Serverless
Architectures
with Kubernetes

Onur Yilmaz and Sathsara Sarathchandra

Serverless
Architectures with
Kubernetes

Create production-ready Kubernetes clusters and
run serverless applications on them

Onur Yilmaz

Sathsara Sarathchandra

Packt

Serverless Architectures with Kubernetes
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Onur Yilmaz and Sathsara Sarathchandra
Managing Editor: Snehal Tambe

Acquisitions Editor: Aditya Date

Production Editor: Samita Warang

Editorial Board: Shubhopriya Banerjee, Bharat Botle, Ewan Buckingham,

Megan Carlisle, Mahesh Dhyani, Manasa Kumar, Alex Mazonowicz, Bridget Neale,
Dominic Pereira, Shiny Poojary, Abhisekh Rane, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray.

First Published: November 2019
Production Reference: 1281119
ISBN: 978-1-83898-327-7
Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK

Table of Contents

Preface [
Chapter 1: Introduction to Serverless 1
INtroduction tO SErVErIESScocciiiiiriiieereeeeee ettt 2
Serverless Origin and Manifesto ... 4
SErverless USE CASEScccoccivirriiniiieinienniceneestesaesssessesssessesssesssesssessessesssess 6
Serverless Architecture and Function as a Service (FaaS)cccceeeeeennnee. 8
FUNCLION @S @ SEIVICE (FAAS) ...uciiiiiiiiiiiieeeeeeeeieieeeiererssesesseseeeeeeeeeseasesssssssens 12
Exercise 1: Creating an HTTP FUNCLIONcccccooiiiiiiiiiiiniiniicniicciececcnennne 13
Kubernetes and Serverless ...t 15
Exercise 2: Packaging an HTTP Function as a Containercccceeveveeviuennnen. 17
Exercise 3: Parameterized HTTP FUNCLIONScccceevieivierieenneenneenienieneeeeennes 19
Activity 1: Twitter Bot Backend for Bike Points in Londonc.ceceeeuennen. 22
SUMIMAKY cceeiiiiiiiiiiiiiiiieereteeessessesnnnreeessssssesssssnssssassssssssssssssssssssssssssssssnnnns 25
Chapter 2: Introduction to Serverless in the Cloud 27
([Y aigeTe [UTot HTo] o H R RTRPRR 28
Serverless and the Cloud Evaluation Criteriacccccoecevververnenncnncnsncnccnnne 29
AWS Lambdaeoiiiiiieieeeeeeese ettt 30
Exercise 4: Creating a Function in AWS Lambda
and Invoking It via the AWS Gateway API ..o 32
AZUFe FUNCLIONS ...eeeiiiiiiiiiiiiiiinecnrtcntcstc et s ae s aesnne 42
Exercise 5: Creating a Parameterized Function in Azure Functions 44
Google Cloud FUNCLIONScoueiieiereeeiereeeee e sene e seeeseee s ee s nesesnesenneses 56

Exercise 6: Creating a Scheduled Function in GCFcccccevviiiiinnninnincnnne. 58

Activity 2: Daily Stand-Up Meeting Reminder Function for Slack 70
N U] 0 = 1 /P 73
Chapter 3: Introduction to Serverless Frameworks 75
T T oo 11 Tt u T o 76
FN FFAMEWOIK ..ottt ettt see s see s e s ne s sn e s e e semeeas 77
Exercise 7: Getting Started with the Fn Frameworkc.cccocevvivvircinincnnen. 78
Exercise 8: Running Functions in the Fn Frameworkcccccoeveviinincnennnen. 83
The Serverless Framework ... 89
Exercise 9: Running Functions with the Serverless Framework 92
Activity 3: Daily Weather Status Function for Slackc.ccecevvrviininnnnnns 105
SUMIMAKY cceeiiiiiiiiiiiiiiinreeeeeessessesssnnnreeessssssssssssnssssassssssssssssssnssaasssssssssssnnns 108
Chapter 4: Kubernetes Deep Dive 111
Introduction to Kubernetesccccvvcviiieiiinnciinnceeneeneceeeecee e 112
Kubernetes Design and COMPONENLSccccceerrereirrcrneereneernnreeescseesesneeens 113
Exercise 10: Starting a Local Kubernetes Clustercccceevviviriiinniinnnnen. 116
Kubernetes Client Tool: Kubectlcccooiiiiiininininiiiereerceeeeee, 118
Exercise 11: Accessing Kubernetes Clusters
Using the Client Tool: Kubectlcoeerinereeereeer e, 119
KUDErnetes RESOUICEScccovveereeereieriientenceeeeeeeseeeeeesene s eeseneseneesenes 123
e o 123
DEPIOYMENT ...ttt s 124
SEAtefUISEL ..o 125
Y =] Y o < 126
J[e] o X=1 g e I @ oY 0 o] o TSR 127

Exercise 12: Installing a Stateful MySQL Database
and Connecting inside Kubernetesccccecvviiiiiiiininniinennennienennenne 129

Activity 4: Collect Gold Prices in a MySQL Database in Kubernetes 134

SUMMAKY cceeiiiiiiiiiiiiiiiinrteeeeessssssssstteesssssssssssssssssssssssssssssssssssasssssssssssnnns 137
Chapter 5: Production-Ready Kubernetes Clusters 139
[aY e o [T]l u o] o HN S S R PR TRRRRRR 140
Kubernetes SELUPcooviiiiiiicteieercecree et 141
Managed PIatfOrmscccivviievierreeneereesseessteeseeessaeessseesseesssnessnnessnnesnnes 142
Turnkey Platforms ...ttt 142
CUStOM PIatfOrmscocuiiiiiiieerrtt et 143
Google Kubernetes ENGINEcccccerreviiiiiierienttnieennceeeseseeseceeesssneesenns 143
Exercise 13: Creating a Kubernetes Cluster on GCPccccceevveecvercnvennnen. 144
Autoscaling Kubernetes CIUSLErScoccccveeiiirinieriinienncreneceeeecneeseneenes 150
Exercise 14: Autoscaling a GKE Cluster in Productionc.cccccccevueeunnee. 150
Application Migration in Kubernetes Clusterscccccevirviinvieninennne. 154
Exercise 15: Migrating Applications Running in a GKE Cluster 155
Activity 5: Minimizing the Costs of Serverless Functions
IN @ GKE CIUSTEI ..ottt sresaesne s s snessne s 159
Y U] 0 = 1 PR 161

Chapter 6: Upcoming Serverless Features in Kubernetes 163

Introduction to Serverless with Kubernetescccoccervviiiiiiniinnicnnee. 164
Introduction to KNatiVe ...ttt 164
Getting Started with Knative on GKEccoovereierevernreneeeeeeeseeeeseeenee 167
Exercise 16: Deploying a Sample Application on Knativeccucuu...e. 171

Knative Serving COmMPONENtoccovviiiiiiiirieiiiiinrieinneesssseeesssssnneeses 174
Canary DeploymMeENt ...ttt 175
Exercise 17: Canary Deployment with Knativeccccoeeceveeerrcerecceenceennnen. 176

Knative MONItOFiNGcocccviiiiiiiiiiiineceerec et 181

KNAtIVE AULOSCAIEY oveeeieieeeeeeieeieeeeeeteeeeeeeaeeeeesseneeeeessssessesssssssssssssnssssenns 183

Exercise 18: Autoscaling with Knativecccccoiiiiiiiniiininiiiiiiiieceeee, 183

GOOEIE ClOUd RUN ... e ee s ee s see e s sneessneesne e s neessnnessnnanne 187
Exercise 19: Deploying Containers on Google Cloud Runccc..c....... 187
Introduction to Virtual Kubeletcccccooiiiviiiniinniniinciecnceeneee, 191
Exercise 20: Deploying Virtual Kubelet on AKSccooociiiiiiiiiniiiiiniinen. 193
Activity 6: Deploy a Containerized Application
in a Serverless ENVIrONMENtccooeiviiiiiiinninncncneeneeseesee e e 204
SUMMAKY ceeeiiiiiiiiiiiiiiiiiereetee e nssssnsereees s s ssssssesesssssssssssssssssesssssssssssnsnns 206
Chapter 7: Kubernetes Serverless with Kubeless 209
Introduction to Kubeless ...t 210
Kubeless Archit@Cture ...ttt 210
Creating a Kubernetes CIUSLErccooviiiiriiiicieirietinceeerceeeeceeeeesneeeeens 213
Creating a Kubernetes Cluster with Minikubecccccoiiviiinninnininnne 213
INStalling KUDEIESScooueeiieiieeeiccteeccecccre et sne e s sne e s saneens 218
Installing the Kubeless Frameworkccccooeiiiviiiiinnniininieeceeeceeeceeeee, 218
Installing the KUDEIESS CLIeeieereeeeereeeeeeeseeeeeesneeseessneessnnessnnesnnes 220
The KUDBEIESS Ul ...ttt 221
Kubeless FUNCLIONScccoiiiiiiiiieerieneentcreetee e 222
Creating a Kubeless FUNCLION ..ottt 223
Deploying the Kubeless FUNCLIONccccereieeriirnieneeneeeeeeseeeeeeeeeeenees 223
Listing the Kubeless FUNCLIONcoociiiiiiiiiiiiiieeteeeteeeee e 224
Invoking the Kubeless FUNCLIONccceeecirreiircienieeeeeceeceeesnee e eeneesnees 225
Updating the Kubeless FUNCLIONccocciiiiiiiiiiiiiieeeeeneeeeeee, 226
Deleting the Kubeless FUNCLIONcccccereireeiinrinnieneeeeeeceeesneeseee e enees 227
Exercise 21: Creating Your First Kubeless Functioncccceccveeinniinnnen. 228
Kubeless HTTP TriZEEIS ..covcuiiieriirirreeeceteecneereceeescneesessnessssneesssssessssneens 230

Exercise 22: Creating an HTTP Trigger for a Kubeless Function 231

Kubeless PUDSUD TFIZEEIS ..ottt 234

Exercise 23: Creating a PubSub Trigger for a Kubeless Function 235
Monitoring a Kubeless FUNCLIONcocceveiiiiiierinnereereeereeeeeeeseeeene 238
Debugging a Kubeless FUNCLIONccocciiveviiiiciiinciieneeeneceeescneeseneens 239
Serverless Plugin for Kubeless ..o 244

Activity 7: Publishing Messages to Slack with Kubelesscccccoecceueene 251
Y U] 0 0 = | TR 253
Chapter 8: Introduction to Apache OpenWhisk 255
Introduction to OPeNWhISKc.ccocviiiiiniiiiiiiiiiiicnecnececeee 256
Running OpenWhisk with IBM Cloud Functionsccccceeevereeerenennnee. 257

Exercise 24: Setting Up an IBM Cloud Accountccccocuevieieennecnnecnecnnnens 257

Exercise 25: Installing the IBM Cloud CLIccccoeviieviiieinniennienienieneeceeneen. 263
OpenWAhIsk ACLIONScoviviiiiiniiniinicnicnc e 268

Writing Actions for OPenWNRISKcccceeverrverrriernrerreerneesseeseeeseseessnessneens 269

Creating Actions on the OpenWhisk Frameworkcccccoecervirveriucnincnnee. 269

Listing OpenWhisk ACLIONScccveervieriieriienreeeseessneessseessseessseessseessneessnnes 270

INnvoking OpenWhisK ACLIONScccccviiiieiniiiiiniiniciicnecnecsecseesseseeseeseens 271

Updating OpenWhisk ACLIONScccceeveerreerniensienreenseesseesseessneessneessseessnees 278

Deleting OpenWhisk ACLIONSccccevvieiiiiiiiiiniinicnicnecnecnecseeseeseeseeseens 279

Exercise 26: Creating Your First OpenWhisk Actionccccceceevieieninnnenn. 280

OpenWhisk SEqUENCEScocciriiviiiiiirittnt e 283

Exercise 27: Creating OpenWhisk SEQUENCESccccceeeereerreerseenseencneenanees 287

OpenWhisk Web ACLIONScccciviiiiiiiniiiiiiitntncneeesc e 290
OpenWhisk Feeds, Triggers, and Rulescccccoeveiirvviiieneerncreencneennnne 297

OpenWhisk CronJob TrIgEErsScccciiviriiiniiiiininnenencnencsee e 301

Exercise 28: Creating CronJob Trig8erscccvervrierrieerceerneenseesseesseensnees 302

OpenWhISK PaCKagesccocceieviriieriirceeeeeeeeee e sae e s sae s sneessneesnne 306

Exercise 29: Creating OpenWhisk Packagescccccvvciriviniiinniiienccennnen. 307
Activity 8: Receive Daily Weather Updates via Emailccccoecevvvrevncnnnnne 310
Y U] 0 = | /TR 314
Chapter 9: Going Serverless with OpenFaa$S 317
Introduction to OPENFAAScccciiiriiiiiiircierreeeecee et eaee s sane e 318
Getting Started with OpenFaas on Your Local Minikube Cluster 320
OPENFAAS FUNCLIONSooiiiiiiiiiiiieencitescnesseneesennesseneesesnnesssneesssnnessnns 325
Creating OpenFaaS FUNCLIONSccccviiiiriericineernenrereeeeesesneesesnnesssssnesssneens 326
Building OpenFaaS FUNCLIONSccooiiiiiiiieeteeteeeeeceee e 330
Pushing the OpenFaaS FuNCtion IMagecccccceveeeveerneenneenseesseessneensnees 332
Deploying the OpenFaaS FUNCLIONSccccovviviiiiiiiinicnicnicnecnecsecneesnens 333
Listing the OpenFaaS FUNCLIONSccccevvieerierrieeieneencneesseeesreessneessneessnees 334
Invoking OpenFaasS FUNCLIONScccceviiiiiiiinicnicnicecnececseeseeseeseeeeens 336
Deleting OpenFaas FUNCLIONSccocceerviirneiennienseeeeneensreessneessseessneessnsessnees 337
Exercise 30: Creating an OpenFaaS Function with Dependencies 337
Deploying and Invoking Functions with OpenFaaSs Portal 340
OpenFaaS Functions with HTML Outputccccoccevviriinninicnncnncniecnnenne, 345
Exercise 31: Returning HTML Based on Path Parameterscc.c....... 350
OpenFaaS Function Observabilityccccvcivnniinnninnnnincncncceee, 354
Exercise 32: Installing an OpenFaaS Grafana Dashboard 357
OpenFaaS Function AUtoSCaliNgccccceeviriiiiiiirieeeeecee e 362
Activity 9: OpenFaaS FOrm ProCeSSOrccccerreruerrersrerrcseeresneesssnneessssseessnne 364
SUMMAKY coeeiiiiiiiiiiiiiiiiiireeeee e nssssseteee s s s ssssssseeesssssssssssssssseesssssssssssnsnns 368
Appendix 371
Index 453

Preface

About

This section briefly introduces the authors, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software requirements required to complete all of
the included activities and exercises.

ii | Preface

About the Book

Kubernetes has established itself as the standard platform for container management,
orchestration, and deployment. By learning Kubernetes, you'll be able to design your
own serverless architecture by implementing the Function-as-a-service (FaaS) model.

After an accelerated, hands-on overview of the serverless architecture and various
Kubernetes concepts, you'll cover a wide range of real-world development challenges
faced by real-world developers and explore various techniques to overcome them.
You'll learn how to create production-ready Kubernetes clusters and run serverless
applications on them. You'll see how Kubernetes platforms and serverless frameworks
such as Kubeless, Apache OpenWhisk, and OpenFaaS provide the tooling you need

to develop serverless applications on Kubernetes. You'll also learn how to select the
appropriate framework for your upcoming project.

By the end of this book, you'll have the skills and confidence to design your own
serverless applications using the power and flexibility of Kubernetes.

About the Author

Onur Yilmaz is a senior software engineer at a multinational enterprise software
company. He is a Certified Kubernetes Administrator (CKA) and works on Kubernetes
and cloud management systems. He is a keen supporter of cutting-edge technologies
including Docker, Kubernetes, and cloud-native applications. He has one master's and
two bachelor's degrees in the engineering field.

Sathsara Sarathchandra is a DevOps engineer and has experience in building

and managing Kubernetes based production deployments both in the cloud and
on-premises. He has over 8 years of experience, having worked for several companies
ranging from small start-ups to enterprises. He is a Certified Kubernetes Administrator
(CKA) and a Certified Kubernetes Application Developer (CKAD). He holds a master's
degree in business administration and a bachelor's degree in computer science.

Learning Objectives
By the end of this book, you will be able to:
* Deploy a Kubernetes cluster locally with Minikube

* Use AWS Lambda and Google Cloud Functions

* Create, build, and deploy a web page generated by the serverless functions in the
cloud

About the Book | iii

* Create a Kubernetes cluster running on the virtual kubelet hardware abstraction
* Create, test, troubleshoot, and delete an OpenFass function

* Create a sample Slackbot with Apache OpenWhisk actions

Audience

This book is for software developers and DevOps engineers who have basic or
intermediate knowledge about Kubernetes and want to learn how to create serverless
applications that run on Kubernetes. Those who want to design and create serverless
applications running on the cloud, or on-premise Kubernetes clusters, will also find this
book useful.

Approach

This book provides examples of engaging projects that have a direct correlation to
how serverless developers work in the real world with Kubernetes clusters. You'll build
example applications and tackle programming challenges that'll prepare you for large,
complex engineering problems. Each component is designed to engage and stimulate
you so that you can retain and apply what you learn in a practical context with the
maximum impact. By completing the book, you'll walk away feeling capable of tackling
real-world serverless Kubernetes applications development.

Hardware Requirements

For the optimal student experience, we recommend the following hardware
configuration:

* Processor: Intel Core i5 or equivalent
* Memory: 8 GB RAM (16 GB preferred)
* Hard disk: 10 GB available space

* Internet connection

Software Requirements
We also recommend that you have the following software installed in advance:

* Sublime Text (latest version), Atom IDE (latest version), or another similar text
editor application

* Git

iv | Preface

Additional Requirements
* Azure account
* Google cloud account
* AWS account
* Docker Hub account

¢ Slack account

Conventions

Code words in the text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Write hello-from-lambda as the function name and Python 3.7 as the runtime."

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Open the AWS
Management Console, write Lambda in the Find Services search box, and click Lambda
- Run Code without Thinking about Servers."

A block of code is set as follows:

import json

def lambda_handler(event, context):
return {
'statusCode': '200',
'body': json.dumps({"message": "hello", "platform": "lambda"}),
"headers': {

"Content-Type': 'application/json',

About the Book | v

Installation and Setup

Before we can do awesome things with data, we need to be prepared with the most
productive environment. In this short section, we will see how to do that. Following are
the requisites that need to be fulfilled:

* Docker (17.10.0-ce or later)
* Hypervisor like Virtualbox, Parallels, VMWareFusion, Hyperkit or VMWare.

Refer this link for more information: https: //kubernetes.io /docs /tasks /tools /
install-minikube /#install-a-hypervisor

Additional Resources

The code bundle for this book is also hosted on GitHub at https: //github.com /

TrainingByPackt /Serverless-Architectures-with-Kubernetes. We also have other code
bundles from our rich catalog of books and videos available at https: //github.com /

PacktPublishing /. Check them out!

https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor
https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Introduction to
Serverless

Learning Objectives

By the end of this chapter, you will be able to:

Identify the benefits of serverless architectures
Create and invoke simple functions on a serverless platform
Create a cloud-native serverless function and package it as a container using Kubernetes

Create a Twitter Bot Backend application and package it in a Docker container

In this chapter, we will explain the serverless architecture, then create our first serverless
function and package it as a container.

2 | Introduction to Serverless

Introduction to Serverless

Cloud technology right now is in a state of constant transformation to create scalable,
reliable, and robust environments. In order to create such an environment, every
improvement in cloud technology aims to increase both the end user experience and
the developer experience. End users demand fast and robust applications that are
reachable from everywhere in the world. At the same time, developers demand a better
development environment to design, deploy, and maintain their applications in. In the
last decade, the journey of cloud technology has started with cloud computing, where
servers are provisioned in cloud data centers and applications are deployed on the
servers. The transition to cloud data centers decreased costs and removed the need
for responsibility for data centers. However, as billions of people are accessing the
internet and demanding more services, scalability has become a necessity. In order

to scale applications, developers have created smaller microservices that can scale
independently of each other. Microservices are packaged into containers as building
blocks of software architectures to better both the developer and end user experience.
Microservices enhance the developer experience by providing better maintainability
while offering high scalability to end users. However, the flexibility and scalability of
microservices cannot keep up with the enormous user demand. Today, for instance,
millions of banking transactions take place daily, and millions of business-to-business
requests are made to backend systems.

Finally, serverless started gaining attention for creating future-proof and ad
hoc-scalable applications. Serverless designs focus on creating even smaller services
than microservices and they are designed to last much longer into the future. These
nanoservices, or functions, help developers to create more flexible and easier-to-
maintain applications. On the other hand, serverless designs are ad hoc-scalable,
which means if you adopt a serverless design, your services are naturally scaled up
or down with the user requests. These characteristics of serverless have made it the
latest big trend in the industry, and it is now shaping the cloud technology landscape.
In this section, an introduction to serverless technology will be presented, looking at
serverless's evolution, origin, and use cases.

Before diving deeper into serverless design, let's understand the evolution of cloud
technology. In bygone days, the expected process of deploying applications started
with the procurement and deployment of hardware, namely servers. Following that,
operating systems were installed on the servers, and then application packages were
deployed. Finally, the actual code in application packages was executed to implement
business requirements. These four steps are shown in Figure 1.1:

Deploy Ins_taII the !Deploy the Run the code
hardware operating system application package

Figure 1.1: Traditional software development

Introduction to Serverless | 3

Organizations started to outsource their data center operations to cloud providers to
improve the scalability and utilization of servers. For instance, if you were developing
an online shopping application, you first needed to buy some servers, wait for their
installation, and operate them daily and deal with their potential problems, caused by
electricity, networking, and misconfiguration. It was difficult to predict the usage level
of servers and not feasible to make huge investments in servers to run applications.
Therefore, both start-ups and large enterprises started to outsource data center
operations to cloud providers. This cleared away the problems related to the first step
of hardware deployment, as shown in Figure 1.2:

Deploy Install the Deploy the Run the code
hardware operating system application package

Figure 1.2: Software development with cloud computing

With the start of virtualization in cloud computing, operating systems became
virtualized so that multiple virtual machines (VMs) could run on the same bare-metal
machine. This transition removed the second step, and service providers provision
VMs as shown in Fig 1.3. With multiple VMs running on the same hardware, the costs of
running servers decreases and the flexibility of operations increases. In other words,
the low-level concerns of software developers are cleared since both the hardware and
the operating system are now someone else's problem:

Deploy Install the Deploy the Run the code
hardware operating system application package

Figure 1.3: Software development with virtualization

VMs enable the running of multiple instances on the same hardware. However, using
VMs requires installing a complete operating system for every application. Even for a
basic frontend application, you need to install an operating system, which results in an
overhead of operating system management, leading to limited scalability. Application
developers and the high-level usage of modern applications requires faster and simpler
solutions with better isolation than creating and managing VMs. Containerization
technology solves this issue by running multiple instances of "containerized"
applications on the same operating system. With this level of abstraction, problems
related to operating systems are also removed, and containers are delivered as
application packages, as illustrated in Figure 1.4. Containerization technology enables
a microservices architecture where software is designed as small and scalable services
that interact with each other.

4 | Introduction to Serverless

This architectural approach makes it possible to run modern applications such as
collaborative spreadsheets in Google Drive, live streams of sports events on YouTube,
video conferences on Skype, and many more:

Deploy Ins_tall the !Deploy the Run the code
hardware operating system application package

Figure 1.4: Software development with containerization

The next architectural phenomena, serverless, removes the burden of managing
containers and focuses on running the actual code itself. The essential characteristic of
serverless architecture is ad hoc scalability. Applications in serverless architecture are
ad hoc-scalable, which means they are scaled up or down automatically when they are
needed. They could also be scaled down to zero, which means no hardware, network, or
operation costs. With serverless applications, all low-level concerns are outsourced and
managed, and the focus is on the last step - Run the code - as shown in Figure 1.5. With
the serverless design, the focus is on the last step of traditional software development.
In the following section, we will focus on the origin and manifesto of serverless for a
more in-depth introduction:

Deploy Ins_tall the Deploy the Run the code
hardware operating system application package

Figure 1.5: Software development with serverless

Serverless Origin and Manifesto

Serverless is a confusing term since there are various definitions used in conferences,
books, and blogs. Although it theoretically means not having any servers, it practically
means leaving the responsibility of servers to third-party organizations. In other words,
it means not getting rid of servers but server operations. When you run serverless,
someone else handles the procurement, shipping, and installation of your server
operations. This decreases your costs because you do not need to operate servers

or even data centers; furthermore, it lets you focus on the application logic, which
implements your core business function.

The first uses of serverless were seen in articles related to continuous integration
around 2010. When it was first discussed, serverless was considered for building

and packaging applications on the servers of cloud providers. The dramatic increase

in popularity came with the Amazon Web Services (AWS) Lambda launch in 2014.
Furthermore, in 2015, AWS presented API Gateway for the management and triggering
of Lambda functions as it's a single entry point for multiple functions. Therefore,
serverless functions gained traction in 2014 and it became possible to create serverless
architecture applications by using AWS API Gateway in 2015.

Introduction to Serverless | 5

However, the most definitive and complete explanation of serverless was presented in
2016, at the AWS developer conference, as the Serverless Compute Manifesto. It consists
of eight strict rules that define the core ideas behind serverless architecture:

Note

Although it was discussed in various talks at the AWS Summit 2016 conference,

the Serverless Compute Manifesto has no official website or documentation. A
complete list of what the manifesto details can be seen in a presentation by Dr.
Tim Wagner: https://www.slideshare.net/AmazonWebServices/getting-started-with-
aws-lambda-and-the-serverless-cloud.

* Functions as the building blocks: In serverless architecture, the building blocks
of development, deployment, and scaling should be the functions. Each function
should be deployed and scaled in isolation, independently of other functions.

* No servers, VMs, or containers: The service provider should operate all
computation abstractions for serverless functions, including servers, VMs,
and containers. Users of serverless architecture should not need any further
information about the underlying infrastructure.

* No storage: Serverless applications should be designed as ephemeral workloads
that have a fresh environment for every request. If they need to persist some data,
they should use a remote service such as a Database as a Service (DbaaS).

* Implicitly fault-tolerant functions: Both the serverless infrastructure and the
deployed applications should be fault-tolerant in order to create a robust, scalable,
and reliable application environment.

* Scalability with the request: The underlying infrastructure, including the
computation and network resources, should enable a high level of scalability. In
other words, it is not an option for a serverless environment to fail to scale up
when requests are rising.

* No cost for idle time: Serverless providers should only incur costs when serverless
workloads are running. If your function has not received an HTTP request for a
long period, you should not pay any money for the idleness.

* Bring Your Own Code (BYOC): Serverless architectures should enable the running
of any code developed and packaged by end users. If you are a Node.Js should
appear together or Go developer, it should be possible for you to deploy your
function within your preferred language to the serverless infrastructure.

https://www.slideshare.net/AmazonWebServices/getting-started-with-aws-lambda-and-the-serverless-cloud
https://www.slideshare.net/AmazonWebServices/getting-started-with-aws-lambda-and-the-serverless-cloud

6 | Introduction to Serverless

» Instrumentation: Logs of the functions and the metrics collected over the
function calls should be available to the developers. This makes it possible to
debug and solve problems related to functions. Since they are already running on
remote servers, instrumentation should not create any further burden in terms of
analyzing potential problems.

The original manifesto introduced some best practices and limitations; however, as
cloud technology evolves, the world of serverless applications evolves. This evolution
will make some rules from the manifesto obsolete and will add new rules. In the
following section, use cases of serverless applications are discussed to explain how
serverless is adopted in the industry.

Serverless Use Cases

Serverless applications and designs seem to be avant-garde technologies; however, they
are highly adopted in the industry for reliable, robust, and scalable applications. Any
traditional application that is running on VMs, Docker containers, or Kubernetes can be
designed to run serverless if you want the benefits of serverless designs. Some of the
well-known use cases of serverless architectures are listed here:

» Data processing: Interpreting, analyzing, cleansing, and formatting data
are essential steps in big data applications. With the scalability of serverless
architectures, you can quickly filter millions of photos and count the number of
people in them, for instance, without buying any pricey servers. According to a
case report (https: //azure.microsoft.com /en-in /blog /a-fast-serverless-big-
data-pipeline-powered-by-a-single-azure-function /), it is possible to create
a serverless application to detect fraudulent transitions from multiple sources
with Azure Functions. To handle 8 million data processing requests, serverless
platforms would be the appropriate choice, with their ad hoc scalability.

* Webhooks: Webhooks are HTTP API calls to third-party services to deliver real-
time data. Instead of having servers up and running for webhook backends,
serverless infrastructures can be utilized with lower costs and less maintenance.

* Check-out and payment: It is possible to create shopping systems as serverless
applications where each core functionality is designed as an isolated component.
For instance, you can integrate the Stripe API as a remote payment service and use
the Shopify service for cart management in your serverless backend.

https://azure.microsoft.com/en-in/blog/a-fast-serverless-big-data-pipeline-powered-by-a-single-azure-function/
https://azure.microsoft.com/en-in/blog/a-fast-serverless-big-data-pipeline-powered-by-a-single-azure-function/

Introduction to Serverless | 7

* Real-time chat applications: Real-time chat applications integrated into Facebook
Messenger, Telegram, or Slack, for instance, are very popular for handling
customer operations, distributing news, tracking sports results, or just for
entertainment. It is possible to create ephemeral serverless functions to respond
to messages or take actions based on message content. The main advantage of
serverless for real-time chat is that it can scale when many people are using it. It
could also scale to zero and cost no money when there is no one using the chat
application.

These use cases illustrate that serverless architectures can be used to design any
modern application. It is also possible to move some parts of monolithic applications
and convert them into serverless functions. If your current online shop is a single Java
web application packaged as a JAR file, you can separate its business functions and
convert them into serverless components. The dissolution of giant monoliths into small
serverless functions helps to solve multiple problems at once. First of all, scalability
will never be an issue for the serverless components of your application. For instance,
if you cannot handle a high amount of payments during holidays, a serverless platform
will automatically scale up the payment functions with the usage levels. Secondly, you
do not need to limit yourself to the programming language of the monolith; you can
develop your functions in any programming language. For instance, if your database
clients are better implemented with Node.js, you can code the database operations of
your online shop in Node.js.

Finally, you can reuse the logic implemented in your monolith since now it is a shared
serverless service. For instance, if you separate the payment operations of your
online shop and create serverless payment functions, you can reuse these payment
functions in your next project. All these benefits make it appealing for start-ups as
well as large enterprises to adopt serverless architectures. In the following section,
serverless architectures will be discussed in more depth, looking specifically at some
implementations.

Possible answers:
» Applications with high latency
* When observability and metrics are critical for business

* When vendor lock-in and ecosystem dependencies are an issue

8 | Introduction to Serverless

Serverless Architecture and Function as a Service (FaaS)

Serverless is a cloud computing design where cloud providers handle the provisioning
of servers. In the previous section, we discussed how operational concerns are

layered and handed over. In this section, we will focus on serverless architectures and
application design using serverless architecture.

In traditional software architecture, all of the components of an application are
installed on servers. For instance, let's assume that you are developing an e-commerce
website in Java and your product information is stored in MySQL. In this case, the
frontend, backend, and database are installed on the same server. End users are
expected to reach the shopping website with the IP address of the server, and thus an
application server such as Apache Tomcat should be running on the server. In addition,
user information and security components are also included in the package, which is
installed on the server. A monolithic e-commerce application is shown in Figure 1.6,
with all four parts, namely the frontend, backend, security, and database:

innn
| |
| |
- 4 "TIY
Frontend Security Backend Database
Servers Server

Figure 1.6: Traditional software architecture

Microservices architecture focuses on creating a loosely coupled and independently
deployable collection of services. For the same e-commerce system, you would still
have frontend, backend, database, and security components, but they would be isolated
units. Furthermore, these components would be packaged as containers and would be
managed by a container orchestrator such as Kubernetes. This enables the installing
and scaling of components independently since they are distributed over multiple
servers. In Figure 1.7, the same four components are installed on the servers and
communicating with each other via Kubernetes networking:

Serverless Architecture and Function as a Service (FaaS) | 9

Kubernetes
cluster

Database

innn
Backend T

Frontend

Security

Py Py o
O e O s O e
O e O e O e
Servers

Figure 1.7: Microservices software architecture

Microservices are deployed to the servers, which are still managed by the operations
teams. With the serverless architecture, the components are converted into third-party
services or functions. For instance, the security of the e-commerce website could be
handled by an Authentication-as-a-Service offering such as AuthO. AWS Relational
Database Service (RDS) can be used as the database of the system. The best option

for the backend logic is to convert it into functions and deploy them into a serverless
platform such as AWS Lambda or Google Cloud Functions. Finally, the frontend could
be served by storage services such as AWS Simple Storage Service (S3) or Google Cloud
Storage.

10 | Introduction to Serverless

With a serverless design, it is only required to define these services for you to have
scalable, robust, and managed applications running in harmony, as shown in Figure 1.8:

Note

Autho is a platform for providing authentication and authorization for web,
mobile, and legacy applications. In short, it provides authentication and
authorization as a service, where you can connect any application written in
any language. Further details can be found on its official website: https://authO.

com.
a

Security ﬁ
Serverless nnnn
Platform - -
< > = -
) - - -
Frontend nnni ﬁ

Backend ﬁ

— e

Database ﬁ
1¥

Figure 1.8: Serverless software architecture

https://auth0.com
https://auth0.com

Serverless Architecture and Function as a Service (FaaS) | 11

Starting from a monolith architecture and first dissolving it into microservice, and then
serverless components is beneficial for multiple reasons:

* Cost: Serverless architecture helps to decrease costs in two critical ways. The first
is that the management of the servers is outsourced, and the second is that it only
costs money when the serverless applications are in use.

* Scalability: If an application is expected to grow, the current best choice is to
design it as a serverless application since that removes the scalability constraints
related to the infrastructure.

* Flexibility: When the scope of deployable units is decreased, serverless provides
more flexibility to innovate, choose better programming languages, and manage
with smaller teams.

These dimensions and how they vary between software architectures is visualized in

Figure 1.9:

Traditional Microservices Serverless
W Traditional M Scalability Flexibility

Figure 1.9: Benefits of the transition from cost to serverless

When you start with a traditional software development architecture, the transition to
microservices increases scalability and flexibility. However, it does not directly decrease
the cost of running the applications since you are still dealing with the servers. Further
transition to serverless improves both scalability and flexibility while decreasing the
cost. Therefore, it is essential to learn about and implement serverless architectures

for future-proof applications. In the following section, the implementation of serverless
architecture, namely Function as a Service (FaaS), will be presented.

12 | Introduction to Serverless

Function as a Service (FaaS)

FaaS is the most popular and widely adopted implementation of serverless architecture.
All major cloud providers have FaaS products, such as AWS Lambda, Google Cloud
Functions, and Azure Functions. As its name implies, the unit of deployment and
management in FaaS is the function. Functions in this context are no different from any
other function in any other programming language. They are expected to take some
arguments and return values to implement business needs. FaaS platforms handle the
management of servers and make it possible to run event-driven, scalable functions.
The essential properties of a FaaS offering are these:

» Stateless: Functions are designed to be stateless and ephemeral operations
where no file is saved to disk and no caches are managed. At every invocation of
a function, it starts quickly with a new environment, and it is removed when it is
done.

* Event-triggered: Functions are designed to be triggered directly and based
on events such as cron time expressions, HTTP requests, message queues, and
database operations. For instance, it is possible to call the startConversation
function via an HTTP request when a new chat is started. Likewise, it is possible to
launch the syncUsers function when a new user is added to a database.

* Scalable: Functions are designed to run as much as needed in parallel so that
every incoming request is answered and every event is covered.

* Managed: Functions are governed by their platform so that the servers and
underlying infrastructure is not a concern for FaaS users.

These properties of functions are covered by cloud providers' offerings, such as AWS
Lambda, Google Cloud Functions, and Azure Functions; and on-premises offerings,
such as Kubeless, Apache OpenWhisk, and OpenFass. With its high popularity, the term
FaaS is mostly used interchangeably with the term serverless. In the following exercise,
we will create a function to handle HTTP requests and illustrate how a serverless
function should be developed.

Serverless Architecture and Function as a Service (FaaS) | 13

Exercise 1: Creating an HTTP Function

In this exercise, we will create an HTTP function to be a part of a serverless platform
and then invoke it via an HTTP request. In order to execute the steps of the exercise,
you will use Docker, text editors, and a terminal.

Note

The code files for the exercises in this chapter can be found here: https://github.
com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/
LessonQ1/Exercisel.

To successfully complete the exercise, we need to ensure the following steps are
executed:

1. Create a file named function. go with the following content in your favorite text
editor:

package main

import (
n f‘mt n
"net/http"
)

func WelcomeServerless(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "Hello Serverless World!")

3

In this file, we have created an actual function handler to respond when this
function is invoked.

2. Create a file named main.go with the following content:

package main

import (
n .f_‘mt n
"net/http"
)

func main() {
fmt.Println("Starting the serverless environment..")

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise1

14 | Introduction to Serverless

http.HandleFunc("/", WelcomeServerless)
fmt.Println("Function handlers are registered.")

http.ListenAndServe(":8080", nil)
}

In this file, we have created the environment to serve this function. In general, this
part is expected to be handled by the serverless platform.

3. Start a Go development environment with the following command in your
terminal:

docker run -it --rm -p 8080:8080 -v "$(pwd)":/go/src --workdir=/go/src
golang:1.12.5

With that command, a shell prompt will start inside a Docker container for

Go version 1.12.5. In addition, port 8080 of the host system is mapped to the
container, and the current working directory is mapped to /go/src. You will be
able to run commands inside the started Docker container:

/serverless $ docker run -it -—rm -p 8@80:8680 -v "$(pwd)":/go/src ——workdir=/go/src golang:1.12.5

root@54eefa3c22a6: /go/src# |J

Figure 1.10: The Go development environment inside the container

4. Start the function handlers with the following command in the shell prompt
opened in step 3: go run *.go.

With the start of the applications, you will see the following lines:

root@54eefa3dc22ab: /go/src# go run *.go
Starting the serverless environment..

Function handlers are registered.

Figure 1.11: The start of the function server
These lines indicate that the main function inside the main. go file is running as

expected.

Kubernetes and Serverless | 15

5. Open http://localhost:8080 in your browser:

localhost:8080

C @ localhost:8080 hA g Incognito @

Hello Serverless World!

Figure 1.12: The WelcomeServerless output

The message displayed on the web page reveals that the WelcomeServerless
function is successfully invoked via the HTTP request and the response is
retrieved.

6. Press Ctrl + C to exit the function handler and then write exit to stop the
container:

root@54eefa3c22a6: /go/src# go run *.go
Starting the serverless environment..
Function handlers are registered.
~Csignal: interrupt

root@54eefa3c22a6: fgo/src# exit
exit
/serverless §$ |J

Figure 1.13: Exiting the function handler and container

With this exercise, we demonstrated how we can create a simple function. In addition,
the serverless environment was presented to show how functions are served and
invoked. In the following section, an introduction to Kubernetes and the serverless
environment is given to connect the two cloud computing phenomena.

Kubernetes and Serverless

Serverless and Kubernetes arrived on the cloud computing scene at about the same
time, in 2014. AWS supports serverless through AWS Lambda, whereas Kubernetes
became open source with the support of Google and its long and successful history

in container management. Organizations started to create AWS Lambda functions for
their short-lived temporary tasks, and many start-ups have been focused on products
running on the serverless infrastructure. On the other hand, Kubernetes gained
dramatic adoption in the industry and became the de facto container management
system. It enables running both stateless applications, such as web frontends and
data analysis tools, and stateful applications, such as databases, inside containers. The
containerization of applications and microservices architectures have proven to be
effective for both large enterprises and start-ups.

16 | Introduction to Serverless

Therefore, running microservices and containerized applications is a crucial factor
for successful, scalable, and reliable cloud-native applications. Also, the following two
essential elements strengthen the connection between Kubernetes and serverless
architectures:

* Vendor lock-in: Kubernetes isolates the cloud provider and creates a managed
environment for running serverless workloads. In other words, it is not
straightforward to run your AWS Lambda functions in Google Cloud Functions if
you want to move to a new provider next year. However, if you use a Kubernetes-
backed serverless platform, you will be able to quickly move between cloud
providers or even on-premises systems.

* Reuse of services: As the mainstream container management system, Kubernetes
runs most of its workload in your cloud environment. It offers an opportunity
to deploy serverless functions side by side with existing services. It makes it
easier to operate, install, connect, and manage both serverless and containerized
applications.

Cloud computing and deployment strategies are always evolving to create more
developer-friendly environments with lower costs. Kubernetes and containerization
adoption has already won the market and the love of developers such that any cloud
computation without Kubernetes won't be seen for a very long time. By providing

the same benefits, serverless architectures are gaining popularity; however, this does
not pose a threat to Kubernetes. On the contrary, serverless applications will make
containerization more accessible, and consequently, Kubernetes will profit. Therefore, it
is essential to learn how to run serverless architectures on Kubernetes to create future-
proof, cloud-native, scalable applications. In the following exercise, we will combine
functions and containers and package our functions as containers.

Possible answers:
» Serverless — data preparation
» Serverless — ephemeral API operations
* Kubernetes - databases

* Kubernetes - server-related operations

Kubernetes and Serverless | 17

Exercise 2: Packaging an HTTP Function as a Container

In this exercise, we will package the HTTP function from Exercise 1 as a container to be
a part of a Kubernetes workload. Also, we will run the container and trigger the function
via its container.

Note

The code files for the exercises in this chapter can be found here: https://github.
com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/
LessonQ1/Exercise2.

To successfully complete the exercise, we need to ensure the following steps are
executed:

1. Create a file named Dockerfile in the same folder as the files from Exercise 1:

FROM golang:1.12.5-alpine3.9 AS builder
ADD . .
RUN go build *.go

FROM alpine:3.9

COPY --from=builder /go/function ./function
RUN chmod +x ./function

ENTRYPOINT ["./function"]

In this multi-stage Dockerfile, the function is built inside the golang:1.12.5-
alpine3.9 container. Then, the binary is copied into the alpine:3.9 container as
the final application package.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise2
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise2
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise2

18 | Introduction to Serverless

2. Build the Docker image with the following command in the terminal: docker build
. -t hello-serverless.

Each line of Dockerfile is executed sequentially, and finally, with the last step, the
Docker image is built and tagged: Successfully tagged hello-serverless:latest:

/serverless $ docker build . -t hello-serverless
Sending build context to Docker daemon 12.29kB
Step 1/7 : FROM golang:1.12.5-alpine3.9 AS builder

———> ¢7330979841b
Step 2/7 : ADD . .

——> Using cache

——> 6db2bdb89661
Step 3/7 : RUN go build *.go

——-> Using cache

———> 514135217996
Step 4/7 : FROM alpine:3.9

———> ¢df98d1859cl
Step 5/7 : COPY —from=builder /go/function ./function

——> Using cache

———> c6ab@1lbl6edc
Step 6/7 : RUN chmod +x ./function

——-> Using cache

———> e745ecBbabac
Step 7/7 : ENTRYPOINT ["./function"]

——> Using cache

——> a3adc43208ed
Successfully built a3ad4c43268ed
Successfully tagged hello-serverless:latest

/serverless $ i

Figure 1.14: The build of the Docker container

3. Start a Docker container from the hello-serverless image with the following
command in your Terminal: docker run -it --rm -p 8080:8080 hello-serverless.

With that command, an instance of the Docker image is instantiated with port 8080
mapping the host system to the container. Furthermore, the --rm flag will remove
the container when it is exited. The log lines indicate that the container of the
function is running as expected:

/serverless $ docker run -it ——rm -p 8080:8080 hello-serverless
Starting the serverless environment..

Function handlers are registered.

Figure 1.15: The start of the function container

Kubernetes and Serverless | 19

4. Open http://localhost: 8080 in your browser:

localhost:8080

C @ localhost:8080 g Incognito @

Hello Serverless World!

Figure 1.16: The WelcomeServerless output

It reveals that the WelcomeServerless function running in the container was
successfully invoked via the HTTP request, and the response is retrieved.

5. Press Ctrl + C to exit the container:

/serverless % docker run -it --rm -p 80680:8080 hello-serverless
Starting the serverless environment..

Function handlers are registered.
~C /serverless $ ||

Figure 1.17: Exiting the container

In this exercise, we saw how we can package a simple function as a container. In
addition, the container was started and the function was triggered with the help

of Docker's networking capabilities. In the following exercise, we will implement a
parameterized function to show how to pass values to functions and return different
responses.

Exercise 3: Parameterized HTTP Functions

In this exercise, we will convert the WelcomeServerless function from Exercise 2 into a
parameterized HTTP function. Also, we will run the container and trigger the function
via its container.

Note

The code files for the exercises in this chapter can be found here: https://github.
com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/
LessonQ1/Exercise3.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise3
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise3
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise3

20 | Introduction to Serverless

To successfully complete the exercise, we need to ensure that the following steps are
executed:

1. Change the contents of function.go from Exercise 2 to the following:

package main

import (
n .Fmt n
"net/http"
)

func WelcomeServerless(w http.ResponseWriter, r xhttp.Request) {
names, ok := r.URL.Query()["name"]

if ok && len(names[0]) > 0 {
fmt.Fprintf(w, names[0] + ", Hello Serverless World!")
} else {
fmt.Fprintf(w, "Hello Serverless World!")

b

In the new version of the WelcomeServerless function, we now take URL
parameters and return responses accordingly.

2. Build the Docker image with the following command in your terminal: docker
build . -t hello-serverless.

Each line of Dockerfile is executed sequentially, and with the last step, the Docker
image is built and tagged: Successfully tagged hello-serverless:latest:

Kubernetes and Serverless | 21

/serverless $ docker build . -t hello-serverless
Sending build context to Docker daemon 12.29kB
Step 1/7 : FROM golang:1.12.5-alpine3.9 AS builder

———> 7330979841b
Step 2/7 : ADD .

—-—-> Using cache

——> b6db2bdb89661
Step 3/7 : RUN go build #*.go

——-> Using cache

———> 514135217996
Step 4/7 : FROM alpine:3.9

———> cdf98d1859cl
Step 5/7 : COPY ——from=builder /go/function ./function

———> Using cache

———> c6a6@1lbl6edc
Step 6/7 : RUN chmod +x ./function

——-> Using cache

———> e745ec8babac
Step 7/7 : ENTRYPOINT ["./function"]

———> Using cache

———> a3ad4c43208ed
Successfully built a3a4c43288ed
Successfully tagged hello-serverless:latest

/serverless % i

Figure 1.18: The build of the Docker container

3. Start a Docker container from the hello-serverless image with the following
command in the terminal: docker run -it -rm -p 8080:8080 hello-serverless.

With that command, the function handlers will start on port 808e of the host
system:

/serverless $ docker run -it ——rm -p 8080:8080 hello-serverless
Starting the serverless environment..
Function handlers are registered.

Figure 1.19: The start of the function container

4. Open http://localhost: 8080 in your browser:

localhost:8080

< - C @ localhost:8080 Y Incognito €

Hello Serverless World!

Figure 1.20: The WelcomeServerless output

22 | Introduction to Serverless

It reveals the same response as in the previous exercise. If we provide URL
parameters, we should get personalized Hello Serverless World messages.

5. Change the address to http://localhost:8080?name=Ece in your browser and
reload the page. We are now expecting to see a personalized Hello Serverless
World message with the name provided in URL parameters:

localhost:8080/?name=Ece X +

C @ localhost:8080/?name=Ece hx g Incognito @ H

Ece, Hello Serverless World!

Figure 1.21: Personalized WelcomeServerless output

6. Press Ctrl + C to exit the container:

/serverless $ docker run -it ——rm -p 8080:80880 hello-serverless
Starting the serverless environment..
Function handlers are registered.

~C /serverless $ |

Figure 1.22: Exiting the container

In this exercise, how generic functions are used with different parameters was shown.
Personal messages based on input values were returned by a single function that

we deployed. In the following activity, a more complex function will be created and
managed as a container to show how they are implemented in real life.

Activity 1: Twitter Bot Backend for Bike Points in London

The aim of this activity is to create a real-life function for a Twitter bot backend. The
Twitter bot will be used to search for available bike points in London and the number of
available bikes in the corresponding locations. The bot will answer in a natural language
form; therefore, your function will take input for the street name or landmark and
output a complete human-readable sentence.

Transportation data for London is publicly available and accessible via the Transport
for London (TFL) Unified API (https: //api.tfl.gov.uk). You are required to use the TFL
API and run your functions inside containers.

https://api.tfl.gov.uk

Kubernetes and Serverless | 23

Once completed, you will have a container running for the function:

/serverless $ docker run -it —-rm —-p 8080:8080 find-bikes
Starting the - finder..

