

Onur Yılmaz

Sathsara Sarathchandra

Create production-ready Kubernetes clusters and
run serverless applications on them

Serverless
Architectures with
Kubernetes

Serverless Architectures with Kubernetes

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Onur Yılmaz and Sathsara Sarathchandra

Managing Editor: Snehal Tambe

Acquisitions Editor: Aditya Date

Production Editor: Samita Warang

Editorial Board: Shubhopriya Banerjee, Bharat Botle, Ewan Buckingham,
Megan Carlisle, Mahesh Dhyani, Manasa Kumar, Alex Mazonowicz, Bridget Neale,
Dominic Pereira, Shiny Poojary, Abhisekh Rane, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray.

First Published: November 2019

Production Reference: 1281119

ISBN: 978-1-83898-327-7

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface 	  i

Chapter 1: Introduction to Serverless 	  1

Introduction to Serverless ...  2

Serverless Origin and Manifesto ... 4

Serverless Use Cases .. 6

Serverless Architecture and Function as a Service (FaaS) .........................  8

Function as a Service (FaaS) ... 12

Exercise 1: Creating an HTTP Function ... 13

Kubernetes and Serverless ..  15

Exercise 2: Packaging an HTTP Function as a Container ................................ 17

Exercise 3: Parameterized HTTP Functions ... 19

Activity 1: Twitter Bot Backend for Bike Points in London ............................ 22

Summary ..  25

Chapter 2: Introduction to Serverless in the Cloud 	  27

 Introduction ..  28

Serverless and the Cloud Evaluation Criteria .. 29

AWS Lambda .. 30

Exercise 4: Creating a Function in AWS Lambda
and Invoking It via the AWS Gateway API .. 32

Azure Functions .. 42

Exercise 5: Creating a Parameterized Function in Azure Functions ............. 44

Google Cloud Functions ... 56

Exercise 6: Creating a Scheduled Function in GCF .. 58

Activity 2: Daily Stand-Up Meeting Reminder Function for Slack ................. 70

Summary ..  73

Chapter 3: Introduction to Serverless Frameworks 	  75

Introduction ...  76

Fn Framework ...  77

Exercise 7: Getting Started with the Fn Framework ....................................... 78

Exercise 8: Running Functions in the Fn Framework ..................................... 83

The Serverless Framework ..  89

Exercise 9: Running Functions with the Serverless Framework ................... 92

Activity 3: Daily Weather Status Function for Slack .....................................  105

Summary ..  108

Chapter 4: Kubernetes Deep Dive 	  111

Introduction to Kubernetes ...  112

Kubernetes Design and Components ..  113

Exercise 10: Starting a Local Kubernetes Cluster ...  116

Kubernetes Client Tool: kubectl ..  118

Exercise 11: Accessing Kubernetes Clusters
Using the Client Tool: kubectl ..  119

Kubernetes Resources ...  123

Pod ...  123

Deployment ..  124

StatefulSet ..  125

Service ...  126

Job and CronJob ...  127

Exercise 12: Installing a Stateful MySQL Database
and Connecting inside Kubernetes ..  129

Activity 4: Collect Gold Prices in a MySQL Database in Kubernetes ..........  134

Summary ..  137

Chapter 5: Production-Ready Kubernetes Clusters 	  139

Introduction ...  140

Kubernetes Setup ...  141

Managed Platforms ...  142

Turnkey Platforms ...  142

Custom Platforms ..  143

Google Kubernetes Engine ..  143

Exercise 13: Creating a Kubernetes Cluster on GCP ....................................  144

Autoscaling Kubernetes Clusters ..  150

 Exercise 14: Autoscaling a GKE Cluster in Production  ...............................  150

Application Migration in Kubernetes Clusters ..  154

Exercise 15: Migrating Applications Running in a GKE Cluster ...................  155

Activity 5: Minimizing the Costs of Serverless Functions
in a GKE Cluster ..  159

Summary ..  161

Chapter 6: Upcoming Serverless Features in Kubernetes 	  163

Introduction to Serverless with Kubernetes ...  164

Introduction to Knative ...  164

Getting Started with Knative on GKE ...  167

Exercise 16: Deploying a Sample Application on Knative ...........................  171

Knative Serving Component  ...  174

Canary Deployment ...  175

Exercise 17: Canary Deployment with Knative ...  176

Knative Monitoring ...  181

Knative Autoscaler ..  183

Exercise 18: Autoscaling with Knative ...  183

Google Cloud Run ..  187

Exercise 19: Deploying Containers on Google Cloud Run ...........................  187

Introduction to Virtual Kubelet ...  191

Exercise 20: Deploying Virtual Kubelet on AKS ..  193

Activity 6: Deploy a Containerized Application
in a Serverless Environment ...  204

Summary ..  206

Chapter 7: Kubernetes Serverless with Kubeless 	  209

Introduction to Kubeless ...  210

Kubeless Architecture ...  210

Creating a Kubernetes Cluster ..  213

Creating a Kubernetes Cluster with Minikube ...  213

Installing Kubeless ..  218

Installing the Kubeless Framework ...  218

Installing the Kubeless CLI ..  220

The Kubeless UI ..  221

Kubeless Functions ...  222

Creating a Kubeless Function ...  223

Deploying the Kubeless Function ..  223

Listing the Kubeless Function ..  224

Invoking the Kubeless Function ...  225

Updating the Kubeless Function ..  226

Deleting the Kubeless Function ...  227

Exercise 21: Creating Your First Kubeless Function .....................................  228

Kubeless HTTP Triggers ..  230

Exercise 22: Creating an HTTP Trigger for a Kubeless Function .................  231

Kubeless PubSub Triggers ..  234

Exercise 23: Creating a PubSub Trigger for a Kubeless Function ...............  235

Monitoring a Kubeless Function ...  238

Debugging a Kubeless Function ..  239

Serverless Plugin for Kubeless ..  244

Activity 7: Publishing Messages to Slack with Kubeless ..............................  251

Summary ..  253

Chapter 8: Introduction to Apache OpenWhisk 	  255

Introduction to OpenWhisk ...  256

Running OpenWhisk with IBM Cloud Functions .....................................  257

Exercise 24: Setting Up an IBM Cloud Account ...  257

Exercise 25: Installing the IBM Cloud CLI ..  263

OpenWhisk Actions ...  268

Writing Actions for OpenWhisk ..  269

Creating Actions on the OpenWhisk Framework ...  269

Listing OpenWhisk Actions ...  270

Invoking OpenWhisk Actions ..  271

Updating OpenWhisk Actions ..  278

Deleting OpenWhisk Actions ..  279

Exercise 26: Creating Your First OpenWhisk Action ....................................  280

OpenWhisk Sequences  ...  283

Exercise 27: Creating OpenWhisk Sequences  ..  287

OpenWhisk Web Actions ...  290

OpenWhisk Feeds, Triggers, and Rules ..  297

OpenWhisk CronJob Triggers  ...  301

Exercise 28: Creating CronJob Triggers  ..  302

OpenWhisk Packages  ...  306

Exercise 29: Creating OpenWhisk Packages  ..  307

Activity 8: Receive Daily Weather Updates via Email ..................................  310

Summary ..  314

Chapter 9: Going Serverless with OpenFaaS 	  317

Introduction to OpenFaaS ...  318

Getting Started with OpenFaas on Your Local Minikube Cluster ..............  320

OpenFaaS Functions ...  325

Creating OpenFaaS Functions  ...  326

Building OpenFaaS Functions  ..  330

Pushing the OpenFaaS Function Image ..  332

Deploying the OpenFaaS Functions  ..  333

Listing the OpenFaaS Functions  ..  334

Invoking OpenFaaS Functions  ...  336

Deleting OpenFaaS Functions  ...  337

Exercise 30: Creating an OpenFaaS Function with Dependencies  ............  337

Deploying and Invoking Functions with OpenFaaS Portal  .........................  340

OpenFaaS Functions with HTML Output ...  345

Exercise 31: Returning HTML Based on Path Parameters  .........................  350

OpenFaaS Function Observability  ..  354

Exercise 32: Installing an OpenFaaS Grafana Dashboard ...........................  357

OpenFaaS Function Autoscaling ..  362

Activity 9: OpenFaaS Form Processor ..  364

Summary ..  368

Appendix 	  371

Index 	  453

About

This section briefly introduces the authors, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software requirements required to complete all of
the included activities and exercises.

>
Preface

ii | Preface

About the Book
Kubernetes has established itself as the standard platform for container management,
orchestration, and deployment. By learning Kubernetes, you'll be able to design your
own serverless architecture by implementing the Function-as-a-service (FaaS) model.

After an accelerated, hands-on overview of the serverless architecture and various
Kubernetes concepts, you'll cover a wide range of real-world development challenges
faced by real-world developers and explore various techniques to overcome them.
You'll learn how to create production-ready Kubernetes clusters and run serverless
applications on them. You'll see how Kubernetes platforms and serverless frameworks
such as Kubeless, Apache OpenWhisk, and OpenFaaS provide the tooling you need
to develop serverless applications on Kubernetes. You'll also learn how to select the
appropriate framework for your upcoming project.

By the end of this book, you'll have the skills and confidence to design your own
serverless applications using the power and flexibility of Kubernetes.

About the Author

Onur Yılmaz is a senior software engineer at a multinational enterprise software
company. He is a Certified Kubernetes Administrator (CKA) and works on Kubernetes
and cloud management systems. He is a keen supporter of cutting-edge technologies
including Docker, Kubernetes, and cloud-native applications. He has one master's and
two bachelor's degrees in the engineering field.

Sathsara Sarathchandra is a DevOps engineer and has experience in building
and managing Kubernetes based production deployments both in the cloud and
on-premises. He has over 8 years of experience, having worked for several companies
ranging from small start-ups to enterprises. He is a Certified Kubernetes Administrator
(CKA) and a Certified Kubernetes Application Developer (CKAD). He holds a master's
degree in business administration and a bachelor's degree in computer science.

Learning Objectives

By the end of this book, you will be able to:

•	 Deploy a Kubernetes cluster locally with Minikube

•	 Use AWS Lambda and Google Cloud Functions

•	 Create, build, and deploy a web page generated by the serverless functions in the
cloud

About the Book | iii

•	 Create a Kubernetes cluster running on the virtual kubelet hardware abstraction

•	 Create, test, troubleshoot, and delete an OpenFass function

•	 Create a sample Slackbot with Apache OpenWhisk actions

Audience

This book is for software developers and DevOps engineers who have basic or
intermediate knowledge about Kubernetes and want to learn how to create serverless
applications that run on Kubernetes. Those who want to design and create serverless
applications running on the cloud, or on-premise Kubernetes clusters, will also find this
book useful.

Approach

This book provides examples of engaging projects that have a direct correlation to
how serverless developers work in the real world with Kubernetes clusters. You'll build
example applications and tackle programming challenges that'll prepare you for large,
complex engineering problems. Each component is designed to engage and stimulate
you so that you can retain and apply what you learn in a practical context with the
maximum impact. By completing the book, you'll walk away feeling capable of tackling
real-world serverless Kubernetes applications development.

Hardware Requirements

For the optimal student experience, we recommend the following hardware
configuration:

•	 Processor: Intel Core i5 or equivalent

•	 Memory: 8 GB RAM (16 GB preferred)

•	 Hard disk: 10 GB available space

•	 Internet connection

Software Requirements

We also recommend that you have the following software installed in advance:

•	 Sublime Text (latest version), Atom IDE (latest version), or another similar text
editor application

•	 Git

iv | Preface

Additional Requirements

•	 Azure account

•	 Google cloud account

•	 AWS account

•	 Docker Hub account

•	 Slack account

Conventions

Code words in the text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Write hello-from-lambda as the function name and Python 3.7 as the runtime."

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Open the AWS
Management Console, write Lambda in the Find Services search box, and click Lambda
- Run Code without Thinking about Servers."

A block of code is set as follows:

import json

def lambda_handler(event, context):

 return {

 'statusCode': '200',

 'body': json.dumps({"message": "hello", "platform": "lambda"}),

 'headers': {

 'Content-Type': 'application/json',

 }

 }

About the Book | v

Installation and Setup

Before we can do awesome things with data, we need to be prepared with the most
productive environment. In this short section, we will see how to do that. Following are
the requisites that need to be fulfilled:

•	 Docker (17.10.0-ce or later)

•	 Hypervisor like Virtualbox, Parallels, VMWareFusion, Hyperkit or VMWare.
Refer this link for more information: https://kubernetes.io/docs/tasks/tools/
install-minikube/#install-a-hypervisor

Additional Resources

The code bundle for this book is also hosted on GitHub at https://github.com/
TrainingByPackt/Serverless-Architectures-with-Kubernetes. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor
https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Learning Objectives

By the end of this chapter, you will be able to:

•	 Identify the benefits of serverless architectures

•	 Create and invoke simple functions on a serverless platform

•	 Create a cloud-native serverless function and package it as a container using Kubernetes

•	 Create a Twitter Bot Backend application and package it in a Docker container

In this chapter, we will explain the serverless architecture, then create our first serverless
function and package it as a container.

Introduction to
Serverless

1

2 | Introduction to Serverless

Introduction to Serverless
Cloud technology right now is in a state of constant transformation to create scalable,
reliable, and robust environments. In order to create such an environment, every
improvement in cloud technology aims to increase both the end user experience and
the developer experience. End users demand fast and robust applications that are
reachable from everywhere in the world. At the same time, developers demand a better
development environment to design, deploy, and maintain their applications in. In the
last decade, the journey of cloud technology has started with cloud computing, where
servers are provisioned in cloud data centers and applications are deployed on the
servers. The transition to cloud data centers decreased costs and removed the need
for responsibility for data centers. However, as billions of people are accessing the
internet and demanding more services, scalability has become a necessity. In order
to scale applications, developers have created smaller microservices that can scale
independently of each other. Microservices are packaged into containers as building
blocks of software architectures to better both the developer and end user experience.
Microservices enhance the developer experience by providing better maintainability
while offering high scalability to end users. However, the flexibility and scalability of
microservices cannot keep up with the enormous user demand. Today, for instance,
millions of banking transactions take place daily, and millions of business-to-business
requests are made to backend systems.

Finally, serverless started gaining attention for creating future-proof and ad
hoc-scalable applications. Serverless designs focus on creating even smaller services
than microservices and they are designed to last much longer into the future. These
nanoservices, or functions, help developers to create more flexible and easier-to-
maintain applications. On the other hand, serverless designs are ad hoc-scalable,
which means if you adopt a serverless design, your services are naturally scaled up
or down with the user requests. These characteristics of serverless have made it the
latest big trend in the industry, and it is now shaping the cloud technology landscape.
In this section, an introduction to serverless technology will be presented, looking at
serverless's evolution, origin, and use cases.

Before diving deeper into serverless design, let's understand the evolution of cloud
technology. In bygone days, the expected process of deploying applications started
with the procurement and deployment of hardware, namely servers. Following that,
operating systems were installed on the servers, and then application packages were
deployed. Finally, the actual code in application packages was executed to implement
business requirements. These four steps are shown in Figure 1.1:

Figure 1.1: Traditional software development

Introduction to Serverless | 3

Organizations started to outsource their data center operations to cloud providers to
improve the scalability and utilization of servers. For instance, if you were developing
an online shopping application, you first needed to buy some servers, wait for their
installation, and operate them daily and deal with their potential problems, caused by
electricity, networking, and misconfiguration. It was difficult to predict the usage level
of servers and not feasible to make huge investments in servers to run applications.
Therefore, both start-ups and large enterprises started to outsource data center
operations to cloud providers. This cleared away the problems related to the first step
of hardware deployment, as shown in Figure 1.2:

Figure 1.2: Software development with cloud computing

With the start of virtualization in cloud computing, operating systems became
virtualized so that multiple virtual machines (VMs) could run on the same bare-metal
machine. This transition removed the second step, and service providers provision
VMs as shown in Fig 1.3. With multiple VMs running on the same hardware, the costs of
running servers decreases and the flexibility of operations increases. In other words,
the low-level concerns of software developers are cleared since both the hardware and
the operating system are now someone else's problem:

Figure 1.3: Software development with virtualization

VMs enable the running of multiple instances on the same hardware. However, using
VMs requires installing a complete operating system for every application. Even for a
basic frontend application, you need to install an operating system, which results in an
overhead of operating system management, leading to limited scalability. Application
developers and the high-level usage of modern applications requires faster and simpler
solutions with better isolation than creating and managing VMs. Containerization
technology solves this issue by running multiple instances of "containerized"
applications on the same operating system. With this level of abstraction, problems
related to operating systems are also removed, and containers are delivered as
application packages, as illustrated in Figure 1.4. Containerization technology enables
a microservices architecture where software is designed as small and scalable services
that interact with each other.

4 | Introduction to Serverless

This architectural approach makes it possible to run modern applications such as
collaborative spreadsheets in Google Drive, live streams of sports events on YouTube,
video conferences on Skype, and many more:

Figure 1.4: Software development with containerization

The next architectural phenomena, serverless, removes the burden of managing
containers and focuses on running the actual code itself. The essential characteristic of
serverless architecture is ad hoc scalability. Applications in serverless architecture are
ad hoc-scalable, which means they are scaled up or down automatically when they are
needed. They could also be scaled down to zero, which means no hardware, network, or
operation costs. With serverless applications, all low-level concerns are outsourced and
managed, and the focus is on the last step – Run the code – as shown in Figure 1.5. With
the serverless design, the focus is on the last step of traditional software development.
In the following section, we will focus on the origin and manifesto of serverless for a
more in-depth introduction:

Figure 1.5: Software development with serverless

Serverless Origin and Manifesto

Serverless is a confusing term since there are various definitions used in conferences,
books, and blogs. Although it theoretically means not having any servers, it practically
means leaving the responsibility of servers to third-party organizations. In other words,
it means not getting rid of servers but server operations. When you run serverless,
someone else handles the procurement, shipping, and installation of your server
operations. This decreases your costs because you do not need to operate servers
or even data centers; furthermore, it lets you focus on the application logic, which
implements your core business function.

The first uses of serverless were seen in articles related to continuous integration
around 2010. When it was first discussed, serverless was considered for building
and packaging applications on the servers of cloud providers. The dramatic increase
in popularity came with the Amazon Web Services (AWS) Lambda launch in 2014.
Furthermore, in 2015, AWS presented API Gateway for the management and triggering
of Lambda functions as it's a single entry point for multiple functions. Therefore,
serverless functions gained traction in 2014 and it became possible to create serverless
architecture applications by using AWS API Gateway in 2015.

Introduction to Serverless | 5

However, the most definitive and complete explanation of serverless was presented in
2016, at the AWS developer conference, as the Serverless Compute Manifesto. It consists
of eight strict rules that define the core ideas behind serverless architecture:

Note

Although it was discussed in various talks at the AWS Summit 2016 conference,
the Serverless Compute Manifesto has no official website or documentation. A
complete list of what the manifesto details can be seen in a presentation by Dr.
Tim Wagner: https://www.slideshare.net/AmazonWebServices/getting-started-with-
aws-lambda-and-the-serverless-cloud.

•	 Functions as the building blocks: In serverless architecture, the building blocks
of development, deployment, and scaling should be the functions. Each function
should be deployed and scaled in isolation, independently of other functions.

•	 No servers, VMs, or containers: The service provider should operate all
computation abstractions for serverless functions, including servers, VMs,
and containers. Users of serverless architecture should not need any further
information about the underlying infrastructure.

•	 No storage: Serverless applications should be designed as ephemeral workloads
that have a fresh environment for every request. If they need to persist some data,
they should use a remote service such as a Database as a Service (DbaaS).

•	 Implicitly fault-tolerant functions: Both the serverless infrastructure and the
deployed applications should be fault-tolerant in order to create a robust, scalable,
and reliable application environment.

•	 Scalability with the request: The underlying infrastructure, including the
computation and network resources, should enable a high level of scalability. In
other words, it is not an option for a serverless environment to fail to scale up
when requests are rising.

•	 No cost for idle time: Serverless providers should only incur costs when serverless
workloads are running. If your function has not received an HTTP request for a
long period, you should not pay any money for the idleness.

•	 Bring Your Own Code (BYOC): Serverless architectures should enable the running
of any code developed and packaged by end users. If you are a Node.Js should
appear together or Go developer, it should be possible for you to deploy your
function within your preferred language to the serverless infrastructure.

https://www.slideshare.net/AmazonWebServices/getting-started-with-aws-lambda-and-the-serverless-cloud
https://www.slideshare.net/AmazonWebServices/getting-started-with-aws-lambda-and-the-serverless-cloud

6 | Introduction to Serverless

•	 Instrumentation: Logs of the functions and the metrics collected over the
function calls should be available to the developers. This makes it possible to
debug and solve problems related to functions. Since they are already running on
remote servers, instrumentation should not create any further burden in terms of
analyzing potential problems.

The original manifesto introduced some best practices and limitations; however, as
cloud technology evolves, the world of serverless applications evolves. This evolution
will make some rules from the manifesto obsolete and will add new rules. In the
following section, use cases of serverless applications are discussed to explain how
serverless is adopted in the industry.

Serverless Use Cases

Serverless applications and designs seem to be avant-garde technologies; however, they
are highly adopted in the industry for reliable, robust, and scalable applications. Any
traditional application that is running on VMs, Docker containers, or Kubernetes can be
designed to run serverless if you want the benefits of serverless designs. Some of the
well-known use cases of serverless architectures are listed here:

•	 Data processing: Interpreting, analyzing, cleansing, and formatting data
are essential steps in big data applications. With the scalability of serverless
architectures, you can quickly filter millions of photos and count the number of
people in them, for instance, without buying any pricey servers. According to a
case report (https://azure.microsoft.com/en-in/blog/a-fast-serverless-big-
data-pipeline-powered-by-a-single-azure-function/), it is possible to create
a serverless application to detect fraudulent transitions from multiple sources
with Azure Functions. To handle 8 million data processing requests, serverless
platforms would be the appropriate choice, with their ad hoc scalability.

•	 Webhooks: Webhooks are HTTP API calls to third-party services to deliver real-
time data. Instead of having servers up and running for webhook backends,
serverless infrastructures can be utilized with lower costs and less maintenance.

•	 Check-out and payment: It is possible to create shopping systems as serverless
applications where each core functionality is designed as an isolated component.
For instance, you can integrate the Stripe API as a remote payment service and use
the Shopify service for cart management in your serverless backend.

https://azure.microsoft.com/en-in/blog/a-fast-serverless-big-data-pipeline-powered-by-a-single-azure-function/
https://azure.microsoft.com/en-in/blog/a-fast-serverless-big-data-pipeline-powered-by-a-single-azure-function/

Introduction to Serverless | 7

•	 Real-time chat applications: Real-time chat applications integrated into Facebook
Messenger, Telegram, or Slack, for instance, are very popular for handling
customer operations, distributing news, tracking sports results, or just for
entertainment. It is possible to create ephemeral serverless functions to respond
to messages or take actions based on message content. The main advantage of
serverless for real-time chat is that it can scale when many people are using it. It
could also scale to zero and cost no money when there is no one using the chat
application.

These use cases illustrate that serverless architectures can be used to design any
modern application. It is also possible to move some parts of monolithic applications
and convert them into serverless functions. If your current online shop is a single Java
web application packaged as a JAR file, you can separate its business functions and
convert them into serverless components. The dissolution of giant monoliths into small
serverless functions helps to solve multiple problems at once. First of all, scalability
will never be an issue for the serverless components of your application. For instance,
if you cannot handle a high amount of payments during holidays, a serverless platform
will automatically scale up the payment functions with the usage levels. Secondly, you
do not need to limit yourself to the programming language of the monolith; you can
develop your functions in any programming language. For instance, if your database
clients are better implemented with Node.js, you can code the database operations of
your online shop in Node.js.

Finally, you can reuse the logic implemented in your monolith since now it is a shared
serverless service. For instance, if you separate the payment operations of your
online shop and create serverless payment functions, you can reuse these payment
functions in your next project. All these benefits make it appealing for start-ups as
well as large enterprises to adopt serverless architectures. In the following section,
serverless architectures will be discussed in more depth, looking specifically at some
implementations.

Possible answers:

•	 Applications with high latency

•	 When observability and metrics are critical for business

•	 When vendor lock-in and ecosystem dependencies are an issue

8 | Introduction to Serverless

Serverless Architecture and Function as a Service (FaaS)
Serverless is a cloud computing design where cloud providers handle the provisioning
of servers. In the previous section, we discussed how operational concerns are
layered and handed over. In this section, we will focus on serverless architectures and
application design using serverless architecture.

In traditional software architecture, all of the components of an application are
installed on servers. For instance, let's assume that you are developing an e-commerce
website in Java and your product information is stored in MySQL. In this case, the
frontend, backend, and database are installed on the same server. End users are
expected to reach the shopping website with the IP address of the server, and thus an
application server such as Apache Tomcat should be running on the server. In addition,
user information and security components are also included in the package, which is
installed on the server. A monolithic e-commerce application is shown in Figure 1.6,
with all four parts, namely the frontend, backend, security, and database:

Figure 1.6: Traditional software architecture

Microservices architecture focuses on creating a loosely coupled and independently
deployable collection of services. For the same e-commerce system, you would still
have frontend, backend, database, and security components, but they would be isolated
units. Furthermore, these components would be packaged as containers and would be
managed by a container orchestrator such as Kubernetes. This enables the installing
and scaling of components independently since they are distributed over multiple
servers. In Figure 1.7, the same four components are installed on the servers and
communicating with each other via Kubernetes networking:

Serverless Architecture and Function as a Service (FaaS) | 9

Figure 1.7: Microservices software architecture

Microservices are deployed to the servers, which are still managed by the operations
teams. With the serverless architecture, the components are converted into third-party
services or functions. For instance, the security of the e-commerce website could be
handled by an Authentication-as-a-Service offering such as Auth0. AWS Relational
Database Service (RDS) can be used as the database of the system. The best option
for the backend logic is to convert it into functions and deploy them into a serverless
platform such as AWS Lambda or Google Cloud Functions. Finally, the frontend could
be served by storage services such as AWS Simple Storage Service (S3) or Google Cloud
Storage.

10 | Introduction to Serverless

With a serverless design, it is only required to define these services for you to have
scalable, robust, and managed applications running in harmony, as shown in Figure 1.8:

Note

Auth0 is a platform for providing authentication and authorization for web,
mobile, and legacy applications. In short, it provides authentication and
authorization as a service, where you can connect any application written in
any language. Further details can be found on its official website: https://auth0.
com.

Figure 1.8: Serverless software architecture

https://auth0.com
https://auth0.com

Serverless Architecture and Function as a Service (FaaS) | 11

Starting from a monolith architecture and first dissolving it into microservice, and then
serverless components is beneficial for multiple reasons:

•	 Cost: Serverless architecture helps to decrease costs in two critical ways. The first
is that the management of the servers is outsourced, and the second is that it only
costs money when the serverless applications are in use.

•	 Scalability: If an application is expected to grow, the current best choice is to
design it as a serverless application since that removes the scalability constraints
related to the infrastructure.

•	 Flexibility: When the scope of deployable units is decreased, serverless provides
more flexibility to innovate, choose better programming languages, and manage
with smaller teams.

These dimensions and how they vary between software architectures is visualized in
Figure 1.9:

Figure 1.9: Benefits of the transition from cost to serverless

When you start with a traditional software development architecture, the transition to
microservices increases scalability and flexibility. However, it does not directly decrease
the cost of running the applications since you are still dealing with the servers. Further
transition to serverless improves both scalability and flexibility while decreasing the
cost. Therefore, it is essential to learn about and implement serverless architectures
for future-proof applications. In the following section, the implementation of serverless
architecture, namely Function as a Service (FaaS), will be presented.

12 | Introduction to Serverless

Function as a Service (FaaS)

FaaS is the most popular and widely adopted implementation of serverless architecture.
All major cloud providers have FaaS products, such as AWS Lambda, Google Cloud
Functions, and Azure Functions. As its name implies, the unit of deployment and
management in FaaS is the function. Functions in this context are no different from any
other function in any other programming language. They are expected to take some
arguments and return values to implement business needs. FaaS platforms handle the
management of servers and make it possible to run event-driven, scalable functions.
The essential properties of a FaaS offering are these:

•	 Stateless: Functions are designed to be stateless and ephemeral operations
where no file is saved to disk and no caches are managed. At every invocation of
a function, it starts quickly with a new environment, and it is removed when it is
done.

•	 Event-triggered: Functions are designed to be triggered directly and based
on events such as cron time expressions, HTTP requests, message queues, and
database operations. For instance, it is possible to call the startConversation
function via an HTTP request when a new chat is started. Likewise, it is possible to
launch the syncUsers function when a new user is added to a database.

•	 Scalable: Functions are designed to run as much as needed in parallel so that
every incoming request is answered and every event is covered.

•	 Managed: Functions are governed by their platform so that the servers and
underlying infrastructure is not a concern for FaaS users.

These properties of functions are covered by cloud providers' offerings, such as AWS
Lambda, Google Cloud Functions, and Azure Functions; and on-premises offerings,
such as Kubeless, Apache OpenWhisk, and OpenFass. With its high popularity, the term
FaaS is mostly used interchangeably with the term serverless. In the following exercise,
we will create a function to handle HTTP requests and illustrate how a serverless
function should be developed.

Serverless Architecture and Function as a Service (FaaS) | 13

Exercise 1: Creating an HTTP Function

In this exercise, we will create an HTTP function to be a part of a serverless platform
and then invoke it via an HTTP request. In order to execute the steps of the exercise,
you will use Docker, text editors, and a terminal.

Note

The code files for the exercises in this chapter can be found here: https://github.
com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/
Lesson01/Exercise1.

To successfully complete the exercise, we need to ensure the following steps are
executed:

1.	 Create a file named function.go with the following content in your favorite text
editor:

package main

import (
 "fmt"
 "net/http"
)
func WelcomeServerless(w http.ResponseWriter, r *http.Request) {
	 fmt.Fprintf(w, "Hello Serverless World!")
}

In this file, we have created an actual function handler to respond when this
function is invoked.

2.	 Create a file named main.go with the following content:

package main

import (
 "fmt"
 "net/http"
)

func main() {
 fmt.Println("Starting the serverless environment..")

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise1

14 | Introduction to Serverless

 http.HandleFunc("/", WelcomeServerless)
 fmt.Println("Function handlers are registered.")

 http.ListenAndServe(":8080", nil)
}

In this file, we have created the environment to serve this function. In general, this
part is expected to be handled by the serverless platform.

3.	 Start a Go development environment with the following command in your
terminal:

docker run -it --rm -p 8080:8080 -v "$(pwd)":/go/src --workdir=/go/src
golang:1.12.5

With that command, a shell prompt will start inside a Docker container for
Go version 1.12.5. In addition, port 8080 of the host system is mapped to the
container, and the current working directory is mapped to /go/src. You will be
able to run commands inside the started Docker container:

Figure 1.10: The Go development environment inside the container

4.	 Start the function handlers with the following command in the shell prompt
opened in step 3: go run *.go.

With the start of the applications, you will see the following lines:

Figure 1.11: The start of the function server

These lines indicate that the main function inside the main.go file is running as

expected.

Kubernetes and Serverless | 15

5.	 Open http://localhost:8080 in your browser:

Figure 1.12: The WelcomeServerless output

The message displayed on the web page reveals that the WelcomeServerless
function is successfully invoked via the HTTP request and the response is
retrieved.

6.	 Press Ctrl + C to exit the function handler and then write exit to stop the
container:

Figure 1.13: Exiting the function handler and container

With this exercise, we demonstrated how we can create a simple function. In addition,
the serverless environment was presented to show how functions are served and
invoked. In the following section, an introduction to Kubernetes and the serverless
environment is given to connect the two cloud computing phenomena.

Kubernetes and Serverless
Serverless and Kubernetes arrived on the cloud computing scene at about the same
time, in 2014. AWS supports serverless through AWS Lambda, whereas Kubernetes
became open source with the support of Google and its long and successful history
in container management. Organizations started to create AWS Lambda functions for
their short-lived temporary tasks, and many start-ups have been focused on products
running on the serverless infrastructure. On the other hand, Kubernetes gained
dramatic adoption in the industry and became the de facto container management
system. It enables running both stateless applications, such as web frontends and
data analysis tools, and stateful applications, such as databases, inside containers. The
containerization of applications and microservices architectures have proven to be
effective for both large enterprises and start-ups.

16 | Introduction to Serverless

Therefore, running microservices and containerized applications is a crucial factor
for successful, scalable, and reliable cloud-native applications. Also, the following two
essential elements strengthen the connection between Kubernetes and serverless
architectures:

•	 Vendor lock-in: Kubernetes isolates the cloud provider and creates a managed
environment for running serverless workloads. In other words, it is not
straightforward to run your AWS Lambda functions in Google Cloud Functions if
you want to move to a new provider next year. However, if you use a Kubernetes-
backed serverless platform, you will be able to quickly move between cloud
providers or even on-premises systems.

•	 Reuse of services: As the mainstream container management system, Kubernetes
runs most of its workload in your cloud environment. It offers an opportunity
to deploy serverless functions side by side with existing services. It makes it
easier to operate, install, connect, and manage both serverless and containerized
applications.

Cloud computing and deployment strategies are always evolving to create more
developer-friendly environments with lower costs. Kubernetes and containerization
adoption has already won the market and the love of developers such that any cloud
computation without Kubernetes won't be seen for a very long time. By providing
the same benefits, serverless architectures are gaining popularity; however, this does
not pose a threat to Kubernetes. On the contrary, serverless applications will make
containerization more accessible, and consequently, Kubernetes will profit. Therefore, it
is essential to learn how to run serverless architectures on Kubernetes to create future-
proof, cloud-native, scalable applications. In the following exercise, we will combine
functions and containers and package our functions as containers.

Possible answers:

•	 Serverless – data preparation

•	 Serverless – ephemeral API operations

•	 Kubernetes – databases

•	 Kubernetes – server-related operations

Kubernetes and Serverless | 17

Exercise 2: Packaging an HTTP Function as a Container

In this exercise, we will package the HTTP function from Exercise 1 as a container to be
a part of a Kubernetes workload. Also, we will run the container and trigger the function
via its container.

Note

The code files for the exercises in this chapter can be found here: https://github.
com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/
Lesson01/Exercise2.

To successfully complete the exercise, we need to ensure the following steps are
executed:

1.	 Create a file named Dockerfile in the same folder as the files from Exercise 1:

FROM golang:1.12.5-alpine3.9 AS builder
ADD . .
RUN go build *.go

FROM alpine:3.9
COPY --from=builder /go/function ./function
RUN chmod +x ./function
ENTRYPOINT ["./function"]

In this multi-stage Dockerfile, the function is built inside the golang:1.12.5-
alpine3.9 container. Then, the binary is copied into the alpine:3.9 container as
the final application package.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise2
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise2
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise2

18 | Introduction to Serverless

2.	 Build the Docker image with the following command in the terminal: docker build
. -t hello-serverless.

Each line of Dockerfile is executed sequentially, and finally, with the last step, the
Docker image is built and tagged: Successfully tagged hello-serverless:latest:

Figure 1.14: The build of the Docker container

3.	 Start a Docker container from the hello-serverless image with the following
command in your Terminal: docker run -it --rm -p 8080:8080 hello-serverless.

With that command, an instance of the Docker image is instantiated with port 8080
mapping the host system to the container. Furthermore, the --rm flag will remove
the container when it is exited. The log lines indicate that the container of the
function is running as expected:

Figure 1.15: The start of the function container

Kubernetes and Serverless | 19

4.	 Open http://localhost:8080 in your browser:

Figure 1.16: The WelcomeServerless output

It reveals that the WelcomeServerless function running in the container was
successfully invoked via the HTTP request, and the response is retrieved.

5.	 Press Ctrl + C to exit the container:

Figure 1.17: Exiting the container

In this exercise, we saw how we can package a simple function as a container. In
addition, the container was started and the function was triggered with the help
of Docker's networking capabilities. In the following exercise, we will implement a
parameterized function to show how to pass values to functions and return different
responses.

Exercise 3: Parameterized HTTP Functions

In this exercise, we will convert the WelcomeServerless function from Exercise 2 into a
parameterized HTTP function. Also, we will run the container and trigger the function
via its container.

Note

The code files for the exercises in this chapter can be found here: https://github.
com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/
Lesson01/Exercise3.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise3
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise3
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Exercise3

20 | Introduction to Serverless

To successfully complete the exercise, we need to ensure that the following steps are
executed:

1.	 Change the contents of function.go from Exercise 2 to the following:

package main

import (
	 "fmt"
	 "net/http"
)

func WelcomeServerless(w http.ResponseWriter, r *http.Request) {

	 names, ok := r.URL.Query()["name"]

 if ok && len(names[0]) > 0 {
 fmt.Fprintf(w, names[0] + ", Hello Serverless World!")
	 } else {
		 fmt.Fprintf(w, "Hello Serverless World!")
	 }
}

In the new version of the WelcomeServerless function, we now take URL
parameters and return responses accordingly.

2.	 Build the Docker image with the following command in your terminal: docker
build . -t hello-serverless.

Each line of Dockerfile is executed sequentially, and with the last step, the Docker
image is built and tagged: Successfully tagged hello-serverless:latest:

Kubernetes and Serverless | 21

Figure 1.18: The build of the Docker container

3.	 Start a Docker container from the hello-serverless image with the following
command in the terminal: docker run -it –rm -p 8080:8080 hello-serverless.

With that command, the function handlers will start on port 8080 of the host
system:

Figure 1.19: The start of the function container

4.	 Open http://localhost:8080 in your browser:

Figure 1.20: The WelcomeServerless output

22 | Introduction to Serverless

It reveals the same response as in the previous exercise. If we provide URL
parameters, we should get personalized Hello Serverless World messages.

5.	 Change the address to http://localhost:8080?name=Ece in your browser and
reload the page. We are now expecting to see a personalized Hello Serverless
World message with the name provided in URL parameters:

Figure 1.21: Personalized WelcomeServerless output

6.	 Press Ctrl + C to exit the container:

Figure 1.22: Exiting the container

In this exercise, how generic functions are used with different parameters was shown.
Personal messages based on input values were returned by a single function that
we deployed. In the following activity, a more complex function will be created and
managed as a container to show how they are implemented in real life.

Activity 1: Twitter Bot Backend for Bike Points in London

The aim of this activity is to create a real-life function for a Twitter bot backend. The
Twitter bot will be used to search for available bike points in London and the number of
available bikes in the corresponding locations. The bot will answer in a natural language
form; therefore, your function will take input for the street name or landmark and
output a complete human-readable sentence.

Transportation data for London is publicly available and accessible via the Transport
for London (TFL) Unified API (https://api.tfl.gov.uk). You are required to use the TFL
API and run your functions inside containers.

https://api.tfl.gov.uk

Kubernetes and Serverless | 23

Once completed, you will have a container running for the function:

Figure 1.23: The running function inside the container

When you query via an HTTP REST API, it should return sentences similar to the
following when bike points are found with available bikes:

Figure 1.24: Function response when bikes are available

When there are no bike points found or no bikes are available at those locations, the
function will return a response similar to the following:

Figure 1.25: Function response when a bike point is located but no bike is found

The function may also provide the following response:

Figure 1.26: Function response when no bike point or bike is found

24 | Introduction to Serverless

Execute the following steps to complete this activity:

1.	 Create a main.go file to register function handlers, as in Exercise 1.

2.	 Create a function.go file for the FindBikes function.

3.	 Create a Dockerfile for building and packaging the function, as in Exercise 2.

4.	 Build the container image with Docker commands.

5.	 Run the container image as a Docker container and make the ports available from
the host system.

6.	 Test the function's HTTP endpoint with different queries.

7.	 Exit the container.

Note

The files main.go, function.go and Dockerfile can be found here: https://github.
com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/
Lesson01/Activity1.

The solution for the activity can be found on page 372.

In this activity, we built the backend of a Twitter bot. We started by defining main and
FindBikes functions. Then we built and packaged this serverless backend as a Docker
container. Finally, we tested it with various inputs to find the closest bike station. With
this real-life example, the background operations of a serverless platform and how to
write serverless functions were illustrated.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Activity1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Activity1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Activity1

Summary | 25

Summary
In this chapter, we first described the journey from traditional to serverless software
development. We discussed how software development has changed over the years
to create a more developer-friendly environment. Following that, we presented the
origin of serverless technology and its official manifesto. Since serverless is a popular
term in the industry, defining some rules helps to design better serverless applications
that integrate easily into various platforms. We then listed use cases for serverless
technology to illustrate how serverless architectures can be used to create any modern
application.

Following an introduction to serverless, FaaS was explored as an implementation of
serverless architectures. We showed how applications are designed in traditional,
microservices, and serverless designs. In addition, the benefits of the transition to
serverless architectures were discussed in detail.

Finally, Kubernetes and serverless technologies were discussed to show how they
support each other. As the mainstream container management system, Kubernetes was
presented, which involved looking at the advantages of running serverless platforms
with it. Containerization and microservices are highly adopted in the industry, and
therefore running serverless workloads as containers was covered, with exercises.
Finally, a real-life example of functions as a backend for a Twitter bot was explored. In
this activity, functions were packaged as containers to show the relationship between
microservices-based, containerized, and FaaS-backed designs.

In the next chapter, we will be introducing serverless architecture in the cloud and
working with cloud services.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Evaluate the criteria for choosing the best serverless FaaS provider

•	 Identify the supported languages, trigger types, and cost structure of major cloud service
providers

•	 Deploy serverless functions to cloud providers and integrate functions with other cloud
services

In this chapter, we will explain the serverless FaaS products of cloud providers, create our first
serverless functions in the cloud, and integrate with other cloud services.

