is
a DevOps
engineer?

Nirmal Mehta: This is where it gets
controversial because there's no such thing
as a DevOps engineer. There shouldn't even
be a DevOps team because to me, it's more of
a cultural and philosophical methodology.
It's a process and a way of thinking about

things and communicating within an IT organization.

But going back to a definition, I think that a DevOps engi-
neer is a job that signals that an organization, instead of hiring

"There's no such thing as a DevOps engineer. There
shouldn't even be a DevOps team because to me,
it's more of a cultural and philosophical methodology."

— Nirmal Mehta

DevOps Paradox

423

both a developer and an operator, just wants one less person to
do twice as much work.

Viktor Farcic: I love that description. Even though no one
but you will admit it, that's often how it is in reality. You can
tell just by looking at advertised job descriptions for DevOps
engineer roles.

Nirmal Mehta: I think organizations just want somebody
who is willing to both build and operate the software. These
DevOps engineer roles are all over the place, but there just isn't
a single accepted definition for what a DevOps engineer is.

The reason is that DevOps engineers are really engaged in
two distinct things: tools and culture. I believe that DevOps is
mostly about culture, but there are also some tools involved in
the DevOps process that will naturally tilt your organization
toward more DevOps practices. A DevOps engineer could then
be defined as a person who is implementing those tools and
some of those philosophies.

Of course, simply installing some tools won't mean that an
organization is automatically DevOps—you can misuse a tool
regardless of how much magic is in it. So, it's important to also
say that a DevOps engineer is more like a consulting role than
someone who simply operates those toolsets and keeps those
tools running.

Usually, organizations just want someone to come in and
implement those tools. And then eventually they're asked
to just be a developer who also operates stuff.

Viktor Farcic: Yes, I often see cases when existing teams
simply get renamed. They continue performing the same set

Nirmal Mehta

424

of tasks using the same processes and tools but under a more
popular name.

Nirmal Mehta: I was once on a project where they required
a separate DevOps team, which to me didn't make any sense at
all. The DevOps team was on a separate contract, so they didn't
even work for the organization. So, this project had developers,
a security team, operators, and a DevOps team.

Now, you tell me, what was that DevOps team supposed
to do? Their only job was on the last step before deployment
to production. That DevOps team didn't do anything except
handle the sign off before the code went into production.
That was not a DevOps team. They were just a random team,
a random authority, that didn't have a purpose.

Viktor Farcic: That makes me think about sysadmins being
renamed DevOps.

Nirmal Mehta: Yes, that DevOps team was essentially
a neutered quality assurance team that was renamed DevOps
because it sounded sexy.

There is still a lot of whitewashing in terms of DevOps
today. As I've said in one of my talks, if you've spent more
than a month trying to figure out your organization's DevOps,
or you've already spent 15 meetings trying to figure out what
your DevOps is, then you're overthinking it.

"If you've spent more than a month trying to figure out
your organization's DevOps…then you're overthinking it."

—Nirmal Mehta

DevOps Paradox

425

Not everything has to be complex! It's up to you how much
complexity you want to put into the mix at any given time.
Take a good look at your organization, pick some pain points,
and just go from there. Reading some books and implementing
one or two parts of those processes is probably a better start
than debating what DevOps is for a month, which is something
we love to do in IT. We love to just argue about stuff but get
nothing done.

We like to be in our tribes, we like to shed responsibility,
and we have this need for argument and for some oppositional
force, and I think DevOps and Agile help to redefine who
that opponent is. Instead of friction between internal groups,
DevOps directs our confrontational energy toward the problem
that we're trying to solve for our customer. DevOps brings
us into conflict with the actual problem, rather than with
each other.

Viktor Farcic: But then we end up with consultants selling
us month-long training that is supposed to convert us into
Agile experts?

Nirmal Mehta: True, and that's something I can get very
philosophical about: why do we have to have so much training
for Agile? I think all that training is contrary to the goal of Agile
in the first place! We find ourselves enveloped in the minutiae
of all that complexity and we forget the core principles of Agile.

I think that's why the Agile people came up with the mani-
festo, to force us to print it out and put it on a wall. They knew
that if we weren't reminded about the whole point of Agile,
then we'd forget what we're really trying to achieve.

Nirmal Mehta

426

Viktor Farcic: That sounds like a misunderstanding and
over-complication of Agile, which is in its essence, very simple.

Overthinking
DevOps

Nirmal Mehta: As an industry we love
to overthink everything, and I think that
DevOps has the same kind of issues.

DevOps is very simple. DevOps is the
application of techniques for process
improvements that some start-ups,

well-functioning organizations, and smart people imple-
mented. These were shown to other people who said, "Yes, that
sounds great; that's helping us be more efficient, reduce cost,
or make better quality and, you know what, we might as well
adopt it!"

Let's not overcomplicate DevOps. When it's time to lose
weight, simply put more calories out than you put in. That is
the simple fact. Don't be distracted by complex diets because
you want an easy way out. It's the same with DevOps, the
philosophy is simple: get out of your own way.

The DevOps
philosophy – get
out of your own way

The DevOps philosophy is to
get out of your own way. But this
is too hard, of course, so we try
to find a shortcut. This shortcut
might be a tool, a consultant,

some YouTube videos, or a book. At the end of the day though,

"As an industry we love to overthink everything,
and I think that DevOps has the same kind of issues."

—Nirmal Mehta

DevOps Paradox

427

we cannot get away from having to follow the philosophy. We
can implement Jenkins all day, but we won't achieve anything
unless we also follow the philosophy.

This is the fundamental shift that's taking place today in
organizations—it's a realization that actual, productive change
must be a little bit more painful. This is a deep cultural shift,
and we must deal with people, their attitudes, and all that—
including people who just don't want to change.

There's a lot of misinformation about what DevOps is in our
industry today, and that is because no one wants to hear that
it's all about simple but important truths like "more calories
out," and a lot of people don't want to face change. Do you
think organizations such as Facebook and Google are having
those kinds of debates?

Viktor Farcic: I expect that Google and Facebook are having
some important debates, right now, that the rest of us will have
in fifteen years, about machine learning and neural networks.
But Google has also been discussing SRE, for example?

Nirmal Mehta: Yes, organizations such as Google have been
taking some of the most recent debates and codifying them
into service level agreements and Site Reliability Engineering
(SRE) philosophies. There's no escaping the pain.

"The DevOps philosophy is to get out of your own
way. But this is too hard, of course, so we try to find
a shortcut."

—Nirmal Mehta

Nirmal Mehta

428

DevOps
and SRE

Viktor Farcic: Let's explore how the
Google SRE thing relates to DevOps then.
How do you define an SRE?

Nirmal Mehta: A site reliability engineer
is an IT operations engineer who supports

development teams and production systems based on Google
DevOps methodologies.

One of the big things to come out of the SRE philosophies
is that there's a risk associated with the budget of how many
hours the SRE team gives their project team for fixing what-
ever happens.

You can deploy as risky a piece of software as you want, but
if you burn through that budget, that's on you. If you're provid-
ing a service that isn't as critical, you have a higher budget, and
so you can take more risk. Or you could say, "You know what,
I need to save that up for certain times of the year, or certain
events, and balance that out."

This approach in Google's DevOps methodology removes
the ability to skirt around the pain because it puts the pain at
the front and center.

Resolving key pain points is something that a lot of organ-
izations have difficulty with, and it's a very common problem
with Agile. For example, if you're transitioning from Waterfall
to Agile, then the project managers, leaders, and owners will
all want Agile—but Agile with deadlines!

Viktor Farcic: You're saying that managers want others to
adopt Agile, but they don't always want to adapt their own way
of working?

DevOps Paradox

429

Nirmal Mehta: Yes, exactly, those people want Agile with
deadlines because deadlines allow someone to put the blame
somewhere else.

Deadlines are an escape route, whereas Agile just forces you
to think about implementing at a more regular pace, or with
prioritization, and to make decisions more frequently.

Not one person in leadership likes to make decisions at the
frequency that Agile requires because decisions mean respon-
sibility. And a lot of organizations and the folks working within
them are masters at the craft of dodging responsibility. Agile
forces that discussion at the beginning instead of having discus-
sions about priority after the deadline or closer to the deadline.

DevOps is the same because it forces you to understand how
to put your projects into production and to pay for it at the
beginning of the cycle. In DevOps, you're trying to catch things
at the beginning of the cycle, not the end.

A lot of problems we face today are because somebody was
able to avoid making a decision until the very last minute—that
is, when they were forced to make a decision. They probably knew
what their decision was going to be, they just didn't have the
confidence in that decision until they were forced into an answer.

Agile and DevOps force you to make decisions more
frequently, and from the beginning. I think people have a hard

"Not one person in leadership likes to make decisions
at the frequency that Agile requires because decisions
mean responsibility."

—Nirmal Mehta

Nirmal Mehta

430

time with the confidence that is required or the okayness with
failure that one needs to feel, in order to be able to do that.
Ironically, DevOps and Agile will tolerate you making bad deci-
sions more frequently than the older methodologies!

Make [bad]
decisions
more often

Viktor Farcic: Are you saying that organi-
zations and people in IT departments should
make bad decisions more often?

Nirmal Mehta: If you're deploying four
times a year, then you only have four oppor-

tunities to make a decision, and therefore each of those deci-
sions has a big impact. If you are in Agile, you're making a lot
of smaller decisions. If you make a bad decision, you can just
correct it at the next deadline, and you've lost very little. That's
the irony.

Of course, it's still painful if you've made a bad decision,
but for some reason we humans find it more painful to have to
make a decision every two weeks.

I think these kinds of things happen in other industries
as well, sometimes when there's even more on the line. In
the aeronautics, manufacturing, or construction industries,
for example, where when you make a big decision that goes

"If you are in Agile, you're making a lot of smaller
decisions. If you make a bad decision, you can
just correct it at the next deadline, and you've lost
very little."

—Nirmal Mehta

DevOps Paradox

431

wrong, there's a multi-million dollar consequence. Those kinds
of organizations have evolved their own techniques to force
incremental decisions to be made.

Viktor Farcic: Over the last couple of years I've seen a huge
growth of interest in DevOps at conferences. This interest is
often centered around a particular set of themes—immutable
infrastructure, containers, and schedulers. Is there a relation-
ship between them that explains so much interest?

DevOps
patterns

Nirmal Mehta: Yes, there is a relation
between them. And there's a lot of interest
around them because they reflect some
important patterns that people are starting
to adopt right now.

Maybe only ten percent of people out there
really know what they're doing in IT today, and they can't be
in every organization at once. It's debatable whether anyone
really knows what they're doing, of course, because I bet if you
asked those ten percent, they would say, "I don't know what
I'm doing!"

What the ten percent do know is that when they do this,
they're less stressed out. When they do this, their website is
more reliable. When they do that, they get one more extra
customer every time. So that's how they see it: "If I do this,
I get an extra million dollars of investment funding; if I do this,
my evaluation goes up; and if I do this, I have not closed the
door because I'm still competitive." Those are the only heuris-
tics that we have as an industry.

Now, let's take a person in their IT career, maybe they work

Nirmal Mehta

432

on average at between three to six different places, across their
peak career time.

Viktor Farcic: Yes, it's difficult to strike a balance between
being locked in a single company all your life and never expe-
riencing what's happening outside or just switching companies
every few months.

Nirmal Mehta: Yes, so what do we do across our career?
Every year we're like, "Hey, that kind of worked, I spent six
months doing it, and it worked." What we're trying to do, in
DevOps, is gather as many heuristics from each person and
somehow distill them down so that one day we say: this is the
winning heuristic.

For example, Aaron Huslage, who was formerly at Docker
and is now at Red Hat Ansible, comes over to me and he says,
"Why are you guys patching? Just destroy the server and move
the containers to a new patched server. Don't patch retroac-
tively; always move forward." Okay, that's a good idea! That
saves me time because now I have one less piece of software
that I need to worry about.

I think that all we're doing in DevOps is hunting, hunting,
and hunting for these ideas. With each of these ideas, there's
an associated cultural change that needs to happen. The
cultural change that happens when you adopt these practices
is called DevOps.

Viktor Farcic: Are you saying that DevOps only exists
in relationship to new ideas and that new ideas need DevOps
to manage organizations toward cultural transformation?

DevOps Paradox

433

Nirmal Mehta: I think DevOps can be there with or without
those ideas. I mean you can patch with DevOps. And you can
have the traditional operations of DevOps. Just as long as you
understand the communication mechanisms involved, and
that you're going to have to continuously inspect and under-
stand your processes—and be ready to improve them.

After all, there's no timeline for the adoption of DevOps,
and there's no manifesto that says you must achieve greater
deployments of your software.

In my client space, deploying software faster is not always
the real need. And some organizations don't even care about
cost. Across my customer base, it's quite a common situation
that if they don't spend the money that they were given this
year, they will get less money next year, so they want to spend
more money.

That doesn't mean DevOps has no application for organi-
zations in those situations: they can still have other things
they need from DevOps, such as being more secure and thus
more reliable.

Reliability is a big topic. At its core, the reliability of services
is what drives a lot of the interest you see today in DevOps.
Reliability with fewer people is what I think DevOps is. There's
a risk that all these things will reduce the need for people like us.

"There's no timeline for the adoption of DevOps, and
there's no manifesto that says you must achieve greater
deployments of your software."

—Nirmal Mehta

Nirmal Mehta

434

Viktor Farcic: Who do you mean when you say, "people
like us"?

Nirmal Mehta: I mean developers and operations. As these
services become more SaaS-based, I think greenfield develop-
ment of new software is going to be much closer to junior-level,
pre-canned business object stuff, like Azure or Amazon Web
Services, at some point in the future.

Viktor Farcic: So, you wouldn't bet on the future for devel-
opers and operations?

Nirmal Mehta: My gut says that in the future we'll see less
bespoke software being developed in the majority of IT organ-
izations. Instead, new software development is going to be
in the hardware.

The only caveat on that is machine learning, which is already
blowing up into a whole new world of software development.
Programming by combining different deep learning and neural
networks together could become a new field of software devel-
opment, and that might be a transition for a lot of people.
Instead of making APIs for web apps all day long, we're going
to be just optimizing machine learning, and we'll become much
more programmatic. Eventually, eighty percent of services will
be filled from four overlord service providers, and that's it.