Function handlers are registered.

Figure 1.23: The running function inside the container

When you query via an HTTP REST AP]I, it should return sentences similar to the
following when bike points are found with available bikes:

localhost:8080/2q=oxford X +

&€ > C @ localhost:8080/?q=oxford Yo Incogni(o@ H

The nearest bike point is Oxford Road, Putney and there are 21 available bikes & Hurry up! *
For navigation (U https://maps.google.com?q=51.460792,-0.212607

Figure 1.24: Function response when bikes are available

When there are no bike points found or no bikes are available at those locations, the
function will return a response similar to the following:

localhost:8080/?g=liverpool st X +

<« c e Incognito @ H

The nearest bike point is Christopher Street, Liverpool Street but there are no available bikes !

For navigation (J https://maps.google.com?q=51.521283,-0.084605

Figure 1.25: Function response when a bike point is located but no bike is found

The function may also provide the following response:

localhost:8080/?q=diagon&all: X +

¢« g=diagon&alley Y Incognite @

Sorry, no bike points are found for this location!

Figure 1.26: Function response when no bike point or bike is found

24 | Introduction to Serverless

Execute the following steps to complete this activity:

1.

2
3
4.
5

&

Create a main. go file to register function handlers, as in Exercise 1.

Create a function. go file for the FindBikes function.

Create a Dockerfile for building and packaging the function, as in Exercise 2.
Build the container image with Docker commands.

Run the container image as a Docker container and make the ports available from
the host system.

Test the function's HTTP endpoint with different queries.

Exit the container.

Note

The files main. go, function.go and Dockerfile can be found here: https://github.
com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/
Lesson01/Activity1.

The solution for the activity can be found on page 372.

In this activity, we built the backend of a Twitter bot. We started by defining main and
FindBikes functions. Then we built and packaged this serverless backend as a Docker
container. Finally, we tested it with various inputs to find the closest bike station. With
this real-life example, the background operations of a serverless platform and how to
write serverless functions were illustrated.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Activity1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Activity1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Activity1

Summary | 25

Summary

In this chapter, we first described the journey from traditional to serverless software
development. We discussed how software development has changed over the years

to create a more developer-friendly environment. Following that, we presented the
origin of serverless technology and its official manifesto. Since serverless is a popular
term in the industry, defining some rules helps to design better serverless applications
that integrate easily into various platforms. We then listed use cases for serverless
technology to illustrate how serverless architectures can be used to create any modern
application.

Following an introduction to serverless, FaaS was explored as an implementation of
serverless architectures. We showed how applications are designed in traditional,
microservices, and serverless designs. In addition, the benefits of the transition to
serverless architectures were discussed in detail.

Finally, Kubernetes and serverless technologies were discussed to show how they
support each other. As the mainstream container management system, Kubernetes was
presented, which involved looking at the advantages of running serverless platforms
with it. Containerization and microservices are highly adopted in the industry, and
therefore running serverless workloads as containers was covered, with exercises.
Finally, a real-life example of functions as a backend for a Twitter bot was explored. In
this activity, functions were packaged as containers to show the relationship between
microservices-based, containerized, and FaaS-backed designs.

In the next chapter, we will be introducing serverless architecture in the cloud and
working with cloud services.

Introduction to

Serverless in the
Cloud

Learning Objectives

By the end of this chapter, you will be able to:

+ Evaluate the criteria for choosing the best serverless FaaS provider

+ ldentify the supported languages, trigger types, and cost structure of major cloud service
providers

+ Deploy serverless functions to cloud providers and integrate functions with other cloud
services

In this chapter, we will explain the serverless FaaS products of cloud providers, create our first
serverless functions in the cloud, and integrate with other cloud services.

28 | Introduction to Serverless in the Cloud

Introduction

In the previous chapter, the architectural evolution of traditional architectures to
serverless designs was discussed. In addition, the origin and benefits of serverless were
presented to explain its high adoption and success in the industry. In this chapter,

the focus will be on the serverless platforms of cloud providers. Let's start with the
evolution of cloud technology offerings over the years.

At the start of cloud computing, the primary offering of cloud providers was its
provisioned and ready-to-use hardware, namely the infrastructure. Cloud providers
manage hardware and networking operations, and therefore, the product they were
offering was Infrastructure-as-a-Service (IaaS), as illustrated in the following diagram.
All cloud providers are still offering IaaS products as their core functionality, such as
Amazon Elastic Compute Cloud (Amazon EC2) in AWS and Google Compute Engine in
GCP.

In the following years, cloud providers started to offer platforms where developers
could only run their applications. With this abstraction, manual server provisioning,
security updates, and server failures became the concerns of the cloud provider.
These offerings are known as Platform-as-a-Service (PaaS) since they only focus on
running applications and their data on their platforms. Heroku is the most popular
PaaS provider, although each cloud provider has its own PaaS products, such as AWS
Elastic Beanstalk or Google App Engine. Similar to IaaS, PaasS is still in use in software
development.

In the top-level abstraction, the functions of the applications operate as the unit of
control in serverless architectures. This known as Function-as-a-Service (FaaS) and is
offered by all the significant cloud providers in recent years. The abstraction levels from
laaS to PaaS, and finally to FaaS, can be seen in the following diagram:

Introduction | 29

laaS PaaS FaaS

Operating System Operating System
Infrastructure Infrastructure Infrastructure
Managed by

Cloud Provider:

Figure 2.1: laaS to PaaS and FaasS transition

Serverless and the Cloud Evaluation Criteria

In order to analyze the FaaS products on the market, it is beneficial to define some
criteria so that we can compare products in a structured way. The following topics are
essential for every FaaS platform and need detailed investigation before you choose a
cloud provider:

* Programming languages: Functions are deployed and managed inside the cloud
provider environments. Therefore, cloud providers define the programming

languages that are supported. It is one of the most significant decision factors
since implementing the functions in another language is not feasible in most
circumstances.

* Function triggers: Functions are designed to be triggered by cloud provider
services and external methods. The conventional techniques are scheduled calls,
on-demand calls, and integration with other cloud services, such as databases,
queues, and API gateways.

» Cost: The most compelling characteristic of the serverless architecture is its cost-
effectiveness and the mainstream way of calculating the price, that is, pay per
request. It is essential to calculate the actual and projected costs for the feasibility
of long-running projects.

30 | Introduction to Serverless in the Cloud

Cloud providers are expected to be cost-effective, provide as many programming
languages as possible, and support various function triggers. There are also additional
criteria, such as monitoring, operations, and in-house knowledge level, but these are
not directly related to the serverless products of cloud providers. In the upcoming
sections, the three most dominant cloud providers will be discussed in terms of their
serverless platforms: Amazon Web Services, Google Cloud Platform, and Microsoft
Azure.

AWS Lambda

AWS Lambda is the first FaaS offering, and it also created the serverless hype in

the industry. It was made public in 2014 and has been widely adopted in the cloud
computing world by all levels of organizations. It made it possible for start-ups to
create new products in a short amount of time. It also enabled large enterprises such
as Netflix to move event-based triggers to serverless functions. With the opportunity
of removing the server operation burden, AWS Lambda and serverless became the next
trend in the industry. In this section, we will discuss AWS Lambda for programming
language support, trigger types, and cost structure. In addition, our very first serverless
function will be deployed.

Note

The official website of AWS Lambda can be found here if you wish to find out more:
https://aws.amazon.com/lambda.

AWS Lambda supports the Java, Python, Node.js, C#, Ruby, and Go programming
languages when it comes to serverless functions. Furthermore, AWS Lambda provides
an API called AWS Lambda Runtime Interface to enable the integration of any language
as a custom runtime. Therefore, it could be stated that AWS Lambda natively supports
a rich set of popular languages while allowing an extension to other programming
languages.

AWS Lambda is designed to have event-triggered functions. This is where the functions
process the events that have been retrieved from event sources. Within the AWS
ecosystem, various services can be an event source, including the following:

* Amazon S3 file storage for instances when new files are added

* Amazon Alexa to implement new skills for voice assistance

https://aws.amazon.com/lambda

Introduction | 31

* Amazon CloudWatch Events for the events that occur in the state changes of
cloud resources

* Amazon CodeCommit for when developers push new commits to the code
repository

In addition to these services, the essential AWS service for the serverless event source
is the Amazon API Gateway. It has the REST API ability to invoke Lambda functions
over HTTPS, and it permits the management of multiple Lambda functions for different
methods, such as GET, POST, PATCH, and DELETE. In other words, API Gateway creates a
layer between the serverless functions and the outside world. This layer also handles
the security of the Lambda functions by protecting them against Distributed Denial of
Service (DDoS) attacks and defining throttles. The trigger types and the environment
are highly configurable for AWS Lambda functions if you want to integrate with other
AWS services or make them public via the API Gateway.

For the pricing of AWS Lambda, there are two critical points to take note of: the first
one is the request charges and the second one is the compute charges. Request
charges are based on the number of function invocations, while compute charges are
calculated as GB per second. The compute charge is the multiplication of memory size
and execution time:

* Memory Size (GB): This is the configured allocated memory for the functions.
» Execution time (ms): This is the realized execution time that the functions will be

running for.

In addition, there is a free tier where the first 1 million request charges and 400,000 GB
per second of compute charges are waived monthly. A simple calculation, including the
free tier, can show how cheap running a serverless function could be.

Let's assume that your function is called 30 million times in a month. You have allocated
128 MB of memory, and on average, the function runs for 200 ms:

Request charges:

Price: $S0.20 per 1 M requests

Free tier: 1 M

Monthly request: 30 M

Monthly request charge: 29 M x $0.20 / M = $5.80

Compute charges:

32 | Introduction to Serverless in the Cloud

Price: $0.0000166667 per GB per second

Free tier: 400,000 GB per second

Monthly compute: 30 M x 0.2 second x 128 MB / 1024 = 750,000 GB per second
Monthly compute charge: 350,000 x $0.0000166667 = S5.83

Monthly total cost: $5.80 + $5.83 = $11.63

This calculation shows that it is possible to run a serverless AWS Lambda environment
where you receive 1 million daily function calls at a monthly cost of S11.63. This indicates
both how cheap it is to run serverless workloads and the essential characteristics to
consider in serverless economics. In the following exercise, our very first serverless
function will be deployed to AWS Lambda and will be invoked to show the operational
view of the platform.

Note

In order to complete this exercise, you will need to have an active Amazon Web
Services account. You can create an account at https://aws.amazon.com/.

Exercise 4: Creating a Function in AWS Lambda and Invoking It via the AWS
Gateway API

In this exercise, we will be creating our first AWS Lambda function and connecting it to
AWS Gateway API so that we can invoke over its HTTP endpoint.

To successfully complete this exercise, we need to ensure that the following steps are
executed:

1. Open the AWS Management Console, write Lambda in the Find Services search
box, and click Lambda - Run Code without Thinking about Servers. The console
will look as follows:

https://aws.amazon.com/

Introduction | 33

@ AWS Management Console

C @ https://us-west-2.console.aws.amazon.com/console, e on=u # pAg Incognito e H

aws
p—i

Services v Resource Groups v * Q Onur YILMAZ ~ Oregon v Support ¥

AWS Management Console

AWS services Access resources on the go
Find Services (=] Access the Management Console using the
You can enter names, keywords or acronyms. E AWS Console Mobile App. Learn more [4
Q. Lambda X I —
Lambda
Run Code without Thinking about Servers
Amazon Lex ExPlore AWS
| Build Voice and Text Chatbots L
_C°TileB“;'l$ Ccod Run Serverless Containers with AWS Fargate
Build and Test Code
loT 1-Click AWS Fargate runs and scales your containers without

Trigger AWS Lambda functions from simple devices having to manage servers or clusters. Learn more [5
Launch a virtual machine Build a web app Data Lake Storage
With EC2 With Elastic Beanstalk

2-3 minutes 6 minutes

Build your data lake on the most secure, durable,
and scalable storage. Learn more [

Figure 2.2: AWS Management Console

2. Click on Create function in the Lambda functions list, as shown in the following
screenshot:

N Lambda Management Console X

(&) & https://us-west-2.console.aws.amazon.com, [€ inctions i Incognito @
awg Services v Resource Groups v Q Onur YILMAZ v Oregon v Support v
6]

AWS Lambda X Lambda Functions
Dashboard Functions Create function
Applications

Q, Filter by tags and attributes or search by keyword 1 &
Functions
Layers

Function name v Description Runtime v Code size v Last modified v

There is no data to display.

Figure 2.3: AWS Lambda - functions list

34 | Introduction to Serverless in the Cloud

3. Select Author from scratch in the Create function view. Write hello-from-lambda
as the function name and Python 3.7 as the runtime. Click Create function at the
bottom of the screen, as shown in the following screenshot:

W Lambda Management Console x

(@ @ https://us-west-2.console.aws.amazon.com/lambda/home 1s-west w Incognito@ H

aW% Services v Resource Groups v * [3 Onur YILMAZ ~ Oregon v Support ¥

Lambda Functions Create function

Create function i«

Choose one of the following options to create your function.

Author from scratch o Use a blueprint Browse serverless app repositor
Start with a simple Hello World example. Build a Lambda application from sample code y
and configuration presets for common use Deploy a sample Lambda application from the
cases. AWS Serverless Application Repository.
& Oy
= R

Basic information

Function name
Enter a name that describes the purpose of your function.

hello-from-lambda

Use only letters, numbers, hyphens, or underscores with no spaces.

Runtime info
Choose the language to use to write your function.

Python 3.7 v

Permissions info

Lambda will create an execution role with permission to upload logs to Amazon CloudWatch Logs. You can configure and modify permissions further when you add triggers

P Choose or create an execution role

Figure 2.4: AWS Lambda - Create function view

4. You will be directed to the hello-from-lambda function view, which is where you

Introduction | 35

5. can edit the Function code, as shown in the following screenshot:

W Lambda Management Console X =

= C @ https://us-west-2.console.aws.amazon.com/lam c n-la nction * Incognito @

awg Services v Resource Groups v * o Onur YILMAZ v Oregon v Support v

® Congratulations! Your Lambda function "hello-from-lambda" has been successfully created. You can now change its code and configuration. Choose Test to inputa X ®
test event when you want to test your function.

Lambda Functions hello-from-lambda ARN - arn:aws:lambda:us-west-2:183843130979:function:hello-from-lambda

hello-from—lambda Throttle || Qualifiers ¥ H Actions ¥ v

Configuration Monitoring

v Designer

2

IS A hello-from-lambda
© Saved

< 0
= Layers)

Amazon CloudWatch Logs

Resources that the function's role has access to appear here

Function code info

Code entry type Runtime Handler Info

Figure 2.5: AWS Lambda - hello-from-lambda
6. Change the lambda_handler function as follows:

import json

def lambda_handler(event, context):
return {
'statusCode': '200',
'body': json.dumps({"message": "hello", "platform": "lambda"}),
"headers': {
'"Content-Type': 'application/json',

36 | Introduction to Serverless in the Cloud

7. Click Save at the top of the screen, as shown in the following screenshot:

W Lambda Management Console X =

< C' & https://us-west-2.console.aws.amazon.com/lambda/ho u st-2#/functions/hello-from-lambda?newFunction=true&ta... ¥ Incognito @

awg Services v Resource Groups v * o Onur YILMAZ Oregon v Support v

hello-from-lambda l Throttle H Qualifiers v H Actions ¥ ‘ v m ®

Function code info

Code entry type Runtime Handler info

Edit code inline v Python 3.7 v lambda_function.lambda_handler

.~ File Edit Find View Go Tools Window S o 3

v [hellofrom-lambda ¥~ B lambda function ¥

lambda_function.py import json

Environment

1
2
3 def lambda_handler(event, context):

4 return {

5 'statusCode': '200',

6 'body": json.dumps({"message": "hello", "platform": "lambda"}),
7 'headers': {

8 "Content-Type': 'application/json',

9

0

}

10:6 Python Spaces:4 ﬁ'

Figure 2.6: AWS Lambda - hello-from-lambda function code

Introduction | 37

8. Open the Designer view and click Add trigger, as shown in the following
screenshot:

N Lambda Management Console % 4

Cc @& https://us-west-2.console.aws.amazon.com/la: | a Func * Incognito @ H

aws Services v Resource Groups v * [l Onur YILMAZ ~ Oregon v Support ¥

~—"

© Congratulations! Your Lambda function "hello-from-lambda" has been successfully created. You can now change its code and configuration. Choose Test to inputa X ®
test event when you want to test your function.

Lambda Functions hello-from-lambda ARN - arn:aws:lambda:us-west-2:183843130979:function:hello-from-lambda

hello-from—lambda Throttle || Qualifiers ¥ H Actions ¥ v

Configuration Monitoring

v Designer

2

A hello-from-lambda
© saved

< 0
& Layers)

Amazon CloudWatch Logs

Resources that the function's role has access to appear here

Function code info

Code entry type Runtime Handler Info

Figure 2.7: AWS Lambda - hello-from-lambda designer view

38 | Introduction to Serverless in the Cloud

9. Select API Gateway from the triggers list, as shown in the following screenshot:

W Lambda Management Console X =

(& @& https://us-west-2.console.aws.amazon.com, t=arn% R + ¢ Incognito %

aws

Services v Resource Groups ~ * Onur YILMAZ v Oregon v Support v

Lambda Add trigger

Add trigger

Trigger configuration

o]

API Gateway
api application-services aws serverless .

AWS loT
aws devices ot

Alexa Skills Kit
alexa ot

Alexa Smart Home
alexa ot

Application Load Balancer
aws load-balancing

CloudWatch Events

aws events management-tools

CloudWatch Logs

aws logging management-tools

CodeCommit
aws developer-tools gt

Cognito Sync Trigger
authentication aws identity ~mobile-services sync

DynamoDB

aws database nosql
Kinesis

analytics aws streaming

LHEBEBBEBOORBAE

Figure 2.8: AWS Lambda - trigger list

Introduction | 39

10. Select Create a new API for the API and Open for the Security configurations on
the trigger configuration screen, as shown in the following screenshot:

N Lambda Management Console % 4

Cc @ https://us-west-2.console.aws.amazon.com/lamb s-wes elation?target=arn us-.. W Incognito @ H

aws

=3 Services v Resource Groups v * [l ILMAZ ~ Oregon v Support ¥

Lambda Add trigger

Add trigger

Trigger configuration

D‘;ﬂ AP| Gateway

api application-services aws serverless

We'll set up an API Gateway endpoint with a proxy integration type (learn more about the input and output format).
Any method (GET, POST, etc.) will trigger your integration. To set up more advanced method mappings or subpath
routes, visit the Amazon AP| Gateway console.

API
Pick an existing API, or create a new one.

Create a new API v

Security
Configure the security mechanism for your API endpoint

Open v

Warning: Your API endpoint will be publicly available and can be invoked by all users.

» Additional settings

Lambda will add the necessary permissions for Amazon API Gateway to invoke your Lambda function from this trigger.
Learn more about the Lambda permissions model.

Figure 2.9: AWS Lambda - Trigger configuration

On this screen, a new API has been defined in the API Gateway with open security
for the hello-from-lambda function. This configuration ensures that an endpoint
will be created and that it will be accessible without any authentication.

40 | Introduction to Serverless in the Cloud

11. Click Add at the bottom of the screen.

You will be redirected to the hello-from-lambda function, with a notification saying
The function is now receiving events from the trigger. In the Designer view,

the function from Lambda is connected to the API Gateway for triggering and
Amazon CloudWatch Logs for logging. In other words, it is now possible to trigger
functions via the API Gateway endpoint and check their outputs in CloudWatch, as
shown in the following screenshot:

N Lambda Management Console X +

Cc @ https://us-west-2.console.aws.amazon.com/lambda/home?region=us-west-2#/functions/hello-from-lambda?tab=graph Y Incognito e

aws Services v Resource Groups v * Q Onur YILMAZ ~ Oregon v Support ~

~—

hello-from-lambda Throttle || Qualifiers ¥ H Actions ¥] v ®

@ The trigger hello-from-lambda-API was successfully added to function hello-from-lambda. The function is now receiving events from the trigger. X
Configuration Monitoring
v Designer

2

m hello-from-lambda

@ Layers (0)

m API| Gateway Amazon CloudWatch Logs

+ Add trigger Resources that the function's role has access to appear here

API Gateway

hello-from-lambda-API Enabled

arn:aws:execute-api:us-west-2:183843130979:0scqlh0t2d/*/*/hello-from-lambda
» API: api [oscqlhOt2d /*/*/hello-fi lambd API endpoint: https://oscqlhOt2d.execute-api.us-west-

2.amazonaws.com/default/hello-from-lambda APl name: hello-from-lambda-API|

Figure 2.10: AWS Lambda - trigger added

Introduction | 41

12. Get the API Gateway endpoint from the API Gateway section, as shown in the
following screenshot:

W Lambda Management Console % +

€ @ https://us-west-2.console.aws.amazon.com/lam 0 ctio om-lambda? P g Incognito @ H

awg Services v Resource Groups v * o Onur YILMAZ ~ Oregon ~ Support ~

hello-from-lambda Throttle || Qualifiers v H Actions v] v ®

© The trigger hello-from-lambda-API was successfully added to function hello-from-lambda. The function is now receiving events from the trigger. X
Configuration Monitoring
v Designer

2

@ hello-from-lambda

g Layers (]

m API Gateway Amazon CloudWatch Logs

+ Add trigger Resources that the function's role has access to appear here

API Gateway

hello-from-lambda-API Enabled

arn:aws:execute-api:us-west-2:183843130979:0scqlh0t2d/*/*/hello-from-lambda
» API: api-gateway/oscqlhOt2d/*/*/hello-from-lambda API endpoint: https://oscqlh0t2d.execute-api.us-west-

2 s.com /i /hello-fr lambd: APl name: hello-from-lambda-API

Figure 2.11: AWS Lambda - trigger URL

13. Open the URL in a new tab to trigger the function and get the response, as shown
in the following screenshot:

Il Lambda Management Console https:/foscglhOt2d.execute-ap X =+

C @& https://oscqlh0t2d.execute-api.us-west-2.amazonaws.com/default/hello-from-lambda pig Incognito @

{"message": "hello", "platform": "lambda"}
Figure 2.12: AWS Lambda - function response

This JSON response indicates that the AWS Lambda function is connected via the
API Gateway and working as expected.

42 | Introduction to Serverless in the Cloud

14. Return to the Functions list from Step 2, select hello-from-lambda, and choose
Delete from Actions. Then, click Delete in the pop-up window to remove the
function from Lambda, as shown in the following screenshot:

W Lambda Management Console x 4

(&} @& https://us-west-2.console.aws.amazon.com/lambda/home?region=us-west-2#/functions T Incognito @ :
aws Services v Resource Groups v % L OnurYILMAZ - Oregon ~ Support ~
bda X O]
AWS Lambda Lambda Functions
Applications View details
Q Filter by tags and attributes or search by keyword
Functions Test
Layers
Function name v Description Runtime v Cc Delete Last modified \ 2
’ o hello-from-lambda Node.js 10.x 262 bytes 1 minute ago ‘

Figure 2.13: AWS Lambda - function deletion

In this exercise, the general flow of creating an AWS Lambda function and connecting
to the AWS Gateway API for HTTP access was shown. In less than 10 steps, it is possible
to have running production-ready services in an AWS Lambda cloud environment. This
exercise has shown you how serverless platforms can make software development fast
and easy. In the following section, the analysis of cloud provider serverless platforms
will continue with Azure Functions by Microsoft.

Azure Functions

Microsoft announced Azure Functions in 2016 as the serverless platform in the
Microsoft Azure cloud. Azure Functions extends its cloud platform with event triggers
from Azure or external services to run serverless workloads. It differentiates by
focusing on the Microsoft supported programming languages and tools that are highly
prevalent in the industry. In this section, Azure Functions will be discussed in terms of
the supported programming languages, trigger types, and cost. Finally, we will deploy
a function that takes parameters from endpoints to Azure Functions to illustrate its
operational side.

Note

The official website of Azure Functions can be found here if you wish to find out
more: https://azure.microsoft.com/en-us/services/functions/.

https://azure.microsoft.com/en-us/services/functions/

Introduction | 43

The latest version of Azure Functions supports C#, JavaScript in the Node.js runtime,
F#, Java, PowerShell, Python, and Typescript, which is transpired into JavaScript. In
addition, a language extensibility interface is provided for the communication between
the functions runtime and the worker processes over gRPC as a messaging layer. It is
valuable to check the generally available, experimental, and extendible programming
languages supported by Azure Functions before we start utilizing it.

Note

gRPC is a remote procedure call (RPC) system that was initially developed at
Google. It is an open source system that enables cross-platform communication
without language or platform limitations.

Azure Functions are designed to be triggered by various types, such as timers, HTTP,
file operations, queue messages, and events. In addition, input and output bindings

can be specified for functions. These bindings define the input arguments for the
functions and output values to send other services. For instance, it is possible to create
a scheduled function to read files from Blob Storage and create Cosmos DB documents
as outputs. In this example, the function could be defined with a timer trigger, Blob
Storage input binding, and Cosmos DB output binding. Triggers and bindings make
Azure Functions easily integrate to Azure services and the external world.

There are two differences between the cost calculation method and the current prices
of Azure Functions compared to AWS Lambda. The first difference is that the current
computation price of Azure Functions is slightly cheaper, at $0.000016 /GB per second.
The second difference is that Azure Functions calculates using observed memory
consumption while the memory limit is preconfigured in AWS Lambda.

In the following exercise, the very first serverless function will be deployed to Azure
Functions and will be invoked to show the operational view of the platform.

Note

In order to complete this exercise, you need to have an active Azure account. You
can create an account at https://signup.azure.com/.

https://signup.azure.com/

44 | Introduction to Serverless in the Cloud

Exercise 5: Creating a Parameterized Function in Azure Functions

In this exercise, we aim to create a parameterized function in Azure and invoke it over
its HTTP endpoint with different parameters.

To successfully complete this exercise, we need to ensure the following steps are
executed:

1. Click on Function App in the left menu of the Azure home page, as shown in the
following screenshot:

Home - Microsoft Azure x +

< (¢ Incognito @

@ https://portal.azure.com/#home *

onuryilmaz89@gmail... @
DEFAULT DIRECTORY (i

Microsoft Azure P Search resources, services, and docs

Azure services Seeoll (100+)) Create aresource >

: K = = W &

SQL databases

—+ Create a resource
A Home

[E] pashboard Azure Database for ~ Azure Cosmos DB Kubernetes

PostgreSQL services

Virtual machines App Services Storage accounts

= All services
FAVORITES < >
All resources .
Function App

() Resource groups

= App Services

<"> Function App

Bl sQL databases
& Azure Cosmos DB
. Virtual machines
@ Load balancers
= Storage accounts
€ Virtual networks

> Azure Active Directory

/A Microsoft Learn
Learn Azure with free
online training from
Microsoft

s\ Azure Monitor

Monitor your apps and
infrastructure

g Cost Management
Analyze and optimize your

cloud spend for free

Recent resources See all your recent resources > See all your resources >

Figure 2.14: Azure home page

Security Center

Secure your apps and
infrastructure

Useful links

Introduction | 45

2. Click on Create Function App from the Function App list, as shown in the
following screenshot:

Function App - Microsoft Azur: X

& ©] & https://portal.azure.com/i# k /B ype/N u 0 pd Incognito @ H
: y onuryilmaz89@gmai
Microsoft Azure R Search resources, services, and docs DEFAULT DIRECTORY Qi
« Home > Function App
— Create a resource Function App Documentation @ X

Default Directory
== Add

Subscriptions: Free Trial

A Home

Edit columns T Refresh L 4
[& pashboard

<= All services
[Fetter by name. | | Al resource groups v | [Allocations v | [Alltags ~ | | No grouping v
FAVORITES
0 items
All resources
NAME STATUS APP TYPE APP SERVICE PLAN LOCATION SUBSCRIPTION
() Resource groups
No results.

(22 App Services

A

” Function App
SQL databases
Azure Cosmos DB

<
%7 Virtual machines
{} Load balancers

No Function App to display

Storage accounts
Create, build, deploy, and manage powerful web, mobile, and API apps for employees or customers using a single back-end. Build

@ Virtual networks standards-based web apps and APIs using .NET, Java, Node js, PHP, and Python. Learn more about App Service &

> Azure Active Directory
Figure 2.15: Function App list

46 | Introduction to Serverless in the Cloud

3. Give the app a unique name, such as hello-from-azure, and select Node.js as
the Runtime Stack. Click on Create at the bottom of the page, as shown in the
following screenshot:

Function App - Microsoft Azur: X -+

& c

@& https://portal.azure.com/#crea oft.Functior

B Incognito @ :

onuryilmaz89@gmail... @

O Search resources, services, and docs
DEFAULT DIRECTORY (i)

Microsoft Azure

Home > Function App > Function App

—+ Create a resource Function App o X
Create
A Home
[= Dashboard * App name
“= All services ‘ hello-from-azure v
.azurewebsites.net
FAVORITES

Al resources

() Resource groups

* Subscription

[Free Tral v

* Resource Group @
&) I ot
(®) Create new () Use existing

App Services
‘ hello-from-azure v
< Function App
_ *0S
EZ SQL databases Linox J

&2 Azure Cosmos DB

* Hosting Plan @

1) Virtual machines | Consumption Plan -
4 Load balancers * Location
| central Us v

= Storage accounts

@9 Virtual networks

* Runtime Stack

)) ‘ Nodejs hd
Azure Active Directory
a) * Storage @
Monitor (@) Create new () Use existin
® @) 9
W Advisor

U Security Center
(' Cost Management + Billing

2 Help + support

hellofromazurea2b3 v

Application Insights
hello-from-azure

Automation options

Figure 2.16: Creating a Function App

Introduction | 47

4. You will be redirected to the Function App list view. Check for a notification at the
top of the menu. You will see Deployment to resource group 'hello-from-azure' is
in progress, as shown in the following screenshot:

Function App - Microsoft Azur X +

<« © @ https://portal.azure.com/#blade/HL sion/BI seResourceBla esource eb%2F: /func Yo Incognito @ H
Microsoft Azure R Search resources, services, and docs © onuryilmaz8d@gmail.... @
‘ DEFAULT DIRECTORY (i
« Home > Function App X
—+ Create a resource Function App

Default Directory
Dismiss all

 Home
= Add == Edit columns) Refresh J

[&d Dashboard

==s Deployment in progress.. Runnin,
- X Subscriptions: Free Trial ey prog o
*= All services = Deployment to resource group 'hello-from-azure' is in progress.
Filter by name... | Al resource groups v
FAVORITES 3 a few seconds ago
0 items
All resources
NAME STATUS APP TYPE
(") Resource groups
= No results.
(& App Services
<"> Function App
EJ sQL databases
&7 Azure Cosmos DB
. Virtual machines
‘3’ Load balancers
No Func

—] Storage accounts
Create, build, deploy, and manage powerful web, mobile,

<2 Virtual networks. standards-based web apps and APIs using .NET, Ji
> Azure Active Directory Cre
) Monitor

R Advisor

0 Security Center
(; Cost Management + Billing

? Help + support

Figure 2.17: Deployment in progress

48 | Introduction to Serverless in the Cloud

Wait a couple of minutes until the deployment is complete:

Function App - Microsoft Azur: X +

= € @ https://portal.azure.com/#blade/HubsExtension/E ource /resource Cl sites/kind/functionapp Yo Incognito @ H

onuryilmaz89@gmail... @

Microsoft Azure R Search resources, services, and docs ? ©
b DEFAULT DIRECTORY Qi

« Home > Function App Notifications X

—+ Create a resource Function App
Default Directory

Dismiss all ~

A Home

= Add == Edit columns) Refresh] ar
(=1 pashboard X ° Deployment succeeded
_ X Subscriptions: Free Trial
*= All services 1 Deployment ‘Microsoft.FunctionAppebbe834f-8482' to resource group
Filter by name... ‘ Al resource groups ~ | ‘hello-from-azure' was successful.

FAVORITES

o [cotoresource |~ pintocastboara_|
All resources Go to resource " Pin to dashboard

NAME STATUS APP TYPE
a few seconds ago

=

] Resource groups
No results.

Y

o

& App Services

~

> Function App

SQL databases

¥ a

7 Azure Cosmos DB

Virtual machines

[o

@ Load balancers
No Func

Storage accounts
Create, build, deploy, and manage powerful web, mobile,

<2 Virtual networks standards-based web apps and APIs using .NET, Ji
> Azure Active Directory Cre
=) Monitor

‘} Advisor
0 Security Center
(*_ Cost Management + Billing
a
4

Help + support

Figure 2.18: Successful deployment

Introduction | 49

5. Click on + New Function in the hello-from-azure function app view, as shown in
the following screenshot:

hello-from-azure - Microsoft # X +
&« C' @ https://portal.azure.com/#blac e sIFrameBlade/id su C hg Incognito @ H
. o onuryilmazg89@gmail.... @
Microsoft Azure R Search resources, services, and docs DEFAULT DIRECTORY (D
« Home > hello-from-azure
+ Create a resource hello-from-azure = X

Function Apps

A Home

= £ "hello-from-azure” x Overview Platform features #
Dashboard

All subscriptions

‘= All services W Stop O Restart * Get publish profile C) Reset publish profile W Download app content

FAVORITES -—

Function Apps

M Delete
All resources w <> hello-from-azure o
- " N Status Subscription Resource group
== Functions
(%) Resource groups v + @ Running Free Trial hello-from-azure
3‘. App Services Proxies
Subscription ID Location
<> Function App Slots (preview) b9C60550-cbb5-433b-Oe9e-46e70e7430bf Central US
Ef sQL databases URL
8 Azure Cosmos DB https://hello-from-azure.azurewebsites.net
4 Virtual machines App Service plan / pricing tier
CentralUSPlan (Consumption)

{}? Load balancers
—]| Storage accounts
2 Virtual networks Configured features
> Azure Active Directory

<F> Function app settings
=) Monitor

= Configuration
Q Advisor

@ Application Insights
U Security Center
© Cost Management + Biling You have created a function app!
2 Help + support Now it is time to add your code...

+ New function

Figure 2.19: hello-from-azure function app

50 | Introduction to Serverless in the Cloud

6. Select In-portal for function creation inside the Azure web portal as a
development environment and click Continue, as shown in the following

screenshot:

hello-from-azure - Microsoft # X +

@& https://portal.azure.com/#b sExtension/FunctionsIFrameBlade/id/%2Fsubscriptio Y Incognito @

& c

@) onuryilmaz89@gmail... @
DEFAULT DIRECTORY @0

Microsoft Azure R Search resources, services, and docs

« Home > hello-from-azure

hello-from-azure

| Create a resource
Function Apps

 Home

[&d Dashboard

O "hello-from-azure"

Azure Functions for JavaScript -
getting started

_ All subscriptions
*= All services

= Function Apps

FAVORNES Follow our Quickstart guidance to author and publish a function Learn more
All resources w ¢ hello-from-azure Z»
(%) Resource groups v EE Functions +
(& App Services » i= Proxies o °
<*> Function A| — i
e » 1= Slots (preview) CHOOSE A DEVELOPMENT CREATE A FUNCTION
= ENVIRONMENT
EZ SQL databases
& Azure Cosmos DB
"4 Virtual machines
& Load balancers VS Code @ Any editor + Core Tools
Stolauslaccaunts Use Visual Studio Code to author Write functions using your favorite
&> Virtual networks. your functions editor and the Azure Functions Core
Tools
7 Azure Active Directory
=) Monitor
R Advisor
S ity Cents
U ecurity Center | In-portal
(' Cost Management + Billing
()] Help + support Author functions quickly in the
- portal

Figure 2.20: Function development environment

Introduction | 51

7. Select Webhook + API and click Create, as shown in the following screenshot:

hello-from-azure - Microsoft /X +

& (&) @ https://portal.azure.com/#b

esExtension/Functions|FrameBlade/id/%2Fsub

5-433b-9e9e-.. W

Incognito @

Microsoft Azure

—+ Create a resource

M Home

(& pashboard

+= All services
FAVORITES

All resources

O Search resources, services, and docs

onuryilmaz89@gmail.... @
DEFAULT DIRECTORY (i)

7 ©

Home > hello-from-azure

hello-from-azure

Function Apps

2 "hello-from-azure"
All subscriptions

= Function Apps

w ¢ hello-from-azure

»

Azure Functions for JavaScript -
getting started

Follow our Quickstart guidance to author and publish a function Learn more

(%) Resource groups - EE Functions +
2 App Services » = Proxies ° °
<7> Function A| = i
PP » = Slots (preview) CCHOOSE A DEVELOPMENT CREATE A FUNCTION

E¥ SQL databases

& Azure Cosmos DB

' Virtual machines

‘:} Load balancers

—]| Storage accounts

€ Virtual networks

Azure Active Directory

-) Monitor

% Advisor

u Security Center

Q Cost Management + Billing

r} Help + support

ENVIRONMENT

Webhook + API

A function that will be run whenever
it receives an HTTP request

Timer

A function that will be run on a
specified schedule

More templates...

View all templates available to this
function app

Figure 2.21: Function trigger types

In this view, it is possible to create functions from templates such as webhooks,
timers, or collaborative templates from the marketplace.

8. Write the following function into index. js and click Save:

module.exports = async function (context, req) {
context.log('JavaScript HTTP trigger function processed a request.');

if (req.query.name || (req.body && req.body.name)) {

context.res = {
status: 200,
body: "Hello " + (req.query.name || reqg.body.name) +", it is
your function in Azure!"

1

52 | Introduction to Serverless in the Cloud

else {
context.res = {
status: 400,
body: "Please pass a name on the query string or in the
request body."

};

}s

This code exports a function that accepts parameters from the request. The
function creates a personalized message and sends it as output to the users.
The code should be inserted into the code editor, as shown in the following
screenshot:

hello-from-azure - HttpTrigge: X -+

Incognito @

onuryilmaz89@gmail....
DEFAULT DIRECTORY

<« © @& https://portal.azure.com/#blade/WebsitesExtension/FunctionsIFrameBlade/id/%2Fsubscriptions%2Fb9c60550-cbb5-433b-9e9e-46e7 *

Microsoft Azure R Search resources, services, and docs I ja) b3 ? ©

« Home > hello-from-azure - HttpTrigger1

+ Create a resource

A Home

hello-from-azure - HttpTrigger1

Function Apps

(=) Dashboard
- All subscriptions 1 module.exports = async function (context, reg) (
== All services 2 context.log('JavaScript HTTP trigger function processed a request.');
—
== Function Apps 3
EAVORITES 4 if (req.query.name || (req.body && req.body.name}) {
P 5 context.res = {
All resources w <> hello-from-azure o ctatus: 200
== . : "He " s your c \zure!"
(&) Resource groups w = Functions + ; L body llo " + (req.query.name || req.body.name) +", it is your function in Azure
o 2 9 }
&2 App Services HttpTriggerl
S AP < i PTrigg 10 else {
<7 Function App 11 context.res = {
¥ Integrate 12 status: 400,
@ SQL databases 13 body: "Please pass a name on the query string or in the request body."
& Manage 14 s
&7 Azure Cosmos DB . 15 }
Q Monitor 16 3:

%" Virtual machines

@ Load balancers

—] Storage accounts

<+ Virtual networks

. Azure Active Directory
) Monitor

Q Advisor

o Security Center

G Cost Management + Billing

2 Help + support

» = Proxies

) = Slots (preview)

Figure 2.22: index.js of the hello-from-azure function

9. Click on Get function URL and copy the URL inside the popup, as shown in the

Introduction | 53

10. following screenshot:

hello-from-azure - HttpTrigger X+

< C @& https://portal.azure.com/#bl 1 Blac 5 k 2 w Incognito %

onuryilmaz83@gmail....

Microsoft Azur P Search resources, services, and docs @
s i - DEFAULT DIRECTORY (0

« Home > hello-from-azure - HttpTrigger1
-} create a resource hello-from-azure - HttpTrigger1 2 X
Function Apps
A Home
[E3 Dashboard
- Get function URL
“= All services

FAVORITES Key

All resources default (Function key) 4| https://hello-from: JapifHttpTrigger12code=1) COPY

() Resource groups

"é‘ App Services

<> Function App

B SQL databases

& Azure Cosmos DB

K Virtual machines

4 Load balancers

[Storage accounts

< Virtual networks

<P Azure Active Directory
;‘ Monitor

“@ Advisor

o Security Center

@ Ccost Management + Billing

@ Help + support

Figure 2.23: Function URL

11. Open the URL you copied in Step 7 into a new tab in the browser, as shown in the
following screenshot:

hello-from-azure - HttpTrigg https://hello-from-azure.azur

(&~ & https://hello-from-azure.azurewebsites.net,

Please pass a name on the query string or in the request body.

Figure 2.24: Function response without parameter

Add &name= and your name to the end of the URL and reload the
tab, for example, https://hello-from-azure.azurewebsites.net/api/
HttpTrigger?code=nNrck. . .&name=0nur, as shown in the following screenshot:

hello-from-azure - HttpTrigg https://hello-from-azure.azur

(&~ & https://hello-from-azure.azurewebsites.net,

Hello Onur, it is your function in Azure!

Figure 2.25: Function response with parameter

54 | Introduction to Serverless in the Cloud

These responses show that it is possible to validate and pass parameters to
functions. Passing parameters and their validation is essential for serverless
functions and when considering the possibility of various integration points as
triggers and bindings.

12. Return to the Function App list from Step 2, click ... alongside the new function
we've created, and select Delete, as shown in the following screenshot:

Function App - Microsoft Azur: X A

& € @ https://portal.azure.com/#blade/HubsExte /B E o) PP i d Incognito @ H
" . onuryilmaz89@gmail.... @
Microsoft Azure £ Search resources, services, and docs DEFAULT DIRECTORY ()

« Home > Function App
- Create a resource Function App Documentation & 5 X

Default Directory
M Home _

4 Add =2 Editcolumns) Refresh ® Assigntags P Start Q' Restart M Stop [Delete
[E pashboard

- Subscriptions: Free Trial
*= All services

Fiter by name. | [Al resource groups ~ | [Alllocations v | [Aitags + | [No grouping ™

FAVORITES

1 of 1 items selected
All resources
NAME STATUS APP TYPE APP SERVICE PLAN LOCATION SUBSCRIPTION

(&) Resource groups
<> hello-from-azure Running Function App CentralUSPlan Central US. -

App Services

<> Function App Browse

SQL databases Stop
& Azure Cosmos DB

-l Virtual machines Restart

& Load balancers Delete

= Storage accounts Get publish profile

<2 Virtual networks Reset publish profile

Figure 2.26: Deleting a function

Type the name of the function into the pop-up view and click Delete to delete all
the resources. In the confirmation view, a warning indicates that deletion of the
function application is irreversible, as you can see in the following screenshot:

Introduction | 55

Are you sure you want to delet X

< © @ https://portal.azure.com/ {ubsl nsi 0 S n i Incognito @ H
. . onuryilmaz89@gmail... @
Microsoft Azure P Search resources, services, and docs DEFAULT DIRECTORY Qi)
« Home > Function App > Are you sure you want to delete "hello-from-azure" ?
+ create a resource Function App « X ﬁ Are you sure you want to delete "hello-from-azure" ? o X

Default Directory

A Home
+ Add =E Edit columns *** More Warning! Deleting "hello-from-azure" is irreversible. The action you are about to
[E Dashboard take cannot be undone. Going further will delete the app and it's deployment
- ‘ Filter by name.. slots. Premium extensions will need to re-purchased.

:= All services

FAVORITES [] name

TYPE THE APP NAME
All resources <7 hello-from-azure

hello-from-azure v

(%) Resource groups

c App Services
Affected resources

<*> Function App

- There are 2 resources that will be deleted
B sQL databases

&7 Azure Cosmos DB NAME -
"2 Virtual machines .

<> hello-from-azure Function App
4> Load balancers -

= CentralUSPlan App Service plan

[storage accounts

<> Virtual networks
J This is the last app in the App Service plan. Delete this App Service plan to prevent

> Azure Active Directory unexpected charges.

~) Monitor Delete App Service plan: (@RE No)
e

% Advisor
0 Security Center
(' Cost Management + Billing

2 Help + support

[Deete |
Figure 2.27: Deleting the function and its resources

In the following section, Google Cloud Functions will be discussed in a similar way, and
a more complicated function will be deployed to the cloud provider.

56 | Introduction to Serverless in the Cloud

Google Cloud Functions

Google Cloud Functions was made public in 2017 just after AWS Lambda and Azure
Functions. Serverless functions were already available for the PaaS product of Google,
namely Firebase, before the release of Google Cloud Functions. However, Google Cloud
Functions was made available to all the services inside the Google Cloud Platform as its
core serverless cloud product. In this section, Google Cloud Functions will be discussed
in terms of the supported programming languages, trigger types, and cost. Finally, we
will deploy a function that is periodically invoked by cloud services to Google Cloud
Functions to illustrate its operational side.

Note

The official website of Google Cloud Functions can be found here if you wish to
find out more: https://cloud.google.com/functions/.

Google Cloud Functions (GCF) can be developed in Node.js, Python, and Go. Compared
to the other major cloud providers, GCF supports a small subset of languages. In
addition, there are no publicly available language extension or APIs supported by GCF.
Thus, it is essential to evaluate whether the languages supported by GCF are feasible for
the functions you will develop.

Google Cloud Functions are designed to be associated with triggers and events. Events
happen within your cloud services, such as database changes, new files in the storage
system, or when provisioning new virtual machines. Triggers are the declaration of the
services and related events as inputs to functions. It is possible to create triggers as
HTTP endpoints, Cloud Pub/Sub queue messages, or storage services such as Cloud
Storage and Cloud Firestore. In addition, functions can be connected to the big data
and machine learning services that are provided in the Google Cloud Platform.

The cost calculation of Google Cloud Platform is slightly complex compared to other
cloud providers. This is because it takes the invocations, computation time, and
outbound network data into consideration, while other cloud providers focus only on
invocations and compute time:

* Invocations: Function invocations are charged $0.40 for every one million
requests.

https://cloud.google.com/functions/

Introduction | 57

* Compute time: The computation times of the functions are measured from the
time of invocation to their completion in 100 ms increments. For instance, if your
function takes 240 ms to complete, you will be charged for 300 ms of computation
time. There are two units that are used in this calculation - GB per second and
GHz per second. 1 GB of memory is provisioned for a function running for 1
second, and the price of 1 GB per second is $0.0000025. Also, 1 GHz of CPU is
provisioned for a function running for 1 second, and the price of 1 GHz per second
is $0.0000100.

¢ Outbound network data: Data that's transferred from the function to the outside

is measured in GB and charged at $0.12 for every GB of data.

GCF's free tier provides 2 million invocations, 400,000 GB per second, 200,000 GHz
per second of computation time, and 5 GB of outbound network traffic per month.
Compared to AWS or Azure, GCP will cost slightly more since it has higher prices and
more sophisticated calculation methods.

Let's assume that your function is called 30 million times in a month. You have allocated
128 MB of memory, 200 MHz CPU, and on average, the function runs for 200 ms, similar
to the example for AWS Lambda:

Request charges:

Price: $0.40 per 1 M request

Free tier: 2 M

Monthly request: 30 M

Monthly request charge = 28 M x $0.40 / M = S11.2
Compute charges - Memory:

Price: $0.0000025 per GB-second

Free tier: 400,000 GB-Seconds

Monthly compute: 30 M x 0.2 second x 128 MB / 1024 = 750,000 GB-second
Monthly memory charge: 350,000 x S0.0000025 = $S0.875
Compute charges - CPU:

Price: $0.0000100 per GHz-second

Free tier: 200,000 GB-Seconds

58 | Introduction to Serverless in the Cloud

Monthly compute: 30 M x 0.2 second x 200 MHz / 1000 GHz = 1,200,000 GHz-second
Monthly CPU charge: 1,000,000 x $0.0000100 = $10
Monthly total cost= $11.2 + S0.875 + S10 = $22.075

Since the unit prices are slightly higher than AWS and Azure, the total monthly cost of
running the same function is more than $22 in GCP, while it was around $11 for AWS and
Azure. Also, any outbound network from the functions to the outside world is critical
when it comes to potential extra costs. Therefore, pricing methods and unit prices
should be analyzed in depth before you choose a serverless cloud platform.

In the following exercise, our very first serverless function will be deployed to GCF and
will be invoked by a scheduled trigger to show the operational view of the platform.

Note

In order to complete this exercise, you need to have an active Google account. You
can create an account at https://console.cloud.google.com/start.

Exercise 6: Creating a Scheduled Function in GCF

In this exercise, we aim to create a scheduled function in Google Cloud Platform and
check its invocation by using cloud scheduler services.