Introduction to
Serverless in the

Cloud

2

28 | Introduction to Serverless in the Cloud

 Introduction
In the previous chapter, the architectural evolution of traditional architectures to
serverless designs was discussed. In addition, the origin and benefits of serverless were
presented to explain its high adoption and success in the industry. In this chapter,
the focus will be on the serverless platforms of cloud providers. Let's start with the
evolution of cloud technology offerings over the years.

At the start of cloud computing, the primary offering of cloud providers was its
provisioned and ready-to-use hardware, namely the infrastructure. Cloud providers
manage hardware and networking operations, and therefore, the product they were
offering was Infrastructure-as-a-Service (IaaS), as illustrated in the following diagram.
All cloud providers are still offering IaaS products as their core functionality, such as
Amazon Elastic Compute Cloud (Amazon EC2) in AWS and Google Compute Engine in
GCP.

In the following years, cloud providers started to offer platforms where developers
could only run their applications. With this abstraction, manual server provisioning,
security updates, and server failures became the concerns of the cloud provider.
These offerings are known as Platform-as-a-Service (PaaS) since they only focus on
running applications and their data on their platforms. Heroku is the most popular
PaaS provider, although each cloud provider has its own PaaS products, such as AWS
Elastic Beanstalk or Google App Engine. Similar to IaaS, PaaS is still in use in software
development.

In the top-level abstraction, the functions of the applications operate as the unit of
control in serverless architectures. This known as Function-as-a-Service (FaaS) and is
offered by all the significant cloud providers in recent years. The abstraction levels from
IaaS to PaaS, and finally to FaaS, can be seen in the following diagram:

 Introduction | 29

Figure 2.1: IaaS to PaaS and FaaS transition

Serverless and the Cloud Evaluation Criteria

In order to analyze the FaaS products on the market, it is beneficial to define some
criteria so that we can compare products in a structured way. The following topics are
essential for every FaaS platform and need detailed investigation before you choose a
cloud provider:

•	 Programming languages: Functions are deployed and managed inside the cloud
provider environments. Therefore, cloud providers define the programming

languages that are supported. It is one of the most significant decision factors
since implementing the functions in another language is not feasible in most
circumstances.

•	 Function triggers: Functions are designed to be triggered by cloud provider
services and external methods. The conventional techniques are scheduled calls,
on-demand calls, and integration with other cloud services, such as databases,
queues, and API gateways.

•	 Cost: The most compelling characteristic of the serverless architecture is its cost-
effectiveness and the mainstream way of calculating the price, that is, pay per
request. It is essential to calculate the actual and projected costs for the feasibility
of long-running projects.

30 | Introduction to Serverless in the Cloud

Cloud providers are expected to be cost-effective, provide as many programming
languages as possible, and support various function triggers. There are also additional
criteria, such as monitoring, operations, and in-house knowledge level, but these are
not directly related to the serverless products of cloud providers. In the upcoming
sections, the three most dominant cloud providers will be discussed in terms of their
serverless platforms: Amazon Web Services, Google Cloud Platform, and Microsoft
Azure.

AWS Lambda

AWS Lambda is the first FaaS offering, and it also created the serverless hype in
the industry. It was made public in 2014 and has been widely adopted in the cloud
computing world by all levels of organizations. It made it possible for start-ups to
create new products in a short amount of time. It also enabled large enterprises such
as Netflix to move event-based triggers to serverless functions. With the opportunity
of removing the server operation burden, AWS Lambda and serverless became the next
trend in the industry. In this section, we will discuss AWS Lambda for programming
language support, trigger types, and cost structure. In addition, our very first serverless
function will be deployed.

Note

The official website of AWS Lambda can be found here if you wish to find out more:
https://aws.amazon.com/lambda.

AWS Lambda supports the Java, Python, Node.js, C#, Ruby, and Go programming
languages when it comes to serverless functions. Furthermore, AWS Lambda provides
an API called AWS Lambda Runtime Interface to enable the integration of any language
as a custom runtime. Therefore, it could be stated that AWS Lambda natively supports
a rich set of popular languages while allowing an extension to other programming
languages.

AWS Lambda is designed to have event-triggered functions. This is where the functions
process the events that have been retrieved from event sources. Within the AWS
ecosystem, various services can be an event source, including the following:

•	 Amazon S3 file storage for instances when new files are added

•	 Amazon Alexa to implement new skills for voice assistance

https://aws.amazon.com/lambda

 Introduction | 31

•	 Amazon CloudWatch Events for the events that occur in the state changes of
cloud resources

•	 Amazon CodeCommit for when developers push new commits to the code
repository

In addition to these services, the essential AWS service for the serverless event source
is the Amazon API Gateway. It has the REST API ability to invoke Lambda functions
over HTTPS, and it permits the management of multiple Lambda functions for different
methods, such as GET, POST, PATCH, and DELETE. In other words, API Gateway creates a
layer between the serverless functions and the outside world. This layer also handles
the security of the Lambda functions by protecting them against Distributed Denial of
Service (DDoS) attacks and defining throttles. The trigger types and the environment
are highly configurable for AWS Lambda functions if you want to integrate with other
AWS services or make them public via the API Gateway.

For the pricing of AWS Lambda, there are two critical points to take note of: the first
one is the request charges and the second one is the compute charges. Request
charges are based on the number of function invocations, while compute charges are
calculated as GB per second. The compute charge is the multiplication of memory size
and execution time:

•	 Memory Size (GB): This is the configured allocated memory for the functions.

•	 Execution time (ms): This is the realized execution time that the functions will be
running for.

In addition, there is a free tier where the first 1 million request charges and 400,000 GB
per second of compute charges are waived monthly. A simple calculation, including the
free tier, can show how cheap running a serverless function could be.

Let's assume that your function is called 30 million times in a month. You have allocated
128 MB of memory, and on average, the function runs for 200 ms:

Request charges:

Price: $0.20 per 1 M requests

Free tier: 1 M

Monthly request: 30 M

Monthly request charge: 29 M x $0.20 / M = $5.80

Compute charges:

32 | Introduction to Serverless in the Cloud

Price: $0.0000166667 per GB per second

Free tier: 400,000 GB per second

Monthly compute: 30 M x 0.2 second x 128 MB / 1024 = 750,000 GB per second

Monthly compute charge: 350,000 x $0.0000166667 = $5.83

Monthly total cost: $5.80 + $5.83 = $11.63

This calculation shows that it is possible to run a serverless AWS Lambda environment
where you receive 1 million daily function calls at a monthly cost of $11.63. This indicates
both how cheap it is to run serverless workloads and the essential characteristics to
consider in serverless economics. In the following exercise, our very first serverless
function will be deployed to AWS Lambda and will be invoked to show the operational
view of the platform.

Note

In order to complete this exercise, you will need to have an active Amazon Web
Services account. You can create an account at https://aws.amazon.com/.

Exercise 4: Creating a Function in AWS Lambda and Invoking It via the AWS

Gateway API

In this exercise, we will be creating our first AWS Lambda function and connecting it to
AWS Gateway API so that we can invoke over its HTTP endpoint.

To successfully complete this exercise, we need to ensure that the following steps are
executed:

1.	 Open the AWS Management Console, write Lambda in the Find Services search
box, and click Lambda - Run Code without Thinking about Servers. The console
will look as follows:

https://aws.amazon.com/

 Introduction | 33

Figure 2.2: AWS Management Console

2.	 Click on Create function in the Lambda functions list, as shown in the following
screenshot:

Figure 2.3: AWS Lambda – functions list

34 | Introduction to Serverless in the Cloud

3.	 Select Author from scratch in the Create function view. Write hello-from-lambda
as the function name and Python 3.7 as the runtime. Click Create function at the
bottom of the screen, as shown in the following screenshot:

Figure 2.4: AWS Lambda – Create function view

4.	 You will be directed to the hello-from-lambda function view, which is where you

 Introduction | 35

5.	 can edit the Function code, as shown in the following screenshot:

Figure 2.5: AWS Lambda – hello-from-lambda

6.	 Change the lambda_handler function as follows:

import json

def lambda_handler(event, context):
 return {
 'statusCode': '200',
 'body': json.dumps({"message": "hello", "platform": "lambda"}),
 'headers': {
 'Content-Type': 'application/json',
 }
 }

36 | Introduction to Serverless in the Cloud

7.	 Click Save at the top of the screen, as shown in the following screenshot:

Figure 2.6: AWS Lambda – hello-from-lambda function code

 Introduction | 37

8.	 Open the Designer view and click Add trigger, as shown in the following
screenshot:

Figure 2.7: AWS Lambda – hello-from-lambda designer view

38 | Introduction to Serverless in the Cloud

9.	 Select API Gateway from the triggers list, as shown in the following screenshot:

Figure 2.8: AWS Lambda – trigger list

 Introduction | 39

10.	 Select Create a new API for the API and Open for the Security configurations on
the trigger configuration screen, as shown in the following screenshot:

Figure 2.9: AWS Lambda – Trigger configuration

On this screen, a new API has been defined in the API Gateway with open security
for the hello-from-lambda function. This configuration ensures that an endpoint
will be created and that it will be accessible without any authentication.

40 | Introduction to Serverless in the Cloud

11.	 Click Add at the bottom of the screen.

You will be redirected to the hello-from-lambda function, with a notification saying
The function is now receiving events from the trigger. In the Designer view,
the function from Lambda is connected to the API Gateway for triggering and
Amazon CloudWatch Logs for logging. In other words, it is now possible to trigger
functions via the API Gateway endpoint and check their outputs in CloudWatch, as
shown in the following screenshot:

Figure 2.10: AWS Lambda – trigger added

 Introduction | 41

12.	 Get the API Gateway endpoint from the API Gateway section, as shown in the
following screenshot:

Figure 2.11: AWS Lambda – trigger URL

13.	 Open the URL in a new tab to trigger the function and get the response, as shown
in the following screenshot:

Figure 2.12: AWS Lambda – function response

This JSON response indicates that the AWS Lambda function is connected via the
API Gateway and working as expected.

42 | Introduction to Serverless in the Cloud

14.	 Return to the Functions list from Step 2, select hello-from-lambda, and choose
Delete from Actions. Then, click Delete in the pop-up window to remove the
function from Lambda, as shown in the following screenshot:

Figure 2.13: AWS Lambda – function deletion

In this exercise, the general flow of creating an AWS Lambda function and connecting
to the AWS Gateway API for HTTP access was shown. In less than 10 steps, it is possible
to have running production-ready services in an AWS Lambda cloud environment. This
exercise has shown you how serverless platforms can make software development fast
and easy. In the following section, the analysis of cloud provider serverless platforms
will continue with Azure Functions by Microsoft.

Azure Functions

Microsoft announced Azure Functions in 2016 as the serverless platform in the
Microsoft Azure cloud. Azure Functions extends its cloud platform with event triggers
from Azure or external services to run serverless workloads. It differentiates by
focusing on the Microsoft supported programming languages and tools that are highly
prevalent in the industry. In this section, Azure Functions will be discussed in terms of
the supported programming languages, trigger types, and cost. Finally, we will deploy
a function that takes parameters from endpoints to Azure Functions to illustrate its
operational side.

Note

The official website of Azure Functions can be found here if you wish to find out
more: https://azure.microsoft.com/en-us/services/functions/.

https://azure.microsoft.com/en-us/services/functions/

 Introduction | 43

The latest version of Azure Functions supports C#, JavaScript in the Node.js runtime,
F#, Java, PowerShell, Python, and Typescript, which is transpired into JavaScript. In
addition, a language extensibility interface is provided for the communication between
the functions runtime and the worker processes over gRPC as a messaging layer. It is
valuable to check the generally available, experimental, and extendible programming
languages supported by Azure Functions before we start utilizing it.

Note

gRPC is a remote procedure call (RPC) system that was initially developed at
Google. It is an open source system that enables cross-platform communication
without language or platform limitations.

Azure Functions are designed to be triggered by various types, such as timers, HTTP,
file operations, queue messages, and events. In addition, input and output bindings
can be specified for functions. These bindings define the input arguments for the
functions and output values to send other services. For instance, it is possible to create
a scheduled function to read files from Blob Storage and create Cosmos DB documents
as outputs. In this example, the function could be defined with a timer trigger, Blob
Storage input binding, and Cosmos DB output binding. Triggers and bindings make
Azure Functions easily integrate to Azure services and the external world.

There are two differences between the cost calculation method and the current prices
of Azure Functions compared to AWS Lambda. The first difference is that the current
computation price of Azure Functions is slightly cheaper, at $0.000016/GB per second.
The second difference is that Azure Functions calculates using observed memory
consumption while the memory limit is preconfigured in AWS Lambda.

In the following exercise, the very first serverless function will be deployed to Azure
Functions and will be invoked to show the operational view of the platform.

Note

In order to complete this exercise, you need to have an active Azure account. You
can create an account at https://signup.azure.com/.

https://signup.azure.com/

44 | Introduction to Serverless in the Cloud

Exercise 5: Creating a Parameterized Function in Azure Functions

In this exercise, we aim to create a parameterized function in Azure and invoke it over
its HTTP endpoint with different parameters.

To successfully complete this exercise, we need to ensure the following steps are
executed:

1.	 Click on Function App in the left menu of the Azure home page, as shown in the
following screenshot:

Figure 2.14: Azure home page

 Introduction | 45

2.	 Click on Create Function App from the Function App list, as shown in the
following screenshot:

Figure 2.15: Function App list

46 | Introduction to Serverless in the Cloud

3.	 Give the app a unique name, such as hello-from-azure, and select Node.js as
the Runtime Stack. Click on Create at the bottom of the page, as shown in the
following screenshot:

Figure 2.16: Creating a Function App

 Introduction | 47

4.	 You will be redirected to the Function App list view. Check for a notification at the
top of the menu. You will see Deployment to resource group 'hello-from-azure' is
in progress, as shown in the following screenshot:

Figure 2.17: Deployment in progress

48 | Introduction to Serverless in the Cloud

Wait a couple of minutes until the deployment is complete:

Figure 2.18: Successful deployment

 Introduction | 49

5.	 Click on + New Function in the hello-from-azure function app view, as shown in
the following screenshot:

Figure 2.19: hello-from-azure function app

50 | Introduction to Serverless in the Cloud

6.	 Select In-portal for function creation inside the Azure web portal as a
development environment and click Continue, as shown in the following
screenshot:

Figure 2.20: Function development environment

 Introduction | 51

7.	 Select Webhook + API and click Create, as shown in the following screenshot:

Figure 2.21: Function trigger types

In this view, it is possible to create functions from templates such as webhooks,
timers, or collaborative templates from the marketplace.

8.	 Write the following function into index.js and click Save:

module.exports = async function (context, req) {
 context.log('JavaScript HTTP trigger function processed a request.');

 if (req.query.name || (req.body && req.body.name)) {
 context.res = {
 status: 200,
 body: "Hello " + (req.query.name || req.body.name) +", it is
your function in Azure!"
 };
 }

52 | Introduction to Serverless in the Cloud

 else {
 context.res = {
 status: 400,
 body: "Please pass a name on the query string or in the
request body."
 };
 }
};

This code exports a function that accepts parameters from the request. The
function creates a personalized message and sends it as output to the users.
The code should be inserted into the code editor, as shown in the following
screenshot:

Figure 2.22: index.js of the hello-from-azure function

9.	 Click on Get function URL and copy the URL inside the popup, as shown in the

 Introduction | 53

10.	 following screenshot:

Figure 2.23: Function URL

11.	 Open the URL you copied in Step 7 into a new tab in the browser, as shown in the
following screenshot:

Figure 2.24: Function response without parameter

Add &name= and your name to the end of the URL and reload the
tab, for example, https://hello-from-azure.azurewebsites.net/api/
HttpTrigger?code=nNrck...&name=Onur, as shown in the following screenshot:

Figure 2.25: Function response with parameter

54 | Introduction to Serverless in the Cloud

These responses show that it is possible to validate and pass parameters to
functions. Passing parameters and their validation is essential for serverless
functions and when considering the possibility of various integration points as
triggers and bindings.

12.	 Return to the Function App list from Step 2, click ... alongside the new function
we've created, and select Delete, as shown in the following screenshot:

Figure 2.26: Deleting a function

Type the name of the function into the pop-up view and click Delete to delete all
the resources. In the confirmation view, a warning indicates that deletion of the
function application is irreversible, as you can see in the following screenshot:

 Introduction | 55

Figure 2.27: Deleting the function and its resources

In the following section, Google Cloud Functions will be discussed in a similar way, and
a more complicated function will be deployed to the cloud provider.

56 | Introduction to Serverless in the Cloud

Google Cloud Functions

Google Cloud Functions was made public in 2017 just after AWS Lambda and Azure
Functions. Serverless functions were already available for the PaaS product of Google,
namely Firebase, before the release of Google Cloud Functions. However, Google Cloud
Functions was made available to all the services inside the Google Cloud Platform as its
core serverless cloud product. In this section, Google Cloud Functions will be discussed
in terms of the supported programming languages, trigger types, and cost. Finally, we
will deploy a function that is periodically invoked by cloud services to Google Cloud
Functions to illustrate its operational side.

Note

The official website of Google Cloud Functions can be found here if you wish to
find out more: https://cloud.google.com/functions/.

Google Cloud Functions (GCF) can be developed in Node.js, Python, and Go. Compared
to the other major cloud providers, GCF supports a small subset of languages. In
addition, there are no publicly available language extension or APIs supported by GCF.
Thus, it is essential to evaluate whether the languages supported by GCF are feasible for
the functions you will develop.

Google Cloud Functions are designed to be associated with triggers and events. Events
happen within your cloud services, such as database changes, new files in the storage
system, or when provisioning new virtual machines. Triggers are the declaration of the
services and related events as inputs to functions. It is possible to create triggers as
HTTP endpoints, Cloud Pub/Sub queue messages, or storage services such as Cloud
Storage and Cloud Firestore. In addition, functions can be connected to the big data
and machine learning services that are provided in the Google Cloud Platform.

The cost calculation of Google Cloud Platform is slightly complex compared to other
cloud providers. This is because it takes the invocations, computation time, and
outbound network data into consideration, while other cloud providers focus only on
invocations and compute time:

•	 Invocations: Function invocations are charged $0.40 for every one million
requests.

https://cloud.google.com/functions/

 Introduction | 57

•	 Compute time: The computation times of the functions are measured from the
time of invocation to their completion in 100 ms increments. For instance, if your
function takes 240 ms to complete, you will be charged for 300 ms of computation
time. There are two units that are used in this calculation – GB per second and
GHz per second. 1 GB of memory is provisioned for a function running for 1
second, and the price of 1 GB per second is $0.0000025. Also, 1 GHz of CPU is
provisioned for a function running for 1 second, and the price of 1 GHz per second
is $0.0000100.

•	 Outbound network data: Data that's transferred from the function to the outside
is measured in GB and charged at $0.12 for every GB of data.

GCF's free tier provides 2 million invocations, 400,000 GB per second, 200,000 GHz
per second of computation time, and 5 GB of outbound network traffic per month.
Compared to AWS or Azure, GCP will cost slightly more since it has higher prices and
more sophisticated calculation methods.

Let's assume that your function is called 30 million times in a month. You have allocated
128 MB of memory, 200 MHz CPU, and on average, the function runs for 200 ms, similar
to the example for AWS Lambda:

Request charges:

Price: $0.40 per 1 M request

Free tier: 2 M

Monthly request: 30 M

Monthly request charge = 28 M x $0.40 / M = $11.2

Compute charges - Memory:

Price: $0.0000025 per GB-second

Free tier: 400,000 GB-Seconds

Monthly compute: 30 M x 0.2 second x 128 MB / 1024 = 750,000 GB-second

Monthly memory charge: 350,000 x $0.0000025 = $0.875

Compute charges - CPU:

Price: $0.0000100 per GHz-second

Free tier: 200,000 GB-Seconds

58 | Introduction to Serverless in the Cloud

Monthly compute: 30 M x 0.2 second x 200 MHz / 1000 GHz = 1,200,000 GHz-second

Monthly CPU charge: 1,000,000 x $0.0000100 = $10

Monthly total cost= $11.2 + $0.875 + $10 = $22.075

Since the unit prices are slightly higher than AWS and Azure, the total monthly cost of
running the same function is more than $22 in GCP, while it was around $11 for AWS and
Azure. Also, any outbound network from the functions to the outside world is critical
when it comes to potential extra costs. Therefore, pricing methods and unit prices
should be analyzed in depth before you choose a serverless cloud platform.

In the following exercise, our very first serverless function will be deployed to GCF and
will be invoked by a scheduled trigger to show the operational view of the platform.

Note

In order to complete this exercise, you need to have an active Google account. You
can create an account at https://console.cloud.google.com/start.

Exercise 6: Creating a Scheduled Function in GCF

In this exercise, we aim to create a scheduled function in Google Cloud Platform and
check its invocation by using cloud scheduler services.

To successfully complete this exercise, we need to ensure the following steps are
executed:

1.	 Click on Cloud Functions in the left menu, which can be found in the Compute
group on the Google Cloud Platform home page, as shown in the following
screenshot:

https://console.cloud.google.com/start

 Introduction | 59

Figure 2.28: Google Cloud Platform home page

2.	 Click on Create function on the Cloud Functions page, as shown in the following
screenshot:

Figure 2.29: Cloud Functions page

60 | Introduction to Serverless in the Cloud

3.	 In the function creation form, change the function name to HelloWorld and select
128 MB for the memory allocation. Ensure that HTTP is selected as the trigger
method and that Go 1.11 is selected as the runtime, as shown in the following
screenshot:

Figure 2.30: Function creation form

4.	 Change function.go using the inline editor inside the browser so that it has the
following content:

package p

import (
	 "fmt"
	 "net/http"
)

func HelloWorld(w http.ResponseWriter, r *http.Request) {
	 fmt.Fprint(w, "Hello World from Google Cloud Functions!")
	 return
}

 Introduction | 61

This code segment creates a HelloWorld function with a static message printed to
the output. The code should be inserted into function.go in the code editor, as
shown in the following screenshot:

Figure 2.31: Function inline editor

5.	 Copy the URL in the form below the Trigger selection box to invoke the function,
as shown in the following screenshot:

Figure 2.32: Function trigger URL

62 | Introduction to Serverless in the Cloud

6.	 Click on the Create button at the end of the form. With this configuration, the
code from step 4 will be packaged and deployed to Google Cloud Platform. In
addition, a trigger URL will be assigned to the function to be reachable from
outside, as shown in the following screenshot:

Figure 2.33: Function creation

 Introduction | 63

Wait a couple of minutes until the HelloWorld function in the function list has a
green check icon next to it, as shown in the following screenshot:

Figure 2.34: Function deployment

7.	 Open the URL you copied in step 5 into a new tab in your browser, as shown in the
following screenshot:

Figure 2.35: Function response

The response shows that the function has been successfully deployed and is
running as expected.

64 | Introduction to Serverless in the Cloud

8.	 Click on Cloud Scheduler in the left menu, under TOOLS, as shown in the
following screenshot:

Figure 2.36: Google Cloud Tools Menu

9.	 Click on Create job on the Cloud Scheduler page, as shown in the following
screenshot:

Figure 2.37: Cloud Scheduler page

 Introduction | 65

10.	 Select a region if you are using Cloud Scheduler for the first time in your Google
Cloud project and click Next, as shown in the following screenshot:

Figure 2.38: Cloud Scheduler – region selection

Wait for a couple of minutes if you see the following notification:

We are initializing Cloud Scheduler in your selected region. This usually takes
about a minute.

66 | Introduction to Serverless in the Cloud

11.	 Set the job name as HelloWorldEveryMinute and the frequency as * * * * *, which
means the job will be triggered every minute. Select HTTP as the target and
paste the URL you copied in step 5 into the URL box, as shown in the following
screenshot:

Figure 2.39: Scheduler job creation

12.	 You will be redirected to the Cloud Scheduler list, as shown in the following
screenshot:

Figure 2.40: Cloud Scheduler page

 Introduction | 67

Wait for a couple of minutes and click the Refresh button. The list will show the
Last run timestamp and its result for HelloWorldEveryMinute, as shown in the
following screenshot:

Figure 2.41: Cloud Scheduler page with run information

This indicates that the cloud scheduler triggered our function at Aug 13, 2019,
3:44:00 PM and that the result was successful.

13.	 Return to the function list from step 7 and click … for the HelloWorld function.
Then, click Logs, as shown in the following screenshot:

Figure 2.42: Settings menu for the function

68 | Introduction to Serverless in the Cloud

You will be redirected to the logs of the function, where you will see that, every
minute, Function execution started and the corresponding success logs are listed,
as shown in the following screenshot:

Figure 2.43: Function logs

As you can see, the cloud scheduler is invoking the function as planned and that
the function is running successfully.

 Introduction | 69

14.	 Return to the Cloud Scheduler page from Step 13, choose HelloWorldEveryMinute,
click Delete on the menu, and then confirm this in the popup, as shown in the
following screenshot:

Figure 2.44: Cloud Scheduler – job deletion

15.	 Return to the Cloud Functions page from step 7, choose HelloWorld, click Delete
on the menu, and then confirm this in the popup, as shown in the following
screenshot:

Figure 2.45: Cloud Functions – function deletion

In this exercise, we created a Hello World function and deployed it to GCF. In addition,
a cloud scheduler job was created to trigger the function with specific intervals such
as every minute. Now, the function is connected to another cloud service so that the
function can trigger the service. It is essential to integrate functions with other cloud
services and evaluate their integration capabilities prior to choosing a cloud FaaS
provider.

In the following activity, you will develop a real-life daily stand-up reminder function.
You will connect a function and function trigger service you wish to invoke on your
specific stand-up meeting time. In addition, this reminder will send a specific message
to a cloud-based collaboration tool, namely Slack.

70 | Introduction to Serverless in the Cloud

Activity 2: Daily Stand-Up Meeting Reminder Function for Slack

The aim of this activity is to create a real-life function for stand-up meeting reminders
in Slack. This reminder function will be invoked at specific times for your team to
remind everyone in your team about the next stand-up meeting. The reminder will
work with Slack since it is a popular collaboration tool that's been adopted by numerous
organizations worldwide.

Note

In order to complete this activity, you need to access a Slack workplace. You can
use your existing Slack workspace or create a new one for free at https://slack.
com/create.

Once completed, you will have deployed a daily stand-up reminder function to GCF, as
shown in the following screenshot:

Figure 2.46: Daily reminder function

In addition, you will need an integration environment for invoking the function at
specified meeting times. Stand-up meetings generally take place at a specific time on
workdays. Thus, a scheduler job will be connected to trigger your function according to
your meeting time, as shown in the following screenshot:

https://slack.com/create
https://slack.com/create

 Introduction | 71

Figure 2.47: Daily reminder scheduler

Finally, when the scheduler invokes the function, you will have reminder messages in
your Slack channel, as shown in the following screenshot:

Figure 2.48: Slack message for meeting reminder

Note

In order to complete this activity, you should configure Slack by following the Slack
Setup steps.

72 | Introduction to Serverless in the Cloud

Slack Setup

Execute the following steps to configure Slack:

1.	 In the Slack workspace, click on your username and select Customize Slack.

2.	 Click on Configure apps in the open window.

3.	 Click on Browse the App Directory to add a new application from the directory.

4.	 Find Incoming WebHooks from the search box in App Directory.

5.	 Click on Add Configuration for the Incoming WebHooks application.

6.	 Fill in the configuration for the incoming webhook with your specific channel
name and icon.

7.	 Open your Slack workspace and channel. You will see an integration message.

Note

Detailed screenshots of the Slack setup steps can be found on page 376.

Execute the following steps to complete this activity:

1.	 Create a new function in GCF to call the Slack webhook when it is invoked.

The code should send a JSON request to the Slack webhook URL with a similar
object: {"text": "Time for a stand-up meeting"}. You can implement the code in
any language that's supported by GCF. The code snippet is as follows:

package p

import (
 "bytes"
 "net/http"
)

func Reminder(http.ResponseWriter, *http.Request) {
 url := "https://hooks.slack.com/services/TLJB82G8L/BMAUKCJ9W/
Q02YZFDiaTRdyUBTImE7MXn1"

 var jsonStr = []byte('{"text": "Time for a stand-up meeting!"}')
 req, err := http.NewRequest("POST", url, bytes.NewBuffer(jsonStr))

 client := &http.Client{}

Summary | 73

 _, err = client.Do(req)
 if err != nil {
 panic(err)
 }
}

2.	 Create a scheduler job in GCP with the trigger URL of the function and specify the
schedule based on your stand-up meeting times.

Check the Slack channel when the time that's been defined with the schedule has
arrived for the reminder message.

3.	 Delete the schedule job and function from the cloud provider.

Note

The solution to this activity can be found on page 376.

Summary
In this chapter, we described the evolution of cloud technology offerings, including
how the cloud products have changed over the years and how responsibilities are
distributed among organizations, starting with IaaS and PaaS and, finally, FaaS.
Following that, criteria were presented for evaluating serverless cloud offerings.

Programming language support, function triggers, and the cost structure of serverless
products were listed so that we could compare the various cloud providers, that is,
AWS Lambda, Azure Functions, and GCF. In addition, we deployed a serverless function
to all three cloud providers. This showed you how cloud functions can be integrated
with other cloud services, such as the AWS API Gateway for REST API operations.
Furthermore, a parameterized function was deployed to Azure Functions to show how
we can process inputs from users or other systems. Finally, we deployed a scheduled
function to GCF to show integration with other cloud services. At the end of this
chapter, we implemented a real-life Slack reminder using serverless functions and
cloud schedulers.

In the next chapter, we will cover serverless frameworks and learn how to work with
them.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Compare and effectively utilize different serverless functions

•	 Set up a cloud-agnostic and container-native serverless framework

•	 Create, deploy, and invoke a function using the Fn framework

•	 Deploy serverless functions to cloud providers using serverless frameworks

•	 Create a real-life serverless application and run it on multiple cloud platforms in the
future

In this chapter, we will explain serverless frameworks, create our first serverless functions using
these frameworks, and deploy them to various cloud providers.

Introduction
to Serverless
Frameworks

3

76 | Introduction to Serverless Frameworks

Introduction
Let's imagine that you are developing a complex application with many functions in
one cloud provider. It may not be feasible to move to another cloud provider, even if
the new one is cheaper, faster, or more secure. This situation of vendor dependency
is known as vendor lock-in in the industry, and it is a very critical decision factor in
the long run. Fortunately, serverless frameworks are a simple and efficient solution to
vendor lock-in.

In the previous chapter, all three major cloud providers and their serverless products
were discussed. These products were compared based on their programming language
support, trigger capabilities, and cost structure. However, there is still one unseen
critical difference between all three products: operations. Creating functions, deploying
them to cloud providers, and their management are all different for each cloud
provider. In other words, you cannot use the same function in AWS Lambda, Google
Cloud Functions, and Azure Functions. Various changes are required so that we can
fulfil the requirements of cloud providers and their runtime.

Serverless frameworks are open source, cloud-agnostic platforms for running
serverless applications. The first difference between the cloud provider and serverless
products is that their serverless frameworks are open source and public. They are free
to install on the cloud or on on-premise systems and operate on their own. The second
characteristic is that serverless frameworks are cloud agnostic. This means that it is
possible to run the same serverless functions on different cloud providers or your own
systems. In other words, the cloud provider where the functions will be executed is just
a configuration parameter in serverless frameworks. All cloud providers are equalized
behind a shared API so that cloud-agnostic functions can be developed and deployed by
serverless frameworks.

Cloud serverless platforms such as AWS Lambda increased the hype of serverless
architectures and empowered their adoption in the industry. In the previous chapter,
the evolution of cloud technology offerings over the years and significant cloud
serverless platforms were discussed in depth. In this chapter, we will discuss open
source serverless frameworks and talk about their featured characteristics and
functionalities. There are many popular and upcoming serverless frameworks on
the market. However, we will focus on two prominent frameworks with differences
in terms of priorities and architecture. In this chapter, a container-native serverless
framework, namely Fn, will be presented. Following that, a more comprehensive
framework with multiple cloud provider support, namely, the Serverless Framework,
will be discussed in depth. Although both frameworks create a cloud-agnostic and open
source environment for running serverless applications, their differences in terms of
implementation and developer experience will be illustrated.

Fn Framework | 77

Fn Framework
Fn was announced in 2017 by Oracle at the JavaOne 2017 conference as an event-driven
and open source Function-as-a-Service (FaaS) platform. The key characteristics of the
framework are as follows:

•	 Open source: All the source code of the Fn project is publicly available at https://
github.com/fnproject/fn, and the project is hosted at https://fnproject.io. It has
an active community on GitHub, with more than 3,300 commits and 1,100 releases,
as shown in the following screenshot:

Figure 3.1: Fn at GitHub

•	 Container-native: Containers and microservices have changed the manner of
software development and operations. Fn is container-native, meaning that each
function is packaged and deployed as a Docker container. Also, it is possible to
create your own Docker container and run them as functions.

•	 Language support: The framework officially supports Go, Java, Node.js, Ruby, and
Python. In addition, C# is supported by the community.

•	 Cloud-agnostic: Fn can run on every cloud provider or on-premise system, as
long as Docker is installed and running. This is the most critical characteristic
of Fn, since it avoids the vendor lock-in problem completely. If the functions do
not depend on any cloud-specific service, it is possible to move between cloud
providers and on-premise systems quickly.

https://github.com/fnproject/fn
https://github.com/fnproject/fn
https://fnproject.io

78 | Introduction to Serverless Frameworks

As a cloud-agnostic and container-native platform, Fn is a developer-focused
framework. It enhances developer experience and agility since you can develop, test,
and debug locally and deploy to cloud with the same tooling. In the following exercise,
we will install and configure Fn so that we can start using the framework.

Note

Docker 17.10.0-ce or later should be installed and running on your computer
before you start the next exercise, since this is a prerequisite for Fn.

Exercise 7: Getting Started with the Fn Framework

In this exercise, you will install and configure a cloud-agnostic and container-native
serverless framework on your local computer. The aim of this exercise is to illustrate
how straightforward it is to configure and install the Fn Framework so that you can get
started with serverless frameworks.

To complete this exercise successfully, we need to ensure that the following steps are
executed:

1.	 In your Terminal, type the following command:

curl -LSs https://raw.githubusercontent.com/fnproject/cli/master/install |
sh

This command downloads and installs the Fn framework. Once this is complete,
the version number is printed out, as shown in the following screenshot:

Figure 3.2: Installation of Fn

Fn Framework | 79

2.	 Start the Fn server by using the following command in your Terminal:

fn start -d

This command downloads the Docker image of the Fn server and starts it inside a
container, as shown in the following screenshot:

Figure 3.3: Starting the Fn server

3.	 Check the client and server version by using the following command in your
Terminal:

fn version

The output should be as follows:

Figure 3.4: Fn server and client version

This output shows that both the client and server side are running and interacting
with each other.

80 | Introduction to Serverless Frameworks

4.	 Update the current Fn context and set a local development registry:

fn use context default && fn update context registry serverless

The output is shown in the following screenshot:

Figure 3.5: Registry setup for the current context

As the output indicates, the default context is set, and the registry is updated to
serverless.

5.	 Start the Fn dashboard by using the following command in your Terminal:

docker run -d --link fnserver:api -p 4000:4000 -e "FN_API_URL=http://
api:8080" fnproject/ui

This command downloads the fnproject/ui image and starts it in detached mode.
In addition, it links fnserver:api to itself and publishes the 4000 port, as shown in
the following screenshot:

Figure 3.6: Starting the Fn UI

6.	 Check the running Docker containers with the following command:

docker ps

As expected, two containers are running for Fn with the image names fnproject/ui
and fnproject/fnserver:latest, respectively, as shown in the following screenshot:

Figure 3.7: Docker containers

Fn Framework | 81

7.	 Open http://localhost:4000 in your browser to check the Fn UI.

The Fn Dashboard lists the applications and function statistics as a web
application, as shown in the following screenshot:

Figure 3.8: Fn Dashboard

With this exercise, we have installed the Fn framework, along with its client, server, and
dashboard. Since Fn is a cloud-agnostic framework, it is possible to install any cloud
or on-premise system with the illustrated steps. We will continue discussing the Fn
framework in terms of how the functions are configured and deployed.

The Fn framework is designed to work with applications, where each application is a
group of functions with their own route mappings. For instance, let's assume you have
grouped your functions into a folder, as follows:

- app.yaml

- func.yaml

- func.go

- go.mod

- products/

 - func.yaml

82 | Introduction to Serverless Frameworks

 - func.js

- suppliers/

 - func.yaml

 - func.rb

In each folder, there is a func.yaml file that defines the function with the corresponding
implementation in Ruby, Node.js, or any other supported language. In addition, there is
an app.yaml file in the root folder to define the application.

Let's start by checking the content of app.yaml:

name: serverless-app

app.yaml is used to define the root of the serverless application and includes the name
of the application. There are also three additional files for the function in the root
folder:

•	 func.go: Go implementation code

•	 go.mod: Go dependency definitions

•	 func.yaml: Function definition and trigger information

For a function with an HTTP trigger and Go runtime, the following func.yaml file is
defined:

name: serverless-app

version: 0.0.1

runtime: go

entrypoint: ./func

triggers:

- name: serverless-app

 type: http

 source: /serverless-app

When you deploy all of these functions to Fn, they will be accessible via the following
URLs:

http://serverless-kubernetes.io/ 		 -> root function

http://serverless-kubernetes.io/products 	 -> function in products/
directory

http://serverless-kubernetes.io/suppliers 	 -> function in suppliers/
directory

Fn Framework | 83

In the following exercise, the content of the app.yaml and func.yaml files, as well as their
function implementation, will be illustrated with a real-life example.

Exercise 8: Running Functions in the Fn Framework

In this exercise, we aim to create, deploy, and invoke a function using the Fn framework.

To complete this exercise successfully, we need to ensure that the following steps are
executed:

1.	 In your Terminal, run the following commands to create an application:

mkdir serverless-app
cd serverless-app
echo "name: serverless-app" > app.yaml
cat app.yaml

The output should be as follows:

Figure 3.9: Creating the application

These commands create a folder called serverless-app and then change the
directory so that it's in this folder. Finally, a file called app.yaml is created with the
content name: serverless-app, which is used to define the root of the application.

2.	 Run the following command in your Terminal to create a root function that's
available at the "/" of the application URL:

fn init --runtime ruby --trigger http

This command will create a Ruby function with an HTTP trigger at the root of the
application, as shown in the following screenshot:

Figure 3.10: Ruby function creation

84 | Introduction to Serverless Frameworks

3.	 Create a subfunction by using the following commands in your Terminal:

fn init --runtime go --trigger http hello-world

This command initializes a Go function with an HTTP trigger in the hello-world
folder of the application, as shown in the following screenshot:

Figure 3.11: Go function creation

4.	 Check the directory of the application by using the following command in your
Terminal:

ls -l ./*

This command lists the files in the root and child folders, as shown in the following
screenshot:

Figure 3.12: Folder structure

As expected, there is a Ruby function in the root folder with three files: func.rb for
the implementation, func.yaml for the function definition, and Gemfile to define
Ruby function dependencies.

Similarly, there is a Go function in the hello-world folder with three files: func.go
for the implementation, func.yaml for the function definition, and go.mod for Go
dependencies.

Fn Framework | 85

5.	 Deploy the entire application by using the following command in your Terminal:

fn deploy --create-app --all --local

This command deploys all the functions by creating the app and using a local
development environment, as shown in the following screenshot:

Figure 3.13: Application deployment to Fn

Firstly, the function for serverless-app is built, and then the function and trigger
are created. Similarly, the hello-world function is built and deployed with the
corresponding function and trigger.

6.	 List the triggers of the application with the following command and copy the
Endpoints for serverless-app-trigger and hello-world-trigger:

fn list triggers serverless-app

This command lists the triggers of serverless-app, along with function, type,
source, and endpoint information, as shown in the following screenshot:

Figure 3.14: Trigger list

86 | Introduction to Serverless Frameworks

7.	 Trigger the endpoints by using the following commands in your Terminal:

Note

For the curl commands, do not forget to use the endpoints that we copied in Step
5.

curl -d Ece http://localhost:8080/t/serverless-app/serverless-app

The output should be as follows:

Figure 3.15: Invocation of the serverless-app trigger

This command will invoke the serverless-app trigger located at the root of the
application. Since it was triggered with the name payload, it responded with a
personal message: Hello Ece!:

curl http://localhost:8080/t/serverless-app/hello-world

This command will invoke the hello-world trigger without any payload and, as
expected, it responded with Hello World, as shown in the following screenshot:

Figure 3.16: Invocation of the hello-world trigger

Fn Framework | 87

8.	 Check the application and function statistics from the Fn Dashboard by opening
http://localhost:4000 in your browser.

On the home screen, your applications and their overall statistics can be seen,
along with auto-refreshed charts, as shown in the following screenshot:

Figure 3.17: Fn Dashboard – Home

88 | Introduction to Serverless Frameworks

Click on serverless-app from the applications list to view more information about
the functions of the application, as shown in the following screenshot:

Figure 3.18: Fn Dashboard – Application

The Serverless Framework | 89

9.	 Stop the Fn server by using the following command in your Terminal:

fn stop

This command will stop the Fn server, including all the function instances, as
shown in the following screenshot:

Figure 3.19: Fn server stop

In this exercise, we created a two-function application in the Fn framework and
deployed it. We have shown you how to build functions as Docker containers using
the fn client and by creating functions. In addition, the triggers of the functions
were invoked via HTTP, and the statistics were checked from the Fn dashboard. As a
container-native and cloud-agnostic framework, the functions of the framework are
Docker containers, and they can run on any cloud provider or local system. In the next
section, another serverless framework, namely, the Serverless Framework, which
focuses more on cloud-provider integration, will be presented.