"Eventually, eighty percent of services will be filled
from four overlord service providers, and that's it."

—Nirmal Mehta

DevOps Paradox

435

Viktor Farcic: To be honest, I would be very scared if I was
young and had my career years ahead of me because I think
that most people just won't be able to follow the ever-increas-
ing pace.

Those people who are specialized in a single field are at
greater risk of becoming obsolete. I mean, what will happen to
those who spent years working on infrastructure when compa-
nies decide to move to the cloud? Sure, they can apply for a job
in AWS, Azure, or Google Cloud, but I'm afraid that the bar
might be too high for many.

Nirmal Mehta: We've already seen that in the industry; look
at how many organizations are moving to Office 365, and how
many places have their own Exchange Servers. That number
gets smaller and smaller. That was a core role of IT for a long
time, managing Active Directory, Exchange, and MS SQL, but
those days are in the past.

Viktor Farcic: I guess that it puts companies in a sweet posi-
tion where they can dedicate most of their resources into some-
thing that really brings value to them. When you think about it,
does it bring value to a company to manage Exchange?

Nirmal Mehta: No, it doesn't. But what I think is interest-
ing, and this is a kind of a cynical point of view, is that there is
so much low-hanging fruit in a lot of these companies!

This is especially true for companies that have either estab-
lished themselves in a monopoly or have created a big enough
wall through competition or where there's a consolidation of
who works or even competes in that field anymore. For such
companies, there might not have even been a reward for

Nirmal Mehta

436

increasing value. For such companies, there's been no need for
perfection. It's not even that they don't need non-buggy code;
they just need to get something out there, even if it's just bad.

The true
enemy of
DevOps

We're talking here about the true enemy
of DevOps and Agile. This true enemy is not
the benders, it is not the mislabeling of what
DevOps is, and it is not all those difficult IT
shops. The true enemy of DevOps is when the

fundamental balance of everything that we're trying to achieve
no longer matters. The true enemy of DevOps is when higher
quality stuff doesn't matter—when an organization is just
trying to get shit out there.

A lot of the people I meet at conferences are IT people, and
most of them are obviously trying to derive more value, to
make their mark, to reduce costs, or to keep their job. But at a
certain level in most organizations, if you find a non-IT person,
they will probably consider that whatever is there right now is
perfectly fine and that they can squeeze that apple for longer.

Viktor Farcic: I think that we have a serious discrepancy in
velocity. While we're used to the fact that things often change,
and with ever-increasing velocity, the world is still trying to
figure out what that means. Non-IT personnel are still not

"The true enemy of DevOps is when higher quality stuff
doesn't matter—when an organization is just trying to
get shit out there."

—Nirmal Mehta

DevOps Paradox

437

used to the fact that whatever was valid yesterday might be
completely different today.

Nirmal Mehta: Yes, they need to just change the color of
the website every six months, and they're good to go. And to
change the name of the product.

That's why competition is a good thing because the real
enemy of DevOps shows its face in IT organizations where
"good enough" is of a lower quality than any of us want
to work in.

In this sense, DevOps is just a way to do a good enough job
with two or three fewer people, before an organization transi-
tions to an entirely Software as a Service (SaaS) arrangement.
This is the real adversity, and apathy, that DevOps is trying
to fight.

Agile is also trying to fight the apathy. Waterfall was all
about making decisions at the last minute possible, right before
going to production. Agile is forcing those decisions earlier so
that you can't be apathetic to whatever. Instead, you have to
make that decision today about what you're going to work on
and what you want people to work on. Agile is about creating
an incentive to make decisions.

DevOps is very similar in that we're creating an incentive for
people and organizations to make decisions about what kind of
code they want to deploy or what kind of service they want to
deploy.

Viktor Farcic: I think you're right about the role of DevOps,
but I also think that decision-making is what many people
are trying to avoid. This may be the reason why we have such

Nirmal Mehta

438

a huge discrepancy between what we say DevOps is about and
how DevOps is really implemented in practice. A critical deci-
sion area for many organizations today is security. So, how
does DevOps fit into IT security departments?

DevOps
in security
departments

Nirmal Mehta: I think that IT security
is very important, but I also know that we
can very easily underestimate how many
people don't give a damn about security
right now. And that's because, to many
people, the problem of security is just the

same as the problem of pollution. IT security and climate
change are in almost the exact same position from that perspec-
tive: there's a negative externality to what happens.

Let me explain. If Equifax, the consumer credit reporting
agency, gets hacked, which it did, and all our credit information
is breached, but there is no cost associated to Equifax for doing
that, then it's the same thing as if I build a power plant and
I don't pay the price of the pollution I give out. This is a nega-
tive externality that is not associated with the cost, and it's a
situation that doesn't fix itself without the government. That's
essentially what government is for, to eliminate that tragedy of
the commons. I see security as absolutely stuck in a tragedy of
the common situation where there is no consequence.

"I think that IT security is very important, but I also
know that we can very easily underestimate how many
people don't give a damn about security right now."

—Nirmal Mehta

DevOps Paradox

439

If I put 100 dollars into improving my security, and my
competitor puts zero dollars to improve their security, and
we both get hacked, then we both have no consequences. The
only thing I lost is 100 dollars, and my competitor didn't lose
100 dollars. That's the only difference.

Viktor Farcic: My experience from working with enter-
prise-based companies is that security always has the last
word, but at the same time most don't really understand. Too
often, security is about marking some fields in an Excel sheet
and not really helping IT teams develop secure applications.
Too often, it seems as if the only goal of a security department
is to be able to say, "It's not our fault."

Nirmal Mehta: That's the unfortunate situation we're in, and
this is something I would say we faced even before the Spectre
and Meltdown vulnerabilities. These kinds of massive security
bugs aren't going anywhere, but we do not have the headspace
to rationalize how bad the security is. We therefore just bury
our heads in the sand as a civilization and as a modern society,
when it comes to privacy and IT security. I think that we will
absolutely continue to do this unless there are real conse-
quences to the industry, and even then, I don't think change
will happen because it would essentially mean killing IT.

Just imagine if developers had to get insurance on the
code that they wrote, just like a doctor must get malpractice
insurance. If there was a computer or developer engineering
malpractice insurance, like this, it would kill the industry over-
night. Some developers would buy it if they had the money,
but we're already aching for talent and resources now as an

Nirmal Mehta

440

industry, and this would eventually eliminate ninety percent of
developers in the field.

On top of that, all those people who we promised could
become developers because we destroyed their job with auto-
mation must then get insurance against how bad their initial
code could be as they switch careers. The whole idea is just not
practical unless everything becomes more expensive, and secu-
rity is not going to be any different.

Viktor Farcic: I'm surprised that I haven't heard this idea
about code insurance before. The more I think about it, the
more it makes sense. Why would software be any different than
anything else that has insurance? We all use it, we all depend
on it, and malfunction can result in serious damage or even
death. It fits the description of many other things that we take
for granted as being insured.

But, as you say, guaranteeing code quality would ruin a big
segment of the industry overnight. We have somehow become
used to the fact that software doesn't always work, and that
hacking is part of life. There's not a big incentive to make what
we create truly secure—at least not everywhere.

Nirmal Mehta: That doesn't mean that a company can't
differentiate themselves on their security. It's nice to see
companies such as Apple and others where they don't treat us
like products.

"I don't think change will happen because it would
essentially mean killing IT."

—Nirmal Mehta

DevOps Paradox

441

Now, when you come to the business-to-business side of
security, or the e-commerce side of security, I think the answer
is that things will just move to more SaaS-based services.

When you do have conversations with organizations about
moving to the cloud, you start to see how it really is going to
make everything more secure. Why? Because the organization
is then forced to face reality: they must actually do the secu-
rity things that they said they were doing, but they're not! Of
course, Amazon Cloud is also way more secure than a lot of the
places that do it in-house because Amazon has a massive finan-
cial incentive that's missing from many government services.

DevOps has this real opportunity to increase the security
incentive that is missing in a lot of organizations. However,
good IT security still requires strong leadership.

Viktor Farcic: What's missing in IT that needs this strong
leadership? Is it more money being invested, more education,
or better practices? What do we miss in security today? I ask
this because in the companies I visit, I continually find partners
who will say, "Look, you need to fulfill those 35,000 require-
ments, and then you're secure." Nobody I know ever manages
to fulfill their bulk.

Nirmal Mehta: There's a couple of different problems here.
The first one is that there's no glory in fixing a bug or a security
issue, whereas there's always glory in deploying a feature.

The second thing is that fixing bugs, finding security holes,
and doing things the right way often takes more patience,
more thinking, more engineering, more time, and more cost.

Nirmal Mehta

442

These are things that most organizations don't even have to
begin with. Most organizations don't even have enough money
or resources to do what their original goal is with respect to
their software. That stuff is way further down on the list.

The third thing is experience and understanding. How
many people even really understand speculative execution and
processors? If you went to those coding boot camps to become
a web developer, and you sat there and imported 15,000 npm
JavaScript libraries, did they explain to you how a CPU works?
No, they didn't.

Viktor Farcic: And you don't even know what those libraries do.

Nirmal Mehta: Right, and so people who do understand are
expensive and they're few and far between. Their experience
and knowledge are not codified in any software suite currently.
The security software industry is very far behind in terms of
its ability to adapt to more frequent deployments and to bring
that whole entire picture together about common bugs and
penetration testing.

And, of course, this all costs an organization more than
their competitor who decides not to do any of that. There's
still a consequence to maybe losing a customer, but there isn't
really a global consequence.

"There's no glory in fixing a bug or a security issue,
whereas there's always glory in deploying a feature."

—Nirmal Mehta

DevOps Paradox

443

Viktor Farcic: That is until it happens.

Nirmal Mehta: Yes. My gut feeling is that a lot of places are
less secure than we think and that the insurance model just
pays that problem away, instead of them just dealing with it.
It's still cheaper to just pay for the problem than it is to pay the
250,000 dollars a year for a security person.

There are a lot of issues with paying for the problem, and just
one of them is that a security person in an organization that's
not a top-tier place such as Google, Facebook, or Apple is prob-
ably not an expert at all. They've quite likely just done some
training and got certifications. Yes, they're probably smart on
SQL injections and phishing scams, but they're probably only
one member of a small team tasked with that, and they care
more about having dinner after work.

They do have this secret weapon, of course, that no one else
in the IT organization has, and that is the ability to say "No"
unconditionally.

Viktor Farcic: Thou shalt not pass!

Nirmal Mehta: It's like a cognitive bias, and it's like a false
power… but it's not actually a false power—it's true power! And
it's much harder to fight a negative.

Security is not a justice system; you're not innocent until
proven guilty. There are good reasons why you're guilty
until proven innocent with security, and that's why we have
those checklists.

Nirmal Mehta

444

But this means that both your false positives and false nega-
tives are also going to be through the roof because it's too hard
not to say no.

Viktor Farcic: If I'm guilty until proven innocent then I can't
prove myself innocent.

Nirmal Mehta: Exactly, there's no such thing as 100% infalli-
ble and bug-free software. We have non-deterministic complex
systems, and that's a challenge because everyone wants 0/1,
yes/no, but there's no yes/no in a non-deterministic complex
system. There is only a percentage of acceptance and probabil-
ities.

The problem is, security wants to treat everything like yes/
no with a certain amount of risk, but everyone needs to treat
security more like a probability. At the same time, no one wants
to work on the hard thing.

The hard thing here is writing good software without having
to import all these things, and to actually look at all the code, to
look at your open source tools that you're using, to validate what
you're doing, to implement mutual TLS, to renew your certifi-
cates, and to make sure your domain names use two-factor.

"Security is not a justice system; you're not innocent
until proven guilty. There are good reasons why you're
guilty until proven innocent with security, and that's
why we have those checklists."

—Nirmal Mehta

DevOps Paradox

445

These things are so fundamental to security that it's the
same thing as "more calories out than in," but we're all just
looking for a shortcut. And the shortcut for the security person
is just to say "No, here's a checklist of symptoms."

The checklist is just symptoms that have been seen in the
past. It's not a cure, and it's not a diagnosis of a system. It's
just a symptom checklist. Are you sneezing? No, okay. Are
you coughing? No, okay. Do you have a fever? No, okay. Then
you're no security risk.

Fighting
security
threats

Viktor Farcic: How do we fight security
threats, if we can at all? A single person can
do serious damage by exploiting our system
vulnerabilities. How many people, if you can
even put a number on it, do we need to
prevent that person from attacking us?

Nirmal Mehta: That's all we've come up so far with, isn't
it: how do we pay for the problem? How many people? That's
because everything is reactionary.

There's more to this problem though. The core of security in
IT leverages that same power that allows our modern technol-
ogy companies to do amazing things with 100 or 1,000 fewer
people than ever before. But here's the rub: that ability for
technology to so dramatically increase the leverage of a single
person also works for the person attacking you.

It's the same problem we have with terrorism. It costs 500
bucks for someone to become a suicide bomber, but it costs 1.5
trillion dollars to prevent that suicide bombing from happen-
ing. The attackers who are attacking your infrastructure have

Nirmal Mehta

446

the same 1,000x or more advantages that you use to make your
company exist.

It's impossible to really secure against this unless you send
your stuff to space. So, what does all this mean? It means that
you must decide where on the spectrum of 0% to 100% proba-
bility of security failure you are comfortable.

You're still not going to put the equivalent percentage of
actual money toward your security risk, because that is a lot
costlier than you think it is. There needs to be a balance—some
sort of cost/benefit evaluation that puts us in a situation where
we gain as much benefit with as little investment.

Viktor Farcic: What's waiting for us in the next ten years
from now?

Future
technologies

Nirmal Mehta: Part of my job is to look
at future technologies, and nowadays I'm
doing that for the cloud. At a certain
point, it really hit me hard about the
cloud.

Let me tell you. It was when I saw
a slide at AWS re:Invent; it was just a bar chart, and on the
x-axis was 2011, 2012, 2013, and 2014—the years; and on the
y-axis, it wasn't new services, but instead it was the year-over-

"The attackers who are attacking your infrastructure
have the same 1,000x or more advantages that you use
to make your company exist."

—Nirmal Mehta

DevOps Paradox

447

year percentage increase in features that AWS will provide.
The first year on that chart, it was 50%. They added another
50%, so the next one was 100%. Then it was 500%. The follow-
ing one was 1,000%, and after that, it was 4,000%.