To successfully complete this exercise, we need to ensure the following steps are
executed:

1. Click on Cloud Functions in the left menu, which can be found in the Compute
group on the Google Cloud Platform home page, as shown in the following
screenshot:

https://console.cloud.google.com/start

Introduction | 59

= Google Cloud Platform & ¢

ﬁ Home
 §

Pins appear here @ X

‘% Marketplace
=

Billing
P APIs & Services >
'i' Support >
© 1AM & admin >
“#®1 Getting started
e Security >
COMPUTE
‘@ AppEngine >
ﬁ} Compute Engine >
@ Kubernetes Engine >
(-"] Cloud Functions X
,) Cloud Run
STORAGE
@ Bigtable
S Datastore >

Figure 2.28: Google Cloud Platform home page

2. Click on Create function on the Cloud Functions page, as shown in the following
screenshot:

Google Cloud Platform 2e p:

[] Cloud Functions ‘1 LEARN

Google Cloud Functions

Google Cloud Functions is a i based,

compute solution that allows you to create small, single-purpose
functions that respond to cloud events without the need to manage
a server or a runtime environment

Create function

Figure 2.29: Cloud Functions page

60 | Introduction to Serverless in the Cloud

3. In the function creation form, change the function name to HelloWorld and select
128 MB for the memory allocation. Ensure that HTTP is selected as the trigger

method and that Go 1.11 is selected as the runtime, as shown in the following
screenshot:

Google Cloud Platform §* personal «

(] Cloud Functions & Create function ® LEARN
Name
HelloWorld
Memory allocated
128 MB -
Trigger
HTTP -

URL
https./fus-central1-personal-237100.cloudfunctions.net/HelloWorld

Authentication
~ Allow unauthenticated invocations
Check this if you are creating a public API or website.

This is a shortcut to assign the IAM Invoker role to the special identifier allUsers. You
can use |AM to edit this setting after the function is created

Source code
® Inline editor
ZIP upload

ZIP fram Cloud Storage
Cloud Source repository

Runtime

Go1.11 -

Figure 2.30: Function creation form

4. Change function.go using the inline editor inside the browser so that it has the
following content:

package p

import (
n .Fmt n
"net/http"

func HelloWorld(w http.ResponseWriter, r xhttp.Request) {
fmt.Fprint(w, "Hello World from Google Cloud Functions!")
return

Introduction | 61

This code segment creates a HelloWorld function with a static message printed to
the output. The code should be inserted into function.go in the code editor, as
shown in the following screenshot:

functionge go.mod

1 package p

3| import (
“fme”
"net/http”
6y

© func HelloWorld(w http.RespomseWriter, r *http.Request) {
fmt.Fprint(w, "Hello World from Google Cloud Functions!')

L return

11}

Figure 2.31: Function inline editor

5. Copy the URL in the form below the Trigger selection box to invoke the function,
as shown in the following screenshot:

= Google Cloud Platform & personal «

(] Cloud Functions & Create function ®1 LEARN
Name
Helloworld

Memory allocated
128 MB -
Trigger
HTTP -

URL
https: itrall1-p I-237100.cloudfi i net/t

Authentication
~ Allow unauthenticated invocations
Check this if you are creating a public AP or website.

This is a shortcut to assign the |AM Invoker role to the special identifier allUsers. You
can use |AM to edit this setting after the function is created

Source code

® Inline editor
2ZIP upload
ZIP from Cloud Storage
Cloud Source repository
Runtime

Go 1.11 -

Figure 2.32: Function trigger URL

62 | Introduction to Serverless in the Cloud

6. Click on the Create button at the end of the form. With this configuration, the
code from step 4 will be packaged and deployed to Google Cloud Platform. In
addition, a trigger URL will be assigned to the function to be reachable from
outside, as shown in the following screenshot:

= Google Cloud Platform §* personal

() Cloud Functions <& Create function
Name
HelloWorld

Memory allocated

128 MB -
Trigger

HTTR -
URL

https://us-central1-personal-237100 cloudfunctions_net/HelloWorld

Authentication
~/ Allow unauthenticated invocations
Check this if you are creating a public AP or website

This is a shortcut to assign the 1AM Invaker role to the special identifier allUsers. You
can use 1AM to edit this setting after the function is created.

Source code
® Inline editor
2IP upload
2ZIP from Cloud Storage
Cloud Source repository
Runtime

Go 111 -

function.ge go.mod

! package p
3 import (

“fmt "

“"net/http”
6))
¢ func HelloWorld(w http.ResponseWriter, r *http.Request) {
fmt.Fprint(w, "Hello World from Google Cloud Functions!”
return

1))

Function to execute

HelloWorld

Environment variables, networking, timeouts and mare

Figure 2.33

@1 LEARN

: Function creation

Introduction | 63

Wait a couple of minutes until the HelloWorld function in the function list has a
green check icon next to it, as shown in the following screenshot:

= Google Cloud Platform & personal +

(] Cloud Functions Qverview CREATE FUNCTION ! REFRESH SHOW INFO PANEL #1 LEARN
Columns ~
Name ~ Region Trigger Runtime Memory allocated Executed function Last deployed
O HelloWorld us-centrall HTTP Go1.11 128 MB HelloWorld 8/13/19, 3:23 PM

Figure 2.34: Function deployment

7. Open the URL you copied in step 5 into a new tab in your browser, as shown in the
following screenshot:

https:/fus-centrali-personal-7 +

&« (e & us-centrall-personal-237100.cloudfunctions.net/HelloWorld b g Incugnilu% H

Hello World from Google Cloud Functions!

Figure 2.35: Function response

The response shows that the function has been successfully deployed and is
running as expected.

64 | Introduction to Serverless in the Cloud

8.

Click on Cloud Scheduler in the left menu, under TOOLS, as shown in the
following screenshot:

Google Cloud Platform e ¢

Home

Pins appear here @ x

STACKDRIVER

@
TooLs
(2]
(]

Network Service Tiers

Network Security >

Monitoring

Debug

Trace >
Logging >
Error Reporting

Profiler

Cloud Build >
Cloud Scheduler 1 3

Cloud Tasks

Figure 2.36: Google Cloud Tools Menu

Click on Create job on the Cloud Scheduler page, as shown in the following
screenshot:

Google Cloud Platform 2# personal «

@

Cloud Scheduler

Google Cloud Scheduler

Google Cloud Scheduler is a fully managed cron job scheduling
service. Use it to trigger jobs on App Engine, send Pub/Sub
messages, of hit an arbitrary HTTP/S endpoint on a recurring
schedule.

[Pl of | Browse docs

Figure 2.37: Cloud Scheduler page

Introduction | 65

10. Select a region if you are using Cloud Scheduler for the first time in your Google
Cloud project and click Next, as shown in the following screenshot:

= Google Cloud Platform & personal v

@ Cloud Scheduler Create job

1 Select alocation 2 Createajob

Where would you like your Cloud Scheduler jobs to live?

Select a region for your Cloud Scheduler jobs. Note: you cannot change the region
for this project later.

Warming: if you plan to use App Engine or Datastare in this project, note that your
choice here will set the region for both of these services. It cannot be changed
Iater

(=)
) N Q) Asia
a3 ©
10, NM\"}} ROPE i
/AMEHCR £ (5) 0,48
¥ &
AFRICA
S0th, %/
ALEREL indan
Ocean OC‘E.QMA‘
Go gle Map data ©2019 Tarms of Use
Select a region
us-central -

Figure 2.38: Cloud Scheduler - region selection
Wait for a couple of minutes if you see the following notification:

We are initializing Cloud Scheduler in your selected region. This usually takes
about a minute.

66 | Introduction to Serverless in the Cloud

11. Set the job name as HelloWorldEveryMinute and the frequency as * * * * % which
means the job will be triggered every minute. Select HTTP as the target and
paste the URL you copied in step 5 into the URL box, as shown in the following
screenshot:

Google Cloud Platform 2e personal v

@ Cloud Scheduler & Createajob

Name
Must be unique across all jobs in this project

HelloWorldEveryMinute @

Description (0711007

Frequeney
Schedules are specified using unix-cron format. E.g. every minute: % * # * %', every 3 hours:
“0#/3%***, every monday at 9:00: '0 9 * # 1. Learn more

,,,,,

Timezone

France -
Target

HTTP -
URL

https://us-central1-personal-237100.cloudfunctions.net/HelloWorld

HTTP methed
GET -

Cancel
Figure 2.39: Scheduler job creation

12. You will be redirected to the Cloud Scheduler list, as shown in the following
screenshot:

Google Cloud Platform & personal w

Lpmd

@ Cloud Scheduler CREATEJOB (3 REFRESH
Name State Description Frequency Target Last un Result Logs
HelloWorldEveryMinute Enabled 0 AEEas URL: https://us-central1-personal-237100.cloudfunctions.net/HelloWorld Has not run yet View Run now

(Europe/Paris)

Figure 2.40: Cloud Scheduler page

Introduction | 67

Wait for a couple of minutes and click the Refresh button. The list will show the

Last run timestamp and its result for HelloWorldEveryMinute, as shown in the
following screenshot:

Google Cloud Platform e personal +

Lpmd

@ Cloud Scheduler CREATEJOB (3 REFRESH
Name State Description Frequency Target Lastrun Result Logs
HelloWorldEveryMinute Enabled = AEwEs URL: https://us-central1-personal-237100.cloudfunctions.net/HelloWorld Aug 13, 2019, 3:44:00 PM Success View Run now

(Europe/Paris)

Figure 2.41: Cloud Scheduler page with run information

This indicates that the cloud scheduler triggered our function at Aug 13, 2019,
3:44:00 PM and that the result was successful.

13. Return to the function list from step 7 and click ... for the HelloWorld function.
Then, click Logs, as shown in the following screenshot:

Google Cloud Platform 8¢ personal v

(] Cloud Functions Overview CREATE FUNCTION (REFRESH DELETE coPY SHOW INFO PANEL # LEARN
= F fiu " Columns =
Name A Region Trigger Runtime Memory allocated Executed function Last deployed
@ Helloworld us-centrall HTTP Go1.11 128 MB HelloWorld 8/13/19, 323 PM

I Copy function
P Test function

= View logs

W Delete

Figure 2.42: Settings menu for the function

68 | Introduction to Serverless in the Cloud

You will be redirected to the logs of the function, where you will see that, every
minute, Function execution started and the corresponding success logs are listed,
as shown in the following screenshot:

d Platform personal ¥
Stackdriver
E ' 1l CREATE METRIC A CREATEEXPORT (P
Logging
= Logs Viewer e P~ -
ih Logs-based metrics Cloud Function, HelloWorld, us-centrall ~ Alllogs ~ Anyloglevel ~ (@ Lasthour | Jumptonow ~
i Exports Showing logs from the last hour ending at 3:51 PM (CEST) Download logs View Options ~
+ No older entries found matching current filter in the lasthour. Load older logs +

[=] Logsingestion
2019-08-13 15:23:01.463 CEST Cloud Functions CreateFunction us-centrall:HelloWorld mail@onuryilmaz.me {"@type’:"type.g..

2019-08-13 15:23:26.130 CEST cloud Functlons Createrunction us-centrall:selloworld mailfonuryilmaz.me {"étype’:"type.

2019-08-13 15:24:32

CEST Helloworld ed2vd27r3pry Function execution started
2019-08-13 15:24:32.774 CEST Helloworld ed2vd27r3pry Function execution took 36 ms, finished with status code: 200
2019-08-13 15:28:51.302 CEST Helloworld edZvgvraudnm Function execution started
2019-08-13 15:28:51.304 CEST HelloWorld ed2vgvraudnm Function execution took Z ms, finished with status code: 200
2019-08-13 15:29:01.819 CEST Helloworld ed2vlbt9g8ca Function execution started
2019-08-13 15:29:01.848 CEST Helloworld edzvlbt9g8ca Function execution took 29 ms, finished with status code: 200
2019-08-13 15:43:00.113 CEST HellowWorld edZvzcfsrob Function execution started
2019-08-13 15:43:00.174 CEST Helloworld ed2vzcfsrob Function execution took 61 ms, finished with status code: 200
2019-08-13 15:44:00.274 CEST Helloworld edzvlb06l7ft Function execution started
2019-08-13 15:44:00.279 CEST HelloWorld ed2v1b0617ft Function execution took 5 ms, finished with status code: 200
2019-08-13 15:45:00.332 CEST Helloworld ed2v2vacgp8r Function execution started
2019-08-13 15:45:00.344 CEST Helloworld edZv2vacgp8r Function execution took 13 ms, finished with status code: 200
2019-08-13 15:46:00.416 CEST Helloworld edZvhmebyges Function execution started
2019-08-13 15:46:00.474 CEST HelloWorld edZvhmebyges Function execution took 58 ms, finished with status code: 200

2019-08-13 1 CEST HelloWorld edZw4hlii77b Function execution started

2019-08-13 1 CEST Helloworld edzv4hlii77b runction execution took 3 ms, finished with status code: 200
2019-08-13 15:48:00.566 CEST HellowWorld ed2vhdrpbugn Function execution started
2019-08-13 15:48:00.569 CEST Helloworld edzvh4rpbudn Function execution took 3 ms, finished with status code: 200
2019-08-13 15:49:00.745 CEST Helloworld edZv6e3rpc30 Function execution started
2019-08-13 15:49:00.772 CEST HelloWorld ed2vée3rpe3n Function execution took 28 ms, finished with status code: 200
2019-08-13 15:50:00.830 CEST Helloworld edZvufa3kvqv Function execution started
2019-08-13 15:50:00.834 CEST Helloworld edzvufa3kvqv Function execution took 5 ms, finished with status code: 200

2019-08-13 15:51:00.873 CEST Helloworld ed2vykwvada2 Function execution started

2019-08-13 15:51:00.876 CEST Helloworld ed2vykwva4a2 Function execution took 3 ms, finished with status code: 200

T Load newer logs T

Figure 2.43: Function logs

As you can see, the cloud scheduler is invoking the function as planned and that
the function is running successfully.

Introduction | 69

14. Return to the Cloud Scheduler page from Step 13, choose HelloWorldEveryMinute,
click Delete on the menu, and then confirm this in the popup, as shown in the
following screenshot:

Google Cloud Platform 8 personal +

-
@ Cloud Scheduler CREATE JOB ¥ REFRESH # EDIT 11 PAUSE i DELETE

' Name State Description Frequency Target Last run Result Logs

v HelloWorldEveryMinute Enabled ~ *ksss URL: hitps://us-centrall-persanal 237100.cloudfunctions.net/HelloWorld Aug 13,2019, 35700 PM Success View | Runnow
(Europe/Paris)

Figure 2.44: Cloud Scheduler - job deletion

15. Return to the Cloud Functions page from step 7, choose HelloWorld, click Delete
on the menu, and then confirm this in the popup, as shown in the following
screenshot:

Google Cloud Platform e personal +

[] Cloud Functions Overview CREATE FUNCTION C REFRESH W DELETE TG coPY SHOW INFO PANEL ‘# LEARN

Columns ~

+ Name A Region Trigger Runtime Memory allocated Executed function Last deployed

M @ Helloworld us-centrall HTTP Go1.Mm 128 MB HelloWorld 8/13/19, 3:23 PM
Figure 2.45: Cloud Functions - function deletion

In this exercise, we created a Hello World function and deployed it to GCF. In addition,
a cloud scheduler job was created to trigger the function with specific intervals such
as every minute. Now, the function is connected to another cloud service so that the
function can trigger the service. It is essential to integrate functions with other cloud
services and evaluate their integration capabilities prior to choosing a cloud FaaS
provider.

In the following activity, you will develop a real-life daily stand-up reminder function.
You will connect a function and function trigger service you wish to invoke on your
specific stand-up meeting time. In addition, this reminder will send a specific message
to a cloud-based collaboration tool, namely Slack.

70 | Introduction to Serverless in the Cloud

Activity 2: Daily Stand-Up Meeting Reminder Function for Slack

The aim of this activity is to create a real-life function for stand-up meeting reminders
in Slack. This reminder function will be invoked at specific times for your team to
remind everyone in your team about the next stand-up meeting. The reminder will
work with Slack since it is a popular collaboration tool that's been adopted by numerous
organizations worldwide.

Note

In order to complete this activity, you need to access a Slack workplace. You can
use your existing Slack workspace or create a new one for free at https://slack.
com/create.

Once completed, you will have deployed a daily stand-up reminder function to GCF, as
shown in the following screenshot:

= Google Cloud Platform 8 personal v

(---) Cloud Functions Overview CREATE FUNCTION C REFRESH DELETE COPY SHOW INFO PANEL 1 LEARN

Columns ~

Name ~ Region Trigger Runtime Memory allocated Executed function Last deployed

& standupReminder us-centrall HTTP Go 1.11 128 MB Reminder 8/13/19,11:49 PM
Figure 2.46: Daily reminder function

In addition, you will need an integration environment for invoking the function at
specified meeting times. Stand-up meetings generally take place at a specific time on
workdays. Thus, a scheduler job will be connected to trigger your function according to
your meeting time, as shown in the following screenshot:

https://slack.com/create
https://slack.com/create

Introduction | 71

= Google Cloud Platform &* personal +

P
@ Cloud Scheduler 3 CREATE JOB C REFRESH
Name State Description Frequency Target Lastrun Result Logs
StartupReminder Enabled 09**1-5 URL: https://us-central1-personal-237100.cloudfunctions.net/StandupReminder Has not run yet View Run now
(Europe/Paris)

Figure 2.47: Daily reminder scheduler

Finally, when the scheduler invokes the function, you will have reminder messages in
your Slack channel, as shown in the following screenshot:

Serverless Arch... v i #general ® & ’Q omrch) @ % !

Onur Yilmaz Y| &1 | % 0 | Company-wide announcements and work-based matters

=a Jump to...

#general

Threads You created this channel on July 18th. This is the very beginning of the #general channel. Purpose: This channel is for

workspace-wide communication and announcements. All members are in this channel. (edit)
Channels

general + Addanapp & Add people to this channel

Thursday, July 18th

vorld
Aale diaa] ' OnurYilmaz 5:52 PM
» joined #general.
Direct Messages
Yesterday
Slackbot
Onur Yilmaz ' Onur Yilmaz 4:17 PM
» added an integration to this channel: Daily Stand-up Reminder
Invite people
Today new messages
Apps
= Daily Stand-up Reminder APP 09:00 AM
+ Add apps Time for a stand-up meeting!
0 Message #general ® @ ©

Figure 2.48: Slack message for meeting reminder

Note

In order to complete this activity, you should configure Slack by following the Slack
Setup steps.

72 | Introduction to Serverless in the Cloud

Slack Setup

Execute the following steps to configure Slack:

1.

I T

In the Slack workspace, click on your username and select Customize Slack.
Click on Configure apps in the open window.

Click on Browse the App Directory to add a new application from the directory.
Find Incoming WebHooks from the search box in App Directory.

Click on Add Configuration for the Incoming WebHooks application.

Fill in the configuration for the incoming webhook with your specific channel
name and icon.

Open your Slack workspace and channel. You will see an integration message.

Note

Detailed screenshots of the Slack setup steps can be found on page 376.

Execute the following steps to complete this activity:

1.

Create a new function in GCF to call the Slack webhook when it is invoked.

The code should send a JSON request to the Slack webhook URL with a similar
object: {"text": "Time for a stand-up meeting"}. You can implement the code in
any language that's supported by GCF. The code snippet is as follows:

package p

import (
ubytesll
"net/http"
)

func Reminder(http.ResponseWriter, *http.Request) {

url := "https://hooks.slack.com/services/TLIB82G8L/BMAUKCIIW/
Q02YZFDiaTRdyUBTImE7MXn1"

var jsonStr = [Jbyte('{"text": "Time for a stand-up meeting!"}"')
req, err := http.NewRequest("POST", url, bytes.NewBuffer(jsonStr))

client := &http.Client{}

Summary | 73

_, err = client.Do(req)
if err !=nil {
panic(err)
3
}

2. Create a scheduler job in GCP with the trigger URL of the function and specify the
schedule based on your stand-up meeting times.

Check the Slack channel when the time that's been defined with the schedule has
arrived for the reminder message.

3. Delete the schedule job and function from the cloud provider.

Note

The solution to this activity can be found on page 376.

Summary

In this chapter, we described the evolution of cloud technology offerings, including
how the cloud products have changed over the years and how responsibilities are
distributed among organizations, starting with IaaS and PaaS and, finally, FaaS.
Following that, criteria were presented for evaluating serverless cloud offerings.

Programming language support, function triggers, and the cost structure of serverless
products were listed so that we could compare the various cloud providers, that is,
AWS Lambda, Azure Functions, and GCF. In addition, we deployed a serverless function
to all three cloud providers. This showed you how cloud functions can be integrated
with other cloud services, such as the AWS API Gateway for REST API operations.
Furthermore, a parameterized function was deployed to Azure Functions to show how
we can process inputs from users or other systems. Finally, we deployed a scheduled
function to GCF to show integration with other cloud services. At the end of this
chapter, we implemented a real-life Slack reminder using serverless functions and
cloud schedulers.

In the next chapter, we will cover serverless frameworks and learn how to work with
them.

Introduction
to Serverless
Frameworks

Learning Objectives

By the end of this chapter, you will be able to:

+ Compare and effectively utilize different serverless functions

+ Set up a cloud-agnostic and container-native serverless framework

« Create, deploy, and invoke a function using the Fn framework

« Deploy serverless functions to cloud providers using serverless frameworks

+ Create a real-life serverless application and run it on multiple cloud platforms in the
future

In this chapter, we will explain serverless frameworks, create our first serverless functions using
these frameworks, and deploy them to various cloud providers.

76 | Introduction to Serverless Frameworks

Introduction

Let's imagine that you are developing a complex application with many functions in
one cloud provider. It may not be feasible to move to another cloud provider, even if
the new one is cheaper, faster, or more secure. This situation of vendor dependency
is known as vendor lock-in in the industry, and it is a very critical decision factor in
the long run. Fortunately, serverless frameworks are a simple and efficient solution to
vendor lock-in.

In the previous chapter, all three major cloud providers and their serverless products
were discussed. These products were compared based on their programming language
support, trigger capabilities, and cost structure. However, there is still one unseen
critical difference between all three products: operations. Creating functions, deploying
them to cloud providers, and their management are all different for each cloud
provider. In other words, you cannot use the same function in AWS Lambda, Google
Cloud Functions, and Azure Functions. Various changes are required so that we can
fulfil the requirements of cloud providers and their runtime.

Serverless frameworks are open source, cloud-agnostic platforms for running
serverless applications. The first difference between the cloud provider and serverless
products is that their serverless frameworks are open source and public. They are free
to install on the cloud or on on-premise systems and operate on their own. The second
characteristic is that serverless frameworks are cloud agnostic. This means that it is
possible to run the same serverless functions on different cloud providers or your own
systems. In other words, the cloud provider where the functions will be executed is just
a configuration parameter in serverless frameworks. All cloud providers are equalized
behind a shared API so that cloud-agnostic functions can be developed and deployed by
serverless frameworks.

Cloud serverless platforms such as AWS Lambda increased the hype of serverless
architectures and empowered their adoption in the industry. In the previous chapter,
the evolution of cloud technology offerings over the years and significant cloud
serverless platforms were discussed in depth. In this chapter, we will discuss open
source serverless frameworks and talk about their featured characteristics and
functionalities. There are many popular and upcoming serverless frameworks on

the market. However, we will focus on two prominent frameworks with differences
in terms of priorities and architecture. In this chapter, a container-native serverless
framework, namely Fn, will be presented. Following that, a more comprehensive
framework with multiple cloud provider support, namely, the Serverless Framework,
will be discussed in depth. Although both frameworks create a cloud-agnostic and open
source environment for running serverless applications, their differences in terms of
implementation and developer experience will be illustrated.

Fn Framework | 77

Fn Framework

Fn was announced in 2017 by Oracle at the JavaOne 2017 conference as an event-driven
and open source Function-as-a-Service (FaaS) platform. The key characteristics of the
framework are as follows:

* Open source: All the source code of the Fn project is publicly available at https: //

github.com /fnproject/fn, and the project is hosted at https: //fnproject.io. It has
an active community on GitHub, with more than 3,300 commits and 1,100 releases,
as shown in the following screenshot:

GitHub - fnproject/fn: The con % -+

@ GitHub, Inc. [US] | github.com/fnproject/fn p+d Incognito 9 H

O Why GitHub? Enterprise Explore Marketplace Pricing /1 Signin |Signup‘

fnproject / fn @Wwatch 214 | dStar 4181 YFork | 307

<> Code Issues 112 Pull requests 8 Projects 0 Wiki Security Insights

The container native, cloud agnostic serverless platform. http://fnproject.io

serverless faas docker containers serverless-functions lambda kubernetes swarm

D 3,353 commits I 67 branches 1,109 releases 22 80 contributors s Apache-2.0
Branch: master v Find File Clone or download ~

Figure 3.1: Fn at GitHub

» Container-native: Containers and microservices have changed the manner of
software development and operations. Fn is container-native, meaning that each
function is packaged and deployed as a Docker container. Also, it is possible to
create your own Docker container and run them as functions.

Language support: The framework officially supports Go, Java, Node.js, Ruby, and
Python. In addition, C# is supported by the community.

Cloud-agnostic: Fn can run on every cloud provider or on-premise system, as
long as Docker is installed and running. This is the most critical characteristic
of Fn, since it avoids the vendor lock-in problem completely. If the functions do
not depend on any cloud-specific service, it is possible to move between cloud
providers and on-premise systems quickly.

https://github.com/fnproject/fn
https://github.com/fnproject/fn
https://fnproject.io

78 | Introduction to Serverless Frameworks

As a cloud-agnostic and container-native platform, Fn is a developer-focused
framework. It enhances developer experience and agility since you can develop, test,
and debug locally and deploy to cloud with the same tooling. In the following exercise,
we will install and configure Fn so that we can start using the framework.

Note

Docker 17.10.0-ce or later should be installed and running on your computer
before you start the next exercise, since this is a prerequisite for Fn.

Exercise 7: Getting Started with the Fn Framework

In this exercise, you will install and configure a cloud-agnostic and container-native
serverless framework on your local computer. The aim of this exercise is to illustrate
how straightforward it is to configure and install the Fn Framework so that you can get
started with serverless frameworks.

To complete this exercise successfully, we need to ensure that the following steps are
executed:

1. Inyour Terminal, type the following command:

curl -LSs https://raw.githubusercontent.com/fnproject/cli/master/install |
sh

This command downloads and installs the Fn framework. Once this is complete,
the version number is printed out, as shown in the following screenshot:

/serverless $ curl -LSs https://raw.githubusercontent.com/fnproject/cli/master/install | sh
fn version 0.5.84

/serverless $]

Figure 3.2: Installation of Fn

Fn Framework | 79

2. Start the Fn server by using the following command in your Terminal:
fn start -d

This command downloads the Docker image of the Fn server and starts it inside a
container, as shown in the following screenshot:

/serverless $ fn start -d

2019/08/20 13:11:46 iii 'fn start' should NOT be used for PRODUCTION !!'! see https://github.com/fnproject/fn-helm/
Unable to find image 'fnproject/fnserver:latest' locally

latest: Pulling from fnproject/fnserver

ff3a5c916¢92: Pull complete

1a649ea86bca: Pull complete

ce35f4d5f86a: Pull complete

b6206661264b: Pull complete

b8b71dba24d3: Pull complete

3873004a68ee: Pull complete

f4205b132661: Pull complete

91a85eeeb257: Pull complete

93c96d@32b32: Pull complete

bb761748d6el: Pull complete

81f6c51cdac2: Pull complete

2ba715696dba: Pull complete

f46c2b56aaf3: Pull complete

2ba9f2@8888b7: Pull complete

f6ff7826500c: Pull complete

Digest: sha256:4ed57ea2731albeb3e9078d%a36ad@ab5c21b94601278b90c1f7c1b187a7febl
Status: Downloaded newer image for fnproject/fnserver:latest
d7e26fc891cec@ee9f1abf21b8f744bbc4b2d92d46588dePeb3Tb8046T854ecT
/serverless $ I

Figure 3.3: Starting the Fn server

3. Check the client and server version by using the following command in your
Terminal:

fn version
The output should be as follows:

/serverless $ fn version
Client version is latest version: @.5.84

Server version: ©.3.729
/serverless $ |

Figure 3.4: Fn server and client version

This output shows that both the client and server side are running and interacting
with each other.

80 | Introduction to Serverless Frameworks

4. Update the current Fn context and set a local development registry:
fn use context default && fn update context registry serverless

The output is shown in the following screenshot:

/serverless § fn use context default && fn update context registry serverless
Now using context: default

Current context updated registry with serverless
/serverless $]

Figure 3.5: Registry setup for the current context

As the output indicates, the default context is set, and the registry is updated to
serverless.

5. Start the Fn dashboard by using the following command in your Terminal:

docker run -d --link fnserver:api -p 4000:4000 -e "FN_API_URL=http://
api:8080" fnproject/ui

This command downloads the fnproject/ui image and starts it in detached mode.
In addition, it links fnserver:api to itself and publishes the 4000 port, as shown in
the following screenshot:

/serverless $ docker run -d —1link fnserver:api -p 4000:4000 -e "FN_API_URL=http://api:808@" fnproject/ui
Unable to find image 'fnproject/ui:latest' locally

latest: Pulling from fnproject/ui

b56ae66c2937: Pull complete

e93c4ef66dd7: Pull complete

a%e499bf@al2: Pull complete

bal608f4@908: Pull complete

6464d2649fbf: Pull complete

ebc7db4cf@98: Pull complete

f34clcd5ef21: Pull complete

dc688ebebaad: Pull complete

Digest: sha256:82c5b2fd@2d702d2294bb107c1c022dbab99241f64e4e14b77519d4c25bbb519
Status: Downloaded newer image for fnproject/ui:latest
ceb@cdd70e88f843aabeeleeas5253758d2965982137022989991985c59be719b

/serverless $ I

Figure 3.6: Starting the Fn Ul
6. Check the running Docker containers with the following command:
docker ps

As expected, two containers are running for Fn with the image names fnproject/ui
and fnproject/fnserver:latest, respectively, as shown in the following screenshot:

/serverless $ docker ps
IMAGE COMMAND CREATED STATUS PORTS NAMES
fnproject/ui "npm start" 2 minutes ago Up 2 minutes 0.9.0.0:4000->4000/tcp thirsty_chaplygin

fnproject/fnserver:latest "./fnserver" 15 minutes ago Up 15 minutes 2375/tcp, ©.0.0.0:8080—>8080/tcp fnserver

/serverless $

Figure 3.7: Docker containers

Fn Framework | 81

7. Open http://localhost: 4000 in your browser to check the Fn UL

The Fn Dashboard lists the applications and function statistics as a web

application, as shown in the following screenshot:

fn

Login
FN_TOKEN

’ Quick Start

@ Fn API
) Fnaitrub
) FuiGitub

Dashboard

Applications

Statistics

Queued: 0

Running: 0

o - M o B O @& N ® ©

Figure 3.8: Fn Dashboard

o - M o B O @& N ® ©

+ Create App

@ Auto refresh

Completed: 0

With this exercise, we have installed the Fn framework, along with its client, server, and
dashboard. Since Fn is a cloud-agnostic framework, it is possible to install any cloud

or on-premise system with the illustrated steps. We will continue discussing the Fn
framework in terms of how the functions are configured and deployed.

The Fn framework is designed to work with applications, where each application is a
group of functions with their own route mappings. For instance, let's assume you have
grouped your functions into a folder, as follows:

app.yaml
func.yaml
func.go
go.mod
products/

- func.yaml

82 | Introduction to Serverless Frameworks

- func.js
- suppliers/
- func.yaml
- func.rb
In each folder, there is a func.yaml file that defines the function with the corresponding

implementation in Ruby, Node. js, or any other supported language. In addition, there is
an app.yaml file in the root folder to define the application.

Let's start by checking the content of app.yaml:
name: serverless-app
app.yaml is used to define the root of the serverless application and includes the name

of the application. There are also three additional files for the function in the root
folder:

* func.go: Go implementation code
* go.mod: Go dependency definitions

* func.yaml: Function definition and trigger information

For a function with an HTTP trigger and Go runtime, the following func.yaml file is
defined:

name: serverless-app
version: 0.0.1
runtime: go
entrypoint: ./func
triggers:
- name: serverless-app
type: http
source: /serverless-app

When you deploy all of these functions to Fn, they will be accessible via the following
URLs:

http://serverless-kubernetes.io/ -> root function
http://serverless-kubernetes.io/products -> function in products/
directory

http://serverless-kubernetes.io/suppliers -> function in suppliers/

directory

Fn Framework | 83

In the following exercise, the content of the app.yaml and func.yaml files, as well as their
function implementation, will be illustrated with a real-life example.

Exercise 8: Running Functions in the Fn Framework

In this exercise, we aim to create, deploy, and invoke a function using the Fn framework.

To complete this exercise successfully, we need to ensure that the following steps are
executed:

1.

In your Terminal, run the following commands to create an application:

mkdir serverless-app

cd serverless-app

echo "name: serverless-app" > app.yaml
cat app.yaml

The output should be as follows:
/serverless $ mkdir serverless-app

/serverless $ cd serverless—-app
/serverless $ echo "name: serverless—-app" > app.yaml

/serverless $ cat app.yaml
name: serverless—-app
/serverless $]

Figure 3.9: Creating the application

These commands create a folder called serverless-app and then change the
directory so that it's in this folder. Finally, a file called app.yaml is created with the
content name: serverless-app, which is used to define the root of the application.

Run the following command in your Terminal to create a root function that's
available at the "/" of the application URL:

fn init --runtime ruby --trigger http

This command will create a Ruby function with an HTTP trigger at the root of the
application, as shown in the following screenshot:

/serverless $ fn init —-runtime ruby --trigger http
Function boilerplate generated.

func.yaml created.
/serverless $]

Figure 3.10: Ruby function creation

84 | Introduction to Serverless Frameworks

3. Create a subfunction by using the following commands in your Terminal:
fn init --runtime go --trigger http hello-world

This command initializes a Go function with an HTTP trigger in the hello-world
folder of the application, as shown in the following screenshot:

/serverless $ fn init ——runtime go ——trigger http hello-world
Creating function at: ./hello-world
Function boilerplate generated.

func.yaml created.
/serverless § ||

Figure 3.11: Go function creation

4. Check the directory of the application by using the following command in your
Terminal:

1s -1 ./*

This command lists the files in the root and child folders, as shown in the following
screenshot:

/serverless $ ls -1 ./%

—-rw-r—r-— 1 root root 21 Aug 20 14:39 ./app.yaml
-rw—-r—r-— 1 root root 252 Aug 20 14:48 ./func.rb
-rw—-r—r-— 1 root root 172 Aug 20 14:48 ./func.yaml
-rw—-r—r-— 1 root root 62 Aug 20 14:48 ./Gemfile

./hello—world:

total 12

-rw—-r—r-— 1 root root 469 Aug 20 14:48 func.go

-rw—-r—r-— 1 root root 155 Aug 20 14:48 func.yaml

-rw—-r—r-— 1 root root 13 Aug 20 14:48 go.mod
/serverless $]

Figure 3.12: Folder structure

As expected, there is a Ruby function in the root folder with three files: func.rb for
the implementation, func.yaml for the function definition, and Gemfile to define
Ruby function dependencies.

Similarly, there is a Go function in the hello-world folder with three files: func. go
for the implementation, func.yaml for the function definition, and go.mod for Go
dependencies.

Fn Framework | 85

5. Deploy the entire application by using the following command in your Terminal:
fn deploy --create-app --all --local

This command deploys all the functions by creating the app and using a local
development environment, as shown in the following screenshot:

/serverless $ fn deploy --create-app —all —-local
Successfully created app: serverless-app
Deploying serverless-app to app: serverless-app
Bumped to version 0.0.2
Building image serverless/serverless-app:0.0.2
Updating function serverless-app using image serverless/serverless—-app:8.0.2...
Successfully created function: serverless-app with serverless/serverless—app:0.0.2
Successfully created trigger: serverless-app
Trigger Endpoint: http://localhost:80880/t/serverless-app/serverless—-app
Deploying hello-world to app: serverless-app
Bumped to version 9.0.2
Building image serverless/hello-world:0.0.2
Updating function hello-world using image serverless/hello-world:9.0.2...
Successfully created function: hello-world with serverless/hello-world:0.0.2
Successfully created trigger: hello-world
Trigger Endpoint: http://localhost:80880/t/serverless-app/hello-world
/serverless §$ |]

Figure 3.13: Application deployment to Fn

Firstly, the function for serverless-app is built, and then the function and trigger
are created. Similarly, the hello-world function is built and deployed with the
corresponding function and trigger.

6. List the triggers of the application with the following command and copy the
Endpoints for serverless-app-trigger and hello-world-trigger

fn list triggers serverless-app
This command lists the triggers of serverless-app, along with function, type,

source, and endpoint information, as shown in the following screenshot:

/serverless § fn list triggers serverless-app
FUNCTION NAME ID TYPE SOURCE ENDPOINT
hello-world hello-world ©21DJQQYAM7NGBGRRGZI0000005 http /hello-world http://localhost:8080/t/serverless—app/hello-world

serverless—app serverless—-app 01DJQQX36XNG8GOBGZI0000003 http /serverless—app http://localhost:8080/t/serverless—app/serverless—app
/serverless

Figure 3.14: Trigger list

86 | Introduction to Serverless Frameworks

7. Trigger the endpoints by using the following commands in your Terminal:

Note

For the curl commands, do not forget to use the endpoints that we copied in Step
5.

curl -d Ece http://localhost:8080/t/serverless-app/serverless-app

The output should be as follows:

/serverless $ curl —-d Ece http://localhost:8088/t/serverless—app/serverless—app
{"message":"Hello Ece!"}

/serverless $]

Figure 3.15: Invocation of the serverless-app trigger

This command will invoke the serverless-app trigger located at the root of the
application. Since it was triggered with the name payload, it responded with a
personal message: Hello Ece!:

curl http://localhost:8080/t/serverless-app/hello-world

This command will invoke the hello-world trigger without any payload and, as
expected, it responded with Hello World, as shown in the following screenshot:

/serverless $ curl http://localhost:8080/t/serverless-app/hello-world

{"message':"Hello World"}

Figure 3.16: Invocation of the hello-world trigger

Fn Framework | 87

8. Check the application and function statistics from the Fn Dashboard by opening
http://localhost:4000 in your browser.

On the home screen, your applications and their overall statistics can be seen,
along with auto-refreshed charts, as shown in the following screenshot:

fn Apps
Dashboard + Create App
FN_TOKEN

Applications

Name Actions
’ Quick Start serverless-app o Edit -
@ Fn API e

Statistics @ Auto refresh
) FnaitHub

Queued: 0 Running: 0 Completed: 7

() FuiGitub " " "

o = N w B o O
o - m w & o o
o = N w B o O

Figure 3.17: Fn Dashboard - Home

88 | Introduction to Serverless Frameworks

Click on serverless-app from the applications list to view more information about
the functions of the application, as shown in the following screenshot:

fn Apps / serverless-app

Login
serverless-app + Add Fnction

serverless-app Name Image Memory Timeout Idle Timeout Actions

hello-world serverless/hello-world:0.0.2 128 MB 30 30 B RunFunction =

serverless-app serverless/serverless-app:0.0.2 128MB 30 30 B RunFunction
Statistics @ Auto refresh

Starting: 0 Waiting: 0 Busy: 0
[serverless-app: 0 [serverless-app: 0 [serverless-app: 0
hello-world: 0 hello-world: 0 hello-world: 0
10 10 10
]] 9
8 8 8
7 7 7
6 6 6
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
0 0 - 0
Idling: 0 Paused: 0
[serverless-app: 0 [serverless-app: 0
hello-world: 0 hello-world: 0

10 10
]]
8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0

Figure 3.18: Fn Dashboard - Application

The Serverless Framework | 89

9. Stop the Fn server by using the following command in your Terminal:
fn stop

This command will stop the Fn server, including all the function instances, as
shown in the following screenshot:

/serverless $ fn stop
Successfully stopped 'fnserver'

/serverless $ ||

Figure 3.19: Fn server stop

In this exercise, we created a two-function application in the Fn framework and
deployed it. We have shown you how to build functions as Docker containers using
the fn client and by creating functions. In addition, the triggers of the functions

were invoked via HTTP, and the statistics were checked from the Fn dashboard. As a
container-native and cloud-agnostic framework, the functions of the framework are
Docker containers, and they can run on any cloud provider or local system. In the next
section, another serverless framework, namely, the Serverless Framework, which
focuses more on cloud-provider integration, will be presented.

The Serverless Framework

The Serverless Framework was announced in 2015 with the name JavaScript Amazon
Web Services (JAWS). It was initially developed in Node.js to make it easier for

people to develop AWS Lambda functions. In the same year, it changed the name to
Serverless Framework and expanded its scope to other cloud providers and serverless
frameworks, including Google Cloud Functions, Azure Functions, Apache OpenWhisk,
Fn, and many more.

90 | Introduction to Serverless Frameworks

Serverless Framework is open source, and its source code is available at GitHub:
https: //github.com /serverless /serverless. It is a very popular repository with more
than 31,000 stars, as shown in the following screenshot:

Pullrequests Issues Marketplace Explore

| serverless / serverless DuUsedby~ 6,314 ©OwWatchv 999 ‘sStar 31,648 ¥Fork 3,580

<> Code Issues 541 Pull requests 20 Actions Projects 1 Security Insights

Serverless Framework — Build web, mobile and loT applications with serverless architectures using AWS Lambda, Azure Functions,
Google CloudFunctions & more! — https://serverless.com

serverless serverless-framework serverless-architectures aws-lambda google-cloud-functions azure-functions ibm-openwhisk aws

microservice javascript

{11,092 commits 17 40 branches © 142 releases 42 613 contributors s MIT
il

Branch: master v New pull request Create new file Upload files Find File Clone or download ~ |
ﬂ medikoo Merge pull request #6585 from serverless/improve-error-handling - X Latest commit 4d64b3d 2 days ago
Figure 3.20: Serverless Framework GitHub repository
The official website of the framework is available at https: //serverless.com and provides

extensive documentation, use cases, and examples. The main features of the Serverless
Framework can be grouped into four main topics:

* Cloud-agnostic: The Serverless Framework aims to create a cloud-agnostic
serverless application development environment so that vendor lock-in is not a
concern.

* Reusable Components: Serverless functions that are developed in the Serverless
Framework are open source and available. These components help us to create
complex applications quickly.

* Infrastructure-as-code: All the configuration and source code that's developed in
the Serverless Framework is explicitly defined and can be deployed with a single
command.

* Developer Experience: The Serverless Framework aims to enhance developer
experience via its CLI, configuration parameters, and active community.

https://github.com/serverless/serverless
https://serverless.com

The Serverless Framework | 91

These four characteristics of the Serverless Framework make it the most well-known
framework for creating serverless applications in the cloud. In addition, the framework
focuses on the management of the complete life cycle of serverless applications:

Develop: It is possible to develop apps locally and reuse open source plugins via
the framework CLI.

Deploy: The Serverless Framework can deploy to multiple cloud platforms and roll
out and roll back versions from development to production.

Test: The framework supports testing the functions out of the box by using the
command-line client functions.

Secure: The framework handles secrets for running the functions and cloud-
specific authentication keys for deployments.

Monitor: The metrics and logs of the serverless applications are available with the
serverless runtime and client tools.

In the following exercise, a serverless application will be created, configured, and
deployed to AWS using the Serverless Framework. The framework will be used inside a
Docker container to show how easy it is to get started with serverless applications.

Note

The Serverless Framework can be downloaded and installed to a local computer
with npm. A Docker container, including the Serverless Framework installation, will
be used in the following exercise so that we have a fast and reproducible setup.

In the following exercise, the hello-world function will be deployed to AWS Lambda
using the Serverless Framework. In order to complete this exercise, you need to have
an active Amazon Web Services account. You can create an account at https: /aws.

amazon.com/.

https://aws.amazon.com/
https://aws.amazon.com/

92 | Introduction to Serverless Frameworks

Exercise 9: Running Functions with the Serverless Framework

In this exercise, we aim to configure the Serverless Framework and deploy our very first
function using it. With the Serverless Framework, it is possible to create cloud-agnostic
serverless applications. In this exercise, we will deploy the functions to AWS Lambda.
However, it is possible to deploy the same functions to different cloud providers.

To successfully complete this exercise, we need to ensure that the following steps are
executed:

1. Inyour Terminal, run the following command to start the Serverless Framework
development environment:

docker run -it --entrypoint=bash onuryilmaz/serverless

This command will start a Docker container in interactive mode. In the following
steps, actions will be taken inside this Docker container, as shown in the following
screenshot:

/serverless $ docker run -it ——entrypoint=bash onuryilmaz/serverless

root@139132ab576a: /#

Figure 3.21: Starting a Docker container for serverless
2. Run the following command to check the framework version:
serverless version

This command lists the Framework, Plugin, and SDK versions, and getting a
complete output indicates that everything is set up correctly, as shown in the
following screenshot:

root@l39132ab576a: /# serverless version
Framework Core: 1.50.0

Plugin: 1.3.8

SDK: 2.1.0

root@l39132ab576a: /# |}

Figure 3.22: Framework version
3. Run the following command to use the framework interactively:

serverless

The Serverless Framework | 93

Press Y to create a new project and choose AWS Node.js from the dropdown, as
shown in the following screenshot:

root@139132ab576a:/# serverless

Serverless: No project detected. Do you want to create a new one? Yes
Serverless: What do you want to make? (Use arrow keys)

> AWS Node.js
AWS Python
Other

Figure 3.23: Creating a new project in the framework

4. Set the name of the project to hello-world and press Enter. The output is as
follows:

root@139132ab576a: /# serverless
Serverless: No project detected. Do you want to create a new one? Yes

Serverless: What do you want to make? AWS Node.js
Serverless: What do you want to call this project? hello-world

No AWS credentials were found on your computer, you need these to host your application.

Serverless: Do you want to set them up now? (Y/n) |

Figure 3.24: Successful creation of the project

5. PressY for the AWS credential setup question, and then press Y again for the Do
you have an AWS account? question. The output will be as follows:

root@44cdf31c8502: /# serverless

Serverless: No project detected. Do you want to create a new one? Yes
Serverless: What do you want to make? AWS Node.js
Serverless: What do you want to call this project? hello-world

No AWS credentials were found on your computer, you need these to host your application.

Serverless: Do you want to set them up now? Yes
Serverless: Do you have an AWS account? Yes

L

https://console.aws.amazon.com/iam/home?region=us-east-1#/users$new?step=final&accessKey&userNames=serverless&permissionType
=policies&policies=arn:aws:iam::aws:policy%2FAdministratorAccess

Serverless: Press Enter to continue after creating an AWS user with access keys ||

Figure 3.25: AWS account setup

You now have a URL for creating a serverless user. Copy and save the URL; we'll
need it later.

94 | Introduction to Serverless Frameworks

6. Open the URL from Step 4 in your browser and start adding users to the AWS
console. The URL will open the Add user screen with predefined selections. Click
Next: Permissions at the end of the screen, as shown in the following screenshot:

Services v Resource Groups v * Onur YILMAZ ~ Global Support v

Set user details

You can add multiple users at once with the same access type and permissions. Learn more

User name* serverless

© Add another user

Select AWS access type
Select how these users will access AWS. Access keys and autogenerated passwords are provided in the last step. Learn more

Access type* ¢ Programmatic access

Enables an access key ID and secret access key for the AWS API, CLI, SDK, and
other development tools.

AWS Management Console access
Enables a password that allows users to sign-in to the AWS Management Console.

Figure 3.26: AWS Add user

The Serverless Framework | 95

7. The AdministratorAccess policy should be selected automatically. Click Next: Tags
at the bottom of the screen, as shown in the following screenshot:

aws

Services v Resource Groups v * Q AZ v Global v Support v

Add user 1 ° 3 4 5

~ Set permissions

@y Copy permissions from Attach existing policies

'&‘ Aed useeto grolp s existing user directly

Create policy 57

Filter policies v | Q Search Showing 477 results

Policy name Type Used as Description

v » AdministratorAccess Job function Permissions policy (2) Provides full access to AWS services and re...
» AlexaForBusinessD... AWS managed None Provide device setup access to AlexaForBu...
» AlexaForBusinessF... AWS managed Grants full access to AlexaForBusiness reso...
» AlexaForBusinessG... AWS managed None Provide gateway execution access to Alexa...
» WF AlexaForBusinessR... AWS managed Provide read only access to AlexaForBusine...
3 AmazonAP|Gatewa... AWS managed Provides full access to create/edit/delete A...
» ¥ AmazonAPIGatewa... AWS managed Provides full access to invoke APls in Amaz...

» Set permissions boundary

Cancel Previous Next: Tags

Figure 3.27: AWS Add user - Permissions

96 | Introduction to Serverless Frameworks

8. If you want to tag your users, you can add optional tags in this view. Click Next:
Review, as shown in the following screenshot:

Services v Resource Groups v * Q Onur YILMAZ ~ Global + Support v

Add tags (optional)

IAM tags are key-value pairs you can add to your user. Tags can include user information, such as an email address, or can be descriptive, such as a job
title. You can use the tags to organize, track, or control access for this user. Learn more

Key Value (optional) Remove

You can add 50 more tags.