The Serverless Framework
The Serverless Framework was announced in 2015 with the name JavaScript Amazon
Web Services (JAWS). It was initially developed in Node.js to make it easier for
people to develop AWS Lambda functions. In the same year, it changed the name to
Serverless Framework and expanded its scope to other cloud providers and serverless
frameworks, including Google Cloud Functions, Azure Functions, Apache OpenWhisk,
Fn, and many more.

90 | Introduction to Serverless Frameworks

Serverless Framework is open source, and its source code is available at GitHub:
https://github.com/serverless/serverless. It is a very popular repository with more
than 31,000 stars, as shown in the following screenshot:

Figure 3.20: Serverless Framework GitHub repository

The official website of the framework is available at https://serverless.com and provides
extensive documentation, use cases, and examples. The main features of the Serverless
Framework can be grouped into four main topics:

•	 Cloud-agnostic: The Serverless Framework aims to create a cloud-agnostic
serverless application development environment so that vendor lock-in is not a
concern.

•	 Reusable Components: Serverless functions that are developed in the Serverless
Framework are open source and available. These components help us to create
complex applications quickly.

•	 Infrastructure-as-code: All the configuration and source code that's developed in
the Serverless Framework is explicitly defined and can be deployed with a single
command.

•	 Developer Experience: The Serverless Framework aims to enhance developer
experience via its CLI, configuration parameters, and active community.

https://github.com/serverless/serverless
https://serverless.com

The Serverless Framework | 91

These four characteristics of the Serverless Framework make it the most well-known
framework for creating serverless applications in the cloud. In addition, the framework
focuses on the management of the complete life cycle of serverless applications:

•	 Develop: It is possible to develop apps locally and reuse open source plugins via
the framework CLI.

•	 Deploy: The Serverless Framework can deploy to multiple cloud platforms and roll
out and roll back versions from development to production.

•	 Test: The framework supports testing the functions out of the box by using the
command-line client functions.

•	 Secure: The framework handles secrets for running the functions and cloud-
specific authentication keys for deployments.

•	 Monitor: The metrics and logs of the serverless applications are available with the
serverless runtime and client tools.

In the following exercise, a serverless application will be created, configured, and
deployed to AWS using the Serverless Framework. The framework will be used inside a
Docker container to show how easy it is to get started with serverless applications.

Note

The Serverless Framework can be downloaded and installed to a local computer
with npm. A Docker container, including the Serverless Framework installation, will
be used in the following exercise so that we have a fast and reproducible setup.

In the following exercise, the hello-world function will be deployed to AWS Lambda
using the Serverless Framework. In order to complete this exercise, you need to have
an active Amazon Web Services account. You can create an account at https://aws.
amazon.com/.

https://aws.amazon.com/
https://aws.amazon.com/

92 | Introduction to Serverless Frameworks

Exercise 9: Running Functions with the Serverless Framework

In this exercise, we aim to configure the Serverless Framework and deploy our very first
function using it. With the Serverless Framework, it is possible to create cloud-agnostic
serverless applications. In this exercise, we will deploy the functions to AWS Lambda.
However, it is possible to deploy the same functions to different cloud providers.

To successfully complete this exercise, we need to ensure that the following steps are
executed:

1.	 In your Terminal, run the following command to start the Serverless Framework
development environment:

docker run -it --entrypoint=bash onuryilmaz/serverless

This command will start a Docker container in interactive mode. In the following
steps, actions will be taken inside this Docker container, as shown in the following
screenshot:

Figure 3.21: Starting a Docker container for serverless

2.	 Run the following command to check the framework version:

serverless version

This command lists the Framework, Plugin, and SDK versions, and getting a
complete output indicates that everything is set up correctly, as shown in the
following screenshot:

Figure 3.22: Framework version

3.	 Run the following command to use the framework interactively:

serverless

The Serverless Framework | 93

Press Y to create a new project and choose AWS Node.js from the dropdown, as
shown in the following screenshot:

Figure 3.23: Creating a new project in the framework

4.	 Set the name of the project to hello-world and press Enter. The output is as
follows:

Figure 3.24: Successful creation of the project

5.	 Press Y for the AWS credential setup question, and then press Y again for the Do
you have an AWS account? question. The output will be as follows:

Figure 3.25: AWS account setup

You now have a URL for creating a serverless user. Copy and save the URL; we'll
need it later.

94 | Introduction to Serverless Frameworks

6.	 Open the URL from Step 4 in your browser and start adding users to the AWS
console. The URL will open the Add user screen with predefined selections. Click
Next: Permissions at the end of the screen, as shown in the following screenshot:

Figure 3.26: AWS Add user

The Serverless Framework | 95

7.	 The AdministratorAccess policy should be selected automatically. Click Next: Tags
at the bottom of the screen, as shown in the following screenshot:

Figure 3.27: AWS Add user – Permissions

96 | Introduction to Serverless Frameworks

8.	 If you want to tag your users, you can add optional tags in this view. Click Next:
Review, as shown in the following screenshot:

Figure 3.28: AWS Add user – Tags

The Serverless Framework | 97

9.	 This view shows the summary of the new user. Click Create User, as shown in the
following screenshot:

Figure 3.29: AWS Add user – Review

98 | Introduction to Serverless Frameworks

You will be redirected to a success page with an Access Key ID and secret, as
shown in the following screenshot:

Figure 3.30: AWS Add user – Success

10.	 Copy the key ID and secret access key so that you can use it in the following steps
of this exercise and the activity for this chapter. You need to click Show to reveal
the secret access key.

11.	 Return to your Terminal and press Enter to enter the key ID and secret
information, as shown in the following screenshot:

Figure 3.31: AWS Credentials in the framework

The Serverless Framework | 99

12.	 Press Y for the Serverless account enable question and select register from the
dropdown, as shown in the following screenshot:

Figure 3.32: Serverless account enabled

13.	 Write your email and a password to create a Serverless Framework account, as
shown in the following screenshot:

Figure 3.33: Serverless account register

14.	 Run the following commands to change the directory and deploy the function:

cd hello-world
serverless deploy -v

100 | Introduction to Serverless Frameworks

These commands will make the Serverless Framework deploy the function into
AWS, as shown in the following screenshot:

Figure 3.34: Serverless Framework deployment output

Note

The output logs start by packaging the service and creating AWS resources for the
source code, artifacts, and functions. After all the resources have been created, the
Service Information section will provide a summary of the functions and URLs.

The Serverless Framework | 101

At the end of the screen, you will find the Serverless Dashboard URL for the
deployed function, as shown in the following screenshot:

Figure 3.35: Stack Outputs

Copy the dashboard URL so that you can check the function metrics in the
upcoming steps.

15.	 Invoke the function by using the following command in your Terminal:

 serverless invoke --function hello

This command invokes the deployed function and prints out the response, as
shown in the following screenshot:

Figure 3.36: Function output

As the output shows, statusCode is 200, and the body of the response indicates that
the function has responded successfully.

102 | Introduction to Serverless Frameworks

16.	 Open the Serverless Dashboard URL you copied at the end of Step 8 into your
browser, as shown in the following screenshot:

Figure 3.37: Serverless Dashboard login

17.	 Log in with the email and password you created in Step 5.

You will be redirected to the application list. Expand hello-world-app and click on
the successful deployment line, as shown in the following screenshot:

Figure 3.38: Serverless Dashboard application list

The Serverless Framework | 103

In the function view, all the runtime information, including API endpoints,
variables, alerts, and metrics, are available. Scroll down to see the number of
invocations. The output should be as follows:

Figure 3.39: Serverless Dashboard function view

Since we have only invoked the function once, you will only see 1 in the charts.

104 | Introduction to Serverless Frameworks

18.	 Return to your Terminal and delete the function with the following command:

serverless remove

This command will remove the deployed function and all its dependencies, as
shown in the following screenshot:

Figure 3.40: Removing the function

Exit the Serverless Framework development environment container by writing
exit in the Terminal, as shown in the following screenshot:

Figure 3.41: Exiting the container

In this exercise, we have created, configured, and deployed a serverless function using
the Serverless Framework. Furthermore, the function is invoked via a CLI, and its
metrics are checked from the Serverless Dashboard. The Serverless Framework creates
a comprehensive abstraction for cloud providers so that it is only passed as credentials
to the platform. In other words, where to deploy is just a matter of configuration with
the help of serverless frameworks.

In the following activity, a real-life serverless daily weather application will be
developed. You will create a serverless framework application with an invocation
schedule and deploy it to a cloud provider. In addition, the weather status messages will
be sent to a cloud-based collaboration tool known as Slack.

Note

In order to complete the following activity, you need to be able to access a Slack
workplace. You can use your existing Slack workspace or create a new one for free
at https://slack.com/create.

https://slack.com/create

The Serverless Framework | 105

Activity 3: Daily Weather Status Function for Slack

The aim of this activity is to create a real-life serverless application that sends weather
status messages in specific Slack channels. The function will be developed with the
Serverless Framework so that it can run on multiple cloud platforms in the future.
The function will be designed to run at particular times for your team so that they're
informed about the weather status, such as early in the morning before their morning
commute. These messages will be published on Slack channels, which is the main
communication tool within the team.

In order to get the weather status to share within the team, you can use wttr.in
(https://github.com/chubin/wttr.in), which is a free-to-use weather data provider.
Once completed, you will have deployed a function to a cloud provider, namely, AWS
Lambda:

Figure 3.42: Daily weather function

https://github.com/chubin/wttr.in

106 | Introduction to Serverless Frameworks

Finally, when the scheduler invokes the function, or when you invoke it manually, you
will get messages regarding the current weather status in your Slack channel:

Figure 3.43: Slack message with the current weather status

Note

In order to complete this activity, you should configure Slack by following the Slack
setup steps.

Slack Setup

Execute the following steps to configure Slack:

1.	 In your Slack workspace, click your username and select Customize Slack.

2.	 Click Configure apps in the opened window.

3.	 Click on Browse the App Directory to add a new application from the directory.

The Serverless Framework | 107

4.	 Find Incoming WebHooks from the search box in App Directory.

5.	 Click on Set Up for the Incoming WebHooks application.

6.	 Fill in the configuration for incoming webhooks with your specific channel name
and icon.

7.	 Open your Slack workspace and the channel you configured in Step 6 to be able to
check the integration message.

Note

Detailed screenshots of the Slack setup steps can be found on page 387.

Execute the following steps to complete this activity.

1.	 In your Terminal, create a Serverless Framework application structure in a folder
called daily-weather.

2.	 Create a package.json file to define the Node.js environment in the
daily-weather folder.

3.	 Create a handler.js file to implement the actual functionality in the
daily-weather folder.

4.	 Install the Node.js dependencies for the serverless application.

5.	 Export the AWS credentials as environment variables.

6.	 Deploy the serverless application to AWS using the Serverless Framework.

7.	 Check AWS Lambda for the deployed functions in the AWS Console.

8.	 Invoke the function with the Serverless Framework client tools.

9.	 Check the Slack channel for the posted weather status.

10.	 Return to your Terminal and delete the function with the Serverless Framework.

11.	 Exit the Serverless Framework development environment container.

Note

The solution to this activity can be found on page 387.

108 | Introduction to Serverless Frameworks

Summary
In this chapter, we provided an overview of serverless frameworks by discussing the
differences between the serverless products of cloud providers. Following that, one
container-native and one cloud-native serverless framework were discussed in depth.
Firstly, the Fn framework was discussed, which is an open source, container-native, and
cloud-agnostic platform. Secondly, the Serverless Framework was presented, which is
a more cloud-focused and comprehensive framework. Furthermore, both frameworks
were installed and configured locally. Serverless applications were created, deployed,
and run in both serverless frameworks. The functions were invoked with the capabilities
of serverless frameworks, and the necessary metrics checked for further analysis.
At the end of this chapter, a real-life, daily weather Slack bot was implemented as a
cloud-agnostic, explicitly defined application using serverless frameworks. Serverless
frameworks are essential for the serverless development world with their cloud-
agnostic and developer-friendly characteristics.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Set up a local Kubernetes cluster on your computer

•	 Access a Kubernetes cluster using the dashboard and the Terminal

•	 Identify the fundamental Kubernetes resources, the building blocks of Kubernetes
applications

•	 Install complex applications on a Kubernetes cluster

In this chapter, we will explain the basics of the Kubernetes architecture, the methods of
accessing the Kubernetes API, and fundamental Kubernetes resources. In addition to that, we
will deploy a real-life application into Kubernetes.

Kubernetes Deep Dive

4

112 | Kubernetes Deep Dive

Introduction to Kubernetes
In the previous chapter, we studied serverless frameworks, created serverless
applications using these frameworks, and deployed these applications to the major
cloud providers.

As we have seen in the previous chapters, Kubernetes and serverless architectures
started to gain traction at the same time in the industry. Kubernetes got a high
level of adoption and became the de facto container management system with its
design principles based on scalability, high availability, and portability. For serverless
applications, Kubernetes provides two essential benefits: removal of vendor lock-in
and reuse of services.

Kubernetes creates an infrastructure layer of abstraction to remove vendor lock-in.
Vendor lock-in is a situation where transition from one service provider to another
is very difficult or even infeasible. In the previous chapter, we studied how serverless
frameworks make it easy to develop cloud-agnostic serverless applications. Let's
assume you are running your serverless framework on an AWS EC2 instance and
want to move to Google Cloud. Although your serverless framework creates a layer
between the cloud provider and serverless applications, you are still deeply attached
to the cloud provider for the infrastructure. Kubernetes breaks this connection by
creating an abstraction between the infrastructure and the cloud provider. In other
words, serverless frameworks running on Kubernetes are unaware of the underlying
infrastructure. If your serverless framework runs on Kubernetes in AWS, it is expected
to run on Google Cloud Platform (GCP) or Azure.

As the defacto container management system, Kubernetes manages most microservices
applications in the cloud and in on-premise systems. Let's assume you have already
converted your big monolith application to cloud-native microservices and you're
running them on Kubernetes. And now you've started developing serverless applications
or turning some of your microservices to serverless nanoservices. At this stage, your
serverless applications will need to access the data and other services. If you can run
your serverless applications in your Kubernetes clusters, you will have the chance to
reuse the services and be close to your data. Besides, it will be easier to manage and
operate both microservices and serverless applications.

As a solution to vendor lock-in, and for potential reuse of data and services, it is
crucial to learn how to run serverless architectures on Kubernetes. In this chapter,
a Kubernetes recap is presented to introduce the origin and design of Kubernetes.
Following that, we will install a local Kubernetes cluster, and you will be able to access
the cluster by using a dashboard or a client tool such as kubectl. In addition to that, we
will discuss the building blocks of Kubernetes applications, and finally, we'll deploy a
real-life application to the cluster.

Kubernetes Design and Components | 113

Kubernetes Design and Components
Kubernetes, which is also known as k8s, is a platform for managing containers. It
is a complex system focused on the complete life cycle of containers, including
configuration, installation, health checking, troubleshooting, and scaling. With
Kubernetes, it is possible to run microservices in a scalable, flexible, and reliable way.
Let's assume you are a DevOps engineer at a fin-tech company, focusing on online
banking for your customers.

You can configure and install the complete backend and frontend of an online bank
application to Kubernetes in a secure and cloud-native way. With the Kubernetes
controllers, you can manually or automatically scale your services up and down to
match customer demand. Also, you can check the logs, perform health checks on each
service, and even SSH into the containers of your applications.

In this section, we will focus on how Kubernetes is designed and how its components
work in harmony.

Kubernetes clusters consist of one or more servers, and each server is assigned with
a set of logical roles. There are two essential roles assigned to the servers of a cluster:
master and node. If the server is in the master role, control plane components of
the Kubernetes run on these nodes. Control plane components are the primary set of
services used to run the Kubernetes API, including REST operations, authentication,
authorization, scheduling, and cloud operations. With the recent version of Kubernetes,
four services are running as the control plane:

•	 etcd: etcd is an open source key/value store, and it is the database of all
Kubernetes resources.

•	 kube-apiserver: API server is the component that runs the Kubernetes REST API.
It is the most critical component for interacting with other parts of the plane and
client tools.

•	 kube-scheduler: A scheduler assigns workloads to nodes based on the workload
requirements and node status.

114 | Kubernetes Deep Dive

•	 kube-controller-manager: kube-controller-manager is the control plane
component used to manage core controllers of Kubernetes resources. Controllers
are the primary life cycle managers of the Kubernetes resources. For each
Kubernetes resource, there is one or more controller that works in the observe,
decide, and act loop diagrammed in Figure 4.1. Controllers check the current
status of the resources in the observe stage and then analyze and decide on the
required actions to reach the desired state. In the act stage, they execute the
actions and continue to observe the resources.

 Figure 4.1: Controller loop in Kubernetes

Servers with the node role are responsible for running the workload in Kubernetes.
Therefore, there are two essential Kubernetes components required in every node:

•	 kubelet: kubelet is the management gateway of the control plane in the nodes.
kubelet communicates with the API server and implements actions needed on the
nodes. For instance, when a new workload is assigned to a node, kubelet creates
the container by interacting with the container runtime, such as Docker.

•	 kube-proxy: Containers run on the server nodes, but they interact with each other
as they are running in a unified networking setup. kube-proxy makes it possible for
containers to communicate, although they are running on different nodes.

The control plane and the roles, such as master and node, are logical groupings of
components. However, it is recommended to have a highly available control plane with
multiple master role servers. Besides, servers with node roles are connected to the
control plane to create a scalable and cloud-native environment. The relationship and
interaction of the control plane and the master and node servers are presented in the
following figure:

Kubernetes Design and Components | 115

Figure 4.2: The control plane and the master and node servers in a Kubernetes cluster

In the following exercise, a Kubernetes cluster will be created locally, and Kubernetes
components will be checked. Kubernetes clusters are sets of servers with master or
worker nodes. On these nodes, both control plane components and user applications
are running in a scalable and highly available way. With the help of local Kubernetes
cluster tools, it is possible to create single-node clusters for development and testing.
minikube is the officially supported and maintained local Kubernetes solution, and it will
be used in the following exercise.

Note

You will use minikube in the following exercise as the official local Kubernetes
solution, and it runs the Kubernetes components on hypervisors. Hence you must
install a hypervisor such as Virtualbox, Parallels, VMWareFusion, Hyperkit,
or VMWare. Refer to this link for more information:

https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor

https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor

116 | Kubernetes Deep Dive

Exercise 10: Starting a Local Kubernetes Cluster

In this exercise, we will install minikube and use it to start a one-node Kubernetes
cluster. When the cluster is up and running, it will be possible to check the master and
node components.

To complete the exercise, we need to ensure the following steps are executed:

1.	 Install minikube to the local system by running these commands in your Terminal:

Linux
curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/
minikube-linux-amd64
MacOS
curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/
minikube-darwin-amd64
chmod +x minikube
sudo mv minikube /usr/local/bin

These commands download the binary file of minikube, make it executable, and
move it into the bin folder for Terminal access.

2.	 Start the minikube cluster by running the following command:

minikube start

This command downloads the images and creates a single-node virtual machine.
Following that, it configures the machine and waits until the Kubernetes control
plane is up and running, as shown in the following figure:

Figure 4.3: Starting a new cluster in minikube

Kubernetes Design and Components | 117

3.	 Check the status of Kubernetes cluster:

minikube status

As the output in the following figure indicates, the host system, kubelet, and
apiserver are running:

Figure 4.4: Kubernetes cluster status

4.	 Connect to the virtual machine of minikube by running the following command:

minikube ssh

You should see the output shown in the following figure:

Figure 4.5: minikube virtual machine

5.	 Check for the four control-plane components with the following command:

pgrep -l etcd && pgrep -l kube-apiserver && pgrep -l kube-scheduler &&
pgrep -l controller

This command lists the processes and captures the mentioned command names.
There are total of four lines corresponding to each control plane component and
its process IDs, as depicted in the following figure:

Figure 4.6: Control plane components

118 | Kubernetes Deep Dive

6.	 Check for the node components with the following command:	

pgrep -l kubelet && pgrep -l kube-proxy

This command lists two components running in the node role, with their process
IDs, as shown in the following figure:

Figure 4.7: Node components

7.	 Exit the terminal started in Step 4 with the following command:

exit

You should see the output shown in the following figure:

Figure 4.8: Exiting the minikube virtual machine

In this exercise, we installed a single-node Kubernetes cluster using minikube. In the
next section, we will discuss using the official client tool of Kubernetes to connect to
and operate the cluster from the previous exercise.

Kubernetes Client Tool: kubectl
The Kubernetes control plane runs a REST API server for accessing Kubernetes
resources and undertaking operational activities. Kubernetes comes with an open
source official command-line tool named kubectl in order to consume the REST API. It
is installed on the local system and configured to connect remote clusters securely and
reliably. kubectl is the primary tool for the complete life cycle of applications running
in Kubernetes. For instance, say you deploy a WordPress blog in your cluster. First, you
start creating your database passwords as secrets using kubectl. Following that, you
deploy your blog application and check its status. In addition to that, you may trace the
logs of your applications or even SSH into the containers for further analysis. Therefore,
it is a powerful CLI tool that can handle both basic create, read, update, and delete
(CRUD) actions and troubleshooting.

Kubernetes Client Tool: kubectl | 119

In addition to application management, kubectl is also a powerful tool for cluster
operations. It is possible to check the Kubernetes API status or the status of the servers
in the cluster using kubectl. Let's assume you need to restart a server in your cluster
and you need to move the workload to other nodes. Using kubectl commands, you can
mark the node as unschedulable and let the Kubernetes scheduler move the workload
to other nodes. When you complete the maintenance, you can mark the node back as
Ready and let a Kubernetes scheduler assign workloads.

kubectl is a vital command-line tool for daily Kubernetes operations. Therefore,
learning the basics and getting hands-on experience with kubectl is crucial. In
the following exercise, you will install and configure kubectl to connect to a local
Kubernetes cluster.

Exercise 11: Accessing Kubernetes Clusters Using the Client Tool: kubectl

In this exercise, we aim to access the Kubernetes API using kubectl and explore its
capabilities.

To complete the exercise, we need to ensure the following steps are executed:

1.	 Download the kubectl executable by running these commands in the Terminal:

Linux
curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.15.0/bin/linux/amd64/kubectl
MacOS
curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.15.0/bin/darwin/amd64/kubectl
chmod +x kubectl
sudo mv kubectl /usr/local/bin

These commands download the binary of kubectl, make it executable, and move it
into the bin folder for Terminal access.

2.	 Configure kubectl to connect to the minikube cluster:

kubectl config use-context minikube

This command configures kubectl to use the minikube context, which is the set
of credentials used to connect to the kubectl cluster, as shown in the following
figure:

Figure 4.9: kubectl context setting

120 | Kubernetes Deep Dive

3.	 Check the available nodes with the following command:

 kubectl get nodes

This command lists all the nodes connected to the cluster. As a single-node
cluster, there is only one node, named minikube, as shown in the following figure:

Figure 4.10: kubectl get nodes

4.	 Get more information about the minikube node with the following command:

kubectl describe node minikube

This command lists all the information about the node, starting with its metadata,
such as Roles, Labels, and Annotations. The role of this node is specified as master
in the Roles section, as shown in the following figure:

Figure 4.11: Node metadata

Following the metadata, Conditions lists the health status of the node. It is possible
to check available memory, disk, and process IDs in tabular form, as shown in the
following figure.

Figure 4.12: Node conditions

Kubernetes Client Tool: kubectl | 121

Then, available and allocatable capacity and system information are listed, as
shown in the following figure:

Figure 4.13: Node capacity information

Finally, the running workload on the node and allocated resources are listed, as
shown in the following figure:

Figure 4.14: Node workload information

122 | Kubernetes Deep Dive

5.	 Get the supported API resources with the following command:

kubectl api-resources -o name

You should see the output shown in the following figure:

Figure 4.15: Output of kubectl api-resources

Kubernetes Resources | 123

This command lists all the resources supported by the Kubernetes cluster. The length
of the list indicates the power and comprehensiveness of Kubernetes in the senseof
application management. In this exercise, the official Kubernetes client tool was
installed, configured, and explored. In the following section, the core building block
resources from the resource list will be presented.

Kubernetes Resources
Kubernetes comes with a rich set of resources to define and manage cloud-
native applications as containers. In the Kubernetes API, every container, secret,
configuration, or custom definition is defined as a resource. The control plane
manages these resources while the node components try to achieve the desired state
of the applications. The desired state could be running 10 instances of the application
or mounting disk volumes to database applications. The control plane and node
components work in harmony to make all resources in the cluster reach their desired
state.

In this section, we will study the fundamental Kubernetes resources used to run
serverless applications.

Pod

The pod is the building block resource for computation in Kubernetes. A pod consists
of containers scheduled to run into the same node as a single application. Containers
in the same pod share the same resources, such as network and memory resources. In
addition, the containers in the pod share life cycle events such as scaling up or down. A
pod can be defined with an ubuntu image and the echo command as follows:

apiVersion: v1

kind: Pod

metadata:

 name: echo

spec:

 containers:

 - name: main

 image: ubuntu

 command: ['sh', '-c', 'echo Serverless World! && sleep 3600']

124 | Kubernetes Deep Dive

When the echo pod is created in Kubernetes API, the scheduler will assign it to an
available node. Then the kubelet in the corresponding node will create a container
and attach networking to it. Finally, the container will start to run the echo and sleep
commands. Pods are the essential Kubernetes resource for creating applications,
and Kubernetes uses them as building blocks for more complex resources. In the
following resources, the pod will be encapsulated to create more complex cloud-native
applications.

Deployment

Deployments are the most commonly used Kubernetes resource to manage highly
available applications. Deployments enhance pods by making it possible to scale up,
scale down, or roll out new versions. The deployment definition looks similar to a pod
with two important additions: labels and replicas.

Consider the following code:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webserver

 labels:

 app: nginx

spec:

 replicas: 5

 selector:

 matchLabels:

 app: server

 template:

 metadata:

 labels:

 app: server

 spec:

 containers:

 - name: nginx

Kubernetes Resources | 125

 image: nginx:1.7.9

 ports:

 - containerPort: 80

The deployment named webserver defines five replicas of the application running
with the label app:server. In the template section, the application is defined with the
exact same label and one nginx container. The deployment controller in the control
plane ensures that five instances of this application are running inside the cluster.
Let's assume you have three nodes, A, B, and C, with one, two, and two instances of
webserver application running, respectively. If node C goes offline, the deployment
controller will ensure that the two lost instances will be recreated in nodes A and B.
Kubernetes ensures that scalable and highly available applications are running reliably
as deployments. In the following section, Kubernetes resources for stateful applications
such as databases will be presented.

StatefulSet

Kubernetes supports running both stateless ephemeral applications and stateful
applications. In other words, it is possible to run database applications or disk-oriented
applications in a scalable way inside your clusters. The StatefulSet definition is similar
to deployment with volume-related additions.

Consider the following code snippet:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: mysql

spec:

 selector:

 matchLabels:

 app: mysql

 serviceName: mysql

 replicas: 1

 template:

 metadata:

 labels:

 app: mysql

 spec:

126 | Kubernetes Deep Dive

 containers:

 - name: mysql

 image: mysql:5.7

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: "root"

 ports:

 - name: mysql

 containerPort: 3306

 volumeMounts:

 - name: data

 mountPath: /var/lib/mysql

 subPath: mysql

 volumeClaimTemplates:

 - metadata:

 name: data

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 1Gi

The mysql StatefulSet state creates a MySQL database with 1 GB volume data. The
volume is created by Kubernetes and attached to the container at /var/lib/mysql. With
the StatefulSet controllers, it is possible to create applications that need disk access
in a scalable and reliable way. In the following section, we'll discuss how to connect
applications in a Kubernetes cluster.

Service

In Kubernetes, multiple applications run in the same cluster and connect to each
other. Since each application has multiple pods running on different nodes, it is not
straightforward to connect applications. In Kubernetes, Service is the resource used
to define a set of pods, and you access them by using the name of the Service. Service
resources are defined using the labels of the pods.

Kubernetes Resources | 127

Consider the following code snippet:

apiVersion: v1

kind: Service

metadata:

 name: my-database

spec:

 selector:

 app: mysql

 ports:

 - protocol: TCP

 port: 3306

 targetPort: 3306

With the my-database service, the pods with the label app: mysql are grouped. When
the 3306 port of my-database address is called, Kubernetes networking will connect to
the 3306 port of a pod with the label app:mysql. Service resources create an abstraction
layer between applications and enable decoupling. Let's assume you have a three-
instance backend and a three-instance frontend in your application. Frontend pods can
easily connect to backend instances using the Service resource without knowing where
the backend instances are running. It creates abstraction and decoupling between the
applications running in the cluster. In the following section, resources focusing on tasks
and scheduled tasks will be presented.

Job and CronJob

Kubernetes resources such as deployments and StatefulSets focus on running
applications and keeping them up and running. However, Kubernetes also provides
Job and CronJob resources to run applications to completion. For instance, if your
application needs to do one-time tasks, you can create a Job resource as follows:

apiVersion: batch/v1

kind: Job

metadata:

 name: echo

spec:

 template:

 spec:

 restartPolicy: OnFailure

128 | Kubernetes Deep Dive

 containers:

 - name: echo

 image: busybox

 args:

 - /bin/sh

 - -c

 - echo Hello from the echo Job!

When the echo Job is created, Kubernetes will create a pod, schedule it, and run it.
When the container terminates after the echo command, Kubernetes will not try to
restart it or keep it running.

In addition to one-time tasks, it is possible to run scheduled jobs using the CronJob
resource, as shown in the following code snippet:

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 name: hourly-echo

spec:

 schedule: "0 * * * *"

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 restartPolicy: OnFailure

 - name: hello

 image: busybox

 args:

 - /bin/sh

 - -c

 - date; echo It is time to say echo!

Kubernetes Resources | 129

With the hourly-echo CronJob, an additional schedule parameter is provided. With the
schedule of "0 * * * *", Kubernetes will create a new Job instance of this CronJob
and run it every hour. Jobs and CronJobs are Kubernetes-native ways of handling
manual and automated tasks required for your applications. In the following exercise,
Kubernetes resources will be explored using kubectl and a local Kubernetes cluster.

Exercise 12: Installing a Stateful MySQL Database and Connecting inside

Kubernetes

In this exercise, we will install a MySQL database as StatefulSet, check its status, and
connect to the database using a job for creating tables.

To complete the exercise, we need to ensure the following steps are executed:

1.	 Create a file named mysql.yaml on your local computer with the following content:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: mysql
spec:
 selector:
 matchLabels:
 app: mysql
 serviceName: mysql
 replicas: 1
 template:
 metadata:
 labels:
 app: mysql
 spec:
 containers:
 - name: mysql
 image: mysql:5.7
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: "root"
 - name: MYSQL_DATABASE
 value: "db"
 - name: MYSQL_USER
 value: "user"
 - name: MYSQL_PASSWORD
 value: "password"

130 | Kubernetes Deep Dive

 ports:
 - name: mysql
 containerPort: 3306
 volumeMounts:
 - name: data
 mountPath: /var/lib/mysql
 subPath: mysql
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

Note

mysql.yaml is available on GitHub at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/
mysql.yaml.

2.	 Deploy the StatefulSet MySQL database with the following command in your
Terminal:

kubectl apply -f mysql.yaml

This command submits the mysql.yaml file, which includes a StatefulSet called
mysql and a 1 GB volume claim. The output will look like this:

Figure 4.16: StatefulSet creation

3.	 Check the pods with the following command:

kubectl get pods

This command lists the running pods, and we expect to see the one instance of
mysql, as shown in the following figure:

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/mysql.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/mysql.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/mysql.yaml

Kubernetes Resources | 131

Figure 4.17: Pod listing

Note

If the pod status is Pending, wait a couple of minutes until it becomes Running
before continuing to the next step.

4.	 Check the persistent volumes with the following command:

kubectl get persistentvolumes

This command lists the persistent volumes, and we expect to see the one-volume
instance created for the StatefulSet, as shown in the following figure:

Figure 4.18: Persistent volume listing

5.	 Create the service.yaml file with the following content:

apiVersion: v1
kind: Service
metadata:
 name: my-database
spec:
 selector:
 app: mysql
 ports:
 - protocol: TCP
 port: 3306
 targetPort: 3306

Note

service.yaml is available on GitHub at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/
service.yaml.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/service.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/service.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/service.yaml

132 | Kubernetes Deep Dive

6.	 Deploy the my-database service with the following command in your Terminal:

kubectl apply -f service.yaml

This command submits the Service named my-database to group pods with the
label app:mysql:

Figure 4.19: Service creation

7.	 Create the create-table.yaml file with the following content:

apiVersion: batch/v1
kind: Job
metadata:
 name: create-table
spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - name: create
 image: mysql:5.7
 args:
 - /bin/sh
 - -c
 - mysql -h my-database -u user -ppassword db -e 'CREATE TABLE IF
NOT EXISTS messages (id INT)';

Note

create-table.yaml is available on GitHub at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/
create-table.yaml.

8.	 Deploy the job with the following command:

kubectl apply -f create-table.yaml

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/create-table.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/create-table.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Exercise12/create-table.yaml

Kubernetes Resources | 133

This command submits the Job named create-table and within a couple of
minutes, the pod will be created to run the CREATE TABLE command, as shown in
the following figure:

Figure 4.20: Job creation

9.	 Check for the pods with the following command:

kubectl get pods

This command lists the running pods, and we expect to see the one instance of
create-table, as shown in the following figure:

Figure 4.21: Pod listing

Note

If the pod status is Pending or Running, wait a couple of minutes until it
becomes Completed before continuing to the next step.

10.	 Run the following command to check the tables in the MySQL database:

kubectl run mysql-client --image=mysql:5.7 -i -t --rm --restart=Never \
-- mysql -h my-database -u user -ppassword db -e "show tables;"

This command runs a temporary instance of the mysql:5.7 image and runs the
mysql command, as shown in the following figure:

Figure 4.22: Table listing

134 | Kubernetes Deep Dive

In the MySQL database, a table with the name messages is available, as shown
in the preceding output. It shows that MySQL StatefulSet is up and running
the database successfully. In addition, the create-table Job has created a pod,
connected to the database using the service, and created the table.

11.	 Clean the resources by running the following command:

kubectl delete -f create-table.yaml,service.yaml,mysql.yaml

You should see the output shown in the following figure:

Figure 4.23: Cleanup

In the following activity, the database will be filled with the information retrieved by
automated tasks in Kubernetes.

Note

You will need a Docker Hub account to push the images into the registry in the
following activity. Docker Hub is a free service, and you can sign up to it at https://
hub.docker.com/signup.

Activity 4: Collect Gold Prices in a MySQL Database in Kubernetes

The aim of this activity to create a real-life serverless application that runs in a
Kubernetes cluster using Kubernetes-native resources. The serverless function will get
gold prices from the live market and will push the data to the database. The function
will run with predefined intervals to keep a history and make statistical analyses. Gold
prices can be retrieved from the CurrencyLayer API, which provides a free API for
exchange rates. Once completed, you will have a CronJob running every minute:

Note

In order to complete the following activity, you need to have a CurrencyLayer API
access key. It is a free currency and exchange rate service, and you can sign up to it
on the official website.

https://hub.docker.com/signup
https://hub.docker.com/signup

Kubernetes Resources | 135

Figure 4.24: Kubernetes Job for gold price

Finally, with each run of the Kubernetes Job, you will have a real-time gold price in the
database:

Figure 4.25: Price data in the database

136 | Kubernetes Deep Dive

Execute the following steps to complete this activity:

1.	 Create an application to retrieve the gold price from CurrencyLayer and insert it
into the MySQL database. It is possible to implement this function in Go with the
following structure in a main.go file:

//only displaying the function here//

func main() {

 db, err := sql.Open("mysql", ...

 r, err := http.Get(fmt.Sprintf(„http://apilayer.net/api/...

 stmt, err := db.Prepare("INSERT INTO GoldPrices(price) VALUES(?)")_,
 err = stmt.Exec(target.Quotes.USDXAU)

 log.Printf("Successfully inserted the price: %v", target.Quotes.

USDXAU)

}

In the main function, first you need to connect to the database, and then retrieve
the price from CurrencyLayer. Then you need to create a SQL statement and
execute on the database connection. The complete code for main.go can be found
here: https://github.com/TrainingByPackt/Serverless-Architectures-with-
Kubernetes/blob/master/Lesson04/Activity4/main.go.

2.	 Build the application as a Docker container.

3.	 Push the Docker container to the Docker registry.

4.	 Deploy the MySQL database into the Kubernetes cluster.

5.	 Deploy a Kubernetes service to expose the MySQL database.

6.	 Deploy a CronJob to run every minute.

7.	 Wait for a couple of minutes and check the instances of CronJob.

8.	 Connect to the database and check for the entries.

9.	 Clean the database and automated tasks from Kubernetes.

Note

The solution of the activity can be found on page 403.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/main.go
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/main.go

Summary | 137

Summary
In this chapter, we first described the origins and characteristics of Kubernetes.
Following that, we studied the Kubernetes design and components with the details of
master and node components. Then, we installed a local single-node Kubernetes cluster
and checked the Kubernetes components. Following the cluster setup, we studied the
official Kubernetes client tool, kubectl, which is used to connect to a cluster. We also
saw how kubectl is used to manage clusters and the life cycle of applications. Finally, we
discussed the fundamental Kubernetes resources for serverless applications, including
pods, deployments, and StatefulSets. In addition to that, we also studied how to
connect applications in a cluster using services. Kubernetes resources for one-time and
automated tasks were presented using Jobs and CronJobs. At the end of this chapter, we
developed a real-time data collection function using Kubernetes-native resources.

In the next chapter, we will be studying the features of Kubernetes clusters and using a
popular cloud platform to deploy them.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Identify the requirements of Kubernetes cluster setup

•	 Create a production-ready Kubernetes cluster in Google Cloud Platform (GCP)

•	 Manage cluster autoscaling to add new servers to a Kubernetes cluster

•	 Migrate applications in production clusters

In this chapter, we will learn about the key considerations for the setup of Kubernetes. Following
that, we will also study the different Kubernetes platform options. Then, we move on to creating
a production-ready Kubernetes cluster in cloud platforms and performing administrative tasks.

Production-Ready
Kubernetes Clusters

5

140 | Production-Ready Kubernetes Clusters

Introduction
In the previous chapter, we created Kubernetes clusters for the development
environment and installed applications into it. In this chapter, the focus will be
on production-ready Kubernetes clusters and how to administer them for better
availability, reliability, and cost optimization.

Kubernetes is the de facto system for managing microservices running as containers in
the cloud. It is widely adopted in the industry by both start-ups and large enterprises
for running various kinds of applications, including data analysis tools, serverless
apps, and databases. Scalability, high availability, reliability, and security are the key
features of Kubernetes that enable its adoption. Let's assume that you have decided
to use Kubernetes, and hence you need a reliable and observable cluster setup for
development and production. There are critical considerations that depend on your
requirements, budget, and team before choosing a Kubernetes provider and how to
operate the applications. There are four key considerations to analyze:

•	 Service Quality: Kubernetes runs microservices in a highly available and reliable
way. However, it is critical to install and operate Kubernetes reliably and robustly.
Let's assume you have installed the Kubernetes control plane into a single node
in the cluster, and it was disconnected due to a network problem. Since you have
lost the Kubernetes API server connectivity, you will not be able to check the
status of your applications and operate them. Therefore, it is essential to evaluate
the service quality of the Kubernetes cluster you need for your production
environment.

•	 Monitoring: Kubernetes runs containers that are distributed to the nodes and
enables checking their logs and statuses. Let's assume that you rolled out a new
version of your application yesterday. Today, you want to check how the latest
version is working for any errors, crashes, and response time. Therefore, you need
a monitoring system integrated into your Kubernetes cluster to capture logs and
metrics. The collected data is essential for troubleshooting and diagnosis in a
production-ready cluster.

•	 Security: Kubernetes components and client tools work in a secure way to manage
the applications running in the cluster. However, you need to have specific roles
and authorization levels defined for your organization to operate Kubernetes
clusters securely. Hence, it is essential to choose a Kubernetes provider platform
that you can securely connect to and share with your customers and colleagues.

Kubernetes Setup | 141

•	 Operations: Kubernetes is the host of all applications, including services with
data compliance, auditing, and enterprise-level requirements. Let's assume
you are running the backend and frontend of your online banking application
system on Kubernetes. For a chartered bank in your county, the audit logs of your
applications should be accessible. Since you have deployed your entire system on
Kubernetes, the platform should enable fetching audit logs, archiving them, and
storing them. Therefore, the operational capability of the Kubernetes platform is
essential for the production-ready cluster setup.

In order to decide how to install and operate your Kubernetes clusters, these
considerations will be discussed for the Kubernetes platform options in this chapter.

Kubernetes Setup
Kubernetes is a flexible system that can be installed on various platforms from
Raspberry Pi to high-end servers in data centers. Each platform comes with its
advantages and disadvantages in terms of service quality, monitoring, security, and
operations. Kubernetes manages applications as containers and creates an abstraction
layer on the infrastructure. Let's imagine that you set up Kubernetes on the three old
servers in your basement and then install the Proof of Concept (PoC) of your new
project. When the project becomes successful, you want to scale your application and
move to a cloud provider such as Amazon Web Services (AWS). Since your application
is designed to run on Kubernetes and does not depend on the infrastructure, porting to
another Kubernetes installation is straightforward.

In the previous chapter, we studied the development environment setup using minikube,
the official method of Kubernetes. In this section, production-level Kubernetes
platforms will be presented. The Kubernetes platforms for production can be grouped
into threes, with the following abstraction layers:

Figure 5.1: Kubernetes platforms

142 | Production-Ready Kubernetes Clusters

Let's now look at each of these types, one by one.