If you're an internal IT organization and you're building
services, and you see that graph, and I'm selling the cloud and
the ability to use cloud services to compose and build your own
applications, how do you resist?

It's pretty clear to me that Amazon, Azure, and Google are
making their way vertically. They want to vertically integrate
as much as possible because every time they move up that tier,
they get higher value, so commodities and value bump up.

Now you do that at 4,000% or 5,000% a year, you eventually
run out of stuff to develop. Are you telling me there's not going
to be a service where you just drag and drop three things onto
a screen, and you get a full business application? Of course.
That's the inevitability of that graph.

If that's sustained, and even if it wasn't sustained, even if
they went back to 50%, then they just need to add little bits
and pieces here and there and do a better job of connecting
their existing services together, and there would be no reason
to develop your own software. You'd just have your business
use case, pick the language and the container format, pick the

"It's pretty clear to me that Amazon, Azure, and
Google are making their way vertically. They want to
vertically integrate as much as possible…"

—Nirmal Mehta

Nirmal Mehta

448

CICD pipeline, and you'd be done.
I took some Azure training a year ago, and we had to build

a web API that had authentication. It would take a JSON-for-
matted string, convert it into Chinese, do sentiment analysis,
search Twitter, and then provide a machine learning predic-
tion on what the next word would be in that phrase.

If I had got that challenge five years ago, I would have had
to build an architecture with maybe some machine learning.
I wouldn't know how even to spin up some EC2 instances.
This were pre-containers, but there was no Docker yet, so I
would have had to cobble the thing together and spend 99%
of my time authenticating web connections and running EC2
instances, just getting that stuff up and running.

By contrast, we managed to do all this in our training in
fifteen minutes. We dragged a box onto this window; we then
dragged another box containing Cortana translation services
and drew an arrow, so sentiment analysis was done by Cortana.
We put the API key in there, and we were good to go. We clicked
deploy, and it was a fully load-balanced API, automatically
created, with authentication and certificates already all there.
We hit it with some JSON and boom. Now we could package
that and put it in the marketplace, where we could sell that to
you for 1% per API call.

Viktor Farcic: I would need to make a couple of zillion API
calls, but at the end of the day that would still be a fraction of
what it would cost me to probably never actually succeed in
making it myself.

Nirmal Mehta: Exactly, and so it was during that training

DevOps Paradox

449

that I said, "We will probably be consultants and build this
stuff for maybe fifteen more years, but there is a point in the
future where there will be no more greenfield; it's just going to
be business intelligence applications with us composing them
on Amazon, Azure, or Google Cloud."

There will be some other service that maybe combines
those services together, but at some point, this is going to be
completely vertically integrated. In fact, you can already see it
in Amazon's video editing tools. They released a bunch of 3D
web VR tools, so they're already starting to go against these
industries where it would have been impossible to think that
this would be done in the cloud, but here you are, and so at a
certain point there's no reason not to just to build your own
service anymore.

I mean, Lambda allows you to pay by the call, so if you're a
start-up you don't even need to run a server anymore, and your
costs can become perfectly linear with your customer acquisition.

Viktor Farcic: The cost as a start-up, right at the beginning,
is basically zero because you're very unlikely to reach the limits
of what is free in those first few months.

Nirmal Mehta: I predict that this will be the future. There
will no longer be a conversation between the business owner

"We will probably be consultants and build this stuff
for maybe fifteen more years, but there is a point in the
future where there will be no more greenfield."

—Nirmal Mehta

Nirmal Mehta

450

and the internal IT team. The business owner will just go right
to Azure. Then the business user—not the developer, not an
operations guy, and not a security guy, but the business user—
is going to have their Azure account.

The business user is going to be some savvy intern and the
business owner is going to say something like, "Okay, I need
something to tell me the logistics shipping route of our compet-
itor." To which, the business owner will say, "Okay, boom,
here's a geospatial service." The business owner will then add
a little bit of a machine learning block, put an API in, click
deploy, test it, and that's it. They'll then simply pass a bill to
the business owner.

That's something that scares me, but our DevOps careers will
nearly be over when this stuff really takes off. If I was starting
my career now, I would just do DevOps with data science and
machine learning because if you can collect data and you can
learn from it, that's where the real value is today and in the
coming years.

Viktor Farcic: As you say, it's okay, right? It's like climate
change; it won't happen before I retire. Do you have any
final remarks?

Nirmal Mehta: My final remark is that I sometimes over-
estimate the impetus for change to newer systems, against
the inertia of keeping older systems running. I mean, people

"If I was starting my career now, I would just
do DevOps with data science and machine learning."

—Nirmal Mehta

DevOps Paradox

451

are okay with really bad stuff in IT for a lot longer than you
might think.

That's my parting thought. We can get excited about contain-
ers, CICD, and DevOps itself, but one way or another, at some
point in the future, there will be no need for all this.

17

Gregory
Bledsoe
Agile, Lean, and DevOps
Consultant

Introducing Gregory Bledsoe

Having recently joined MThree Consulting, much of Greg's
focus is in helping businesses achieve delivery of agility trans-
form. Previously, he's worked as an Agile, Lean, and DevOps
consultant at SolutionsIQ. Greg has also written extensively
about DevSecOps, kernels, and virtualization. You can find
him on Twitter at @geek_king.

Viktor Farcic: Hi, Greg! Before we delve into the world
of DevOps, tell us a little about yourself.

Gregory Bledsoe: My career up to this point is entirely down
to the fact that I was a very successful engineer, and because of
this, people promoted me to management positions. That being
said, however, I don't think it's the best approach because good
engineers don't always make good managers. Nobody ever gives
us engineers any training on how to manage, nor do they take
the time to explain what we're actually supposed to be doing
as managers. Because of this, I had to reinvent myself into this
manager role, where I've actually applied the engineering prin-
ciples of fail fast, experiment, and measure the outcome to see
what happens. This all took place in a time before DevOps was
even a word; but, looking back, I see that I was already incor-
porating the principles of DevOps as a core part of my way of
doing anything in the industry. Through that process, I learned
that you couldn't do the engineering and the management role
at the same time.

DevOps Paradox

457

Over time, I continued to work at various companies, and
gradually, I got invited to speak at more and more confer-
ences. Fast-forward to today. My latest ventures have been
with Accenture/Solutions IQ, the management consulting and
professional services firm, and MThree Consulting, where I'm
concentrating on training and providing emerging talent to the
Fortune 100. But bringing it back to the idea of DevOps, I find
myself perfecting the DevOps+ methodology in my new job.
It's worth adding, and I'm sure we'll come back to this, that
I included the "+" because the methodology includes DevOps,
in addition to both Agile and Lean.

DevOps and
Deming's ninth
principle

Viktor Farcic: That nicely brings me
to the first question I have for you,
which is: what does the word DevOps
actually mean? I've spoken to a number
of people, many of whom are featured in
this book, and when I come to this ques-

tion, I don't think I've ever received the same answer. What's
your take on it?

Gregory Bledsoe: The whole idea of defining what the word
DevOps means is probably the most fundamentally misunder-
stood question out there. That's not to say that the question
itself is wrong because, while there are many valid answers,

"What the word DevOps means is probably the most
fundamentally misunderstood question out there."

—Gregory Bledsoe

Gregory Bledsoe

458

there are infinitely more invalid answers, and that's fundamen-
tally the problem we have. Even when people are giving valid
answers, they're only partial answers, and those giving the
answers don't fully understand the overall scope of the ques-
tion. As an industry, we're constantly learning new lessons and
incorporating new things, and DevOps is a way to collect the
best practices of everyone. Because of that, I've stopped trying
to define it simply because the definition changes every day.

Did you know that, at its core, the word DevOps comes from
the 14-Point Philosophy of William Deming, an American engi-
neer and statistician? In that list, the 9th principle is, Breaking
down barriers between departments. That's literally where the
names Dev and Ops come from. Thus, you can't define DevOps
without including Deming's concept in said definition. When
we started with DevOps, we didn't know if we were specifi-
cally implementing DevOps or Deming's 14 points, but at some
point, we figured it out. Let's say you're applying a Lean meth-
odology; in 2018, it grew so far beyond what it was originally.
We realized that what we're really doing is progressively imple-
menting Deming's 14 points into software development. And
once we've done that, we've then got to move on and drive out
the fear, while continuously improving and getting everybody
on board. Then, we've got to make everybody agents of trans-
formation. If you don't understand that all of those things are
implicitly included in defining what DevOps is, and they're not
included in your DevOps definition, then your DevOps defini-
tion is probably wrong, or at the very least, incomplete.

Viktor Farcic: I actually think that's a great view. What you've
managed to do is show a lot of thinking behind the meaning of

DevOps Paradox

459

the word, which is often omitted. But in the Gregory Bledsoe
dictionary, what's the definition next to the word DevOps?

Gregory Bledsoe: As we discussed, before I give you my
answer, I need to come up with a definition of DevOps that
won't change. Because it's the overarching umbrella that all of
DevOps falls into, my definition of DevOps is "reorganizing IT
around business value." Within this definition, we've included
Lean by reference, and likewise, we've also got all the canoni-
cal DevOps elements that we've already incorporated, but we
haven't excluded any other future best practices. I think that's
the one that should propagate now, and that gives us great
freedom not to exclude new innovations. Because, when that
happens, and something, such as DevOps, becomes so defined,
it ends up squeezing out the new innovations.

I'm not a big fan of prescriptive frameworks that purport
to solve every possible problem, because the problem set that
we as an industry face changes too rapidly for that to be true.
Whereas really, everything has to be open to interpretation
and to change as the context itself changes. What we all want
out of a definition of DevOps is something that tells us funda-
mentally what it is but doesn't exclude all the new innovations
that we haven't even thought of yet that are coming our way.
We've already got this pipeline of possibilities out there, with
the likes of serverless and unikernels beginning to make their

"My definition of DevOps is 'reorganizing IT around
business value'"

—Gregory Bledsoe

Gregory Bledsoe

460

way into more and more places. But the way that we interface
with the technology is going to change so unpredictably over
the next two years that all of that might get thrown out the
window for something else.

A great example is the direct neural interfaces that are start-
ing to come along. We've already got artificial reality in the
form of virtual reality, as well as artificial intelligence. If we
feed artificial intelligence feedback directly into, say, an arti-
ficial reality or a virtual reality environment, then we're using
a direct neural interface. The issue we have is that we have
absolutely no idea what the world's going to look like in two
years, and we have no idea how to adapt our processes to that
upcoming change. The fact is, what we all need to do is abandon
the idea that we can build a five-year roadmap for DevOps
because, as we've just talked about, we can't even predict two
years into the future. Instead, what we can do is begin imple-
menting the best practices now, trying to mature it as best we
can, but to ultimately be ready to reinterpret, unlearn, and
relearn as quickly as possible.

Viktor Farcic: That was a great answer. It's really good to get
behind the thinking of the question. The only problem I see,
which is similar to when you mentioned how we don't know
what's going to happen in two years, is that I get the impres-
sion that a large number of companies, especially the bigger
ones, don't even know what's happening today.

Passing the
baton between
generations

Gregory Bledsoe: Do you want to
know a secret? The truth is that many
of the big companies out there don't

DevOps Paradox

461

actually have an idea what their actual environment is today.
There are elements of those environments that have become
a black box, and the people who originally built those elements
of that big company's environment have left. The issue is that,
now, no one at the company actually knows how that element
works. The scripts and the deployments are all scriptures that
were handed down from past generations that in the current
generation, nobody really wants to dig into and try to change.

The holy writs are beyond question. You don't even really
know how it works after a certain amount of time. So, I think
you're exactly right. Even the bigger companies don't know
what's happening in their own environment today.

Viktor Farcic: That being said, I don't personally think
that's a bad thing. The worst case is that some companies are
convinced that they know what's going on today.

Gregory Bledsoe: This is one of my big points. I always
paint it in a way that says the executive management in these
companies is sitting at the end of a game of Chinese whispers.
In the game, you have a long line of people where one person
whispers something to another person, then the next person
whispers it to the next person, and so on. The idea is that
they're all trying to whisper exactly what they heard, but by the
time it comes out the other end—in this case, to the executive
management—you end up with something radically different,
and everybody laughs when he or she compares what came out
of the two ends.

All of their information is filtered through so many layers,
and the incentives for filtering are not to be transparent and

Gregory Bledsoe

462

not to give accurate information. So, the best case is that
they can't have the best and most accurate picture of what's
happening. Meanwhile, the worst case is that everything has
been filtered through the lens of: what does my boss want to
hear? It's inevitable that, at the top of the chain, you have no
idea what's really happening on the ground, and the more you
think you do, the more you find yourself being wrong. Unless
you actually measure it—which is one of the components
of DevOps—and you're doing culture and satisfaction surveys,
you'll find yourself having to really put some deep thought into
the metrics that matter.

Furthermore, unless you know that you're validly gathering
them and unless you know what they mean, and what action
you're going to take if measurements go up or down, then you
really can't have any idea what's happening. We can pretend we
do, but it's totally impossible. To me, the whole advance of IT
in the last 15 years is starting with extreme programming. And
then, with Agile and both the formal Agile Manifesto and the
Agile principles, it means we're progressively learning to stop
pretending we know what we don't know.

Viktor Farcic: I like that idea of effectively learning to admit
when we don't know something.

Gregory Bledsoe: Right! We're crushing the hubris of these
few people—this aristocracy—that are better enabled by
education, breeding, birthright, or whatever the factor is, that
somehow gives them a better ability to make all of the deci-
sions and filter all of this information.

DevOps Paradox

463

We have to make every decision at the highest point possi-
ble because the ones at the top are the only ones that actually
know what's going on. What we need to do is stop pretending
that that's true because, in actuality, that's the complete oppo-
site of what's true. The real truth is that we need to make every
decision at the lowest point possible because that's where the
accurate information can be found.

Our organizations have to develop an autonomic nervous
system, where most of the decisions are being made below the
level of attention to strategy. If they find that the executives
have to get involved in day-to-day operations, then there's
something desperately wrong. Your executives should be doing
a meta-analysis, setting a strategy and asking the right ques-
tions. Then, the alignments to our predictive autonomics are
all wrong, and that's one of the things where DevOps, Agile,
and Lean are fundamentally correct.