Figure 3.28: AWS Add user - Tags

The Serverless Framework | 97

9. This view shows the summary of the new user. Click Create User, as shown in the
following screenshot:

awg Services v Resource Groups v * Q Onur YILMAZ ~ Global + Support v
Add user i) (2) (s ° "
Review

Review your choices. After you create the user, you can view and download the autogenerated password and access key.
User details

User name serverless
AWS access type Programmatic access - with an access key

Permissions boundary Permissions boundary is not set

Permissions summary

The following policies will be attached to the user shown above.

Type Name
Managed policy AdministratorAccess
Tags

No tags were added.

Cancel Previous Create user

Figure 3.29: AWS Add user - Review

98 | Introduction to Serverless Frameworks

You will be redirected to a success page with an Access Key ID and secret, as
shown in the following screenshot:

aws., Services v Resource Groups v * Q Onur YILMAZ ~ Global v Support ¥

1 2 3 4 °

@ Success
You successfully created the users shown below. You can view and download user security credentials. You can also email users
instructions for signing in to the AWS Management Console. This is the last time these credentials will be available to download. However,
you can create new credentials at any time.

Users with AWS Management Console access can sign-in at: https:/183843130979.signin.aws.amazon.com/console

& Download .csv

User Access key ID Secret access key

» @& serverless AKIASVTPHRZR2IJHQQMV ******** Show

Close

Figure 3.30: AWS Add user - Success

10. Copy the key ID and secret access key so that you can use it in the following steps
of this exercise and the activity for this chapter. You need to click Show to reveal
the secret access key.

11. Return to your Terminal and press Enter to enter the key ID and secret
information, as shown in the following screenshot:

https://console.aws.amazon.com/iam/home?region=us—-east-1#/users$new?step=final&accessKey&userNames=serverless&permissionType
=policies&policies=arn:aws:iam::aws:policy%2FAdministratorAccess

Serverless: Press Enter to continue after creating an AWS user with access keys

Serverless: AWS Access Key Id: AKIASVTPHRZR2IJHQQMV
Serverless: AWS Secret Access Key: E %k sk dkdkdkdidkdskdhhdkdhdhdikikrirn

~/.aws/credentials

Figure 3.31: AWS Credentials in the framework

The Serverless Framework | 99

12. Press Y for the Serverless account enable question and select register from the
dropdown, as shown in the following screenshot:

You can monitor, troubleshoot, and test your new service with a free Serverless account.

Serverless: Would you like to enable this? Yes

You are not logged in or you do not have a Serverless account.

Serverless: Do you want to login or register? (Use arrow keys)
) register
login

Figure 3.32: Serverless account enabled

13. Write your email and a password to create a Serverless Framework account, as
shown in the following screenshot:

You can monitor, troubleshoot, and test your new service with a free Serverless account.
Serverless: Would you like to enable this? Yes

You are not logged in or you do not have a Serverless account.

Serverless: Do you want to login or register? register

Serverless: email: mail@onuryilmaz.me

Serverless: password: [hidden]

Serverless: email: xx* @onuryilmaz.me
Serverless: password: [hidden]

Deploy your project and monitor, troubleshoot and test it:
- Run “serverless deploy” to deploy your service.
- Run “serverless dashboard” to view the dashboard.

root@44cdf31c8502:/# i

Figure 3.33: Serverless account register
14. Run the following commands to change the directory and deploy the function:

cd hello-world
serverless deploy -v

100 | Introduction to Serverless Frameworks

These commands will make the Serverless Framework deploy the function into
AWS, as shown in the following screenshot:

root@44cdf31c8502:/# cd hello-world/

root@44cdf31c8502: /hello-world# serverless deploy -v

Serverless: Packaging service...

Serverless: Excluding development dependencies...

Serverless: Creating Stack...

Serverless: Checking Stack create progress.

CloudFormation - CREATE_IN_PROGRESS - AWS::CloudFormation::Stack - hello-world-dev

CloudFormation - CREATE_IN_PROGRESS — AWS::S3::Bucket - ServerlessDeploymentBucket

CloudFormation - CREATE_IN_PROGRESS - AWS::S3::Bucket - ServerlessDeploymentBucket

CloudFormation - 3 - AWS::S3::Bucket - ServerlessDeploymentBucket

CloudFormation - - AWS::CloudFormation::Stack - hello-world-dev

Serverless: Stack create finished...

Serverless: Uploading CloudFormation file to S3...

Serverless: Uploading artifacts...

Serverless: Uploading service hello-world.zip file to S3 (67.43 KB)...

Serverless: Validating template...

Serverless: Updating Stack...

Serverless: Checking Stack update progress...

CloudFormation - UPDATE_IN_PROGRESS - AWS::CloudFormation::Stack - hello-world-dev

CloudFormation - CREATE_IN_PROGRESS — AWS::lLogs::LogGroup — HelloLogGroup

CloudFormation - CREATE_IN_PROGRESS — AWS::IAM::Role - IamRolelLambdaExecution

CloudFormation - CREATE_IN_PROGRESS — AWS

CloudFormation - CREATE_IN_PROGRESS - AWS::IAM::Role - IamRoleLambdaExecution

CloudFormation - - AWS::Logs::LogGroup - HelloLogGroup

CloudFormation - CREATE_IN_PROGRESS — AWS::IAM::Role - EnterpriselogAccessIamRole

CloudFormation - CREATE_IN_PROGRESS - AWS

CloudFormation - CREATE_IN_PROGRESS - AWS::Logs::SubscriptionFilter - CloudWatchLogsSubscriptionFilterHelloLogGroup
CloudFormation - CREATE_IN_PROGRESS — AWS::Logs::SubscriptionFilter — CloudWatchLogsSubscriptionFilterHelloLogGroup
CloudFormation - AWS::Logs::SubscriptionFilter — CloudWatchLogsSubscriptionFilterHelloLogGroup
CloudFormation

CloudFormation ole - EnterpriselLogAccessIamRole

CloudFormation ambda: : Function - HelloLambdaFunction

CloudFormation - CREATE_IN_PROGRESS - AWS::Lambd Function - HelloLambdaFunction

CloudFormation - AWS::Lambda::Function - HelloLambdaFunction

CloudFormation = CREATE_IN_PROGRESS = AWS::Lambd Version = HelloLambdaVersiono4eakM4SwChE4T14HkHFyrGIAir5xsDT8U3h7gKYXE
CloudFormation CREATE_IN_PROGRESS — AWS::Lambda::Version — HelloLambdaVersiono4eakM4SwChE4T14HkHFyrGIAir5xsDT8U3h7gKYXE
CloudFormation - - AWS::Lambda::Version - HelloLambdaVersiono4eakM4SwChE4T14HkHFyrGIAir5xsDT8U3h7gKYXE
CloudFormation - UPDATE_COMPLETE_CLEANUP_IN_PROGRESS - AWS::CloudFormation::Stack - hello-world-dev

CloudFormation - - AWS::CloudFormation::Stack - hello-world-dev

Serverless: Stack uPdate finished...

Service Information
service: hello-world
stage: dev
region: us-east-1
stack: hello-world-dev
resources: 7
api keys:

None
endpoints:

None
functions:

hello: hello-world-dev-hello
layers:

None

Stack Outputs

EnterpriseLogAccessIamRole: arn:aws:iam::183843130979:role/hello-world-dev-EnterpriseLogAccessIamRole-18B0JJQIVWVWU
HelloLambdaFunctionQualifiedArn: arn:aws:lambda:us—east-1:183843130979: function:hello-world-dev-hello:1
ServerlessDeploymentBucketName: hello-world-dev-serverlessdeploymentbucket-d@@xrogatéme

Serverless: Publishing service to the Serverless Dashboard...

Serverless: Successfully published your service to the Serverless Dashboard: https://dashboard.serverless.com/tenants/onurx/
applications/hello-world-app/services/hello-world/stage/dev/region/us-east-1

root@44cdf31c8502: /hello-world# I

Figure 3.34: Serverless Framework deployment output

Note

The output logs start by packaging the service and creating AWS resources for the
source code, artifacts, and functions. After all the resources have been created, the
Service Information section will provide a summary of the functions and URLs.

The Serverless Framework | 101

At the end of the screen, you will find the Serverless Dashboard URL for the
deployed function, as shown in the following screenshot:

Stack Qutputs

EnterpriseLogAccessIamRole: arn:aws:iam::183843130979:role/hello-world-dev-EnterpriselLogAccessIamRole-18B0JJQIVWVWU
HelloLambdaFunctionQualifiedArn: arn:aws:lambda:us-east-1:183843130979:function:hello-world-dev-hello:1
ServerlessDeploymentBucketName: hello-world-dev-serverlessdeploymentbucket-d@@xrogatéme

Serverless: Publishing service to the Serverless Dashboard...
Serverless: Successfully published your service to the Serverless Dashboard: [IiSeSERNSAsCECEINs MR IIM-FEI I ATIEINETA o4

applications/hello-world-app/services/hello-world/stage/dev/region/us—-east-1
root@44cdf31c8502: /hello-world# i

Figure 3.35: Stack Outputs

Copy the dashboard URL so that you can check the function metrics in the
upcoming steps.

15. Invoke the function by using the following command in your Terminal:
serverless invoke --function hello

This command invokes the deployed function and prints out the response, as
shown in the following screenshot:

root@44cdf31c8502: /hello-world# serverless invoke —-function hello
{

"statusCode": 200,
"body": "{\n \"message\": \"Go Serverless v1.0! Your function executed successfully!\",\n \"input\": {}\n}"

root@44cdf31c8502: /hello-world#]

Figure 3.36: Function output

As the output shows, statusCode is 200, and the body of the response indicates that
the function has responded successfully.

102 | Introduction to Serverless Frameworks

16.

Open the Serverless Dashboard URL you copied at the end of Step 8 into your
browser, as shown in the following screenshot:

Get ready for the Serverless Framework! -

Deploy and manage your first Serverless Application in minutes. Log In

17.

Sign up.
No credit card required - your account is completely free!

or

Deploy your first Serverless app.

= ours@example.com
In just 3 commands get your application live on AWS. S e P

your password

Control the full application lifecycle.

. N oy s ! ?
Collaborate, monitor, and secure your application from within the dashboard. Don't remember your password?

Figure 3.37: Serverless Dashboard login
Log in with the email and password you created in Step 5.

You will be redirected to the application list. Expand hello-world-app and click on
the successful deployment line, as shown in the following screenshot:

applications profiles team

applications “

hello-world-app @

services stages notifications

v @ hello-world last activity: 17 minutes ago

© dev-us-east-1
last activity: 17 minutes ago
successful deployment

remove application

Figure 3.38: Serverless Dashboard application list

The Serverless Framework | 103

In the function view, all the runtime information, including API endpoints,
variables, alerts, and metrics, are available. Scroll down to see the number of
invocations. The output should be as follows:

applications profiles team documentation

/" hello-world-dev-us-east-1 v

hello-world

overview alerts

o 0

T T T T T T T T 1 T T T T T T
1am 3am 5am 7am 9am T1am Ipm 3pm5pm 7pm 9pmiipm 1am 3am 5am 7am 9am11am Ipm 3pm5pm 7pm 9pmiipm

show errors only sun, aug 25th 2019 « 1:00am - 2:00am show errors only sun, aug 25th 2019 « 1:00am - 2:00am
api endpoint activity function activity
endpoints invocations
no requests during this period 1

errors
errors

no errors during this period
no errors during this period

cold starts

1
—

timeouts
no timeouts during this period

Figure 3.39: Serverless Dashboard function view

Since we have only invoked the function once, you will only see 1in the charts.

104 | Introduction to Serverless Frameworks

18. Return to your Terminal and delete the function with the following command:

serverless remove

This command will remove the deployed function and all its dependencies, as
shown in the following screenshot:

root@44cdf31c8502:/hello-world# serverless remove
Getting all objects in S3 bucket...
Removing objects in S3 bucket...
Removing Stack...

Checking Stack removal progress...

Serverless:
Serverless:
Serverless:
Serverless:

Serverless:
Serverless:
Serverless:

Stack removal finished...
Publishing service to the Serverless Dashboard...
Successfully published your service to the Serverless Dashboard: https://dashboard.serverless.com/tenants/onurx/

applications/hello-world-app/services/hello-world/stage/dev/region/us—east-1
root@44cdf31c8502: /hello-world# I

Figure 3.40: Removing the function

Exit the Serverless Framework development environment container by writing
exit in the Terminal, as shown in the following screenshot:

root@44cdf31c8502: /hello-world# exit
exit

/serverless $ JJ

Figure 3.41: Exiting the container

In this exercise, we have created, configured, and deployed a serverless function using
the Serverless Framework. Furthermore, the function is invoked via a CLI, and its
metrics are checked from the Serverless Dashboard. The Serverless Framework creates
a comprehensive abstraction for cloud providers so that it is only passed as credentials
to the platform. In other words, where to deploy is just a matter of configuration with
the help of serverless frameworks.

In the following activity, a real-life serverless daily weather application will be
developed. You will create a serverless framework application with an invocation
schedule and deploy it to a cloud provider. In addition, the weather status messages will
be sent to a cloud-based collaboration tool known as Slack.

Note

In order to complete the following activity, you need to be able to access a Slack
workplace. You can use your existing Slack workspace or create a new one for free
at https://slack.com/create.

https://slack.com/create

The Serverless Framework | 105

Activity 3: Daily Weather Status Function for Slack

The aim of this activity is to create a real-life serverless application that sends weather
status messages in specific Slack channels. The function will be developed with the
Serverless Framework so that it can run on multiple cloud platforms in the future.
The function will be designed to run at particular times for your team so that they're
informed about the weather status, such as early in the morning before their morning
commute. These messages will be published on Slack channels, which is the main
communication tool within the team.

In order to get the weather status to share within the team, you can use wttr.in
(https: //github.com /chubin /wttr.in), which is a free-to-use weather data provider.
Once completed, you will have deployed a function to a cloud provider, namely, AWS
Lambda:

aW% Services v Resource Groups v * Onur YILMAZ v N. Virginia ¥ Support v
% ®
AWS Lambda Lambda Functions
Dashboard Functions (1) Create function
Applications
Q. Filter by tags and attributes or search by keyword 1 &

Functions
Layers
Function name v Description Runtime v Codesize Vv Last modified v

daily-weather-dev-weather Node.js 8.10 2.5MB 8 minutes ago

Figure 3.42: Daily weather function

https://github.com/chubin/wttr.in

106 | Introduction to Serverless Frameworks

Finally, when the scheduler invokes the function, or when you invoke it manually, you
will get messages regarding the current weather status in your Slack channel:

Serverless Arch... #random ® @& | a search @ %

Onur Yilmaz ¥¢ | & 1| % 0 | Non-work banter and water cooler conversation

Za Jump to... ‘

Channels
general

random Bring your team into Slack

serverless-world Slack is better with teammates - invite them to start collaborating.

Add a channel

Direct Messages

Slackbot

Onur Yilmaz (you) #random
You created this channel on July 18th. This is the very beginning of the #random channel. Purpose: A place for non-work-
related flimflam, faffing, hodge-podge or jibber-jabber you'd prefer to keep out of more focused work-related channels.
Apps D (edit)
+ Install Google Drive + Addanapp & Add people to this channel
+ Add apps

Invite people

Thursday, July 18th

j Onur Yilmaz 5:52 PM
l. joined #random.

Today

j Onur Yilmaz 2:34 PM

L. added an integration to this channel: Daily Weather
new messages

Daily Weather APP 3:56 PM
Current weather status is +15°C

| @ Message #random @ @ ©‘

Figure 3.43: Slack message with the current weather status

Note

In order to complete this activity, you should configure Slack by following the Slack
setup steps.

Slack Setup

Execute the following steps to configure Slack:
1. Inyour Slack workspace, click your username and select Customize Slack.
2. Click Configure apps in the opened window.

3. Click on Browse the App Directory to add a new application from the directory.

The Serverless Framework | 107

4. Find Incoming WebHooks from the search box in App Directory.
5. Click on Set Up for the Incoming WebHooks application.

6. Fill in the configuration for incoming webhooks with your specific channel name
and icon.

7. Open your Slack workspace and the channel you configured in Step 6 to be able to
check the integration message.

Note

Detailed screenshots of the Slack setup steps can be found on page 387.

Execute the following steps to complete this activity.

1. Inyour Terminal, create a Serverless Framework application structure in a folder
called daily-weather.

2. Create a package. json file to define the Node.js environment in the
daily-weather folder.

3. Create a handler. js file to implement the actual functionality in the
daily-weather folder.

Install the Node.js dependencies for the serverless application.

Export the AWS credentials as environment variables.

Deploy the serverless application to AWS using the Serverless Framework.
Check AWS Lambda for the deployed functions in the AWS Console.

Invoke the function with the Serverless Framework client tools.

© © N o g o

Check the Slack channel for the posted weather status.
10. Return to your Terminal and delete the function with the Serverless Framework.

11. Exit the Serverless Framework development environment container.

Note

The solution to this activity can be found on page 387.

108 | Introduction to Serverless Frameworks

Summary

In this chapter, we provided an overview of serverless frameworks by discussing the
differences between the serverless products of cloud providers. Following that, one
container-native and one cloud-native serverless framework were discussed in depth.
Firstly, the Fn framework was discussed, which is an open source, container-native, and
cloud-agnostic platform. Secondly, the Serverless Framework was presented, which is
a more cloud-focused and comprehensive framework. Furthermore, both frameworks
were installed and configured locally. Serverless applications were created, deployed,
and run in both serverless frameworks. The functions were invoked with the capabilities
of serverless frameworks, and the necessary metrics checked for further analysis.

At the end of this chapter, a real-life, daily weather Slack bot was implemented as a
cloud-agnostic, explicitly defined application using serverless frameworks. Serverless
frameworks are essential for the serverless development world with their cloud-
agnostic and developer-friendly characteristics.

Kubernetes Deep Dive

Learning Objectives
By the end of this chapter, you will be able to:
+ Set up alocal Kubernetes cluster on your computer
+ Access a Kubernetes cluster using the dashboard and the Terminal

+ ldentify the fundamental Kubernetes resources, the building blocks of Kubernetes
applications

+ Install complex applications on a Kubernetes cluster

In this chapter, we will explain the basics of the Kubernetes architecture, the methods of
accessing the Kubernetes API, and fundamental Kubernetes resources. In addition to that, we
will deploy a real-life application into Kubernetes.

112 | Kubernetes Deep Dive

Introduction to Kubernetes

In the previous chapter, we studied serverless frameworks, created serverless
applications using these frameworks, and deployed these applications to the major
cloud providers.

As we have seen in the previous chapters, Kubernetes and serverless architectures
started to gain traction at the same time in the industry. Kubernetes got a high

level of adoption and became the de facto container management system with its
design principles based on scalability, high availability, and portability. For serverless
applications, Kubernetes provides two essential benefits: removal of vendor lock-in
and reuse of services.

Kubernetes creates an infrastructure layer of abstraction to remove vendor lock-in.
Vendor lock-in is a situation where transition from one service provider to another
is very difficult or even infeasible. In the previous chapter, we studied how serverless
frameworks make it easy to develop cloud-agnostic serverless applications. Let's
assume you are running your serverless framework on an AWS EC2 instance and
want to move to Google Cloud. Although your serverless framework creates a layer
between the cloud provider and serverless applications, you are still deeply attached
to the cloud provider for the infrastructure. Kubernetes breaks this connection by
creating an abstraction between the infrastructure and the cloud provider. In other
words, serverless frameworks running on Kubernetes are unaware of the underlying
infrastructure. If your serverless framework runs on Kubernetes in AWS) it is expected
to run on Google Cloud Platform (GCP) or Azure.

As the defacto container management system, Kubernetes manages most microservices
applications in the cloud and in on-premise systems. Let's assume you have already
converted your big monolith application to cloud-native microservices and you're
running them on Kubernetes. And now you've started developing serverless applications
or turning some of your microservices to serverless nanoservices. At this stage, your
serverless applications will need to access the data and other services. If you can run
your serverless applications in your Kubernetes clusters, you will have the chance to
reuse the services and be close to your data. Besides, it will be easier to manage and
operate both microservices and serverless applications.

As a solution to vendor lock-in, and for potential reuse of data and services, it is
crucial to learn how to run serverless architectures on Kubernetes. In this chapter,

a Kubernetes recap is presented to introduce the origin and design of Kubernetes.
Following that, we will install a local Kubernetes cluster, and you will be able to access
the cluster by using a dashboard or a client tool such as kubectl. In addition to that, we
will discuss the building blocks of Kubernetes applications, and finally, we'll deploy a
real-life application to the cluster.

Kubernetes Design and Components | 113

Kubernetes Design and Components

Kubernetes, which is also known as k8s, is a platform for managing containers. It

is a complex system focused on the complete life cycle of containers, including
configuration, installation, health checking, troubleshooting, and scaling. With
Kubernetes, it is possible to run microservices in a scalable, flexible, and reliable way.
Let's assume you are a DevOps engineer at a fin-tech company, focusing on online
banking for your customers.

You can configure and install the complete backend and frontend of an online bank
application to Kubernetes in a secure and cloud-native way. With the Kubernetes
controllers, you can manually or automatically scale your services up and down to
match customer demand. Also, you can check the logs, perform health checks on each
service, and even SSH into the containers of your applications.

In this section, we will focus on how Kubernetes is designed and how its components
work in harmony.

Kubernetes clusters consist of one or more servers, and each server is assigned with

a set of logical roles. There are two essential roles assigned to the servers of a cluster:
master and node. If the server is in the master role, control plane components of

the Kubernetes run on these nodes. Control plane components are the primary set of
services used to run the Kubernetes API, including REST operations, authentication,
authorization, scheduling, and cloud operations. With the recent version of Kubernetes,
four services are running as the control plane:

* etcd: etcd is an open source key/value store, and it is the database of all
Kubernetes resources.

* kube-apiserver: API server is the component that runs the Kubernetes REST API.
It is the most critical component for interacting with other parts of the plane and
client tools.

* kube-scheduler: A scheduler assigns workloads to nodes based on the workload
requirements and node status.

114 | Kubernetes Deep Dive

* kube-controller-manager: kube-controller-manager is the control plane
component used to manage core controllers of Kubernetes resources. Controllers
are the primary life cycle managers of the Kubernetes resources. For each
Kubernetes resource, there is one or more controller that works in the observe,
decide, and act loop diagrammed in Figure 4.1. Controllers check the current
status of the resources in the observe stage and then analyze and decide on the
required actions to reach the desired state. In the act stage, they execute the
actions and continue to observe the resources.

S g ™
r.-’"' '
. Observe |
Y ;;,'

//

/ N\ Ve N\
/ A\ .,"’" Y
|" \ |'I . \
. Act | €— | Decide |
I'_\ '_,""I II'_\ '_f"l

", / , /
_ // \\\ //

- - "

Figure 4.1: Controller loop in Kubernetes

Servers with the node role are responsible for running the workload in Kubernetes.
Therefore, there are two essential Kubernetes components required in every node:

» kubelet: kubelet is the management gateway of the control plane in the nodes.
kubelet communicates with the API server and implements actions needed on the
nodes. For instance, when a new workload is assigned to a node, kubelet creates
the container by interacting with the container runtime, such as Docker.

* kube-proxy: Containers run on the server nodes, but they interact with each other
as they are running in a unified networking setup. kube-proxy makes it possible for
containers to communicate, although they are running on different nodes.

The control plane and the roles, such as master and node, are logical groupings of
components. However, it is recommended to have a highly available control plane with
multiple master role servers. Besides, servers with node roles are connected to the
control plane to create a scalable and cloud-native environment. The relationship and
interaction of the control plane and the master and node servers are presented in the
following figure:

Kubernetes Design and Components | 115

Control Plane

Masters

A

kube-apiserver eted kube-controller-manager kube-scheduler

!
il

il

'|_:|_7 kube-proxy '|_:|_7 kube-proxy "I—.|—7 kube-proxy

=
c
o
o
o
-
=
c
o
o
o
-~
=
c
o
o
o
-~

Nodes

Figure 4.2: The control plane and the master and node servers in a Kubernetes cluster

In the following exercise, a Kubernetes cluster will be created locally, and Kubernetes
components will be checked. Kubernetes clusters are sets of servers with master or
worker nodes. On these nodes, both control plane components and user applications
are running in a scalable and highly available way. With the help of local Kubernetes
cluster tools, it is possible to create single-node clusters for development and testing.
minikube is the officially supported and maintained local Kubernetes solution, and it will
be used in the following exercise.

Note

You will use minikube in the following exercise as the official local Kubernetes
solution, and it runs the Kubernetes components on hypervisors. Hence you must
install a hypervisor such as Virtualbox, Parallels, VMWareFusion, Hyperkit,
or VMWare. Refer to this link for more information:

https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor

https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor

116 | Kubernetes Deep Dive

Exercise 10: Starting a Local Kubernetes Cluster

In this exercise, we will install minikube and use it to start a one-node Kubernetes
cluster. When the cluster is up and running, it will be possible to check the master and
node components.

To complete the exercise, we need to ensure the following steps are executed:
1. Install minikube to the local system by running these commands in your Terminal:

Linux

curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/
minikube-linux-amd64

MacOS

curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/
minikube-darwin-amd64

chmod +x minikube

sudo mv minikube /usr/local/bin

These commands download the binary file of minikube, make it executable, and
move it into the bin folder for Terminal access.

2. Start the minikube cluster by running the following command:
minikube start

This command downloads the images and creates a single-node virtual machine.
Following that, it configures the machine and waits until the Kubernetes control
plane is up and running, as shown in the following figure:

/serverless $ minikube start
® minikube v1.3.1 on Darwin 10.14.5
@ Downloading VM boot image ...
minikube-v1.3.0.is0.sha256: 65 B / 65 B [] 100.00% ? p/s Os
minikube-v1.3.@.iso0: 131.07 MiB / 131.07 MiB [] 100.00% 21.31 MiB p/s 6s
Creating virtualbox VM (CPUs=2, Memory=2000MB, Disk=20000MB)
Preparing Kubernetes v1.15.2 on Docker 18.09.8 ...

Downloading kubeadm v1.15.2
Downloading kubelet v1.15.2
> Pulling images ...
Launching Kubernetes ...
Waiting for: apiserver proxy etcd scheduler controller dns
% Done! kubectl is now configured to use "minikube"
/serverless $]

Figure 4.3: Starting a new cluster in minikube

Kubernetes Design and Components | 117

3. Check the status of Kubernetes cluster:
minikube status

As the output in the following figure indicates, the host system, kubelet, and
apiserver are running:

/serverless $ minikube status
host: Running
kubelet: Running

apiserver: Running
kubectl: Correctly Configured: pointing to minikube-vm at 192.168.99.100
/serverless $ |}

Figure 4.4: Kubernetes cluster status
4. Connect to the virtual machine of minikube by running the following command:
minikube ssh
You should see the output shown in the following figure:

/serverless $ minikube ssh

Figure 4.5: minikube virtual machine
5. Check for the four control-plane components with the following command:

pgrep -1 etcd && pgrep -1 kube-apiserver && pgrep -1 kube-scheduler &&
pgrep -1 controller

This command lists the processes and captures the mentioned command names.
There are total of four lines corresponding to each control plane component and
its process IDs, as depicted in the following figure:

$ pgrep -1 etcd & pgrep -1 kube-apiserver && pgrep -1 kube-scheduler && pgrep -1 controller
3824 etcd
3787 kube-apiserver

3726 kube-scheduler
38i1 kube-controller
$

Figure 4.6: Control plane components

118 | Kubernetes Deep Dive

6. Check for the node components with the following command:
pgrep -1 kubelet && pgrep -1 kube-proxy

This command lists two components running in the node role, with their process
IDs, as shown in the following figure:

$ pgrep -1 kubelet && pgrep -1 kube-proxy
3364 kubelet

4437 kube-proxy
$

Figure 4.7: Node components
7. Exit the terminal started in Step 4 with the following command:
exit
You should see the output shown in the following figure:

$ exit
logout

/serverless $ |}

Figure 4.8: Exiting the minikube virtual machine

In this exercise, we installed a single-node Kubernetes cluster using minikube. In the
next section, we will discuss using the official client tool of Kubernetes to connect to
and operate the cluster from the previous exercise.

Kubernetes Client Tool: kubectl

The Kubernetes control plane runs a REST API server for accessing Kubernetes
resources and undertaking operational activities. Kubernetes comes with an open
source official command-line tool named kubectl in order to consume the REST API. It
is installed on the local system and configured to connect remote clusters securely and
reliably. kubectl is the primary tool for the complete life cycle of applications running
in Kubernetes. For instance, say you deploy a WordPress blog in your cluster. First, you
start creating your database passwords as secrets using kubectl. Following that, you
deploy your blog application and check its status. In addition to that, you may trace the
logs of your applications or even SSH into the containers for further analysis. Therefore,
it is a powerful CLI tool that can handle both basic create, read, update, and delete
(CRUD) actions and troubleshooting.

Kubernetes Client Tool: kubectl | 119

In addition to application management, kubectl is also a powerful tool for cluster
operations. It is possible to check the Kubernetes API status or the status of the servers
in the cluster using kubectl. Let's assume you need to restart a server in your cluster
and you need to move the workload to other nodes. Using kubectl commands, you can
mark the node as unschedulable and let the Kubernetes scheduler move the workload
to other nodes. When you complete the maintenance, you can mark the node back as
Ready and let a Kubernetes scheduler assign workloads.

kubectl is a vital command-line tool for daily Kubernetes operations. Therefore,
learning the basics and getting hands-on experience with kubectl is crucial. In
the following exercise, you will install and configure kubectl to connect to a local
Kubernetes cluster.

Exercise 11: Accessing Kubernetes Clusters Using the Client Tool: kubectl

In this exercise, we aim to access the Kubernetes API using kubectl and explore its
capabilities.

To complete the exercise, we need to ensure the following steps are executed:
1. Download the kubectl executable by running these commands in the Terminal:

Linux

curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.15.0/bin/1linux/amd64/kubectl

MacOS

curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.15.0/bin/darwin/amd64/kubectl

chmod +x kubectl

sudo mv kubectl /usr/local/bin

These commands download the binary of kubectl, make it executable, and move it
into the bin folder for Terminal access.

2. Configure kubectl to connect to the minikube cluster:
kubectl config use-context minikube

This command configures kubectl to use the minikube context, which is the set
of credentials used to connect to the kubectl cluster, as shown in the following
figure:

/serverless $ kubectl config use-context minikube
Switched to context "minikube".

/serverless $ |}

Figure 4.9: kubectl context setting

120 | Kubernetes Deep Dive

3. Check the available nodes with the following command:
kubectl get nodes

This command lists all the nodes connected to the cluster. As a single-node
cluster, there is only one node, named minikube, as shown in the following figure:

/serverless $ kubectl get nodes
NAME STATUS ROLES AGE VERSION

minikube Read master 24h v1l.15.2
/serverless $

Figure 4.10: kubectl get nodes
4. Get more information about the minikube node with the following command:
kubectl describe node minikube

This command lists all the information about the node, starting with its metadata,
such as Roles, Labels, and Annotations. The role of this node is specified as master
in the Roles section, as shown in the following figure:

/serverless $ kubectl describe node minikube
Name: minikube
Roles: master
Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=1linux
kubernetes.io/arch=amd64
kubernetes.io/hostname=minikube
kubernetes.io/os=1inux
node-role.kubernetes.io/master=
Annotations: kubeadm.alpha.kubernetes.io/cri-socket: /var/run/dockershim.sock
node.alpha.kubernetes.io/ttl: @
volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp: Sat, 14 Sep 2019 14:41:51 +0200
Taints: <none>
Unschedulable: false

Figure 4.11: Node metadata

Following the metadata, Conditions lists the health status of the node. It is possible
to check available memory, disk, and process IDs in tabular form, as shown in the
following figure.

Conditions:
Type Status LastHeartbeatTime LastTransitionTime Reason Message
MemoryPressure Sun, 15 Sep 2019 15:00:05 +0200 Sat, 14 Sep 2019 14:41:46 +0200 KubeletHasSufficientMemory kubelet has sufficient memory available
DiskPressure Sun, 15 Sep 2019 15:00:05 +0200 Sat, 14 Sep 2019 14:41:46 +0200 KubeletHasNoDiskPressure kubelet has no disk pressure

PIDPressure Sun, 15 Sep 2019 15:00:05 +0200 Sat, 14 Sep 2019 14:41:46 +0200 KubeletHasSufficientPID kubelet has sufficient PID available
Sun, 15 Sep 2019 15:00:05 +0200 Sat, 14 Sep 2019 14:41:46 +0200 KubeletReady kubelet is posting ready status

InternalIP: 10.0.2.15
Hostname: minikube

Figure 4.12: Node conditions

Kubernetes Client Tool: kubectl

| 121

Then, available and allocatable capacity and system information are listed, as
shown in the following figure:

Capacity:
cpu:
ephemeral-storage:
hugepages-2Mi:
memory:
pods:

2
17784772Ki
e
1989472K1
110

Allocatable:
cpu: 2
ephemeral-storage:
hugepages=2Mi: 7}
memory:
pods:

System Info:
Machine ID:
System UUID:

Boot ID:

Kernel Version:
0S Image:
Operating System:
Architecture:
Container Runtime Version:
Kubelet Version:
Kube-Proxy Version:

110

16390445849

1887072Ki

d78ca5cc2d404e57a604153f20f5095c¢
EC8117B5-2001-4A3B-BB28-BA975502B20C
fed4852a7-751a-4c97-8065-029b44f@bbfe
4.15.0

Buildroot 2018.05.3

linux

amd64

docker://18.9.8

v1l.15.2

v1.15.2

Figure 4.13: Node capacity information

Finally, the running workload on the node and allocated resources are listed, as

shown in the following figure:

Non-terminated Pods:
Namespace

(9 in total)

Name
coredns-5c¢98db65d4-s5565
coredns-5c98db65d4-sddc8
etcd-minikube
kube-addon-manager-minikube
kube-apiserver-minikube

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

kube-proxy-x4zb9
kube-scheduler-minikube
storage-provisioner

kube-system
Allocated resources:
(Total limits may be over 188 percent, i.e., overcommitted.)

Resource Requests Limits

755m (37%)
190Mi (10%)
0 (0%)
<none>

0 (0%)
340Mi (18%)
0 (0%)

memory
ephemeral-storage
Events:

kube-controller-manager-minikube

CPU Requests CPU Limits Memory Requests Memory Limits AGE
108m (5%) 0 (0%) 70Mi (3%) 17eMi (9%) 24h
108m (5%) 0 (0%) 70Mi (3%) 17eMi (9%) 24h
0 (0%) 0 (0%) 0 (0%) (0%) 24h
5m (0%) 0 (0%) 50Mi (2%) (0%) 24h
250m (12%) 0 (0%) 0 (0%) (0%) 24h
200m (10%) 0 (0%) 0 (0%) (0%) 100m
0 (0%) 0 (0%) 0 (0%) (0%) 24h

0 (0%) 0 (0%) (0%) 24h

0 (0%) 0 (0%) (0%) 24h

100m (5%)
0 (0%)

Figure 4.14: Node workload information

122 | Kubernetes Deep Dive

5. Get the supported API resources with the following command:
kubectl api-resources -o name

You should see the output shown in the following figure:

/serverless $ kubectl api-resources -o name
bindings
componentstatuses
configmaps
endpoints
events

limitranges
namespaces
nodes
persistentvolumeclaims
persistentvolumes
pods
podtemplates

replicationcontrollers

resourcequotas

secrets

serviceaccounts

services
mutatingwebhookconfigurations.admissionregistration.k8s.io
validatingwebhookconfigurations.admissionregistration.k8s.io
customresourcedefinitions.apiextensions.k8s.io
apiservices.apiregistration.k8s.io
controllerrevisions.apps
daemonsets.apps
deployments.apps

replicasets.apps

statefulsets.apps
tokenreviews.authentication.k8s.io
localsubjectaccessreviews.authorization.k8s.io
selfsubjectaccessreviews.authorization.k8s.io
selfsubjectrulesreviews.authorization.k8s.io
subjectaccessreviews.authorization.k8s.io
horizontalpodautoscalers.autoscaling
cronjobs.batch

jobs.batch
certificatesigningrequests.certificates.k8s.io
leases.coordination.k8s.io
events.events.k8s.io
daemonsets.extensions
deployments.extensions

ingresses.extensions
networkpolicies.extensions
podsecuritypolicies.extensions
replicasets.extensions
ingresses.networking.k8s.io
networkpolicies.networking.k8s.io
runtimeclasses.node.k8s.io
poddisruptionbudgets.policy
podsecuritypolicies.policy
clusterrolebindings. rbac.authorization.k8s.io
clusterroles.rbac.authorization.k8s.io
rolebindings.rbac.authorization.k8s.io

roles. rbac.authorization.k8s.io
priorityclasses.scheduling.k8s.io
csidrivers.storage.k8s.io
csinodes.storage.k8s.io
storageclasses.storage.k8s. io
volumeattachments.storage.k8s.io

/serverless $ |}

Figure 4.15: Output of kubectl api-resources

Kubernetes Resources | 123

This command lists all the resources supported by the Kubernetes cluster. The length
of the list indicates the power and comprehensiveness of Kubernetes in the senseof
application management. In this exercise, the official Kubernetes client tool was
installed, configured, and explored. In the following section, the core building block
resources from the resource list will be presented.

Kubernetes Resources

Kubernetes comes with a rich set of resources to define and manage cloud-

native applications as containers. In the Kubernetes API, every container, secret,
configuration, or custom definition is defined as a resource. The control plane
manages these resources while the node components try to achieve the desired state
of the applications. The desired state could be running 10 instances of the application
or mounting disk volumes to database applications. The control plane and node
components work in harmony to make all resources in the cluster reach their desired
state.

In this section, we will study the fundamental Kubernetes resources used to run
serverless applications.

Pod

The pod is the building block resource for computation in Kubernetes. A pod consists
of containers scheduled to run into the same node as a single application. Containers
in the same pod share the same resources, such as network and memory resources. In
addition, the containers in the pod share life cycle events such as scaling up or down. A
pod can be defined with an ubuntu image and the echo command as follows:

apiVersion: v1
kind: Pod
metadata:

name: echo
spec:
containers:

- name: main

image: ubuntu

command: ['sh', '-c', 'echo Serverless World! && sleep 3600']

124 | Kubernetes Deep Dive

When the echo pod is created in Kubernetes API, the scheduler will assign it to an
available node. Then the kubelet in the corresponding node will create a container

and attach networking to it. Finally, the container will start to run the echo and sleep
commands. Pods are the essential Kubernetes resource for creating applications,

and Kubernetes uses them as building blocks for more complex resources. In the
following resources, the pod will be encapsulated to create more complex cloud-native
applications.

Deployment

Deployments are the most commonly used Kubernetes resource to manage highly
available applications. Deployments enhance pods by making it possible to scale up,
scale down, or roll out new versions. The deployment definition looks similar to a pod
with two important additions: labels and replicas.

Consider the following code:
apiVersion: apps/v1
kind: Deployment
metadata:

name: webserver
labels:
app: nginx
spec:
replicas: 5
selector:
matchLabels:
app: server
template:
metadata:
labels:
app: server
spec:
containers:

- name: nginx

Kubernetes Resources | 125

image: nginx:1.7.9

ports:

- containerPort: 80
The deployment named webserver defines five replicas of the application running
with the label app:server. In the template section, the application is defined with the
exact same label and one nginx container. The deployment controller in the control
plane ensures that five instances of this application are running inside the cluster.
Let's assume you have three nodes, A, B, and C, with one, two, and two instances of
webserver application running, respectively. If node C goes offline, the deployment
controller will ensure that the two lost instances will be recreated in nodes A and B.
Kubernetes ensures that scalable and highly available applications are running reliably

as deployments. In the following section, Kubernetes resources for stateful applications
such as databases will be presented.

StatefulSet

Kubernetes supports running both stateless ephemeral applications and stateful
applications. In other words, it is possible to run database applications or disk-oriented
applications in a scalable way inside your clusters. The StatefulSet definition is similar
to deployment with volume-related additions.

Consider the following code snippet:
apiVersion: apps/v1
kind: StatefulSet
metadata:

name: mysql
spec:
selector:
matchLabels:
app: mysql
serviceName: mysql
replicas: 1
template:
metadata:
labels:
app: mysql

spec:

126 | Kubernetes Deep Dive

containers:
- name: mysql
image: mysqgl:5.7
env:
- name: MYSQL_ROOT_PASSWORD
value: "root"
ports:
- name: mysql
containerPort: 3306
volumeMounts:
- name: data
mountPath: /var/lib/mysql
subPath: mysql
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:

storage: 1Gi

The mysql StatefulSet state creates a MySQL database with 1 GB volume data. The
volume is created by Kubernetes and attached to the container at /var/1ib/mysql. With
the StatefulSet controllers, it is possible to create applications that need disk access
in a scalable and reliable way. In the following section, we'll discuss how to connect
applications in a Kubernetes cluster.

Service

In Kubernetes, multiple applications run in the same cluster and connect to each
other. Since each application has multiple pods running on different nodes, it is not
straightforward to connect applications. In Kubernetes, Service is the resource used
to define a set of pods, and you access them by using the name of the Service. Service
resources are defined using the labels of the pods.

Kubernetes Resources | 127

Consider the following code snippet:
apiVersion: vl
kind: Service
metadata:

name: my-database

spec:
selector:
app: mysql
ports:

- protocol: TCP
port: 3306

targetPort: 3306
With the my-database service, the pods with the label app: mysql are grouped. When
the 3306 port of my-database address is called, Kubernetes networking will connect to
the 3306 port of a pod with the label app:mysql. Service resources create an abstraction
layer between applications and enable decoupling. Let's assume you have a three-
instance backend and a three-instance frontend in your application. Frontend pods can
easily connect to backend instances using the Service resource without knowing where
the backend instances are running. It creates abstraction and decoupling between the
applications running in the cluster. In the following section, resources focusing on tasks
and scheduled tasks will be presented.

Job and Cronjob

Kubernetes resources such as deployments and StatefulSets focus on running
applications and keeping them up and running. However, Kubernetes also provides
Job and CronJob resources to run applications to completion. For instance, if your
application needs to do one-time tasks, you can create a Job resource as follows:

apiVersion: batch/v1
kind: Job
metadata:
name: echo
spec:
template:
spec:

restartPolicy: OnFailure

128 | Kubernetes Deep Dive

containers:
- name: echo
image: busybox
args:
- /bin/sh
- -c
- echo Hello from the echo Job!
When the echo Job is created, Kubernetes will create a pod, schedule it, and run it.

When the container terminates after the echo command, Kubernetes will not try to
restart it or keep it running,.

In addition to one-time tasks, it is possible to run scheduled jobs using the CronJob
resource, as shown in the following code snippet:

apiVersion: batch/vibetal
kind: CronJob
metadata:
name: hourly-echo
spec:
schedule: "@ * % % %"
jobTemplate:
spec:
template:
spec:
containers:
restartPolicy: OnFailure
- name: hello
image: busybox
args:
- /bin/sh
- -C

- date; echo It is time to say echo!

Kubernetes Resources | 129

With the hourly-echo CronJob, an additional schedule parameter is provided. With the
schedule of "0 * * x *" Kubernetes will create a new Job instance of this CronJob
and run it every hour. Jobs and CronJobs are Kubernetes-native ways of handling
manual and automated tasks required for your applications. In the following exercise,
Kubernetes resources will be explored using kubectl and a local Kubernetes cluster.

Exercise 12: Installing a Stateful MySQL Database and Connecting inside
Kubernetes

In this exercise, we will install a MySQL database as StatefulSet, check its status, and
connect to the database using a job for creating tables.

To complete the exercise, we need to ensure the following steps are executed:
1. Create a file named mysql.yaml on your local computer with the following content:

apiVersion: apps/vl
kind: StatefulSet
metadata:
name: mysql
spec:
selector:
matchLabels:
app: mysql
serviceName: mysql
replicas: 1
template:
metadata:
labels:
app: mysql
spec:
containers:
- name: mysql
image: mysqgl:5.7
env:
- name: MYSQL_ROOT_PASSWORD
value: "root"
- name: MYSQL_DATABASE
value: "db"
- name: MYSQL_USER
value: "user"
- name: MYSQL_PASSWORD
value: "password"

130 | Kubernetes Deep Dive

ports:
- name: mysql
containerPort: 3306
volumeMounts:
- name: data
mountPath: /var/lib/mysql
subPath: mysql
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 1Gi

Note

mysql.yaml is available on GitHub at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/

mysql.yaml.

2. Deploy the StatefulSet MySQL database with the following command in your
Terminal:

kubectl apply -f mysql.yaml

This command submits the mysql.yaml file, which includes a StatefulSet called
mysql and a 1 GB volume claim. The output will look like this:

/serverless $ kubectl apply -f mysql.yaml
statefulset.apps/mysql created

/serverless $

Figure 4.16: StatefulSet creation
3. Check the pods with the following command:
kubectl get pods

This command lists the running pods, and we expect to see the one instance of
mysql, as shown in the following figure:

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/mysql.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/mysql.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/mysql.yaml

Kubernetes Resources | 131

/serverless $ kubectl get pods
NAME READY STATUS RESTARTS AGE

mysql-0 1/1 Running @ 2m
/serverless $ |

Figure 4.17: Pod listing

Note

If the pod status is Pending, wait a couple of minutes until it becomes Running
before continuing to the next step.

4. Check the persistent volumes with the following command:
kubectl get persistentvolumes

This command lists the persistent volumes, and we expect to see the one-volume
instance created for the StatefulSet, as shown in the following figure:

/serverless $ kubectl get persistentvolumes
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM

pvc-b1477955-d94c-11e9-8be9-aa8fc9a68c1lf 1Gi RWO Delete Bound default/data-mysql-@
/serverless $ I

Figure 4.18: Persistent volume listing
5. Create the service.yaml file with the following content:

apiVersion: vi
kind: Service
metadata:
name: my-database
spec:
selector:
app: mysql
ports:
- protocol: TCP
port: 3306
targetPort: 3306

Note

service.yaml is available on GitHub at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/

service.yaml.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/service.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/service.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/service.yaml

132 | Kubernetes Deep Dive

6. Deploy the my-database service with the following command in your Terminal:
kubectl apply -f service.yaml

This command submits the Service named my-database to group pods with the
label app:mysql:

/serverless $ kubectl apply -f service.yaml
service/my-database created

/serverless $ |}

Figure 4.19: Service creation
7. Create the create-table.yaml file with the following content:

apiVersion: batch/v1
kind: Job
metadata:
name: create-table
spec:
template:
spec:
restartPolicy: OnFailure
containers:
- name: create
image: mysqgl:5.7
args:
- /bin/sh
- -C
- mysql -h my-database -u user -ppassword db -e 'CREATE TABLE IF
NOT EXISTS messages (id INT)';

Note

create-table.yaml is available on GitHub at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/
create-table.yaml.

8. Deploy the job with the following command:

kubectl apply -f create-table.yaml

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/create-table.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/create-table.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/create-table.yaml

Kubernetes Resources | 133

This command submits the Job named create-table and within a couple of
minutes, the pod will be created to run the CREATE TABLE command, as shown in
the following figure:

/serverless $ kubectl apply -f create-table.yaml
job.batch/create-table created

/serverless $ ||

Figure 4.20: Job creation
9. Check for the pods with the following command:
kubectl get pods

This command lists the running pods, and we expect to see the one instance of
create-table, as shown in the following figure:

/serverless $ kubectl get pods
NAME READY STATUS RESTARTS AGE
create-table-v7fsd 9/1 Completed @ 37s

mysql-0 1/1 Running] 4m
/serverless § ||

Figure 4.21: Pod listing

Note

If the pod status is Pending or Running, wait a couple of minutes until it
becomes Completed before continuing to the next step.

10. Run the following command to check the tables in the MySQL database:

kubectl run mysql-client --image=mysql:5.7 -i -t --rm --restart=Never \
-- mysgl -h my-database -u user -ppassword db -e "show tables;"

This command runs a temporary instance of the mysql:5.7 image and runs the
mysql command, as shown in the following figure:

/serverless $ kubectl run mysql-client --image=mysql:5.7 -i -t —--rm --restart=Never \
> —- mysql -h my-database -u user -ppassword db -e "show tables;"

mysql: [Warning] Using a password on the command line interface can be insecure.

pod "mysgql-client" deleted
/serverless $
/serverless $ |]

Figure 4.22: Table listing

134 | Kubernetes Deep Dive

In the MySQL database, a table with the name messages is available, as shown
in the preceding output. It shows that MySQL StatefulSet is up and running
the database successfully. In addition, the create-table Job has created a pod,
connected to the database using the service, and created the table.