Managed Platforms

Managed platforms provide Kubernetes as a Service, and all underlying services run
under the control of cloud providers. It is easy to set up and scale these clusters since
the cloud providers handle all infrastructural operations. Leading cloud providers such
as GCP, AWS, and Microsoft Azure have managed Kubernetes solution applications,
intending to integrate other cloud services such as container registries, identity
services, and storage services. The most popular managed Kubernetes solutions are as
follows:

•	 Google Kubernetes Engine (GKE): GKE is the most mature managed service on the
market, and Google provides it as a part of GCP.

•	 Azure Kubernetes Service (AKS): AKS is the Kubernetes solution provided by
Microsoft as a part of the Azure platform.

•	 Amazon Elastic Container Service for Kubernetes (EKS): EKS is the managed
Kubernetes of AWS.

Turnkey Platforms

Turnkey solutions focus on installing and operating the Kubernetes control plane in
the cloud or in on-premise systems. Users of turnkey platforms provide information
about the infrastructure, and the turnkey platforms handle the Kubernetes setup.
Turnkey platforms offer better flexibility in setup configurations and infrastructure
options. These platforms are mostly designed by organizations with rich experience in
Kubernetes and cloud systems such as Heptio or CoreOS.

If turnkey platforms are installed on cloud providers such as AWS, the infrastructure
is managed by the cloud provider, and the turnkey platform manages Kubernetes.
However, when the turnkey platform is installed on on-premise systems, in-house
teams should handle the infrastructure operations.

Google Kubernetes Engine | 143

Custom Platforms

Custom installation of Kubernetes is possible if your use case does not fit into any
managed or turnkey solutions. For instance, you can use Gardener (https://gardener.
cloud) or OpenShift (https://www.openshift.com) to install Kubernetes clusters to
cloud providers, on-premise data centers, on-premise virtual machines (VMs), or bare-
metal servers. While the custom platforms offer more flexible Kubernetes installations,
they also come with special operations and maintenance efforts.

In the following sections, we will create a managed Kubernetes cluster in GKE and
administer it. GKE offers the most mature platform and the superior customer
experience on the market.

Google Kubernetes Engine
GKE provides a managed Kubernetes platform backed by the experience that Google
has of running containerized services for more than a decade. GKE clusters are
production-ready and scalable, and they support upstream Kubernetes versions. In
addition, GKE focuses on improving the development experience by eliminating the
installation, management, and operation needs of Kubernetes clusters.

While GKE improves developer experience, it tries to minimize the cost of running
Kubernetes clusters. It only charges for the nodes in the cluster and provides a
Kubernetes control plane free of charge. In other words, GKE delivers a reliable,
scalable, and robust Kubernetes control plane without any cost. For the servers that run
the workload of your applications, the usual GCP Compute Engine pricing is applied.
For instance, let's assume that you will start with two n1-standard-1 (vCPUs: 1, RAM:
3.75 GB) nodes:

The calculation would be as follows:

1,460 total hours per month

Instance type: n1-standard-1

GCE Instance Cost: USD 48.54

Kubernetes Engine Cost: USD 0.00

Estimated Component Cost: USD 48.54 per 1 month

144 | Production-Ready Kubernetes Clusters

If your application requires scalability with the higher usage and if you need 10 servers
instead of 2, the cost will also scale linearly:

7,300 total hours per month

Instance type: n1-standard-1

GCE Instance Cost: USD 242.72

Kubernetes Engine Cost: USD 0.00

Estimated Component Cost: USD 242.72 per 1 month

This calculation shows that GKE does not charge for the Kubernetes control plane and
provides a reliable, scalable, and robust Kubernetes API for every cluster. In addition,
the cost linearly increases for scaling clusters, which makes it easier to plan and
operate Kubernetes clusters.

In the following exercise, you will create a managed Kubernetes cluster in GKE and
connect to it.

Note

In order to complete this exercise, you need to have an active GCP account. You
can create an account on its official website: https://console.cloud.google.com/
start.

Exercise 13: Creating a Kubernetes Cluster on GCP

In this exercise, we will create a Kubernetes cluster in GKE and connect to it securely
to check node statuses. The Google Cloud Platform dashboard and CLI tools maintain
a high level of developer experience. Therefore, if you need a production-ready
Kubernetes cluster, you will have a fully functioning control plane and server nodes in
less than 10 minutes.

Google Kubernetes Engine | 145

To complete the exercise, we need to ensure the following steps are executed:

1.	 Click Kubernetes Engine in the left menu under Compute on the Google Cloud
Platform home page, as shown in the following figure:

Figure 5.2: Google Cloud Platform home page

146 | Production-Ready Kubernetes Clusters

2.	 Click Create Cluster on the Clusters page, as shown in the following figure:

Figure 5.3: Cluster view

Google Kubernetes Engine | 147

3.	 Select Your first cluster in the left from Cluster templates and write serverless
as the name. Click Create at the end of the page, as shown in the following figure:

Figure 5.4: Cluster creation

148 | Production-Ready Kubernetes Clusters

4.	 Wait a couple of minutes until the cluster icon becomes green and then click the
Connect button, as you can see in the following figure:

Figure 5.5: Cluster list

5.	 Click Run in Cloud Shell in the Connect to the cluster window, as shown in the
following figure:

Figure 5.6: Connect to the cluster view

Google Kubernetes Engine | 149

6.	 Wait until the cloud shell is open and available and press Enter when the command
is shown, as you can see in the following figure:

Figure 5.7: Cloud shell

The output shows that the authentication data for the cluster is fetched, and the
kubeconfig entry is ready to use.

7.	 Check the nodes with the following command in the cloud shell:

kubectl get nodes

Since the cluster is created with a single node pool of one node, there is only one
node connected to the cluster, as you can see in the following figure:

Figure 5.8: Node list

8.	 Check for the pods running in the cluster with the following command in the
cloud shell:

kubectl get pods --all-namespaces

Since GKE manages the control plane, there are no pods for api-server, etcd, or
scheduler in the kube-system namespace. There are only networking and metrics
pods running in the cluster, as shown in the following screenshot:

Figure 5.9: Pod list

150 | Production-Ready Kubernetes Clusters

With this exercise, you have created a production-ready Kubernetes cluster on GKE.
Within a couple of minutes, GKE created a managed Kubernetes control plane and
connected the servers to the cluster. In the following sections, administrating the
clusters for production environments will be discussed, and the Kubernetes cluster
from this exercise will be expanded.

Autoscaling Kubernetes Clusters
Kubernetes clusters are designed to run scalable applications reliably. In other words,
if the Kubernetes cluster runs 10 instances of your application today, it should also
support running 100 instances in the future. There are two mainstream methods
to reach this level of flexibility: redundancy and autoscaling. Let's assume that the
10 instances of your application are running on 3 servers in your cluster. With the
redundancy, you need at least 27 extra idle servers to be capable of running 100
instances in the future. It also means paying for the empty servers as well as operational
and maintenance costs. With autoscaling, you need automated procedures to create
or remove servers. Autoscaling ensures that there are no excessive idle servers and
minimizes the costs while meeting the scalability requirements.

GKE Cluster Autoscaler is the out-of-box solution for handling autoscaling in
Kubernetes clusters. When it is enabled, it automatically adds new servers if there is
no capacity left for the workload. Similarly, when the servers are underutilized, the
autoscaler removes the redundant servers. Furthermore, the autoscaler has a minimum
and maximum number of servers defined to avoid limitless increases or decreases. In
the following exercise, the GKE cluster autoscaler will be enabled for the Kubernetes
cluster. Then the automatic scaling of the servers will be demonstrated by changing the
workload in the cluster.

 Exercise 14: Autoscaling a GKE Cluster in Production

In this exercise, we will enable and utilize the GKE cluster autoscaler in a production
cluster. Let's assume that you need a large number of replicas of your application
running in the cluster. However, it is not currently possible since you have a low
number of servers. Therefore, you need to enable autoscaling and see how new servers
are created automatically.

Autoscaling Kubernetes Clusters | 151

To successfully complete the exercise, we need to ensure the following steps are
executed:

1.	 Install nginx in the cluster by running the following command in the cloud shell:

kubectl create deployment workload --image=nginx

This command creates a deployment named workload from the nginx image, as
depicted in the following figure:

Figure 5.10: Deployment creation

2.	 Scale the workload deployment to 25 replicas by running the following command in
the cloud shell:

kubectl scale deployment workload --replicas=25

This command increases the number of replicas of the workload deployment, as
shown in the following figure:

Figure 5.11: Deployment scaling up

3.	 Check the number of running pods with the following command:

kubectl get deployment workload

Since there is only 1 node in the cluster, 25 replicas of nginx could not run in the
cluster. Instead, only 5 instances are running currently, as shown in the following
figure:

Figure 5.12: Deployment status

152 | Production-Ready Kubernetes Clusters

4.	 Enable autoscaling for the node pool of the cluster using the following command:

gcloud container clusters update serverless --enable-autoscaling \
 --min-nodes 1 --max-nodes 10 --zone us-central1-a \
 --node-pool pool-1

Note

Change the zone parameter if your cluster is running in another zone.

This command enables autoscaling for the Kubernetes cluster with a minimum of 1
and a maximum of 10 nodes, as shown in the following figure:

Figure 5.13: Enabling autoscaler

This command can take a couple of minutes to create the required resources with
the Updating serverless... prompt.

5.	 Wait a couple of minutes and check for the number of nodes by using the
following command:

kubectl get nodes

With autoscaling enabled, GKE ensures that there are enough nodes to run the
workload in the cluster. The node pool is scaled up to four nodes, as shown in the
following figure:

Figure 5.14: Node list

Autoscaling Kubernetes Clusters | 153

6.	 Check the number of running pods with the following command:

kubectl get deployment workload

Since there are 4 nodes in the cluster, 25 replicas of nginx could run in the cluster,
as shown in the following figure:

Figure 5.15: Deployment status

7.	 Delete the deployment with the following command:

kubectl delete deployment workload

The output should be as follows:

Figure 5.16: Deployment deletion

8.	 Disable autoscaling for the node pool of the cluster by using the following
command:

gcloud container clusters update serverless --no-enable-autoscaling \
--node-pool pool-1 --zone us-central1-a

Note

Change the zone parameter if your cluster is running in another zone.

You should see the output shown in the following figure:

Figure 5.17: Disabling autoscaling

154 | Production-Ready Kubernetes Clusters

In this exercise, we saw the GKE cluster autoscaler in action. When the autoscaler
is enabled, it increases the number of servers when the cluster is out of capacity for
the current workload. Although it seems straightforward, it is a compelling feature
of Kubernetes platforms. It removes the burden of manual operations to check your
cluster utilization and take action. It is even more critical for serverless applications
where user demand is highly variable.

Let's assume you have deployed a serverless function to your Kubernetes cluster with
autoscaling enabled. The cluster autoscaler will automatically increase the number of
nodes when your functions are called frequently and then delete the nodes when your
functions are not invoked. Therefore it is essential to check the autoscaling capability of
the Kubernetes platform for serverless applications. In the following section, migrating
applications in production environments will be discussed, as it is another important
cluster administration task.

Application Migration in Kubernetes Clusters
Kubernetes distributes applications to servers and keeps them running reliably and
robustly. Servers in the cluster could be VMs or bare-metal server instances with
different technical specifications. Let's assume you have connected only standard VMs
to your Kubernetes cluster and they are running various types of applications. If one
of your upcoming data analytics libraries requires GPUs to operate faster, you need
to connect servers with GPUs. Similarly, if your database application requires SSD
disks for faster I/O operations, you need to connect servers with SSD access. These
kinds of application requirements result in having different node pools in your cluster.
Also, you need to configure the Kubernetes workload to run on the particular nodes.
In addition to marking some nodes reserved for special types of workloads, taints are
used. Similarly, pods are marked with tolerations if they are running specific types of
workloads. Kubernetes supports workload distribution to special nodes with taints and
tolerations working in harmony:

•	 Taints are applied to nodes to indicate that the node should not have any pods
that do not tolerate the taints.

•	 Tolerations are applied to pods to allow pods to be scheduled on nodes with
taints.

For instance, if you only want to run database instances on your nodes with SSD, you
need first to taint your nodes:

kubectl taint nodes disk-node-1 ssd=true:NoSchedule

Application Migration in Kubernetes Clusters | 155

With this command, disk-node-1 will only accept pods that have the following
tolerations in their definition:

tolerations:

- key: "ssd"

 operator: "Equal"

 value: "true"

 effect: "NoSchedule"

Taints and tolerations work in harmony to assign pods to specific nodes as a part of the
Kubernetes scheduler. In addition, Kubernetes supports securely removing the servers
from the cluster by using the kubectl drain command. It is particularly helpful if you
want to take some nodes for maintenance or retirement. In the following exercise, an
application running in the Kubernetes cluster will be migrated to a particular set of new
nodes.

Exercise 15: Migrating Applications Running in a GKE Cluster

This exercise aims to teach us to perform migration activities in a production cluster.
Let's assume that you are running a backend application in your Kubernetes cluster.
With the recent changes, you have enhanced your application with better memory
management and want to run on servers with higher memory optimization. Therefore,
you will create a new node pool and migrate your application instances into it.

To successfully complete the exercise, we need to ensure the following steps are
executed:

1.	 Install the backend application to the cluster by running the following command in
the cloud shell:

kubectl create deployment backend --image=nginx

This command creates a deployment named backend from an nginx image, as you
can see in the following figure:

Figure 5.18: Deployment creation

156 | Production-Ready Kubernetes Clusters

2.	 Scale the backend deployment to 10 replicas by running the following command in
the cloud shell:

kubectl scale deployment backend --replicas=10

This command increases the number of replicas of the backend deployment, as
shown in the following figure:

Figure 5.19: Deployment scaling up

3.	 Check the number of running pods and their nodes with the following command:

kubectl get pods -o wide

All 10 replicas of the deployment are running successfully on the 4 nodes, as you
can see in the following figure:

Figure 5.20: Deployment status

4.	 Create a node pool in GCP with a higher memory:

gcloud container node-pools create high-memory-pool --cluster=serverless \
--zone us-central1-a --machine-type=n1-highmem-2 --num-nodes=2

Note

Change the zone parameter if your cluster is running in another zone.

Application Migration in Kubernetes Clusters | 157

This command creates a new node pool named high-memory-pool in the serverless
cluster with the machine type n1-highmem-2 and two servers, as you can see in the
following figure:

Figure 5.21: Node pool creation

This command can take a couple of minutes to create the required resources with
the Creating node pool high-memory-pool prompt.

5.	 Wait for a couple of minutes and check the nodes in the cluster:

kubectl get nodes

This command lists the nodes in the cluster, and we expect to see two extra high-
memory nodes, as shown in the following figure:

Figure 5.22: Cluster nodes

158 | Production-Ready Kubernetes Clusters

6.	 Drain the old nodes so that Kubernetes will migrate applications to new nodes:

kubectl drain -l cloud.google.com/gke-nodepool=pool-1

This command removes the workloads from all nodes with the label cloud.google.
com/gke-nodepool=pool-1, as shown in the following figure:

Figure 5.23: Node removal

7.	 Check the running pods and their nodes with the following command:

kubectl get pods -o wide

All 10 replicas of the deployment are running successfully on the new high-memory
node, as shown in the following figure:

Figure 5.24: Deployment status

Application Migration in Kubernetes Clusters | 159

8.	 Delete the old node pool with the following command:

gcloud container node-pools delete pool-1 --cluster serverless --zone
us-central1-a

Note

Change the zone parameter if your cluster is running in another zone.

This command deletes the old node pool, which is not being used, as you can see
in the following figure:

Figure 5.25: Node pool deletion

In this exercise, we have migrated the running application to new nodes with better
technical specs. Using the Kubernetes primitives and GKE node pools, it is possible to
migrate applications to a particular set of nodes without downtime. In the following
activity, you will use autoscaling and Kubernetes taints to run serverless functions while
minimizing the cost.

Activity 5: Minimizing the Costs of Serverless Functions in a GKE Cluster

The aim of this activity to take administrative tasks on production clusters to run
serverless functions while minimizing the costs. Let's assume that your backend
application is already running in your Kubernetes cluster. Now you want to install
some serverless functions to connect to the backend. However, backend instances
are running memory-optimized servers, which are costly for also running serverless
functions. Therefore, you need to add preemptible servers, which are cheaper.
Preemptible VMs are already available in GCP; however, they have low service quality
and a maximum lifespan of 24 hours. Therefore, you should configure the node pool to
be autoscaled and only to run serverless functions. Otherwise, your backend instances
could also be scheduled on preemptible VMs and degrade the overall performance.

160 | Production-Ready Kubernetes Clusters

At the end of the activity, you will have functions connecting to the backend instances,
as shown in the following figure:

Figure 5.26: Backend checker functions

Backend instances will run on high-memory nodes and function instances will run on
preemptible servers, as shown in the following figure:

Figure 5.27: Kubernetes pods and the corresponding nodes

Note

In order to complete the activity, you should use the cluster from Exercise 15 with
backend deployments running.

Execute the following steps to complete the activity:

1.	 Create a new node pool with preemptible servers.

2.	 Taint the preemptible servers to run only serverless functions.

3.	 Create a Kubernetes service to reach backend pods.

4.	 Create a CronJob to connect to the backend service every minute. The CronJob
definition should have tolerations to run on preemptible servers.

Summary | 161

5.	 Check the node assignments of the CronJob functions.

6.	 Check the logs of the CronJob function instances.

7.	 Clean the backend deployment and the serverless functions.

8.	 Remove the Kubernetes cluster if you do not need it anymore.

Note

The solution to the activity can be found on page 412.

Summary
In this chapter, we first described the four key considerations to analyze the
requirements for the Kubernetes cluster setup. Then we studied the three groups of
Kubernetes platforms: managed, turnkey, and custom. Each Kubernetes platform has
been explained, along with their responsibility levels on infrastructure, Kubernetes,
and applications. Following that, we created a production-ready Kubernetes cluster on
GKE. Since Kubernetes is designed to run scalable applications, we studied how to deal
with increasing or decreasing workload by autoscaling. Furthermore, we also looked
at application migration without downtime in production clusters to illustrate how
to move your applications to the servers with higher memory. Finally, we performed
autoscaling and migration activities with a serverless function running in a production
cluster to minimize the costs. Kubernetes and serverless applications work together to
create reliable, robust, and scalable future-proof environments. Therefore, it is essential
to know how to install and operate Kubernetes clusters for production.

In the next chapter, we will be studying the upcoming serverless features in Kubernetes.
We will also study virtual kubelets in detail and deploy stateless containers on GKE.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Utilize the concepts and components of Knative to deploy applications

•	 Set up Knative on a GKE cluster

•	 Deploy applications on Knative and configure autoscaling

•	 Deploy applications on Google Cloud Run

•	 Set up Virtual Kubelet on Azure

•	 Deploy applications with Virtual Kubelet

This chapter covers Knative, Google Cloud Run, and Virtual Kubelet, which offers the advantages
of serverless on top of a Kubernetes cluster.

Upcoming Serverless
Features in
Kubernetes

6

164 | Upcoming Serverless Features in Kubernetes

Introduction to Serverless with Kubernetes
In the previous chapter, we extensively studied the various setup options and platforms
used in Kubernetes. We also covered the autoscaling feature of Kubernetes and
implemented it in an application deployed on a cluster.

Kubernetes and serverless are two of the trending topics in the IT industry, but these
two topics are often discussed independently of each other. Kubernetes is a platform
for managing containerized applications, and serverless is an execution model that
abstracts away the infrastructure so software developers can focus on their application
logic. However, a combination of these two concepts will achieve the same goal of
making the software developer's life much easier.

A few platforms have emerged recently that bring serverless features to containers
by abstracting away the complexities of managing containers and any underlying
infrastructure. These platforms run serverless workloads on Kubernetes clusters and
provide many benefits, including autoscaling, scale to zero, per-usage billing, event-
driven capabilities, integrated monitoring, and integrated logging features.

In this chapter, we will be discussing three technologies that offer the benefits of
serverless on top of a Kubernetes cluster:

•	 Knative

•	 Google Cloud Run

•	 Virtual Kubelet

Introduction to Knative

Knative is an open source project started by Google with contributions from over 50
other companies, including Pivotal, Red Hat, IBM, and SAP. Knative extends Kubernetes
by introducing a set of components to build and run serverless applications on top of it.
This framework is great for application developers who are already using Kubernetes.
Knative provides tools for them to focus on their code without worrying about the
underlying architecture of Kubernetes. It introduces features such as automated
container builds, autoscaling, scale to zero, and an eventing framework, which allows
developers to get the benefits of serverless on top of Kubernetes.

Introduction to Serverless with Kubernetes | 165

The Knative framework is described as a "Kubernetes-based platform to deploy and
manage modern serverless workloads" on the Knative website. The framework helps
to bridge the gap between containerized applications and serverless applications by
introducing serverless features such as autoscaling and scale to zero to the Kubernetes
platform.

Knative consists of three main components:

•	 Build

•	 Serving

•	 Eventing

Note

The Build component has been deprecated in favor of Tekton Pipelines in the latest
version of Knative. The final release of the Knative Build component is available in
version 0.7.

Build is the process of building the container images from the source code and
running them on a Kubernetes cluster. The Knative Serving component allows the
deployment of serverless applications and functions. This enables serving traffic to
containers and autoscaling based on the number of requests. The serving component
is also responsible for taking snapshots of the code and configurations whenever a
change is made to them. The Knative Eventing component helps us to build event-
driven applications. This component allows the applications to produce events for and
consume events from event streams.

166 | Upcoming Serverless Features in Kubernetes

The following diagram illustrates a Knative framework with its dependencies and the
stakeholders of each component:

Figure 6.1: Knative dependencies and stakeholders

The bottom layer represents the Kubernetes framework, which is used as the container
orchestration layer by the Knative framework. Kubernetes can be deployed on any
infrastructure, such as Google Cloud Platform or an on-premises system. Next, we
have the Istio service mesh layer, which manages network routing within the cluster.
This layer provides many benefits, including traffic management, observability, and
security. At the top layer, Knative runs on top of a Kubernetes cluster with Istio. In the
Knative layer, at one end we can see contributors who contribute code to the Knative
framework through the GitHub project, and at the other end we can see the application
developers who build and deploy applications on top of the Knative framework.

Note

For more information on Istio, please refer to https://istio.io/.

Now that we have this understanding of Knative, let's look at how to install Knative on a
Kubernetes cluster in the following section.

https://istio.io/

Introduction to Serverless with Kubernetes | 167

Getting Started with Knative on GKE

In this section, we will take you through the process of installing Knative on a
Kubernetes cluster. We will be using Google Kubernetes Engine (GKE) to set up a
Kubernetes cluster. GKE is the managed Kubernetes cluster service in the Google cloud.
It allows us to run Kubernetes clusters without the burden of installing, managing and
operating our own clusters.

We need to have the following prerequisites installed and configured to continue with
this section:

•	 A Google Cloud account

•	 The gcloud CLI

•	 The kubectl CLI (v1.10 or newer)

First, we need to set a few environment variables that we will be using with the gcloud
CLI. You should update <your-gcp-project-name> with the name of your GCP project. We
will be using us-central1-a as the GCP zone. Execute the following commands in your
terminal window to set the required environment variables:

$ export GCP_PROJECT=<your-gcp-project-name>

$ export GCP_ZONE=us-central1-a

$ export GKE_CLUSTER=knative-cluster

The output should be as follows:

Figure 6.2: Setting environment variables

Set our GCP project as the default project to be used by the gcloud CLI commands:

$ gcloud config set core/project $GCP_PROJECT

The output should be as follows:

Figure 6.3: Setting the default GCP project

168 | Upcoming Serverless Features in Kubernetes

Now we can create the GKE cluster using the gcloud command. Knative requires
a Kubernetes cluster with version 1.11 or newer. We will be using the Istio plugin
provided by GKE for this cluster. The following is the recommended configuration for a
Kubernetes cluster to run Knative components:

•	 Kubernetes version 1.11 or newer

•	 Kubernetes nodes with four vCPUs (n1-standard-4)

•	 Node autoscaling enabled for up to 10 nodes

•	 API scopes for cloud-platform

Execute the following command to create a GKE cluster compatible with these
requirements:

 $ gcloud beta container clusters create $GKE_CLUSTER \

 --zone=$GCP_ZONE \

 --machine-type=n1-standard-4 \

 --cluster-version=latest \

 --addons=HorizontalPodAutoscaling,HttpLoadBalancing,Istio \

 --enable-stackdriver-kubernetes \

 --enable-ip-alias \

 --enable-autoscaling --min-nodes=1 --max-nodes=10 \

 --enable-autorepair \

 --scopes cloud-platform

The output should be as follows:

Figure 6.4: Creating a GKE cluster

Introduction to Serverless with Kubernetes | 169

It may take a few minutes to set up the Kubernetes cluster. Once the cluster is ready,
we will use the command gcloud container clusters get-credentials to fetch the
credentials of the new cluster and configure the kubectl CLI as you can see in the
following code snippet:

$ gcloud container clusters get-credentials $GKE_CLUSTER --zone $GCP_ZONE
--project $GCP_PROJECT

The output should be as follows:

Figure 6.5: Fetching credentials for the GKE cluster

Now you have successfully created the GKE cluster with Istio and configured kubectl to
access the newly created cluster. We can now proceed with the next step of installing
Knative. We will be installing Knative version 0.8, which is the latest available version at
the time of writing this book.

We will use the kubectl CLI to apply the Knative components to the Kubernetes cluster.
First, run the kubectl apply command with the -l knative.dev/crd-install=true flag to
prevent race conditions during the installation process:

$ kubectl apply --selector knative.dev/crd-install=true \

 -f https://github.com/knative/serving/releases/download/v0.8.0/serving.
yaml \

 -f https://github.com/knative/eventing/releases/download/v0.8.0/release.
yaml \

 -f https://github.com/knative/serving/releases/download/v0.8.0/monitoring.
yaml

Next, run the command again without the -l knative.dev/crd-install=true flag to
complete the installation:

$ kubectl apply -f https://github.com/knative/serving/releases/download/
v0.8.0/serving.yaml \

 -f https://github.com/knative/eventing/releases/download/v0.8.0/release.
yaml \

 -f https://github.com/knative/serving/releases/download/v0.8.0/monitoring.
yaml

170 | Upcoming Serverless Features in Kubernetes

Once the command is completed, execute the following commands to check the status
of the installation. Make sure that all pods have a status of Running:

$ kubectl get pods --namespace knative-serving

$ kubectl get pods --namespace knative-eventing

$ kubectl get pods --namespace knative-monitoring

The output should be as follows:

Figure 6.6: Verifying Knative installation

At this stage, you have set up a Kubernetes cluster on GKE and installed Knative. Now
we are ready to deploy our first application on Knative.

Introduction to Serverless with Kubernetes | 171

Exercise 16: Deploying a Sample Application on Knative

In the previous section, we successfully deployed Knative on top of Kubernetes and
Istio. In this exercise, we will deploy our first application on the Knative framework.
For this deployment, we are going to use a sample web application written with Node.
js. A Docker image of this application is available in Google Container Registry at gcr.
io/knative-samples/helloworld-nodejs. These steps can be adapted to deploy our own
Docker image on Docker Hub or any other container registry.

This sample "hello world" application will read an environment variable named TARGET
and print Hello <VALUE_OF_TARGET>! as the output. It will print NOT SPECIFIED as the
output if no value is defined for the TARGET environment variable.

Let's start by creating the service definition file for our application. This file defines
application-related information including the application name and the application
Docker image:

Note

Knative service objects and Kubernetes Service objects are two different types.

1.	 Create a file named hello-world.yaml with the following content. This Knative
service object defines values such as the namespace to deploy this service in, the
Docker image to use for the container, and any environment variables:

 apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: helloworld-nodejs
 namespace: default
spec:
 runLatest:
 configuration:
 revisionTemplate:
 spec:
 container:
 image: gcr.io/knative-samples/helloworld-nodejs
 env:
 - name: TARGET
 value: "Knative NodeJS App"

172 | Upcoming Serverless Features in Kubernetes

2.	 Once the hello-world.yaml file is ready, we can deploy our application with the
kubectl apply command:

$ kubectl apply -f hello-world.yaml

The output should be as follows:

 Figure 6.7: Deploying the helloworld-nodejs application

3.	 The previous command will create multiple objects, including the Knative service,
configuration, revision, route, and Kubernetes Deployment. We can verify the
application by listing the newly created objects as in the following commands:

$ kubectl get ksvc
$ kubectl get configuration
$ kubectl get revision
$ kubectl get route
$ kubectl get deployments

The output should be as follows:

Figure 6.8: Verifying helloworld-nodejs application deployment

Introduction to Serverless with Kubernetes | 173

4.	 Once our application is deployed successfully, we can invoke this application
using an HTTP request. For this, we need to identify the external IP address of
the Kubernetes cluster. Execute the following command to export the value of
EXTERNAL-IP into an environment variable named EXTERNAL_IP:

$ export EXTERNAL_IP=$(kubectl get svc istio-ingressgateway --namespace
istio-system --output 'jsonpath={.status.loadBalancer.ingress[0].ip}')

The output should be as follows:

Figure 6.9: Exporting the external IP of the istio-ingressgateway service

Next, we need to find the host URL of the helloworld-nodejs application. Execute
the following command and take note of the value of the URL column. This URL
takes the form http://<application-name>.<namespace>.example.com:

$ kubectl get route helloworld-nodejs

The output should be as follows:

Figure 6.10: Listing the helloworld-nodejs route

5.	 Now we can invoke our application using the EXTERNAL_IP and URL values that we
noted in the earlier steps. Let's make a curl request with the following command:

$ curl -H "Host: helloworld-nodejs.default.example.com" http://${EXTERNAL_
IP}

The output should be as follows:

Figure 6.11: Invoking the helloworld-nodejs application

You should receive the expected output as Hello Knative NodeJS App!. This indicates
that we have successfully deployed and invoked our first application on the Knative
platform.

174 | Upcoming Serverless Features in Kubernetes

Knative Serving Component
In the previous section, we deployed our first Knative application using a YAML file
of the service type. When deploying the service, it created multiple other objects,
including configuration, revision, and route objects. In this section, let's discuss each of
these objects:

There are four resource types in the Knative Serving component:

•	 Configuration: Defines the desired state of the application

•	 Revision: Read-only snapshots that track the changes in configurations

•	 Route: Provides traffic routing to revisions

•	 Service: Top-level container for routes and configurations

The following diagram illustrates the relationship between each of these components:

Figure 6.12: Relationship between Knative services, routes, configurations, and revisions

Knative Serving Component | 175

The configuration is used to define the desired state of the application. This will define
the container image used for the application and any other configuration parameters
that are required. A new Revision will be created each time a Configuration is updated.
Revision refers to a snapshot of the code and the Configuration. This is used to
record the history of Configuration changes. A Route is used to define the traffic
routing policy of the application and provides an HTTP endpoint for the application. By
default, the Route will send traffic to the latest Revision created by the Configuration.
The Route can also be configured for more advanced scenarios, including sending
traffic to a specific Revision or splitting traffic to different revisions based on defined
percentages. Service objects are used to manage the whole life cycle of the application.
While deploying a new application, it is required to create Configuration and Route
objects manually, but the Service can be used to simplify this by creating and managing
Configuration and Route objects automatically.

In the following section, we will be using canary deployment to deploy applications with
Knative. Let's first understand what exactly canary deployment is.

Canary Deployment

Canary deployment is a deployment strategy used when rolling out a new version of
code to a production environment. This is a fail-safe process of deploying a new version
of code into a production environment and switching a small percentage of traffic to
the new version. This way, the development and deployment teams can verify the new
version of the code with minimal impact on production traffic. Once the verifications
are done, all traffic will be switched to the new version. In addition to canary
deployments, there are several other deployment types, such as big bang deployments,
rolling deployments, and blue-green deployments.

In the helloworld-nodejs application that we deployed in Exercise 16, Deploying a
Sample App on Knative, we used the Service object with the spec.runLatest field, which
directs all traffic to the latest available revision. In the following exercise, we will be
using separate configuration and route objects instead of the service object.

Note

For more information on canary deployment technique, refer to https://dev.to/
mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3.

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

176 | Upcoming Serverless Features in Kubernetes

Exercise 17: Canary Deployment with Knative

In this exercise, we will be implementing a canary deployment strategy to deploy
applications with Knative. First, we will deploy an initial version (version 1) of an
application and route 100% traffic to that version. Next, we will create version 2 of the
application and route 50% of traffic to version 1 and the remaining 50% to version 2.
Finally, we will update the routes to send 100% of traffic to version 2.

The following steps will help you complete the exercise:

1.	 First, start by creating the initial version (v1) of the application. Create a file named
canary-deployment.yaml with the following content. This application uses the
same Docker image (gcr.io/knative-samples/helloworld-nodejs) that we used
previously and sets the TARGET environment variable as This is the first version
- v1:

apiVersion: serving.knative.dev/v1alpha1
kind: Configuration
metadata:
 name: canary-deployment
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-nodejs
 env:
 - name: TARGET
 value: "This is the first version - v1"

2.	 Deploy the first version of the application with the kubectl apply command using
the YAML file created in the previous step:

$ kubectl apply -f canary-deployment.yaml

The output should be as follows:

Figure 6.13: Creating canary-deployment

Knative Serving Component | 177

3.	 Let's get the revision name created by this configuration as we need this value in
the next step. Execute the kubectl get configurations command and retrieve the
value of the latestCreatedRevisionName field:

$ kubectl get configurations canary-deployment -o=jsonpath='{.status.
latestCreatedRevisionName}'

The output should be as follows:

Figure 6.14: Getting the latest revision of the canary-deployment configuration

For me, the value returned from the preceding command is canary-deployment-
xgvl8. Note that your value will be different.

4.	 The next step is to create the route object. Let's create a file named canary-
deployment-route.yaml with the following content (please remember to replace
canary-deployment-xgvl8 with the revision name that you noted in the previous
step). Under the spec.traffic section, you can see that 100% of traffic is routed to
the revision that we created previously:

apiVersion: serving.knative.dev/v1alpha1
kind: Route
metadata:
 name: canary-deployment
 namespace: default
spec:
 traffic:
 - revisionName: canary-deployment-xgvl8
 percent: 100

5.	 Create the route object with the kubectl apply command:

$ kubectl apply -f canary-deployment-route.yaml

The output should be as follows:

Figure 6.15: Creating the canary-deployment route

178 | Upcoming Serverless Features in Kubernetes

6.	 Make a request to the application and observe the expected output of Hello This
is the first version - v1!:

$ curl -H "Host: canary-deployment.default.example.com"
"http://${EXTERNAL_IP}"

The output should be as follows:

Figure 6.16: Invoking canary-deployment

7.	 Once the application is successfully invoked, we can deploy version 2 of the
application. Update canary-deployment.yaml with the following content. In version
2 of the application, we only need to update the value of the TARGET environment
variable from This is the first version - v1 to This is the second version -
v2:

apiVersion: serving.knative.dev/v1alpha1
kind: Configuration
metadata:
 name: canary-deployment
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: gcr.io/knative-samples/helloworld-nodejs
 env:
 - name: TARGET
 value: "This is the second version - v2"

8.	 Apply the updated configuration with kubectl apply:

$ kubectl apply -f canary-deployment.yaml

The output should be as follows:

Figure 6.17: Updating canary-deployment to version 2

Knative Serving Component | 179

9.	 Now we can check the revisions created, while updating the configuration, using
the kubectl get revisions command:

$ kubectl get revisions

The output should be as follows:

Figure 6.18: Getting the revisions of canary-deployment

10.	 Let's get the latest revision created by the canary-deployment configuration:

$ kubectl get configurations canary-deployment -o=jsonpath='{.status.
latestCreatedRevisionName}'

The output should be as follows:

Figure 6.19: Getting the latest revision of the canary-deployment configuration

11.	 Now it's time to send some traffic to our new version of the application. Update
the spec.traffic section of canary-deployment-route.yaml to send 50% of the
traffic to the old revision and 50% to the new revision:

apiVersion: serving.knative.dev/v1alpha1
kind: Route
metadata:
 name: canary-deployment
 namespace: default
spec:
 traffic:
 - revisionName: canary-deployment-xgvl8
 percent: 50
 - revisionName: canary-deployment-8pp4s
 percent: 50

180 | Upcoming Serverless Features in Kubernetes

12.	 Apply changes to the route using the following command:

$ kubectl apply -f canary-deployment-route.yaml

The output should be as follows:

Figure 6.20: Updating the canary-deployment route

13.	 Now we can invoke the application multiple times to observe how traffic splits
between two revisions:

$ curl -H "Host: canary-deployment.default.example.com"
"http://${EXTERNAL_IP}"

14.	 Once we verify version 2 of the application successfully, we can update canary-
deployment-route.yaml to route 100% of the traffic to the latest revision:

apiVersion: serving.knative.dev/v1alpha1
kind: Route
metadata:
 name: canary-deployment
 namespace: default
spec:
 traffic:
 - revisionName: canary-deployment-xgvl8
 percent: 0
 - revisionName: canary-deployment-8pp4s
 percent: 100

15.	 Apply the changes to the route using the following command:

$ kubectl apply -f canary-deployment-route.yaml

The output should be as follows:

Figure 6.21: Updating the canary-deployment route

Knative Monitoring | 181

16.	 Now invoke the application multiple times to verify that all traffic goes to version 2
of the application:

$ curl -H "Host: blue-green-deployment.default.example.com"
"http://${EXTERNAL_IP}"

In this exercise, we have successfully used configuration and route objects to perform a
canary deployment with Knative.

Knative Monitoring
Knative comes with Grafana pre-installed, which is an open source metric analytics and
visualization tool. The Grafana pod is available in the knative-monitoring namespace
and can be listed with the following command:

$ kubectl get pods -l app=grafana -n knative-monitoring

The output should be as follows:

Figure 6.22: Listing the Grafana pod

We can expose the Grafana UI with the kubectl port-forward command, which will
forward local port 3000 to the port 3000 of the Grafana pod. Open a new terminal and
execute the following command:

$ kubectl port-forward $(kubectl get pod -n knative-monitoring -l app=grafana
-o jsonpath='{.items[0].metadata.name}') -n knative-monitoring 3000:3000

The output should be as follows:

Figure 6.23: Port forwarding to the Grafana pod

182 | Upcoming Serverless Features in Kubernetes

Now we can navigate the Grafana UI from our web browser on http://127.0.0.1:3000.

The output should be as follows:

Figure 6.24: The Grafana UI

Knative's Grafana dashboard comes with multiple dashboards, including the following:

Figure 6.25: Dashboards

Knative Autoscaler | 183

Knative Autoscaler
Knative has a built-in autoscaling feature that automatically scales the application
pods based on the number of HTTP requests it receives. This will increase the pod
count when there is increased demand and decrease the pod count when the demand
decreases. The pod count will scale to zero when pods are idle and there are no
incoming requests.

Knative uses two components, the autoscaler, and the activator, to achieve the
previously mentioned functionality. These components are deployed as pods in the
knative-serving namespace, as you can see in the following snippet:

NAME READY STATUS RESTARTS AGE

activator-7c8b59d78-9kgk5 2/2 Running 0 15h

autoscaler-666c9bfcc6-vwrj6 2/2 Running 0 15h

controller-799cd5c6dc-p47qn 1/1 Running 0 15h

webhook-5b66fdf6b9-cbllh 1/1 Running 0 15h

The activator component is responsible for collecting information about the number
of concurrent requests to a revision and reporting these values to the autoscaler. The
autoscaler component will increase or decrease the number of pods based on the
metrics reported by the activator. By default, the autoscaler will try to maintain 100
concurrent requests per pod by scaling pods up or down. All Knative autoscaler-related
configurations are stored in a configuration map named config-autoscaler in the
knative-serving namespace. Knative can also be configured to use the Horizontal Pod
Autoscaler (HPA), which is provided by Kubernetes. HPA will autoscale pods based on
CPU usage.

Exercise 18: Autoscaling with Knative

In this exercise, we will perform Knative pod autoscaling by deploying a sample
application:

1.	 Create an autoscale-app.yaml service definition file with the following content.
This file defines a service named autoscale-app, which will use the gcr.io/knative-
samples/autoscale-go:0.1 sample Docker image. autoscaling.knative.dev/target
is used to configure the target number of concurrent requests per pod:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: autoscale-app
spec:
 runLatest:

184 | Upcoming Serverless Features in Kubernetes

 configuration:
 revisionTemplate:
 metadata:
 annotations:
 autoscaling.knative.dev/target: "10"
 spec:
 container:
 image: "gcr.io/knative-samples/autoscale-go:0.1"

2.	 Apply the service definition with the kubectl apply command:

$ kubectl apply -f autoscale-app.yaml

The output should be as follows:

Figure 6.26: Creating autoscale-app

3.	 Once the application is ready, we can generate a load to the autoscale-app
application to observe the autoscaling. For this, we will use a load generator
named hey. Download the hey binary using the following curl command.