We're trying to collapse those silos and remove the cover-
your-butt culture of finger-pointing, credit-taking, and
blame-shifting to create these empowered cultures where
people actually feel like they own a piece of the outcome, and
not just this tiny little slice of the process. If people are able to
solve their own problem—and they have to destroy the entire
rest of the process—fundamentally, they will, because then you
get the response of: "It's not my job; somebody else is supposed
to worry about that." This is what these cross-functional
collaborative teams fundamentally solve, by making everyone
an owner of the outcome.

Gregory Bledsoe

464

Nokia – the
fall of a giant

Viktor Farcic: A while ago, I spoke
with a friend who worked at Nokia.
I asked him, is it really possible that
Nokia didn't see the smartphone coming?
Because you'll remember that, back in
the day, Nokia was at the top of its game.

Their Nokia 1100 series of phones have, to this day, sold over
half a billion units and remains—combining the 2003 and
2005 model—one the two most popular handsets in the word.
In fact, seven out of ten of the best-selling handsets of all
time are Nokia devices. Yet, in Q4 of 2017, the company only
grabbed one percent of the market share, shipping only
4.4 million units.

I asked my friend if it was really possible that Nokia didn't
see the coming smartphone wave and the impact smart-
phones would have on the industry. He answered by saying
that everyone at Nokia knew what was coming and, more
importantly, what needed to be done, but nobody dared tell
that to management. That's the crux of the problem we have.
It's what I refer to as a cultural artifact because everybody
knows what the people above them want to hear. They know
what they'll be rewarded for, but equally, they also know what
they'll be punished for, and telling upper-management the
truth and having the hard conversations is something they
know they'll probably be punished for. But then, to me, the
question is: in such an organization, who can actually initiate
that change?

DevOps Paradox

465

Initiating
change/taking
responsibility

Gregory Bledsoe: Everyone and
anyone can initiate that change
because, at the end of the day, it's all
our responsibility. If you're dancing
with your dance partner, and you want
to change the dance, you can't force

your dance partner to change their steps but you can change
yours, and when you change yours, your partner has to adapt.

I remember the very first conference I keynoted was themed
on overcoming obstacles to DevOps. One of the things I pointed
out is that anyone can initiate change, and there's a ripple of
that. If you understand this ripple effect, you can take advantage
of it. You can identify your allies; you can influence the influenc-
ers and manage your managers and spread this good change.
This is something you can do from anywhere in the organization.
You're able to inspire people; you can articulate the argument in
economic and mathematical terms and through measurement.
You can always start doing that. You can nudge the bar, and
that's the only way to do it from anywhere in the organization.

Now, obviously, you can do this more effectively if you
already have the positional power within the organization. But
even from the bottom of the organization—and this is one of
the things that I feel made me such a good engineer—I was able
to get people on board with what I wanted to do. I could get

"Everyone and anyone can initiate that change because,
at the end of the day, it's all our responsibility."

—Gregory Bledsoe

Gregory Bledsoe

466

people who had no personal incentive to help me to accomplish
something. Now, why was this? It was because we could then
both go and sell that to our managers as a part of the value that
we produced. But I had to sell them on the value; I had to make
the economic argument.

If you're at the bottom of the organization, making this
economic argument and starting to change your dance steps by
beginning to pull in more collaborators and starting to nudge
the bar by setting yourself up is designed not to win today's
argument, but to win tomorrow's argument by playing the long
game. Change is incremental, so people don't actually know
that things are changing until they hit a critical mass of people
who want this change. Then, the change becomes inevitable,
no matter what the executives want.

People who don't have positional power underestimate the
power they do have. At the same time, executives underesti-
mate their power as well because they're used to going into
a meeting and saying: "Tell me the problem and tell me all your
potential solutions," then simply asking people to do a given
solution. It's a fundamentally backward way of managing, but
it's the customary way we do it.

It's the artifact of Taylorism, the idea that, after the Indus-
trial Revolution, Frederick Taylor was the only management
game in town, and we all absorbed that. But it's time to move
on. I know I've said it before, but in a large corporation, you've
got to identify your allies, you have to influence the influenc-
ers, and you have to manage your manager. If you manage to
do all of that, then you can start the transformation, and you
can lead it at any point in the organization.

DevOps Paradox

467

Viktor Farcic: But then, there is the problem of time. When
I speak with people, and then I start giving them stories, I often
get the answer: "Yes, but I don't know what to do. I don't know
where to start, and for 20 years I've been continuously working
on a project that was supposed to be done yesterday."

Gregory Bledsoe: So, that's another point where you have
to make the economic argument. This is the Agile principle of
sustainable pace. A lot of people who are implementing Agile
into their projects want to do a flexible scope but fixed date,
which is actually the opposite of what you want to do. What
you want are a fixed scope and flexible date. When you do a
flexible scope and fixed date, you just keep pouring things on
people, and those people become overburdened. Now, no one
has the time to even think about how to make things better,
much less actually work to make things better. This is another
one of the Lean principles, where, again, you can make this as
an economic argument. You have to sell it to your manager,
and you have to help your manager sell it to their manager.

What we have to do nowadays is carve out time for improve-
ment. Again, this is purely economics. You can make the graph
showing that your technical debt grows because you're only
ever building things and never fixing them. Eventually, that'll
make the system grind to a halt, where you can't touch anything

"You have to sell it to your manager, and you have
to help your manager sell it to their manager."

—Gregory Bledsoe

Gregory Bledsoe

468

without breaking everything. Over time, the system becomes
more fragile. These are economic arguments that you can make
because they're mathematical and certain; there's not even any
doubt about this.

Viktor Farcic: So, to change the environment in which
they work, people need to make the economic argument
to their boss?

Gregory Bledsoe: Exactly. If you want to start changing the
environment in which you're working, then you must carve
out time for improvement. You have to educate yourself on
the mathematics and the economics behind the changes that
need to be made. This is something that you may have to do in
your own time because, again, you're underwater with deliv-
ery demands.

Once you start doing that and once you begin making and
eventually start winning the economic argument, which will
happen if you make the argument consistently enough because
it's a mathematical certainty, then that's when you can really
start to roll out the change. Here's another fundamental thing
about people: we copy what works. Even when we don't know
why it works, we'll still try to copy it, and if over time, enough
people get it right, we'll be able to articulate why it works. Only
then does it start to really be adopted, and the uptake really
picks up.

You only have to look at how Edward Deming's theory was
rejected in the US because they thought they already knew
what to do. Edward went to Japan, and suddenly Japan started
kicking the US manufacturers' butts in the market. Only then

DevOps Paradox

469

did the Americans take notice and start trying to copy what
Japan was doing, but it took them a really long time to adopt
that. It wasn't until 30 years later that they worked it out
because they didn't bother to try to understand why it worked
fundamentally, they just tried to copy process examples. But
the difference was far deeper than that.

What makes the difference between somebody who comes
into work and cares about the outcome of their work versus
somebody who comes in, punches the clock, does what they're
told, and then leaves, not caring? Drucker and Deming pointed
out that, if you can take a clock puncher and put him in another
environment where he becomes invested in the outcome, his
performance is totally different. The same person in two differ-
ent cultures will produce vastly different results.

That's the secret the Japanese learned from Deming really
early on, that when you take these ideas, and you root them in
your cultural soil, it allows you to empower people to improve
the process. You reward them for pointing out problems,
instead of punishing them because we don't care about the
perception of failure. We care about the reality of success.

Viktor Farcic: But in your view, what prevents us from
understanding, instead of just blindly copying, things? Is it
vanity or a lack of capacity?

Gregory Bledsoe: It's a mixture of pride, hubris, vanity,
laziness, and greed. Nobody wants to say to themselves that
the way they've run their career for the past 15 to 30 years has
been wrong and that they've managed to succeed in a patholog-
ical system by adapting to it. But, in today's world, that's not

Gregory Bledsoe

470

going to work, so we fundamentally have to change the way we
do this. It's an extremely difficult thing to come to grips with.
People always want to make the economic determination that
they want to do the easiest thing. But we're wired that way.
We want to do the easiest thing to get the results we want, and
if we don't take the time to really try to figure out what is the
easiest thing to get the results we want, then we do the thing
that looks the easiest to us.

For example, as a company, we'll just install Jenkins. We'll
start with tools that are trying to copy these process exam-
ples. But if that doesn't work, we'll get a pilot team, give them
everything they need for success, and put all of this focus on
them. We've put a lot of attention behind it. We clear out all of
the obstacles and then, it's a smashing success and you build
this pipeline of continuous delivery. But then, you try to repli-
cate those results outside the pilot, and you can't because the
pilot had all of the intention and all of the focus on clearing
the obstacles, and all of the rest of the teams don't. When the
pilot team no longer has that, all of the integrations they build
in the pipeline break, and then it's like: whose job is it to fix
them? Well, it's nobody's job because integration is a function
of collaboration.

"Collaboration only ever happens when the incentives
are aligned. Misaligned incentives are an artifact of
corporate culture and the incentive structure produced
by the silos."

—Gregory Bledsoe

DevOps Paradox

471

Collaboration only ever happens when the incentives are
aligned. Misaligned incentives are an artifact of corporate
culture and the incentive structure produced by the silos. In
a nutshell, in order to reorganize your culture, you have to
attack the incentive structure. But again, it's fundamentally
different and not at all compatible with how we've always done
things, and that's hard to come to grips with.

Fixing the digital
transformation

Viktor Farcic: Part of what you're
saying reminds me of the digital
transformation. Every company has
been doing the digital transformation
potentially for years, and they've all
made a new department but with the

same people. They've brought in Jenkins, Kubernetes, and
whatnot, but I'm yet to find any improvement to come from
those digital transformations. Maybe I'm paranoid, and I'm
exaggerating, but I just don't see any improvement.

Gregory Bledsoe: Firstly, you're not paranoid or exaggerat-
ing. In a Fortune 500 company, what you've described is normal.
These companies have been trying to make these changes for
years, but they're in exactly the same position that American
manufacturing was in, where it's just not working, and they have
no idea why, because they fundamentally don't understand it.
Remember Deming? It was he who specifically was asked: "Well,
if Japan can, why can't we (America)?" He responded by saying
that Americans simply expect miracles. They want to copy the
process examples and expect to get the same results, but the
issue here is that these companies don't know what to copy.

Gregory Bledsoe

472

This is the story of the new digital transformation that's
going on right now in most of corporate America. There's been
no deep thinking or sharing of a vision across the organiza-
tion to build consensus or incentives to collaborate. People
are putting a lot of work into building this sophisticated auto-
mation framework, but they're not building a sophisticated
collaboration framework that incorporates the sharing part
of DevOps. Corporate America is not giving people incentives
to collaborate.

But at the same time, the people that you want to give incen-
tives to in order to collaborate don't necessarily understand the
secret sauce either. You can make them sit in a feature refine-
ment meeting, but you can't make them start thinking about
what they actually need to do together until the work arrives
on somebody's desk as a work item. That's what they're used to
doing. We wait for it to be thrown over the wall to us, and then
we start thinking about what we actually need to do with it. But
the whole purpose of feature refinement, story refinement, and
Agile is that we want to start unearthing as early as possible
what we don't know that we need to know.

Viktor Farcic: So, how do we go about fixing this? Because,
to me, it sounds like this would solve a lot of the issues we've
been talking about.

"Corporate America is not giving people incentives
to collaborate."

—Gregory Bledsoe

DevOps Paradox

473

Greg Bledsoe: We need to start using a shift-left mentality.
I've sat in story feature refinement meetings where nobody
asks any questions, and nobody has anything to say. The first
meeting has just burned. It's useless because people are used
to just waiting for work. For instance, the developer will open
up the IDE, start a big if loop, and then start thinking about
how he actually needs to do the work to accomplish this. But by
this point, it's way too late.

You're still going to run into the same problems that you
would in a Waterfall culture, where you don't understand that
you didn't have everything you needed. But now, at the last
second, everybody's going to be scrambling to try to make things
work and make fundamental changes to the other components.
The whole point is to develop as early as possible.

Changing that mindset from the top down is not an easy
move, but it's the first thing you must do in order to under-
stand how it has to change. We haven't even cleared this hurdle
most of the time, but what does an empowered, collaborative
culture mean? People are trying to do these digital transfor-
mations, but they don't even understand what it should look
like from the ground level. You can't make changes on the
ground that are all going in the same direction without a grand
vision. But a grand vision without understanding how that also
affects people on the ground is useless. It has to come from
both directions, and this where your collaborative framework
has to come into play.

Viktor Farcic: But then, we have a third influence, which
I see as an external one. Let's say I brought in this tool that's
supposed to make me DevOps certified. Or likewise I brought

Gregory Bledsoe

474

in this consultant, and we're doing daily stand-ups. I get the
impression that you go to conferences a lot, where everybody's
trying to sell the nirvana these days.

Gregory Bledsoe: Of course, there's truth in that. There's
a big market in telling people what they want to hear. The
easiest way to sell something is tell them that you have a magic
bullet that's going to solve all of their problems, and they'll
eat it up saying: "Oh, yay! We're going to buy into this!" But
that doesn't work because the person who's buying it didn't
know what questions they needed to ask, and the person who's
selling it, at that point, has already made the sale. But by then
they've already got their foot in the door, and the more it fails,
the more they get to charge. This incentive structure is funda-
mentally misaligned.

The market for telling people what they want to hear is too
big, and there are too many people willing to sell into that
market. We've got to change this from both ends. As consult-
ants, if we want to really change the way this works and, as
a result, maximize our value to the client, then we have to
sell in a fundamentally different way. We have to go into the
account and give them the hard truths right up front and get
them used to hearing that from us rather than thinking: we'll
just tell them what they want to hear. We'll promise them we
can do anything, and then once we're in the door, we'll start
trying to have the hard conversations with them. That simply
doesn't work because, now, you'll just get subsumed into their
culture, and you can't change their culture. You'll just get into
the yes culture because they don't want to hear anything at
that point. All they want to hear is yes, and you can't change it.

DevOps Paradox

475

You got off on the wrong foot, and that's really hard to change.
As consultants, we have to approach these client relationships
differently. We have to be willing to tell them the hard truths
right up front, and get them used to the fact that that's what
they're going to get from us. But the thing is, after the initial
shock, people really appreciate that honesty, and they under-
stand that, now, they're attacking the right problems.