11. Clean the resources by running the following command:
kubectl delete -f create-table.yaml,service.yaml,mysql.yaml

You should see the output shown in the following figure:

/serverless $ kubectl delete -f create-table.yaml,service.yaml,mysql.yaml
job.batch "create-table" deleted

service "my-database" deleted
statefulset.apps "mysql" deleted
/serverless $ |}

Figure 4.23: Cleanup

In the following activity, the database will be filled with the information retrieved by
automated tasks in Kubernetes.

Note

You will need a Docker Hub account to push the images into the registry in the
following activity. Docker Hub is a free service, and you can sign up to it at https://
hub.docker.com/signup.

Activity 4: Collect Gold Prices in a MySQL Database in Kubernetes

The aim of this activity to create a real-life serverless application that runs in a
Kubernetes cluster using Kubernetes-native resources. The serverless function will get
gold prices from the live market and will push the data to the database. The function
will run with predefined intervals to keep a history and make statistical analyses. Gold
prices can be retrieved from the CurrencyLayer API, which provides a free API for
exchange rates. Once completed, you will have a CronJob running every minute:

Note

In order to complete the following activity, you need to have a CurrencylLayer API
access key. It is a free currency and exchange rate service, and you can sign up to it
on the official website.

https://hub.docker.com/signup
https://hub.docker.com/signup

Kubernetes Resources | 135

/serverless $ kubectl get pods
NAME STATUS RESTARTS
gold-price-to-mysql-1568864100-gcmh6 Completed
gold-price-to-mysql-1568864160-zd8ms Completed

gold-price-to-mysql-1568864220-2sxtd Completed
mysql-0 Running
/serverless $ |]

Figure 4.24: Kubernetes Job for gold price

Finally, with each run of the Kubernetes Job, you will have a real-time gold price in the
database:

/serverless $ kubectl run mysgl-client --image=mysql:5.7 -i -t --rm --restart=Never \
> ——= mysql -h gold-price-db -u user -ppassword db -e "SELECT % FROM GoldPrices;"
mysql: [Warning] Using a password on the command line interface can be insecure.

T

| timestamp | price |
T
2019-09-18 00:39:	0.000665
2019-09-18	0.000665
2019-089-19	0.000663
2019-09-19	0.000663
2019-09-19	0.000663
2019-09-19 03:33:	0.000663
2019-09-19 03:34:	0.000663
2019-09-19	0.000663
2019-09-19	0.000663
2019-09-19	0.000663
2019-29-19 03:38:	0.000663
2019-089-19 @03:39:	0.000663
B e s
pod "mysql-client" deleted
/serverless $ ||

[IS I S S S I S S S S R R

Figure 4.25: Price data in the database

136 | Kubernetes Deep Dive

Execute the following steps to complete this activity:

1.

Create an application to retrieve the gold price from CurrencyLayer and insert it
into the MySQL database. It is possible to implement this function in Go with the
following structure in a main. go file:

//only displaying the function here//

func main() {

db, err := sql.Open("mysql",
r, err := http.Get(fmt.Sprintf(,http://apilayer.net/api/...

stmt, err := db.Prepare("INSERT INTO GoldPrices(price) VALUES(?)")_,
err = stmt.Exec(target.Quotes.USDXAU)

log.Printf("Successfully inserted the price: %v", target.Quotes.

USDXAU)

}

© 0 N o A W N

In the main function, first you need to connect to the database, and then retrieve
the price from CurrencyLayer. Then you need to create a SQL statement and
execute on the database connection. The complete code for main.go can be found
here: https: //github.com /TrainingByPackt /Serverless-Architectures-with-
Kubernetes /blob/master/Lesson04 /Activity4 /main.go.

Build the application as a Docker container.

Push the Docker container to the Docker registry.

Deploy the MySQL database into the Kubernetes cluster.
Deploy a Kubernetes service to expose the MySQL database.
Deploy a CronJob to run every minute.

Wait for a couple of minutes and check the instances of CronJob.
Connect to the database and check for the entries.

Clean the database and automated tasks from Kubernetes.

Note

The solution of the activity can be found on page 403.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/main.go
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/main.go

Summary | 137

Summary

In this chapter, we first described the origins and characteristics of Kubernetes.
Following that, we studied the Kubernetes design and components with the details of
master and node components. Then, we installed a local single-node Kubernetes cluster
and checked the Kubernetes components. Following the cluster setup, we studied the
official Kubernetes client tool, kubectl, which is used to connect to a cluster. We also
saw how kubectl is used to manage clusters and the life cycle of applications. Finally, we
discussed the fundamental Kubernetes resources for serverless applications, including
pods, deployments, and StatefulSets. In addition to that, we also studied how to
connect applications in a cluster using services. Kubernetes resources for one-time and
automated tasks were presented using Jobs and CronJobs. At the end of this chapter, we
developed a real-time data collection function using Kubernetes-native resources.

In the next chapter, we will be studying the features of Kubernetes clusters and using a
popular cloud platform to deploy them.

Production-Ready
Kubernetes Clusters

Learning Objectives

By the end of this chapter, you will be able to:
+ Identify the requirements of Kubernetes cluster setup
« Create a production-ready Kubernetes cluster in Google Cloud Platform (GCP)
+ Manage cluster autoscaling to add new servers to a Kubernetes cluster

+ Migrate applications in production clusters

In this chapter, we will learn about the key considerations for the setup of Kubernetes. Following
that, we will also study the different Kubernetes platform options. Then, we move on to creating
a production-ready Kubernetes cluster in cloud platforms and performing administrative tasks.

140 | Production-Ready Kubernetes Clusters

Introduction

In the previous chapter, we created Kubernetes clusters for the development
environment and installed applications into it. In this chapter, the focus will be
on production-ready Kubernetes clusters and how to administer them for better
availability, reliability, and cost optimization.

Kubernetes is the de facto system for managing microservices running as containers in
the cloud. It is widely adopted in the industry by both start-ups and large enterprises
for running various kinds of applications, including data analysis tools, serverless
apps, and databases. Scalability, high availability, reliability, and security are the key
features of Kubernetes that enable its adoption. Let's assume that you have decided

to use Kubernetes, and hence you need a reliable and observable cluster setup for
development and production. There are critical considerations that depend on your
requirements, budget, and team before choosing a Kubernetes provider and how to
operate the applications. There are four key considerations to analyze:

» Service Quality: Kubernetes runs microservices in a highly available and reliable
way. However, it is critical to install and operate Kubernetes reliably and robustly.
Let's assume you have installed the Kubernetes control plane into a single node
in the cluster, and it was disconnected due to a network problem. Since you have
lost the Kubernetes API server connectivity, you will not be able to check the
status of your applications and operate them. Therefore, it is essential to evaluate
the service quality of the Kubernetes cluster you need for your production
environment.

* Monitoring: Kubernetes runs containers that are distributed to the nodes and
enables checking their logs and statuses. Let's assume that you rolled out a new
version of your application yesterday. Today, you want to check how the latest
version is working for any errors, crashes, and response time. Therefore, you need
a monitoring system integrated into your Kubernetes cluster to capture logs and
metrics. The collected data is essential for troubleshooting and diagnosis in a
production-ready cluster.

* Security: Kubernetes components and client tools work in a secure way to manage
the applications running in the cluster. However, you need to have specific roles
and authorization levels defined for your organization to operate Kubernetes
clusters securely. Hence, it is essential to choose a Kubernetes provider platform
that you can securely connect to and share with your customers and colleagues.

Kubernetes Setup | 141

* Operations: Kubernetes is the host of all applications, including services with
data compliance, auditing, and enterprise-level requirements. Let's assume
you are running the backend and frontend of your online banking application
system on Kubernetes. For a chartered bank in your county, the audit logs of your
applications should be accessible. Since you have deployed your entire system on
Kubernetes, the platform should enable fetching audit logs, archiving them, and
storing them. Therefore, the operational capability of the Kubernetes platform is
essential for the production-ready cluster setup.

In order to decide how to install and operate your Kubernetes clusters, these
considerations will be discussed for the Kubernetes platform options in this chapter.

Kubernetes Setup

Kubernetes is a flexible system that can be installed on various platforms from
Raspberry Pi to high-end servers in data centers. Each platform comes with its
advantages and disadvantages in terms of service quality, monitoring, security, and
operations. Kubernetes manages applications as containers and creates an abstraction
layer on the infrastructure. Let's imagine that you set up Kubernetes on the three old
servers in your basement and then install the Proof of Concept (PoC) of your new
project. When the project becomes successful, you want to scale your application and
move to a cloud provider such as Amazon Web Services (AWS). Since your application
is designed to run on Kubernetes and does not depend on the infrastructure, porting to
another Kubernetes installation is straightforward.

In the previous chapter, we studied the development environment setup using minikube,
the official method of Kubernetes. In this section, production-level Kubernetes
platforms will be presented. The Kubernetes platforms for production can be grouped
into threes, with the following abstraction layers:

Turnkey Turnkey Custom

Managed Cloud On-Prem

Applications Applications Applications Applications
‘ Kubernetes ‘ ‘ Kubernetes ‘ ‘ Kubernetes ‘
) Managed

Figure 5.1: Kubernetes platforms

Infrastructure Infrastructure

142 | Production-Ready Kubernetes Clusters

Let's now look at each of these types, one by one.

Managed Platforms

Managed platforms provide Kubernetes as a Service, and all underlying services run
under the control of cloud providers. It is easy to set up and scale these clusters since
the cloud providers handle all infrastructural operations. Leading cloud providers such
as GCP, AWS, and Microsoft Azure have managed Kubernetes solution applications,
intending to integrate other cloud services such as container registries, identity
services, and storage services. The most popular managed Kubernetes solutions are as
follows:

* Google Kubernetes Engine (GKE): GKE is the most mature managed service on the
market, and Google provides it as a part of GCP.

* Azure Kubernetes Service (AKS): AKS is the Kubernetes solution provided by
Microsoft as a part of the Azure platform.

* Amazon Elastic Container Service for Kubernetes (EKS): EKS is the managed
Kubernetes of AWS.

Turnkey Platforms

Turnkey solutions focus on installing and operating the Kubernetes control plane in
the cloud or in on-premise systems. Users of turnkey platforms provide information
about the infrastructure, and the turnkey platforms handle the Kubernetes setup.
Turnkey platforms offer better flexibility in setup configurations and infrastructure
options. These platforms are mostly designed by organizations with rich experience in
Kubernetes and cloud systems such as Heptio or CoreOS.

If turnkey platforms are installed on cloud providers such as AWS, the infrastructure
is managed by the cloud provider, and the turnkey platform manages Kubernetes.
However, when the turnkey platform is installed on on-premise systems, in-house
teams should handle the infrastructure operations.

Google Kubernetes Engine | 143

Custom Platforms

Custom installation of Kubernetes is possible if your use case does not fit into any
managed or turnkey solutions. For instance, you can use Gardener (https: //gardener.
cloud) or OpenShift (https: //www.openshift.com) to install Kubernetes clusters to
cloud providers, on-premise data centers, on-premise virtual machines (VMs), or bare-
metal servers. While the custom platforms offer more flexible Kubernetes installations,
they also come with special operations and maintenance efforts.

In the following sections, we will create a managed Kubernetes cluster in GKE and
administer it. GKE offers the most mature platform and the superior customer
experience on the market.

Google Kubernetes Engine

GKE provides a managed Kubernetes platform backed by the experience that Google
has of running containerized services for more than a decade. GKE clusters are
production-ready and scalable, and they support upstream Kubernetes versions. In
addition, GKE focuses on improving the development experience by eliminating the
installation, management, and operation needs of Kubernetes clusters.

While GKE improves developer experience, it tries to minimize the cost of running
Kubernetes clusters. It only charges for the nodes in the cluster and provides a
Kubernetes control plane free of charge. In other words, GKE delivers a reliable,
scalable, and robust Kubernetes control plane without any cost. For the servers that run
the workload of your applications, the usual GCP Compute Engine pricing is applied.
For instance, let's assume that you will start with two n1-standard-1 (vCPUs: 1, RAM:
3.75 GB) nodes:

The calculation would be as follows:

1,460 total hours per month

Instance type: nl-standard-1

GCE Instance Cost: USD 48.54

Kubernetes Engine Cost: USD 0.00

Estimated Component Cost: USD 48.54 per 1 month

144 | Production-Ready Kubernetes Clusters

If your application requires scalability with the higher usage and if you need 10 servers
instead of 2, the cost will also scale linearly:

7,300 total hours per month

Instance type: nl-standard-1

GCE Instance Cost: USD 242.72

Kubernetes Engine Cost: USD 0.00

Estimated Component Cost: USD 242.72 per 1 month

This calculation shows that GKE does not charge for the Kubernetes control plane and
provides a reliable, scalable, and robust Kubernetes API for every cluster. In addition,
the cost linearly increases for scaling clusters, which makes it easier to plan and
operate Kubernetes clusters.

In the following exercise, you will create a managed Kubernetes cluster in GKE and
connect to it.

Note

In order to complete this exercise, you need to have an active GCP account. You
can create an account on its official website: https://console.cloud.google.com/
start.

Exercise 13: Creating a Kubernetes Cluster on GCP

In this exercise, we will create a Kubernetes cluster in GKE and connect to it securely
to check node statuses. The Google Cloud Platform dashboard and CLI tools maintain
a high level of developer experience. Therefore, if you need a production-ready
Kubernetes cluster, you will have a fully functioning control plane and server nodes in
less than 10 minutes.

Google Kubernetes Engine | 145

To complete the exercise, we need to ensure the following steps are executed:

1. Click Kubernetes Engine in the left menu under Compute on the Google Cloud
Platform home page, as shown in the following figure:

= Google Cloud Platform 2 personal v

Home

Kubernetes Engine

Marketplace

Billing

API APIs & Services >
¥ Support 2
© 1AM & admin 2
® Getting started

D security ?
COMPUTE

-®- AppEngine :
{£} Compute Engine 4
@ KubernetesEngine K > Clusters

(] Cloud Functions Workloads

Services & Ingress
)) Cloud Run

Applications

STORAGE Configuration

@ Bigtable Stotdge

mao

EL) Datastore >

Figure 5.2: Google Cloud Platform home page

146 | Production-Ready Kubernetes Clusters

2. Click Create Cluster on the Clusters page, as shown in the following figure:

Google Cloud Platform ¢ personal v

@ Kubernetes Engine Clusters

i Clusters

Workloads

Services & Ingress Kubernetes Engine
Kubernetes clusters

Applications

Containers package an application so it can be easily deployed to
run in its own isolated environment. Containers are managed in
clusters that automate VM creation and maintenance. Learn more

Deploy container Take the quickstart

H Configuration

Storage

¥ Marketplace

Figure 5.3: Cluster view

Google Kubernetes Engine | 147

3. Select Your first cluster in the left from Cluster templates and write serverless
as the name. Click Create at the end of the page, as shown in the following figure:

Google Cloud Platform

& Create a Kubernetes cluster

Cluster templates ‘Your first cluster' template
Select a template with preconfigured setting, or customize a Experimenting with Kubernetes Engine, deploying your first application. .
template to suit your needs Affordable choice to get started. Key fields for this cluster template
Cluster version 1.14.6-gke.2
) some fields can't be changed after the cluster is Dismiss (latest)
Clone an existing cluster created. Hover over the help icons to learn more. Machine type g1-small
Select one of your existing clusters to Autoscaling Disabled
populate fields Name
Stackdriver Logging & Disabled
serverless Monitoring
Standard cluster Boot disk size 3068
Location type
Continuous integration, web serving, ® Zonal
backends. Best choice for further Regional Yuu will be billed for the 1 node (VM instance)
customization or if you are not sure what to 9 in your cluster. Compute Engine pricing
choose. Zone
us-centrall-a v
. Your first cluster
Master version
Experimenting with Kubernetes Engine, >
deploying your first application. Affordable @ Trythe new Release Channels Use Release Channels
choice to get started. feature instead of managing the

master version directly.

CPU intensive applications

1.14.6-gke.2 =
Web crawling or anything else that requires
more CPU.

Node pools
. . li . Node pools are separate instance groups running Kubernetes in a

Memory intensive applications cluster. You may add node pools in different zones for higher availability,
Databases, analytics, things like Hadoop, or add node pools of different type machines. To add a node pool, click
Spark, ETL or anything else that requires Edit. Learn more
more memory.

pool-1
GPU Accelerated Computing Number of nodes

Machine learning, video transcoding, 1
scientific computations or anything else that

is compute-intensive and can utilize GPUs.

Manhina annfimiratian

Cancel Equivalent REST or command line
Highly available

Figure 5.4: Cluster creation

148 | Production-Ready Kubernetes Clusters

4.

Wait a couple of minutes until the cluster icon becomes green and then click the
Connect button, as you can see in the following figure:

Google Cloud Platform 8 personal +

Kubernetes Engine Kubernetes clusters 3 CREATE CLUSTER 3 DEPLOY C REFRESH DELETE SHOW INFO PANEL
Clusters A Kubernetes cluster is a managed group of VM i for running ineri. ications. Learn more

Workloads Filter by label or name

Services & Ingress Name ~ Location Cluster size Total cores Total memory Notifications Labels

Pt @ serverless uscentralla 1 1vCPU 1.70 6B Connect |

Configuration

Storage

Figure 5.5: Cluster list

Click Run in Cloud Shell in the Connect to the cluster window, as shown in the
following figure:

Connect to the cluster

You can connect to your cluster via command-line or using a dashboard.

Command-line access

Configure kubectl command line access by running the following command:

gcloud container clusters get-credentials serverless --zone us-centrall-a --project personal-237100 'O

Run in Cloud Shell

Cloud Console dashboard

You can view the workloads running in your cluster in the Cloud Console Workloads dashboard.

Open Workloads dashboard

Figure 5.6: Connect to the cluster view

Google Kubernetes Engine | 149

6. Wait until the cloud shell is open and available and press Enter when the command
is shown, as you can see in the following figure:

€3 (personal-237100) X 4 ~ [N == I - B X

Welcome to Cloud Shell! Type "help" to get started.
ion is set to personal-237100
” to change to a different project.

~ (personal-237100)$ gcloud container clusters get-credentials serverless --zone us-centrall-a --project personal-237100

oint and auth data.

generated for serverless
mail_@cloudshell:~ (personal-237100)$ [|

Figure 5.7: Cloud shell

The output shows that the authentication data for the cluster is fetched, and the
kubeconfig entry is ready to use.

7. Check the nodes with the following command in the cloud shell:
kubectl get nodes
Since the cluster is created with a single node pool of one node, there is only one

node connected to the cluster, as you can see in the following figure:

€3 (personal-237100) X + - o 7z = - B x

mail_ @cloudshell:~ (personal-237100)3
mail @cloudshell:~ (personal-237100)$ kubectl get nodes

NAME STATUS ROLES AGE VERSION
gke-serverless-pool-1-6£38cd68-gc4t Ready <none> 13m v1l.14.6-gke.2
mail_@cloudshell:~ (personal-237100)$ ﬂ

Figure 5.8: Node list

8. Check for the pods running in the cluster with the following command in the
cloud shell:

kubectl get pods --all-namespaces

Since GKE manages the control plane, there are no pods for api-server, etcd, or
scheduler in the kube-system namespace. There are only networking and metrics
pods running in the cluster, as shown in the following screenshot:

(3 (personal-237100) x 4 ~ [A <=

mail @cloudshell:~ (personal-237100)S$5

mail_@cloudshell:~ (personal-237100)$ kubectl get pods --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS
kube-system kube-dns-5f886bf8d8-pbj5Sm 4/4 Running

kube-system kube-dns-autoscaler-57d56b4£56-scpm]j 1/1 Running
kube-system kube-proxy-gke-serverless-pool-1-6£38cd68-gcdt 1/1 Running
kube-system 17-default-backend-8£479dd9-1zgxr 1/1 Running
kube-system metrics-server-v0.3.1-8d4c5db46-2vbgx 2/2 Running
mail_ @cloudshell:~ (personal-237100)S$ l

Figure 5.9: Pod list

150 | Production-Ready Kubernetes Clusters

With this exercise, you have created a production-ready Kubernetes cluster on GKE.
Within a couple of minutes, GKE created a managed Kubernetes control plane and
connected the servers to the cluster. In the following sections, administrating the
clusters for production environments will be discussed, and the Kubernetes cluster
from this exercise will be expanded.

Autoscaling Kubernetes Clusters

Kubernetes clusters are designed to run scalable applications reliably. In other words,

if the Kubernetes cluster runs 10 instances of your application today, it should also
support running 100 instances in the future. There are two mainstream methods

to reach this level of flexibility: redundancy and autoscaling. Let's assume that the

10 instances of your application are running on 3 servers in your cluster. With the
redundancy, you need at least 27 extra idle servers to be capable of running 100
instances in the future. It also means paying for the empty servers as well as operational
and maintenance costs. With autoscaling, you need automated procedures to create

or remove servers. Autoscaling ensures that there are no excessive idle servers and
minimizes the costs while meeting the scalability requirements.

GKE Cluster Autoscaler is the out-of-box solution for handling autoscaling in
Kubernetes clusters. When it is enabled, it automatically adds new servers if there is

no capacity left for the workload. Similarly, when the servers are underutilized, the
autoscaler removes the redundant servers. Furthermore, the autoscaler has a minimum
and maximum number of servers defined to avoid limitless increases or decreases. In
the following exercise, the GKE cluster autoscaler will be enabled for the Kubernetes
cluster. Then the automatic scaling of the servers will be demonstrated by changing the
workload in the cluster.

Exercise 14: Autoscaling a GKE Cluster in Production

In this exercise, we will enable and utilize the GKE cluster autoscaler in a production
cluster. Let's assume that you need a large number of replicas of your application
running in the cluster. However, it is not currently possible since you have a low
number of servers. Therefore, you need to enable autoscaling and see how new servers
are created automatically.

Autoscaling Kubernetes Clusters | 151

To successfully complete the exercise, we need to ensure the following steps are
executed:

1. Install nginx in the cluster by running the following command in the cloud shell:
kubectl create deployment workload --image=nginx
This command creates a deployment named workload from the nginx image, as

depicted in the following figure:

€3 (personal-237100) x + - Q oz = H - B x

mail @cloudshell:~ (personal-237100)S35
mail @cloudshell:~ (personal-237100)$ kubectl create deployment workload --image=nginx

deployment .apps/workload created
mail @cloudshell:~ (personal-237100)3$5 I

Figure 5.10: Deployment creation

2. Scale the workload deployment to 25 replicas by running the following command in
the cloud shell:

kubectl scale deployment workload --replicas=25

This command increases the number of replicas of the workload deployment, as
shown in the following figure:

€3 (personal-237100) x + - Q oz [z - BB x

mail_@cloudshell:~ (personal-237100)$
mail @cloudshell:~ (personal-237100)$ kubectl scale deployment workload --replicas=25

deployment.extensions/workload scaled
mail_@cloudshell:~ (personal-237100)$ I

Figure 5.11: Deployment scaling up
3. Check the number of running pods with the following command:
kubectl get deployment workload

Since there is only 1 node in the cluster, 25 replicas of nginx could not run in the
cluster. Instead, only 5 instances are running currently, as shown in the following
figure:

€ (personal-237100) x 4 ~ Q 7Z2 3 - B X

mail_ @cloudshell:~ (personal-237100)S$
mail @cloudshell:~ (personal-237100)$ kubectl get deployment workload

NAME READY UP-TO-DATE AVAILABLE AGE
workload 5/25 25 5 32s
mail_@cloudshell:~ (personal-237100)$ I

Figure 5.12: Deployment status

152 | Production-Ready Kubernetes Clusters

4. Enable autoscaling for the node pool of the cluster using the following command:

gcloud container clusters update serverless --enable-autoscaling \
--min-nodes 1 --max-nodes 10 --zone us-centrall-a \
--node-pool pool-1

Note

Change the zone parameter if your cluster is running in another zone.

This command enables autoscaling for the Kubernetes cluster with a minimum of 1
and a maximum of 10 nodes, as shown in the following figure:

E 68 (personal-237100) x 4 ~ O zZ2 3B - B X
mail @cloudshell:~ (personal-237100)S$

mail @cloudshell:~ (personal-237100)$ gcloud container clusters update serverless --enable-autoscaling \

> --min-nodes 1 --max-nodes 10 --zone us-centrall-a \

> --node-pool pool-1

Updating serverless...done.

Updated [https://container.googleapis.com/vl/projects/personal-237100/zones/us—-centrall-a/clusters/serverless].

To inspect the contents of your cluster, go to: https://console.cloud.google.com/kubernetes/workload_/gcloud/us-centrall-a/
serverless?project=personal-237100

mail_@cloudshell:~ (personal-237100)5 [

Figure 5.13: Enabling autoscaler

This command can take a couple of minutes to create the required resources with
the Updating serverless... prompt.

5. Wait a couple of minutes and check for the number of nodes by using the
following command:

kubectl get nodes

With autoscaling enabled, GKE ensures that there are enough nodes to run the

workload in the cluster. The node pool is scaled up to four nodes, as shown in the
following figure:

€3 (personal-237100) X + - o

mail @cloudshell:~ (personal-237100)3$

mail @cloudshell:~ (personal-237100)$ kubectl get nodes

NAME STATUS ROLES VERSION
gke-serverless=-pool=-1-6f38cd68-gcdt Ready <none> v1.14.6-gke.

gke-serverless-pool-1-6£38cd68-t3kh Ready <none> v1l.14.6-gke.
gke-serverless-pool-1-6f38cd68-wkl3 Ready <none> v1l.1l4.6-gke.
gke-serverless-pool-1-6£38cd68-xdf5 Ready <none> vl.14.6-gke.
mail @cloudshell:~ (personal-237100)5 [

Figure 5.14: Node list

Autoscaling Kubernetes Clusters | 153

6. Check the number of running pods with the following command:
kubectl get deployment workload

Since there are 4 nodes in the cluster, 25 replicas of nginx could run in the cluster,
as shown in the following figure:

€3 (personal-237100) x + - o 7 = H - B x

mail @cloudshell:~ (personal-237100)s3

mail @cloudshell:~ (personal-237100)35 kubectl get deployment workload
NAME READY UP-TO-DATE AVAILABLE AGE

12m

workload 25VS 25 5]
mail_@cloudshell:~ (personal-237100)s |

Figure 5.15: Deployment status
7. Delete the deployment with the following command:
kubectl delete deployment workload

The output should be as follows:

€3 (personal-237100) x + - [B ¢ _ B x

mail @cloudshell:~ (personal-237100)3$
mail_ @cloudshell:~ (personal-237100)3$ kubectl delete deployment workload
deployment.extensions "workload" deleted

mail @cloudshell:~ (personal-237100)3 I

Figure 5.16: Deployment deletion

8. Disable autoscaling for the node pool of the cluster by using the following
command:

gcloud container clusters update serverless --no-enable-autoscaling \
--node-pool pool-1 --zone us-centrall-a

Note

Change the zone parameter if your cluster is running in another zone.

You should see the output shown in the following figure:

E 8 (personal-237100) x 4 ~ O 72 3 - B X

mail @cloudshell:~ (personal-237100)S$

mail_ @cloudshell:~ (personal-237100)$5 gcloud container clusters update serverless --no-enable-autoscaling \
> ==-node=-pool pool-1 =--zone us-centrall-a

Updating serverless...done.

Updated [https://container.googleapis.com/vl/projects/personal-237100/zones/us-centrall-a/clusters/serverless].

To inspect the contents of your cluster, go to: https://console.cloud.google. corn/kubernetes/workload_/gc].oud/us—centrall-a/
serverless?project=personal-237100

mail_ @cloudshell:~ (personal-237100)$ [

Figure 5.17: Disabling autoscaling

154 | Production-Ready Kubernetes Clusters

In this exercise, we saw the GKE cluster autoscaler in action. When the autoscaler
is enabled, it increases the number of servers when the cluster is out of capacity for
the current workload. Although it seems straightforward, it is a compelling feature
of Kubernetes platforms. It removes the burden of manual operations to check your
cluster utilization and take action. It is even more critical for serverless applications
where user demand is highly variable.

Let's assume you have deployed a serverless function to your Kubernetes cluster with
autoscaling enabled. The cluster autoscaler will automatically increase the number of
nodes when your functions are called frequently and then delete the nodes when your
functions are not invoked. Therefore it is essential to check the autoscaling capability of
the Kubernetes platform for serverless applications. In the following section, migrating
applications in production environments will be discussed, as it is another important
cluster administration task.

Application Migration in Kubernetes Clusters

Kubernetes distributes applications to servers and keeps them running reliably and
robustly. Servers in the cluster could be VMs or bare-metal server instances with
different technical specifications. Let's assume you have connected only standard VMs
to your Kubernetes cluster and they are running various types of applications. If one
of your upcoming data analytics libraries requires GPUs to operate faster, you need

to connect servers with GPUs. Similarly, if your database application requires SSD
disks for faster 1/0 operations, you need to connect servers with SSD access. These
kinds of application requirements result in having different node pools in your cluster.
Also, you need to configure the Kubernetes workload to run on the particular nodes.
In addition to marking some nodes reserved for special types of workloads, taints are
used. Similarly, pods are marked with tolerations if they are running specific types of
workloads. Kubernetes supports workload distribution to special nodes with taints and
tolerations working in harmony:

* Taints are applied to nodes to indicate that the node should not have any pods
that do not tolerate the taints.

* Tolerations are applied to pods to allow pods to be scheduled on nodes with
taints.

For instance, if you only want to run database instances on your nodes with SSD, you
need first to taint your nodes:

kubectl taint nodes disk-node-1 ssd=true:NoSchedule

Application Migration in Kubernetes Clusters | 155

With this command, disk-node-1 will only accept pods that have the following
tolerations in their definition:

tolerations:

- key: "ssd"
operator: "Equal"
value: "true"
effect: "NoSchedule"

Taints and tolerations work in harmony to assign pods to specific nodes as a part of the
Kubernetes scheduler. In addition, Kubernetes supports securely removing the servers
from the cluster by using the kubectl drain command. It is particularly helpful if you
want to take some nodes for maintenance or retirement. In the following exercise, an
application running in the Kubernetes cluster will be migrated to a particular set of new
nodes.

Exercise 15: Migrating Applications Running in a GKE Cluster

This exercise aims to teach us to perform migration activities in a production cluster.
Let's assume that you are running a backend application in your Kubernetes cluster.
With the recent changes, you have enhanced your application with better memory
management and want to run on servers with higher memory optimization. Therefore,
you will create a new node pool and migrate your application instances into it.

To successfully complete the exercise, we need to ensure the following steps are
executed:

1. Install the backend application to the cluster by running the following command in
the cloud shell:

kubectl create deployment backend --image=nginx

This command creates a deployment named backend from an nginx image, as you
can see in the following figure:

ESB (personal-237100) X + - (= =

mail_@cloudshell:~ (personal-237100)3
mail @cloudshell:~ (personal-237100)$ kubectl create deployment backend --image=nginx
deployment.apps/backend created

mail_ @cloudshell:~ (personal-237100)35 |

Figure 5.18: Deployment creation

156 | Production-Ready Kubernetes Clusters

2. Scale the backend deployment to 10 replicas by running the following command in
the cloud shell:

kubectl scale deployment backend --replicas=10
This command increases the number of replicas of the backend deployment, as

shown in the following figure:

) (personal-237100) x + - o 7z = H _ B X

mail @cloudshell:~ (personal-237100)$
mail @cloudshell:~ (personal-237100)$ kubectl scale deployment backend --replicas=10

deployment.extensions/backend scaled
mail @cloudshell:~ (personal-237100)$ l

Figure 5.19: Deployment scaling up
3. Check the number of running pods and their nodes with the following command:
kubectl get pods -o wide

All 10 replicas of the deployment are running successfully on the 4 nodes, as you
can see in the following figure:

€3 (personal-237100) X 4+ + O 72 =3 0 - B x

mail @cloudshell:~ (personal-237100)$
mail_@cloudshell:~ (personal-237100)$ kubectl get pods -o wide
READY STATUS RESTARTS AGE NOMINATED NODE READINESS GATES
9b85ff57d-22kkr 1/1 Running 7 -6 e 001-1-6f38cd68-t3kh <none> <none>
9b85££57d-2r9qv 1/1 Running 2 . e r 001-1-6f38cd68-gcat <none> <none>
9b85f£57d-ch9tz 1/1 Running 0 . ke af 001-1-6£38cd68-xdf5 <none> <none>
en 9b85££57d-hmx2k 1/1 Running . gke-serverless-pool-1 <none> <none>

o
backend-59b 7d-1t£2x 1/1 Running s . gke-serverless—pool-1 8 gc <none> <none>
backend-5 ££57d-1znnk 1/1 Running . g - wkl3 < <none>
backenc f££57d-nnhdg 1/1 Running - v <

backenc 85££57d-p6hpr 1/1 Running .6 . 6 <none>

backend-59b85££57d-r2ten 1/1 Running . .1 <none>
backend-59b85££57d-r8kfd 1/1 Running 10.60.1.10 gke-serverl 001-1-6£38cd68-xdf5 <none> <none>
mail_@cloudshell:~ (personal-237100)$ |

Figure 5.20: Deployment status
4. Create a node pool in GCP with a higher memory:

gcloud container node-pools create high-memory-pool --cluster=serverless \
--zone us-centrall-a --machine-type=n1-highmem-2 --num-nodes=2

Note

Change the zone parameter if your cluster is running in another zone.

Application Migration in Kubernetes Clusters | 157

This command creates a new node pool named high-memory-pool in the serverless
cluster with the machine type n1-highmem-2 and two servers, as you can see in the
following figure:

o (personal-237100) x + -~ a 7 = : _ B x

mail @cloudshell:~ (personal-237100)$

mail @cloudshell:~ (personal-237100)$ gcloud container node-pools create high-memory-pool --cluster=serverless \
> --zone us-centrall-a --machine-type=nl-highmem-2 --num-nodes=2

Creating node pool high-memory-pool...done.

Created [https://container.googleapis.com/vl/projects/personal-237100/zones/us-centrall-a/clusters/serverless/nodePools/hig
h-memory-pool] .

INAME MACHINE TYPE DISK SIZE GB NODE_VERSION

high-memory-pool nl-highmem-2 100 1.14.6-gke.2

mail @cloudshell:~ (personal-237100)3% ||

Figure 5.21: Node pool creation

This command can take a couple of minutes to create the required resources with
the Creating node pool high-memory-pool prompt.

5. Wait for a couple of minutes and check the nodes in the cluster:
kubectl get nodes

This command lists the nodes in the cluster, and we expect to see two extra high-
memory nodes, as shown in the following figure:

3 (personal-237100) X + - [= H _ B x

mail @cloudshell:~ (personal-237100)$

mail @cloudshell:~ (personal-237100)$ kubectl get nodes

NAME STATUS VERSION
gke-serverless-high-memory-pool-629c024a-72tq Ready v1l.14.6-gke.
gke-serverless-high-memory-pool-629c024a-dbhs Ready v1l.1l4.6-gke.

gke-serverless-pool-1-6f38cd68-gc4dt Ready vl.1l4.6-gke.
gke-serverless-pool-1-6£38cd68-t3kh Ready vl.14.6-gke.
gke-serverless-pool-1-6£38cd68-wkl3 Ready vl.14.6-gke.
gke-serverless-pool-1-6£38cd68-xdf5 Ready v1l.14.6-gke.
mail_@cloudshell:~ (personal-237100)3 [|

Figure 5.22: Cluster nodes

158 | Production-Ready Kubernetes Clusters

6. Drain the old nodes so that Kubernetes will migrate applications to new nodes:
kubectl drain -1 cloud.google.com/gke-nodepool=pool-1

This command removes the workloads from all nodes with the label cloud. google.
com/gke-nodepool=pool-1, as shown in the following figure:

€ (personal-237100) X 4 ~ O zZ2 32 B X

mail @cloudshell:~ (personal-237100)$

mail @cloudshell:~ (personal-237100)$ kubectl drain -1 cloud.google.com/gke-nodepoo
node/gke-serverless-pool-1-6£38cd68-gc4t cordoned
node/gke-serverless-pool-1-6£38cd68-t3kh cordoned
node/gke-serverless-pool-1-6£38cd68-wkl3 cordoned
node/gke-serverless-pool-1-6£38cd68-xdf5 cordoned
evicting pod "l7-default-backend-8£479dd9-lzgxr"
evicting pod "backend-59b85f£57d-2r9qv"

evicting pod "backend-59b85ff57d-1tf2x"

evicting pod "kube-dns-5f886bf8d8-pbj5m"

evicting pod "kube-dns-autoscaler-57d56b4f56-scpmj"
pod/17-default-backend-8£479dd9-1lzgxr evicted
pod/backend-59b85ff57d-1tf2x evicted
pod/backend-59b85ff57d-2r9qv evicted
pod/kube-dns-autoscaler-57d56b4£56-scpmj evicted
pod/kube-dns-5£886b£f8d8-pbj5m evicted
node/gke-serverless-pool-1-6£38cd68-gc4t evicted
evicting pod "backend-59b85ff57d-p6hpr"

evicting pod "backend-59b85ff57d-22kkr"

evicting pod "backend-59b85ff57d-nnhdg"
pod/backend-59b85ff57d-p6hpr evicted
pod/backend-59b85£ff57d-nnhdg evicted
pod/backend-59b85f£57d-22kkr evicted
node/gke-serverless-pool-1-6£38cd68-t3kh evicted
evicting pod "kube-dns-5f886bf8d8-5cébh"

evicting pod "backend-59b85f££57d-lznnk"

evicting pod "backend-59b85ff£57d-r2tcn"
pod/backend-59b85f£f57d-r2tcn evicted
pod/backend-59b85££f57d-1znnk evicted
pod/kube-dns-5£886bf8d8-5c6bh evicted
node/gke-serverless-pool-1-6£38cd68-wkl3 evicted
evicting pod "backend-59b85ff57d-r8kf4"

evicting pod "backend-59b85ff57d-ch9tz"

evicting pod "backend-59b85f£57d-hmx2k"
pod/backend-59b85££57d-r8kf4 evicted
pod/backend-59b85£ff57d-ch9tz evicted
pod/backend-59b85£f57d-hmx2k evicted
node/gke-serverless-pool-1-6£38cd68-xdf5 evicted
mail @cloudshell:~ (personal-237100)$ I

Figure 5.23: Node removal
7. Check the running pods and their nodes with the following command:
kubectl get pods -o wide

All 10 replicas of the deployment are running successfully on the new high-memory
node, as shown in the following figure:

B 8 (personal-237100) X 4 v Q oz =

mail_@cloudshel (personal-237100) $
mail_@cloudshel (personal-237100)$ kubectl get pods -o wide
NAME READY STATUS RE AC NODE
1/1 Running < rverless-h: pool-629c024a-72tq
1/1 Running .60.5.6 rver 9c024a-72tq
1/1 Running E60R5R5 rver 4a-72tq
1/1 Running 23s .60, < rver. 9c024a-dbhs
1/1 Running 9
1/1 Running
1/1 Running
1/1 Running .60, : rver 629 4a-dbhs
1/1 Running .60 ¢ rver 629¢024a-72tg
1/1 Running 0 s .60. erverless-h: 9c024a-dbhs < <none>

z5
(personal-237100)$ [

Figure 5.24: Deployment status

Application Migration in Kubernetes Clusters | 159

8. Delete the old node pool with the following command:

gcloud container node-pools delete pool-1 --cluster serverless --zone
us-centrall-a

Note

Change the zone parameter if your cluster is running in another zone.

This command deletes the old node pool, which is not being used, as you can see
in the following figure:

€3 (personal-237100) x + -~ Q 7 == B X

mail @cloudshell:~ (personal-237100)S$

mail_ @cloudshell:~ (personal-237100)$ gcloud container node-pools delete pool-1 --cluster serverless --zone us-centrall-a
The following node pool will be deleted.

[pool-1] in cluster [serverless] in [us-centrall-a]

Do you want to continue (Y/n)? Y

Deleting node pool pool-1l...done.

Deleted [https://container.googleapis.com/vl/projects/personal-237100/zones/us-centrall-a/clusters/serverless/nodePools/poo
=il o

mail_@cloudshell:~ (personal-237100)$ |j

Figure 5.25: Node pool deletion

In this exercise, we have migrated the running application to new nodes with better
technical specs. Using the Kubernetes primitives and GKE node pools, it is possible to
migrate applications to a particular set of nodes without downtime. In the following
activity, you will use autoscaling and Kubernetes taints to run serverless functions while
minimizing the cost.

Activity 5: Minimizing the Costs of Serverless Functions in a GKE Cluster

The aim of this activity to take administrative tasks on production clusters to run
serverless functions while minimizing the costs. Let's assume that your backend
application is already running in your Kubernetes cluster. Now you want to install
some serverless functions to connect to the backend. However, backend instances

are running memory-optimized servers, which are costly for also running serverless
functions. Therefore, you need to add preemptible servers, which are cheaper.
Preemptible VMs are already available in GCP; however, they have low service quality
and a maximum lifespan of 24 hours. Therefore, you should configure the node pool to
be autoscaled and only to run serverless functions. Otherwise, your backend instances
could also be scheduled on preemptible VMs and degrade the overall performance.

160 | Production-Ready Kubernetes Clusters

At the end of the activity, you will have functions connecting to the backend instances,
as shown in the following figure:

€3 (personal-237100) x + - Q 7 H - B x

mail @cloudshell:~ (personal-237100) $
mail @cloudshell:~ (personal-237100)$ kubectl logs backend-checker-1570400520-2gtvs
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 612 0 0 0 0 0) ==g=—g== —ogomgos oogooge— 0
HTTP/1.1 200 OK
Server: nginx/1.17.4

Date: Sun, 06 Oct 2019 22:22:02 GMT
Content-Type: text/html

Content-Length: 612

Last-Modified: Tue, 24 Sep 2019 14:49:10 GMT
Connection: keep-alive

ETag: "5d8a2ce6-264"

Accept-Ranges: bytes

mail_@cloudshell:~ (personal-237100)$ [j

Figure 5.26: Backend checker functions

Backend instances will run on high-memory nodes and function instances will run on
preemptible servers, as shown in the following figure:

@ € (personal-237100) x 4 Q2 &3 - B x

mail_@cloudshell:~ (personal-237100)$
mail_@cloudshell:~ (personal-237100)$ kubectl get pods -o wide
NAME READY STATUS RESTARTS A NODE NOMINATED NODE READINESS
GATES
backend-59b85££57d-5pskp 1/1 Running . .3 -high-memory-pool-62 <none> <none>
backend-59b85££57d-6pral 1/1 Running 9 . 6 gh-memory-pool-62 <none> <none>
1/1 Running . g v gh-memory-pool- tq <none> <none>
1/1 Running 5 g rless-high-memory-pool-629 <none> <none>
1/1 Running . . h >ry: <none> <none>
1/1 Running 9 .60.4. igh-memory-poo s <none> <none>
backend-59b85££57d-m9q5h 1/1 Running .60.4.6 verless-high-memory-pool- s <none> <none>
backend-59b85££57d-mg28x 1/1 Running 9 .60.4. -high-memory-pool-629c024a-dbhs <none> <none>
back 9b85££57d-n 1/1 Running .60.5.¢ gh-memory-pool-629c024a-72tq <none> <none>
1/1 Running 0 . . g gh-memory-pool-629c024a-dbhs <none> <none>
0/1 Completed 5 rverless-preemptible-07e6667d-vpa6 <none> <none>
backend-checker: 920-xv4lj 0/1 C .60.0.16 reemptible-07e6667d-vpd6 <none> <none>
backend-checker 399980-dwdbh 0/1 eted .60.0.18 e-serverless-preemptible-07e6667d-vpd6 <none> <none>
mail_@cloudshell:~ (personal-237100)5 [|

Figure 5.27: Kubernetes pods and the corresponding nodes

Note

In order to complete the activity, you should use the cluster from Exercise 15 with
backend deployments running.

Execute the following steps to complete the activity:

1. Create a new node pool with preemptible servers.

2. Taint the preemptible servers to run only serverless functions.
3. Create a Kubernetes service to reach backend pods.
4

Create a CronJob to connect to the backend service every minute. The CronJob
definition should have tolerations to run on preemptible servers.

Summary | 161

Check the node assignments of the CronJob functions.
Check the logs of the CronJob function instances.

Clean the backend deployment and the serverless functions.

© N o «u

Remove the Kubernetes cluster if you do not need it anymore.

Note

The solution to the activity can be found on page 412.

Summary

In this chapter, we first described the four key considerations to analyze the
requirements for the Kubernetes cluster setup. Then we studied the three groups of
Kubernetes platforms: managed, turnkey, and custom. Each Kubernetes platform has
been explained, along with their responsibility levels on infrastructure, Kubernetes,
and applications. Following that, we created a production-ready Kubernetes cluster on
GKE. Since Kubernetes is designed to run scalable applications, we studied how to deal
with increasing or decreasing workload by autoscaling. Furthermore, we also looked

at application migration without downtime in production clusters to illustrate how

to move your applications to the servers with higher memory. Finally, we performed
autoscaling and migration activities with a serverless function running in a production
cluster to minimize the costs. Kubernetes and serverless applications work together to
create reliable, robust, and scalable future-proof environments. Therefore, it is essential
to know how to install and operate Kubernetes clusters for production.

In the next chapter, we will be studying the upcoming serverless features in Kubernetes.
We will also study virtual kubelets in detail and deploy stateless containers on GKE.

Upcoming Serverless

Features in
Kubernetes

Learning Objectives

By the end of this chapter, you will be able to:

Utilize the concepts and components of Knative to deploy applications
Set up Knative on a GKE cluster

Deploy applications on Knative and configure autoscaling

Deploy applications on Google Cloud Run

Set up Virtual Kubelet on Azure

Deploy applications with Virtual Kubelet

This chapter covers Knative, Google Cloud Run, and Virtual Kubelet, which offers the advantages
of serverless on top of a Kubernetes cluster.

164 | Upcoming Serverless Features in Kubernetes

Introduction to Serverless with Kubernetes

In the previous chapter, we extensively studied the various setup options and platforms
used in Kubernetes. We also covered the autoscaling feature of Kubernetes and
implemented it in an application deployed on a cluster.

Kubernetes and serverless are two of the trending topics in the IT industry, but these
two topics are often discussed independently of each other. Kubernetes is a platform
for managing containerized applications, and serverless is an execution model that
abstracts away the infrastructure so software developers can focus on their application
logic. However, a combination of these two concepts will achieve the same goal of
making the software developer's life much easier.

A few platforms have emerged recently that bring serverless features to containers
by abstracting away the complexities of managing containers and any underlying
infrastructure. These platforms run serverless workloads on Kubernetes clusters and
provide many benefits, including autoscaling, scale to zero, per-usage billing, event-
driven capabilities, integrated monitoring, and integrated logging features.

In this chapter, we will be discussing three technologies that offer the benefits of
serverless on top of a Kubernetes cluster:

* Knative
* Google Cloud Run
* Virtual Kubelet

Introduction to Knative

Knative is an open source project started by Google with contributions from over 50
other companies, including Pivotal, Red Hat, IBM, and SAP. Knative extends Kubernetes
by introducing a set of components to build and run serverless applications on top of it.
This framework is great for application developers who are already using Kubernetes.
Knative provides tools for them to focus on their code without worrying about the
underlying architecture of Kubernetes. It introduces features such as automated
container builds, autoscaling, scale to zero, and an eventing framework, which allows
developers to get the benefits of serverless on top of Kubernetes.

Introduction to Serverless with Kubernetes | 165

The Knative framework is described as a "Kubernetes-based platform to deploy and
manage modern serverless workloads" on the Knative website. The framework helps

to bridge the gap between containerized applications and serverless applications by
introducing serverless features such as autoscaling and scale to zero to the Kubernetes
platform.

Knative consists of three main components:
* Build
* Serving

* Eventing

Note

The Build component has been deprecated in favor of Tekton Pipelines in the latest
version of Knative. The final release of the Knative Build component is available in
version 0.7.

Build is the process of building the container images from the source code and
running them on a Kubernetes cluster. The Knative Serving component allows the
deployment of serverless applications and functions. This enables serving traffic to
containers and autoscaling based on the number of requests. The serving component
is also responsible for taking snapshots of the code and configurations whenever a
change is made to them. The Knative Eventing component helps us to build event-
driven applications. This component allows the applications to produce events for and
consume events from event streams.

166 | Upcoming Serverless Features in Kubernetes

The following diagram illustrates a Knative framework with its dependencies and the
stakeholders of each component:

D Users and Systems (IoT) use

1 o

amr— applications developed and deployed
by developers and hosted by operators

€---

<P o ettt |
:.=“"->-= ————— @Knative E---_O<____:.=,

D ——
Devel APl a------------ GitHub -
evelopers . Contributors
build and f\:ﬁf‘_} Kubernetes develop and contribute code
deploy apps —

and docs to the OSS project

A
1
1
1

Operators deploy and manage
e Knative instances using
Kubernetes API and tools

Platform Providers (such as
Google Cloud Platform) provide
underlying infrastructure

Figure 6.1: Knative dependencies and stakeholders

The bottom layer represents the Kubernetes framework, which is used as the container
orchestration layer by the Knative framework. Kubernetes can be deployed on any
infrastructure, such as Google Cloud Platform or an on-premises system. Next, we
have the Istio service mesh layer, which manages network routing within the cluster.
This layer provides many benefits, including traffic management, observability, and
security. At the top layer, Knative runs on top of a Kubernetes cluster with Istio. In the
Knative layer, at one end we can see contributors who contribute code to the Knative
framework through the GitHub project, and at the other end we can see the application
developers who build and deploy applications on top of the Knative framework.