$ curl -Lo hey https://storage.googleapis.com/hey-release/hey_linux_amd64

The output should be as follows:

Figure 6.27: Installing hey

Knative Autoscaler | 185

4.	 Add execution permission to the hey binary and move it into the /usr/local/bin/
path:

$ chmod +x hey
$ sudo mv hey /usr/local/bin/

The output should be as follows:

Figure 6.28: Moving hey to /usr/local/bin

5.	 Now we are ready to generate a load with the hey tool. The hey tool supports
multiple options when generating a load. For this scenario, we will use a load with
a concurrency of 50 (with the -c flag) for a duration of 60 seconds (with the -z
flag):

$ hey -z 60s -c 50 \
 -host "autoscale-app.default.example.com" \
 "http://${EXTERNAL_IP?}?sleep=1000"

6.	 In a separate terminal, watch for the number of pods created during the load:

$ kubectl get pods --watch

You will see output similar to the following:

 NAME READY STATUS
RESTARTS AGE
autoscale-app-7jt29-deployment-9c9c4b474-4ttl2 3/3 Running 0
58s
autoscale-app-7jt29-deployment-9c9c4b474-6pmjs 3/3 Running 0
60s
autoscale-app-7jt29-deployment-9c9c4b474-7j52p 3/3 Running 0
63s
autoscale-app-7jt29-deployment-9c9c4b474-dvcs6 3/3 Running 0
56s
autoscale-app-7jt29-deployment-9c9c4b474-hmkzf 3/3 Running 0
62s

186 | Upcoming Serverless Features in Kubernetes

7.	 Open the Knative Serving - Scaling Debugging dashboard from Grafana to
observe how autoscaling increased the pod count during the load and decreased
the pod count back to zero once the load stopped, as you can see in the following
screenshots:

Figure 6.29: Revision pod count metrics

Figure 6.30: Observed concurrency metrics

We have successfully configured Knative's autoscaler and observed autoscaling with the
Grafana dashboard.

Knative Autoscaler | 187

Google Cloud Run

In the previous sections, we discussed Knative. We learned how to install Istio and
Knative on top of a Kubernetes cluster and how to run Docker images with Knative.
But the advantages of the Knative platform come with the operational overhead of
managing the underlying Kubernetes cluster with Istio. GKE, which is the managed
Kubernetes service from Google Cloud, will help us manage the Kubernetes master
components, but still, we have to manage all the Kubernetes nodes ourselves.

In order to abstract away all the infrastructure management tasks from the developer,
Google introduced a new service named Cloud Run. This is a fully managed platform,
built on the Knative project, to run stateless HTTP-driven containers. Cloud Run offers
the same set of features as Knative, including autoscaling, scale to zero, versioning,
and events. Cloud Run was introduced in the Google Cloud Next '19 conference as the
newest member of Google Cloud's serverless compute stack. At the time of writing this
book, the Cloud Run service is still in beta and only available in a limited number of
regions.

Let's now perform an exercise to deploy containers on Google Cloud Run.

Exercise 19: Deploying Containers on Google Cloud Run

In this exercise, we will be deploying a pre-built Docker image on the Google Cloud Run
platform.

The following steps will help you complete the exercise:

1.	 Navigate to your GCP console from your browser and select Cloud Run from the
menu (in the Compute category) as shown in the following figure:

Figure 6.31: GCP menu for Cloud Run

2.	 Click on the CREATE SERVICE button to create a new service.

188 | Upcoming Serverless Features in Kubernetes

3.	 Fill the create service form with the following values:

Container Image URL: gcr.io/knative-samples/helloworld-nodejs

Deployment platform: Cloud Run (fully managed)

Location: Select any region you prefer from the options

Service name: hello-world

Authentication: Allow unauthenticated invocations

Figure 6.32: Cloud Run create service form

http://gcr.io/knative-samples/helloworld-nodejs

Knative Autoscaler | 189

4.	 Click on the CREATE button.

5.	 Now we will be redirected to the deployed service page, which includes details
about the newly deployed hello-world service. We can see that a revision has been
created called hello-world-00001, as shown in the following figure:

Figure 6.33: Service details page

6.	 Click on the URL link displayed to run the container. Note that the URL will be
different for every new instance:

Figure 6.34: Invoking the hello-world app

7.	 Next, we are going to deploy a new revision of the application by updating the
TARGET environment variable. Navigate back to the GCP console and click on the
DEPLOY NEW REVISION button.

190 | Upcoming Serverless Features in Kubernetes

8.	 From the Deploy revision to hello-world (us-central1) form, click on the SHOW
OPTIONAL REVISION SETTINGS link, which will point us to the additional setting
section:

Figure 6.35: Optional revision settings

9.	 Under the environment variables section, create a new environment variable
named TARGET with the value Cloud Run Deployment:

Figure 6.36: Setting the TARGET environment variable

10.	 Click on the DEPLOY button.

11.	 Now we can see the new revision of the hello-world application called
hello-world-00002 with 100% of traffic being routed to the latest revision:

Figure 6.37: The hello-world app's new revision

Introduction to Virtual Kubelet | 191

12.	 Click on the URL again to run the updated revision:

Figure 6.38: Invoking the hello-world app

We have successfully deployed a pre-built Docker image on the Google Cloud Run
platform.

Introduction to Virtual Kubelet
Virtual Kubelet is an open source implementation of Kubernetes' kubelet that acts as
a kubelet. This is a sandbox project from the Cloud Native Computing Foundation
(CNCF), and the first major version (v 1.0) of Virtual Kubelet was released on July 8, 2019.

Before diving further into Virtual Kubelet, let's recap what a kubelet is in the Kubernetes
architecture. A kubelet is an agent that runs on each node in a Kubernetes cluster and
is responsible for managing pods within the nodes. A kubelet takes instructions from
the Kubernetes API to identify the pods to be scheduled on the node and interacts with
the underlying container runtime (for example, Docker) of the nodes to ensure that the
desired number of pods are running and that they are healthy.

In addition to managing pods, the kubelet performs several other tasks:

•	 Updating the Kubernetes API with the current status of the pods

•	 Monitoring and reporting node health metrics such as CPU, memory, and disk
utilization to the Kubernetes master

•	 Pulling Docker images from the Docker registry for the assigned pods

•	 Creating and mounting volumes for pods

•	 Providing an interface for the API server to execute commands such as kubectl
logs, kubectl exec, and kubectl attach for the pods

192 | Upcoming Serverless Features in Kubernetes

The following figure displays a Kubernetes cluster with standard and virtual kubelets:

Figure 6.39: Kubernetes cluster with standard kubelets and Virtual Kubelets

Virtual Kubelet will appear as a traditional kubelet from the viewpoint of the Kubernetes
API. This will run in the existing Kubernetes cluster and register itself as a node within
the Kubernetes API. Virtual Kubelet will run and manage the pods in the same way a
kubelet does. But in contrast to the kubelet, which runs pods within the nodes, Virtual
Kubelet will utilize external services to run the pods. This connects the Kubernetes
cluster to other services such as serverless container platforms. Virtual Kubelet
supports a growing number of providers, including the following:

•	 Alibaba Cloud Elastic Container Instance (ECI)

•	 AWS Fargate

•	 Azure Batch

•	 Azure Container Instances (ACI)

•	 Kubernetes Container Runtime Interface (CRI)

•	 Huawei Cloud Container Instance (CCI)

•	 HashiCorp Nomad

•	 OpenStack Zun

Introduction to Virtual Kubelet | 193

Running pods on these platforms come with the benefits of the serverless world. We do
not have to worry about the infrastructure as it is managed by the cloud provider. Pods
will scale up and down automatically based on the number of requests received. Also,
we have to pay only for the utilized resources.

Exercise 20: Deploying Virtual Kubelet on AKS

In this exercise, we are going to configure Virtual Kubelet on Azure Kubernetes Service
(AKS) with the ACI provider. For this exercise, we will be using the following services
available in Azure.

•	 AKS: AKS is a managed Kubernetes service on Azure.

•	 ACI: ACI provides a managed service for running containers on Azure.

•	 Azure Cloud Shell: An interactive, browser-based shell that supports both Bash
and PowerShell.

You need to have the following prerequisites for this exercise:

•	 A Microsoft Azure account

•	 The Azure CLI

•	 The kubectl CLI

•	 Helm

We will be using Azure Cloud Shell, which has all the previously mentioned CLIs
pre-installed:

1.	 Navigate to https://shell.azure.com/ to open Cloud Shell in a browser window.
Select Bash from the Welcome to Azure Cloud Shell window:

Figure 6.40: The Welcome to Azure Cloud Shell window

https://shell.azure.com/

194 | Upcoming Serverless Features in Kubernetes

2.	 Click on the Create storage button to create a storage account for Cloud Shell.
Note that this is a one-time task purely for when we are using Cloud Shell for the
first time:

Figure 6.41: Mounting storage for Cloud Shell

The Cloud Shell window will look as follows:

Figure 6.42: Cloud Shell window

Introduction to Virtual Kubelet | 195

3.	 Once Cloud Shell is ready, we can start creating the AKS cluster.

First, we need to create an Azure resource group that allows us to group related
Azure resources logically. Execute the following command to create a resource
group named serverless-kubernetes-group in the West US (westus) region:

$ az group create --name serverless-kubernetes-group --location westus

The output should be as follows:

Figure 6.43: Creating an Azure resource group

4.	 Register your subscription to use the Microsoft.Network namespace:

$ az provider register --namespace Microsoft.Networks

The output should be as follows:

Figure 6.44: Registering the subscription

196 | Upcoming Serverless Features in Kubernetes

5.	 Next, we will create an Azure Kubernetes cluster. The following command will
create an AKS cluster named virtual-kubelet-cluster with one node. This
command will take a few minutes to execute:

$ az aks create --resource-group serverless-kubernetes-group --name
virtual-kubelet-cluster --node-count 1 --node-vm-size Standard_D2
--network-plugin azure --generate-ssh-keys

Once AKS cluster creation is successful, the preceding command will return some
JSON output with the details of the cluster:

Figure 6.45: Creating the AKS cluster

Introduction to Virtual Kubelet | 197

6.	 Next, we need to configure the kubectl CLI to communicate with the newly
created AKS cluster. Execute the az aks get-credentials command to download
the credentials and configure the kubectl CLI to work with the virtual-kubelet-
cluster cluster with the following command:

Note

We are not required to install the kubectl CLI because Cloud Shell comes with
kubectl pre-installed.

$ az aks get-credentials --resource-group serverless-kubernetes-group
--name virtual-kubelet-cluster

The output should be as follows:

Figure 6.46: Configuring kubectl

7.	 Now we can verify the connection to the cluster from Cloud Shell by executing the
kubectl get nodes command, which will list the nodes available in the AKS cluster:

$ kubectl get nodes

The output should be as follows:

Figure 6.47: Listing Kubernetes nodes

198 | Upcoming Serverless Features in Kubernetes

8.	 If this is the first time you are using the ACI service, you need to register the
Microsoft.ContainerInstance provider with your subscription. We can check the
registration state of the Microsoft.ContainerInstance provider with the following
command:

$ az provider list --query "[?contains(namespace,'Microsoft.
ContainerInstance')]" -o table

The output should be as follows:

Figure 6.48: Checking the registration status of the Microsoft.ContainerInstace provider

9.	 If the RegistrationStatus column contains a value of NotRegistered, execute
the az provider register command to register the Microsoft.ContainerInstance
provider. If the RegistrationStatus column contains a value of Registered, you can
continue to the next step:

$ az provider register --namespace Microsoft.ContainerInstance

The output should be as follows:

Figure 6.49: Registering for Microsoft.ContainerInstance provider

10.	 The next step is to create the necessary ServiceAccount and ServiceAccount
objects for the tiller. Create a file named tiller-rbac.yaml with the following code:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: tiller

Introduction to Virtual Kubelet | 199

 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: tiller
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
 - kind: ServiceAccount
 name: tiller
 namespace: kube-system

11.	 Then execute the kubectl apply command to create the necessary ServiceAccount
and ClusterRoleBinding objects:

$ kubectl apply -f tiller-rbac.yaml

The output should be as follows:

Figure 6.50: Creating the ServiceAccount and ClusterRoleBinding objects

12.	 Now we can configure Helm to use the tiller service account that we created in
the previous step:

$ helm init --service-account tiller

200 | Upcoming Serverless Features in Kubernetes

The output should be as follows:

Figure 6.51: Configuring tiller

13.	 Once all configurations are done, we can install Virtual Kubelet using the az aks
install-connector command. We will be deploying both Linux and Windows
connectors with the following command:

$ az aks install-connector \
 --resource-group serverless-kubernetes-group \
 --name virtual-kubelet-cluster \
 --connector-name virtual-kubelet \
 --os-type Both

Introduction to Virtual Kubelet | 201

The output should be as follows:

Figure 6.52: Installing Virtual Kubelet

202 | Upcoming Serverless Features in Kubernetes

14.	 Once the installation is complete, we can verify it by listing the Kubernetes nodes.
There will be two new nodes, one for Windows and one for Linux:

$ kubectl get nodes

The output should be as follows:

Figure 6.53: Listing Kubernetes nodes

15.	 Now we have Virtual Kubelet installed in the AKS cluster. We can deploy an
application to a new node introduced by Virtual Kubelet. We will be creating a
Kubernetes Deployment named hello-world with the microsoft/aci-helloworld
Docker image.

We need to add a nodeSelector to assign this pod specifically to the Virtual
Kubelet node. Note that Virtual Kubelet nodes are tainted by default to prevent
unexpected pods from being run on them. We need to add tolerations to the pods
to allow them to be scheduled for these nodes.

Let's create a file named hello-world.yaml with the following content:

 apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-world
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello-world
 template:
 metadata:
 labels:
 app: hello-world
 spec:
 containers:
 - name: hello-world

Introduction to Virtual Kubelet | 203

 image: microsoft/aci-helloworld
 ports:
 - containerPort: 80
 nodeSelector:
 kubernetes.io/role: agent
 type: virtual-kubelet
 beta.kubernetes.io/os: linux
 tolerations:
 - key: virtual-kubelet.io/provider
 operator: Equal
 value: azure
 effect: NoSchedule

16.	 Deploy the hello-world application with the kubectl apply command:

$ kubectl apply -f hello-world.yaml

The output should be as follows:

Figure 6.54: Creating the hello-world deployment

17.	 Execute the kubectl get pods command with the -o wide flag to output a list of
pods and their respective nodes. Note that the hello-world-57f597bc59-q9w9k pod
has been scheduled on the virtual-kubelet-virtual-kubelet-linux-westus node:

$ kubectl get pods -o wide

The output should be as follows:

Figure 6.55: Listing all pods with the -o wide flag

204 | Upcoming Serverless Features in Kubernetes

Thus, we have successfully configured Virtual Kubelet on AKS with ACI and have
deployed a pod in the Virtual Kubelet node.

Let's now complete an activity where we will be deploying a containerized application
in a serverless environment.

Activity 6: Deploy a Containerized Application in a Serverless Environment

Imagine that you are working for a start-up company and your manager wants you to
create an application that can return the current date and time for a given timezone.
This application is expected to receive only a few requests during the initial phase but
will receive millions of requests in the long run. The application should be able to scale
automatically based on the number of requests received without any modifications.
Also, your manager does not want to have the burden of managing the infrastructure
and expects this application to run with the lowest possible cost.

Execute the following steps to complete this activity:

1.	 Create an application (in any language you want) that can provide the current date
and time based on the given timezone value.

The following is some sample application code written in PHP:

 <?php

if (!isset ($_GET['timezone'])) {
 // Returns error if the timezone parameter is not provided
 $output_message = "Error: Timezone not provided";
} else if (empty ($_GET['timezone'])) {
 // Returns error if the timezone parameter value is empty
 $output_message = "Error: Timezone cannot be empty";
} else {
 // Save the timezone parameter value to a variable
 $timezone = $_GET['timezone'];

Introduction to Virtual Kubelet | 205

 try {
 // Generates the current time for the provided timezone
 $date = new DateTime("now", new DateTimeZone($timezone));
 $formatted_date_time = $date->format('Y-m-d H:i:s');
 $output_message = "Current date and time for $timezone is
$formatted_date_time";
 } catch(Exception $e) {
 // Returns error if the timezone is invalid
 $output_message = "Error: Invalid timezone value";
 }

}

// Return the output message
echo $output_message;

2.	 Containerize the application according to the guidelines provided by Google Cloud
Run.

The following is the content of a sample Dockerfile:

Use official PHP 7.3 image as base image
FROM php:7.3-apache

Copy index.php file to the docker image
COPY index.php /var/www/html/

Replace port 80 with the value from PORT environment variable in apache2
configuration files
RUN sed -i 's/80/${PORT}/g' /etc/apache2/sites-available/000-default.conf
/etc/apache2/ports.conf

Use the default production configuration file
RUN mv "$PHP_INI_DIR/php.ini-production" "$PHP_INI_DIR/php.ini"

206 | Upcoming Serverless Features in Kubernetes

3.	 Push the Docker image to a Docker registry.

4.	 Run the application with Cloud Run.

The output should be as follows:

Figure 6.56: Deployment of the application in a serverless environment

Note

The solution to the activity can be found on page 417.

Summary
In this chapter, we discussed the advantages of using serverless on Kubernetes. We
discussed three technologies that offer the benefits of serverless on top of a Kubernetes
cluster. These are Knative, Google Cloud Run, and Virtual Kubelet.

First, we created a GKE cluster with Istio and deployed Knative on top of it. Then
we learned how to deploy an application on Knative. Next, we discussed the serving
component of Knative and how to perform a canary deployment with configuration
and route objects. Then we discussed monitoring on Knative and observed how Knative
autoscaling works based on the number of requests received.

We also discussed Google Cloud Run, which is a fully managed platform, built on the
Knative project, to run stateless HTTP-driven containers. Then we learned how to
deploy an application with the Cloud Run service.

In the final section, we studied Virtual Kubelet, which is an open source implementation
of Kubernetes' kubelet. We learned the differences between normal kubelets and
Virtual Kubelet. Finally, we deployed Virtual Kubelet on an AKS cluster and deployed an
application to a Virtual Kubelet node.

In the next three chapters, we will be focusing on three different Kubernetes serverless
frameworks, namely Kubeless, OpenWhisk, and OpenFaaS.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Create a Kubernetes cluster with Minikube

•	 Install the Kubeless framework on Kubernetes

•	 Create, update, call, and delete Kubeless functions

•	 List, describe, debug, and monitor Kubeless functions

•	 Create HTTP and PubSub triggers for Kubeless functions

In this chapter, we will first learn about the Kubeless architecture. Then, we'll create our first
Kubeless function, deploy it, and invoke it. You'll also learn how to debug a Kubeless function in
the case of a failure.

Kubernetes Serverless
with Kubeless

7

210 | Kubernetes Serverless with Kubeless

Introduction to Kubeless
Kubeless is an open source and Kubernetes-native serverless framework that runs on
top of Kubernetes. This allows software developers to deploy code into a Kubernetes
cluster without worrying about the underlying infrastructure. Kubeless is a project by
Bitnami, who is a provider of packaged applications for any platform. Bitnami provides
software installers for over 130 applications, which allow you to quickly and efficiently
deploy these software applications to any platform.

Kubeless functions support multiple programming languages, including Python, PHP,
Ruby, Node.js, Golang, Java, .NET, Ballerina, and custom runtimes. These functions can
be invoked with HTTP(S) calls as well as event triggers with Kafka or NATS messaging
systems. Kubeless also supports Kinesis triggers to associate functions with the AWS
Kinesis service, which is a managed data-streaming service by AWS. Kubeless functions
can even be invoked at specified intervals using scheduled triggers.

Kubeless comes with its own Command-Line Interface (CLI) named kubeless, which is
similar to the kubectl CLI offered by Kubernetes. We can create, deploy, list, and delete
Kubeless functions using this kubeless CLI. Kubeless also has a graphical user interface,
which makes the management of the functions much easier.

In this chapter, we will create our first serverless function on Kubernetes using
Kubeless. Then, we will invoke this function with multiple mechanisms including HTTP,
and PubSub triggers. Once we are familiar with the basics of Kubeless, we will create a
more advanced function that can post messages to Slack.

Kubeless Architecture

The Kubeless framework is an extension of the Kubernetes framework, leveraging
native Kubernetes concepts such as Custom Resource Definitions (CRDs) and custom
controllers. Since Kubeless is built on top of Kubernetes, it can take advantage of all the
great features available in Kubernetes, such as self-healing, autoscaling, load balancing,
and service discovery.

Note

Custom resources are extensions of the Kubernetes API. You can find more about
Kubernetes' custom resources in the official Kubernetes documentation at https://
kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/.

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Introduction to Kubeless | 211

Let's take a look at the Kubernetes architecture in order to understand the core
concepts behind it:

Figure 7.1: Kubeless architecture diagram

The preceding diagram is similar to the standard Kubernetes architecture with
Kubernetes masters and nodes. There can be one or more Kubernetes masters that are
responsible for overall decision-making in the cluster. Kubernetes nodes are used to
host the Kubernetes pods. These pods contain the functions written by the software
developers. The source code of the functions will be injected into the pods by the
controller using ConfigMaps.

These pods will be managed by the Kubeless controller. During the Kubeless framework
installation process, it will launch an in-cluster controller that will continuously watch
for function resources. When a function is being deployed, this controller will create
relevant services, deployments, and pods with the provided runtime.

The Kubeless framework has three core concepts:

•	 Functions

•	 Triggers

•	 Runtimes

Functions represent the code blocks executed by the Kubeless framework. During
the installation, a CRD named functions.kubeless.io will be created to represent the
Kubeless functions.

212 | Kubernetes Serverless with Kubeless

Triggers represent the invocation mechanism of the function. A Kubeless function will
be invoked whenever it receives a trigger. A single trigger can be associated with one
or many functions. Functions deployed on Kubeless can be triggered using five possible
mechanisms:

•	 HTTP trigger: This executes through HTTP(S)-based invocations such as HTTP
GET or POST requests.

•	 CronJob trigger: This executes through a predefined schedule.

•	 Kafka trigger: This executes when a message gets published to the Kafka topics.

•	 NATS trigger: This executes when a message gets published to the NATS topics.

•	 Kinesis trigger: This executes when records get published to AWS Kinesis data
streams.

Runtimes represent different programming languages that can be used to write and
execute Kubeless functions. A single programming language will be further divided into
multiple runtimes based on the version. As an example, Python 2.7, Python 3.4, Python
3.6, and Python 3.7 are the runtimes supporting the Python programming language.
Kubeless supports runtimes in both the stable and incubator stage. A runtime is
considered stable once it meets certain technical requirements specified by Kubeless.
Incubator runtimes are considered to be in the development stage. Once the specified
technical requirements are fulfilled, runtime maintainers can create a "pull" request in
the Kubeless GitHub repository to move the runtime from the incubator stage to the
stable stage. At the time of writing this book, Ballerina, .NET, Golang, Java, Node.js, PHP,
and Python runtimes are available in the stable stage and JVM and Vertx runtimes are
available in the incubator stage.

Note

The following document defines the technical requirements for a stable runtime:
https://github.com/kubeless/runtimes/blob/master/DEVELOPER_GUIDE.
md#runtime-image-requirements.

https://github.com/kubeless/runtimes/blob/master/DEVELOPER_GUIDE.md#runtime-image-requirements
https://github.com/kubeless/runtimes/blob/master/DEVELOPER_GUIDE.md#runtime-image-requirements

Creating a Kubernetes Cluster | 213

Creating a Kubernetes Cluster
We need to have a working Kubernetes cluster in order to install the Kubeless
framework. You can create your own Kubernetes cluster using tools such as Minikube,
Kubeadm, and Kops. You can also create a Kubernetes cluster using the managed
Kubernetes cluster services provided by public cloud providers such as Google
Kubernetes Engine (GKE), Microsoft's Azure Kubernetes Service (AKS), and Amazon
Elastic Kubernetes Service (Amazon EKS). In the following sections, we will create our
own Kubernetes cluster using Minikube.

Creating a Kubernetes Cluster with Minikube

First, we are going to create our Kubernetes cluster with Minikube. Minikube is a tool
that will install and run Kubernetes locally on your PC. This will create a single-node
Kubernetes cluster inside a Virtual Machine (VM). Minikube is used by the software
developers who want to try Kubernetes locally, but it is not recommended for running
production-grade Kubernetes clusters. We will begin creating our Kubernetes cluster
by performing the following steps:

1.	 Install VirtualBox.

Since Minikube is running as a VM, we need to install a hypervisor to support the
VMs. We will be installing Oracle VirtualBox, which is a free virtualization software
developed by Oracle Corporation.

Note

VirtualBox can be installed on Ubuntu 18.04 with the APT package manager by
executing the following command in the terminal:

$ sudo apt install virtualbox -y

214 | Kubernetes Serverless with Kubeless

2.	 Execute the virtualbox command to start Oracle VM VirtualBox Manager, as
shown in the following screenshot:

$ virtualbox

Figure 7.2: Oracle VM VirtualBox Manager

3.	 Install minikube.

Now, we are going to install Minikube version 1.2.0, which is the latest version
available at the time of writing this book. First, download the minikube binaries to
your local machine:

$ curl -Lo minikube https://storage.googleapis.com/minikube/releases/
v1.2.0/minikube-linux-amd64

The output will be as follows:

Figure 7.3: Downloading the Minikube binaries

Creating a Kubernetes Cluster | 215

4.	 Then, add execution permission to the minikube binary:

$ chmod +x minikube

The output is as follows:

Figure 7.4: Adding execution permissions to Minikube binaries

5.	 Finally, move the Minikube binary to the /usr/local/bin/ path location:

$ sudo mv minikube /usr/local/bin/

The result is shown in the following screenshot:

Figure 7.5: Moving the Minikube binaries to the path

6.	 Verify the installation:

$ minikube version

The result is shown in the following screenshot:

Figure 7.6: Verifying the Minikube version

7.	 Start the Minikube cluster with the minikube start command:

$ minikube start

This will create a VM for Minikube in VirtualBox, as follows:

Figure 7.7: Starting Minikube

216 | Kubernetes Serverless with Kubeless

Now, in the VirtualBox Manager window, you can see a VM named minikube in the
running state:

Figure 7.8: Oracle VirtualBox with the Minikube VM

8.	 Install kubectl.

Now, we are going to install kubectl version 1.15.0, which is the latest version
available at the time of writing this book. First, download the kubectl binaries to
your local machine:

$ curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.15.0/bin/linux/amd64/kubectl

This will show the following output:

Figure 7.9: Downloading the kubectl binaries

Creating a Kubernetes Cluster | 217

9.	 Then, add execution permissions to the Minikube binary:

$ chmod +x kubectl

The following screenshot shows the result:

Figure 7.10: Adding execution permissions to the kubectl binaries

10.	 Finally, move the Minikube binary to the /usr/local/bin/ path location:

$ sudo mv kubectl /usr/local/bin/kubectl

The output is as follows:

 Figure 7.11: Moving the kubectl binaries to the path

11.	 Verify the installation:

$ kubectl version

The following will be shown on the screen:

Figure 7.12: Verifying the kubectl version

12.	 Verify that the kubectl CLI is correctly pointed to the Minikube cluster:

$ kubectl get pods

You should see the following output:

Figure 7.13: Verifying that kubectl is pointed to the Minikube cluster

218 | Kubernetes Serverless with Kubeless

Installing Kubeless
Once the Minikube Kubernetes environment is ready, we can install Kubeless on top of
the Kubernetes cluster. Installing Kubeless consists of installing three components:

•	 The Kubeless framework

•	 The Kubeless CLI

•	 The Kubeless UI

The Kubeless framework will install all the extensions on top of Kubernetes to
support Kubeless features. This includes CRDs, custom controllers, and deployments.
The Kubeless CLI is used to interact with the Kubeless framework for tasks such as
deploying functions, invoking functions, and creating triggers. The Kubeless UI is a GUI
for the Kubeless framework, which will help you to view, edit, and run functions.

Installing the Kubeless Framework

We are going to install Kubeless version 1.0.3, which is the latest available release at the
time of writing this book.

First, we need to create the kubeless namespace using kubectl create namespace. This
is the default namespace used by Kubeless to store all its objects:

$ kubectl create namespace kubeless

The result is as follows:

Figure 7.14: Creating the kubeless namespace

In the next step, we will install the Kubeless framework. We will be using one of the
YAML manifests provided by Kubeless to install the framework. There are multiple yaml
files provided by Kubeless and we have to choose the correct yaml file based on the
Kubernetes environment (for example, rbac, non-rbac, or openshift):

$ kubectl create -f https://github.com/kubeless/kubeless/releases/download/
v1.0.3/kubeless-v1.0.3.yaml

Installing Kubeless | 219

The screen will display the following:

Figure 7.15: Installing the Kubeless framework

The preceding step will create multiple Kubernetes objects in the kubeless namespace.
This will create a function object as a Custom Resource Definition and Kubeless
controller as a deployment. You can verify that these objects are up and running by
executing the following commands:

$ kubectl get pods -n kubeless

$ kubectl get deployment -n kubeless

$ kubectl get customresourcedefinition

You will see the following on your screen:

Figure 7.16: Verifying the Kubeless installation

Now, we have completed the installation of the Kubeless framework successfully. In the
next section, we will install the Kubeless CLI.

220 | Kubernetes Serverless with Kubeless

Installing the Kubeless CLI

Kubeless CLI is the command-line interface for running commands against the
Kubeless framework. kubeless function is the most common one because it allows
you to perform tasks such as deploying, calling, updating, or deleting a function.
Additionally, you can list and describe the functions. Checking the logs or metrics is also
supported through the kubeless function command. You can also manage Kubeless
triggers, topics, and autoscaling from the Kubeless CLI.

Once you have successfully installed the Kubeless framework, the next step is to install
the Kubeless CLI. We are going to use Kubeless CLI version 1.0.3, which is the same
version as the Kubeless framework we installed in the previous section.

First, we need to download the Kubeless CLI zip file:

$ curl -OL https://github.com/kubeless/kubeless/releases/download/v1.0.3/
kubeless_linux-amd64.zip

The result is as follows:

Figure 7.17: Downloading the Kubeless binaries

Next, we will extract the zip file:

$ unzip kubeless_linux-amd64.zip

To understand this better, refer to the following output:

Figure 7.18: Extracting the Kubeless binaries

Then, move the Kubeless executable to the /usr/local/bin/ path location:

$ sudo mv bundles/kubeless_linux-amd64/kubeless /usr/local/bin/

Installing Kubeless | 221

The following is what you'll see on your screen:

Figure 7.19: Moving the Kubeless binaries to the path

Now, we have successfully installed the Kubeless CLI. We can verify this by running the
following command:

$ kubeless version

Refer to the following screenshot:

Figure 7.20: Verifying the Kubeless version

The Kubeless UI

The Kubeless UI is the GUI for Kubeless. It allows you to create, edit, delete, and
execute Kubeless functions with an easy-to-use UI. Execute the following command to
install the Kubeless UI in the Kubernetes cluster:

$ kubectl create -f https://raw.githubusercontent.com/kubeless/kubeless-ui/
master/k8s.yaml

This will give you the following output:

Figure 7.21: Installing the Kubeless UI

Once the installation is successful, execute the following command to open the
Kubeless UI in a browser window. You can reload the browser window if the Kubeless
UI doesn't show up, since creating the service can take a few minutes:

$ minikube service ui --namespace kubeless

222 | Kubernetes Serverless with Kubeless

This is shown as follows:

Figure 7.22: The Kubeless GUI

We've just completed the installation of the Kubeless UI, which can be used to create,
edit, delete, and execute Kubeless functions that are similar to the Kubeless CLI.

Kubeless Functions
Once Kubeless is successfully installed, you can now forget about the underlying
infrastructure, including VMs and containers, and focus only on your function logic.
Kubeless functions are code snippets written in one of the supported languages. As we
discussed previously, Kubeless supports multiple programming languages and versions.
You can execute the kubeless get-server-config command to get a list of language
runtimes supported by your Kubeless version:

$ kubeless get-server-config

The result is shown in the following screenshot:

Figure 7.23: Kubeless server configuration

In the following sections, we are going to create, deploy, list, invoke, update, and delete
a Kubeless function.

Kubeless Functions | 223

Creating a Kubeless Function

Every Kubeless function, regardless of the language runtime, has the same format. It
receives two arguments as input and returns a string or object as the response. The
first argument of the function is an event, which includes all the information about the
event source such as the event ID, event time, and event type. The data field inside the
event object contains the body of the function request. The second argument of the
function is named context, which contains general information about the function, such
as its name, timeout, runtime, and memory limits.

The following is a sample Python function that returns the text Welcome to Kubeless
World as the response:

def main(event, context):

 return "Welcome to Kubeless World"

You can save the file as hello.py.

Deploying the Kubeless Function

Once the function is ready, you can deploy it to the Kubeless framework. You can
use the kubeless function deploy command to register the function with the
Kubeless framework. In order to deploy a function, you need to provide few pieces of
information, including the function name, the runtime of the function, the file that
contains the function source code, and the method name to be executed when the
function is invoked:

kubeless function deploy hello --runtime python3.7 \

 --from-file hello.py \

 --handler hello.main

The output is as follows:

Figure 7.24: Deploying a Kubeless function

224 | Kubernetes Serverless with Kubeless

Let's break this command up into a few pieces in order to understand what each part of
the command does:

•	 kubeless function deploy hello: This tells Kubeless to register a new function
named hello. We can use this name to invoke this function later.

•	 --runtime python3.7: This tells Kubeless to use the Python 3.7 runtime to run this
function.

•	 --from-file hello.py: This tells Kubeless to use the code available in the hello.
py file to create the hello function. If you are not in the current file path when
executing the command, you need to specify the full file path.

•	 --handler hello.main: This specifies the name of the code file and the method
to execute when this function is invoked. This should be in the format of <file-
name>.<function-name>. In our case, the filename is hello and the function name
inside the file is main.

You can find the other options that are available when deploying a function by
executing the kubeless function deploy --help command.

Listing the Kubeless Function

Once you deploy the function, you can verify that the function is deployed successfully
by listing the functions with the kubeless function list command. You should see the
details of all the registered functions as follows:

$ kubeless function list

The following screenshot reflects the result:

Figure 7.25: Listing the Kubeless functions with the Kubeless CLI

Note

The same can be achieved using the kubeless function ls command.

If you wish to obtain more detailed information about a specific function, you can use
the kubeless function describe command:

$ kubeless function describe hello

Kubeless Functions | 225

It produces the following output:

Figure 7.26: Describing a Kubeless function

Since a Kubeless function is created as a Kubernetes object (that is, a custom resource),
you can also use the Kubectl CLI to get the information about the available functions.
The following is the output from the kubectl get functions command:

$ kubectl get functions

You will get the following output:

Figure 7.27: Listing the Kubeless functions with the kubectl CLI

Invoking the Kubeless Function

Now it's time to invoke our hello function. You can use the kubeless function call
method to invoke the Kubeless function. The hello function will return the text Welcome
to Kubeless World as the response:

$ kubeless function call hello

The output will be as follows:

Figure 7.28: Invoking a Kubeless function with the kubeless CLI

Congratulations! You have successfully executed your first Kubeless function.

226 | Kubernetes Serverless with Kubeless

You can also invoke Kubeless functions with the Kubeless UI. Once you open the
Kubeless UI, you can see the list of functions available on the left-hand side. You can
click on the hello function to open it. Then, click on the Run function button to execute
the function. You can see the expected response of Welcome to Kubeless World
underneath the Response section:

Figure 7.29: Invoking a Kubeless function with the Kubeless UI

Note

Kubeless functions can also be updated or deleted using the Kubeless UI.

Updating the Kubeless Function

After successfully invoking our hello function, we are now going to update it to say
hello to anyone. You can update the hello.py file as follows:

def main(event, context):

 name = event['data']['name']

 return "Hello " + name

Kubeless Functions | 227

You can then execute the kubeless function update command to update the hello
function that we created earlier:

$ kubeless function update hello --from-file hello.py

This will give the following output:

Figure 7.30: Updating a Kubeless function with the Kubeless CLI

Now you have to pass the required data when invoking the hello function:

$ kubeless function call hello --data '{"name":"Kubeless World!"}'

This is the output of the preceding code:

Figure 7.31: Invoking updated Kubeless functions

You should be able to see Hello Kubeless World! as the output of the preceding
command.

Deleting the Kubeless Function

If you want to delete the function, you can execute the kubeless function delete
command:

$ kubeless function delete hello

This renders the following:

Figure 7.32: Deleting the kubeless function

Once the function is deleted, try listing the function again. It should throw an error, as
follows:

$ kubeless function list hello

228 | Kubernetes Serverless with Kubeless

We would see the following result:

Figure 7.33: Verifying the deletion of the kubeless function

The preceding kubeless function delete command will delete not only the kubeless
function, but, while creating the Kubeless function, the framework creates Kubernetes
objects such as pods and deployment. Those objects will also be deleted when we delete
the kubeless function. You can verify this with the following command:

$ kubectl get pods -l function=hello

You can see the result as follows:

Figure 7.34: Verifying the deletion

Now we have learned how to create, deploy, list, invoke, update, and delete Kubeless
functions. Let's move on to an exercise about creating your first Kubeless function.

Exercise 21: Creating Your First Kubeless Function

In this exercise, we will create, deploy, invoke, and later delete a Kubeless function.
Perform the following steps to complete the exercise:

Note

The code files for this exercise can be found at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise21.

1.	 Create a file with a sample hello function:

$ cat <<EOF >my-function.py
def main(event, context):
 return "Welcome to Serverless Architectures with Kubernetes"
EOF

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise21
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise21

Kubeless Functions | 229

This will render the following output:

Figure 7.35: Creating the my-function.py file

2.	 Create the lesson-7 namespace and deploy the my-function.py file created
previously:

$ kubectl create namespace lesson-7

$ kubeless function deploy my-function --runtime python3.7 \
 --from-file my-function.py \
 --handler my-function.main \
 --namespace lesson-7

The output is as follows:

Figure 7.36: Deploying my-function

3.	 Verify whether my-function has been deployed correctly:

$ kubeless function list my-function --namespace lesson-7

The output rendered is as follows:

Figure 7.37: Verifying my-function has successfully deployed

230 | Kubernetes Serverless with Kubeless

4.	 Invoke my-function with the kubeless CLI:

$ kubeless function call my-function --namespace lesson-7

It will look like this:

Figure 7.38: Invoking my-function with the Kubeless CLI

5.	 Delete my-function and the lesson-7 namespace:

$ kubeless function delete my-function --namespace lesson-7
$ kubectl delete namespace lesson-7

The following is what we get:

Figure 7.39: Deleting my-function with the Kubeless CLI

In this exercise, first, we created a simple Python function, which returned the Welcome
to Serverless Architectures with Kubernetes string as the output and deployed it to
Kubeless. Then, we listed the function to make sure it was created successfully. Then,
we invoked the my-function and successfully returned the expected response of Welcome
to Serverless Architectures with Kubernetes. Finally, we did the cleanup by deleting
the function.

Kubeless HTTP Triggers
In the previous sections, we discussed how to invoke Kubeless functions using the
Kubeless CLI. In this section, we are going to demonstrate how to expose these
functions to everyone by creating HTTP triggers.

HTTP triggers are used to execute a Kubeless function through HTTP(S)-based
invocations such as HTTP GET or POST requests. When a function is deployed, Kubeless
will create a Kubernetes service associated with the function with the ClusterIP as the
service type; however, these services are not publicly accessible. In order to make the
function publicly available, we need to create a Kubeless HTTP trigger. This will expose
the Kubeless functions to everyone by using Kubernetes ingress rules.

Kubeless HTTP Triggers | 231

In order to run the HTTP trigger, your Kubernetes cluster must have a running ingress
controller. Once the ingress controller is running in the Kubernetes cluster, you can use
the kubeless trigger http create command to create an HTTP trigger:

$ kubeless trigger http create <trigger-name> --function-name <function-
name>

--function-name flag is used to specify the name of the function that will be associated
with the HTTP trigger.

Note

There is a number of ingress controller add-ons available for Kubernetes, including
NGINX, Kong, Traefik, F5, Contour, and more. You can find them at https://
kubernetes.io/docs/concepts/services-networking/ingress-controllers/.

Exercise 22: Creating an HTTP Trigger for a Kubeless Function

In this exercise, we will first enable the ingress plugin for Minikube. Then, we will create
a function to be executed with HTTP triggers. Finally, we will create an HTTP trigger
and invoke this function with the HTTP trigger.

Note

The code files for this exercise can be found at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise22.

Perform the following steps to complete the exercise:

1.	 First, we need to enable the ingress add-on in our Minikube cluster:

$ minikube addons enable ingress

This shows the following output:

Figure 7.40: Enabling the Minikube add-on

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise22
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson07/Exercise22

232 | Kubernetes Serverless with Kubeless

2.	 After a couple of minutes, you should be able to see that the nginx-ingress-
controller container has been created in the kube-system namespace, which is the
namespace for the object created by the Kubernetes system:

$ kubectl get pod -n kube-system -l app.kubernetes.io/name=nginx-ingress-
controller

It shows the following:

Figure 7.41: Listing the nginx-ingress-controller pod

3.	 Once the nginx-ingress-controller container is in a running state, we will create
the function to be executed with the HTTP trigger. Create a Python file named
greetings.py with the following content:

import datetime as dt

def main(event, context):
 currentHour = dt.datetime.now().hour
 greetingMessage = ''

 if currentHour < 12:
 greetingMessage = 'Hello, Good morning!'
 elif currentHour < 18:
 greetingMessage = 'Hello, Good afternoon!'
 else:
 greetingMessage = 'Hello, Good evening!'

 return greetingMessage

4.	 Create the lesson-7 namespace and deploy the greetings.py created earlier:

$ kubectl create namespace lesson-7

$ kubeless function deploy greetings --runtime python3.7 \
 --from-file greetings.py \
 --handler greetings.main \
 --namespace lesson-7

Kubeless HTTP Triggers | 233

Refer to the following output:

Figure 7.42: Executing the function with an HTTP trigger

5.	 Invoke the function and verify that the function is providing the expected output:

$ kubeless function call greetings --namespace lesson-7

Once invoked, the screen will display the following:

Figure 7.43: Output for function

6.	 Now we can create the http trigger for the hello function:

$ kubeless trigger http create greetings \
 --function-name greetings \
 --namespace lesson-7

The result is as follows:

Figure 7.44: Creating the HTTP trigger

7.	 List the http triggers; you should be able to see the http trigger for the hello
function:

$ kubeless trigger http list --namespace lesson-7

The list will look something like this:

Figure 7.45: Listing the HTTP triggers

234 | Kubernetes Serverless with Kubeless

8.	 This will create an ingress object in the Kubernetes layer. We can list the ingress
objects with the kubectl CLI:

$ kubectl get ingress --namespace lesson-7

This will return the following:

Figure 7.46: Listing ingress objects

9.	 You can see the hostname with the .nip.io domain, which we can use to access
the greetings function over HTTP.

In this case, the hostname is greetings.192.168.99.100.nip.io. Once you open this
hostname in a web browser, you should be able to see the greeting message in the
browser window (note that your output may be different depending on your local
time):

Figure 7.47: Invoking the function with the HTTP GET request

Kubeless PubSub Triggers
Kubeless functions can be invoked by sending input messages to topics in messaging
systems. This method is known as a PubSub mechanism. Currently, Kubeless supports
two messaging systems, namely, Kafka and NATS.