In DevOps, we work with three things: people, process, and
tools—in that order. There's a reason for this order, because
people drive the process. Once you understand what your
process should be, you then have to find the tools that fill the
gaps in your process and help you to both eliminate waste and
reduce the wait time and friction. But the real problem is that
it's too easy to buy a tool and then try to build a process around
it and even force people to use it.

Viktor Farcic: But that's the thing. In my view, almost every
tool is a result of somebody's process and culture, Kubernetes
being a prime example. It's about different organizations that
end up in a platform. One thing I don't understand is how
people assume that something made in a completely different
culture will work in their culture.

"The market for telling people what they want to hear
is too big, and there are too many people willing to
sell into that market. We've got to change this from
both ends."

—Gregory Bledsoe

Gregory Bledsoe

476

Gregory Bledsoe: You've just hit the nail on the head. The
simple answer is that it won't. The first thing you have to under-
stand is: What's the idea in the context of your culture, in the
context of your organization's values, and in the context of your
organization's specific business context? What's the process
that you need? What's the idea for you to deliver value with
the least wait time? Only when you've answered those ques-
tions do you go looking for the tools you need. You've got to ask
the fundamental existential questions first: Why do we exist?
What is the reason people are going to give us money? How do
we pay off on that value as efficiently as possible? If you don't
start with those questions, you can't get to the right answers.

Agile versus
DevOps –
is there any
difference?

Viktor Farcic: But then if you ignore
the implementation on conceptual
grounds, is there any real difference
between Agile and DevOps?

Gregory Bledsoe: Yes, there is. Accen-
ture has recently bought SolutionsIQ, a consulting organiza-
tion that specializes in building business agility. SolutionsIQ is
really good at developing those deep and trusted relationships,
where they're telling people the hard truths and helping them
to incrementally move toward a less pathological and more
empirical structure and delivery chain.

SolutionsIQ views DevOps as a delivery method for your
Agile infrastructure and process, which is not wrong. But I view
DevOps as encompassing Agile and extending it because DevOps
took a lot of stuff from Agile in the first place. For example, the
cross-functional collaborative team: we've extended that. We

DevOps Paradox

477

collapsed additional silos because we wanted the development
in the business to work really well together in Agile. Then, with
DevOps, at first, we wanted the development and the opera-
tions guys to work really well together. But then we said: "Well,
why should we stop there?" By this point, you're now realizing
that you've also got to bring in the monitoring and security
guys, and before long, you realize you've also got to bring in
the testers, and then pretty much everybody else. You've just
got to extend the width of that collaboration and get every-
body shifting left to solve all the problems as early as possible
because, if it doesn't work that well, trying to bolt security on
at the end doesn't work either. You've got to change that and
shift it all left. That's the DevOps mentality, which embraces
an extended Agile.

Agile and DevOps are the peanut butter and jelly in a Lean
sandwich. They really go well together, and you can't be
super-successful with one without the other, though this allu-
sion may not work everywhere. In Germany, you could say, for
example, it's like bratwurst and sauerkraut. The point is, Agile
and DevOps complement and extend each other really well.

Interestingly, another problem I've noticed is that people
who buy into a prescriptive Agile framework really get married
to the cadence, the pace, and the experience. But with DevOps,
you'll get to a point where you don't have to wait on the sprint
to be able to deliver; you're able to deliver everything as soon
as it's ready. When it's ready for production, it goes to produc-
tion, and then you want to shorten the time it takes to get
something ready for production. In my view, as you mature
with DevOps and Agile, the sprint cycle can dissolve into

Gregory Bledsoe

478

continuous delivery. But you'll hit a wall if you're married to
that prescriptive framework, and this is why I don't like them.
You can use them as a guideline, but they're not scripture, and
they're not holy. There's nothing that they teach you. All of the
elements of Scrum and Kanban were made to teach principles,
not to be the end-all and be-all mechanism.

Viktor Farcic: But they might be made to teach principles.
I've not seen that in practice. I mean, people often say, "Oh, I'll
do Agile." Well no, because out of those principles, we're not
practicing this one.

Gregory Bledsoe: That's right, and it's why when you're
trying to do something new, a prescriptive framework can be
helpful for a period of time. But it's also important to know
when its value has declined to the point where the amount
of waste and overhead it introduces has now outweighed the
benefits. The issue is that it's a calculation that is difficult and
different for every organization.

A prescriptive framework could get you away from the
Waterfall culture, and to completely remove yourself mentally
from Waterfall can be good, but you have to go beyond just
those basic prescriptive elements. You have to adapt it to your

"In my view, as you mature with DevOps and Agile, the
sprint cycle can dissolve into continuous delivery. But
you'll hit a wall if you're married to that prescriptive
framework, and this is why I don't like them."

—Gregory Bledsoe

DevOps Paradox

479

organization, just like DevOps. But as we've said before, there's
no one true way of DevOps. You have to adapt it to your organ-
ization. And that's the other big problem with DevOps imple-
mentations. People want to be told exactly what to do all of the
time. They want to be in a world where someone else has to
do all the thinking for them, but the answer is no. You have to
get everybody in your organization thinking about these, and
that's how you're going to get the best possible answers.

Viktor Farcic: But isn't that a vicious circle? You have
a minority of people trying to change a majority of people that
are entrenched into that old way of working. Then, in the case
of the minority managing to change something, they've started
doing the same thing because now, nobody moves from this
new position.

Gregory Bledsoe: It can become a vicious circle. There
are very important anthropological and sociological reasons
why beliefs and habits stick, and we have what you can call
the sameness or the consistency bias. The idea is that we want
today and tomorrow to be the same as yesterday because we
already understand the threats and opportunities of yesterday,
and to have to continually refactor our own cognitive mecha-
nisms to deal with new threats and new opportunities is hard.
We're entering the age of exponential change, where every
day will look more different than the day before, and until we
can develop that systematic way of empirically validating your
change—when you do that, then it's much less scary.

Take the cycle of innovation, and the original amount of
time it took for innovation to spread and be built upon was

Gregory Bledsoe

480

a millennium. But then, it went to centuries and then decades,
years, and now it's just months. Before long it'll be weeks, and
then days before finally, innovation will be instantaneous and
without pause. Why? Because we're entering an age of expo-
nential change. We have to understand why it's hard for us
to adapt, to change, and we have to understand that change
can't be unanchored from our superstructures because we have
these kinds of cultural and ideological superstructures that
give us things such as values and ethics.

In the 20th century, we learned that when you try to change
everything all at once, and when you try to detach from all of
those superstructures, the results you get may not be that good.
You just have to look at how, in the 20th century, 200 million
people were killed by their own governments, who tried to
detach from all of the superstructures of society. So, the key for
us is that we have to not only learn how to manage this change
but also how to embrace it.

Viktor Farcic: Is that something we can even stop?

Greg Bledsoe: The thing is we can't stop it. It's going to
happen. What we need to do is to anchor it to something, and
that anchor has to be our values. But the issue with this is that
we have to understand what that looks like, and, for a lot of
people, that means going all the way back to an Enlightenment
philosophy. It's the reason why these conference talks, books,
and podcasts are akin to a dark intellectual web tied together
into forming new superstructures. These new superstructures
that are going to guide us into the age of unprecedented expo-
nential change are anchored to modernity and Enlightenment

DevOps Paradox

481

values, and we're returning to that, and we see that it really
works. I feel like we're now entering the post-post-modernist
age, and that the counter-counter-revolution is, as a result,
beginning. But the key here is that DevOps is the tip of the
spear of all of that.

I know that's kind of grandiose, but when you really start
to get why all of this works, you'll see it works for the same
reason that Western liberal democracy works. Empowering the
individual and tying the success of the society to the success
and freedom of the individual, their empowerment, and their
sense of ownership over their own life is super-powerful. The
standard of living in the world today is ridiculous, compared to
what it was just a hundred years ago, and we're not really even
celebrating that because we're too busy worrying about all of
the things that are still bad. But if we can embrace this change
and this new kind of post-post-modernism, then we can even
accelerate that good change. If that's the case, then who knows
where it can go?

DevOps in 2019 –
success or failure?

Viktor Farcic: But would you say
that DevOps in 2019 is a success
story? Can I go to a company, and
say: "Look, a lot of people are on
board, and they saw success, and as
a result, they're doing great. It's

only you who's missing the train." Or, have we just seen the
start of the transformation, and we're yet to see real adoption?

Gregory Bledsoe: In most cases, the adoption is superficial.
It's trying to slap a process example on top of a pathological
culture because cultures are built accidentally. Almost no one

Gregory Bledsoe

482

intentionally builds the culture they want, with a goal in mind.
It's an accretion of reactions to events. That's how cultures
normally accrue. To consciously deconstruct and reconstruct
that is hard, which is a big part of what a true transforma-
tion is. There's a tiny minority of people who are intention-
ally trying to do that. That's got to be the next way that will
unlock the winners from the losers because the market advan-
tage you get from doing that is tremendous. You'll outpace
your competitors. You have to because you're applying the
maximum amount of brain power to every problem. That's one
of the real secrets.

It may be that your executives are the smartest people in the
room, or maybe not, but the smartest person in the room is not
smarter than all of the other people in the room put together.
When nobody wants to speak up because he or she knows that
the smartest person in the room doesn't want to hear some-
thing, then you're locking out all of this problem-solving power.
This is why markets work better than central planning because
the smartest central planner in the world can't be smarter than
every other person navigating the market.

Their collective intelligence is an emergent property. In
many ways, it's like an ant colony. An ant colony is an emergent
property, from every individual just doing very simple things
based on his own instinct and their designated duties. He's
following pheromone trails, and he's carrying food. But the
ant colony as a whole is extremely efficient and intelligent in a
similar way to how markets are. What we need to do is have our
organizations turn into that. Because organizations that can
successfully transform into that have to be more successful, it's
a mathematical certainty.

DevOps Paradox

483

Viktor Farcic: Does that mean the future lies in moving from
pyramidal structures towards something flatter?

Gregory Bledsoe: Yes, because I believe we're going to move
away from hierarchy to meritocracy in our organizations. The
concept of holacracy is out there, and I do think people are
experimenting with it. I don't know if holacracy is exactly what
we're going to end up with, but we're going to end up with some
kind of empowered constitutional organization where every-
one is empowered to be the boss of his or her job. I think this
is the ultimate expression, and that any organization can move
toward this. I don't know if it's going to be official holacracy,
something similar, or something very different. But the thing
is, any leader within an organization can voluntarily stop using
coercion and start using inspiration.

That's true leadership instead of management, and when you
start doing that, you automatically start flattening out the hier-
archy, and you automatically start building more meritocracy.
So, it's possible that, when we start selecting leaders differ-
ently for different qualities, then this could happen without
something official like holacracy. But it is going to be the
difference between the organizations that live and the organi-
zations that die.

Viktor Farcic: Exactly. Speaking of the future, what do you
think is waiting for us? I'm not going to ask you to project ten
years into the future because, as we talked about earlier, we
don't even know what's going to happen in two years.

Gregory Bledsoe

484

Predicting the
future of DevOps

Gregory Bledsoe: Who knows?
There are a few short and longer-
term things that I really do think we
can predict. I think the DevSecOps
term is going to go away. People are
going to realize that DevSecOps is

really about maturing DevOps, where you didn't forget that
security was a thing, and where you're shifting that left and
including them in the design discussion. People will be able
to ask questions like: "Well, this looks like an opportunity for
a SQL injection. Have you thought about that?"

A pet peeve of mine is that SQL injection still exists because
that question isn't asked in development. Developers are not
incentivized to worry about security, and they're too far under-
water to think about that in addition to just getting the feature
out the door. That has to change, and that will radically alter
security. DevSecOps is a good maturing DevOps, where you're
shifting left. I think that term is going to be subsumed into
DevOps. Right now, it's a term because people are discovering
that we have to include security, we have to include compli-
ance, and we have to include an audit because it's the only way
we can adapt at scale.

Viktor Farcic: But what about the term DevOps? Do you think
that the word will still have the same meaning in the future?

Gregory Bledsoe: I think the term DevOps will become
synonymous with IT because everyone will at least understand
that this is the way you do it now, and if you don't do it this
way, you're doing it wrong. I think this is going to become

DevOps Paradox

485

understood, and that's still going to leave a stratification
of results. Some people are going to do it much better than
others, and those who can unlearn and relearn the fastest will
gain a sustained competitive advantage. They'll be out in front
of the pack, and that reason is why it's imperative that people
embrace and adopt this now. The longer you wait, the worse
your odds. It doesn't matter how deep the moat around your
business is.

Look at the big banks. They've got huge regulatory moats
around their businesses, but it's not saving them. They're still
getting chipped away, and the banks that can adapt are the
ones that are going to be able to fend off the FinTechs. Look at
the transportation or the hotel industry across the board. They
thought having bought all of these properties was their hedge
against the market, but their real competitor now doesn't even
own any property, it's Airbnb. The cost to enter markets is
lower than it's ever been, and it's only going to get lower.

For communication, it doesn't matter if you own the right
of way to run cables through neighborhoods and nobody else
has that and you think that's your moat because 5G is coming.
5G will change the game, and those services that you offer over
physical wires and physical fiber optics are going to mean less

"DevOps will become synonymous with IT because
everyone will at least understand that this is the way
you do it now, and if you don't do it this way, you're
doing it wrong."

—Gregory Bledsoe

Gregory Bledsoe

486

than ever, and the barrier to entry will be lower than ever.
Everyone is going to be disrupted, and it's just a matter of
whether you're going to disrupt yourself, or whether an exter-
nal competitor's going to disrupt you. The people who figure
that out and understand they have to adapt to this exponential
change will survive, and everyone else will die. That's the long-
term prediction.

Viktor Farcic: But after you get disrupted, is there still time
to survive?

Gregory Bledsoe: Yes, there is that window but it's short-
ening, and we don't actually know how short a window it is,
which is why everyone has to get started now. The ones who
are going to really put themselves in a position to be future-
proof are the ones who are asking those existential questions,
the ones who are bothering to think deeply about this. They're
the ones who are going to be positioned to succeed.

You can't just start by saying "OK, we can't survive without
DevOps, so let's put Jenkins everywhere; but then let's create
a silo to manage." You've just exacerbated your fundamental
problem. The people who know that's not the way you do this
and that it's really Deming's 14 points, the most important of
which is to turn everyone into an agent of transformation, are
the ones who are going to succeed and be able to best navigate
the age of exponential change.