Note
For more information on Istio, please refer to https://istio.io/.

Now that we have this understanding of Knative, let's look at how to install Knative on a
Kubernetes cluster in the following section.

https://istio.io/

Introduction to Serverless with Kubernetes | 167

Getting Started with Knative on GKE

In this section, we will take you through the process of installing Knative on a
Kubernetes cluster. We will be using Google Kubernetes Engine (GKE) to set up a
Kubernetes cluster. GKE is the managed Kubernetes cluster service in the Google cloud.
It allows us to run Kubernetes clusters without the burden of installing, managing and
operating our own clusters.

We need to have the following prerequisites installed and configured to continue with
this section:

* A Google Cloud account
* The gcloud CLI
* The kubectl CLI (v1.10 or newer)

First, we need to set a few environment variables that we will be using with the gcloud
CLI. You should update <your-gcp-project-name> with the name of your GCP project. We
will be using us-centrali-a as the GCP zone. Execute the following commands in your
terminal window to set the required environment variables:

$ export GCP_PROJECT=<your-gcp-project-name>
$ export GCP_ZONE=us-centrall-a
$ export GKE_CLUSTER=knative-cluster

The output should be as follows:

fserverless $ export GCP_PROJECT=serverless-kubernetes-project
/serverless export GCP_ZONE=us-centrall-a

fserverless $ export GKE_CLUSTER=knative-cluster
fserverless

Figure 6.2: Setting environment variables

Set our GCP project as the default project to be used by the gcloud CLI commands:
$ gcloud config set core/project $GCP_PROJECT

The output should be as follows:

/serverless % gcloud config set core/project SGCP_PROJECT

Updated property [core/project].

Figure 6.3: Setting the default GCP project

168 | Upcoming Serverless Features in Kubernetes

Now we can create the GKE cluster using the gcloud command. Knative requires

a Kubernetes cluster with version 1.11 or newer. We will be using the Istio plugin
provided by GKE for this cluster. The following is the recommended configuration for a
Kubernetes cluster to run Knative components:

* Kubernetes version 1.11 or newer
* Kubernetes nodes with four vCPUs (nl-standard-4)
* Node autoscaling enabled for up to 10 nodes

* API scopes for cloud-platform

Execute the following command to create a GKE cluster compatible with these
requirements:

$ gcloud beta container clusters create $GKE_CLUSTER \
--zone=$GCP_ZONE \

--machine-type=n1-standard-4 \

--cluster-version=latest \
--addons=HorizontalPodAutoscaling,HttpLoadBalancing,Istio \
--enable-stackdriver-kubernetes \

--enable-ip-alias \

--enable-autoscaling --min-nodes=1 --max-nodes=10 \
--enable-autorepair \

--scopes cloud-platform

The output should be as follows:

/serverless § gcloud beta container clusters create $GKE_CLUSTER %
--zone=%GCP_ZONE
--machine-type=nl-standard-4 \
--cluster-version=latest
--addons=HorizontalPodAutoscaling,HttpLoadBalancing, Istio
--enable-stackdriver-kubernetes %
--enable-ip-alias \
--enable-autoscaling --min-nodes=1 --max-nodes=18 Y
--enable-autorepair 3\
--scopes cloud-platform

=
=
=
=
=
=
=
=
=

Figure 6.4: Creating a GKE cluster

Introduction to Serverless with Kubernetes | 169

It may take a few minutes to set up the Kubernetes cluster. Once the cluster is ready,
we will use the command gcloud container clusters get-credentials to fetch the
credentials of the new cluster and configure the kubectl CLI as you can see in the
following code snippet:

$ gcloud container clusters get-credentials $GKE_CLUSTER --zone $GCP_ZONE
--project $GCP_PROJECT

The output should be as follows:

/serverless 5 gcloud container clusters get-credentials $GKE CLUSTER --zone
SGCP_ZOMNE --project $GCP _PROJECT

Fetching cluster endpoint and auth data.
kubeconfig entry generated for knative-cluster.
Jserverless §

Figure 6.5: Fetching credentials for the GKE cluster

Now you have successfully created the GKE cluster with Istio and configured kubectl to
access the newly created cluster. We can now proceed with the next step of installing
Knative. We will be installing Knative version 0.8, which is the latest available version at
the time of writing this book.

We will use the kubectl CLI to apply the Knative components to the Kubernetes cluster.
First, run the kubectl apply command with the -1 knative.dev/crd-install=true flag to
prevent race conditions during the installation process:

$ kubectl apply --selector knative.dev/crd-install=true \

-f https://github.com/knative/serving/releases/download/v@.8.0/serving.
yaml \

-f https://github.com/knative/eventing/releases/download/v0.8.0/release.
yaml \

-f https://github.com/knative/serving/releases/download/v@.8.0/monitoring.
yaml
Next, run the command again without the -1 knative.dev/crd-install=true flag to
complete the installation:

$ kubectl apply -f https://github.com/knative/serving/releases/download/
v0.8.0/serving.yaml \

-f https://github.com/knative/eventing/releases/download/v0.8.0/release.
yaml \

-f https://github.com/knative/serving/releases/download/v@.8.0/monitoring.
yaml

170 | Upcoming Serverless Features in Kubernetes

Once the command is completed, execute the following commands to check the status
of the installation. Make sure that all pods have a status of Running:

$ kubectl get pods --namespace knative-serving

$ kubectl get pods --namespace knative-eventing

$ kubectl get pods --namespace knative-monitoring

The output should be as follows:

/serverless $ kubectl get pods --namespace knative-serwving

NAME

activator-c9b79ccd5-hcdbl
autoscaler-65d66T8ff-6t6p
autoscaler-hpa-86f678798d

READY
2/2

v 2/2

-5kbva 1/1

controller-8f6bccd4fd-r5kkg 1/1
networking-istio-67f87c4989-686nn 1/1

webhook-57bfcccfecb-rpci]
/serverless §

1/1

STATUS

Running
Running
Running
Running
Running
Running

RESTARTS
2

/serverless § kubectl get pods --namespace knative-eventing

NAME

eventing-controller-77b4f76d56-nzx5q
eventing-webhook-f5d57b487-5dmm9
imc-controller-65bb5ddf-vh7dh
imc-dispatcher-dd84879d7-shxmh
in-memory-channel-controller-6f74d5c8c8-n71m8 1/1

in-memory-channel-dispatcher-8db675949-ks858

sources-controller-79c4bf8b86-pchws
/serverless §
/serverless % kubectl get pods --namespace knative-monitoring

NAME
elasticsearch-logging-@
elasticsearch-logging-1
fluentd-ds-b7kg4
fluentd-ds-f4cbm
fluentd-ds-pvzg8
grafana-6b74545565-5f5c2
kibana-logging-7cbébgdbff

READY
1/1
1/1
1/1
1/1
1/1
1/1
-rpnz2 1/1

kube-state-metrics-56f68467c9-fotkw 474

node-exporter-2gvdp
node-exporter-mh6e6s
node-exporter-wxknb
prometheus-system-8
prometheus-system-1
/serverless §

2/2
2/2
2/2
1/1
1/1

READY
1/1
1/1
1/1
1/1

1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

STATUS RESTARTS
Running B
Running

Running

Running

Running

Running

Running

RESTARTS

D DD DD DD DDODD DD

Figure 6.6: Verifying Knative installation

At this stage, you have set up a Kubernetes cluster on GKE and installed Knative. Now
we are ready to deploy our first application on Knative.

Introduction to Serverless with Kubernetes | 171

Exercise 16: Deploying a Sample Application on Knative

In the previous section, we successfully deployed Knative on top of Kubernetes and
Istio. In this exercise, we will deploy our first application on the Knative framework.
For this deployment, we are going to use a sample web application written with Node.
js. A Docker image of this application is available in Google Container Registry at gcr.
io/knative-samples/helloworld-nodejs. These steps can be adapted to deploy our own
Docker image on Docker Hub or any other container registry.

This sample "hello world" application will read an environment variable named TARGET
and print Hello <VALUE_OF_TARGET>! as the output. It will print NOT SPECIFIED as the
output if no value is defined for the TARGET environment variable.

Let's start by creating the service definition file for our application. This file defines
application-related information including the application name and the application
Docker image:

Note
Knative service objects and Kubernetes Service objects are two different types.

1. Create a file named hello-world.yaml with the following content. This Knative
service object defines values such as the namespace to deploy this service in, the
Docker image to use for the container, and any environment variables:

apiVersion: serving.knative.dev/vlalphal
kind: Service
metadata:
name: helloworld-nodejs
namespace: default
spec:
runLatest:
configuration:
revisionTemplate:
spec:
container:
image: gcr.io/knative-samples/helloworld-nodejs
env:
- name: TARGET
value: "Knative NodeJS App"

172 | Upcoming Serverless Features in Kubernetes

2. Once the hello-world.yanml file is ready, we can deploy our application with the
kubectl apply command:

$ kubectl apply -f hello-world.yaml

The output should be as follows:

/serverless § kubectl apply -f hello-world.yaml

service.serving.knative.dev/helloworld-nodejs created
/serverless §

Figure 6.7: Deploying the helloworld-nodejs application

3. The previous command will create multiple objects, including the Knative service,
configuration, revision, route, and Kubernetes Deployment. We can verify the
application by listing the newly created objects as in the following commands:

$ kubectl get ksvc

$ kubectl get configuration
$ kubectl get revision

$ kubectl get route

$ kubectl get deployments

The output should be as follows:

/serverless § kubectl get ksvc
NAME URL LATESTCREATED
LATESTREADY READY REASON

helloworld-nodejs http://helloworld-nodejs.default.example.com helloworld-nodejs-
kpnfg helloworld-nodejs-kpnfg True

/serverless §

/serverless § kubectl get configuration
NAME LATESTCREATED LATESTREADY READY REASO
N
helloworld-nodejs helloworld-nodejs-kpnfg hellowerld-nedejs-kpnfg True
/serverless §

/serverless § kubectl get revision

NAME CONFIG NAME K85 SERVICE NAME GENERATION

READY REASON
helloworld-nodejs-kpnfg helloworld-nodejs helloworld-nodejs-kpnfg 1
True
/serverless §
/serverless § kubectl get route
NAME URL READY REASON
helloworld-nodejs http://helloworld-nodejs.default.example.com True
/serverless §
/serverless $ kubectl get deployment
NAME READY UP-TO-DATE AVATLABLE AGE
helloworld-nodejs-kpnfg-deployment 1/1 1 1 4m3s
Jserverless §

Figure 6.8: Verifying helloworld-nodejs application deployment

Introduction to Serverless with Kubernetes | 173

4. Once our application is deployed successfully, we can invoke this application
using an HTTP request. For this, we need to identify the external IP address of
the Kubernetes cluster. Execute the following command to export the value of
EXTERNAL-IP into an environment variable named EXTERNAL_IP:

$ export EXTERNAL_IP=$(kubectl get svc istio-ingressgateway --namespace
istio-system --output 'jsonpath={.status.loadBalancer.ingress[0].ip}")

The output should be as follows:

/serverless % export EXTERNAL IP=%(kubectl get svc istioc-ingressgateway
--namespace istio-system --output 'jsonpath={.status.loadBalancer.ingress

[B]1.ip}")
/serverless %

Figure 6.9: Exporting the external IP of the istio-ingressgateway service

Next, we need to find the host URL of the helloworld-nodejs application. Execute
the following command and take note of the value of the URL column. This URL
takes the form http://<application-name>.<namespace>.example.com:

$ kubectl get route helloworld-nodejs
The output should be as follows:
fserverless § kubectl get route helloworld-nodejs

URL READY REASON
http://helloworld-nodejs.default.example.com True

/serverless §

Figure 6.10: Listing the helloworld-nodejs route

5. Now we can invoke our application using the EXTERNAL_IP and URL values that we
noted in the earlier steps. Let's make a curl request with the following command:

$ curl -H "Host: helloworld-nodejs.default.example.com" http://${EXTERNAL_
IP}

The output should be as follows:

/serverless § curl -H "Host: helloworld-nodejs.default.example.com"
http://${EXTERNAL_ IP}

Hello Knative NodelS App! /serverless §
/serverless %

Figure 6.11: Invoking the helloworld-nodejs application

You should receive the expected output as Hello Knative NodeJS App!. This indicates
that we have successfully deployed and invoked our first application on the Knative
platform.

174 | Upcoming Serverless Features in Kubernetes

Knative Serving Component

In the previous section, we deployed our first Knative application using a YAML file

of the service type. When deploying the service, it created multiple other objects,
including configuration, revision, and route objects. In this section, let's discuss each of
these objects:

There are four resource types in the Knative Serving component:
» Configuration: Defines the desired state of the application
* Revision: Read-only snapshots that track the changes in configurations
* Route: Provides traffic routing to revisions

* Service: Top-level container for routes and configurations

The following diagram illustrates the relationship between each of these components:

Service
(my-function)

=
- -

-“manages T~ -_

-7 =)

& Configuration f---1
Route routes traffic to :
(name) '

Revision K------ :
records !
history of |

Revision €----- -

Revision €------ !

Figure 6.12: Relationship between Knative services, routes, configurations, and revisions

Knative Serving Component | 175

The configuration is used to define the desired state of the application. This will define
the container image used for the application and any other configuration parameters
that are required. A new Revision will be created each time a Configuration is updated.
Revision refers to a snapshot of the code and the Configuration. This is used to

record the history of Configuration changes. A Route is used to define the traffic
routing policy of the application and provides an HTTP endpoint for the application. By
default, the Route will send traffic to the latest Revision created by the Configuration.
The Route can also be configured for more advanced scenarios, including sending
traffic to a specific Revision or splitting traffic to different revisions based on defined
percentages. Service objects are used to manage the whole life cycle of the application.
While deploying a new application, it is required to create Configuration and Route
objects manually, but the Service can be used to simplify this by creating and managing
Configuration and Route objects automatically.

In the following section, we will be using canary deployment to deploy applications with
Knative. Let's first understand what exactly canary deployment is.

Canary Deployment

Canary deployment is a deployment strategy used when rolling out a new version of
code to a production environment. This is a fail-safe process of deploying a new version
of code into a production environment and switching a small percentage of traffic to
the new version. This way, the development and deployment teams can verify the new
version of the code with minimal impact on production traffic. Once the verifications
are done, all traffic will be switched to the new version. In addition to canary
deployments, there are several other deployment types, such as big bang deployments,
rolling deployments, and blue-green deployments.

In the helloworld-nodejs application that we deployed in Exercise 16, Deploying a
Sample App on Knative, we used the Service object with the spec.runLatest field, which
directs all traffic to the latest available revision. In the following exercise, we will be
using separate configuration and route objects instead of the service object.

Note

For more information on canary deployment technique, refer to https://dev.to/
mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3.

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

176 | Upcoming Serverless Features in Kubernetes

Exercise 17: Canary Deployment with Knative

In this exercise, we will be implementing a canary deployment strategy to deploy
applications with Knative. First, we will deploy an initial version (version 1) of an
application and route 100% traffic to that version. Next, we will create version 2 of the
application and route 50% of traffic to version 1 and the remaining 50% to version 2.
Finally, we will update the routes to send 100% of traffic to version 2.

The following steps will help you complete the exercise:

1.

First, start by creating the initial version (v1) of the application. Create a file named
canary-deployment.yaml with the following content. This application uses the

same Docker image (gcr.io/knative-samples/helloworld-nodejs) that we used
previously and sets the TARGET environment variable as This is the first version
- vl

apiVersion: serving.knative.dev/vlalphal
kind: Configuration
metadata:

name: canary-deployment

namespace: default
spec:

template:

spec:
containers:
- image: gcr.io/knative-samples/helloworld-nodejs
env:
- name: TARGET
value: "This is the first version - v1"

Deploy the first version of the application with the kubectl apply command using
the YAML file created in the previous step:

$ kubectl apply -f canary-deployment.yaml

The output should be as follows:

/serverless $ kubectl apply -f canary-deployment.yaml

configuration.serving.knative.dev/canary-deployment created
Jserverless §

Figure 6.13: Creating canary-deployment

Knative Serving Component | 177

3. Let's get the revision name created by this configuration as we need this value in
the next step. Execute the kubectl get configurations command and retrieve the
value of the latestCreatedRevisionName field:

$ kubectl get configurations canary-deployment -o=jsonpath='{.status.
latestCreatedRevisionName}'

The output should be as follows:

/serverless § kubectl get configurations canary-deployment -o=jsonpath=
"{.status.latestCreatedRevisionName}"’

canary-deployment-xgvl8 /serverless §
/serverless §

Figure 6.14: Getting the latest revision of the canary-deployment configuration

For me, the value returned from the preceding command is canary-deployment-
xgv18. Note that your value will be different.

4. The next step is to create the route object. Let's create a file named canary-
deployment-route.yaml with the following content (please remember to replace
canary-deployment-xgv18 with the revision name that you noted in the previous
step). Under the spec. traffic section, you can see that 100% of traffic is routed to
the revision that we created previously:

apiVersion: serving.knative.dev/vlalphal
kind: Route
metadata:

name: canary-deployment

namespace: default
spec:

traffic:

- revisionName: canary-deployment-xgv18
percent: 100

5. Create the route object with the kubectl apply command:
$ kubectl apply -f canary-deployment-route.yaml

The output should be as follows:

/serverless 5 kubectl apply -f canary-deployment-route.yaml

route.serving.knative.dev/canary-deployment created
/serverless §

Figure 6.15: Creating the canary-deployment route

178 | Upcoming Serverless Features in Kubernetes

6. Make a request to the application and observe the expected output of Hello This
is the first version - vi1!:

$ curl -H "Host: canary-deployment.default.example.com"
"http://${EXTERNAL_IP}"

The output should be as follows:

Jserverless % curl -H "Host: canary-deployment.default.example.com"”
"http://${EXTERNAL_IP}"

Hello This is the first version - vl1l! /serverless §
/serverless %

Figure 6.16: Invoking canary-deployment

7. Once the application is successfully invoked, we can deploy version 2 of the
application. Update canary-deployment.yaml with the following content. In version
2 of the application, we only need to update the value of the TARGET environment
variable from This is the first version - v1to This is the second version -
v2:

apiVersion: serving.knative.dev/vlalphal
kind: Configuration
metadata:
name: canary-deployment
namespace: default
spec:
template:
spec:
containers:
- image: gcr.io/knative-samples/helloworld-nodejs
env:
- name: TARGET
value: "This is the second version - v2"

8. Apply the updated configuration with kubectl apply:
$ kubectl apply -f canary-deployment.yaml

The output should be as follows:

/serverless % kubectl apply -f canary-deployment.yaml
configuration.serving.knative.dev/canary-deployment configured

/serverless %

Figure 6.17: Updating canary-deployment to version 2

Knative Serving Component | 179

9. Now we can check the revisions created, while updating the configuration, using
the kubectl get revisions command:

$ kubectl get revisions

The output should be as follows:

fserverless § kubectl get revisions

NAME CONFIG NAME K85 SERVICE NAME GENERATION
READY REASON

canary-deployment-8ppds canary-deployment canary-deployment-8ppds 2

True

canary-deployment-xgvl8 canary-deployment canary-deployment-xgvla 1
True

/serverless $

Figure 6.18: Getting the revisions of canary-deployment
10. Let's get the latest revision created by the canary-deployment configuration:

$ kubectl get configurations canary-deployment -o=jsonpath='{.status.
latestCreatedRevisionName}'

The output should be as follows:

/serverless % kubectl get configurations canary-deployment -o=]jsonpath=
"{.status.latestCreatedRevisionName} "’

canary-deployment-8ppds /serverless %
/serverless §

Figure 6.19: Getting the latest revision of the canary-deployment configuration

11. Now it's time to send some traffic to our new version of the application. Update
the spec. traffic section of canary-deployment-route.yaml to send 50% of the
traffic to the old revision and 50% to the new revision:

apiVersion: serving.knative.dev/vlalphail
kind: Route
metadata:

name: canary-deployment

namespace: default

spec:
traffic:
- revisionName: canary-deployment-xgv18
percent: 50

- revisionName: canary-deployment-8pp4s
percent: 50

180 | Upcoming Serverless Features in Kubernetes

12. Apply changes to the route using the following command:
$ kubectl apply -f canary-deployment-route.yaml

The output should be as follows:

Jserverless % kubectl apply -f canary-deployment-route.yaml

route.serving.knative.dev/canary-deployment configured
Jserverless §

Figure 6.20: Updating the canary-deployment route

13. Now we can invoke the application multiple times to observe how traffic splits
between two revisions:

$ curl -H "Host: canary-deployment.default.example.com"
"http://${EXTERNAL_IP}"

14. Once we verify version 2 of the application successfully, we can update canary-
deployment-route.yaml to route 100% of the traffic to the latest revision:

apiVersion: serving.knative.dev/vlalphal
kind: Route
metadata:

name: canary-deployment

namespace: default

spec:
traffic:
- revisionName: canary-deployment-xgv18
percent: 0

- revisionName: canary-deployment-8pp4s
percent: 100

15. Apply the changes to the route using the following command:
$ kubectl apply -f canary-deployment-route.yaml

The output should be as follows:

/serverless $ kubectl apply -f canary-deployment-route.yaml

route.serving.knative.dev/canary-deployment configured
/serverless §

Figure 6.21: Updating the canary-deployment route

Knative Monitoring | 181

16. Now invoke the application multiple times to verify that all traffic goes to version 2
of the application:

$ curl -H "Host: blue-green-deployment.default.example.com"
"http://${EXTERNAL_IP}"

In this exercise, we have successfully used configuration and route objects to perform a
canary deployment with Knative.
Knative Monitoring

Knative comes with Grafana pre-installed, which is an open source metric analytics and
visualization tool. The Grafana pod is available in the knative-monitoring namespace
and can be listed with the following command:

$ kubectl get pods -1 app=grafana -n knative-monitoring

The output should be as follows:

/serverless $ kubectl get pods -1 app=grafama -n knative-monitoring
NAME READY STATUS RESTARTS AGE

Running @ 87m

Figure 6.22: Listing the Grafana pod

We can expose the Grafana Ul with the kubectl port-forward command, which will
forward local port 3000 to the port 3000 of the Grafana pod. Open a new terminal and
execute the following command:

$ kubectl port-forward $(kubectl get pod -n knative-monitoring -1 app=grafana
-0 jsonpath='{.items[0].metadata.name}') -n knative-monitoring 3000:3000

The output should be as follows:

/serverless $ kubectl port-forward %(kubectl get pod -n knative-monitoring -1 app=
grafana -o jsonpath='{.items[®].metadata.name}') -n knative-monitoring 3060:3000
Forwarding from 127.08.08.1:3888 -> 3088

Forwarding from [::1]:3888 -> 30880

Figure 6.23: Port forwarding to the Grafana pod

182 | Upcoming Serverless Features in Kubernetes

Now we can navigate the Grafana Ul from our web browser on http://127.0.0.1:3000.

The output should be as follows:

Q 28 Home -

Home Dashboard

Figure 6.24: The Grafana Ul

Knative's Grafana dashboard comes with multiple dashboards, including the following:

Dashboard Name

Dashboard Metrics

Nodes

CPU, memory, disk, and network usage stats of
Kubernetes nodes

Pods

CPU, memory, and network usage stats of Kubernetes
pods

Knative Serving - Revision
CPU and Memory Usage

CPU usage and memory usage by the revision

Knative Serving - Revision
HTTP Requests

Request volume, request volume by revision, request
volume by response code, and request volume by the
response time

Knative Serving - Scaling
Debugging

Revision pod count, resource usages, autoscaler metrics,
and activator metrics

Knative Serving - Control
Plane Efficiency

Namespace CPU usage, namespace memory usage,
control plane versus data plane CPU usage, and control
plane versus data plane memory usage

Figure 6.25: Dashboards

Knative Autoscaler | 183

Knative Autoscaler

Knative has a built-in autoscaling feature that automatically scales the application
pods based on the number of HTTP requests it receives. This will increase the pod
count when there is increased demand and decrease the pod count when the demand
decreases. The pod count will scale to zero when pods are idle and there are no
incoming requests.

Knative uses two components, the autoscaler, and the activator, to achieve the
previously mentioned functionality. These components are deployed as pods in the
knative-serving namespace, as you can see in the following snippet:

NAME READY STATUS RESTARTS AGE
activator-7c8b59d78-9kgk5 2/2 Running @ 15h
autoscaler-666c9bfccé-vwrj6 2/2 Running @ 15h
controller-799cd5c6dc-p47gn 1/1 Running @ 15h
webhook-5b66fdf6b9-cbllh 1/1 Running @ 15h

The activator component is responsible for collecting information about the number

of concurrent requests to a revision and reporting these values to the autoscaler. The
autoscaler component will increase or decrease the number of pods based on the
metrics reported by the activator. By default, the autoscaler will try to maintain 100
concurrent requests per pod by scaling pods up or down. All Knative autoscaler-related
configurations are stored in a configuration map named config-autoscaler in the
knative-serving namespace. Knative can also be configured to use the Horizontal Pod
Autoscaler (HPA), which is provided by Kubernetes. HPA will autoscale pods based on
CPU usage.

Exercise 18: Autoscaling with Knative

In this exercise, we will perform Knative pod autoscaling by deploying a sample
application:

1. Create an autoscale-app.yaml service definition file with the following content.
This file defines a service named autoscale-app, which will use the ger.io/knative-
samples/autoscale-go:0.1 sample Docker image. autoscaling.knative.dev/target
is used to configure the target number of concurrent requests per pod:

apiVersion: serving.knative.dev/vlalphal
kind: Service
metadata:
name: autoscale-app
spec:
runLatest:

184 | Upcoming Serverless Features in Kubernetes

configuration:
revisionTemplate:
metadata:
annotations:
autoscaling.knative.dev/target: "10"
spec:
container:
image: "gcr.io/knative-samples/autoscale-go:0.1"

2. Apply the service definition with the kubectl apply command:
$ kubectl apply -f autoscale-app.yaml

The output should be as follows:

/serverless § kubectl apply -f autoscale-app.yaml

service.serving.knative.dev/autoscale-app created
/serverless §

Figure 6.26: Creating autoscale-app

3. Once the application is ready, we can generate a load to the autoscale-app
application to observe the autoscaling. For this, we will use a load generator
named hey. Download the hey binary using the following curl command.

$ curl -Lo hey https://storage.googleapis.com/hey-release/hey_linux_amd64

The output should be as follows:

/serverless $ curl -Lo hey https://storage.googleapis.com/hey-release/hey linux_amdéd
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
180 9864k 108 9864k 0 0 833k @ ©:00:11 8:00:11 --:--:-- 894k
/serverless §

Figure 6.27: Installing hey

Knative Autoscaler | 185

4. Add execution permission to the hey binary and move it into the /usr/local/bin/
path:

$ chmod +x hey
$ sudo mv hey /usr/local/bin/

The output should be as follows:

/serverless § chmod +x hey

/serverless % sudo mv hey fusr/local/bin/
/serverless %

Figure 6.28: Moving hey to /usr/local/bin

5. Now we are ready to generate a load with the hey tool. The hey tool supports
multiple options when generating a load. For this scenario, we will use a load with
a concurrency of 50 (with the -c flag) for a duration of 60 seconds (with the -z
flag):

$ hey -z 60s -c 50 \
-host "autoscale-app.default.example.com" \
"http://${EXTERNAL_IP?}?sleep=1000"

6. In a separate terminal, watch for the number of pods created during the load:
$ kubectl get pods --watch

You will see output similar to the following:

NAME READY STATUS
RESTARTS AGE
autoscale-app-7jt29-deployment-9c9c4b474-4ttl2 3/3 Running 0
58s
autoscale-app-7jt29-deployment-9c9c4b474-6pmjs 3/3 Running @
60s
autoscale-app-7jt29-deployment-9c9c4b474-7j52p 3/3 Running @
63s
autoscale-app-7jt29-deployment-9c9c4b474-dvcs6 3/3 Running 0
56s
autoscale-app-7jt29-deployment-9c9c4b474-hmkzf 3/3 Running @

62s

186 | Upcoming Serverless Features in Kubernetes

7. Open the Knative Serving - Scaling Debugging dashboard from Grafana to
observe how autoscaling increased the pod count during the load and decreased
the pod count back to zero once the load stopped, as you can see in the following
screenshots:

U == Knative Serving - Scaling Debugging -

Namespace default +

Revision Pod Counts

Revision Pod Counts

Resource Usages

Revision CPU Usage Pod Memory Usage

Figure 6.29: Revision pod count metrics

Observed Concurrency

Figure 6.30: Observed concurrency metrics

We have successfully configured Knative's autoscaler and observed autoscaling with the
Grafana dashboard.

Knative Autoscaler | 187

Google Cloud Run

In the previous sections, we discussed Knative. We learned how to install Istio and
Knative on top of a Kubernetes cluster and how to run Docker images with Knative.
But the advantages of the Knative platform come with the operational overhead of
managing the underlying Kubernetes cluster with Istio. GKE, which is the managed
Kubernetes service from Google Cloud, will help us manage the Kubernetes master
components, but still, we have to manage all the Kubernetes nodes ourselves.

In order to abstract away all the infrastructure management tasks from the developer,
Google introduced a new service named Cloud Run. This is a fully managed platform,
built on the Knative project, to run stateless HTTP-driven containers. Cloud Run offers
the same set of features as Knative, including autoscaling, scale to zero, versioning,
and events. Cloud Run was introduced in the Google Cloud Next 19 conference as the
newest member of Google Cloud's serverless compute stack. At the time of writing this
book, the Cloud Run service is still in beta and only available in a limited number of
regions.

Let's now perform an exercise to deploy containers on Google Cloud Run.

Exercise 19: Deploying Containers on Google Cloud Run

In this exercise, we will be deploying a pre-built Docker image on the Google Cloud Run
platform.

The following steps will help you complete the exercise:

1. Navigate to your GCP console from your browser and select Cloud Run from the
menu (in the Compute category) as shown in the following figure:

COMPUTE

(@- App Engine ¥
2] Compute Engine »
@) Kubernetes Engine 3

(] Cloud Functions

¥» cloud Run
Figure 6.31: GCP menu for Cloud Run
2. Click on the CREATE SERVICE button to create a new service.

188 | Upcoming Serverless Features in Kubernetes

3. Fill the create service form with the following values:
Container Image URL: gcr.io/knative-samples /helloworld-nodejs
Deployment platform: Cloud Run (fully managed)
Location: Select any region you prefer from the options
Service name: hello-world

Authentication: Allow unauthenticated invocations

)) Cloud Run € Create service
Source
Container image URL *
gerio/knative-samples/helloworld-nodejs SELECT

E.g. gerio/cloudrunhello
Must be stateless and listen for HTTP requests on SPORT. How to build a container?

Deployment platform @

(® Cloud Run (fully managed)

Location *
us-centrall -

Region for this Service can't be changed later. How to pick & region?

() Cloud Run on GKE

Service settings

Service name *
hellc-world

Service name can't be changed later.

Authentication *

(®) Allow unauthenticated invocations

Check this if you are cresting a public APl or website.
{O) Require authentication

Manage authorized users with Cloud 1AM.

s SHOW OPTIOMNAL REVISION SETTINGS

CREATE CAMCEL

Figure 6.32: Cloud Run create service form

http://gcr.io/knative-samples/helloworld-nodejs

Knative Autoscaler | 189

4. Click on the CREATE button.

5. Now we will be redirected to the deployed service page, which includes details
about the newly deployed hello-world service. We can see that a revision has been
created called hello-world-00001, as shown in the following figure:

}) Cloud Run € Service details E3 DEPLOY NEW REVISION

@ hello-world Region: us-centrall URL: hitps://hello world-awsveZjaoe-uc.a.un.app

METRICS REVISIONS LOGS DETAILS YAML

Revisions DETAILS YAML

= Filter revisions @ m Container image URL ger.io/knative-samples/helloworld-nodejs@sha256:ae... ff

® HNeme Trafic Deployed Actions Memory allocated 256 MiB

Concurrency 80

@® hello-waorld-00001 100% Just now
Request timeout 300 seconds
Service account 330153716525-compute(@developer.gserviceaccount.com

Environment variables

Naone

Cloud SQL connections

None

Figure 6.33: Service details page

6. Click on the URL link displayed to run the container. Note that the URL will be
different for every new instance:

Meozilla Firefox - + X

hello-world-awsve2jaoa-uc.a.run. X +

< c

@ f@ https://hellc - O Tzr| » =

Hello World!

Figure 6.34: Invoking the hello-world app

7. Next, we are going to deploy a new revision of the application by updating the
TARGET environment variable. Navigate back to the GCP console and click on the
DEPLOY NEW REVISION button.

190 | Upcoming Serverless Features in Kubernetes

8. From the Deploy revision to hello-world (us-centrall) form, click on the SHOW
OPTIONAL REVISION SETTINGS link, which will point us to the additional setting
section:

* SHOW OPFTIOMAL REVISION SETTINGS

Figure 6.35: Optional revision settings

9. Under the environment variables section, create a new environment variable
named TARGET with the value Cloud Run Deployment:

Environment variables
HName WValue

TARGET Cloud Run Deployment
+ ADD VARIABLE

Figure 6.36: Setting the TARGET environment variable
10. Click on the DEPLOY button.

11. Now we can see the new revision of the hello-world application called
hello-world-00002 with 100% of traffic being routed to the latest revision:

0 hE""G'WDrId Region: us-centrall URL: https2hello-world-awsve2jaoa-uc.a.run.app

METRICS REVISIONS LOGS DETAILS YAML
Revisions
@ Hame Traffic Deployed Actions
® & helic-world-00002 100% Just now :
O © nhelio-world-00001 0% 17 minutes ago

Figure 6.37: The hello-world app's new revision

Introduction to Virtual Kubelet | 191

12. Click on the URL again to run the updated revision:

Mozilla Firefox

hello-world-awsve2jaoa-uc.a.run. X | 4+

< C | @& - o @ w| P

Hello Cloud Run Deployment!

Figure 6.38: Invoking the hello-world app
We have successfully deployed a pre-built Docker image on the Google Cloud Run
platform.
Introduction to Virtual Kubelet

Virtual Kubelet is an open source implementation of Kubernetes' kubelet that acts as
a kubelet. This is a sandbox project from the Cloud Native Computing Foundation
(CNCF), and the first major version (v 1.0) of Virtual Kubelet was released on July 8, 2019.

Before diving further into Virtual Kubelet, let's recap what a kubelet is in the Kubernetes
architecture. A kubelet is an agent that runs on each node in a Kubernetes cluster and
is responsible for managing pods within the nodes. A kubelet takes instructions from
the Kubernetes API to identify the pods to be scheduled on the node and interacts with
the underlying container runtime (for example, Docker) of the nodes to ensure that the
desired number of pods are running and that they are healthy.

In addition to managing pods, the kubelet performs several other tasks:
» Updating the Kubernetes API with the current status of the pods

* Monitoring and reporting node health metrics such as CPU, memory, and disk
utilization to the Kubernetes master

* Pulling Docker images from the Docker registry for the assigned pods
* Creating and mounting volumes for pods

* Providing an interface for the API server to execute commands such as kubectl
logs, kubectl exec, and kubectl attach for the pods

192 | Upcoming Serverless Features in Kubernetes

The following figure displays a Kubernetes cluster with standard and virtual kubelets:

Kubernetes API

Kubelet Kubelet Kubelet Kubelet Virtual
Kubelet

node node node node

Typical kubelets implement the pod and container
operations for each node as usual.

Virtual kubelet registers itself as a “node” and allows developers to deploy pods
and containers with their own APls.

Capacity NodeConditions
OperatingSystem Virtual GetPods
CreatePod Kubelet GetPodStatus
UpdatePod GetPod

Figure 6.39: Kubernetes cluster with standard kubelets and Virtual Kubelets

Virtual Kubelet will appear as a traditional kubelet from the viewpoint of the Kubernetes
API. This will run in the existing Kubernetes cluster and register itself as a node within
the Kubernetes API. Virtual Kubelet will run and manage the pods in the same way a
kubelet does. But in contrast to the kubelet, which runs pods within the nodes, Virtual
Kubelet will utilize external services to run the pods. This connects the Kubernetes
cluster to other services such as serverless container platforms. Virtual Kubelet
supports a growing number of providers, including the following:

* Alibaba Cloud Elastic Container Instance (ECI)
* AWS Fargate

* Azure Batch
* Azure Container Instances (ACI)

* Kubernetes Container Runtime Interface (CRI)

* Huawei Cloud Container Instance (CCI)
» HashiCorp Nomad
* OpenStack Zun

Introduction to Virtual Kubelet | 193

Running pods on these platforms come with the benefits of the serverless world. We do
not have to worry about the infrastructure as it is managed by the cloud provider. Pods
will scale up and down automatically based on the number of requests received. Also,
we have to pay only for the utilized resources.

Exercise 20: Deploying Virtual Kubelet on AKS

In this exercise, we are going to configure Virtual Kubelet on Azure Kubernetes Service
(AKS) with the ACI provider. For this exercise, we will be using the following services
available in Azure.

* AKS: AKS is a managed Kubernetes service on Azure.

* ACI: ACI provides a managed service for running containers on Azure.

* Azure Cloud Shell: An interactive, browser-based shell that supports both Bash

and PowerShell.

You need to have the following prerequisites for this exercise:

* A Microsoft Azure account

* The Azure CLI

* The kubectl CLI

* Helm
We will be using Azure Cloud Shell, which has all the previously mentioned CLIs
pre-installed:

1. Navigate to https: //shell.azure.com/ to open Cloud Shell in a browser window.
Select Bash from the Welcome to Azure Cloud Shell window:

Welcome to Azure Cloud Shell

Select Bash or PowerShell. You can change shells any time via the environment selector in the
Cloud Shell toolbar. The most recently used environment will be the default for your next session

Bash PowerShell

Figure 6.40: The Welcome to Azure Cloud Shell window

https://shell.azure.com/

194 | Upcoming Serverless Features in Kubernetes

2. Click on the Create storage button to create a storage account for Cloud Shell.
Note that this is a one-time task purely for when we are using Cloud Shell for the

first time:

You have no storage mounted

Azure Cloud Shell requires an Azure file share to persist files. Learn more

This will create a new storage account for you and this will incur a small monthly cost. View pricing

* Subscription

Free Trial Show advanced settings

Create storage | Close |

Figure 6.41: Mounting storage for Cloud Shell

The Cloud Shell window will look as follows:

sathsara89@gmail.com Q
I_s Azure Cloud Shell DEFAULT DIRECTORY

Bash v

Your cloud drive

Subscription Id: fca7cd39-9af4-4584
Resource group: cloud-shell-stora

Storage account: 1fc d399af4x4584xbof
File share: cs-sathsara89-gmail-com-10032000602242

Initializing your account for Cloud Shell...\
Requesting a Cloud Shell.Succeeded.
Connecting terminal...

Welcome to Azure Cloud Shell

Type "az" to use Azure CLI
Type "help" to learn about Cloud Shell

Figure 6.42: Cloud Shell window

Introduction to Virtual Kubelet | 195

3. Once Cloud Shell is ready, we can start creating the AKS cluster.

First, we need to create an Azure resource group that allows us to group related
Azure resources logically. Execute the following command to create a resource
group named serverless-kubernetes-group in the West US (westus) region:

$ az group create --name serverless-kubernetes-group --location westus

The output should be as follows:

sathsar

"id":

"location 'westus",

"managedBy": null,

"name": "serverless-kubernetes-group",

"properties": {
"provisioningState": "Succeeded"

": null,
e": "Microsoft.Resources/resourceGroups"”

sathsara@Azure:~$

Figure 6.43: Creating an Azure resource group
4. Register your subscription to use the Microsoft.Network namespace:
$ az provider register --namespace Microsoft.Networks

The output should be as follows:

Figure 6.44: Registering the subscription

196 | Upcoming Serverless Features in Kubernetes

5. Next, we will create an Azure Kubernetes cluster. The following command will
create an AKS cluster named virtual-kubelet-cluster with one node. This
command will take a few minutes to execute:

$ az aks create --resource-group serverless-kubernetes-group --name
virtual-kubelet-cluster --node-count 1 --node-vm-size Standard_D2
--network-plugin azure --generate-ssh-keys

Once AKS cluster creation is successful, the preceding command will return some
JSON output with the details of the cluster:

sathsara@Azure:~% ¢ esource-group serverless-kub -group --name virt
--network-plugin (ssh-keys
- Running

"aadProfile": null,
"addonProfiles": null,
"agentPoolProfiles": [
{
"availabilityZones": null,
"count": 1,
"enableAutoScaling": null,
"enableNodePublicIp": null,
"maxCount": null,
"maxPods": 3@,
"minCount": null,
"name": "nodepooll",
"nodeTaints": null,
"orchestratorvVersion": "1.13.12",
"osDiskSizeGb": 166
"osType": "Linux",
"provisioningState": "Succeeded",
"scaleSetEvictionPolicy": null,
"scaleSetPriority"”: null,
"type": "VirtualMachineScaleSets",
"vmSize": "Standard_D2",
"vnetSubnetId": null

Figure 6.45: Creating the AKS cluster

Introduction to Virtual Kubelet | 197

6. Next, we need to configure the kubectl CLI to communicate with the newly
created AKS cluster. Execute the az aks get-credentials command to download
the credentials and configure the kubectl CLI to work with the virtual-kubelet-
cluster cluster with the following command:

Note

We are not required to install the kubectl CLI because Cloud Shell comes with
kubectl pre-installed.

$ az aks get-credentials --resource-group serverless-kubernetes-group
--name virtual-kubelet-cluster

The output should be as follows:

sathsara@Azure:~% az aks get-credentials --resource-group serverles
tes-group --name virtual-kubelet-cluster
Merged "virtual-kubelet-cluster" as current context in /home/sathsa

config
sathsara@Azure:~$

Figure 6.46: Configuring kubectl

7. Now we can verify the connection to the cluster from Cloud Shell by executing the
kubectl get nodes command, which will list the nodes available in the AKS cluster:

$ kubectl get nodes

The output should be as follows:

sathsara@Azure:~-% kubectl get nodes
NAME STATUS ROLES AGE VERSION

Ready agent 8mi8s vi.13.12
sathsara@Azure:-%

Figure 6.47: Listing Kubernetes nodes

198 | Upcoming Serverless Features in Kubernetes

8. If this is the first time you are using the ACI service, you need to register the
Microsoft.ContainerInstance provider with your subscription. We can check the
registration state of the Microsoft.ContainerInstance provider with the following

command:

$ az provider list --query "[?contains(namespace, 'Microsoft.
ContainerInstance')]" -o table

The output should be as follows:

sathsara@Azure:~$ az provider list --query "[7?contains({namespace, ‘Microsoft.

ContainerInstance')]" -o table
Namespace RegistrationState RegistrationPolicy

Microsoft.ContainerInstance NotRegistered RegistrationRequired
sathsara@Azure:~$

Figure 6.48: Checking the registration status of the Microsoft.Containerinstace provider

9. If the RegistrationStatus column contains a value of NotRegistered, execute
the az provider register command to register the Microsoft.ContainerInstance
provider. If the RegistrationStatus column contains a value of Registered, you can
continue to the next step:

$ az provider register --namespace Microsoft.ContainerInstance

The output should be as follows:

sathsara@Azure:~$ az provider register --namespace Microsoft.ContainerInstance
F joing. You can monitor using 'az provider show -n Micro

Figure 6.49: Registering for Microsoft.Containerinstance provider

10. The next step is to create the necessary ServiceAccount and ServiceAccount
objects for the tiller. Create a file named tiller-rbac.yaml with the following code:

apiVersion: vi
kind: ServiceAccount
metadata:

name: tiller

Introduction to Virtual Kubelet | 199

namespace: kube-system
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: tiller
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: tiller
namespace: kube-system

11. Then execute the kubectl apply command to create the necessary ServiceAccount
and ClusterRoleBinding objects:

$ kubectl apply -f tiller-rbac.yaml
The output should be as follows:

sathsara@Azure:~% kubectl apply -T tiller-rbac.yaml
serviceaccount/tiller created

clusterrolebinding. rbac.authorization.k8s.io/tiller created
sathsara@Azure: -3

Figure 6.50: Creating the ServiceAccount and ClusterRoleBinding objects

12. Now we can configure Helm to use the tiller service account that we created in
the previous step:

$ helm init --service-account tiller

200

| Upcoming Serverless Features in Kubernetes

13.

The output should be as follows:

sathsara@Azure:-% helm init --service-account tiller
Creating /home/sathsara/.helm

Creating /home/sathsara/.helm/repository

Creating /home/sathsara/.helm/repository/cache

Creating /home/sathsara/.helm/repository/local

Creating /home/sathsara/.helm/plugins

Creating /home/sathsara/.helm/starters

Creating /home/sathsara/.helm/cache/archive

Creating /home/sathsara/.helm/repository/repositories.yaml
Adding stable repo with URL: https://kubernetes-charts.storage.googleapi
.com

Adding local repo with URL: http://127.0.8.1:8879/charts
$HELM_HOME has been configured at /home/sathsara/.helm.

Tiller (the Helm server-side component) has been installed into your Kube
rnetes Cluster.

Please note: by default, Tiller is deployed with an insecure 'allow unaut
henticated users' policy.

To prevent this, run “helm init” with the --tiller-tls-verify flag.

For more information on securing your installation see: https://docs.helm
.sh/usi helm/#securing-your-helm-installation

sathsara@Azure:~$

Figure 6.51: Configuring tiller

Once all configurations are done, we can install Virtual Kubelet using the az aks
install-connector command. We will be deploying both Linux and Windows
connectors with the following command:

$ az aks install-connector \
--resource-group serverless-kubernetes-group \
--name virtual-kubelet-cluster \
--connector-name virtual-kubelet \
--os-type Both

Introduction to Virtual Kubelet | 201

The output should be as follows:

sathsara@Azure:~% az aks install-connector \
--resource-group serverless-kubernetes-group \
--name wvirtual-kubelet-cluster M
--connector-name virtual-kubelet “

--0s-type Both

>
=
=
=

Merged "

-kubelet- ! rrent context in /tmp/tmpzxdtg2vn
De| g CI connector for 'Linux' using Helm

NAME : virtual-kubelet-linux-westus

LAST DEPLOYED: Tue Nov 12 087:24:18 2019

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/Pod(related)

NAME READY 5
TATUS RESTARTS AGE
virtual-kubelet-linux-westus-virtual-kubelet-for-aks-6f8689kfff 6/1 C
ontainerCreating @ 1s

==> vl1/Secret
NAME TYPE DATA AGE
virtual-kubelet-linux-westus-virtual-kubelet-for-aks Opaque 3 1s

==> vyl/ServiceAccount
NAME SECRETS AGE
virtual-kubelet-linux-westus-virtual-kubelet-for-aks 1 1s

==> ylbetal/ClusterRoleBinding
NAME

Figure 6.52: Installing Virtual Kubelet

202 | Upcoming Serverless Features in Kubernetes

14. Once the installation is complete, we can verify it by listing the Kubernetes nodes.
There will be two new nodes, one for Windows and one for Linux:

$ kubectl get nodes

The output should be as follows:
sathsara@Azure:~% kubectl get nodes

NAME STATUS ROLES AGE
VERSION

Ready (15m

v1i.13.12

virtual-kubelet-virtual-kubelet-linux-westus Ready ar 2m50s
v1.13.1-vk-v8.9.0-1-g7b92d1ee-dev
virtual-kubelet-virtual-kubelet-windows-westus Ready (3md7s
v1.13.1-vk-v8.9.0-1-g7b92d1ee-dev

sathsara@Azure:~%

Figure 6.53: Listing Kubernetes nodes

15. Now we have Virtual Kubelet installed in the AKS cluster. We can deploy an
application to a new node introduced by Virtual Kubelet. We will be creating a
Kubernetes Deployment named hello-world with the microsoft/aci-helloworld
Docker image.

We need to add a nodeSelector to assign this pod specifically to the Virtual
Kubelet node. Note that Virtual Kubelet nodes are tainted by default to prevent
unexpected pods from being run on them. We need to add tolerations to the pods
to allow them to be scheduled for these nodes.