Kubeless PubSub Triggers | 235

In order to create PubSub triggers in Kubeless, we need to have a running Kafka cluster
or NATS cluster. Once the Kafka or NATS cluster is ready, we can use kubeless trigger
kafka create to create a Kafka trigger or kubeless trigger nats create to create a
NATS trigger and associate our PubSub function with the new trigger:

$ kubeless trigger <trigger-type> create <trigger-name> \

 --function-selector <label-query> \

 --trigger-topic <topic-name>

Let's discuss what each piece of the command does:

•	 kubeless trigger <trigger-type> create <trigger-name>: This tells Kubeless to
create a PubSub trigger with the provided name and trigger type. Valid trigger
types are kafka and nats.

•	 --function-selector <label-query>: This tells us which function should be
associated with this trigger. Kubernetes labels are used to define this relationship
(for example, --function-selector key1=value1,key2=value2).

•	 --trigger-topic <topic-name>: The Kafka broker will listen to this topic and the
function will be triggered when a message is published to it.

The topic is where messages from the producers get published. The Kubeless CLI allows
us to create topics using the kubeless topic command. This allows us to create, delete,
list topics, and publish messages to topics easily.

Exercise 23: Creating a PubSub Trigger for a Kubeless Function

In this exercise, we will first create a Kafka and Zookeeper cluster within our Minikube
environment. Once the Kafka and Zookeeper clusters are ready, we will create a
function to be executed with PubSub triggers. Next, we will create the PubSub topic.
Publishing messages to the created topic will execute the Kubeless function. Perform
the following steps to complete the exercise.

236 | Kubernetes Serverless with Kubeless

Let's invoke a Kubeless function with the PubSub mechanism using Kafka:

1.	 First, we are going to deploy Kafka and Zookeeper to our Kubernetes cluster:

$ kubectl create -f https://github.com/kubeless/kafka-trigger/releases/
download/v1.0.2/kafka-zookeeper-v1.0.2.yaml

The output will look like the following:

Figure 7.48: Installing Kafka and Zookeeper

2.	 Verify that two statefulset named kafka and zoo are running in the kubeless
namespace for Kafka and Zookeeper:

$ kubectl get statefulset -n kubeless
$ kubectl get services -n kubeless
$ kubectl get deployment -n kubeless

The following output is seen:

Figure 7.49: Verifying the Kafka and Zookeeper installation

Kubeless PubSub Triggers | 237

3.	 Once our Kafka and Zookeeper deployment is ready, we can create and deploy the
function to be triggered by PubSub triggers. Create a file named pubsub.py and add
the following content:

def main(event, context):
 return "Invoked with Kubeless PubSub Trigger"

4.	 Let's deploy our function now:

$ kubeless function deploy pubsub --runtime python3.7 \
 --from-file pubsub.py \
 --handler pubsub.main

The deployment will yield the following:

Figure 7.50: Deploying the pubsub function

5.	 Once the function is deployed, we can verify the function is successful by listing
the function:

$ kubeless function list pubsub

The listed function will be as follows:

Figure 7.51: Verifying the pubsub function

6.	 Now, let's create the kafka trigger with the kubeless trigger kafka create
command and associate our pubsub function with the new trigger:

$ kubeless trigger kafka create my-trigger \
 --function-selector function=pubsub \
 --trigger-topic pubsub-topic

238 | Kubernetes Serverless with Kubeless

It will look as follows:

Figure 7.52: Creating the kafka trigger for the pubsub function

7.	 Now we need a Kubeless topic to publish the messages. Let's create a topic with
the kubeless topic create command. We need to make sure that the topic name
is similar to the one we provided as the --trigger-topic while creating the kafka
trigger in the previous step:

$ kubeless topic create pubsub-topic

8.	 Okay. Now it's time to test our pubsub function by publishing events to pubsub-
topic:

$ kubeless topic publish --topic pubsub-topic --data "My first message"

9.	 Check the logs function to verify whether the pubsub function is successfully
invoked:

$ kubectl logs -l function=pubsub

You should see the published message in the output logs:

...
My first message
...

To understand this better, check out the following output:

Figure 7.53: Logs of the pubsub function

Monitoring a Kubeless Function
When we have successfully deployed our Kubeless function, we then need to monitor
our function. This can be achieved with the kubeless function top command. This
command will provide us with the following information:

•	 NAME: The name of the Kubeless function

•	 NAMESPACE: The namespace of the function

Debugging a Kubeless Function | 239

•	 METHOD: The HTTP method type (for example, GET/POST) when invoking the
function

•	 TOTAL_CALLS: The total number of invocations

•	 TOTAL_FAILURES: The number of function failures

•	 TOTAL_DURATION_SECONDS: The total number of seconds this function has executed

•	 AVG_DURATION_SECONDS: The average number of seconds this function has executed

•	 MESSAGE: Any other messages

The following is the kubeless function top output for the hello function:

$ kubeless function top hello

The output will be as follows:

Figure 7.54: Viewing the metrics for the hello function

Now that we've monitored the function, it's time to move toward debugging it.

Debugging a Kubeless Function
A Kubeless function can fail at different stages of the function life cycle (for example,
from deployment time to function execution time) due to a number of reasons. In this
section, we are going to debug a function to identify the cause of failure.

In order to demonstrate multiple error scenarios, first, we are going to create a sample
function with the following code block in the debug.py file:

def main(event, context)

 name = event['data']['name']

 return "Hello " + name

Error Scenario 01

Now, let's try to deploy this function using the kubeless function deploy command:

$ kubeless function deploy debug --runtime python \

 --from-file debug.py \

 --handler debug.main

240 | Kubernetes Serverless with Kubeless

This will result in Invalid runtime error and Kubeless will display the supported
runtimes. Upon further inspection, we can see that there is a typo in the --runtime
parameter of the kubeless function deploy command.

The resulting output would look like this:

Figure 7.55: Deploying the debug function – error

Let's correct this typo and rerun the kubeless function deploy command with the
python3.7 runtime:

$ kubeless function deploy debug --runtime python3.7 \

 --from-file debug.py \

 --handler debug.main

This time, the function will be successfully deployed into the Kubeless environment. It
should look like the following:

Figure 7.56: Deploying the debug function – successful

Error Scenario 02

Now, let's check the status of the function using the kubeless function ls command:

$ kubeless function ls debug

To understand this better, refer to the following output:

Figure 7.57: Listing the debug function

Debugging a Kubeless Function | 241

You can see that the status is 0/1 NOT READY. Now, let's check the status of the debug
pod using the kubectl get pods command:

$ kubectl get pods -l function=debug

Now, refer to the following screenshot for the output:

Figure 7.58: Listing the debug function pods

Here, debug pod is in CrashLoopBackOff status. This error commonly occurs due to either
a syntax error in the function or the dependencies that we specify.

On closer inspection, we could identify that a colon (:) to mark the end of the function
header is missing.

Let's correct this and update our function.

Open the debug.py file and add a colon at the end of the function header:

def main(event, context):

 name = event['data']['name']

 return "Hello " + name

We will now execute the kubeless function update command to update the function
with the new code file:

$ kubeless function update debug --from-file debug.py

The output is as follows:

Figure 7.59: Updating the debug function

When you execute the kubeless function ls debug again, you should be able to see that
the function is now ready with the 1/1 READY status:

Figure 7.60: Listing the debug function

242 | Kubernetes Serverless with Kubeless

Error Scenario 03

Let's create an example error scenario with our hello function. For this, you can call the
hello function by replacing the key name of the data section with username:

$ kubeless function call debug --data '{"username":"Kubeless"}'

Now, let's see how it looks on the screen:

Figure 7.61: Invoking the debug function – error

In order to find the possible cause for this failure, we need to check the function logs.
You can execute the kubeless function logs command to view the logs of the hello
function:

$ kubeless function logs debug

The output would look as follows:

Figure 7.62: Checking the debug function logs

Debugging a Kubeless Function | 243

The first few lines of the output show lines similar to the following code block, which
are internal health checks. As per the logs, we can see that all the calls to the /healthz
endpoint have been successful with the 200 HTTP success response code:

10.56.0.1 - - [03/Jul/2019:13:36:17 +0000] "GET /healthz HTTP/1.1" 200 2 ""
"kube-probe/1.12+" 0/120

Next, you can see a stack trace of the error messages, as follows, with the possible
cause being the KeyError: 'name' error. The function was expecting a 'name' key, which
was not found during the function execution:

Traceback (most recent call last):

 File "/usr/local/lib/python3.7/dist-packages/bottle.py", line 862, in _
handle

 return route.call(**args)

 File "/usr/local/lib/python3.7/dist-packages/bottle.py", line 1740, in
wrapper

 rv = callback(*a, **ka)

 File "/kubeless.py", line 86, in handler

 raise res

KeyError: 'name'

The last line of the error message indicates that HTTP error 500 was returned for the
function call:

10.56.0.1 - - [03/Jul/2019:13:37:29 +0000] "POST / HTTP/1.1" 500 739 ""
"kubeless/v0.0.0 (linux/amd64) kubernetes/$Format" 0/10944

Note

HTTP 500 is the error code returned by the HTTP protocol, which indicates an
Internal Server Error. This means that the server was unable to fulfill the
request due to unexpected conditions.

Apart from kubeless function logs, you can also use the kubectl logs command, which
will return a similar output. You need to pass the -l parameter, which indicates a label,
in order to only get the logs for a specific function:

$ kubectl logs -l function=hello

244 | Kubernetes Serverless with Kubeless

The following will be the output:

Figure 7.63: Checking the debug function logs

Use the kubectl get functions --show-labels command to see the labels associated
with the Kubeless functions.

This will yield the following:

Figure 7.64: Listing the function labels

Let's correct our mistake and pass the correct argument to the debug function:

$ kubeless function call debug --data '{"name":"Kubeless"}'

Now our function has run successfully and has generated Hello Kubeless as its output:

Figure 7.65: Invoking the debug function – successful

Serverless Plugin for Kubeless
The Serverless Framework is a general framework for deploying serverless applications
across different serverless providers. The serverless plugin for Kubeless supports
deploying Kubeless functions. Apart from the plugin for Kubeless, the Serverless
Framework supports serverless applications such as AWS Lambda, Azure Functions,
Google Cloud Functions, Apache OpenWhisk, and Kubeless.

In this section, we will install the serverless framework and create a Kubeless function
using the CLI provided by the serverless framework.

Serverless Plugin for Kubeless | 245

Before we start installing the serverless framework, we need to have Node.js version
6.5.0 or later installed as a prerequisite. So, first, let's install Node.js:

$ curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -

$ sudo apt-get install nodejs -y

The output is as follows:

Figure 7.66: Node.js version 6.5.0 installation

Once installed, verify the Node.js version by executing the following command:

$ nodejs -v

Here is the output:

Figure 7.67: Node.js version verification

Once the Node.js installation is successful, we will then install the Serverless
Framework by executing the following command:

$ sudo npm install -g serverless

Next, we will verify the serverless version:

$ serverless -v

246 | Kubernetes Serverless with Kubeless

Check the output, as follows:

Figure 7.68: Serverless version verification

We have successfully completed the installation of the Serverless Framework. We can
now start creating functions with it.

We can use the serverless create command to create a basic service from a template.
Let's create a project named my-kubeless-project, as follows:

$ serverless create --template kubeless-python --path my-kubeless-project

Let's break the command into pieces in order to understand it:

•	 --template kubeless-python: Currently, two templates are available for the
Kubeless framework. kubeless-python creates a Python function and kubeless-
nodejs creates a Node.js function.

•	 --path my-kubeless-project: This defines that this function should be created
under the my-kubeless-project directory. Take a look at the output to understand
it better:

Figure 7.69: Creation of my-kubeless-project

This command will create a directory named my-kubeless-project and several files
within this directory. First, let's move to the my-kubeless-project directory by executing
the following command:

$ cd my-kubeless-project

Serverless Plugin for Kubeless | 247

The following files are in the my-kubeless-project directory:

•	 handler.py

•	 serverless.yml

•	 package.json

The handler.py file contains a sample Python function, as follows. This is a simple
function that returns a JSON object and the status code of 200:

import json

def hello(event, context):

 body = {

 "message": "Go Serverless v1.0! Your function executed
successfully!",

 "input": event['data']

 }

 response = {

 "statusCode": 200,

 "body": json.dumps(body)

 }

 return response

It also creates a serverless.yml file, which tells the serverless framework to execute the
hello function inside the handler.py file. In the provider section, it is mentioned that
this is a Kubeless function with a python2.7 runtime. In the plugins section, it defines
the custom plugins required, such as the serverless-kubeless plugin:

Welcome to Serverless!

#

For full config options, check the kubeless plugin docs:

https://github.com/serverless/serverless-kubeless

#

248 | Kubernetes Serverless with Kubeless

For documentation on kubeless itself:

http://kubeless.io

Update the service name below with your own service name

service: my-kubeless-project

Please ensure the serverless-kubeless provider plugin is installed
globally.

$ npm install -g serverless-kubeless

#

...before installing project dependencies to register this provider.

$ npm install

provider:

 name: kubeless

 runtime: python2.7

plugins:

 - serverless-kubeless

functions:

 hello:

 handler: handler.hello

Finally, the package.json file contains the npm packaging information, such as
dependencies:

{

 "name": "my-kubeless-project",

 "version": "1.0.0",

 "description": "Sample Kubeless Python serverless framework service.",

 "dependencies": {

 "serverless-kubeless": "^0.4.0"

 },

Serverless Plugin for Kubeless | 249

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "keywords": [

 "serverless",

 "kubeless"

],

 "author": "The Kubeless Authors",

 "license": "Apache-2.0"

}

You can update these files as required to match your business requirements. We are not
going to change these files in this example.

Now, we are going to execute the npm install command, which installs all npm
dependencies, such as the kubeless-serverless plugin:

$ npm install

The output for this is as follows:

Figure 7.70: Installing the npm dependencies

Once the dependencies are ready, let's deploy the service:

$ serverless deploy -v

Deploying the service provides us with the following output:

Figure 7.71: Deploying the service

250 | Kubernetes Serverless with Kubeless

Then, we can deploy the function using the following command:

$ serverless deploy function -f hello

The following screenshot shows the output:

Figure 7.72: Deploying the function

When the function is successfully deployed, we can invoke the function with the
serverless invoke command:

$ serverless invoke --function hello -l

Invoking the function renders the following output:

Figure 7.73: Invoking the function

You can also use the kubeless function call command to invoke this function:

$ kubeless function call hello

Doing this will provide the following output:

Figure 7.74: Using the kubeless function call to invoke the function

Once you are done with the function, use serverless remove to delete the function:

$ serverless remove

Serverless Plugin for Kubeless | 251

Here is the output of the preceding code:

Figure 7.75: Deleting the function

Note

Execute the serverless logs -f hello command if you encounter any errors
while invoking the function.

Activity 7: Publishing Messages to Slack with Kubeless

Imagine that you need a Slackbot to post messages to your Slack channel. This Slackbot
should be able to post messages to a specific Slack channel using the incoming
webhook integration method. This bot will print a success message if posting the
message to Slack was successful; otherwise, it will print an error message if there were
any errors while sending the message to Slack. In this activity, we will be creating a
Kubeless function that can post messages to a specific Slack channel.

As a prerequisite to this activity, we need to have a Slack workspace with incoming
webhook integration. Execute the following steps to create a Slack workspace and
integrate the incoming webhook:

Solution-Slack Setup

1.	 Create a Slack workspace.

2.	 Visit https://slack.com/create to create a workspace. Enter your email address
and then click on Create.

3.	 You should receive a six-digit confirmation code to the email that you entered on
the previous page. Enter the received code on the workspace.

4.	 Add suitable names for our workspace and Slack channel.

5.	 You will be asked to fill in email IDs for others who are collaborating on the same
project. You can either skip this section or fill in the details and then continue.

6.	 Now that your Slack channel is ready, click on See Your Channel in Slack.

https://slack.com/create

252 | Kubernetes Serverless with Kubeless

7.	 Once clicked, we should see our channel.

8.	 Now we are going to add the Incoming Webhook app to our Slack. From the left
menu, select Add apps under the Apps section.

9.	 Enter Incoming Webhooks in the search field and then click on Install for Incoming
Webhook app.

10.	 Click on Add Configuration.

11.	 Click on Add Incoming WebHooks Integration.

12.	 Save the webhook URL. We will need this when we are writing the Kubeless
function.

Note

The detailed steps on creating a Slack workspace with incoming webhook
integration, along with the corresponding screenshots, are available on page 422.

Now we are ready to start the activity. Execute the following steps to complete
this activity:

Activity Solution

1.	 Create a function in any language (supported by Kubeless) that can post messages
to Slack. In this activity, we will write a Python function that performs the
following steps.

2.	 Use the requests library as a dependency.

3.	 Send a POST request to the incoming webhook (created in step 2) with an input
message.

4.	 Print the response of the post request,

5.	 Deploy the function to the Kubeless framework.

6.	 Invoke the function.

7.	 Go to your Slack workspace and verify that the message was successfully posted
to the Slack channel. The final output should look like this:

Summary | 253

Figure 7.76: Verifying whether the message was successfully posted

Note

The solution to the activity can be found on page 422.

Summary
In this chapter, we learned how to deploy a single-node Kubernetes cluster with
Minikube. Then, we installed the Kubeless framework, Kubeless CLI, and Kubeless UI
on top of our Minikube cluster. Once the Kubernetes cluster and Kubeless framework
were ready, we created our first Kubeless function with Python and deployed it to
Kubeless. Then, we discussed multiple ways of invoking Kubeless functions, namely
with the Kubeless CLI, the Kubeless UI, HTTP triggers, scheduled triggers, and PubSub
triggers. Next, we discussed how to debug common error scenarios that we encounter
while deploying Kubeless functions. Then, we discussed how we can use the serverless
framework to deploy a Kubeless function. Finally, in the activity, we learned how we can
use a Kubeless function to send messages to a Slack channel.

In the next chapter, we shall introduce OpenWhisk, and cover OpenWhisk actions and
triggers.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Run OpenWhisk with IBM Cloud Functions

•	 Create, list, invoke, update, and delete OpenWhisk actions

•	 Utilize and invoke OpenWhisk web actions and sequences

•	 Automate OpenWhisk action invocation with feeds, triggers, and rules

This chapter covers Apache OpenWhisk and how to work with its actions, triggers, and packages.

Introduction to
Apache OpenWhisk

8

256 | Introduction to Apache OpenWhisk

Introduction to OpenWhisk
Until now in this book, we have learned about the Kubeless framework, which is an
open source Kubernetes-native serverless framework. We discussed the Kubeless
architecture, and created and worked with the Kubeless functions and triggers. In
this chapter, we shall be learning about OpenWhisk, which is another open source
serverless framework that can be deployed on top of Kubernetes.

OpenWhisk is an open source serverless framework that is part of the Apache Software
Foundation. This was originally developed at IBM with the project code name of Whisk,
and later branded as OpenWhisk once the source code was open sourced. Apache
OpenWhisk supports many programming languages, including Ballerina, Go, Java,
JavaScript, PHP, Python, Ruby, Swift, and .NET Core. It allows us to invoke functions
written in these programming languages in response to events. OpenWhisk supports
many deployment options, such as on-premises and cloud infrastructure.

There are four core components of OpenWhisk:

•	 Actions: These contain application logic written in one of the supported languages
that will be executed in response to events.

•	 Sequences: These link multiple actions together to create more complex
processing pipelines.

•	 Triggers and rules: These automate the invocation of actions by binding them to
external event sources.

•	 Packages: These combine related actions together for distribution.

The following diagram illustrates how these components interact with each other:

Figure 8.1: OpenWhisk core components

Running OpenWhisk with IBM Cloud Functions | 257

In the next section, we will learn how to run Apache OpenWhisk with IBM Cloud
Functions.

Running OpenWhisk with IBM Cloud Functions
OpenWhisk is a framework that can be deployed on-premises or in a cloud
infrastructure. However, OpenWhisk is also available as a managed service from IBM,
the creator of the OpenWhisk project. IBM Cloud Functions is the name for the
managed OpenWhisk implementation on the IBM Cloud infrastructure. This book will
use this service to deploy our serverless functions because IBM Cloud Functions is the
easiest way to start working with OpenWhisk. We will first begin by setting up an IBM
Cloud account.

Exercise 24: Setting Up an IBM Cloud Account

In this exercise, we are going to set up an account on IBM Cloud.

Note

A credit card is not required to register with IBM Cloud.

258 | Introduction to Apache OpenWhisk

The following steps will help you complete the exercise:

1.	 First, we need to register on IBM Cloud at https://cloud.ibm.com/registration.
Then, fill in the required data and submit the form. It should look similar to the
following screenshot:

Figure 8.2: IBM Cloud registration page

https://cloud.ibm.com/registration

Running OpenWhisk with IBM Cloud Functions | 259

Once the registration is complete, you should see the following:

Figure 8.3: IBM Cloud registration completion page

2.	 At this point, we will receive an email with an activation link. Click on the Confirm
account button to activate your account, as shown in the following figure:

Figure 8.4: IBM Cloud Activation Email

260 | Introduction to Apache OpenWhisk

3.	 When you click on the Confirm account button in the email, we will be taken
to the IBM Cloud welcome screen. Click on the Log in button to log in with the
credentials used to register with IBM Cloud, as shown in the following figure:

Figure 8.5: IBM Cloud welcome page

Running OpenWhisk with IBM Cloud Functions | 261

4.	 Acknowledge the privacy data by clicking on the Proceed button, as shown in the
following figure:

Figure 8.6: IBM Cloud privacy policy

262 | Introduction to Apache OpenWhisk

5.	 You can skip the introduction video and proceed to the home page. Now you can
click the hamburger icon () in the top-left corner of the screen and select
Functions from the menu, as shown in the following figure:

Figure 8.7: IBM Cloud home page

Running OpenWhisk with IBM Cloud Functions | 263

6.	 This will take you to the IBM Cloud functions page (https://cloud.ibm.com/
functions/), as shown in the following figure:

Figure 8.8: IBM Cloud Functions page

OpenWhisk offers a CLI named wsk to create and manage OpenWhisk entities. Next,
we will install the OpenWhisk CLI, which will be used to interact with the OpenWhisk
platform.

Exercise 25: Installing the IBM Cloud CLI

In this exercise, we are going to install the IBM Cloud CLI with the Cloud Functions
plugin, which supports OpenWhisk:

1.	 First, we need to download the compressed IBM Cloud CLI file. Use the curl
command with the -Lo flag to download the CLI, as follows:

$ curl -Lo ibm-cli.tar.gz https://clis.cloud.ibm.com/download/bluemix-
cli/0.18.0/linux64

264 | Introduction to Apache OpenWhisk

The output should be as follows:

Figure 8.9: Downloading the IBM Cloud CLI

2.	 Next, we will extract the tar.gz file using the tar command as follows:

$ tar zxvf ibm-cli.tar.gz

The output should be as follows:

Figure 8.10: Extracting the IBM Cloud CLI

3.	 Then move the ibmcloud executable file to the /usr/local/bin/ path, as shown in
the following command:

$ sudo mv Bluemix_CLI/bin/ibmcloud /usr/local/bin/ibmcloud

The output should be as follows:

Figure 8.11: Moving ibmcloud to /usr/local/bin

Running OpenWhisk with IBM Cloud Functions | 265

4.	 Now we will log in to IBM Cloud using the IBM Cloud CLI. Execute the following
command, replacing <YOUR_EMAIL> with the email address used when registering
to IBM Cloud. Provide the email and password used during the registration phase
when prompted and set the region number as 5 (us-south), as you can see in the
following command:

$ ibmcloud login -a cloud.ibm.com -o "<YOUR_EMAIL>" -s "dev"

The output should be as follows:

Figure 8.12: Logging in to IBM Cloud

5.	 Now we will install the Cloud Functions plugin using the ibmcloud CLI, as shown in
the following command. This plugin will be used when we work with OpenWhisk
entities:

$ ibmcloud plugin install cloud-functions

266 | Introduction to Apache OpenWhisk

The output should be as follows:

Figure 8.13: Installing Cloud Functions

6.	 Next, we will provide the target organization (the organization name is your email
address) and the space (which defaults to dev) using the following command:

$ ibmcloud target -o <YOUR_EMAIL> -s dev

The output should be as follows:

Figure 8.14: Setting the target organization and space

7.	 Now the configurations are done. We can use ibmcloud wsk to interact with
OpenWhisk entities, as shown in the following command:

$ ibmcloud wsk action list

Running OpenWhisk with IBM Cloud Functions | 267

The output should be as follows:

Figure 8.15: Listing OpenWhisk actions

Note

In this book, we will be using the wsk command to manage OpenWhisk entities
instead of the ibmcloud wsk command provided by IBM Cloud Functions. Both of
them provide the same functionality. The only difference is that wsk is the standard
CLI for OpenWhisk and ibmcloud fn is from the IBM Cloud Functions plugin.

8.	 Let's create a Linux alias, wsk="ibmcloud wsk". First, open the ~/.bashrc file with
your favorite text editor. In the following command, we will be using the vim text
editor to open the file:

vim ~/.bashrc

Add the following line at the end of the file:

alias wsk="ibmcloud wsk"

9.	 Source the ~/.bashrc file to apply the changes, as shown in the following
command:

$ source ~/.bashrc

The output should be as follows:

Figure 8.16: Sourcing the bashrc file

10.	 Now we should be able to invoke OpenWhisk with the wsk command. Execute the
following command to verify the installation:

$ wsk --help

268 | Introduction to Apache OpenWhisk

This will print the help page of the wsk command, as shown in the following figure:

Figure 8.17: Output for wsk command

Now, let's proceed to the next section on OpenWhisk actions.

OpenWhisk Actions
In OpenWhisk, actions are code snippets written by developers that will be executed
in response to events. These actions can be written in any programming language
supported by OpenWhisk:

•	 Ballerina

•	 Go

•	 Java

•	 JavaScript

•	 PHP

•	 Python

•	 Ruby

•	 Swift

•	 .NET Core

Also, we can use a custom Docker image if our preferred language runtime is not
supported by OpenWhisk yet. These actions will receive a JSON object as input, then
perform the necessary processing within the action, and finally return a JSON object
with the processed results. In the following sections, we will focus on how to write,
create, list, invoke, update, and delete OpenWhisk actions using the wsk CLI.

OpenWhisk Actions | 269

Writing Actions for OpenWhisk

When writing OpenWhisk actions with your preferred language, there are few
standards that you must follow. They are as follows:

•	 Each action should have a function named main, which is the entry point of the
action. The source code can have additional functions, but the main function will
be executed once the action is triggered.

•	 The function must return a JSON object as the response.

Note

In this chapter, we will be mainly using JavaScript to create the function code.

Let's look at an example in which we create a JavaScript code (random-number.js) that
conforms to the rules we've just mentioned. This is a simple function that generates
a random number between 0 to 1 and returns the generated number as the function's
response:

function main() {

 var randomNumber = Math.random();

 return { number: randomNumber };

}

Here is a PHP function that conforms to the rules:

<?php

function main()

{

 $randomNumber = rand();

 return ["number" => $randomNumber];

}

Creating Actions on the OpenWhisk Framework

Now it's time to create an action on the OpenWhisk framework by using the action
code written in the previous section. We will be using the wsk action create command,
which has the following format:

$ wsk action create <action-name> <action-file-name>

270 | Introduction to Apache OpenWhisk

<action-name> is the identifier of the action. It should be unique to prevent naming
conflicts. <action-file-name> is the file that contains the source code of the action. Let's
execute the following command to create an OpenWhisk action named randomNumber
using the action source code in the random-number.js file:

$ wsk action create randomNumber random-number.js

The output we receive from this command looks like this:

Figure 8.18: Creating a randomNumber action

As we can see in the output, whenever an action is successfully created, the CLI prompt
appropriately informs the reader of the status of the action.

The OpenWhisk framework will determine the runtime to execute the action based on
the extension of the source code file. In the preceding scenario, the Node.js 10 runtime
will be selected for the provided .js file. You can use the --kind flag with the wsk action
create command if you want to override the default runtime selected by the OpenWhisk
framework:

 $ wsk action create secondRandomNumber random-number.js --kind nodejs:8

The output should be as follows:

Figure 8.19: Creating a randomNumber action with the nodejs:8 runtime

The preceding output indicates that secondRandomNumber was created successfully. At
the end of this section, we have deployed two OpenWhisk actions.

Having learned how to create actions on the OpenWhisk framework, next we shall work
on listing OpenWhisk actions.

Listing OpenWhisk Actions

In this section, we are going to list the OpenWhisk actions in our environment with the
wsk CLI using the following command:

$ wsk action list

OpenWhisk Actions | 271

The output should be as follows:

Figure 8.20: Listing all actions

From the preceding output, we can see the two actions we created earlier with the
names randomNumber and secondRandomNumber. The wsk action list command lists the
actions and the runtime of these actions, such as nodejs:8 or nodejs:10. By default, the
action list will be sorted based on the last update time, so the most recently updated
action will be at the top of the list. If we want the list to be sorted alphabetically, we can
use the --name-sort (or -n) flag, as shown in the following command:

$ wsk action list --name-sort

The output should be as follows:

Figure 8.21: Listing all actions sorted by name in ascending order

Invoking OpenWhisk Actions

Now our actions are ready to be invoked. OpenWhisk actions can be invoked in two
ways using the wsk CLI:

•	 Request-response

•	 Fire-and-forget

The request-response method is synchronous; the action invocation will wait until the
results are available. On the other hand, the fire-and-forget method is asynchronous.
This will return an ID called the activation ID, which can be used later to get the results.

Here is the standard format of the wsk command to invoke the action:

$ wsk action invoke <action-name>

272 | Introduction to Apache OpenWhisk

Request-Response Invocation Method

In the request-response method, the wsk action invoke command is used with the
--blocking (or -b) flag, which asks the wsk CLI to wait for the invocation results:

$ wsk action invoke randomNumber --blocking

The preceding command will return the following output in the terminal, which
contains the result returned from the method with other metadata about the method
invocation:

ok: invoked /_/randomNumber with id 002738b1acee4abba738b1aceedabb60

{

 "activationId": "002738b1acee4abba738b1aceedabb60",

 "annotations": [

 {

 "key": "path",

 "value": "your_email_address_dev/randomNumber"

 },

 {

 "key": "waitTime",

 "value": 79

 },

 {

 "key": "kind",

 "value": "nodejs:10"

 },

 {

 "key": "timeout",

 "value": false

 },

OpenWhisk Actions | 273

 {

 "key": "limits",

 "value": {

 "concurrency": 1,

 "logs": 10,

 "memory": 256,

 "timeout": 60000

 }

 },

 {

 "key": "initTime",

 "value": 39

 }

],

 "duration": 46,

 "end": 1564829766237,

 "logs": [],

 "name": "randomNumber",

 "namespace": "your_email_address_dev",

 "publish": false,

 "response": {

 "result": {

 "number": 0.6488215545330562

 },

 "status": "success",

 "success": true

 },

 "start": 1564829766191,

 "subject": "your_email_address",

 "version": "0.0.1"

}

274 | Introduction to Apache OpenWhisk

We can see the output ("number": 0.6488215545330562) returned by the main function
within the response section of the returned JSON object. This is the random number
generated by the JavaScript function that we wrote previously. The returned JSON
object contains an activation ID ("activationId": "002738b1acee4abba738b1aceedabb60"),
which we can use to get the results later. This output includes other important values,
such as the action invocation status ("status": "success"), the start time ("start":
156482976619), the end time ("end": 1564829766237), and the execution duration
("duration": 46) of this action.

Note

We will discuss how to get the activation results using activationId in the Fire-
and-Forget Invocation Method section.

We can use the --result (or -r) flag if we need to get the result of the action without
the other metadata, as shown in the following code:

$ wsk action invoke randomNumber --result

The output should be as follows:

Figure 8.22: Invoking the randomNumber action using the request-and-response method

Fire-and-Forget Invocation Method

Action invocations with the fire-and-forget method do not wait for the result of the
action. Instead, they return an activation ID that we can use to get the results of the
action. This invocation method uses a similar command to the request-response
method but without the --blocking (or -b) flag:

$ wsk action invoke randomNumber

The output should be as follows:

Figure 8.23: Invoking the randomNumber action using the fire-and-forget method

OpenWhisk Actions | 275

In the preceding result, we can see the returned activation ID of
2b90ade473e443bc90ade473e4b3bcff (please note that your activation ID will be different).

Now we can use the wsk activation get command to get the results for a given
activation ID:

$ wsk activation get "<activation_id>"

You need to replace <activation_id> with the value returned when you invoked the
function using the wsk action invoke command:

$ wsk activation get 2b90ade473e443bc90ade473e4b3bcff

ok: got activation 2b90ade473e443bc90ade473e4b3bcff

{

 "namespace": "sathsara89@gmail.com_dev",

 "name": "randomNumber",

 "version": "0.0.2",

 "subject": "sathsara89@gmail.com",

 "activationId": "2b90ade473e443bc90ade473e4b3bcff",

 "start": 1564832684116,

 "end": 1564832684171,

 "duration": 55,

 "statusCode": 0,

 "response": {

 "status": "success",

 "statusCode": 0,

 "success": true,

 "result": {

 "number": 0.05105974715780626

 }

 },

 "logs": [],

 "annotations": [

 {

 "key": "path",

 "value": "sathsara89@gmail.com_dev/randomNumber"

276 | Introduction to Apache OpenWhisk

 },

 {

 "key": "waitTime",

 "value": 126

 },

 {

 "key": "kind",

 "value": "nodejs:10"

 },

 {

 "key": "timeout",

 "value": false

 },

 {

 "key": "limits",

 "value": {

 "concurrency": 1,

 "logs": 10,

 "memory": 256,

 "timeout": 60000

 }

 },

 {

 "key": "initTime",

 "value": 41

 }

],

 "publish": false

}

OpenWhisk Actions | 277

If you would prefer to retrieve only a summary of the activation, the --summary (or -s)
flag should be provided with the wsk activation get command:

$ wsk activation get <activation-id> --summary

The output from the preceding command will print a summary of the activation details,
as shown in the following screenshot:

Figure 8.24: The activation summary

The wsk activation result command returns only the results of the action, omitting
any metadata:

$ wsk activation result <activation-id>

The output should be as follows:

Figure 8.25: The activation result

The wsk activation list command can be used to list all the activations:

$ wsk activation list

The output should be as follows:

Figure 8.26: Listing activations

278 | Introduction to Apache OpenWhisk

The preceding command returns a list of activations sorted by the datetime of the
activation's invocation. The following table describes the information provided by each
column:

Figure 8.27: Column description

Updating OpenWhisk Actions

In this section, we will learn how to update the source code of an action once it has
been created on the OpenWhisk platform. We might want to update the action for
several reasons. There could be a bug in the code, or we may simply want to enhance
the code. The wsk action update command can be used to update an OpenWhisk action
using the wsk CLI:

$ wsk action update <action-name> <action-file-name>

We already have an action that prints a random number, which is defined in the random-
number.js function. This function prints a value between 0 and 1, but what if we want to
print a random number between 1 and 100? This can now be done using the following
code:

function main() {

 var randomNumber = Math.floor((Math.random() * 100) + 1);

 return { number: randomNumber };

}

Then, we can execute the wsk action update command to update the randomNumber
action:

$ wsk action update randomNumber random-number.js

OpenWhisk Actions | 279

The output should be as follows:

Figure 8.28: Updating the randomNumber action

Now we can verify the result of the updated action by executing the following
command:

$ wsk action invoke randomNumber --result

Figure 8.29: Invoking the randomNumber action

As we can see, the randomNumber action has returned a number between 1 to 100. We
can invoke the randomNumber function number multiple times to verify that it returns an
output number between 1 and 100.

Deleting OpenWhisk Actions

In this section, we will discuss how to delete an OpenWhisk action. The wsk action
delete command is used to delete OpenWhisk actions:

$ wsk action delete <action-name>

Let's execute the wsk action delete command to delete the randomNumber and
secondRandomNumber actions we created in the preceding sections:

$ wsk action delete randomNumber

$ wsk action delete secondRandomNumber

The output should be as follows:

Figure 8.30: Deleting the randomNumber and secondRandomNumber actions

280 | Introduction to Apache OpenWhisk

Now we have learned how to write, create, list, invoke, update, and delete OpenWhisk
actions. Let's move on to an exercise in which you will create your first OpenWhisk
action.

Exercise 26: Creating Your First OpenWhisk Action

In this exercise, we will first create a JavaScript function that receives exam marks as
input and returns the exam results using the following criteria:

•	 Return Pass if marks are equal to or above 60.

•	 Return Fail if marks are below 60.

Next, we will create an action named examResults in the OpenWhisk framework with
the previously mentioned JavaScript function code. Then, we will invoke the action to
verify that it returns the results as expected. Once the action response is verified, we
will update the action to return the exam grade with the results based on the following
criteria:

•	 Return Pass with grade A if marks are equal to or above 80.

•	 Return Pass with grade B if marks are equal to or above 70.

•	 Return Pass with grade C if marks are equal to or above 60.

•	 Return Fail if marks are below 60.

Again, we will invoke the action to verify the results and finally delete the action.

Note

The code files for this exercise can be found at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise26.

Perform the following steps to complete the exercise:

1.	 First, let's create a JavaScript function in the exam-result.js file that will return
the exam results based on the provided exam marks:

function main(params) {
 var examResult = '';

 if (params.examMarks < 0 || params.examMarks > 100) {
 examResult = 'ERROR: invalid exam mark';
 } else if (params.examMarks >= 60) {

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise26
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise26

OpenWhisk Actions | 281

 examResult = 'Pass';
 } else {
 examResult = 'Fail';
 }

 return { result: examResult };
}

2.	 Now, let's create the OpenWhisk action named examResult from the exam-result.
js file created in step 1:

$ wsk action create examResult exam-result.js

The output should be as follows:

Figure 8.31: Creating the examResult action

3.	 Once the action creation is successful, we can invoke the examResult action by
sending a value between 0 to 100 to the examMarks parameter:

$ wsk action invoke examResult --param examMarks 72 –result

The output should be as follows:

Figure 8.32: Invoking the examResult action

4.	 At this step, we are going to create a new JavaScript function in exam-result-02.js
to return the exam results with the grade parameter:

function main(params) {
 var examResult = '';

 if (params.examMarks < 0 || params.examMarks > 100) {
 examResult = 'ERROR: invalid exam mark';
 } else if (params.examMarks > 80) {
 examResult = 'Pass with grade A';
 } else if (params.examMarks > 70) {
 examResult = 'Pass with grade B';
 } else if (params.examMarks > 60) {

282 | Introduction to Apache OpenWhisk

 examResult = 'Pass with grade C';
 } else {
 examResult = 'Fail';
 }

 return { result: examResult };
}

5.	 Now, let's update the OpenWhisk action with the previously updated exam-
result-02.js file:

$ wsk action update examResult exam-result-02.js

The output should be as follows:

Figure 8.33: Updating the examResult action

6.	 Once the action is updated, we can invoke the action multiple times with different
exam marks as parameters to verify the functionality:

$ wsk action invoke examResult --param examMarks 150 --result
$ wsk action invoke examResult --param examMarks 75 --result
$ wsk action invoke examResult --param examMarks 42 –result

The output should be as follows:

Figure 8.34: Invoking the examResult action with different parameter values

OpenWhisk Actions | 283

7.	 Finally, we will delete the examResult action:

$ wsk action delete examResult

The output should be as follows:

Figure 8.35: Deleting the examResult action

In this exercise, we learned how to create a JavaScript function that follows the
standards for OpenWhisk actions. Then we created the action and invoked it with the
wsk CLI. After that, we changed the logic of the function code and updated the action
with the latest function code. Finally, we performed a cleanup by deleting the action.

OpenWhisk Sequences

In OpenWhisk, and in general with programming, functions (known as actions in
OpenWhisk) are expected to perform a single focused task. This will help to reduce
code duplication by reusing the same function code. But creating complex applications
requires connecting multiple actions together to achieve the desired result. OpenWhisk
sequences are used to chain multiple OpenWhisk actions (which can be in different
programming language runtimes) together and create more complex processing
pipelines.

The following diagram illustrates how a sequence can be constructed by chaining
multiple actions:

Figure 8.36: OpenWhisk sequence

We can pass parameters (if any) to the sequence, which will be used as the input for
the first action. Then, the output of each action will be the input for the next action,
and the final action of the sequence will return its result as the output of the sequence.
Actions written in different programming languages can also be chained together with
sequences.

284 | Introduction to Apache OpenWhisk

Sequences can be created using the wsk action create command with the --sequence
flag to provide a comma-separated list of actions to invoke:

$ wsk action create <sequence-name> --sequence <action-01>,<action-02>

In order to demonstrate the concept of OpenWhisk sequences, we will be creating a
sequence named login in the following section, which consists of two actions, named
authentication and authorization. The login action will be invoked when a user tries
to log in to the application. If the user provides correct credentials at login, they can
view all the content on the system. But if the user fails to provide the correct login
credentials, they can only view the public content of the system.