Viktor Farcic: Absolutely true and especially when you
mention Jenkins. I continuously visit companies, and no devel-
opers can ever touch it.

DevOps Paradox

487

Gregory Bledsoe: It has to be that if you build it, you run it.

Viktor Farcic: Exactly. But it's difficult because it's a revo-
lution. If there is a power struggle, you can't tell me if I build
the entire vanity factory that would mean that I was running
it yesterday.

Gregory Bledsoe: It's true. The power struggle is not just
organizational, but ideological. It's scientific management or
Taylorism versus Lean, that's what it is. The ones who embrace
Lean and succeed at changing the minds of everybody in the
organization, that's the trick right there.

Viktor Farcic: But how much more time do we need, because
it's been a while since software started and we still think that
it's a factory.

Gregory Bledsoe: Let me put it to you like this. Back in 2014,
somebody figured out that 75 years ago, the average lifespan of
a company on the Fortune 500 list was 75 years. Fast-forward
to 2014, and it was down to 10 years. These companies were
being replaced by new and more agile companies that were still
trying to expand their markets.

That's another secret that I think people don't really under-
stand, that the moment you stop trying to expand your markets
and start trying to protect them, you're optimizing for protect-
ing markets over expanding markets, and you've already started
to die. There are smaller, nimbler companies with much less
overhead and infrastructure waiting to feast upon your corpse
before you're even done dying.

You're putting your leg in the piranha pool, and the piranhas

Gregory Bledsoe

488

are hungry. It's not the big fish that eat the little fish; it's the
fast fish that eat the slow fish. We're going to see that the turn-
over among the Fortune 100 and the Fortune 500 companies
is going to be huge. I think the average lifespan is going to go
down to 5 years, to 3 years, and then you're going to see a huge
turnover on these lists. So, how much time do we have? Well,
the rest of your life. How long do you have to pull the emer-
gency chute if your primary chute fails? The rest of your life.

Viktor Farcic: Exactly. I'm going to use that one; I love it.
I really think your definition of the thinking behind DevOps
is brilliant.

Gregory Bledsoe: Thank you! You can probably tell that
I could talk about this literally all day, every day. The fascinat-
ing thing is that there's really no end to the discussion.

Viktor Farcic: Thank you again.

Gregory Bledsoe: Thank you.

18

Wian Vos
Solutions Architect
at Red Hat

Introducing Wian Vos

Wian Vos is an experienced DevOps/cloud consultant with
a demonstrated history of working in the information technol-
ogy and services industry. He is skilled in PaaS, Agile method-
ologies, DevOps, and cloud technologies. You can follow him
on Twitter at @wianvos.

Viktor Farcic: Hi, Wian! Before we delve into our conver-
sation about DevOps, could you tell us a little about yourself?

Wian Vos: I'm currently a solutions architect at Red Hat, one
of the biggest open source companies in the world, based in
Amsterdam. I've been doing DevOps since before it was called
DevOps, and have been involved in infrastructure automation
since 2005, and the containerization push since 2013. Over the
course of my career, I've worked at ING Bank, Rabobank, and
several other smaller government bureaus here in the Nether-
lands. More recently, I was a managing consultant for DevOps
at CINQ ICT in Zaandam, and before that, I worked in Boston
for two years at XebiaLabs.

Defining
DevOps

Viktor Farcic: I want to start with the
same question I've asked everyone else in
this book: what is DevOps? Everybody has
given me a different answer. Personally,
I don't know why everyone defines it differ-
ently, but hopefully this will be something

we touch upon in our discussion.

DevOps Paradox

493

Wian Vos: Actually, that's pretty much what I expected.
I think DevOps has meant different things at different points
in time. When the term was first coined, it was basically a push
for a new way of working from the DevOps manifesto, which
I thought, back in the day, made sense. But then DevOps got
popular, and as with all things that get popular, the big vendors
jumped on the bandwagon—my current employer, Red Hat,
included—and turned it into a marketing term.

But what is DevOps to me? DevOps is a paradigm of how
to run your IT business culture. If you look at the term in the
purest sense of the word, it's a way to put development and
operations in a same-team situation, all working toward the
same business goal. I've been involved with DevOps for nine
years now, and I've never been in one of those mythical teams,
nor have I ever seen one of those mythical teams actually work.
But what I have done is become associated with DevOps-like
practices and DevOps tools. Through my experience, I've found
that DevOps is basically all about culture and a way of working.

Viktor Farcic: So, if you've never seen DevOps working, and
I must admit that I've seen it work rarely, if ever, is it because
companies fail at it? Or is it because those companies have
never actually even tried to incorporate DevOps in the way
it should be incorporated?

"DevOps has meant different things at different points
in time."

—Wian Vos

Wian Vos

494

Wian Vos: If you want to implement DevOps in a company,
you face a couple of obstacles. To start with, there are the
actual relationships between development and operations.
Those aren't a big deal when you're dealing with a new start-up
or companies that are implementing brand-new applications.
Why? Because you can get a team together, and they can all
do their thing.

But if you look at how traditional companies are basically
organized, there's always been this traditional split between
development and operations, and it's basically because each
has a different vantage point. On the one hand, you have devel-
opment striving for stability, while on the other, you have oper-
ations backed by the business striving for change. Getting those
two together in a traditional company, and not in a start-up
setting, is going to be hard.

Viktor Farcic: If that's the case, what are the biggest issues
you think companies face when they want to enable DevOps in
their organizations?

Wian Vos: I've always considered DevOps companies as ones
that are invested in technology from the bottom up. It's not so
much about creating one team, but more about teams listening
to each other, and technology changes being decided from the
bottom up, instead of handed down from the top.

You asked about the biggest problems companies face today.
One of the biggest challenges I've seen with implementing
actual DevOps is the moving headcount. Why? Because these
teams—development and operations—have already battled
each other for years, and now you have managers trying to put

DevOps Paradox

495

these people in one team. The old manager is then replaced
by a new manager who has a different approach.

What are managers basically for, if not for people who have
a headcount? Say I'm a manager who has 20 people and is going
to let 10 people go. What am I now? Well, I'm half the manager
I used to be. I know it sounds harsh and borderline disrespect-
ful to the managers out there. From a DevOps perspective,
I have encountered good managers. But it takes a very open,
very peculiar company culture to actually make it work.

I think DevOps is a great catalyst for the enormous
open source technological push that we've seen in the past
10 years. But in practice, it's horrible. Well, it's not horrible,
it's just undoable.

What it means to
be truly Agile… and
the importance of
Kubernetes

Viktor Farcic: Let me ask
a follow-up question then. How
many companies have you seen
that are actually truly Agile?

Wian Vos: I've seen a lot of
development teams that are truly Agile. I worked for Xebia for
a long enough time to actually know what Agile is, where it was
implemented, and what to look for.

"I've always considered DevOps companies as ones that
are invested in technology from the bottom up. It's not
so much about creating one team, but more about teams
listening to each other."

—Wian Vos

Wian Vos

496

But being truly Agile takes perseverance, which is pretty
hard to find these days in the corporate world. It's not just
doing two weeks in front of a board with a lot of sticky notes.
It's much more than that; it's a mindset. It's not going into that
hole of saying, "I want this feature now because I have money."
It's more like saying, "Alright, let's plan this, put this on the
backlog, and classify it."

I haven't seen many, if any, truly Agile companies, but I have
seen companies trying to be Agile, and before that, companies
trying to be good with Lean—which, in a certain sense, is good,
because those companies try to incorporate Agile, and they try
to incorporate Lean, which at the end of the day brings some-
thing positive to their company culture. But it doesn't neces-
sarily make them Agile, Lean, or DevOps. If you're running an
operations shop with ongoing business, Agile is the hardest
thing to do.

Viktor Farcic: So, companies then don't change from
a cultural perspective when they're above a certain size?

Wian Vos: That's not what I'm saying. What I'm trying to say
is that the technology involved in DevOps is not the problem.
The problem is the people, and when it comes to people,
they're very hard to change, especially in a corporate culture.
But, keep in mind, I have never worked at a start-up, ever. So,
I don't have that start-up experience.

Viktor Farcic: I guess start-ups are a different ballgame
because they're small and can, in theory, do whatever they
want. They've haven't got any baggage to get rid of.

DevOps Paradox

497

But that's the problem I have when I'm visiting companies
and trying to explain to them the big picture of technologies.
Let's take a microservice, for instance. They're the result, like
any other technology or process, of a certain culture in a certain
environment, and it ends up being a tool.

Wian Vos: Or a process, or a buzzword.

Viktor Farcic: But then if you don't actually take it all the
way or if you just simply adopt the tool, then you're in a very
bad place, just like the case with microservices. Can you have
microservices without self-sufficient teams? Can you have
self-sufficient teams without changing the culture?

At least in my experience, it fails miserably. But going back
to tools, we've both worked for software vendors, and in my
experience, I have the impression that absolutely every single
software vendor in the world has now rebranded its tools as
being DevOps. At conferences today, it's all DevOps. For me,
all the tools that I've used for the last 10 years are DevOps.

Wian Vos: I don't want to say that's a problem per se, because,
usually, the tools that get bought are like the DevOps magical
bullets that don't exist. But labeling these tools with the term
DevOps does help adoption by higher levels of management.
If something is labeled DevOps, then you as an engineer or as
a developer have a greater chance of working with it.

" …usually, the tools that get bought are like the
DevOps magical bullets that don't exist."

—Wian Vos

Wian Vos

498

If you were to ask me the question, "Is it a bad thing that they
basically took DevOps from us and ran with it?," my answer
would be that I don't know. I certainly am opposed to the idea
that if you just have enough cool, new, and open source tools,
then you can call your company a DevOps company. That's
something I'm really sick and tired of. I don't know if it's a bad
thing or a good thing because it has brought us a lot of cool
stuff to play with.

Viktor Farcic: Moving on, let's talk about Kubernetes.
Is Kubernetes now the one to rule them all?

Wian Vos: For the next two years, it probably is. In the
10-year period before I became a Puppet engineer where I was
doing all kinds of stuff at Puppet and XebiaLabs, and building
Platform as a Service stuff, it was easy to call. Back in 2001, it
was easy to say we're going to do WebSphere ND for the next
three to four years, and probably a long time after that.

So, in the first decade of this century, it was easy to predict
what you were going to do for the next five years, and where to
invest, and where to specialize. But since 2009, and even 2010,
I have no clue. First, it was Platform as a Service with provi-
sioning. Then it was containerization, or even—and I don't
know if you remember this—immutable infrastructure with
Foundry, Heroku, and all that cool stuff.

Then came Docker, and that was like, argh! But let's not
forget that the technology was there since the end of the 1990s.
Docker just made it usable, and at the time, Docker was the
coolest company around: everybody had heard of it, and every-
body wanted to work with it. But all of a sudden, Kubernetes

DevOps Paradox

499

burst onto the scene, which is kind of funny because they're
basically just as old as Docker, and now Kubernetes is anything
and everything. And everybody is standardizing on it. And
everybody does it. And everybody has to do it. And everybody
wants to work with it. I think it's the most convincing technol-
ogy I've seen in the last 10 years, just because we need to make
sense of this public cloud, and Kubernetes fits into that bril-
liantly. We might get sick and tired of it in, like, three or four
years, because it's a beast of its own. It's complex, and at times
difficult. It's controlled by Google and us.

Viktor Farcic: What I find interesting about Kubernetes is
that I don't recall the last time in my career that I actually saw
a software, platform, application—or whatever you want to call
it—adopted by absolutely every single software vendor in the
world. Even traditional software vendors that tend to wait until
everyone else adopts a new technology is behind Kubernetes,
which I never would have guessed.

Wian Vos: In the 1970s, mainframes were pretty hot. But,
in all honesty, the last time I think that happened was with
Java application servers. So, I have to agree with you that it's
a pretty big movement toward Kubernetes. Then again, most
people don't really realize what Kubernetes actually is, because
for the most part, if you hear people talk about Kubernetes,
they're talking about container workload scheduling, which
kind of covers the load.

But if you look at its real benefits and why it's winning, it's
because it brings you a universal interface to any cloud out
there. By implementing a Kubernetes cluster, you make deploy-

Wian Vos

500

ing workloads almost transparent on AWS, Google Cloud Plat-
form, Microsoft Azure, Electric Cloud, or any of those cloud
port platforms, as long as you don't go for their offered on-prem
container as a solution.

Looking at
the cloud

Viktor Farcic: But then isn't that a threat
to those same cloud vendors? If it's so trans-
parent, then I can easily switch from one
to another.

Wian Vos: I think that's a good situation
for us as consumers. But it does make these vendors compete
more for our business. For at least the last five to six years, if
you talk to anybody who's somebody in IT, it's all about the
cloud. In that time period, we had an unprecedented economic
boom. So, I'm wondering what's going to happen once the
economy start failing again: Will people have to cut costs again,
and if so, then what happens? Are we going back to hardware?

Viktor Farcic: But is cloud computing more expensive than
on-prem?

Wian Vos: Yes.

Viktor Farcic: I have a theory, and I might be wrong, that
when you calculate the price per CPU, and if we include the tens
of hundreds of people managing that infrastructure on-prem,
I actually think it's not that much more expensive when you
include the human factor.

Wian Vos: As long as your cloud infrastructure is small
enough, you might be right. But if you look at cloud implemen-

DevOps Paradox

501

tations on a large scale, if you're talking thousands and thou-
sands of nodes spread across multiple clouds, they still need
a lot of certified, and very expensive, people to run it. I can tell
you that an AWS/Google Cloud certified person is a lot more
expensive than somebody who has just shuffled around Cisco
switches their entire life.

Viktor Farcic: That's very true.

Wian Vos: So, you could probably get two of them for the
price of one cloud specialist.

Viktor Farcic: I once spoke with a person whose company
was on-prem, and then they went to the cloud. Eventually, this
company went back on-prem with the justification of "Oh, we
learned finally, when we were in the cloud, how things should
be, so we finally know what we need to do ourselves [on-prem]."