Let's create a file named hello-world.yaml with the following content:

apiVersion: apps/vi
kind: Deployment
metadata:
name: hello-world
spec:
replicas: 1
selector:
matchLabels:
app: hello-world
template:
metadata:
labels:
app: hello-world
spec:
containers:
- name: hello-world

Introduction to Virtual Kubelet | 203

image: microsoft/aci-helloworld

ports:

- containerPort: 80
nodeSelector:

kubernetes.io/role: agent

type: virtual-kubelet

beta.kubernetes.io/os: linux
tolerations:
- key: virtual-kubelet.io/provider

operator: Equal

value: azure

effect: NoSchedule

16. Deploy the hello-world application with the kubectl apply command:
$ kubectl apply -f hello-world.yaml
The output should be as follows:

sathsara@Azure:~$ kubectl apply -T hello-world.yaml

deployment.apps/hello-world created
sathsara@Azure:-%

Figure 6.54: Creating the hello-world deployment

17. Execute the kubectl get pods command with the -o wide flag to output a list of
pods and their respective nodes. Note that the hello-world-57f597bc59-q9w9k pod
has been scheduled on the virtual-kubelet-virtual-kubelet-linux-westus node:

$ kubectl get pods -o wide
The output should be as follows:

sathsara@Azure:~% kubectl get pods -o wide
NAME READY
STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES
hello-world-57f597bc59-q9wsk 1/1

Running c] 23s 13.83.148.91 virtual-kubelet-virtual-kubel

t-linux-westus <none> <none>

virtual-kubelet-linux-westus-virtual-kubelet-for-aks-6f8689kfff 1/1
Running c] Smids 10.2408.0.33 aks-nodepooll-37650960-vmssB0OE
[ee <none> <none>
virtual-kubelet-windows-westus-virtual-kubelet-for-aks-65bgzwbw 1/1
Running © 5m8s 10.240.08.25 aks-nodepooll-37650960-vmssO00
000 <none> <none=>
sathsara@Azure:~%

Figure 6.55: Listing all pods with the -o wide flag

204 | Upcoming Serverless Features in Kubernetes

Thus, we have successfully configured Virtual Kubelet on AKS with ACI and have
deployed a pod in the Virtual Kubelet node.

Let's now complete an activity where we will be deploying a containerized application
in a serverless environment.

Activity 6: Deploy a Containerized Application in a Serverless Environment

Imagine that you are working for a start-up company and your manager wants you to
create an application that can return the current date and time for a given timezone.
This application is expected to receive only a few requests during the initial phase but
will receive millions of requests in the long run. The application should be able to scale
automatically based on the number of requests received without any modifications.
Also, your manager does not want to have the burden of managing the infrastructure
and expects this application to run with the lowest possible cost.

Execute the following steps to complete this activity:

1. Create an application (in any language you want) that can provide the current date
and time based on the given timezone value.

The following is some sample application code written in PHP:

<?php

if (lisset ($_GET['timezone'l]l)) {
// Returns error if the timezone parameter is not provided
$output_message = "Error: Timezone not provided";

} else if (empty ($_GET['timezone'])) {
// Returns error if the timezone parameter value is empty
$output_message = "Error: Timezone cannot be empty";

T else {
// Save the timezone parameter value to a variable
$timezone = $_GET['timezone'];

Introduction to Virtual Kubelet | 205

try {
// Generates the current time for the provided timezone
$date = new DateTime("now", new DateTimeZone($timezone));
$formatted_date_time = $date->format('Y-m-d H:i:s');
$output_message = "Current date and time for $timezone is

$formatted_date_time";

} catch(Exception $e) {
// Returns error if the timezone is invalid
$output_message = "Error: Invalid timezone value";

// Return the output message
echo $output_message;

2. Containerize the application according to the guidelines provided by Google Cloud
Run.

The following is the content of a sample Dockerfile:

Use official PHP 7.3 image as base image
FROM php:7.3-apache

Copy index.php file to the docker image
COPY index.php /var/www/html/

Replace port 80 with the value from PORT environment variable in apache2
configuration files

RUN sed -i 's/80/${PORT}/g' /etc/apache2/sites-available/000-default.conf
/etc/apache2/ports.conf

Use the default production configuration file
RUN mv "$PHP_INI_DIR/php.ini-production" "$PHP_INI_DIR/php.ini"

206 | Upcoming Serverless Features in Kubernetes

3. Push the Docker image to a Docker registry.
4. Run the application with Cloud Run.
The output should be as follows:

Mozilla Firefox

clock-awsveZjaoa-uca.runapp/” X | +

&« (N EON" clock-aw bo w|l»

Current date and time for Europe/London is
2019-09-20 12:34:56

Figure 6.56: Deployment of the application in a serverless environment

Note

The solution to the activity can be found on page 417.

Summary

In this chapter, we discussed the advantages of using serverless on Kubernetes. We
discussed three technologies that offer the benefits of serverless on top of a Kubernetes
cluster. These are Knative, Google Cloud Run, and Virtual Kubelet.

First, we created a GKE cluster with Istio and deployed Knative on top of it. Then

we learned how to deploy an application on Knative. Next, we discussed the serving
component of Knative and how to perform a canary deployment with configuration
and route objects. Then we discussed monitoring on Knative and observed how Knative
autoscaling works based on the number of requests received.

We also discussed Google Cloud Run, which is a fully managed platform, built on the
Knative project, to run stateless HTTP-driven containers. Then we learned how to
deploy an application with the Cloud Run service.

In the final section, we studied Virtual Kubelet, which is an open source implementation
of Kubernetes' kubelet. We learned the differences between normal kubelets and
Virtual Kubelet. Finally, we deployed Virtual Kubelet on an AKS cluster and deployed an
application to a Virtual Kubelet node.

In the next three chapters, we will be focusing on three different Kubernetes serverless
frameworks, namely Kubeless, OpenWhisk, and OpenFaaS.

Kubernetes Serverless

with Kubeless

Learning Objectives

By the end of this chapter, you will be able to:

Create a Kubernetes cluster with Minikube

Install the Kubeless framework on Kubernetes
Create, update, call, and delete Kubeless functions
List, describe, debug, and monitor Kubeless functions

Create HTTP and PubSub triggers for Kubeless functions

In this chapter, we will first learn about the Kubeless architecture. Then, we'll create our first
Kubeless function, deploy it, and invoke it. You'll also learn how to debug a Kubeless function in
the case of a failure.

210 | Kubernetes Serverless with Kubeless

Introduction to Kubeless

Kubeless is an open source and Kubernetes-native serverless framework that runs on
top of Kubernetes. This allows software developers to deploy code into a Kubernetes
cluster without worrying about the underlying infrastructure. Kubeless is a project by
Bitnami, who is a provider of packaged applications for any platform. Bitnami provides
software installers for over 130 applications, which allow you to quickly and efficiently
deploy these software applications to any platform.

Kubeless functions support multiple programming languages, including Python, PHP,
Ruby, Node.js, Golang, Java, .NET, Ballerina, and custom runtimes. These functions can
be invoked with HTTP(S) calls as well as event triggers with Kafka or NATS messaging
systems. Kubeless also supports Kinesis triggers to associate functions with the AWS
Kinesis service, which is a managed data-streaming service by AWS. Kubeless functions
can even be invoked at specified intervals using scheduled triggers.

Kubeless comes with its own Command-Line Interface (CLI) named kubeless, which is
similar to the kubectl CLI offered by Kubernetes. We can create, deploy, list, and delete
Kubeless functions using this kubeless CLI. Kubeless also has a graphical user interface,
which makes the management of the functions much easier.

In this chapter, we will create our first serverless function on Kubernetes using
Kubeless. Then, we will invoke this function with multiple mechanisms including HTTP,
and PubSub triggers. Once we are familiar with the basics of Kubeless, we will create a
more advanced function that can post messages to Slack.

Kubeless Architecture

The Kubeless framework is an extension of the Kubernetes framework, leveraging
native Kubernetes concepts such as Custom Resource Definitions (CRDs) and custom
controllers. Since Kubeless is built on top of Kubernetes, it can take advantage of all the
great features available in Kubernetes, such as self-healing, autoscaling, load balancing,
and service discovery.

Note

Custom resources are extensions of the Kubernetes API. You can find more about
Kubernetes' custom resources in the official Kubernetes documentation at https://
kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/.

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Introduction to Kubeless | 211

Let's take a look at the Kubernetes architecture in order to understand the core
concepts behind it:

Kubernetes Node

Services

Pod Pod
Kubeless Kubeless

]
[}
]
[}
]
Function Function :
[}
]
[}
1

r
1

[

1

[

1

[

Kubernetes 1
Master ﬁ :

1

1

1

1

1

1

1

i

Figure 7.1: Kubeless architecture diagram

The preceding diagram is similar to the standard Kubernetes architecture with
Kubernetes masters and nodes. There can be one or more Kubernetes masters that are
responsible for overall decision-making in the cluster. Kubernetes nodes are used to
host the Kubernetes pods. These pods contain the functions written by the software
developers. The source code of the functions will be injected into the pods by the
controller using ConfigMaps.

These pods will be managed by the Kubeless controller. During the Kubeless framework
installation process, it will launch an in-cluster controller that will continuously watch
for function resources. When a function is being deployed, this controller will create
relevant services, deployments, and pods with the provided runtime.

The Kubeless framework has three core concepts:
* Functions
* Triggers
* Runtimes
Functions represent the code blocks executed by the Kubeless framework. During

the installation, a CRD named functions.kubeless.io will be created to represent the
Kubeless functions.

212 | Kubernetes Serverless with Kubeless

Triggers represent the invocation mechanism of the function. A Kubeless function will
be invoked whenever it receives a trigger. A single trigger can be associated with one
or many functions. Functions deployed on Kubeless can be triggered using five possible
mechanisms:

* HTTP trigger: This executes through HTTP(S)-based invocations such as HTTP
GET or POST requests.

* Cronlob trigger: This executes through a predefined schedule.
» Kafka trigger: This executes when a message gets published to the Kafka topics.
» NATS trigger: This executes when a message gets published to the NATS topics.

* Kinesis trigger: This executes when records get published to AWS Kinesis data
streams.

Runtimes represent different programming languages that can be used to write and
execute Kubeless functions. A single programming language will be further divided into
multiple runtimes based on the version. As an example, Python 2.7, Python 3.4, Python
3.6, and Python 3.7 are the runtimes supporting the Python programming language.
Kubeless supports runtimes in both the stable and incubator stage. A runtime is
considered stable once it meets certain technical requirements specified by Kubeless.
Incubator runtimes are considered to be in the development stage. Once the specified
technical requirements are fulfilled, runtime maintainers can create a "pull” request in
the Kubeless GitHub repository to move the runtime from the incubator stage to the
stable stage. At the time of writing this book, Ballerina, .NET, Golang, Java, Node.js, PHP,
and Python runtimes are available in the stable stage and JVM and Vertx runtimes are
available in the incubator stage.

Note

The following document defines the technical requirements for a stable runtime:
https://github.com/kubeless/runtimes/blob/master/DEVELOPER_GUIDE.
md#runtime-image-requirements.

https://github.com/kubeless/runtimes/blob/master/DEVELOPER_GUIDE.md#runtime-image-requirements
https://github.com/kubeless/runtimes/blob/master/DEVELOPER_GUIDE.md#runtime-image-requirements

Creating a Kubernetes Cluster | 213

Creating a Kubernetes Cluster

We need to have a working Kubernetes cluster in order to install the Kubeless
framework. You can create your own Kubernetes cluster using tools such as Minikube,
Kubeadm, and Kops. You can also create a Kubernetes cluster using the managed
Kubernetes cluster services provided by public cloud providers such as Google
Kubernetes Engine (GKE), Microsoft's Azure Kubernetes Service (AKS), and Amazon
Elastic Kubernetes Service (Amazon EKS). In the following sections, we will create our
own Kubernetes cluster using Minikube.

Creating a Kubernetes Cluster with Minikube

First, we are going to create our Kubernetes cluster with Minikube. Minikube is a tool
that will install and run Kubernetes locally on your PC. This will create a single-node
Kubernetes cluster inside a Virtual Machine (VM). Minikube is used by the software
developers who want to try Kubernetes locally, but it is not recommended for running
production-grade Kubernetes clusters. We will begin creating our Kubernetes cluster
by performing the following steps:

1. Install VirtualBox.

Since Minikube is running as a VM, we need to install a hypervisor to support the
VMs. We will be installing Oracle VirtualBox, which is a free virtualization software
developed by Oracle Corporation.

Note

VirtualBox can be installed on Ubuntu 18.04 with the APT package manager by
executing the following command in the terminal;

$ sudo apt install virtualbox -y

214 | Kubernetes Serverless with Kubeless

2. Execute the virtualbox command to start Oracle VM VirtualBox Manager, as
shown in the following screenshot:

$ virtualbox

Oracle VM VirtualBox Manager N E ©

File Machine Help

i > . Wl .

New Machine Tools | | Global Tools
Welcome to VirtualBox!

The left part of this window lists all virtual machines and
virtual machine groups on your computer. The list is empty
now because you haven't created any virtual machines yet.

In order to create a new virtual machine, press the New
button in the main tool bar located at the top of the
window.

You can press the F1 key to get instant help, or visit
www.virtualbox.org for more information and latest news.

Figure 7.2: Oracle VM VirtualBox Manager
3. Install minikube.

Now, we are going to install Minikube version 1.2.0, which is the latest version
available at the time of writing this book. First, download the minikube binaries to
your local machine:

$ curl -Lo minikube https://storage.googleapis.com/minikube/releases/
v1.2.0/minikube-1linux-amd64

The output will be as follows:

fserverless § curl -Lo minikube https://storage.googleapis.com/minikube/release
/minikube-linux d64
% Received % Xferd Average Speed Time Time Time Current
1 Spent Left Speed
4 ©:00:44 --:--:-- 735k

Dload Upload Tota
186 39.8M 188 39.8M B 2] 911k B:008:4
fserverless §

Figure 7.3: Downloading the Minikube binaries

Creating a Kubernetes Cluster | 215
4. Then, add execution permission to the minikube binary:
$ chmod +x minikube
The output is as follows:
/serverless $ chmod +x minikube
/serverless
Figure 7.4: Adding execution permissions to Minikube binaries
5.

Finally, move the Minikube binary to the /usr/local/bin/ path location:

$ sudo mv minikube /usr/local/bin/

The result is shown in the following screenshot:

/serverless

sudo mv minikube fusr/local/bin/

5
/serverless §

Figure 7.5:

Moving the Minikube binaries to the path
Verify the installation:

$ minikube version

The result is shown in the following screenshot:

J/serverless s
minikube versio
5

minikube version
n: v1.2.0

/serverless
Figure 7.6: Verifying the Minikube version
Start the Minikube cluster with the minikube start command:

$ minikube start

This will create a VM for Minikube in VirtualBox, as follows:

serverless S minikube start
minikube v1.2.8 on linux (amd64)

@ Creating virtualbox VM (CPUs=2, Memory=2048MB, Disk=20000MB)

Configuring environment for Kubernetes wv1.15.8 on Docker 18.09.6

Figure 7.7: Starting Minikube

216 | Kubernetes Serverless with Kubeless

Now, in the VirtualBox Manager window, you can see a VM named minikube in the
running state:

Oracle VM VirtualBox Manager N E D

File Machine Help

i > - Wi .

New Machine Tools Global Tools

™Y minikube . .
2 Running Welcome to VirtualBox!

The left part of this window lists all virtual machines and
virtual machine groups on your computer. The list is emply
now because you haven't created any virtual machines yet.

In order to create a new virtual machine, press the New
button in the main tool bar located at the top of the
window.

You can press the F1 key to get instant help, or visit
www.virtualbox.org for more information and latest news.

Figure 7.8: Oracle VirtualBox with the Minikube VM
8. Install kubectl.

Now, we are going to install kubectl version 1.15.0, which is the latest version
available at the time of writing this book. First, download the kubectl binaries to
your local machine:

$ curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.15.0/bin/1linux/amd64/kubectl

This will show the following output:

/serverless
1.15.8/bin
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
180 48.9M 100 48.9M <] 8 871k O 0:00:48 0:00:48 --:--:-- 921k
/serverless %

Figure 7.9: Downloading the kubect! binaries

Creating a Kubernetes Cluster | 217

9. Then, add execution permissions to the Minikube binary:
$ chmod +x kubectl

The following screenshot shows the result:

Sserverless chmod +x kubectl

/serverless
Figure 7.10: Adding execution permissions to the kubectl binaries
10. Finally, move the Minikube binary to the /usr/local/bin/ path location:
$ sudo mv kubectl /usr/local/bin/kubectl

The output is as follows:

/serverless sudo mv kubectl fusr/local/bin/kubectl

verless

Figure 7.11: Moving the kubectl binaries to the path
11. Verify the installation:
$ kubectl version

The following will be shown on the screen:

/serverless $ kubectl version

Client Version: version.Info{Major:"1", Minor:"15", GitVersion:"v1.15.8", GitCommit
:"eB8462b5b5dc2584fdcd18ebbecfedfled4da70a529", GitTreeState:"clean", BuildDate:"2810-
06-19T16:40:16Z", GoVersion:"gol.12.5", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"15", GitVersion:"v1.15.8", GitCommit
:"e8462b5b5dc2584fdcd18ebbecfedfled4da70a529", GitTreeState:"clean”, BuildDate:"2819-
06-19T16:32:14Z", GoVersion:"gol.12.5", Compiler:"gc", Platform:"linux/amd64"}

Figure 7.12: Verifying the kubectl version
12. Verify that the kubectl CLI is correctly pointed to the Minikube cluster:
$ kubectl get pods

You should see the following output:

/serverless $ kubectl get pods

No resources found.

Figure 7.13: Verifying that kubectl is pointed to the Minikube cluster

218 | Kubernetes Serverless with Kubeless

Installing Kubeless

Once the Minikube Kubernetes environment is ready, we can install Kubeless on top of
the Kubernetes cluster. Installing Kubeless consists of installing three components:

* The Kubeless framework

* The Kubeless CLI

* The Kubeless Ul
The Kubeless framework will install all the extensions on top of Kubernetes to
support Kubeless features. This includes CRDs, custom controllers, and deployments.
The Kubeless CLI is used to interact with the Kubeless framework for tasks such as
deploying functions, invoking functions, and creating triggers. The Kubeless Ul is a GUI
for the Kubeless framework, which will help you to view, edit, and run functions.

Installing the Kubeless Framework

We are going to install Kubeless version 1.0.3, which is the latest available release at the
time of writing this book.

First, we need to create the kubeless namespace using kubectl create namespace. This
is the default namespace used by Kubeless to store all its objects:

$ kubectl create namespace kubeless

The result is as follows:

/serverless $ kubectl create namespace kubeless

namespace/kubeless created

Figure 7.14: Creating the kubeless namespace

In the next step, we will install the Kubeless framework. We will be using one of the
YAML manifests provided by Kubeless to install the framework. There are multiple yaml
files provided by Kubeless and we have to choose the correct yaml file based on the
Kubernetes environment (for example, rbac, non-rbac, or openshift):

$ kubectl create -f https://github.com/kubeless/kubeless/releases/download/
v1.0.3/kubeless-v1.0.3.yaml

Installing Kubeless | 219

The screen will display the following:

/serverless $ kubectl create -f https://github.com/kubeless/kubeless/releases/down
load/v1.8.3/kubeless-v1.8.3.yaml
configmap/kubeless-config created
deployment.apps/kubeless-controller-manager created
serviceaccount/controller-acct created

clusterrole.rbac.authorization.k8s.io/kubeless-controller-deployer created
clusterrolebinding.rbac.authorization.k8s.io/kubeless-controller-deployer created
customresourcedefinition.apiextensions.k8&s.io/functions.kubeless. io created
customresourcedefinition.apiextensions.k8s.io/httptriggers.kubeless.io created
customresourcedefinition.apiextensions.k8&s.io/cronjobtriggers.kubeless.io created
/serverless §

Figure 7.15: Installing the Kubeless framework

The preceding step will create multiple Kubernetes objects in the kubeless namespace.
This will create a function object as a Custom Resource Definition and Kubeless
controller as a deployment. You can verify that these objects are up and running by
executing the following commands:

$ kubectl get pods -n kubeless
$ kubectl get deployment -n kubeless

$ kubectl get customresourcedefinition

You will see the following on your screen:

/serverless % kubectl get pods -n kubeless

NAME READY STATUS RESTARTS
kubeless-controller-manager-7456bb44b8-nwm7m 3/3 Running @
/serverless %

/serverless % kubectl get deployment -n kubeless

NAME READY UP-TO-DATE AVATLABLE AGE
kubeless-controller-manager 1/1 1 1 ml5s

/serverless %

/serverless $ kubectl get customresourcedefinition
NAME CREATED AT
cronjobtriggers.kubeless.ic 2019-087-85T13:31:42Z
functions. kubeless.io 2019-87-85T13:31:427
httptriggers.kubeless.io 2019-07-05T13:31:427

/serverless %

Figure 7.16: Verifying the Kubeless installation

Now, we have completed the installation of the Kubeless framework successfully. In the
next section, we will install the Kubeless CLI.

220 | Kubernetes Serverless with Kubeless

Installing the Kubeless CLI

Kubeless CLI is the command-line interface for running commands against the
Kubeless framework. kubeless function is the most common one because it allows

you to perform tasks such as deploying, calling, updating, or deleting a function.
Additionally, you can list and describe the functions. Checking the logs or metrics is also
supported through the kubeless function command. You can also manage Kubeless
triggers, topics, and autoscaling from the Kubeless CLI.

Once you have successfully installed the Kubeless framework, the next step is to install
the Kubeless CLI. We are going to use Kubeless CLI version 1.0.3, which is the same
version as the Kubeless framework we installed in the previous section.

First, we need to download the Kubeless CLI zip file:

$ curl -OL https://github.com/kubeless/kubeless/releases/download/v1.0.3/
kubeless_linux-amd64.zip

The result is as follows:

/serverless $ curl -0OL https://github.com/kubeless/kubeless/releases/download/v1.0
.3/kubeless linux-amd64.zip
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upleoad Total Spent Left Speed

166 614 6] 6l4 @ 6] 281 B --1--:1-- 0:00:02 --:1--:1-- 281
100 9854k 1860 9654k 8 B 517k B B9:80:17 8:00:17 --:--:--
/serverless %

Figure 7.17: Downloading the Kubeless binaries
Next, we will extract the zip file:

$ unzip kubeless_linux-amd64.zip

To understand this better, refer to the following output:

/serverless $ unzip kubeless linux-amd64d.zip
Archive: kubeless_linux-amd64.zip
creating: bundles/kubeless linux-amdé

inflating: bundles/kubeless linux-amdé4/kubeless
/serverless %

Figure 7.18: Extracting the Kubeless binaries

Then, move the Kubeless executable to the /usr/local/bin/ path location:

$ sudo mv bundles/kubeless_linux-amd64/kubeless /usr/local/bin/

Installing Kubeless | 221

The following is what you'll see on your screen:

/serverless % sudo mv bundles/kubeless_linux-amd&d4/kubeless fusr/local/bin/

/serverless §

Figure 7.19: Moving the Kubeless binaries to the path

Now, we have successfully installed the Kubeless CLI. We can verify this by running the
following command:

$ kubeless version

Refer to the following screenshot:

Jserverless § kubeless version

Kubeless version: v1.08.3
Jserverless §

Figure 7.20: Verifying the Kubeless version

The Kubeless Ul

The Kubeless Ul is the GUI for Kubeless. It allows you to create, edit, delete, and
execute Kubeless functions with an easy-to-use Ul Execute the following command to
install the Kubeless Ul in the Kubernetes cluster:

$ kubectl create -f https://raw.githubusercontent.com/kubeless/kubeless-ui/
master/k8s.yaml

This will give you the following output:

/serverless 5 kubectl create -f https://raw.githubusercontent.com/kubeless/kubeles
s-ui/master/k8s.yaml

serviceaccount/ui-acct created

clusterrole.rbac.authorization.k8s.io0/kubeless-uli created

clusterrolebinding.rbac.authorization.k8s.io/kubeless-ui created
deployment.extensions/ul created

service/ul created

/serverless %

Figure 7.21: Installing the Kubeless Ul

Once the installation is successful, execute the following command to open the
Kubeless Ul in a browser window. You can reload the browser window if the Kubeless
Ul doesn't show up, since creating the service can take a few minutes:

$ minikube service ui --namespace kubeless

222 | Kubernetes Serverless with Kubeless

This is shown as follows:

@ Kubeless 0

CLUSTER URL

http://localhost:8080

No function found Choose a function on the list
or create a new one

Create Function

Figure 7.22: The Kubeless GUI

We've just completed the installation of the Kubeless Ul, which can be used to create,
edit, delete, and execute Kubeless functions that are similar to the Kubeless CLI.

Kubeless Functions

Once Kubeless is successfully installed, you can now forget about the underlying
infrastructure, including VMs and containers, and focus only on your function logic.
Kubeless functions are code snippets written in one of the supported languages. As we
discussed previously, Kubeless supports multiple programming languages and versions.
You can execute the kubeless get-server-config command to get a list of language
runtimes supported by your Kubeless version:

$ kubeless get-server-config

The result is shown in the following screenshot:

/serverless % kubeless get-server-config
)] Current Server Config:
)] Supported Runtimes are: ballerina®.981.0, dotnetcore2.®, dotnetcorez.l,

val.8, nodejs6, nodejs8, php7.2, python2.7, python3.4, python3.6, python3
ruby2.3, ruby2.4, ruby2.5, jvml.8, nodejs distroless&, nodejsCE8, vertxl.8
Jserverless §

Figure 7.23: Kubeless server configuration

In the following sections, we are going to create, deploy, list, invoke, update, and delete
a Kubeless function.

Kubeless Functions | 223

Creating a Kubeless Function

Every Kubeless function, regardless of the language runtime, has the same format. It
receives two arguments as input and returns a string or object as the response. The
first argument of the function is an event, which includes all the information about the
event source such as the event ID, event time, and event type. The data field inside the
event object contains the body of the function request. The second argument of the
function is named context, which contains general information about the function, such
as its name, timeout, runtime, and memory limits.

The following is a sample Python function that returns the text Welcome to Kubeless
World as the response:

def main(event, context):
return "Welcome to Kubeless World"

You can save the file as hello.py.

Deploying the Kubeless Function

Once the function is ready, you can deploy it to the Kubeless framework. You can

use the kubeless function deploy command to register the function with the
Kubeless framework. In order to deploy a function, you need to provide few pieces of
information, including the function name, the runtime of the function, the file that
contains the function source code, and the method name to be executed when the
function is invoked:

kubeless function deploy hello --runtime python3.7 \
--from-file hello.py \

--handler hello.main

The output is as follows:

/serverless $ kubeless function deploy helle --runtime python3.7 3

> --from-file hello.py \
> --handler hello.main

[6e88] Deploying function...

[ee@e] Function hello submitted for deployment

[ee88] Check the deployment status executing 'kubeless function 1s hello’
/serverless §

Figure 7.24: Deploying a Kubeless function

224 | Kubernetes Serverless with Kubeless

Let's break this command up into a few pieces in order to understand what each part of
the command does:

* kubeless function deploy hello: This tells Kubeless to register a new function
named hello. We can use this name to invoke this function later.

* --runtime python3.7: This tells Kubeless to use the Python 3.7 runtime to run this
function.

* --from-file hello.py: This tells Kubeless to use the code available in the hello.
py file to create the hello function. If you are not in the current file path when
executing the command, you need to specify the full file path.

* --handler hello.main: This specifies the name of the code file and the method
to execute when this function is invoked. This should be in the format of <file-
name>.<function-name>. In our case, the filename is hello and the function name
inside the file is main.

You can find the other options that are available when deploying a function by
executing the kubeless function deploy --help command.
Listing the Kubeless Function

Once you deploy the function, you can verify that the function is deployed successfully
by listing the functions with the kubeless function list command. You should see the
details of all the registered functions as follows:

$ kubeless function list

The following screenshot reflects the result:

Jserverless $ kubeless function list
NAMESPACE HANDLER RUNTIME DEPENDEMNCIES STATUS

default hello.main python3.7 1/1 READY
/serverless §

Figure 7.25: Listing the Kubeless functions with the Kubeless CLI

Note

The same can be achieved using the kubeless function 1ls command.

If you wish to obtain more detailed information about a specific function, you can use
the kubeless function describe command:

$ kubeless function describe hello

Kubeless Functions | 225

It produces the following output:

/serverless § kubeless function describe hello
hello
default
hello.main
python3.7

{"created-by":"kubeless","function":"hello"}
null
] @
Dependencies:
Jserverless g

Figure 7.26: Describing a Kubeless function

Since a Kubeless function is created as a Kubernetes object (that is, a custom resource),
you can also use the Kubectl CLI to get the information about the available functions.
The following is the output from the kubectl get functions command:

$ kubectl get functions

You will get the following output:

/serverless $ kubectl get functions
NAME AGE

hello 13m
/serverless §

Figure 7.27: Listing the Kubeless functions with the kubectl CLI

Invoking the Kubeless Function

Now it's time to invoke our hello function. You can use the kubeless function call
method to invoke the Kubeless function. The hello function will return the text Welcome
to Kubeless World as the response:

$ kubeless function call hello

The output will be as follows:

/serverless % kubeless function call hello
Welcome to Kubeless World

fserverless %

Figure 7.28: Invoking a Kubeless function with the kubeless CLI

Congratulations! You have successfully executed your first Kubeless function.

226 | Kubernetes Serverless with Kubeless

You can also invoke Kubeless functions with the Kubeless UI. Once you open the
Kubeless Ul, you can see the list of functions available on the left-hand side. You can
click on the hello function to open it. Then, click on the Run function button to execute
the function. You can see the expected response of Welcome to Kubeless World
underneath the Response section:

® Kubeless o

CLUSTER URL

@ http/localhost:8080

Functions hello Handler: hello.main

@ hello 1 def main(event, context): Runtime: python3.7
2 return “Welcome to Kubeless World™

3

Request

GET N
© JSON © Text

{ "hello™: "world" }

Response

Welcome to Kubeless World

+ z -

Figure 7.29: Invoking a Kubeless function with the Kubeless Ul

Note

Kubeless functions can also be updated or deleted using the Kubeless Ul.

Updating the Kubeless Function

After successfully invoking our hello function, we are now going to update it to say
hello to anyone. You can update the hello.py file as follows:

def main(event, context):
name = event['data']['name']

return "Hello " + name

Kubeless Functions | 227

You can then execute the kubeless function update command to update the hello
function that we created earlier:

$ kubeless function update hello --from-file hello.py

This will give the following output:

/serverless % kubeless function update hello --from-file hello.py
[eBBB] Redeploying function...

[eBBB] Function hello submitted for deployment
[eeEE] Check the deployment status executing 'kubeless function 1s hello’
/serverless §

Figure 7.30: Updating a Kubeless function with the Kubeless CLI

Now you have to pass the required data when invoking the hello function:

$ kubeless function call hello --data '{"name":"Kubeless World!"}'

This is the output of the preceding code:

/serverless $ kubeless function call hello --data "{"name":"Kubeless World!"}'
Hello Kubeless World!

/serverless g

Figure 7.31: Invoking updated Kubeless functions
You should be able to see Hello Kubeless World! as the output of the preceding
command.
Deleting the Kubeless Function

If you want to delete the function, you can execute the kubeless function delete
command:

$ kubeless function delete hello

This renders the following:

fserverless § kubeless function delete hello

fserverless s

Figure 7.32: Deleting the kubeless function

Once the function is deleted, try listing the function again. It should throw an error, as
follows:

$ kubeless function list hello

228 | Kubernetes Serverless with Kubeless

We would see the following result:

/serverless § kubeless function list hello

[peBe] Error listing fumction hello: functions.kubeless.io "hello" not found
/serverless §

Figure 7.33: Verifying the deletion of the kubeless function

The preceding kubeless function delete command will delete not only the kubeless
function, but, while creating the Kubeless function, the framework creates Kubernetes
objects such as pods and deployment. Those objects will also be deleted when we delete
the kubeless function. You can verify this with the following command:

$ kubectl get pods -1 function=hello

You can see the result as follows:

/serverless % kubectl get pods -1 functiom=hello

No resources found.
fserverless §

Figure 7.34: Verifying the deletion
Now we have learned how to create, deploy, list, invoke, update, and delete Kubeless
functions. Let's move on to an exercise about creating your first Kubeless function.
Exercise 21: Creating Your First Kubeless Function

In this exercise, we will create, deploy, invoke, and later delete a Kubeless function.
Perform the following steps to complete the exercise:

Note

The code files for this exercise can be found at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise21.

1. Create a file with a sample hello function:

$ cat <<EOF >my-function.py
def main(event, context):

return "Welcome to Serverless Architectures with Kubernetes"
EOF

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise21
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise21

Kubeless Functions | 229

This will render the following output:

/serverless § cat =<EOF >my-function.py
> def main(event, context):

return "Welcome to Serverless Architectures with Kubernetes"
EOQF
Jserverless §

Figure 7.35: Creating the my-function.py file

2. Create the lesson-7 namespace and deploy the my-function. py file created
previously:

$ kubectl create namespace lesson-7

$ kubeless function deploy my-function --runtime python3.7 \
--from-file my-function.py \
--handler my-function.main \
--namespace lesson-7

The output is as follows:

/serverless % kubectl create namespace lesson-7
namespace/lesson-7 created
/serverless %
/serverless % kubeless function deploy my-function --runtime python3.7 3
: --from-file my-function.py \
--handler my-function.main Y\
--namespace lesson-7
[eee8] Deploying function...
[@ee8] Function my-function submitted for deployment
[eee8] Check the deployment status executing 'kubeless function 1s my-function®
/serverless $

Figure 7.36: Deploying my-function
3. Verify whether my-function has been deployed correctly:
$ kubeless function list my-function --namespace lesson-7

The output rendered is as follows:

/serverless $ kubeless function list my-function --namespace lesson-7
NAME NAMESPACE HANDLER RUNTIME DEPENDENCIES STATUS

my-function lesson-7 my-function.main python3.7 1/1 READY
/serverless §

Figure 7.37: Verifying my-function has successfully deployed

230 | Kubernetes Serverless with Kubeless

4. Invoke my-function with the kubeless CLI:
$ kubeless function call my-function --namespace lesson-7

It will look like this:

/serverless $ kubeless function call my-function --namespace lesson-7

Welcome to Serverless Architectures with Kubernetes
fserverless %

Figure 7.38: Invoking my-function with the Kubeless CLI
5. Delete my-function and the lesson-7 namespace:

$ kubeless function delete my-function --namespace lesson-7
$ kubectl delete namespace lesson-7

The following is what we get:

Jserverless % kubeless function delete my-function --namespace lesson-7

/serverless $§

Figure 7.39: Deleting my-function with the Kubeless CLI

In this exercise, first, we created a simple Python function, which returned the Welcome
to Serverless Architectures with Kubernetes string as the output and deployed it to
Kubeless. Then, we listed the function to make sure it was created successfully. Then,
we invoked the my-function and successfully returned the expected response of Welcome
to Serverless Architectures with Kubernetes. Finally, we did the cleanup by deleting
the function.

Kubeless HTTP Triggers

In the previous sections, we discussed how to invoke Kubeless functions using the
Kubeless CLI In this section, we are going to demonstrate how to expose these
functions to everyone by creating HTTP triggers.

HTTP triggers are used to execute a Kubeless function through HTTP(S)-based
invocations such as HTTP GET or POST requests. When a function is deployed, Kubeless
will create a Kubernetes service associated with the function with the ClusterIP as the
service type; however, these services are not publicly accessible. In order to make the
function publicly available, we need to create a Kubeless HTTP trigger. This will expose
the Kubeless functions to everyone by using Kubernetes ingress rules.

Kubeless HTTP Triggers | 231

In order to run the HTTP trigger, your Kubernetes cluster must have a running ingress
controller. Once the ingress controller is running in the Kubernetes cluster, you can use
the kubeless trigger http create command to create an HTTP trigger:

$ kubeless trigger http create <trigger-name> --function-name <function-

name>

--function-name flag is used to specify the name of the function that will be associated
with the HTTP trigger.

Note

There is a number of ingress controller add-ons available for Kubernetes, including
NGINX, Kong, Traefik, F5, Contour, and more. You can find them at https://
kubernetes.io/docs/concepts/services-networking/ingress-controllers/.

Exercise 22: Creating an HTTP Trigger for a Kubeless Function

In this exercise, we will first enable the ingress plugin for Minikube. Then, we will create
a function to be executed with HTTP triggers. Finally, we will create an HTTP trigger
and invoke this function with the HTTP trigger.

Note

The code files for this exercise can be found at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise22.

Perform the following steps to complete the exercise:
1. First, we need to enable the ingress add-on in our Minikube cluster:
$ minikube addons enable ingress

This shows the following output:

/serverless % minikube addons enable ingress

ingress was successfully enabled
/serverless

Figure 7.40: Enabling the Minikube add-on

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise22
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise22

232 | Kubernetes Serverless with Kubeless

2. After a couple of minutes, you should be able to see that the nginx-ingress-
controller container has been created in the kube-system namespace, which is the
namespace for the object created by the Kubernetes system:

$ kubectl get pod -n kube-system -1 app.kubernetes.io/name=nginx-ingress-
controller

It shows the following:

/serverless % kubectl get pod -n kube-system -1 app.kubernetes.io/name=nginx-ingre
ss-controller

NAME READY STATUS RESTARTS AGE
nginx-ingress-controller-7b465d9cf8-mraxr 1/1 Running @ 6mM55s
/serverless %

Figure 7.41: Listing the nginx-ingress-controller pod

3. Once the nginx-ingress-controller container is in a running state, we will create
the function to be executed with the HTTP trigger. Create a Python file named
greetings.py with the following content:

import datetime as dt
def main(event, context):
currentHour = dt.datetime.now().hour

greetingMessage = "'

if currentHour < 12:

greetingMessage = 'Hello, Good morning!'
elif currentHour < 18:

greetingMessage = 'Hello, Good afternoon!'
else:

greetingMessage = 'Hello, Good evening!'

return greetingMessage
4. Create the lesson-7 namespace and deploy the greetings.py created earlier:
$ kubectl create namespace lesson-7
$ kubeless function deploy greetings --runtime python3.7 \
--from-file greetings.py \

--handler greetings.main \
--namespace lesson-7

Kubeless HTTP Triggers | 233

Refer to the following output:

rverless % kubeless funmction deploy greetings --runtime python3.7 %
--from-file greetings.py %
--handler gre ngs.main %
--namespace lesson-7

[6E@8] Deploying fumction...
[BB88] Function greet submitted for deployment
[BEBA] Check the deployment status executing 'kubeless functionm 1s greetings’

Figure 7.42: Executing the function with an HTTP trigger
5. Invoke the function and verify that the function is providing the expected output:
$ kubeless function call greetings --namespace lesson-7

Once invoked, the screen will display the following:

fserverless % kubeless function call greetimgs --namespace lesson-7

Hello, Good afternocon!
fserverless %

Figure 7.43: Output for function
6. Now we can create the http trigger for the hello function:

$ kubeless trigger http create greetings \
--function-name greetings \
--namespace lesson-7

The result is as follows:

rverless % kubeless trigger http create greetings
--function-name greetings %

--namespace Llesson-7
[60B8] HTTP trigger greetings created in namespac 53 successtully!

Sserverless %

Figure 7.44: Creating the HTTP trigger

7. List the http triggers; you should be able to see the http trigger for the hello
function:

$ kubeless trigger http list --namespace lesson-7

The list will look something like this:

/serverless % kubeless trigger http list --namespac
NAME NAMESPACE FUNCTION MAME

greetings lesson-7 greetings

fserverless &

Figure 7.45: Listing the HTTP triggers

234 | Kubernetes Serverless with Kubeless

8. This will create an ingress object in the Kubernetes layer. We can list the ingress
objects with the kubectl CLI:

$ kubectl get ingress --namespace lesson-7

This will return the following:

/serverless % Kubectl get ingress --namespace lesson-7
NAME HOSTS ADDRESS PORTS
greetings greetings.192.168.99.1008.nip.1i0 16.8.2.15 8o

/serverless %

/serverless §

Figure 7.46: Listing ingress objects

9. You can see the hostname with the .nip.io domain, which we can use to access
the greetings function over HTTP.

In this case, the hostname is greetings.192.168.99.100.nip.1io. Once you open this
hostname in a web browser, you should be able to see the greeting message in the
browser window (note that your output may be different depending on your local
time):

Mozilla Firefox

greetings.192.168.99.100.nip.io/l X% | =4

&« Cc @ @ - @ »

Hello, Good afternoon!

Figure 7.47: Invoking the function with the HTTP GET request

Kubeless PubSub Triggers

Kubeless functions can be invoked by sending input messages to topics in messaging
systems. This method is known as a PubSub mechanism. Currently, Kubeless supports
two messaging systems, namely, Kafka and NATS.

Kubeless PubSub Triggers | 235

In order to create PubSub triggers in Kubeless, we need to have a running Kafka cluster
or NATS cluster. Once the Kafka or NATS cluster is ready, we can use kubeless trigger
kafka create to create a Kafka trigger or kubeless trigger nats create to create a
NATS trigger and associate our PubSub function with the new trigger:

$ kubeless trigger <trigger-type> create <trigger-name> \
--function-selector <label-query> \

--trigger-topic <topic-name>
Let's discuss what each piece of the command does:

* kubeless trigger <trigger-type> create <trigger-name>: This tells Kubeless to
create a PubSub trigger with the provided name and trigger type. Valid trigger
types are kafka and nats.

e --function-selector <label-query>: This tells us which function should be
associated with this trigger. Kubernetes labels are used to define this relationship
(for example, --function-selector keyl=valuel,key2=value2).

* --trigger-topic <topic-name>: The Kafka broker will listen to this topic and the
function will be triggered when a message is published to it.

The topic is where messages from the producers get published. The Kubeless CLI allows
us to create topics using the kubeless topic command. This allows us to create, delete,
list topics, and publish messages to topics easily.

Exercise 23: Creating a PubSub Trigger for a Kubeless Function

In this exercise, we will first create a Kafka and Zookeeper cluster within our Minikube
environment. Once the Kafka and Zookeeper clusters are ready, we will create a
function to be executed with PubSub triggers. Next, we will create the PubSub topic.
Publishing messages to the created topic will execute the Kubeless function. Perform
the following steps to complete the exercise.

236 | Kubernetes Serverless with Kubeless

Let's invoke a Kubeless function with the PubSub mechanism using Kafka:
1. First, we are going to deploy Kafka and Zookeeper to our Kubernetes cluster:

$ kubectl create -f https://github.com/kubeless/kafka-trigger/releases/
download/v1.0.2/kafka-zookeeper-v1.0.2.yaml

The output will look like the following:

/serverless § kubectl create -f https://github.com/kubeless/kafka-trigger/releases
fdownload/v1.08.2/kafka-zookeeper-v1.0.2.yaml

service/kafka created

service/zoo created

deployment.apps/kafka-trigger-controller created
clusterrole.rbac.authorization.k8s.io/kafka-controller-deployer created

clusterrolebinding.rbac.authorization.k8s.1io/kafka-controller-deployer created
customresourcedefinition.apiextensions.k8s.io/kafkatriggers.kubeless.io created
statefulset.apps/kafka created

service/broker created

statefulset.apps/zoo created

service/zookeeper created

/serverless %

Figure 7.48: Installing Kafka and Zookeeper

2. Verify that two statefulset named kafka and zoo are running in the kubeless
namespace for Kafka and Zookeeper:

$ kubectl get statefulset -n kubeless
$ kubectl get services -n kubeless
$ kubectl get deployment -n kubeless

The following output is seen:

/serverless § kubectl get statefulset -n kubeless
DESIRED CURRENT AGE
1 14m
1 14m
/serverless §
/serverless § kubectl get services -n kubeless
NAME TYPE CLUSTER-IP EXTERNAL - IP PORT(S)
broker ClusterIP None <none> ag92/TCP
kafka ClusterIP 18.59.243.11@ <none= g9Ra2/TCP
Z00 ClusterIP None =none= 9@92/TCP,3888/TCP
zookeeper ClusterIP 18.59.252.232 <nones= 2181/TCP
/serverless $
/serverless $ kubectl get deployment -n kubeless
NAME DESIRED CURRENT UP-TO-DATE AVATLABLE
kafka-trigger-controller 1 1 1 1
kubeless-controller-manager 1 1 1 1
/serverless §

Figure 7.49: Verifying the Kafka and Zookeeper installation

Kubeless PubSub Triggers | 237

3. Once our Kafka and Zookeeper deployment is ready, we can create and deploy the
function to be triggered by PubSub triggers. Create a file named pubsub.py and add
the following content:

def main(event, context):
return "Invoked with Kubeless PubSub Trigger"

4. Let's deploy our function now:

$ kubeless function deploy pubsub --runtime python3.7 \
--from-file pubsub.py \
--handler pubsub.main

The deployment will yield the following:

/serverless $ kubeless function deploy pubsub --runtime python2.7 \
> --from-file pubsub.py %\
> --handler pubsub.main

[ee81] Deploying function...
[BBB2] Function pubsub submitted for deployment
[B882] Check the deployment status executing 'kubeless function ls pubsub’

Figure 7.50: Deploying the pubsub function

5. Once the function is deployed, we can verify the function is successful by listing
the function:

$ kubeless function list pubsub

The listed function will be as follows:

fserverless $ kubeless function list pubsub
NAME NAMESPACE HANDLER RUNTIME DEPENDENCIES STATUS

pubsub default pubsub.main python2.7 1/1 READY
/serverless %

Figure 7.51: Verifying the pubsub function

6. Now, let's create the kafka trigger with the kubeless trigger kafka create
command and associate our pubsub function with the new trigger:

$ kubeless trigger kafka create my-trigger \
--function-selector function=pubsub \
--trigger-topic pubsub-topic

238 | Kubernetes Serverless with Kubeless

It will look as follows:

/serverless $ kubeless trigger kafka create my-trigger --function-selector functio
n=pubsub --trigger-topic pubsub-topic

[BeB1] Kafka trigger my-trigger created in namespace default successfully!
/serverless %

Figure 7.52: Creating the kafka trigger for the pubsub function

7. Now we need a Kubeless topic to publish the messages. Let's create a topic with
the kubeless topic create command. We need to make sure that the topic name
is similar to the one we provided as the --trigger-topic while creating the kafka
trigger in the previous step:

$ kubeless topic create pubsub-topic

8. Okay. Now it's time to test our pubsub function by publishing events to pubsub-
topic:

$ kubeless topic publish --topic pubsub-topic --data "My first message"

9. Check the logs function to verify whether the pubsub function is successfully
invoked:

$ kubectl logs -1 function=pubsub

You should see the published message in the output logs:
My first message

To understand this better, check out the following output:

18.56.8.1 - - [84/Jul/2019:18:17:54 +00880] "GET /healthz HTTP/1.1" 288 2 "" "kube-probe/1.12+" 8/154

My first message

Figure 7.53: Logs of the pubsub function

Monitoring a Kubeless Function

When we have successfully deployed our Kubeless function, we then need to monitor
our function. This can be achieved with the kubeless function top command. This
command will provide us with the following information:

¢ NAME: The name of the Kubeless function

* NAMESPACE: The namespace of the function

Debugging a Kubeless Function | 239

* METHOD: The HTTP method type (for example, GET/POST) when invoking the
function

* TOTAL_CALLS: The total number of invocations

* TOTAL_FAILURES: The number of function failures

* TOTAL_DURATION_SECONDS: The total number of seconds this function has executed
* AVG_DURATION_SECONDS: The average number of seconds this function has executed

* MESSAGE: Any other messages

The following is the kubeless function top output for the hello function:

$ kubeless function top hello

The output will be as follows:

/serverless $ kubeless function top helle

NAME NAMESFPACE METHOD TOTAL_CALLS TOTAL_FATLURES TOTAL DURATION_ SECONDS AVG_DURATION_SECONDS MESSAGE
hello default POST 20 i1 0.196014404296875 0.889800872021484375
/serverless %

Figure 7.54: Viewing the metrics for the hello function

Now that we've monitored the function, it's time to move toward debugging it.

Debugging a Kubeless Function

A Kubeless function can fail at different stages of the function life cycle (for example,
from deployment time to function execution time) due to a number of reasons. In this
section, we are going to debug a function to identify the cause of failure.

In order to demonstrate multiple error scenarios, first, we are going to create a sample
function with the following code block in the debug. py file:

def main(event, context)
name = event['data']['name']
return "Hello " + name
Error Scenario 01
Now, let's try to deploy this function using the kubeless function deploy command:
$ kubeless function deploy debug --runtime python \
--from-file debug.py \

--handler debug.main

240 | Kubernetes Serverless with Kubeless

This will result in Invalid runtime error and Kubeless will display the supported
runtimes. Upon further inspection, we can see that there is a typo in the --runtime
parameter of the kubeless function deploy command.