Note

Authentication is verifying the user's identity, and authorization is granting the
required level of access to the system.

First, let's create the authentication.js function. This function will receive two
parameters, named username and password. If the username and password match
the hardcoded values of admin (for the username parameter) and openwhisk (for the
password parameter), the function will return authenticationResult as true. Otherwise,
authenticationResult will be false:

function main(params) {

 var authenticationResult = '';

 if (params.username == 'admin' && params.password == 'openwhisk') {

 authenticationResult = 'true';

 } else {

 authenticationResult = 'false';

 }

 return { authenticationSuccess: authenticationResult };

}

OpenWhisk Actions | 285

The next function is authorization.js, which takes the authenticationSuccess value
as input and displays appropriate content to the users. If the user is successfully
authenticated (authenticationSuccess = true), the 'Authentication Success!
You can view all content' message will be displayed. If authentication failed
(authenticationSuccess != true), the 'Authentication Failed! You can view only
public content' message will be displayed:

function main(params) {

 var contentMessage = '';

 if (params.authenticationSuccess == "true") {

 contentMessage = 'Authentication Success! You can view all content';

 } else {

 contentMessage = 'Authentication Failed! You can view only public
content';

 }

 return { content: contentMessage };

}

Now, let's deploy both actions with the wsk action create command:

$ wsk action create authentication authentication.js

$ wsk action create authorization authorization.js

The output should be as follows:

Figure 8.37: Creating authentication and authorization actions

Now both authentication and authorization actions are ready. Let's create a sequence
named login by combining authentication and authorization actions:

$ wsk action create login --sequence authentication,authorization

286 | Introduction to Apache OpenWhisk

The output should be as follows:

Figure 8.38: Creating a login sequence

Now it's time to test the login sequence. First, we will invoke the login sequence by
sending the correct credentials (username = admin and password = openwhisk):

$ wsk action invoke login --param username admin --param password openwhisk
–result

The output should be as follows:

Figure 8.39: Invoking the login sequence with valid credentials

The expected result for a successful login is shown in the preceding screenshot. Now,
let's invoke the login sequence by sending incorrect credentials (username = hacker and
password = hacker). This time we expect to receive an authentication failure message:

$ wsk action invoke login --param username hacker --param password hacker –
result

The output should be as follows:

Figure 8.40: Invoking the login sequence with invalid credentials

In this section, we learned about OpenWhisk sequences. We created multiple actions,
linked them together using a sequence, and invoked the sequence by sending the
required parameters.

OpenWhisk Actions | 287

Exercise 27: Creating OpenWhisk Sequences

In this exercise, we will create a sequence with two actions written in different
languages. The first action, written in Python, receives the marks for two exams and
returns the average marks. The second action, written in JavaScript, receives the
average marks and returns either pass or fail.

Note

The code files for this exercise can be found at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise27.

The following steps will help you complete the exercise:

1.	 Write the first function (calculate-average.py), which calculates the average
marks. This function will receive the marks for two exams as the input:

def main(params):
 examOneMarks = params.get("examOneMarks")
 examTwoMarks = params.get("examTwoMarks")

 fullMarks = examOneMarks + examTwoMarks
 averageMarks = fullMarks / 2

 return {"averageMarks": averageMarks}

2.	 Create an OpenWhisk action named calculateAverage from calculate-average.py:

$ wsk action create calculateAverage calculate-average.py

The output should be as follows:

Figure 8.41: Creating the calculateAverage action

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise27
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise27

288 | Introduction to Apache OpenWhisk

3.	 Check that the calculateAverage action is working as expected by invoking it:

$ wsk action invoke calculateAverage --param examOneMarks 82 --param
examTwoMarks 68 –result

4.	 The output should be as follows:

Figure 8.42: Invoking the calculateAverage action

5.	 Create the second function (show-result.js), which returns the exam result (Pass
or Fail) based on the average marks. The exam results will be based on the logic as
marks less than 0 or greater than 100 will return an Error; marks greater than or
equal to 60 will return Pass; else it will return Fail.

The code would be as follows:

function main(params) {
 var examResult = '';

 if (params.averageMarks < 0 || params.averageMarks > 100) {
 examResult = 'ERROR: invalid average exam mark';
 } else if (params.averageMarks >= 60) {
 examResult = 'Pass';
 } else {
 examResult = 'Fail';
 }

 return { result: examResult };
}

6.	 Create an OpenWhisk action named showResult from show-result.js:

$ wsk action create showResult show-result.js

The output should be as follows:

Figure 8.43: Creating the showResult action

OpenWhisk Actions | 289

7.	 Check that the showResult action is working as expected by invoking it:

$ wsk action invoke showResult --param averageMarks 75 –result

The output should be as follows:

Figure 8.44: Invoking the showResult action

8.	 Create the getExamResults sequence with the calculateAverage and showResult
actions:

$ wsk action create getExamResults --sequence calculateAverage,showResult

The output should be as follows:

Figure 8.45: Creating the getExamResults sequence

9.	 Invoke the getExamResults sequence and verify the result:

$ wsk action invoke getExamResults --param examOneMarks 82 --param
examTwoMarks 68 –result

The output should be as follows:

Figure 8.46: Invoking the getExamResults sequence

290 | Introduction to Apache OpenWhisk

OpenWhisk Web Actions

So far, we have invoked our OpenWhisk actions through the wsk CLI with the wsk
action invoke command. Even though this invocation method is very simple and suits
us well during the development stage, the wsk CLI cannot be used by external parties,
such as external applications or users, to invoke our actions. As a solution, we can use
OpenWhisk web actions, which will allow actions to be invoked through HTTP requests
with a publicly available URL.

OpenWhisk standard actions require authentication when invoking the action (this is
handled internally by the wsk CLI) and must return a JSON payload as the response. In
contrast, web actions can be invoked without authentication and can return additional
information, such as HTTP headers and non-JSON payloads such as HTML and binary
data.

An OpenWhisk standard action can be converted to a web action by sending the --web
true (or --web yes) flag when creating (wsk action create) or updating (wsk action
update) actions with the wsk CLI.

Let's create a JavaScript function (web-action.js) to be invoked as a web action. This
function will return Hello, Stranger if we did not pass a value for the name parameter
and returns Hello with the name when we pass a value for the name parameter with the
web action URL:

function main(params) {

 var helloMessage = ''

 if (params.name) {

 helloMessage = 'Hello, ' + params.name;

 } else {

 helloMessage = 'Hello, Stranger';

 }

 return { result: helloMessage };

}

Now we can create a web action by sending the --web true flag with the wsk action
create command:

$ wsk action create myWebAction web-action.js --web true

OpenWhisk Actions | 291

The output should be as follows:

Figure 8.47: Creating myWebAction as a web action

Then, we can invoke the created web action using the web action URL. The general
format of a web action URL is as follows:

https://{APIHOST}/api/v1/web/{QUALIFIED_ACTION_NAME}.{EXT}

Let's discuss each component of this URL:

•	 APIHOST: The APIHOST value for IBM Cloud Functions is openwhisk.ng.bluemix.net.

•	 QUALIFIED_ACTION_NAME: The fully qualified name of the web action in
<namespace>/<package-name>/<action-name> format. If the action is not in a named
package, use default as the value of <package-name>.

•	 EXT: The extension that represents the expected response type of the web action.

We can use the --url flag with the wsk action get command to retrieve the URL of a
web action:

$ wsk action get myWebAction –url

The output should be as follows:

Figure 8.48: Retrieving the public URL of myWebAction

We need to append .json as an extension to the preceding URL since our web action is
responding with a JSON payload. Now we can either open this URL in a web browser or
use the curl command to retrieve the output.

292 | Introduction to Apache OpenWhisk

Let's invoke in the preceding URL using a web browser:

Figure 8.49: Invoking myWebAction from a web browser without the name parameter

Hello, Stranger is the expected response because we did not pass a value for the name
parameter in the query.

Now, let's invoke the same URL by appending ?name=OpenWhisk at the end of the URL:

https://us-south.functions.cloud.ibm.com/api/v1/web/sathsara89%40gmail.com_
dev/default/myWebAction.json?name=OpenWhisk

The output should be as follows:

Figure 8.50: Invoking myWebAction from a web browser with the name parameter

We can invoke the same URL as a curl request with the following command:

$ curl https://us-south.functions.cloud.ibm.com/api/v1/web/
sathsara89%40gmail.com_dev/default/myWebAction.json?name=OpenWhisk

https://us-south.functions.cloud.ibm.com/api/v1/web/sathsara89%40gmail.com_dev/default/myWebAction.json?name=OpenWhisk
https://us-south.functions.cloud.ibm.com/api/v1/web/sathsara89%40gmail.com_dev/default/myWebAction.json?name=OpenWhisk

OpenWhisk Actions | 293

The output should be as follows:

Figure 8.51: Invoking myWebAction as a curl command with the name parameter

This command will produce the same output as we saw in the web browser.

As we discussed previously, OpenWhisk web actions can be configured to return
additional information including HTTP headers, HTTP status codes, and body content
of different types using one or more of the following fields in the JSON response:

•	 headers: This field is used to send HTTP headers in the response. An example
would be to send Content-Type as text/html.

•	 statusCode: This will send a valid HTTP response code. The status code of 200 OK
will be sent unless specified explicitly.

•	 body: This contains the response content, which is either plain text, a JSON object
or array, or a base64-encoded string for binary data.

Now we will update the web-action.js function to send the response in the format we
discussed earlier:

function main(params) {

 var helloMessage = ''

 if (params.name) {

 username = params.name;

 httpResponseCode = 200;

 } else {

 username = 'Stranger';

 httpResponseCode = 400;

 }

 var htmlMessage = '<html><body><h3>' + 'Hello, ' + username + '</h3></
body></html>';

 return {

294 | Introduction to Apache OpenWhisk

 headers: {

 'Set-Cookie': 'Username=' + username + '; Max-Age=3600',

 'Content-Type': 'text/html'

 },

 statusCode: httpResponseCode,

 body: htmlMessage

 };

}

Then, we will update the myWebAction action with the latest function code:

$ wsk action update myWebAction web-action.js

The output should be as follows:

Figure 8.52: Updating myWebAction

Let's invoke the updated action with the following curl command. We will provide
name=OpenWhisk as a query parameter in the URL. Also, the -v option is used to print
verbose output, which will help us to verify the fields we added to the response:

$ curl https://us-south.functions.cloud.ibm.com/api/v1/web/
sathsara89%40gmail.com_dev/default/myWebAction.http?name=OpenWhisk -v

Here is the response we received after the preceding curl command:

 * Trying 104.17.9.194...

* Connected to us-south.functions.cloud.ibm.com (104.17.9.194) port 443 (#0)

* * *

* * *

> GET /api/v1/web/sathsara89%40gmail.com_dev/default/myWebAction.
http?name=OpenWhisk HTTP/1.1

> Host: us-south.functions.cloud.ibm.com

> User-Agent: curl/7.47.0

> Accept: */*

OpenWhisk Actions | 295

>

< HTTP/1.1 200 OK

< Date: Sun, 04 Aug 2019 16:32:56 GMT

< Content-Type: text/html; charset=UTF-8

< Transfer-Encoding: chunked

< Connection: keep-alive

< Set-Cookie: __cfduid=d1cb4dec494fb11bd8b60a225c218b3101564936375;
expires=Mon, 03-Aug-20 16:32:55 GMT; path=/; domain=.functions.cloud.ibm.
com; HttpOnly

< X-Request-ID: 7dbce6e92b0a90e313d47e0c2afe203b

< Access-Control-Allow-Origin: *

< Access-Control-Allow-Methods: OPTIONS, GET, DELETE, POST, PUT, HEAD, PATCH

< Access-Control-Allow-Headers: Authorization, Origin, X-Requested-With,
Content-Type, Accept, User-Agent

< x-openwhisk-activation-id: f86aad67a9674aa1aaad67a9674aa12b

< Set-Cookie: Username=OpenWhisk; Max-Age=3600

< IBM_Cloud_Functions: OpenWhisk

< Expect-CT: max-age=604800, report-uri="https://report-uri.cloudflare.com/
cdn-cgi/beacon/expect-ct"

< Server: cloudflare

< CF-RAY: 5011ee17db5d7f2f-CMB

<

* Connection #0 to host us-south.functions.cloud.ibm.com left intact

<html><body><h3>Hello, OpenWhisk</h3></body></html>

As expected, we have received HTTP/1.1 200 OK as the HTTP response code, Content-
Type: text/html as a header, a cookie, and <html><body><h3>Hello, OpenWhisk</h3></
body></html> as the body of the response.

Now, let's invoke the same curl request without the name=OpenWhisk query parameter.
This time, the expected response code is HTTP/1.1 400 Bad Request because we did
not pass a value for the query parameter. Also, the curl command will respond with
<html><body><h3>Hello, Stranger</h3></body></html> as the HTTP response body code:

$ curl https://us-south.functions.cloud.ibm.com/api/v1/web/
sathsara89%40gmail.com_dev/default/myWebAction.http -v

296 | Introduction to Apache OpenWhisk

Here is the response from the preceding curl command:

* Trying 104.17.9.194...

* Connected to us-south.functions.cloud.ibm.com (104.17.9.194) port 443 (#0)

* * *

* * *

* ALPN, server accepted to use http/1.1

> GET /api/v1/web/sathsara89%40gmail.com_dev/default/myWebAction.http
HTTP/1.1

> Host: us-south.functions.cloud.ibm.com

> User-Agent: curl/7.47.0

> Accept: */*

>

< HTTP/1.1 400 Bad Request

< Date: Sun, 04 Aug 2019 16:35:09 GMT

< Content-Type: text/html; charset=UTF-8

< Transfer-Encoding: chunked

< Connection: keep-alive

< Set-Cookie: __cfduid=dedba31160ddcdb6791a04ff4359764611564936508;
expires=Mon, 03-Aug-20 16:35:08 GMT; path=/; domain=.functions.cloud.ibm.
com; HttpOnly

< X-Request-ID: 8c2091fae68ab4b678d835a000a21cc2

< Access-Control-Allow-Origin: *

< Access-Control-Allow-Methods: OPTIONS, GET, DELETE, POST, PUT, HEAD, PATCH

< Access-Control-Allow-Headers: Authorization, Origin, X-Requested-With,
Content-Type, Accept, User-Agent

< x-openwhisk-activation-id: 700916ace1d843e78916ace1d813e7c3

< Set-Cookie: Username=Stranger; Max-Age=3600

< IBM_Cloud_Functions: OpenWhisk

OpenWhisk Feeds, Triggers, and Rules | 297

< Expect-CT: max-age=604800, report-uri="https://report-uri.cloudflare.com/
cdn-cgi/beacon/expect-ct"

< Server: cloudflare

< CF-RAY: 5011f1577b7a7f35-CMB

<

* Connection #0 to host us-south.functions.cloud.ibm.com left intact

<html><body><h3>Hello, Stranger</h3></body></html>

In this section, we introduced OpenWhisk web actions and discussed the differences
between standard actions and web actions. Then, we created a web action using the wsk
CLI. Next, we learned about the format of the URL exposed by web actions. We invoked
the web action with both web browser and curl commands. Then, we discussed the
additional information that can be returned with web actions. Finally, we updated our
web action to include headers, statusCode, and the body in the response and invoked
the web action using the curl command to verify the response.

OpenWhisk Feeds, Triggers, and Rules
In the previous sections, we learned how to invoke actions either with the wsk CLI or
with HTTP requests using web actions. In this section, we are going to learn how to
automate action invocation with OpenWhisk feeds, triggers, and rules. The following
diagram illustrates how actions are invoked with events from external event sources
using feeds, triggers, and rules:

Figure 8.53: OpenWhisk Feeds, triggers, and rules

298 | Introduction to Apache OpenWhisk

Triggers are different types of events sent from event sources. These triggers can
be fired either manually with the wsk CLI or automatically from events occurring in
external event sources. Some examples of an event source are a Git repository, an email
account, or a Slack channel. As illustrated in the preceding diagram, feeds are used to
connect the triggers to external event sources. Examples for feeds are as follows:

•	 A commit is made to a Git repository.

•	 Incoming email messages to a particular account.

•	 Message received by a Slack channel.

As illustrated, the rule is the component that connects triggers with actions. A rule will
connect one trigger with one action. Once this link is created, every invocation of the
trigger will execute the associated action. The following scenarios are also possible by
creating an appropriate set of rules:

•	 A single trigger to execute multiple actions

•	 A single action to be executed in response to multiple triggers

Let's start by creating a simple action to be invoked with triggers and rules. Create a file
named triggers-rules.js and add the following JavaScript function:

function main(params) {

 var helloMessage = 'Invoked with triggers and rules';

 return { result: helloMessage };

}

Then we will create the action:

$ wsk action create triggersAndRules triggers-rules.js

Now it's time to create our first trigger. We will use the wsk trigger create command to
create the trigger using the wsk CLI:

$ wsk trigger create <trigger-name>

Let's create a trigger called myTrigger:

$ wsk trigger create myTrigger

OpenWhisk Feeds, Triggers, and Rules | 299

The output should be as follows:

Figure 8.54: Creating myTrigger

We can list the available triggers to make sure that myTrigger has been created
successfully:

$ wsk trigger list

The output should be as follows:

Figure 8.55: Listing all triggers

Triggers are useless until we connect them with actions through a rule. Now we will
be creating an OpenWhisk rule with the wsk rule create command, which has the
following format:

$ wsk rule create <rule-name> <trigger-name> <action-name>

Let's create a rule named myRule to connect the myTrigger and triggerAndRules actions
together:

$ wsk rule create myRule myTrigger triggersAndRules

The output should be as follows:

Figure 8.56: Creating myRule to connect myTrigger with the triggersAndRules action

We can get the details about myRule, which shows the trigger and action associated with
the rule:

$ wsk rule get myRule

This command will print detailed output about myRule as shown in the following
screenshot, which includes the namespace, version, status, and associated triggers and
actions of rule.

300 | Introduction to Apache OpenWhisk

The output should be as follows:

Figure 8.57: Getting the details of myRule

It's time to see triggers in action once the action, trigger, and rule are ready. Let's fire
the trigger using the wsk trigger fire command:

$ wsk trigger fire myTrigger

The output should be as follows:

Figure 8.58: Firing myTrigger

This will print the ID of the activation for the trigger.

Let's execute the following command to list the last two activations:

$ wsk activation list --limit 2

The output should be as follows:

Figure 8.59: Listing the last two activations

OpenWhisk Feeds, Triggers, and Rules | 301

In the preceding screenshot, we can see that the myTrigger trigger activation is
recorded, followed by the triggersAndRules action activation.

We can print the result of the triggersAndRules action activation to make sure that the
action was invoked properly by the trigger:

$ wsk activation get 85d9d7e50891468299d7e50891d68224 –summary

The output should be as follows:

Figure 8.60: Printing the result of the activation

In this section, we discussed how to automate action invocation with feeds, triggers,
and rules. We created an action, a trigger, and then a rule to connect them. Finally, we
invoked the action by firing the trigger.

OpenWhisk CronJob Triggers

In the preceding section, we discussed how to fire a trigger with the wsk trigger fire
command. However, there are situations in which we need to automate the firing of
triggers. An example would be performing a periodic task, such as running system
backups, log archiving, or database purging. OpenWhisk provides cron-based triggers
for invoking serverless functions at fixed intervals. The /whisk.system/alarms package
provided by OpenWhisk can be used to fire triggers at scheduled intervals.

This package includes the following feeds:

Figure 8.61: Feeds available in alarms package

In the following exercise, let's learn how to create a cron job-based trigger.

302 | Introduction to Apache OpenWhisk

Exercise 28: Creating CronJob Triggers

In this exercise, we are going to create an OpenWhisk action that will be invoked every
minute using feeds, triggers, and rules. The function code will print the current date
and time as the output so we can verify that the cron job trigger has correctly invoked
the action.

Note

The code files for this exercise can be found at https://github.com/TrainingByPackt/
Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise28.

The following steps will help you to complete the exercise:

1.	 Let's start by creating the function code. This function will return the current date
and time. Create a date-time.js file with the following code and create an action
called dateTimeAction:

function main() {
 var currentDateTime = new Date();
 return { currentDateTime: currentDateTime };
}
$ wsk action create dateTimeAction date-time.js

The output should be as follows:

Figure 8.62: Creating dateTimeAction

2.	 The next step is to create a trigger with the /whisk.system/alarms/alarm feed.
The cron value is provided as "* * * * *", which aims to trigger this action every
minute:

$ wsk trigger create dateTimeCronTrigger \
 --feed /whisk.system/alarms/alarm \
 --param cron "* * * * *"

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise28
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson08/Exercise28

OpenWhisk Feeds, Triggers, and Rules | 303

Here is the response for the wsk trigger create command. Make sure there is ok:
created trigger dateTimeCronTrigger at the end of the output, which indicates the
successful creation of dateTimeCronTrigger:

ok: invoked /whisk.system/alarms/alarm with id
06f8535f9d364882b8535f9d368882cd
{
 "activationId": "06f8535f9d364882b8535f9d368882cd",
 "annotations": [
 {
 "key": "path",
 "value": "whisk.system/alarms/alarm"
 },
 {
 "key": "waitTime",
 "value": 85
 },
 {
 "key": "kind",
 "value": "nodejs:10"
 },
 {
 "key": "timeout",
 "value": false
 },
 {
 "key": "limits",
 "value": {
 "concurrency": 1,
 "logs": 10,
 "memory": 256,
 "timeout": 60000
 }
 },
 {
 "key": "initTime",
 "value": 338
 }
],
 "duration": 594,
 "end": 1565083299218,
 "logs": [],

304 | Introduction to Apache OpenWhisk

 "name": "alarm",
 "namespace": "sathsara89@gmail.com_dev",
 "publish": false,
 "response": {
 "result": {
 "status": "success"
 },
 "status": "success",
 "success": true
 },
 "start": 1565083298624,
 "subject": "sathsara89@gmail.com",
 "version": "0.0.152"
}
ok: created trigger dateTimeCronTrigger

3.	 Create the rule (dateTimeRule) to connect the action (dateTimeAction) with the
trigger (dateTimeCronTrigger):

$ wsk rule create dateTimeRule dateTimeCronTrigger dateTimeAction

The output should be as follows:

Figure 8.63: Creating dateTimeRule to connect dateTimeCronTrigger with dateTimeAction

4.	 This action will now be triggered every minute. Allow the cron job trigger to
run for around 5 minutes. We can list the last 6 activations with the following
command:

$ wsk activation list --limit 6

OpenWhisk Feeds, Triggers, and Rules | 305

The output should be as follows:

Figure 8.64: Listing the last six activations

5.	 List the summary of the activations of dateTimeAction to make sure it has printed
the current datetime every minute:

$ wsk activation get 04012f4f3e6044ed812f4f3e6054edc4 --summary

$ wsk activation get c4758e5fa4464d0cb58e5fa446cd0cf7 --summary

$ wsk activation get cf78acfd78d044e8b8acfd78d044e89c –summary

The output should be as follows:

Figure 8.65: Printing the summary of dateTimeAction activations

306 | Introduction to Apache OpenWhisk

Check the value of the currentDateTime field, printed for each invocation to verify that
this action was invoked every minute as scheduled. In the preceding screenshot, we
can see that the action was invoked at 09:37:02, then again at 09:38:03, and finally at
09:39:03.

In this activity, we created a simple function that prints the current date and time.
Then, we created a cron job trigger to invoke this action every minute.

OpenWhisk Packages

OpenWhisk packages allow us to organize our actions by bundling the related actions
together. As an example, consider that we have multiple actions, such as createOrder,
processOrder, dispatchOrder, and refundOrder. These actions will perform the relevant
application logic when an application user creates an order, processes an order,
dispatches an order, and refunds an order respectively. In this case, we can create a
package named order to group all order-related actions together.

As we learned previously, action names should be unique. Packages help to prevent
naming conflicts because we can create multiple actions with the same name by placing
them in different packages. As an example, the retrieveInfo action from the order
package may retrieve information about an order, but the retrieveInfo action from the
customer package can retrieve information about a customer.

So far, we have created many actions without bothering about packages. How was this
possible? This is because OpenWhisk places actions into default packages if we do not
mention any specific package during action creation.

There are two types of packages in OpenWhisk:

•	 Built-in packages (packages come with OpenWhisk)

•	 User-defined packages (other packages created by users)

All the packages available in a namespace can be retrieved with the wsk package list
<namespace> command.

The output should be as follows:

OpenWhisk Feeds, Triggers, and Rules | 307

Figure 8.66: Listing the packages in the /whisk.system namespace

Packages can be created with the wsk package create command:

$ wsk package create <package-name>

In this section, we introduced the concept of packages and discussed the built-in
packages and user-defined packages of OpenWhisk. In the next exercise, we will create
a package and add an action to the newly created package.

Exercise 29: Creating OpenWhisk Packages

In this exercise, we will create a package named arithmetic that contains all arithmetic-
related actions, such as add, subtract, multiply, and divide. We will create a function
that receives two numbers as input and returns the result by adding the numbers. Then,
we will create this action within the arithmetic package:

1.	 Let's start by creating a package named arithmetic:

$ wsk package create arithmetic

The output should be as follows:

Figure 8.67: Creating the arithmetic package

308 | Introduction to Apache OpenWhisk

2.	 Now we are going to create an action that will be added to our arithmetic
package. Create a file named add.js with the following content:

function main(params) {
 var result = params.firstNumber + params.secondNumber;
 return { result: result };
}

3.	 We can create the action and add it to the arithmetic package simultaneously
with the wsk action create command. This will only require us to prefix the action
name with the package name. Execute the following command:

$ wsk action create arithmetic/add add.js

In the output, we can see that the action has been successfully created in the
arithmetic package.

The output should be as follows:

Figure 8.68: Adding an add action to the arithmetic package

4.	 Now we can verify that our add action has been placed in the arithmetic package
using the wsk action list command.

$ wsk action list --limit 2

The output should be as follows:

Figure 8.69: Listing the actions

5.	 The wsk package get command will return JSON output that describes the
package:

$ wsk package get arithmetic

OpenWhisk Feeds, Triggers, and Rules | 309

The output should be as follows:

Figure 8.70: Getting a detailed description of the arithmetic package

6.	 We can use the --summary flag if we want to see a summary of the package
description, which lists the actions within the package:

$ wsk package get arithmetic –summary

The output should be as follows:

Figure 8.71: Getting the summary description of the arithmetic package

310 | Introduction to Apache OpenWhisk

Activity 8: Receive Daily Weather Updates via Email

Imagine that you are working for a disaster management center and need to be updated
with weather information. You have decided to create an application that can send
you weather updates via email at specified intervals. To achieve this, you have decided
to deploy an application that can retrieve the current weather in a specific city and
send a daily email at 8.00 AM with the current weather information to a specified
email address. In this activity, we will be using external services to retrieve weather
information (OpenWeather) and send emails (SendGrid).

We need to have the following before we start this activity:

•	 An OpenWeather account (to retrieve current weather information)

•	 A SendGrid account (to send emails)

•	 npm installed

•	 zip installed

Execute the following steps to create an OpenWeather account and a SendGrid
account:

1.	 Create an OpenWeather (https://openweathermap.org/) account to retrieve
current weather information and save the API key. Create an OpenWeather
account at https://home.openweathermap.org/users/sign_up.

Go to the API keys tab (https://home.openweathermap.org/api_keys) and save
the API key as this API key is required to fetch the data from the OpenWeather API.

Test the OpenWeather API using https://api.openweathermap.org/data/2.5/
weather?q=London&appid=<YOUR-API-KEY> in a web browser. Please note that you
need to replace <YOUR-API-KEY> with your API key from step 1.

2.	 Create a SendGrid (https://sendgrid.com) account and save the API key. This is
used to send emails. Create a SendGrid account at https://signup.sendgrid.com/.

Go to Settings > API Keys and click on the Create API Key button.

Provide a name in the API Key Name field, select the Full Access radio button, and
click on the Create & View button to create an API key with full access.

https://openweathermap.org/
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/api_keys
https://sendgrid.com
https://signup.sendgrid.com/

OpenWhisk Feeds, Triggers, and Rules | 311

Once the key is generated, copy the API key and save it somewhere safe as you will
see this key only once.

Note

Detailed steps on creating an OpenWeather account and a SendGrid account are
available in the Appendix section on page 432.

Now we are ready to start the activity. Execute the following steps to complete
this activity:

3.	 Create a function in any language that you are familiar with (and supported by the
OpenWhisk framework) that will take the city name as a parameter and return a
JSON object with weather information retrieved from the OpenWeather API.

Note

For this solution, we will be using functions written in JavaScript. However, you can
use any language that you are familiar with to write the functions.

Here is an example function written in JavaScript:

const request = require('request');
function main(params) {
 const cityName = params.cityName
 const openWeatherApiKey = '<OPEN_WEATHER_API_KEY>';
 const openWeatherUrl = 'https://api.openweathermap.org/data/2.5/
weather?q=' + cityName + '&mode=json&units=metric&appid=' +
openWeatherApiKey ;
 return new Promise(function(resolve, reject) {
 request(openWeatherUrl, function(error, response, body) {
 if (error) {
 reject('Requesting weather data from provider failed '
 + 'with status code '
 + response.statusCode + '.\n'
 + 'Please check the provided cityName argument.');
 } else {
 try {
 var weatherData = JSON.parse(body);
 resolve({weatherData:weatherData});
 } catch (ex) {

312 | Introduction to Apache OpenWhisk

 reject('Error occurred while parsing weather data.');
 }
 }
 });
 });
}

4.	 Create a second function (in any language that you are familiar with and is
supported by the OpenWhisk framework) that will take a message as input and
send the input message to a specified email address using the SendGrid service.

Here is an example function written in JavaScript:

const sendGridMailer = require('@sendgrid/mail');
function main(params) {
 const sendGridApiKey = '<SEND_GRID_API_KEY>';
 const toMail = '<TO_EMAIL>';
 const fromMail = '<FROM_EMAIL>';
 const mailSubject = 'Weather Information for Today';
 const mailContent = params.message;
 return new Promise(function(resolve, reject) {
 sendGridMailer.setApiKey(sendGridApiKey);
 const msg = {
 to: toMail,
 from: fromMail,
 subject: mailSubject,
 text: mailContent,
 };
 sendGridMailer.send(msg, (error, result) => {
 if (error) {
 reject({msg: "Message sending failed."});
 } else {
 resolve({msg: "Message sent!"});
 }
 });
 });
}
exports.main = main;

OpenWhisk Feeds, Triggers, and Rules | 313

5.	 Create a third function (in any language that you are familiar with and is supported
by the OpenWhisk framework) that will take the JSON object with the weather
data and format it as a string message to be sent as the email body.

Here is an example function written in JavaScript:

 function main(params) {

 return new Promise(function(resolve, reject) {

 if (!params.weatherData) {
 reject("Weather data not provided");
 }

 const weatherData = params.weatherData;
 const cityName = weatherData.name;
 const currentTemperature = weatherData.main.temp;

 weatherMessage = "It's " + currentTemperature
 + " degrees celsius in " + cityName;

 resolve({message: weatherMessage});

 });
}

6.	 Next, create a sequence connecting all three actions.

7.	 Finally, create the trigger and rule to invoke the sequence daily at 8.00 AM.

Note

The solution to the activity can be found on page 432.

314 | Introduction to Apache OpenWhisk

Summary
In this chapter, we first learned about the history and the core concepts of Apache
OpenWhisk. Then, we learned how to set up IBM Cloud Functions with CLI to run our
serverless functions. After that, OpenWhisk actions were introduced, which are the
code snippets written in one of the languages supported by OpenWhisk. We discussed
how to write, create, list, invoke, update, and delete OpenWhisk actions using the wsk
CLI. Next, we went over OpenWhisk sequences, which are used to combine multiple
actions together to create a more complex processing pipeline. Going forward, we
learned how to expose actions publicly using a URL with web actions. We discussed
how web actions allow us to return additional information from the action, such as
HTTP headers and non-JSON payloads, including HTML and binary data. The next
section was on feeds, triggers, and rules that automate action invocation using events
from external event sources. Finally, OpenWhisk packages were discussed, which are
used to organize related actions by bundling them together.

In the next and final chapter, we shall learn about OpenFaaS and work with an
OpenFaaS function.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Set up the OpenFaaS framework on a Minikube cluster

•	 Create, build, deploy, list, invoke, and delete functions with the OpenFaaS CLI

•	 Deploy and invoke OpenFaaS functions from the OpenFaaS portal

•	 Return an HTML web page from OpenFaaS functions

•	 Set up the Prometheus and Grafana dashboards to monitor OpenFaaS functions

•	 Configure function autoscaling to adjust the function count based on demand

In this chapter, we aim to set up the OpenFaaS framework on top of a Minikube cluster and
study how we can work with OpenFaaS functions, using both the OpenFaaS CLI and OpenFaaS
portal. We will also look into features such as observability and autoscaling with OpenFaaS.

Going Serverless with
OpenFaaS

9

318 | Going Serverless with OpenFaaS

Introduction to OpenFaaS
In the previous chapter, we learned about OpenWhisk, an open source serverless
framework, which is part of the Apache Software Foundation. We learned how to create,
list, invoke, update, and delete OpenWhisk actions. We also discussed how to automate
the action invocation with feeds, triggers, and rules.

In this chapter, we will be studying OpenFaas, another open source framework used to
build and deploy serverless functions on top of containers. This was started as a proof-
of-concept project by Alex Ellis in October 2016, and the first version of the framework,
written in Golang, was committed to GitHub in December 2016.

OpenFaaS was originally designed to work with Docker Swarm, which is the clustering
and scheduling tool for Docker containers. Later, the OpenFaaS framework was
rearchitected to support the Kubernetes framework, too.

OpenFaaS comes with a built-in UI named OpenFaaS Portal, which can be used to
create and invoke the functions from the web browser. This portal also offers a CLI
named faas-cli that allows us to manage functions through the command line.
The OpenFaaS framework has built-in support for autoscaling. This will scale up
the function when there is increased demand, and it will scale down when demand
decreases, or even scale down to zero when the function is idle.

Now, let's take a look at the components of the OpenFaaS framework:

Figure 9.1: OpenFaaS components

Introduction to OpenFaaS | 319

OpenFaaS consists of the following components that are running on the underlying
Kubernetes or Docker Swarm:

•	 API Gateway:

The API Gateway is the entry point to the OpenFaaS framework, which exposes
the functions externally. It is also responsible for collecting the function metrics
such as function invocation count, function execution duration, and number of
function replicas. The API Gateway also handles function autoscaling by increasing
or decreasing function replicas based on demand.

•	 Prometheus:

Prometheus, which is an open source monitoring and alerting tool, comes bundled
with the OpenFaaS framework. This is used to store the information about the
function metrics collected by the API Gateway.

•	 Function Watchdog:

The Function Watchdog is a tiny Golang web server running alongside each
function container. This component is placed between the API Gateway and your
function and is responsible for converting message formats between the API
Gateway and the function. It converts the HTTP messages sent by the API Gateway
to the "standard input" (stdin) messages, which the function can understand.
This also handles the response path by converting the "standard output" (stdout)
response sent by the function to an HTTP response.

The following is an illustration of a function watchdog:

Figure 9.2: OpenFaaS function watchdog

Docker Swarm or Kubernetes can be used as the container orchestration tool with the
OpenFaaS framework, which manages the containers running on the underlying Docker
framework.

320 | Going Serverless with OpenFaaS

Getting Started with OpenFaas on Your Local Minikube Cluster

In this section, we will set up an OpenFaaS framework and CLI on our local Minikube
cluster. Before starting the installation, we need to ensure that the following
prerequisites are met:

•	 Minikube is installed

•	 Docker (version 17.05 or later) is installed

•	 Helm is installed

•	 A Docker Hub account is created

Once these prerequisites are ready, we can continue to install OpenFaaS. The
installation of OpenFaas can be broadly classified into three steps, as follows:

1.	 Installing the OpenFaaS CLI

2.	 Installing the OpenFaaS framework (on a Minikube cluster)

3.	 Setting up an environment variable

Let's look at each of these steps in more depth:

Installing the OpenFaaS CLI

faas-cli is the command-line utility for the OpenFaaS framework, which can be used
to create and invoke OpenFaaS functions from the Terminal. We can install the latest
version of faas-cli using the following command:

$ curl -sL https://cli.openfaas.com | sudo sh

Introduction to OpenFaaS | 321

The output should be as follows:

Figure 9.3: Installing faas-cli

Once the installation is complete, we can verify installation with the faas-cli version
command:

$ faas-cli version

The output should be as follows:

Figure 9.4: The faas-cli version

As you can see, we have installed the faas-cli utility on the cluster and can also check
the version number.

322 | Going Serverless with OpenFaaS

Installing the OpenFaaS Framework

Next, we need to install the OpenFaaS framework using the OpenFaaS helm repository.
First, we need to add the openfaas helm repository and update it to pull any new
releases. Use the following commands:

$ helm repo add openfaas https://openfaas.github.io/faas-netes/

$ helm repo update

The output should be as follows:

Figure 9.5: Adding and updating helm charts

Installing OpenFaaS requires two Kubernetes namespaces. The openfaas namespace is
for the core services of the OpenFaaS framework, and the openfaas-fn namespace is for
the OpenFaaS functions. Run the following commands to create the namespaces:

$ kubectl create namespace openfaas

$ kubectl create namespace openfaas-fn

The output will be as follows:

Figure 9.6: Creating namespaces

Now we are going to create the Kubernetes secret, which is required to enable basic
authentication for the OpenFaaS gateway. First, we will create a random string that will
be used as the password. Once the password is generated, we will echo the generated
password and save it in a secure place as we need it to log in to the API Gateway later
on. Run the following commands to generate the password:

$ PASSWORD=$(head -c 12 /dev/urandom | shasum| cut -d' ' -f1)

$ echo $PASSWORD

Introduction to OpenFaaS | 323

The output will be as follows:

Figure 9.7: Generating the password

After generating the password, we will create a Kubernetes secret object to store the
password.

Note:

A Kubernetes secret object is used to store sensitive data such as a password.

Execute the following command to create a Kubernetes secret named basic-auth:

$ kubectl -n openfaas create secret generic basic-auth \

 --from-literal=basic-auth-user=admin \

 --from-literal=basic-auth-password="$PASSWORD"

The output will be as follows:

Figure 9.8: Creating the basic-auth secret

We can now deploy the OpenFaaS framework from the helm chart. The helm upgrade
openfaas command starts the deployment of OpenFaaS and will start deploying the
OpenFaaS framework on your local Minikube cluster. This will take between 5 and
15 minutes depending on the network speed. Run the following commands to install
OpenFaaS:

$ helm upgrade openfaas \

 --install openfaas/openfaas \

 --namespace openfaas \

 --set functionNamespace=openfaas-fn \

 --set basic_auth=true

324 | Going Serverless with OpenFaaS

The preceding command prints a lengthy output, and, at the bottom, it provides a
command to verify the installation, as you can see in the following screenshot:

Figure 9.9: OpenFaaS installation

You can verify the deployment state from the following command:

$ kubectl --namespace=openfaas get deployments -l "release=openfaas,
app=openfaas"

The output will be displayed as follows:

Figure 9.10: Verifying the OpenFaaS installation

Once the installation has been successfully completed and all services are running, we
then have to log in to the OpenFaaS gateway with the credentials we created in the
preceding steps. Run the following command to log in to the OpenFaas gateway:

$ faas-cli login --username admin --password $PASSWORD

The output should be as follows:

Figure 9.11: Logging in to the OpenFaaS gateway

OpenFaaS Functions | 325

Setting the Environment Variables

There are several environment variables related to OpenFaaS, and we will set two
environment variables in this section. These environment variables can be overridden
using the command-line flags of faas-cli, if necessary.

•	 OPENFAAS_URL: This should point to the API Gateway component.

•	 OPENFAAS_PREFIX: This is the Docker ID of your Docker Hub account.

Open the ~/.bashrc file with your favorite text editor and add the following two lines
at the end of the file. Replace <your-docker-id> with your Docker ID in the following
commands:

export OPENFAAS_URL=$(minikube ip):31112

export OPENFAAS_PREFIX=<your-docker-id>

Then, you need to source the ~/.bashrc file to reload the newly configured environment
variables, as shown in the following command:

$ source ~/.bashrc

The command should appear as follows:

Figure 9.12: Source the bashrc file

OpenFaaS Functions
OpenFaaS functions can be written in any language supported by Linux or Windows,
and they can then be converted to a serverless function using Docker containers.
This is a major advantage of the OpenFaaS framework compared to other serverless
frameworks that support only predefined languages and runtimes.

OpenFaaS functions can be deployed with either faas-cli or the OpenFaaS portal.
In the following sections, we are first going to discuss how we can build, deploy, list,
invoke, and delete OpenFaaS functions using the faas-cli command-line tool. Then, we
will discuss how to deploy and invoke functions with the OpenFaaS portal.

326 | Going Serverless with OpenFaaS

Creating OpenFaaS Functions

As we discussed previously, OpenFaaS functions can be written in any language
supported by Linux and Windows. This requires us to create the function code, add any
dependencies, and create a Dockerfile to build the Docker image. It requires a certain
amount of understanding of the OpenFaaS platform in order to be able to perform the
previously mentioned tasks. As a solution, OpenFaaS has a template store that includes
prebuilt templates for a set of supported languages. This means that you can download
these templates from the template store, update the function code, and then the CLI
does the rest to build the Docker image.

First of all, we need to pull the OpenFaaS templates with the faas-cli template pull
command. This will fetch the templates from the official OpenFaaS template repository
at https://github.com/openfaas/templates.git.