Wian Vos: I think that is a correct statement. Because, basi-
cally—and I'm only very experienced on AWS—if you look at
how AWS works, it basically gives you all the same components
as your own datacenter. What differs is that it also gives you,
as an engineer or as a developer, the controls, which means
you don't have to go into endless discussion with the network
guys about this and that—this firewall setting, or that firewall
setting—or put in a change request and go back and forth. No,
you could just sit there, do it, change it—okay, done.

You still need to know what you're doing. It's not that Amazon
has a magical network device that just spits out connections.
It just doesn't work like that. So, from that perspective, I think
it's good to take your infrastructure to AWS because it clarifies

Wian Vos

502

a lot of stuff you've been doing wrong. Do I think it's sustaina-
ble for everything? Probably not.

Viktor Farcic: But it's set certain expectations from your
customer. If you are an infrastructure team and everybody else
uses Azure, AWS, Google Cloud Platform, or whatever, and
you're on-prem, then you need to kind of up your game, no?

Wian Vos: Yeah, and that's something we're going to see
in the next three or four years. Companies are going to try to
figure out, finally, how to do this hybrid thing of having the
60% production capacity that you always need, on-prem. You'll
take your flexible capacity, which gives you the flexibility and
the capability to take stuff to market quickly. I really think that
that's the sweet spot we need.

Viktor Farcic: In hindsight, you might not be able to answer
this question because you work for a company, but one thing
I see a lot of today is confusion. Say we work for a company,
and we finally made a decision to choose Kubernetes. We then
have the problem of choosing one of the 57 different popular
flavors and 500 less popular ones, which leaves us with the
question of "Now what are we going to do?"

Wian Vos: I can only give you one piece of advice: choose
ours—just kidding. That being said, I think Kubernetes is
moving too quickly to choose DIY for production in an enter-
prise. I'm not saying that if you run a start-up you shouldn't
choose DIY Kubernetes, because the feature push from Kuber-
netes is just awesome, and, truth be told, if I had had my way
at my last gig, I would have done it DIY. But that's just hubris.

DevOps Paradox

503

In reality, it's pretty arrogant for an enterprise to think that
they can do their own DIY Kubernetes. The whole thing is a big
project, and it's moving like nothing we've ever seen before.

Basically, Kubernetes almost has more commits than actual
Linux Kernel in open source. As a result, I would definitely go
for either a distribution, because a distribution solves a lot of
the insecurities for you, or maybe a hosted service, where you
get actual Kubernetes—not just a reserved namespace in some-
body else's pool, but an actual Kubernetes service.

Viktor Farcic: You've mentioned the number of commits and
things like that. To me, that's confusing, but it also presents the
idea that Kubernetes needs to slow down for people to actually
even grasp it. Because, right now, even choosing the Ingress
network is a week's worth of work.

Wian Vos: It's funny that you'd mention that. I had a whole
discussion around Kubernetes Ingress just this morning! But
yes, I seriously agree. Just choosing your network plugins,
edge routers, and stuff like that can easily result in you shoot-
ing yourself in the foot with some of the choices you've made.

Viktor Farcic: I think that's why whenever somebody tells
me that I'm going to roll Kubernetes on my own, my question
is simply, "Why?"

"I think Kubernetes is moving too quickly to choose DIY
for production in an enterprise."

—Wian Vos

Wian Vos

504

Wian Vos: Exactly! Why would you do that?

Viktor Farcic: You're not going to spend the same amount of
time that somebody else has spent putting it all together, even
when you speak with the people who've spent their whole lives
with Kubernetes, such as Kelsey, for example, or Mike Powers.
It's kind of like, "I don't know what to choose because, just this
morning, a new thing came along."

Wian Vos: That's exactly what this is. It's a big beast. In fact,
it's not unlike Linux was in the early 2000s. If you were to look
at the number of actually viable distributions of Linux that
there were around then, it was bizarre. There were so many
different flavors, and things you could do, and that all boiled
down to the big two or three things that are now Linux distri-
butions. So, I think that Kubernetes is going to go the same
way as Linux.

I think the current ecosystem is good, because it brings
competition, and that brings change. But I think that Kuber-
netes is here to stay, simply because our data centers are
getting more complex. I know I'm contradicting something
I said earlier, but it's like the kernel for the data center, and
it'll probably be around in the next decade or two. But there
will be less of an ecosystem, with fewer choices.

The problem
with enterprises

Spotify isn't doing its own DIY
Kubernetes, and that's what got me
thinking. Because, engineering-wise,
Spotify is one of the most brilliant
companies out there. If you see what

they're doing and the stuff they're putting out there, and the

DevOps Paradox

505

slight number of outages they have, they must be doing some-
thing right. If companies like that are saying, "No, we are not
going to do our DIY Kubernetes," then that should be a sign for
everybody else to say, "Alright, if the smartest kid in the class
is not going to do it, should I be doing this?"

Viktor Farcic: But isn't that one of the big problems with
enterprises in general? The idea that somehow every enterprise
thinks they're smarter than all the smart kids, that somehow
they're different. It's something I hear all the time: "We're
going to roll out on our own, the same ways we rolled out our
own cloud 10 years ago and failed, the difference being that
this time, it's going to be different!"

Wian Vos: Agreed. In my current role, I advise a lot of busi-
nesses on how to do DevOps and containerization. And yes,
especially at the lower tech levels, there are a lot of people that
did the provisioning thing, brought us all this change, and got
the company in a different gear.

They're all thinking that this Kubernetes thing is going to be
just like implementing Puppet or Jenkins. But you have to look
at Kubernetes as if it's a different beast, or else it's going to
jump up and bite you. I'm not trying to scare you and say that
you shouldn't be trying it. Because, at the end of the day, it's
fun to do, and it's a great experience. It builds a lot of under-
standing of how Kubernetes works, and, hopefully, in the end,
you'll come to a conclusion that if you're smart, you're not
going to want to do it yourself.

Viktor Farcic: Okay, so let's say that we've come to the
conclusion that we're not going to do it ourselves. We're

Wian Vos

506

going to choose one of the existing platforms—then what?
Do we put our old database in our Docker image and ship it
in Kubernetes?

Wian Vos: Oh, man! That's just a nasty question. I figure you
know that, firstly, the biggest problem in DevOps is always
persistent data, which is stuff in a database, while the second
thing is that traditional databases are not designed to play
nice. A typical database in a large enterprise organization
is just expensive, let alone the fact that it's a nightmare to
manage. So, I would say that you should start by getting those
out of your company.

Viktor Farcic: Okay, we agree on that one. But for me, what
is motivating is that I have the impression that companies are
completely unaware of how much work outside of Kubernetes
they need to do in order for something to be successful there,
even with their own applications.

Wian Vos: It's not just implementation, and it's not just
building a Kubernetes cluster. It's day-two and day-three oper-
ations that are going to get you.

Viktor Farcic: That's very true.

Wian Vos: Again, it's not a given that you have to take
everything you do to a Kubernetes platform. It's perfectly okay

"The biggest problem in DevOps is always persistent
data."

—Wian Vos

DevOps Paradox

507

to run your databases outside of Kubernetes. Ask yourself this:
do you really need that much agility on your database cluster?
You might, but not everybody does. Then again, do you need
Kubernetes? I don't know.

Viktor Farcic: But to me, that's a curious question, because
I have to ask myself, in a few years' time, is Kubernetes even
going to be a choice? Yes, we do have a choice not to be in
Kubernetes. But if every other vendor is shipping new releases
on Kubernetes, is it really even a choice?

Wian Vos: I think it should be, because if it's not a choice
anymore, then innovation is dead, and if that was the case,
we would have to come up with a whole new ecosystem for
the operating system, which is never going to happen again.
But there are interesting movements in the whole Kubernetes
scene and in everything that's going on around it. For instance,
we have received massive amounts of questions about running
Kubernetes on bare metal, and I think that's going to be the
next big thing for the next three months or so. Because why
would you do virtualization on Kubernetes? I don't know—tell
me, why do you want to run a kubelet on a virtual machine
(VM) when you can just run it on basic bare metal?

Viktor Farcic: There is no good reason. But on the other
hand, other people use VMs because they still don't know what
they're doing.

Wian Vos: Yeah, that's very true.

Viktor Farcic: I see it more as an evolution, and once you
really know what you're doing, then you'll get rid of the hyper-

Wian Vos

508

visor as well—but not before.

Wian Vos: Maybe. I think one of the biggest problems is that
we have a whole generation of IT people coming in that have
never worked on anything else in a VM.

The big
DevOps killer

But if you look at Kubernetes and what
you're doing with it, it really doesn't make
any sense to have a hypervisor on that.
Because to the Java Virtual Machine (JVM),
which is basically a virtualization layer

between an operating system and the application, you're running
it in a container. The argument can be made that it's like a virtual
separation. It's not virtualization, but you know what I mean.
Then, to have another layer of virtualization under that results in
you taking your stuff pretty far from that CPU and memory.

Viktor Farcic: That may be true, but then how about server-
less? Is that the next thing?

Wian Vos: I think serverless is the big DevOps killer.

Viktor Farcic: In what sense?

Wian Vos: I think it's basically the same as we had at the end
of the 1990s, and before that in the 1970s. You as a developer
do not want to be bothered with stuff that operations are doing,
and because of that, we've have had six to seven years where
we all supposedly worked together. But now there's this new
thing, which is actually an old thing, where you can just drop in
your code, set a route, and there we go! Basically, it's abstract-
ing away the work that operations are doing because there's
still somebody who has to take care of that serverless system.

DevOps Paradox

509

Viktor Farcic: There are servers then, after all.

Wian Vos: Yes, that's true. But remember, somebody needs
to install and maintain it, because, of course, a serverless
system will never go wrong—just like anything else will never
go wrong within IT, right? I think it's the paradigm that ends
DevOps.

And that's why I think serverless is the big DevOps killer.

Viktor Farcic: I'm talking now on a level of principles, not
a specific implementation: what I'm confused about is how
serverless is truly different from Kubernetes.

Wian Vos: It's not truly different; that's the thing. I do want
to make the distinction between the serverless paradigm and
actual serverless platforms. Kubernetes is just a big serverless
enabler, and the serverless paradigm just says, "Alright, I'm
a developer, I have the code, I drop it here, and I'm done."
I think actual serverless platforms have been around since the
time of Platform-as-a-Service stuff. If you had a well-imple-
mented Platform-as-a-Service, that was a no-brainer for an
application developer anyway.

I think there's one big paradigm that's come out from the
shadow of DevOps that actually does work: Site Reliability
Engineering (SRE). Having a great SRE team that gives you
a platform that you as a developer can just use is awesome. But
is that serverless? I don't know. In the SRE model, you still
need an SRE engineer that comes to help you to integrate your
code into the platform. Now, if you abstract away enough func-
tionality from the developer, the developer doesn't need that
engineer anymore. So, hey presto, a serverless platform—you

Wian Vos

510

don't need to worry about the server anymore. But don't forget
that there are still servers there, and behind them is an SRE
team that actually manages that stuff and innovates on it.

So, to you as a developer, that becomes serverless. What
comes with that, though, is again the loss of interaction
between developers and engineers, which is something I think
will hinder innovation all over again, because nobody ever got
better from not talking to one another.

Viktor Farcic: Exactly. I was confused when you said initially
the death of DevOps. But yeah, now I agree.

Wian Vos: If nothing else, DevOps is communication between
the application developers and the engineers who build the plat-
form. I once wrote a blog post saying that, and got some really
bad feedback on it. So, let me be clear. I'm not saying it's just that
communication, but I do think it is a very important component.

The role of
a DevOps
engineer

Viktor Farcic: But if an important compo-
nent of DevOps is communication between
people skilled in development and people
skilled in operations, then what the heck is
the role of a DevOps engineer? When I look
at job descriptions, I think that of the DevOps

engineer tops any other profile at the moment.

Wian Vos: Basically, that's just to confuse recruitment.

Viktor Farcic: And the DevOps department as well!

Wian Vos: Imagine, for instance, you and I were going to
start a company. We're going to need a DevOps team because

DevOps Paradox

511

we have a burning desire to put out this awesome application.
Yet, in our position, we can hire five people. So, the question
we have when we're putting together a DevOps team is both,
"Who are we hiring?" and "What are we hiring for?"

Are we going to hire DevOps engineers? No. In that team,
we want the best application developers, the best tester, and
maybe a great infrastructure person and a frontend/backend
developer. I want that DevOps team to be people with specific
roles who fit together as a team.

Back when DevOps became a marketing term for software
companies, recruitment also jumped on that bandwagon. Red
Hat is building a DevOps team, so we now need a DevOps engi-
neer, and recruitment says they're going to get you a DevOps
engineer. But like you said, for a lot of people in the market,
it's still a very attractive job proposition because it includes the
word DevOps. In that person's mind, they're no longer doing
engineering; they're now doing DevOps.

Viktor Farcic: I have to give credit to Agile in that sense. You
never see an Agile engineer.

Wian Vos: No, but they do have Agile coaches, which
is another way to say a manager who doesn't wear a tie. Though,
to be fair, an Agile coach does have a different perspective on
things. Namely, it's more coaching, and more enabling, instead
of pushing and holding others accountable. If you look at
Agile and project management, Agile is the carrot, and project
management is the stick. They're different approaches, and
I can tell you, the carrot always works better.

Wian Vos

512

Viktor Farcic: So, your job is to visit companies and show
them the light at the end of the tunnel, with the goal being to
help them to improve. I'm wondering, what do you hate the
most when you visit a company? What are the major obstacles
to accomplishing whatever you're trying to accomplish?

Wian Vos: I think it's almost always people. The biggest prob-
lems I've ever had, and the stuff that has cost me the most time
and energy, with implementing DevOps, Platform-as-a-Service
stuff, new modern infrastructure, or new modern application
enablers, is the fact that in many companies there's still this
whole consortium of old architects. People who actually work
with new technology and platforms and get the opportunity to run
their applications on a new Platform as a Service, or serverless
platform (or whatever you want to call it) come around quickly
enough if they see benefits. While there are good architects out
there, architects in a corporate setting are a different story, espe-
cially in government. In government, if you have a plan and it's
a good plan, it's only a good plan if it was invented there.

For example, at one government bureau, we basically just
built the new platform without architectural approval, and
then tried to get that architectural approval four months into
the project. Luckily, our sponsor was high enough up on the
board of directors at this government company that they were
able to push it through. If they hadn't, the whole platform
would have been canceled by architecture—by architects just
saying, "Yeah, but there's this little detail that we don't like,"
and stuff like that. It's very much like, "Alright, we didn't think
of this, so this must be bad."