The resulting output would look like this:

/serverless $ kubeless function deploy debug --runtime python 3
> --from-file debug.py
> --handler debug.main
[BeB0] Invalid runtime: python. Supported runtimes are: ballerina®.981.8, dotne

tcore2.®, dotnetcore2.l, gol.1l@, javal.8, nodejs6, nodejs8, php7.2, python2.7, pyth
on3.4, python3.6, python3.7, ruby2.3, ruby2.4, ruby2.5, jwvml.8, nodejs_distroless8,
nodejsCE8, vertx1.8
/serverless %

Figure 7.55: Deploying the debug function - error

Let's correct this typo and rerun the kubeless function deploy command with the
python3.7 runtime:

$ kubeless function deploy debug --runtime python3.7 \
--from-file debug.py \

--handler debug.main

This time, the function will be successfully deployed into the Kubeless environment. It
should look like the following:

/serverless $ kubeless function deploy debug --runtime python3.7 \
> --from-file debug.py \
> --handler debug.main

[6600] Deploying function...

[6660] Function debug submitted for deployment

[6600] Check the deployment status executing 'kubeless function 1s debug’
/serverless $

Figure 7.56: Deploying the debug function - successful
Error Scenario 02
Now, let's check the status of the function using the kubeless function 1ls command:

$ kubeless function ls debug

To understand this better, refer to the following output:

/serverless § kubeless function ls debug
NAMESPACE HANDLER RUNTIME DEPENDENCIES STATUS

g default debug.main python3.7 B/1 NOT READY
/serverless §

Figure 7.57: Listing the debug function

Debugging a Kubeless Function | 241

You can see that the status is /1 NOT READY. Now, let's check the status of the debug
pod using the kubectl get pods command:

$ kubectl get pods -1 function=debug

Now, refer to the following screenshot for the output:

fserverless § kubectl get pods -1 function=debug
NAME READY STATUS RESTARTS AGE

debug-dd8d8b58-f8cpz 8/1 CrashLoopBackOff 5 4m37s

Figure 7.58: Listing the debug function pods

Here, debug pod is in CrashLoopBackOff status. This error commonly occurs due to either
a syntax error in the function or the dependencies that we specify.

On closer inspection, we could identify that a colon (:) to mark the end of the function
header is missing.

Let's correct this and update our function.
Open the debug.py file and add a colon at the end of the function header:
def main(event, context):
name = event['data']['name']

return "Hello " + name

We will now execute the kubeless function update command to update the function
with the new code file:

$ kubeless function update debug --from-file debug.py

The output is as follows:

/serverless $ kubeless function update debug --from-file debug.py
[eeB3] Redeploying function...

[ee83] Function debug submitted for deployment
[eeB3] Check the deployment status executing 'kubeless function 1s debug-’

Figure 7.59: Updating the debug function

When you execute the kubeless function 1s debug again, you should be able to see that
the function is now ready with the 1/1 READY status:

/serverless % kubeless function 1ls debug

NAME NAMESPACE HANDLER RUNTIME DEPENDENCIES STATUS
debug default debug.main python2.7 1/1 READY

Figure 7.60: Listing the debug function

242 | Kubernetes Serverless with Kubeless

Error Scenario 03

Let's create an example error scenario with our hello function. For this, you can call the
hello function by replacing the key name of the data section with username:

$ kubeless function call debug --data '{"username":"Kubeless"}'

Now, let's see how it looks on the screen:

fserverless § kubeless function call helleo --data '{"username":"Kubeless"}'
[@@81]
[6881] an error on the server ("<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML 2.8//EN\">
<html=>
<head=>
<title>Error: 508 Internal Server Error</title>
<s5tyle type=\"text/css\">
html {background-color: #eee; font-family: sans;}
body {background-color: #fff; border: 1lpx solid #ddd;
padding: 15px; margin: 15px;}
pre {background-color: #eee; border: 1px solid #ddd; padding: 5px;}
=/style>
</head=
<body=>
<hl=Error: 56808 Internal Server Error</hl=
<p=5orry, the requested URL <tt=͇http://35.238.152.1/'</tt>
caused an error:</p=
<pre>Internal Server Error</pre=
</body>
=/html>") has prevented the request from succeeding

Figure 7.61: Invoking the debug function - error

In order to find the possible cause for this failure, we need to check the function logs.
You can execute the kubeless function logs command to view the logs of the hello
function:

$ kubeless function logs debug

The output would look as follows:

18.56.8.1 - - [83/Jul/2019:13:36:17 +080808] "GET fhealthz HTTP/1.1" 268 2 "" "kube-p
robe/1.12+" 8/1280
10.56.8.1 - - [83/Jul/2019:13:36:47 +0808] "GET fhealthz HTTP/1.1" 288 2 "" "kube-p
robe/1.12+" 8/116
10.56.8.1 - - [83/Jul/2019:13:37:17 +0808] "GET fhealthz HTTP/1.1" 288 2 "" "kube-p
robe/1.12+" 8/1068
Traceback (most recent call last):
File "jusr/local/lib/python2.7/dist-packages/bottle.py", line 862, in _handle
return route.call(**args)
File "/usr/local/lib/python2.7/dist-packages/bottle.py", line 1748, in wrapper
rv = callback(*a, **ka)
File "/kubeless.py", line 86, in handler
raise res
KeyError: ‘name'’
18.56.8.1 - - [83/Jul/2019:13:37:29 +08008] "POST / HTTP/1.1" 580 739 "" "kubeless/v
0.0.0 (linux/amde4) kubernetes/$Format" 0/10944

Figure 7.62: Checking the debug function logs

Debugging a Kubeless Function | 243

The first few lines of the output show lines similar to the following code block, which
are internal health checks. As per the logs, we can see that all the calls to the /healthz
endpoint have been successful with the 2060 HTTP success response code:

10.56.0.1 - - [03/Jul/2019:13:36:17 +0000] "GET /healthz HTTP/1.1" 200 2 ""
"kube-probe/1.12+" 0/120

Next, you can see a stack trace of the error messages, as follows, with the possible
cause being the KeyError: 'name' error. The function was expecting a 'name' key, which
was not found during the function execution:

Traceback (most recent call last):

File "/usr/local/lib/python3.7/dist-packages/bottle.py", line 862, in
handle

return route.call(**args)

File "/usr/local/lib/python3.7/dist-packages/bottle.py", line 1740, in
wrapper

rv = callback(*a, **ka)
File "/kubeless.py", line 86, in handler
raise res

KeyError: 'name'

The last line of the error message indicates that HTTP error 500 was returned for the
function call:

10.56.0.1 - - [03/Jul/2019:13:37:29 +0000] "POST / HTTP/1.1" 500 739 ""
"kubeless/v0.0.0 (linux/amd64) kubernetes/$Format" 0/10944

Note

HTTP 500 is the error code returned by the HTTP protocol, which indicates an
Internal Server Error. This means that the server was unable to fulfill the
request due to unexpected conditions.

Apart from kubeless function logs, you can also use the kubectl logs command, which
will return a similar output. You need to pass the -1 parameter, which indicates a label,
in order to only get the logs for a specific function:

$ kubectl logs -1 function=hello

244 | Kubernetes Serverless with Kubeless

The following will be the output:

/serverless $ kubectl logs -1 function=hello
18.56.8.1 - - [B3/Jul/2819:13:59:47 +080008] "GET /healthz HTTP/1.1" 288 2 "" "kube-p
robe/1.12+" 8/128
Traceback (most recent call last):
File "fusrflocal/lib/python2.7/dist-packages/bottle.py", line 862, in handle
return route.call{**args)
File "fusrflocal/lib/python2.7/dist-packages/bottle.py", line 1748, in wrapper

rv = callback(*a, **ka)
File "/kubeless.py", line 86, in handler
raise res
KeyError: 'name’
16.56.8.1 - - [B3/Jul/2019:14:00:88 +8@88] "POST / HTTP/1.1" 588 739 "" "kubeless/v
0.8.0 (linux/amd64) kubernetes/$Format" 8/18694

Figure 7.63: Checking the debug function logs

Use the kubectl get functions --show-labels command to see the labels associated
with the Kubeless functions.

This will yield the following:

fserverless % kubectl get functions --show-labels
MNAME AGE LABELS

hello 45m created-by=kubeless, function=hello

Figure 7.64: Listing the function labels

Let's correct our mistake and pass the correct argument to the debug function:

$ kubeless function call debug --data '{"name":"Kubeless"}'

Now our function has run successfully and has generated Hello Kubeless as its output:

fserverless § kubeless function call debug --data '{"name":"Kubeless"}'

Hello Kubeless

Figure 7.65: Invoking the debug function - successful

Serverless Plugin for Kubeless

The Serverless Framework is a general framework for deploying serverless applications
across different serverless providers. The serverless plugin for Kubeless supports
deploying Kubeless functions. Apart from the plugin for Kubeless, the Serverless
Framework supports serverless applications such as AWS Lambda, Azure Functions,
Google Cloud Functions, Apache OpenWhisk, and Kubeless.

In this section, we will install the serverless framework and create a Kubeless function
using the CLI provided by the serverless framework.

Serverless Plugin for Kubeless | 245

Before we start installing the serverless framework, we need to have Node.js version
6.5.0 or later installed as a prerequisite. So, first, let's install Node.js:

$ curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -

$ sudo apt-get install nodejs -y

The output is as follows:

‘serverless § sudo apt-get install nodejs -y
Reading package lis .. Done
Building dependen ree
Reading > information... Done
he following packages were automatically installed and are no longer required:
grub-pc-bin libnumal
Use 'sudo apt autoremove' to remove them.
he following additional p ages will be installed:
libpython-stdlib libpython2.7-minimal libpython2.7-stdlib python python-minimal pytho
suggested p ages:
python-doc python-tk python2.7-doc binutils binfmt-support
he fTollowing NEW packages will be installed:
libpython-stdlib libpython2.7-minimal libpython2.7-stdlib nodejs python python-minima
pytho -minimal
0 upgraded, 8 newly installed, © to remove and 6 not upgraded.
Need to ge 8 MB of archives.
After this operation, 98.6 MB of additional disk space will be used.

Figure 7.66: Node.js version 6.5.0 installation
Once installed, verify the Node.js version by executing the following command:

$ nodejs -v

Here is the output:

fserverless

Figure 7.67: Node.js version verification

Once the Node.js installation is successful, we will then install the Serverless
Framework by executing the following command:

$ sudo npm install -g serverless

Next, we will verify the serverless version:

$ serverless -v

246 | Kubernetes Serverless with Kubeless

Check the output, as follows:

Jfserverless % serverless -v
l1.46.1

/serverless %

Figure 7.68: Serverless version verification

We have successfully completed the installation of the Serverless Framework. We can
now start creating functions with it.

We can use the serverless create command to create a basic service from a template.
Let's create a project named my-kubeless-project, as follows:

$ serverless create --template kubeless-python --path my-kubeless-project

Let's break the command into pieces in order to understand it:

* --template kubeless-python: Currently, two templates are available for the
Kubeless framework. kubeless-python creates a Python function and kubeless-
nodejs creates a Node.js function.

e --path my-kubeless-project: This defines that this function should be created
under the my-kubeless-project directory. Take a look at the output to understand
it better:

/serverless $ serverless create --template kubeless-python --path my-kubeless-proj
ect

Serverless:

Serverless:

Serverless:
Jserverless §

Figure 7.69: Creation of my-kubeless-project

This command will create a directory named my-kubeless-project and several files
within this directory. First, let's move to the my-kubeless-project directory by executing
the following command:

$ cd my-kubeless-project

Serverless Plugin for Kubeless | 247

The following files are in the my-kubeless-project directory:
* handler.py
* serverless.yml

* package.json

The handler.py file contains a sample Python function, as follows. This is a simple
function that returns a JSON object and the status code of 200:

import json

def hello(event, context):
body = {

"message": "Go Serverless v1.0! Your function executed
successfully!",

"input": event['data'l]

response = {
"statusCode": 200,
"body": json.dumps(body)

return response

It also creates a serverless.yml file, which tells the serverless framework to execute the
hello function inside the handler.py file. In the provider section, it is mentioned that
this is a Kubeless function with a python2.7 runtime. In the plugins section, it defines
the custom plugins required, such as the serverless-kubeless plugin:

Welcome to Serverless!

#

For full config options, check the kubeless plugin docs:
https://github.com/serverless/serverless-kubeless

#

248 | Kubernetes Serverless with Kubeless

For documentation on kubeless itself:

http://kubeless.io

Update the service name below with your own service name

service: my-kubeless-project

Please ensure the serverless-kubeless provider plugin is installed
globally.

$ npm install -g serverless-kubeless
#
...before installing project dependencies to register this provider.

$ npm install

provider:
name: kubeless

runtime: python2.7

plugins:

- serverless-kubeless

functions:
hello:
handler: handler.hello

Finally, the package. json file contains the npm packaging information, such as
dependencies:

{
"name": "my-kubeless-project",
"version": "1.0.0",
"description": "Sample Kubeless Python serverless framework service.",
"dependencies": {
"serverless-kubeless": "%0.4.0"

s

Serverless Plugin for Kubeless | 249

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
1,
"keywords": [
"serverless",
"kubeless"
1,
"author": "The Kubeless Authors",
"license": "Apache-2.0"

}

You can update these files as required to match your business requirements. We are not
going to change these files in this example.

Now, we are going to execute the npm install command, which installs all npm
dependencies, such as the kubeless-serverless plugin:

$ npm install

The output for this is as follows:

/serverless § npm install
npm created a lockfile as package-lock.json. You should commit this file.
npm my-kubeless-project@l.®.0 No repository field.

added 98 packages from 187 contributors and audited 120 packages in 9.282s
)] abiljiti

Figure 7.70: Installing the npm dependencies

Once the dependencies are ready, let's deploy the service:

$ serverless deploy -v

Deploying the service provides us with the following output:

/serverless % serverless deploy -wv
Serverless:
Serverless:
Serverless:
Serverless:

Serverless:
Serverless:
Jserverless §

Figure 7.71: Deploying the service

250 | Kubernetes Serverless with Kubeless

Then, we can deploy the function using the following command:

$ serverless deploy function -f hello

The following screenshot shows the output:

/serverless % serverless deploy function -f hello
Serverless:
Serverless:

/serverless %

Figure 7.72: Deploying the function

When the function is successfully deployed, we can invoke the function with the
serverless invoke command:

$ serverless invoke --function hello -1

Invoking the function renders the following output:

/serverless § serverless invoke --functiom hello -1
Serverless:

{"body": "{\"inputy": \"\", \"message\": \"Go Serverless v1.08! Your function execuf
ed successfully!\"}", "statusCode": 2808}
Jserverless §

Figure 7.73: Invoking the function

You can also use the kubeless function call command to invoke this function:

$ kubeless function call hello

Doing this will provide the following output:

fserverless $ kubeless functiom call hello
{"body": "{\"Inputiy": \"\", \"message\": \"Go Serverless v1.8! Your function execut

ed successfully!\"}", "statusCode": 280}
fserverless §

Figure 7.74: Using the kubeless function call to invoke the function

Once you are done with the function, use serverless remove to delete the function:

$ serverless remove

Serverless Plugin for Kubeless | 251

Here is the output of the preceding code:

fserverless % serverless remove

cerverless:
/serverless %

Figure 7.75: Deleting the function

Note

Execute the serverless logs -f hello command if you encounter any errors
while invoking the function.

Activity 7: Publishing Messages to Slack with Kubeless

Imagine that you need a Slackbot to post messages to your Slack channel. This Slackbot
should be able to post messages to a specific Slack channel using the incoming
webhook integration method. This bot will print a success message if posting the
message to Slack was successful; otherwise, it will print an error message if there were
any errors while sending the message to Slack. In this activity, we will be creating a
Kubeless function that can post messages to a specific Slack channel.

As a prerequisite to this activity, we need to have a Slack workspace with incoming
webhook integration. Execute the following steps to create a Slack workspace and
integrate the incoming webhook:

Solution-Slack Setup

1. Create a Slack workspace.

2. Visit https: //slack.com /create to create a workspace. Enter your email address
and then click on Create.

3. You should receive a six-digit confirmation code to the email that you entered on
the previous page. Enter the received code on the workspace.

4. Add suitable names for our workspace and Slack channel.

5. You will be asked to fill in email IDs for others who are collaborating on the same
project. You can either skip this section or fill in the details and then continue.

6. Now that your Slack channel is ready, click on See Your Channel in Slack.

https://slack.com/create

252 | Kubernetes Serverless with Kubeless

7. Once clicked, we should see our channel.
8. Now we are going to add the Incoming Webhook app to our Slack. From the left
menu, select Add apps under the Apps section.
9. Enter Incoming Webhooks in the search field and then click on Install for Incoming
Webhook app.
10. Click on Add Configuration.
11. Click on Add Incoming WebHooks Integration.
12. Save the webhook URL. We will need this when we are writing the Kubeless
function.
Note
The detailed steps on creating a Slack workspace with incoming webhook
integration, along with the corresponding screenshots, are available on page 422.
Now we are ready to start the activity. Execute the following steps to complete
this activity:
Activity Solution
1. Create a function in any language (supported by Kubeless) that can post messages
to Slack. In this activity, we will write a Python function that performs the
following steps.
2. Use the requests library as a dependency.
3. Send a POST request to the incoming webhook (created in step 2) with an input
message.
4. Print the response of the post request,
5. Deploy the function to the Kubeless framework.
6. Invoke the function.
7. Go to your Slack workspace and verify that the message was successfully posted

to the Slack channel. The final output should look like this:

Summary | 253

my-kubeless - Q #tserverless-course ® @ [a ® ¢ i
sathsara89 % 21]%0]| £ Adda topic ‘7‘ '
v ®
o
’ 3
serverless-course
Save your account and start collaborating
To see what teamwork is like in Slack, take a moment to save your account and invite some
teammates to join your workspace.
Yesterday
sathsara89 7:34 Pm
joined #serverless-course.
sathsara89 7:3¢ P
added an integration to this channel: incoming-webhook
Today
kubeless-bot A#p 11:01 AMm
é\\@ ‘Welcome to Serverless Architectures with Kubeless !!!
[+ @e

Figure 7.76: Verifying whether the message was successfully posted

Note

The solution to the activity can be found on page 422.

Summary

In this chapter, we learned how to deploy a single-node Kubernetes cluster with
Minikube. Then, we installed the Kubeless framework, Kubeless CLI, and Kubeless Ul
on top of our Minikube cluster. Once the Kubernetes cluster and Kubeless framework
were ready, we created our first Kubeless function with Python and deployed it to
Kubeless. Then, we discussed multiple ways of invoking Kubeless functions, namely
with the Kubeless CLI, the Kubeless UI, HTTP triggers, scheduled triggers, and PubSub
triggers. Next, we discussed how to debug common error scenarios that we encounter
while deploying Kubeless functions. Then, we discussed how we can use the serverless
framework to deploy a Kubeless function. Finally, in the activity, we learned how we can
use a Kubeless function to send messages to a Slack channel.

In the next chapter, we shall introduce OpenWhisk, and cover OpenWhisk actions and
triggers.

Introduction to
Apache OpenWhisk

Learning Objectives

By the end of this chapter, you will be able to:
* Run OpenWhisk with IBM Cloud Functions
+ Create, list, invoke, update, and delete OpenWhisk actions
+ Utilize and invoke OpenWhisk web actions and sequences

+ Automate OpenWhisk action invocation with feeds, triggers, and rules

This chapter covers Apache OpenWhisk and how to work with its actions, triggers, and packages.

256 | Introduction to Apache OpenWhisk

Introduction to OpenWhisk

Until now in this book, we have learned about the Kubeless framework, which is an
open source Kubernetes-native serverless framework. We discussed the Kubeless
architecture, and created and worked with the Kubeless functions and triggers. In
this chapter, we shall be learning about OpenWhisk, which is another open source
serverless framework that can be deployed on top of Kubernetes.

OpenWhisk is an open source serverless framework that is part of the Apache Software
Foundation. This was originally developed at IBM with the project code name of Whisk,
and later branded as OpenWhisk once the source code was open sourced. Apache
OpenWhisk supports many programming languages, including Ballerina, Go, Java,
JavaScript, PHP, Python, Ruby, Swift, and .NET Core. It allows us to invoke functions
written in these programming languages in response to events. OpenWhisk supports
many deployment options, such as on-premises and cloud infrastructure.

There are four core components of OpenWhisk:

* Actions: These contain application logic written in one of the supported languages
that will be executed in response to events.

* Sequences: These link multiple actions together to create more complex
processing pipelines.

» Triggers and rules: These automate the invocation of actions by binding them to
external event sources.

» Packages: These combine related actions together for distribution.

The following diagram illustrates how these components interact with each other:

Events

e

/ \
,I.\GltHub/\

N \ Sequence

TN

/ "\

:-. Email /'I—H Trigger }—){ Rule }—4){ Action || || Action ‘
N /
R

Package

Figure 8.1: OpenWhisk core components

Running OpenWhisk with IBM Cloud Functions | 257

In the next section, we will learn how to run Apache OpenWhisk with IBM Cloud
Functions.

Running OpenWhisk with IBM Cloud Functions

OpenWhisk is a framework that can be deployed on-premises or in a cloud
infrastructure. However, OpenWhisk is also available as a managed service from IBM,
the creator of the OpenWhisk project. IBM Cloud Functions is the name for the
managed OpenWhisk implementation on the IBM Cloud infrastructure. This book will
use this service to deploy our serverless functions because IBM Cloud Functions is the
easiest way to start working with OpenWhisk. We will first begin by setting up an IBM
Cloud account.

Exercise 24: Setting Up an IBM Cloud Account

In this exercise, we are going to set up an account on IBM Cloud.

Note

A credit card is not required to register with IBM Cloud.

258 | Introduction to Apache OpenWhisk

The following steps will help you complete the exercise:

1. First, we need to register on IBM Cloud at https: //cloud.ibm.com /registration.

Then, fill in the required data and submit the form. It should look similar to the
following screenshot:

Already have an IBM Cloud account? Log in

Build for free

Join us in the cloud and start building today.

on IBM Cloud
N
Develop for free, no credit card required
ild with 40+ Lite p

Learn more

Pricin
0
4]
(=
o
2
o
a
E IBM may use my contact data to keep me informed of products, services and offerings
8
(&}

You can withdraw your m

™

clicking the unsubscribe link

Figure 8.2: IBM Cloud registration page

https://cloud.ibm.com/registration

Running OpenWhisk with IBM Cloud Functions | 259

Once the registration is complete, you should see the following:

/5 1BM Cloud

Thanks!

To complete your registration, check your email.

Can't find the email? Resend

Cookie Preferences

Figure 8.3: IBM Cloud registration completion page

2. At this point, we will receive an email with an activation link. Click on the Confirm
account button to activate your account, as shown in the following figure:

IBM Cloud =no-reply@cloud.ibm.com= 10:35 PM (0 minutes aga) §y -

tame =

VL
- —
f

(" 5 IBM Cloud

L

Hello Sathsara,

Thank you for signing up for IBM Cloud! Confirm
your account to get started.

By confirming your account, you accept the Terms
of Use.

Welcome and happy building!

Figure 8.4: IBM Cloud Activation Email

260 | Introduction to Apache OpenWhisk

3. When you click on the Confirm account button in the email, we will be taken
to the IBM Cloud welcome screen. Click on the Log in button to log in with the
credentials used to register with IBM Cloud, as shown in the following figure:

5 IBM Cloud

Welcome!
You confirmed your IBM Cloud account, and it is
now activated. Log in to get started.

Cookie Preferences

Figure 8.5: IBM Cloud welcome page

Running OpenWhisk with IBM Cloud Functions | 261

4. Acknowledge the privacy data by clicking on the Proceed button, as shown in the
following figure:

About your IBMid Account Privacy

This notice provides information about accessing your IBMid user account (Account). If you
have previously been presented with a version of this notice, please refer to “Changes since
the previous version of this notice” below for information about the new updates.

+ Changes since the previous version of this notice
+ What data does IBM collect?

+ Why IBM needs your data

+ How your data was obtained

+ How IBM uses your data

+ How IBM protects your data

+ How long we keep your data

Your rights

Figure 8.6: IBM Cloud privacy policy

262 | Introduction to Apache OpenWhisk

5. You can skip the introduction video and proceed to the home page. Now you can
click the hamburger icon ([) in the top-left corner of the screen and select
Functions from the menu, as shown in the following figure:

IBM Cloud Q Catalog Docs Support Manage S arathchandra's Ac...
@ Cloud Foundry Customize & Upgrade account
& Kubernetes

Openshift "= View resources Planned maintenance View events

VPC Infrastructure "

BWmao

Classic Infrastructure

Next event: Tue, Aug 13, 2019 6:30 PM
Migrate the service's databases

Create anapp @

loyment
VMware ing resources in resource group Upcoming
View a summary of resources in your g
account here. Deploy a Kubernetes update =
[] APIManagement a
- Depl vice improvements to some Dubai data ce... I
Create @
Apple Development
@ i P Migrate the service's databases
& Blockchain
'l DevOps
Functions View status Apps Support cases View support
Functions
& Integrate
o + +
@ Managed Solutions E
o .
[® Mabile
(] You can view your aj You can view a summary of your support cases here after
M Observability you submit them. Learn more about how to get SUpport..
[
& Security
7% Watson

‘cloud.ibm.com/openwhisk

Figure 8.7: IBM Cloud home page

Running OpenWhisk with IBM Cloud Functions | 263

6. This will take you to the IBM Cloud functions page (https://cloud.ibm.com/
functions/), as shown in the following figure:

= IBMCloud

Catalog Docs

Sathsara Sarathchandra's Ac..

Support Manage

@) Functions

Getting Started ~
Overview
Pricing
Concepts
=14
i0S SDK

Documentation

Actions

Triggers

APIs

Monitor

Logs [

Namespace Settings

IBM Cloud Functions

Functions-as-a-Service (FaaS) platform based on Apache OpenWhisk

Run your application code without servers, scale it

automatically, and pay nothing when it's not in use.

Start Creating Download CLI

What's New:

+ IAM enablement

- Namespaces can now be explicitly managed and show up on
the dashboard

« Manage Namespace Settings

sathsarag9@gmail.com_dev - ®
Dallas (CF-Based)

« Updated action runtimes
« Increased maximum memary for actions to 2048MB.
« Added support for monitoring the performance of your

actions using metrics.

Figure 8.8: IBM Cloud Functions page

OpenWhisk offers a CLI named wsk to create and manage OpenWhisk entities. Next,
we will install the OpenWhisk CLI, which will be used to interact with the OpenWhisk

platform.

Exercise 25: Installing the IBM Cloud CLI

In this exercise, we are going to install the IBM Cloud CLI with the Cloud Functions
plugin, which supports OpenWhisk:

1. First, we need to download the compressed IBM Cloud CLI file. Use the curl
command with the -Lo flag to download the CLI, as follows:

$ curl -Lo ibm-cli.tar.gz

cli/@.18.0/1inux64

https://clis.cloud.ibm.com/download/bluemix-

264 | Introduction to Apache OpenWhisk

The output should be as follows:

fserverless $ curl -Lo ibm-cli.tar.gz ttps://clis.cloud.1bm.com/download/bluemix
-cli/e8.18.8/1inux64
% Total % Received % Xferd Awverage Speed Time Time Time Current

Dload Upload Total Spent Left Spee
188 128 a 120] 8 32 8 --:--:-- 0:00:83 --:--:--
lg@ 18.7M 100 18.7M c] 189k 8 B8:81:41 ©8:81:41 --:--:-- 154k
/serverless §

Figure 8.9: Downloading the IBM Cloud CLI
2. Next, we will extract the tar.gz file using the tar command as follows:
$ tar zxvf ibm-cli.tar.gz
The output should be as follows:

/serverless % tar zxwf ibm-cli.tar.gz
Bluemix CLI/
Bluemix CLI/bin/
Bluemix CLI/bin/cfcli/
CLI/bin/cfcliscf
LI/bin/ibmcloud
LI/bin/ibmcloud-analytics
LI/bin/NOTICE
LI/bin/LICENSE
LI/autocomplete/
LI/autocomplete/bash_autocomplete
LI/autocomplete/zsh autocomplete
LI/install
Bluemix CLI/uninstall
Bluemix CLI/install bluemix cli
/serverless §

Figure 8.10: Extracting the IBM Cloud CLI

3. Then move the ibmcloud executable file to the /usr/local/bin/ path, as shown in
the following command:

$ sudo mv Bluemix_CLI/bin/ibmcloud /usr/local/bin/ibmcloud
The output should be as follows:

/serverless % sudo mv Bluemix CLI/bin/ibmcloud fusr/local/bin/ibmcloud

fserverless

Figure 8.11: Moving ibmcloud to /usr/local/bin

Running OpenWhisk with IBM Cloud Functions | 265

Now we will log in to IBM Cloud using the IBM Cloud CLI. Execute the following
command, replacing <YOUR_EMAIL> with the email address used when registering
to IBM Cloud. Provide the email and password used during the registration phase
when prompted and set the region number as 5 (us-south), as you can see in the
following command:

$ ibmcloud login -a cloud.ibm.com -o "<YOUR_EMAIL>" -s "dev"

The output should be as follows:
/serverless 5 ibmcloud login -a cloud.ibm.com -o "sathsara8%ggmail.com™ -s "dev"
API endpoint: https://cloud.ibm.com

Email> sathsara89@gmail.com

asswords>

argeted account Sathsara Sarathchandra's Account (478b906284304729bf729e5606ab3538)

Select a region (or press enter to skip):
1. au-syd
. jp-tok
. eu-de
. eu-gb
. us-south
us-east

Enter a number=> 5
argeted region us-south

argeted Cloud Foundry (https://api.ng.bluemix.net)
argeted org sathsaraB9@gmail.com

argeted space dev

API endpoint: https://cloud.ibm.com
us-south
sathsarag89@gmail.com
Sathsara Sarathchandra's Account (478b%06284304729bf729e5606ab3538)
No resource group targeted, use 'ibmcloud target -g RESOURCE_GROUP'
https://api.ng.bluemix.net (API version: 2.128.0)
sathsarag89@gmail.com
dev

[serverless $
Figure 8.12: Logging in to IBM Cloud

Now we will install the Cloud Functions plugin using the ibmcloud CLI, as shown in
the following command. This plugin will be used when we work with OpenWhisk
entities:

$ ibmcloud plugin install cloud-functions

266 | Introduction to Apache OpenWhisk

The output should be as follows:

Jserverless $ ibmcloud plugin install cloud-functions
Looking up 'cloud-functions' from repository 'IBM Cloud'...
Plug-in 'cloud-functions 1.0.32' found in repository 'IBM Cloud'
Attempting to download the binary file
13.88 MiB / 13.88 MiB [] 100.00% 1m9s
13713558 bytes downloaded

Installing binary...

(1] 4

Plug-in 'cloud-functions 1.8.32' was successfully installed into /home/fsathsara/.bluemix/plugins/clou
d-functions. Use 'ibmcloud plugin show cloud-functions' to show its details.

/serverless $

Figure 8.13: Installing Cloud Functions

6. Next, we will provide the target organization (the organization name is your email
address) and the space (which defaults to dev) using the following command:

$ ibmcloud target -o <YOUR_EMAIL> -s dev

The output should be as follows:

[serverless § ibmcloud target -o sathsara89@gmail.com -s dev
Targeted org sathsara89@gmail.com

Targeted space dev

API endpoint: https://cloud.ibm.com
i us-south

sathsaraB9@gmail.com
Sathsara Sarathchandra's Account (478b906284304729bf729e5606ab3538)
Mo resource group targeted, use 'ibmcloud target -g RESOURCE_GROUP'

CF API endpoint: https:/fapi.ng.bluemix.net (API version: 2.128.0)

org: sathsara89@gmail.com

Space: dev

/serverless §

Figure 8.14: Setting the target organization and space

7. Now the configurations are done. We can use ibmcloud wsk to interact with
OpenWhisk entities, as shown in the following command:

$ ibmcloud wsk action list

Running OpenWhisk with IBM Cloud Functions | 267

The output should be as follows:

/serverless § ibmcloud wsk action list

actions
/serverless 5

Figure 8.15: Listing OpenWhisk actions

Note

In this book, we will be using the wsk command to manage OpenWhisk entities
instead of the ibmcloud wsk command provided by IBM Cloud Functions. Both of
them provide the same functionality. The only difference is that wsk is the standard
CLI for OpenWhisk and ibmcloud fn is from the IBM Cloud Functions plugin.

8. Let's create a Linux alias, wsk="ibmcloud wsk". First, open the ~/.bashrc file with
your favorite text editor. In the following command, we will be using the vim text
editor to open the file:

vim ~/.bashrc
Add the following line at the end of the file:
alias wsk="ibmcloud wsk"

9. Source the ~/.bashrc file to apply the changes, as shown in the following
command:

$ source ~/.bashrc

The output should be as follows:

J/serverless $ source ~/.bashrc

Figure 8.16: Sourcing the bashrc file

10. Now we should be able to invoke OpenWhisk with the wsk command. Execute the
following command to verify the installation:

$ wsk --help

268 | Introduction to Apache OpenWhisk

This will print the help page of the wsk command, as shown in the following figure:

/serverless § wsk --help
NAME :
cloud-functions, wsk, functions, fn - IBM Cloud CLI plug-in for IBM Cloud Functions

USAGE:
Issue '"ibmcloud cloud-functions' for detailed help

/serverless §
Figure 8.17: Output for wsk command

Now, let's proceed to the next section on OpenWhisk actions.

OpenWhisk Actions

In OpenWhisk, actions are code snippets written by developers that will be executed
in response to events. These actions can be written in any programming language
supported by OpenWhisk:

* Ballerina
* Go

* Java

» JavaScript
e PHP

* Python

* Ruby

* Swift
.NET Core

Also, we can use a custom Docker image if our preferred language runtime is not
supported by OpenWhisk yet. These actions will receive a JSON object as input, then
perform the necessary processing within the action, and finally return a JSON object
with the processed results. In the following sections, we will focus on how to write,
create, list, invoke, update, and delete OpenWhisk actions using the wsk CLI.

OpenWhisk Actions | 269

Writing Actions for OpenWhisk

When writing OpenWhisk actions with your preferred language, there are few

standards that you must follow. They are as follows:

» Each action should have a function named main, which is the entry point of the
action. The source code can have additional functions, but the main function will

be executed once the action is triggered.

* The function must return a JSON object as the response.

Note

In this chapter, we will be mainly using JavaScript to create the function code.

Let's look at an example in which we create a JavaScript code (random-number. js) that
conforms to the rules we've just mentioned. This is a simple function that generates
a random number between O to 1 and returns the generated number as the function's

response:
function main() {
var randomNumber = Math.random();

return { number: randomNumber 3};

}

Here is a PHP function that conforms to the rules:

<?php
function main()
{
$randomNumber = rand();

return ["number" => $randomNumber];

b

Creating Actions on the OpenWhisk Framework

Now it's time to create an action on the OpenWhisk framework by using the action
code written in the previous section. We will be using the wsk action create command,

which has the following format:

$ wsk action create <action-name> <action-file-name>

270 | Introduction to Apache OpenWhisk

<action-name> is the identifier of the action. It should be unique to prevent naming
conflicts. <action-file-name> is the file that contains the source code of the action. Let's
execute the following command to create an OpenWhisk action named randomNumber
using the action source code in the random-number. js file:

$ wsk action create randomNumber random-number.js

The output we receive from this command looks like this:

/serverless $ wsk action create randomNumber random-number.js

created action randomNumber

Figure 8.18: Creating a randomNumber action

As we can see in the output, whenever an action is successfully created, the CLI prompt
appropriately informs the reader of the status of the action.

The OpenWhisk framework will determine the runtime to execute the action based on
the extension of the source code file. In the preceding scenario, the Node.js 10 runtime
will be selected for the provided . js file. You can use the --kind flag with the wsk action
create command if you want to override the default runtime selected by the OpenWhisk
framework:

$ wsk action create secondRandomNumber random-number.js --kind nodejs:8

The output should be as follows:

/serverless § wsk action create secondRandomMumber random-number.js --kind nodejs:8

created action secondRandomNumber
/serverless §

Figure 8.19: Creating a randomNumber action with the nodejs:8 runtime

The preceding output indicates that secondRandomNumber was created successfully. At
the end of this section, we have deployed two OpenWhisk actions.

Having learned how to create actions on the OpenWhisk framework, next we shall work
on listing OpenWhisk actions.
Listing OpenWhisk Actions

In this section, we are going to list the OpenWhisk actions in our environment with the
wsk CLI using the following command:

$ wsk action list

OpenWhisk Actions | 271

The output should be as follows:

Jserverless $ wsk action list
actions
/sathsarag89@gmail.com dev/secondRandomNumber private nodejs:8

/sathsara89@gmail.com_dev/randomNumber private nodejs:10
fserverless %

Figure 8.20: Listing all actions

From the preceding output, we can see the two actions we created earlier with the
names randomNumber and secondRandomNumber. The wsk action list command lists the
actions and the runtime of these actions, such as nodejs:8 or nodejs:10. By default, the
action list will be sorted based on the last update time, so the most recently updated
action will be at the top of the list. If we want the list to be sorted alphabetically, we can
use the --name-sort (or -n) flag, as shown in the following command:

$ wsk action list --name-sort

The output should be as follows:

fserverless $ wsk action list --pame-sort
actions
/sathsara89@gmail.com_dev/randomNumber private nodejs:18

/sathsaraB89@gmail.com_dev/secondRandomNumber private nodejs:8
Jserverless $

Figure 8.21: Listing all actions sorted by name in ascending order

Invoking OpenWhisk Actions

Now our actions are ready to be invoked. OpenWhisk actions can be invoked in two
ways using the wsk CLI:

* Request-response
* Fire-and-forget
The request-response method is synchronous; the action invocation will wait until the

results are available. On the other hand, the fire-and-forget method is asynchronous.
This will return an ID called the activation ID, which can be used later to get the results.

Here is the standard format of the wsk command to invoke the action:

$ wsk action invoke <action-name>

272 | Introduction to Apache OpenWhisk

Request-Response Invocation Method

In the request-response method, the wsk action invoke command is used with the
--blocking (or -b) flag, which asks the wsk CLI to wait for the invocation results:

$ wsk action invoke randomNumber --blocking
The preceding command will return the following output in the terminal, which

contains the result returned from the method with other metadata about the method
invocation:

ok: invoked /_/randomNumber with id 002738blacee4abba738blaceedabb6@
{
"activationId": "002738blaceedabba738blaceedabb60",

"annotations": [

{
"key": "path",
"value": "your_email_address_dev/randomNumber"
3,
{
"key": "waitTime",
"value": 79
1
{
"key": "kind",
"value": "nodejs:10"
s
{
"key": "timeout",

"value": false

3

OpenWhisk Actions | 273

{
"key": "limits",
"value": {
"concurrency": 1,
"logs": 10,
"memory": 256,
"timeout": 60000
}
1,
{
"key": "initTime",
"value": 39
}

1,
"duration": 46,

"end": 1564829766237,

’I].OgS": []’
"name": "randomNumber",
"namespace": "your_email_address_dev",

"publish": false,
"response": {
"result": {
"number": 0.6488215545330562
s
"status": "success",
"success": true
1
"start": 1564829766191,
"subject": "your_email_address",

"version": "0.0.1"

274 | Introduction to Apache OpenWhisk

We can see the output ("number": 0.6488215545330562) returned by the main function
within the response section of the returned JSON object. This is the random number
generated by the JavaScript function that we wrote previously. The returned JSON
object contains an activation ID ("activationId": "002738b1acee4abba738b1aceedabb60"),
which we can use to get the results later. This output includes other important values,
such as the action invocation status ("status": "success"), the start time ("start":
156482976619), the end time ("end": 1564829766237), and the execution duration
("duration": 46) of this action.

Note

We will discuss how to get the activation results using activationId in the Fire-
and-Forget Invocation Method section.

We can use the --result (or -r) flag if we need to get the result of the action without
the other metadata, as shown in the following code:

$ wsk action invoke randomNumber --result
The output should be as follows:

Jserverless § wsk action invoke randomMumber --result

{

"number”: ©.83875445894018084
}

Jserverless §

Figure 8.22: Invoking the randomNumber action using the request-and-response method
Fire-and-Forget Invocation Method

Action invocations with the fire-and-forget method do not wait for the result of the
action. Instead, they return an activation ID that we can use to get the results of the
action. This invocation method uses a similar command to the request-response
method but without the --blocking (or -b) flag:

$ wsk action invoke randomNumber

The output should be as follows:

Jserverless § wsk action invoke randomNumber
invoked / /randomNumber with id Zb98aded73ed4d43bc9B8aded73edb3bcff

fserverless §

Figure 8.23: Invoking the randomNumber action using the fire-and-forget method

OpenWhisk Actions | 275

In the preceding result, we can see the returned activation ID of
2b90ade473e443bc90ade473e4b3bcff (please note that your activation ID will be different).

Now we can use the wsk activation get command to get the results for a given
activation ID:

$ wsk activation get "<activation_id>"
You need to replace <activation_id> with the value returned when you invoked the
function using the wsk action invoke command:

$ wsk activation get 2b90ade473e443bc90aded73e4b3bcff

ok: got activation 2b90ade473e443bc90ade473e4b3bcff

{
"namespace": "sathsara89@gmail.com_dev",
"name": "randomNumber",
"version": "0.0.2",
"subject": "sathsara89@gmail.com",

"activationId": "2b90@ade473e443bc90ade473e4b3bcff",
"start": 1564832684116,
"end": 1564832684171,
"duration": 55,
"statusCode": 0,
"response": {
"status": "success",
"statusCode": 0,
"success": true,
"result": {

"number": ©.05105974715780626

1,
"logs": L[],
"annotations": [
{
"key": "path",

"value": "sathsara89@gmail.com_dev/randomNumber"

276 | Introduction to Apache OpenWhisk

1
{
"key": "waitTime",
"value": 126
+s
{
"key": "kind",
"value": "nodejs:10"
1,
{
"key": "timeout",
"value": false
1
{
"key": "limits",
"value": {
"concurrency": 1,
"logs": 10,
"memory": 256,
"timeout": 60000
}
s
{
"key": "initTime",
"value": 41
}

1,
"publish": false

OpenWhisk Actions | 277

If you would prefer to retrieve only a summary of the activation, the --summary (or -s)
flag should be provided with the wsk activation get command:

$ wsk activation get <activation-id> --summary

The output from the preceding command will print a summary of the activation details,
as shown in the following screenshot:

/serverless % wsk activation get 2b%98aded73e443bc9Baded73edb3bcff --summary
activation result for '/sathsaraB89@gmail.com dev/randomMumber' (success at 2819-88-
83 17:14:44 +B8530 +0530)

{
}

"number”: ©.85105974715780626

Figure 8.24: The activation summary

The wsk activation result command returns only the results of the action, omitting
any metadata:

$ wsk activation result <activation-id>
The output should be as follows:

/serverless § wsk activation result 2b090aded73ed43bc90aded73edb3beff

{

"number": ©.85185974715788626
}

Figure 8.25: The activation result

The wsk activation list command can be used to list all the activations:

$ wsk activation list

The output should be as follows:

/serverless $ wsk activation list

Datetime Activation ID Kind Start Duration Status
Entity

2019-88-03 17:14:44 2b90aded73ed443bc90aded73edb3bcff nodejs:18 cold 55ms success
sathsarag9...com_dev/randomiNumber:0.8.2

2019-88-03 16:45:38 538319e6054144a78319e6054fc4a73a nodejs:18 cold success
sathsarag9...com_dev/randomNumber:®.8.2

2019-88-03 16:35:19 3c4cl92c40034c8aBcl92c4003acBa34 nodejs:18 cold success
sathsara89...com_dev/randomNumber:®.8.2

Figure 8.26: Listing activations

278 | Introduction to Apache OpenWhisk

The preceding command returns a list of activations sorted by the datetime of the
activation's invocation. The following table describes the information provided by each
column:

Column Description

Datetime Date and time of the action invocation.

Activation ID | Activation ID for the action invocation.

Kind Language runtime.

Start Start method of the runtime container.

Duration Number of milliseconds taken to complete the action.
Status Outcome of the action. Possible values are success,

application error, action developer error, and whisk
internal error.

Entity Fully qualified name of the action.

Figure 8.27: Column description

Updating OpenWhisk Actions

In this section, we will learn how to update the source code of an action once it has
been created on the OpenWhisk platform. We might want to update the action for
several reasons. There could be a bug in the code, or we may simply want to enhance
the code. The wsk action update command can be used to update an OpenWhisk action
using the wsk CLI:

$ wsk action update <action-name> <action-file-name>
We already have an action that prints a random number, which is defined in the random-
number. js function. This function prints a value between 0 and 1, but what if we want to

print a random number between 1 and 100? This can now be done using the following
code:

function main() {
var randomNumber = Math.floor((Math.random() * 100) + 1);

return { number: randomNumber };

}

Then, we can execute the wsk action update command to update the randomNumber
action:

$ wsk action update randomNumber random-number.js

OpenWhisk Actions | 279

The output should be as follows:

/serverless % wsk action update randomNumber random-number.js

updated action randomNumber
Jserverless %

Figure 8.28: Updating the randomNumber action

Now we can verify the result of the updated action by executing the following
command:

$ wsk action invoke randomNumber --result

Jserverless § wsk action invoke randomNumber --result

{

"number": 54

}

fserverless %
Figure 8.29: Invoking the randomNumber action

As we can see, the randomNumber action has returned a number between 1 to 100. We
can invoke the randomNumber function number multiple times to verify that it returns an
output number between 1 and 100.

Deleting OpenWhisk Actions

In this section, we will discuss how to delete an OpenWhisk action. The wsk action
delete command is used to delete OpenWhisk actions:

$ wsk action delete <action-name>
Let's execute the wsk action delete command to delete the randomNumber and
secondRandomNumber actions we created in the preceding sections:
$ wsk action delete randomNumber
$ wsk action delete secondRandomNumber
The output should be as follows:
/serverless % wsk action delete randomNumber

deleted action randomNumber
Sserverless %

Jserverless $ wsk action delete secondRandomNumber
deleted action secondRandomMumber
Jserverless £

Figure 8.30: Deleting the randomNumber and secondRandomNumber actions

280 | Introduction to Apache OpenWhisk

Now we have learned how to write, create, list, invoke, update, and delete OpenWhisk
actions. Let's move on to an exercise in which you will create your first OpenWhisk
action.

Exercise 26: Creating Your First OpenWhisk Action

In this exercise, we will first create a JavaScript function that receives exam marks as
input and returns the exam results using the following criteria:

* Return Pass if marks are equal to or above 60.

* Return Fail if marks are below 60.
Next, we will create an action named examResults in the OpenWhisk framework with
the previously mentioned JavaScript function code. Then, we will invoke the action to
verify that it returns the results as expected. Once the action response is verified, we

will update the action to return the exam grade with the results based on the following
criteria:

* Return Pass with grade A if marks are equal to or above 80.
* Return Pass with grade B if marks are equal to or above 70.
* Return Pass with grade C if marks are equal to or above 60.

e Return Fail if marks are below 60.

Again, we will invoke the action to verify the results and finally delete the action.

Note

The code files for this exercise can be found at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise26.

Perform the following steps to complete the exercise:

1. First, let's create a JavaScript function in the exam-result. js file that will return
the exam results based on the provided exam marks:

function main(params) {

var examResult = ;

if (params.examMarks < @ || params.examMarks > 100) {
examResult = 'ERROR: invalid exam mark';
} else if (params.examMarks >= 60) {

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise26
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise26

OpenWhisk Actions | 281

examResult = 'Pass';
} else {
examResult = 'Fail';

}

return { result: examResult };

3

Now, let's create the OpenWhisk action named examResult from the exam-result.
js file created in step I:

$ wsk action create examResult exam-result.js

The output should be as follows:

/serverless $ wsk action create examResult exam-result.js

created action examResult
f/serverless %

Figure 8.31: Creating the examResult action

Once the action creation is successful, we can invoke the examResult action by
sending a value between 0 to 100 to the examMarks parameter:

$ wsk action invoke examResult --param examMarks 72 -result

The output should be as follows:

/serverless $ wsk action invoke examResult --param examMarkes 72 --result

{
}

"result": "Pass"

fserverless $
Figure 8.32: Invoking the examResult action

At this step, we are going to create a new JavaScript function in exam-result-02. js
to return the exam results with the grade parameter:

function main(params) {

var examResult = ;

if (params.examMarks < @ || params.examMarks > 100) {
examResult = 'ERROR: invalid exam mark';

} else if (params.examMarks > 80) {
examResult = 'Pass with grade A';

} else if (params.examMarks > 70) {
examResult = 'Pass with grade B';

} else if (params.examMarks > 60) {

282 | Introduction to Apache OpenWhisk

examResult = 'Pass with grade C';
} else {
examResult = 'Fail';

return { result: examResult };

3

5. Now, let's update the OpenWhisk action with the previously updated exam-
result-02. js file:

$ wsk action update examResult exam-result-02.js

The output should be as follows:

/serverless $ wsk action update examResult exam-result-82.js

updated action examResult
/serverless %

Figure 8.33: Updating the examResult action

6. Once the action is updated, we can invoke the action multiple times with different
exam marks as parameters to verify the functionality:

$ wsk action invoke examResult --param examMarks 150 --result
$ wsk action invoke examResult --param examMarks 75 --result
$ wsk action in