DevOps Paradox

513

There was another government institution where I did the
same thing. We had the CTO tell us, "Alright, I just want this
built. I don't care how you do it. But do it to the best of your
ability and inform the architects afterward, and just send them
to me once you're done." It was very possible that we would
implement a new feature and three months later an architect
would just roll by and say, "You didn't tell me that this was
implemented." Yeah, alright, but we implemented that feature
three months ago and those platforms we built were pretty
successful. I mean, if a developer came up to us saying, "Hey,
could you change this or that?," we could do it in one or two
releases that were, like, three weeks later. But if you have to go
through that whole old-school enterprise architectural process,
then you're lost; you're gone.

Viktor Farcic: Yeah. I have the same problem with planning.

Wian Vos: Though I have been called an architect on several
occasions, by the way. For me, what separates a good architect
from just any architect is the fact that you should never archi-
tect anything you can't build at least 80% of yourself.

Viktor Farcic: How many of these architects are actually
implementing things? I mean, most architects I meet, their
tools are Microsoft Office—they're writing Word documents—
while a successful architect is the one who can write more than
200 pages.

Wian Vos: Last year, I was at CLOUDBUSTING, a mini-con-
ference put together by Software Circus, which is this meet-up
group we have here in the Netherlands. At the conference,

Wian Vos

514

I heard a talk by a guy who had a great couple of examples
of how architectural mishaps come to life when you let tradi-
tional IT architects into your company, because you can write
a great architecture document, hand it to people that actually
build things, and find that it's not going to work. Especially in
today's software world, it's very arrogant to think that you can
foresee everything upfront. Especially if you have never built it
yourself—you don't know what works.

My favorite architectural style is evolutionary architecture.
We need provisioning, so let's take three tools, test them out for
a week, and really give them a shakedown to see what works. At
the end of the week, you can be like, "Alright, this one works,
but the other two don't. Therefore, we go and innovate on this.
But how are we going to implement it? Let's try three or four
different ways and just roll with it, and then choose the best
one and innovate on that."

So, I really think that it's very important to have your archi-
tectural process not get in the way, and for you to have your
architects in your team. If you're running an SRE team that's
building a platform for a customer, make sure that the one
with the architectural skills—but more so the architectural
responsibility—is in that team and building it with you. Just

"My favorite architectural style is evolutionary archi-
tecture. We need provisioning, so let's take three tools,
test them out for a week, and really give them a shake-
down to see what works."

—Wian Vos

DevOps Paradox

515

like a lead engineer, who is authorized to make decisions with
the rest of the team.

Viktor Farcic: Exactly. The only thing I would add is that
they've also got to feel. I believe that nobody should be allowed
to make any decision if he or she cannot feel the pain behind
those decisions. Typically, architecture is just, "Here it is:
a diagram to help you to implement it."

Wian Vos: True, but then again, that was initially what
DevOps was all about. You take a part of your business respon-
sibility, you give it to a team, and you build it and run it. So, if
an application developer comes up with screwed-up code that
doesn't behave, then it's not the operations person that gets
called out of their bed at two o'clock in the morning, it's the
actual applications person, and because of that, they're more
motivated to build something that works.

Viktor Farcic: Brilliant. I don't want to take much more
of your time, but do you have any closing comments?

Wian Vos: All I will say is this: there's no right or wrong
answer in this whole DevOps discussion. It's more about the
fact that I think DevOps has become more of a cultural boost,
and I think it's very important to enable people who are actu-
ally using and building the platforms to choose the things that
they know are right for the company. But also, they need to be
allowed to share their knowledge within the company.

Celebrating
your failures

I know it's mushy, but actually,
one of the key points to know is to
also celebrate your failures. If you

Wian Vos

516

fail to communicate that you failed and explore why and how
you failed, you're missing out on a learning opportunity. As
soon as you start celebrating your failures, people will feel less
scared to fail. I also think that the most innovative engineer is
an engineer who feels free to innovate.

Viktor Farcic: We just need to convince management not to
fire people when they fail.

Wian Vos: Right! That's one of the most important mind-
shifts that you, as a manager, need to make in DevOps.

Viktor Farcic: But isn't that kind of embracing the inevita-
ble? Saying that you know that you're going to fail?

Wian Vos: True, but if you don't embrace failure, your team
is going to cover it up for you, and they're not going to learn
anything. Or if the person that failed might learn something,
the rest won't learn anything. I think that's something that
GitLab did maybe a year ago—admin 55—that whole thing.

Viktor Farcic: Exactly! I can't express how much respect
I have for them after that. GitLab are my heroes, only because
of how they handled the failure.

Wian Vos: They said, "Hey, we've royally screwed up. Here's
how to have at it."

Viktor Farcic: Yeah, I remember. I was watching their video
feed while they were fixing it as if it was a Latin American tele-
novela. It was awesome.

DevOps Paradox

517

Wian Vos: That was awesome, and I think that should be
something most companies are willing to do. But right now,
we're a long way away from that.

Viktor Farcic: Very long. At least when I visit companies,
I don't feel that I am allowed to behave like that yet.

Wian Vos: Well, I must say, in Holland, it's getting better. As
I've already said, I also worked in the US for two years, where
it's a whole different ball game.

Viktor Farcic: I think this is a great place to stop. Thank you
for your time. I really enjoyed this.

Wian Vos: No problem. Thank you very much.

DevOps Paradox

520

Index
A

Ádám Sándor
about 262
opinion, about clusters 281
opinion, about using DevOps 262-265
opinion, about Kubernetes 270-275
opinion, about Kubernetes problem solving 265-267
opinion, about need for Red Hat 275-281
opinion, about technology exploration 267-270
opinion, about need for Ubuntu 275-281

Andy Clemenko
about 204
opinion, about company visualizing 207-209
opinion, about DevOps 204-207
opinion, about future 224-229
opinion, about honesty in industries 209-229
opinion, about personalities in industries 209-229

Association of Field Service Managers (AFSM) 62

B

Bret Fisher
about 392
opinion, about containers usage 402-407
opinion, about DevOps 392-399, 416
opinion, about future of OS 407-411
opinion, about future of programming 411-415
opinion, about skipping generation 399-402

C

Chris Riley
about 234
bottom-up approach, versus top-down approach 244-247
DevOps departments 247-252

DevOps Paradox

521

DevOps, in tech industry 240-244
journey, in DevOps 256-257
opinion, on DevOps 235-238
opinion, on externalization of software 252-256
speed of change, DevOps 238, 239

D

Damien Duportal
about 38
opinion, about Amazon 57-58
opinion, about conferences 49-50
opinion, about container 44-49
opinion, about DevOps 38-39
opinion, about DevOps used to bring empathy 39-41
opinion, about Docker 6-11
opinion, about education system 44-49
opinion, about Google 56-58
opinion, about Microsoft 56-58
opinion, about software companies 49-50
opinion, about vendors 49-50

Damon Edwards
about 316-318
opinion, about Agile 338-339
opinion, about DevOps 319-322
opinion, about DevOps commercialization 322-330
opinion, about Inc 319-322
opinion, about quality perception 330-334
opinion, about Rundeck 319-322
opinion, about ticket system 329-334
opinion, about work impact 330-334

DevOps
about 3-6
DevOps Toolkit series 2
reference link 2

E

EmpathyOps 18

G

DevOps Paradox

522

Gregory Bledsoe
opinion, about Agile versus DevOps 476-481
opinion, about companies environment 460-463
opinion, about companies executive management 460-463
opinion, about DevOps 457-460, 481-483
opinion, about fixing digital transformation 471-475
opinion, about future of DevOps 484-488
opinion, about generations 460-463
opinion, about initiating change 464-471

J

James Turnbull
about 131
opinion, about DevOps 130-132
opinion, about Kubernetes 137-143
opinion, about microservices 134-137
opinion, about monoliths 134-137
opinion, about RHEL 137-143
opinion, about stack availability 132-134
opinion, about Ubuntu 137-143

Jeff Sussna
about 12
opinion, about Agile versus DevOps 29-34
opinion, about DevOps 12-16
opinion, about comparing DevOps 22-26
opinion, about changing DevOps culture 26-29
opinion, about DevOps empathy 18-22
opinion, about DevOps in team environment 16-18

Júlia Biró
about 1
opinion, about avoiding complexity increase 302-304
opinion, about DevOps 295-299
opinion, about DevOps concepts 304-308
opinion, about defining DevOps 287-290
opinion, about lightbulb moment 286-27
opinion, about SRE versus DevOps 291-295
opinion, about tech challenges 299-302
opinion, about tech future 299-302

Julian Simpson
about 183
configuration management teams 187-193

DevOps Paradox

523

DevOps problems 187-190
DevOps teams 187-192
DevOps, defining 183-185
DevOps, versus Agile 184-187
UI based environments 191-193
vendor lock-in, addressing 196-198

K

Kevin Behr
about 62
journey to DevOps 63-65
opinion, on becoming manager 65
opinion, on bridging CEO-CTO gap 68, 69
opinion, on client-server 67
opinion, on collaboration in DevOps 80-84
opinion, on control over people 71-72
opinion, on creating socio-technical system 83
opinion, on DevOps 62, 63, 67-69
opinion, on DevOps pattern 98-99
opinion, on DevOps team vision 85-89
opinion, on empathy in DevOps 78, 79
opinion, on invention of Kanban 102, 103
opinion, on Lean Coffee approach 90
opinion, on misunderstanding of DevOps 83, 84
opinion, on optimal environment for DevOps 103-106
opinion, on Pareto principle 77
opinion, on self-sufficient teams 77
opinion, on Toyota 101-103
opinion, on usage of ITIL language in Visible Ops book 69, 70
opinion, on Visible Ops book 69
opinion, on Yin and Yang situation 97-98

Kohsuke Kawaguchi
about 345
opinion, on conferences 352
opinion, on containers 350-352
opinion, on DevOps 345, 346
opinion, on DevOps future 356-359
opinion, on DevOps toolkit 345-349
opinion, on open source 353
opinion, on organizational impact 345-349
opinion, on US versus China 354, 355

DevOps Paradox

524

L

Liz Keogh
about 148
opinion, about Agile 160-167
opinion, about behavior-driven development (BDD) 155-160
opinion, about cars in space 175-178
opinion, about Cynefin framework 151-155
opinion, about DevOps 160-167
opinion, about DevOps with Agile 148-151
opinion, about diversity in DevOps 171-173
opinion, about fostering innovation 168-170
opinion, about gender roles in DevOps 171-173
opinion, about representation in DevOps 171-173

M

Mike Kail
about 110
opinion, about containers 120-124
opinion, about DevOps 124-126
opinion, about DevOps cloud 116-120
opinion, about DevOps cost 116-120
opinion, about DevOps infrastructure 116-120
opinion, about iteration 111-113

minimum viable product (MVP) 161

N

Nirmal Mehta
about 420
opinion, about dealing with security threats 445, 446
opinion, about decisions 430
opinion, about DevOps 421, 425, 435, 436
opinion, about DevOps engineer 422-426
opinion, about DevOps patterns 431-434
opinion, about DevOps philosophy 436, 427
opinion, about future technologies 446-450
opinion, about Google SRE 428, 429
opinion, about Google’s DevOps 428, 429
opinion, about using DevOps in security 439-445

DevOps Paradox

525

S

Sean Hull
about 366
databases, working with 366, 367
opinion, on applications 379, 380
opinion, on AWS 380
opinion, on cloud 371, 375, 376
opinion, on container schedulers 381
opinion, on DBA 375
opinion, on DevOps 380, 381
opinion, on execution of development database 371
opinion, on future of DevOps 383, 387
opinion, on handling new release 375, 376
opinion, on implementation of API gateway changes 370
opinion, on implementation of serverless approach 369, 370
opinion, on infrastructure 369
opinion, on integration of database processes with automation 372-374
opinion, on Lambda@Edge 383
opinion, on loading of test serverless functions 371
opinion, on migration tools 373, 374
opinion, on security 377, 378
opinion, on SQL 371
opinion, on vendor lock-in 380
opinion, on zero-downtime deployments of applications 374

Skool
URL 298

Stack Overflow
reference link 296

T

test-driven development (TDD) 7, 155

V

virtual private cloud (VPC) 132

DevOps Paradox

526

W

Wian Vos
about 492
opinion, on Agile 495-497
opinion, on Agile coaches 511
opinion, on cloud computing 500
opinion, on cloud vendors 501
opinion, on DevOps 492, 493
opinion, on DevOps challenges 494, 495
opinion, on DevOps engineer role 510-515
opinion, on implementation of DevOps 493, 494
opinion, on issues with enterprises 505
opinion, on Kubernetes 508, 509, 513-516
opinion, on Kubernetes Ingress 503
opinion, on on-prem 501
opinion, on selection of Kubernetes versions 502, 503
opinion, on serverless 508-510

DevOps Paradox

527

packt.com

Subscribe to our online digital library for full access to over
7,000 books and videos, as well as industry leading tools to
help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

zz Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals

zz Learn better with Skill Plans built especially for you

zz Get a free eBook or video every month

zz Fully searchable for easy access to vital information

zz Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade
to the eBook version at www.Packt.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.
At www.Packt.com, you can also read a collection of free techni-
cal articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on Packt books and eBooks.

https://subscribe.packtpub.com/
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.packtpub.com/

	Cover
	Copyright
	Contents
	Introduction
	Chapter 1: Jeff Sussna
	Chapter 2: Damien
Duportal
	Chapter 3: Kevin
Behr
	Chapter 4: Mike Kail
	Chapter 5: James
Turnbull
	Chapter 6: Liz Keogh
	Chapter 7: Julian
Simpson
	Chapter 8: Andy
Clemenko
	Chapter 9: Chris Riley
	Chapter 10: Ádám
Sándor
	Chapter 11: Júlia Biró
	Chapter 12: Damon
Edwards
	Chapter 13: Kohsuke
Kawaguchi
	Chapter 14: Sean Hull
	Chapter 15: Bret
Fisher
	Chapter 16: Nirmal
Mehta
	Chapter 17: Gregory
Bledsoe
	Chapter 18: Wian Vos
	Index
	Packt page