Now, let's create a new folder and pull the templates to the newly created folder with
the following commands:

$ mkdir chapter-09

$ cd chapter-09/

$ faas-cli template pull

The output will be as follows:

Figure 9.13: Creating directories

https://github.com/openfaas/templates.git

OpenFaaS Functions | 327

Let's check the folder structure with the tree -L 2 command that will print the folder
tree with two levels of depth, as you can see in the following screenshot:

Figure 9.14: The tree view of the folder

Within the template folder, we can see 17 folders each for a specific language template.

Now, we can use the faas-cli new command to create the structure and files for a new
function using the downloaded templates as follows:

$ faas-cli new <function-name> --lang=<function-language>

328 | Going Serverless with OpenFaaS

<function-language> can be replaced by any programming language supported by
OpenFaaS templates. faas-cli new --list can be used to get a list of supported
programming languages, as displayed in the following figure:

Figure 9.15: Listing supported programming language templates

Let's create our first OpenFaaS function named hello with the go language template
using the following command:

$ faas-cli new hello --lang=go

The output will be as follows:

Figure 9.16: Creating the hello function template

OpenFaaS Functions | 329

As per the output, the preceding command will create multiple files and directories
inside the current folder. Let's execute the tree -L 2 command again to identify the
newly created files and directories:

Figure 9.17: The tree view of the folder

We can see a file named hello.yml, a folder named hello, and a handler.go file inside the
hello folder.

First, we will look into the hello.yml file, which is called the function definition file:

version: 1.0

provider:

 name: openfaas

 gateway: http://192.168.99.100:31112

functions:

 hello:

 lang: go

 handler: ./hello

 image: sathsarasa/hello:latest

This file has three top levels named version, provider, and functions.

330 | Going Serverless with OpenFaaS

Inside the provider section, there is a name: faas tag, which defines the provider name
as faas. This is the default and only valid value for the name tag. The next one is the
gateway tag, which points to the URL where the API Gateway is running. This value
can be overridden at deployment time with the --gateway flag or the OPENFAAS_URL
environment variable.

Next is the functions section, which is used to define one or more functions to be
deployed with the OpenFaaS CLI. In the preceding code, the hello.yml file has a single
function named hello written in the Go language (lang: go). The handler of the function
is defined with handler: ./hello section, which points to the folder where the source
code of the hello function (hello/handler.go) resides. Finally, there is the image tag that
specifies the name of the output Docker image. The Docker image name is prepended
with your Docker image ID configured using the OPENFAAS_PREFIX environment variable.

Next, we will discuss the handler.go file that was created inside the hello folder. This
file contains the source code of the function written in the Go language. This function
accepts a string parameter and returns the string by prepending it with Hello, Go. You
said:, as displayed in the following code snippet:

package function

import (

	 "fmt"

)

// Handle a serverless request

func Handle(req []byte) string {

	 return fmt.Sprintf("Hello, Go. You said: %s", string(req))

}

This is just a sample function generated by the template. We can update it with our
function logics.

Building OpenFaaS Functions

Once the function definition file (hello.yml) and function source code (hello/handler.
go) are ready, the next step is to build the function as a Docker image. The faas-cli
build CLI command is used to build the Docker image, which has the following format:

$ faas-cli build -f <function-definition-file>

OpenFaaS Functions | 331

This initiates the process of building the Docker image and will invoke the docker build
command internally. A new folder named build will be created during this step with all
the files required for the build process.

Now, let's build the hello function that we created in the previous section:

$ faas-cli build -f hello.yml

We will receive an output similar to the following:

 [0] > Building hello.

Clearing temporary build folder: ./build/hello/

Preparing ./hello/ ./build/hello/function

Building: sathsarasa/hello with go template. Please wait..

Sending build context to Docker daemon 6.656kB

Step 1/24 : FROM openfaas/classic-watchdog:0.15.4 as watchdog

 ---> a775beb8ba9f

...

...

Successfully built 72c9089a7dd4

Successfully tagged sathsarasa/hello:latest

Image: sathsarasa/hello built.

[0] < Building hello done.

[0] worker done.

Once we receive the build success message, we can list the Docker image using the
docker images command as follows:

$ docker images | grep hello

The output is as follows:

Figure 9.18: Verifying the Docker image

332 | Going Serverless with OpenFaaS

Pushing the OpenFaaS Function Image

The next step of the process is to push the Docker image of the function to a Docker
registry or to the Docker Hub. We can use either the faas-cli push or docker push
commands to push the image.

Note

Docker Hub is a free service for storing and sharing Docker images.

Let's push the image with the faas-cli push command:

$ faas-cli push -f hello.yml

The output will be as follows:

Figure 9.19: Pushing the Docker image

We can verify that the image is pushed successfully by visiting the Docker Hub page at
https://hub.docker.com/.

https://hub.docker.com/

OpenFaaS Functions | 333

The output should be as follows:

Figure 9.20: Verifying from Docker Hub

Thus, we have successfully pushed the Docker image function to Docker Hub.

Deploying the OpenFaaS Functions

Now, we are ready to deploy the hello function into the OpenFaaS framework using the
faas-cli deploy command. This command also requires the function specification file
with the -f flag similar to other faas-cli commands that we executed previously:

$ faas-cli deploy -f hello.yml

The output should be as follows:

Figure 9.21: Deploying the hello function

334 | Going Serverless with OpenFaaS

We will receive a 202 Accepted output along with the function URL, which we can use
to invoke the function.

At this step, there will be a number of Kubernetes objects, including pods, services,
deployments, and replica sets created in the openfaas-fn namespace. We can view all
these Kubernetes objects with the following command:

$ kubectl get all -n openfaas-fn

The output should be as follows:

Figure 9.22: Verifying the Kubernetes objects

Hence, we have successfully deployed the hello function to the OpenFaaS framework.

Listing the OpenFaaS Functions

The faas-cli list command is used to list all the functions deployed on the OpenFaaS
framework:

$ faas-cli list

The output should be as follows:

Figure 9.23: Listing the OpenFaaS functions

The output of the faas-cli list command will include the following columns:

•	 Function – The name of the function

•	 Invocations – The number of times the function has been invoked

•	 Replicas – The number of Kubernetes pod replicas of the function

OpenFaaS Functions | 335

The value of the Invocations column will increase each time we invoke the function.
The value of the Replicas column will increase automatically if the invocation rate
increases.

The --verbose flag can be used with faas-cli list if you want to get an additional
column named Image, which lists the Docker image used to deploy the function, as
shown in the following command:

$ faas-cli list --verbose

The output should be as follows:

Figure 9.24: Listing the OpenFaaS functions with the verbose output

If we want to get details about a specific function, we can use the faas-cli describe CLI
command:

$ faas-cli describe hello

The output should be as follows:

Figure 9.25: Describing an OpenFaaS function

336 | Going Serverless with OpenFaaS

Invoking OpenFaaS Functions

Now, the function is deployed and ready to be invoked. A function can be invoked with
the faas-cli invoke command, which has the following format:

$ faas-cli invoke <function-name>

Now, let's invoke the hello function we deployed in the previous step.

Run the following command to invoke the hello function:

$ faas-cli invoke hello

Once the function is invoked, it will ask you to enter the input parameters and press
Ctrl + D to stop reading from the standard input. The output should be as follows:

Figure 9.26: Invoking the hello function

We can also send the input data to the function, as shown in the following command:

$ echo "Hello with echo" | faas-cli invoke hello

The output should be as follows:

Figure 9.27: Invoking the hello function with piping the input

The curl command can also be used to invoke the functions, as follows:

$ curl http://192.168.99.100:31112/function/hello -d "Hello from curl"

The output should be as follows:

Figure 9.28: Invoking the hello function with curl

OpenFaaS Functions | 337

Hence, we have successfully invoked the hello function using both the faas-cli invoke
command and the curl command.

Deleting OpenFaaS Functions

The faas-cli remove command is used to delete a function from the OpenFaaS
cluster either by specifying the function definition file with the -f flag, or by explicitly
specifying the function name, as shown in the following command:

$ faas-cli remove <function-name>

Or, alternatively, with the following command:

$ faas-cli remove -f <function-definition-file>

We can remove the hello function we created earlier with the following command:

$ faas-cli remove hello

The output should be as follows:

Figure 9.29: Deleting the hello function

In these sections, we learned to create, deploy, list, invoke, and delete OpenFaaS
functions using the faas-cli command line. Now, let's move on to an exercise where we
will be creating our first OpenFaaS function.

Exercise 30: Creating an OpenFaaS Function with Dependencies

In this exercise, we are going to create a Python function that can print the source IP
address by invoking an external API. We will be using the requests Python module to
invoke this API:

1.	 Create a new function named ip-info using the Python3 template:

$ faas-cli new ip-info --lang=python3

338 | Going Serverless with OpenFaaS

The output should be as follows:

 Figure 9.30: Creating the ip-info function template

2.	 Update the ip-info/requirements.txt file to add the requests pip module, which
we need to invoke HTTP requests from our function:

requests

3.	 Update the ip-info/handler.py file to invoke the https://httpbin.org/ip endpoint.
This endpoint is a simple service that will return the IP of the originating request.
The following code will send an HTTP GET request to the https://httpbin.org/ip
endpoint and return the origin IP address:

import requests
import json

def handle(req):
 api_response = requests.get('https://httpbin.org/ip')
 json_object = api_response.json()
 origin_ip = json_object["origin"]

 return "Origin IP is " + origin_ip

4.	 Build, push, and deploy the ip-info function with the faas-cli up command.
The faas-cli up command will execute the faas-cli build, faas-cli push, and
faas-cli deploy commands in the background to build the function, push the
Docker images to the Docker registry, and deploy the function on the OpenFaaS
framework:

$ faas-cli up -f ip-info.yml

https://httpbin.org/ip
https://httpbin.org/ip

OpenFaaS Functions | 339

The faas-cli up command will print the following output, which lists the steps of
building, pushing, and deploying the ip-info function:

[0] > Building ip-info.
Clearing temporary build folder: ./build/ip-info/
Preparing ./ip-info/ ./build/ip-info//function
Building: sathsarasa/ip-info:latest with python3 template. Please wait..
Sending build context to Docker daemon 9.728kB
...
Successfully built 1b86554ad3a2
Successfully tagged sathsarasa/ip-info:latest
Image: sathsarasa/ip-info:latest built.
[0] < Building ip-info done.
[0] worker done.

[0] > Pushing ip-info [sathsarasa/ip-info:latest].
The push refers to repository [docker.io/sathsarasa/ip-info]
...
latest: digest:
sha256:44e0b0e1eeca37f521d4e9daa1c788192cbc0ce6ab898c5e71cb840c6d3b4839
size: 4288
[0] < Pushing ip-info [sathsarasa/ip-info:latest] done.
[0] worker done.

Deploying: ip-info.
WARNING! Communication is not secure, please consider using HTTPS.
Letsencrypt.org offers free SSL/TLS certificates.

Deployed. 202 Accepted.
URL: http://192.168.99.100:31112/function/ip-info

5.	 Invoke the ip-info function using the curl command as follows:

$ curl http://192.168.99.100:31112/function/ip-info

The output should be as follows:

 Figure 9.31: Invoking the ip-info function template

340 | Going Serverless with OpenFaaS

6.	 Finally, remove the ip-info function:

$ faas-cli remove ip-info

Thus, we have created, deployed, and invoked an OpenFaaS function named ip-info,
which will print the source IP address of the function invoker.

Deploying and Invoking Functions with OpenFaaS Portal

The OpenFaaS framework comes with a built-in UI that allows us to deploy and invoke
functions from the web browser. It can be used to either deploy a custom function or a
function from the function store. The OpenFaaS function store is a freely available set
of prebuilt functions. These functions can be deployed easily on our existing OpenFaaS
cluster.

The format of the OpenFaaS portal URL is http://<openfaas-gateway-endpoint>/ui. Let's
use the following command to derive the OpenFaaS portal URL from the $OPENFAAS_URL
environment variable that we set up previously:

echo $OPENFAAS_URL/ui/

The output should be as follows:

Figure 9.32: Generating the OpenFaaS portal URL

Let's navigate to the output URL of http://192.168.99.100:31112/ui/.

You should be able to see a portal similar to the following, which we will use in the
following steps to deploy and invoke OpenFaaS functions:

Figure 9.33: Navigating to the OpenFaaS portal URL

OpenFaaS Functions | 341

Deploying a Function from the Function Store

In this section, we will learn how to deploy a function from the function store. First,
click on the Deploy New Function button in the OpenFaaS portal. This will prompt
you with a dialog box that lists all the functions available in the function store. In this
section, we are going to deploy the Figlet function, which can generate ASCII logos
from the string input provided. Select Figlet from the function list and click on the
DEPLOY button, as shown in the following figure:

Figure 9.34: Deploying the figlet function

342 | Going Serverless with OpenFaaS

That's all you need to do! This will deploy the Figlet function into our existing OpenFaaS
cluster. Now, you will be able to see a new function named figlet in the left-hand
sidebar of the OpenFaaS portal, as shown in the following figure:

Figure 9.35: Verifying the figlet function

Let's invoke the function from the OpenFaaS portal. You need to click on the function
name, and then the right-hand panel of the screen will display information about the
function, including the function status, invocation count, replica count, function image,
and the function URL:

Figure 9.36: Figlet function description

OpenFaaS Functions | 343

We can invoke this function by clicking on the INVOKE button available under the
Invoke function section. If the function requires an input value, you can provide it
under the Request Body section before invoking the function.

Let's invoke the figlet function by providing the OpenFaaS string as the request body, as
shown in the following figure:

Figure 9.37: Invoking the figlet function

Now, you can see the expected output of the function. This will be the ASCII logo
for the input value we provided when invoking the function. Additionally, the UI will
provide you with the response status code and the execution duration for the function
invocation.

Deploying a Custom Function

Now, let's deploy a custom function named hello using the Docker image that we built
previously. Before deploying the functions from the OpenFaaS portal, we should have
our functions written, and the Docker images built and pushed using the faas-cli
command.

344 | Going Serverless with OpenFaaS

Click on the Deploy New Function button again, and, this time, select the CUSTOM
tab from the dialog box. Now, we need to provide the Docker image name and function
name as mandatory fields. Let's provide the hello Docker image we built previously
(<your-docker-id>/hello) and provide hello-portal as the function name and click on
the DEPLOY button:

Figure 9.38: Deploying the hello-portal function

OpenFaaS Functions | 345

Then, you will see the hello-portal function added to the left-side menu of the
OpenFaaS portal:

Figure 9.39: Verifying the hello-portal function

Now, you can follow similar steps to the ones that we discussed previously to invoke the
hello-portal function.

OpenFaaS Functions with HTML Output

In this section, we are going to set up an OpenFaaS function to return HTML content.
This allows us to create both static and dynamic websites using the OpenFaaS
framework.

First, we will create the html-output function using the php7 template, as shown in the
following command:

$ faas-cli new html-output --lang=php7

346 | Going Serverless with OpenFaaS

The output should be as follows:

Figure 9.40: Creating the html-output function

Then, we will update the generated Handler.php file to return a hardcoded HTML string
using the following command:

Open the html-output/src/Handler.php file using your favorite text editor. The following
command will open this file with the vi editor:

$ vi html-output/src/Handler.php

Add the following content to the file. This is a simple PHP code that will return the text,
OpenFaaS HTML Output, formatted as HTML header text:

<?php

namespace App;

/**

 * Class Handler

 * @package App

 */

class Handler

{

OpenFaaS Functions | 347

 /**

 * @param $data

 * @return

 */

 public function handle($data) {

 $htmlOutput = "<html><h1>OpenFaaS HTML Output</h1></html>";

 return $htmlOutput;

 }

}

Now, the PHP function is ready with the HTML output. The next step is to configure
Content-Type of the function as text/html. This can be done by updating the environment
section of the function definition file. Let's update the html-output.yml file with
content_type: text/html inside the environment section, as shown in the following
code:

$ vi html-output.yml

provider:

 name: faas

 gateway: http://192.168.99.100:31112

functions:

 html-output:

 lang: php7

 handler: ./html-output

 image: sathsarasa/html-output:latest

 environment:

 content_type: text/html

Now, let's build, push, and deploy the html-output function with the faas-cli up
command:

$ faas-cli up -f html-output.yml

348 | Going Serverless with OpenFaaS

Once the preceding command is executed, we will receive an output similar to the
following:

[0] > Building html-output.

Clearing temporary build folder: ./build/html-output/

Preparing ./html-output/ ./build/html-output//function

Building: sathsarasa/html-output:latest with php7 template. Please wait..

Sending build context to Docker daemon 13.31kB

...

Successfully built db79bcf55f33

Successfully tagged sathsarasa/html-output:latest

Image: sathsarasa/html-output:latest built.

[0] < Building html-output done.

[0] worker done.

[0] > Pushing html-output [sathsarasa/html-output:latest].

The push refers to repository [docker.io/sathsarasa/html-output]

b7fb7b7178f2: Pushed

06f1d60fbeaf: Pushed

b2f016541c01: Pushed

1eb73bc41394: Pushed

dc6f559fd649: Mounted from sathsarasa/php7

e50d92207970: Mounted from sathsarasa/php7

9bd686c066e4: Mounted from sathsarasa/php7

35b76def1bb4: Mounted from sathsarasa/php7

34986ef73af3: Mounted from sathsarasa/php7

334b08a7c2ef: Mounted from sathsarasa/php7

5833c19f1f2c: Mounted from sathsarasa/php7

98d2cfd0a4c9: Mounted from sathsarasa/php7

24291ffdb574: Mounted from sathsarasa/php7

OpenFaaS Functions | 349

eb2c5ec03df0: Pushed

3b051c6cbb79: Pushed

99abb9ea3d15: Mounted from sathsarasa/php7

be22007b8d1b: Mounted from sathsarasa/php7

83a68ffd9f11: Mounted from sathsarasa/php7

1bfeebd65323: Mounted from sathsarasa/php7

latest: digest:
sha256:ec5721288a325900252ce928f8c5f8726c6ab0186449d9414baa04e4fac4dfd0
size: 4296

[0] < Pushing html-output [sathsarasa/html-output:latest] done.

[0] worker done.

Deploying: html-output.

WARNING! Communication is not secure, please consider using HTTPS.

Letsencrypt.org offers free SSL/TLS certificates.

Deployed. 202 Accepted.

URL: http://192.168.99.100:31112/function/html-output

The function has now been deployed successfully. Now, we can visit the function URL
at http://192.168.99.100:31112/function/html-output from a web browser to view the
output, as shown in the following figure:

Figure 9.41: Invoking the html-output function

350 | Going Serverless with OpenFaaS

Exercise 31: Returning HTML Based on Path Parameters

In this exercise, we will create a function that can return one of the two static HTML
files based on the path parameters of the function URL:

1.	 Create a new function named serverless-website based on the php7 template:

$ faas-cli new serverless-website --lang=php7

The output should be as follows:

Figure 9.42: Creating the serverless-website function

2.	 Create the HTML folder inside serverless-website to store all the HTML files:

$ mkdir serverless-website/src/html

3.	 Create the first HTML file for the home page (serverless-website/src/html/home.
html) with the following code. This HTML page will output the text, Welcome to
OpenFaaS Home Page, as the page header, and OpenFaaS Home as the page title:

<!DOCTYPE html>
<html>
 <head>
 <title>OpenFaaS Home</title>
 </head>
 <body>
 <h1>Welcome to OpenFaaS Home Page</h1>
 </body>
</html>

OpenFaaS Functions | 351

4.	 Create the second HTML file for the login page (serverless-website/src/html/
login.html). This HTML page will output a simple login form with two fields for
username and password and a Login button to submit the form:

<!DOCTYPE html>
<html>
 <head>
 <title>OpenFaaS Login</title>
 </head>
 <body>
 <h1>OpenFaaS Login Page</h1>
 <form id="contact_us_form">
 <label for="username">Username:</label>
 <input type="text" name="username" required>
 <label for="password">Password:</label>
 <input type="text" name="password" required>
 <input type="submit" value="Login">
 </form>
 </body>
</html>

5.	 Update the handler file (serverless-website/src/Handler.php) to return the
appropriate HTML file based on the path parameters of the function URL with
the following code. This function will receive either home or login as the path
parameter while invoking. It will then read the path parameter and set the HTML
page name accordingly based on the path parameter provided. The next step is to
open the HTML file, read the content of the file, and finally return the content of
the file as the function response:

<?php

namespace App;

class Handler
{
 public function handle($data) {
	 // Retrieve page name from path params
		 $path_params = getenv('Http_Path');
		 $path_params_array = explode('/',$path_params);
		 $last_index = count($path_params_array);
		 $page_name = $path_params_array[$last_index-1];
		
		 // Set the page name

352 | Going Serverless with OpenFaaS

		 $current_dir = __DIR__;
		 $html_file_path = $current_dir . "/html/" . $page_name .
".html";
		
		 // Read the file
		 $html_file = fopen($html_file_path, "r") or die("Unable to open
HTML file!");
		 $html_output = fread($html_file,filesize($html_file_path));
		 fclose($html_file);
		
		 // Return file content
		 return $html_output;	
 }
}

6.	 Set content_type as text/html in serverless-website.yml:

version: 1.0
provider:
 name: openfaas
 gateway: http://192.168.99.100:31112
functions:
 serverless-website:
 lang: php7
 handler: ./serverless-website
 image: sathsarasa/serverless-website:latest
 environment:
 content_type: text/html

7.	 Build, push, and deploy the serverless-website function using the following
command:

$ faas-cli up -f serverless-website.yml

The following is the output of the preceding command:

[0] > Building serverless-website.
Clearing temporary build folder: ./build/serverless-website/
Preparing ./serverless-website/ ./build/serverless-website//function
Building: sathsarasa/serverless-website:latest with php7 template. Please
wait..
Sending build context to Docker daemon 16.38kB
...

OpenFaaS Functions | 353

Successfully built 24fd037ce0d0
Successfully tagged sathsarasa/serverless-website:latest
Image: sathsarasa/serverless-website:latest built.
[0] < Building serverless-website done.
[0] worker done.

[0] > Pushing serverless-website [sathsarasa/serverless-website:latest].
The push refers to repository [docker.io/sathsarasa/serverless-website]
...
latest: digest:
sha256:991c02fa7336113915acc60449dc1a7559585ca2fea3ca1326ecdb5fae96f2fc
size: 4298
[0] < Pushing serverless-website [sathsarasa/serverless-website:latest]
done.
[0] worker done.

Deploying: serverless-website.
WARNING! Communication is not secure, please consider using HTTPS.
Letsencrypt.org offers free SSL/TLS certificates.

Deployed. 202 Accepted.
URL: http://192.168.99.100:31112/function/serverless-website

8.	 Verify by invoking both the home page and login page on the following URLs:

http://192.168.99.100:31112/function/serverless-website/home

The home page should appear as follows:

Figure 9.43: Invoking the home page of the serverless website function

Next, run the following URL: http://192.168.99.100:31112/function/serverless-
website/login.

354 | Going Serverless with OpenFaaS

The login page should look as follows:

Figure 9.44: Invoking the login page of the serverless website function

Thus, we have successfully parsed HTML based on the path parameters.

OpenFaaS Function Observability

Observability is a critical feature of every production system. This allows us to observe
the health of the system and activities performed thereon. Once our applications
are deployed and running in production, we need to make sure they are running as
expected in terms of functionality and performance. Any service downtime can have
a negative impact on the organization. So, it is very critical to observe the important
application metrics, such as CPU usage, memory usage, request count, response
duration over time, and then analyze for any anomalies.

OpenFaaS comes built-in with Prometheus, which can be used to collect function
metrics. Prometheus contains a time series database, which can be used to store
various metrics over time. The OpenFaaS API gateway collects metrics related to the
function invocation and stores them in Prometheus. The following table shows the
metrics exposed by the OpenFaaS API Gateway and stored with Prometheus:

Figure 9.45: Function metrics with descriptions

We can use the Prometheus dashboard to visualize these metrics.

OpenFaaS Functions | 355

First, we need to expose the Prometheus deployment created during the installation.
Execute the following command to expose Prometheus as a NodePort service:

$ kubectl expose deployment prometheus -n openfaas --type=NodePort
--name=prometheus-ui

This will expose the Prometheus deployment on a random port above 30,000. Execute
the following commands to get the URL of the Prometheus UI:

$ MINIKUBE_IP=$(minikube ip)

$ PROMETHEUS_PORT=$(kubectl get svc prometheus-ui -n openfaas -o jsonpath="{.
spec.ports[0].nodePort}")

$ PROMETHEUS_URL=http://$MINIKUBE_IP:$PROMETHEUS_PORT/graph

$ echo $PROMETHEUS_URL

The output should be as follows:

Figure 9.46: Generating the Prometheus URL

For me, the PROMETHEUS_URL output value is http://192.168.99.100:30479/graph. But the
<minikube-ip> and <node-port> values may be different.

We can view the metrics exposed by Prometheus using the UI, as shown in the following
figure:

Figure 9.47: Prometheus UI

356 | Going Serverless with OpenFaaS

Type gateway_function_invocation_total in the Expression area and click on the
Execute button. This will list the results under the Console tab. We can click on the
Graph tab as we need to view the function invocation count in a line graph. Click on
the Add Graph button available in the lower-left corner if you want to add this graph
permanently to the Prometheus dashboard, as shown in the following figure:

Figure 9.48: Prometheus graph for the gateway_function_invocation_total metric

Note

Invoke the available functions multiple times so that we can view the statistics of
these invocations from the Prometheus dashboard.

In addition to the Prometheus dashboards that we discussed, we can also use Grafana
to visualize the metrics stored in Prometheus. Grafana is an open source tool used to
analyze and visualize metrics over a period of time. It can be integrated with multiple
data sources such as Prometheus, ElasticSearch, Influx DB, or MySQL. In the next
exercise, we are going to learn how to set up Grafana with OpenFaaS and create
dashboards to monitor the metrics stored in the Prometheus data source.

OpenFaaS Functions | 357

Exercise 32: Installing an OpenFaaS Grafana Dashboard

In this exercise, we are going to install a Grafana dashboard to view the metrics from
the Prometheus data source. Then, we will import another OpenFaaS dashboard into
Grafana:

1.	 Create the grafana deployment in the openfaas namespace using the stefanprodan/
faas-grafana:4.6.3 Docker image:

kubectl run grafana -n openfaas \
 --image=stefanprodan/faas-grafana:4.6.3 \
 --port=3000

The output should be as follows:

Figure 9.49: Creating the Grafana deployment

2.	 Expose the grafana deployment using the NodePort service:

kubectl expose deployment grafana -n openfaas \
 --type=NodePort \
 --name=grafana

The output should be as follows:

Figure 9.50: Exposing the grafana port

358 | Going Serverless with OpenFaaS

3.	 Find the URL of the grafana dashboard using the following commands:

$ MINIKUBE_IP=$(minikube ip)

$ GRAFANA_PORT=$(kubectl get svc grafana -n openfaas -o jsonpath="{.spec.
ports[0].nodePort}")

$ GRAFANA_URL=http://$MINIKUBE_IP:$GRAFANA_PORT/dashboard/db/openfaas

$ echo $GRAFANA_URL

The output should be as follows:

Figure 9.51: Generating the grafana URL

OpenFaaS Functions | 359

4.	 Navigate to the grafana URL using the URL printed in the previous step:

Figure 9.52: Grafana UI

360 | Going Serverless with OpenFaaS

5.	 Log in to Grafana using the default credentials (the username is admin and the

6.	 password is admin). The output should be as follows:

Figure 9.53: Grafana dashboards

From the Grafana menu () in the top-left corner, as highlighted in Figure 9.53,
select Dashboards > Import. Provide the ID of 3434 in the Grafana.com Dashboard
input box and wait for a few seconds to load the dashboard data:

Figure 9.54: Importing the new dashboard

OpenFaaS Functions | 361

7.	 From this screen, select faas as the Prometheus data source and click on Import,
as shown in the following figure:

Figure 9.55: Importing the new dashboard

8.	 Now you can see the metrics in the new dashboard:

Figure 9.56: OpenFaaS serverless Grafana dashboard

362 | Going Serverless with OpenFaaS

Thus, we have successfully set up Grafana dashboards to visualize the metrics stored in
Prometheus.

OpenFaaS Function Autoscaling

Autoscaling is a feature available in OpenFaaS that scales up or scales down function
replicas based on demand. This feature was built using both Prometheus and the Alert
Manager components available with the OpenFaaS framework. Alert Manager will fire
alerts when the function invocation frequency exceeds the defined threshold.

While deploying the functions, the following labels are used to control the number
of minimum replicas, maximum replicas, and the increase/decrease factor of the
functions:

•	 com.openfaas.scale.min – This defines the initial number of replicas, which is 1 by
default.

•	 com.openfaas.scale.max – This defines the maximum number of replicas.

•	 com.openfaas.scale.factor – This defines the percentage of pod replica increase
(or decrease) when the Alert Manager fires the alerts. By default, this is set to 20%
and should have a value between 0 and 100.

When OpenFaaS is deployed on Kubernetes, the Horizontal Pod Autoscaling feature
from the Kubernetes framework can also be used to autoscale functions based
on demand, as an alternative to the built-in autoscaling feature available with the
OpenFaaS framework.

Let's now deploy the figlet function from the OpenFaaS function store to check the
autoscaling feature in action:

faas-cli store deploy figlet \

 --label com.openfaas.scale.min=1 \

 --label com.openfaas.scale.max=5

The output should be as follows:

Figure 9.57: Deploying the figlet function

OpenFaaS Functions | 363

Now we can put a load on the figlet function by invoking it 1,000 times, as shown in
the following code. The following script will invoke the figlet function 1,000 times by
providing the OpenFaaS string as the input for the function and sleeps for 0.1 seconds in
between each invocation:

for i in {1..1000}

do

 echo "Invocation $i"

 echo OpenFaaS | faas-cli invoke figlet

 sleep 0.1

done

Navigate to the Grafana portal and observe the increasing number of replicas for the
figlet function. Once the load completes, the replica count will start scaling down and
go back to the com.openfaas.scale.min count of 1 function replica.

The output should be as follows:

Figure 9.58: Verifying the autoscaling feature

In this section, we covered function autoscaling, we discussed what function
autoscaling is, and the configuration we can use to set the minimum replica count, the
maximum replica count, and the scale factor. Finally, we deployed a sample function,
performed a load on the function, and observed the autoscaling functionality on a
Grafana dashboard.

364 | Going Serverless with OpenFaaS

Activity 9: OpenFaaS Form Processor

In this activity, we will be creating a website for a brand that will have a contact form
for potential customers to contact the brand personnel. We will be using OpenFaas
extensively for this website.

Imagine that you are a freelancer and you want to create a website to increase your
brand visibility. This website needs to have a "Contact Us" form that allows potential
customers to contact you. You decided to create this website using serverless
technologies and OpenFaaS was selected as the framework for this task.

Execute the following steps to complete this activity:

1.	 Create a SendGrid (https://sendgrid.com) account to send emails and save the API
key.

2.	 Create the "Contact Us" form using HTML and return the HTML using an
OpenFaaS function. The following is sample code that achieves the functionality of
an HTML form with input fields for name, email, and message and a submit button;
CSS to add styles to the HTML form; and a JavaScript function, which will be
triggered when the user clicks on the Submit button and sends the form data as a
POST request to the form-processor function:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>OpenFaaS Contact Us Form</title>
 <style>
 /** Page background colour */
 body {
 background-color: #f2f2f2;
 }
 /** Style the h1 headers */
 h1 {
 text-align: center;
 font-family: Arial;

 /** CSS for the input box and textarea */
 input[type=text], input[type=email], textarea {
 width: 100%;
 margin-top: 10px;
 margin-bottom: 20px;
 padding: 12px;
 box-sizing: border-box;

https://sendgrid.com

OpenFaaS Functions | 365

 resize: vertical
 }
 /** Style the submit button */
 input[type=submit] {
 color: white;
 background-color: #5a91e8;
 padding: 10px 20px;
 border: none;
 border-radius: 4px;
 cursor: pointer;
 }
 /** Change submit button color for mouse hover */
 input[type=submit]:hover {
 background-color: #2662bf;
 }
 /** Add padding around the form */
 container {
 padding: 20px;
 border-radius: 5px;
 }
 /** Bold font for response and add margin */
 #response {
 font-weight: bold;
margin-bottom: 20px;
 }
 </style>
 </head>
 <body>
 <h1>OpenFaaS Contact Form</h1>
 <div class="container">
		 <!-- Placeholder for the response -->
 <div id='response'></div>
 <form id="contact_us_form">
 <label for="name">Name:</label>
 <input type="text" id="name" name="name" required>
 <label for="email">Email:</label>
 <input type="email" id="email" name="email" required>
 <label for="message">Message:</label>
 <textarea id="message" name="message" required></textarea>
 <input type="submit" value="Send Message">
 </form>
 </div>

366 | Going Serverless with OpenFaaS

 <script src="http://code.jquery.com/jquery-3.4.1.min.js"></script>
 <script>
 $(document).ready(function(){
 $('#contact_us_form').on('submit', function(e){
 // prevent form from submitting.
 e.preventDefault();
$('#response').html('Sending message...');
 // retrieve values from the form field
 var name = $('#name').val();
 email = $('#email').val();
 var message = $('#message').val();
 var formData = {
 name: name,
 email: email,
 message: message
 };
 // send the ajax POST request
 $.ajax({
 type: "POST",
 url: './form-processor',
 data: JSON.stringify(formData)
 })
 done(function(data) {
 $('#response').html(data);
 })
 fail(function(data) {
 $('#response').html(data);
 });
 });
 });
 </script>
 </body>
</html>

OpenFaaS Functions | 367

3.	 Create the form-processor function, which takes the form values from the Contact
Us form and sends an email to a specified email address with the information
provided.

4.	 Invoke the Contact Us form function using a web browser and verify the email
delivery.

The contact form should look as shown in the following figure:

Figure 9.59: The Contact Us form

368 | Going Serverless with OpenFaaS

The email received from the contact form should look as shown in the following
screenshot:

Figure 9.60: Email received from Contact Us form

Note

The solution to the activity can be found on page 444.

Summary
We started this chapter with an introduction to the OpenFaaS framework and
continued with an overview of the components available with the OpenFaaS framework.
Next, we looked at how to install faas-cli and the OpenFaaS framework on a local
Minikube cluster.

Then, we started looking at OpenFaaS functions. We discussed how we can use faas-
cli to create the function templates, build and push function Docker image, and deploy
the function to the OpenFaaS framework. Then, we learned how to invoke the deployed
functions with the faas-cli command and curl command. Next, we introduced the
OpenFaaS portal, which is the built-in UI for the OpenFaaS framework.

We also learned how we can set up an OpenFaaS function to return HTML content and
return different content based on provided parameters. We configured the Prometheus
and Grafana dashboards to visualize the function metrics, including invocation count,
invocation duration, and replica counts. Then, we discussed the function autoscaling
feature, which scales up or scales down function replicas based on demand. We
performed a load test on a function and observed autoscaling in action with Grafana
dashboards.

Summary | 369

Finally, in the activity, we built the frontend and backend of a Contact Us form of a
website using the OpenFaaS framework.

Through the concepts and the various exercises and activities presented in this book,
we have equipped you with all the skills you need to use serverless architectures and
the state-of-art container management system, Kubernetes.

We are confident that you will be able to apply this knowledge toward building more
robust and effective systems and host them on cloud providers such as AWS Lambda,
Google Cloud Function, and more. You will also be able to use the highly effective
features of best-in-class frameworks such as OpenFaaS, OpenWhisk, Kubeless, and
more.

About

This section is included to assist the students to perform the activities in the book.

It includes detailed steps that are to be performed by the students to achieve the objectives of
the activities.

Appendix

>

372 | Appendix

Chapter 01: Introduction to Serverless

Activity 1: Twitter Bot Backend for Bike Points in London

Solution:

Execute the following steps to complete this activity:

1.	 Create a main.go file for registering function handlers, as in Exercise 1.

This code is the entry point of the application where functions are registered, and
the main application is started:

package main

import (
 "fmt"
 "net/http"
)

func main() {
 fmt.Println("Starting the 🚲 finder..")
 http.HandleFunc("/", FindBikes)
 fmt.Println("Function handlers are registered.")

 http.ListenAndServe(":8080", nil)
}

2.	 Create a function.go file for the FindBikes function:

...

func FindBikes(w http.ResponseWriter, r *http.Request) {

 ...

 // Get bike points for the query
 bikePoints, err := httpClient.Get(fmt.Sprintf(TFL_API_URL + "BikePoint/
Search?query=" + url2.QueryEscape(query)))

 ...

Chapter 01: Introduction to Serverless | 373

 // Get available number of bikes
 availableBikeResponse, err := httpClient.Get(TFL_API_URL + "BikePoint/"
+ bikePoint.ID)

...

 if bikeAmount == 0 {
 w.Write([]byte(fmt.Sprintf(RESPONSE_NO_AVAILABLE_BIKE,
bikePoint.CommonName, url)))
 return
 } else {
 w.Write([]byte(fmt.Sprintf(DEFAULT_RESPONSE, bikePoint.
CommonName, bikeAmount, url)))
 return
 }
...

Note

The files required for the activity can be found on the link: https://github.com/
TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/
Activity1.

In this file, the actual function and its helpers should be implemented. FindBikes is
responsible for getting data from the TFL Unified API for the bike point locations
and then the number of available bikes. According to the collected information,
this function returns complete sentences to be used as Twitter responses.

3.	 Create a Dockerfile for building and packaging the function, as in Exercise 2:

FROM golang:1.12.5-alpine3.9 AS builder
ADD . .
RUN go build *.go

FROM alpine:3.9
RUN apk update && apk add ca-certificates && rm -rf /var/cache/apk/*
RUN update-ca-certificates
COPY --from=builder /go/function ./bikes
RUN chmod +x ./bikes
ENTRYPOINT ["./bikes"]

In this Dockerfile, the application is built in the first container and packaged in
the second container for delivery.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Activity1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Activity1
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/tree/master/Lesson01/Activity1

374 | Appendix

4.	 Build the container image with Docker commands: docker build . -t find-bikes.

It should look something like this:

Figure 1.27: Building the Docker image

5.	 Run the container image as a Docker container and make the ports available on
the host system: docker run -it --rm -p 8080:8080 find-bikes.

Things should look as shown in the following screenshot:

Figure 1.28: Running the Docker container

Chapter 01: Introduction to Serverless | 375

6.	 Test the function's HTTP endpoint with different queries, such as Oxford, Abbey,
or Diagon Alley.

We expect to get real responses for London streets and failure responses for
imaginary streets from literature:

Figure 1.29: Function responses for different streets

7.	 Press Ctrl + C to exit the container:

Figure 1.30: Exiting the container

376 | Appendix

Chapter 02: Introduction to Serverless in the Cloud

Activity 2: Daily Stand-Up Meeting Reminder Function for Slack

Solution – Slack Setup:

1.	 In the Slack workspace, click on your username and select Customize Slack, as
shown in the following screenshot:

Figure 2.49: Slack menu

Chapter 02: Introduction to Serverless in the Cloud | 377

2.	 Click on Configure apps in the open window, as shown in the following screen-
shot:

Fig 2.50: Slack configuration menu

378 | Appendix

3.	 Click on Browse the App Directory to add a new application from the directory, as
shown in the following screenshot:

Figure 2.51: Slack management

4.	 Find Incoming WebHooks from the search box in App Directory, as shown in the
following screenshot:

Chapter 02: Introduction to Serverless in the Cloud | 379

Figure 2.52: App Directory

5.	 Click on Add Configuration for the Incoming WebHooks application, as shown in
the following screenshot:

Figure 2.53: Incoming Webhooks page

380 | Appendix

6.	 Fill in the configuration for the incoming webhook by specifying your specific
channel name and icon, as shown in the following screenshot:

Figure 2.54: Incoming webhook configuration

Chapter 02: Introduction to Serverless in the Cloud | 381

Copy the Webhook URL and click Save Settings, as shown in the preceding
screenshot.

7.	 Open the Slack workspace and channel we mentioned in step 6. You will see an
integration message:

Figure 2.55: Integration message in Slack

Activity Solution

Execute the following steps to complete this activity:

1.	 Create a new function to call the Slack webhook when the function is invoked.

In GCF, it can be defined with the name StandupReminder, 128 MB memory, and an
HTTP trigger.

382 | Appendix

This function can be implemented in any supported language, such as Go 1.11, as
shown in the following screenshot:

Figure 2.56: Cloud function in Google Cloud Platform

Chapter 02: Introduction to Serverless in the Cloud | 383

The code to be added is as follows:

package p

import (
 "bytes"
 "net/http"
)

func Reminder(http.ResponseWriter, *http.Request) {
 url := "https://hooks.slack.com/services/TLJB82G8L/BMAUKCJ9W/
Q02YZFDiaTRdyUBTImE7MXn1"

 var jsonStr = []byte(`{"text": "Time for a stand-up meeting!"}`)
 req, err := http.NewRequest("POST", url, bytes.NewBuffer(jsonStr))

 client := &http.Client{}
 _, err = client.Do(req)
 if err != nil {
 panic(err)
 }
}

Note

Do not forget to change the url value with the Slack URL for the incoming web-
hook configuration from step 6.

You can find the complete function.go file in the activity solutions of this book's
GitHub repository: https://github.com/TrainingByPackt/Serverless-Architec-
tures-with-Kubernetes/blob/master/Lesson02/Activity2/function.go.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson02/Activity2/function.go
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson02/Activity2/function.go

384 | Appendix

2.	 Create a scheduler job with the trigger URL of the function and specify the sched-
ule based on your stand-up meeting times.

The scheduler can be defined in Google Cloud Scheduler with the name
StartupReminder and the URL of the function, as shown in the following
screenshot:

Figure 2.57: Cloud scheduler in Google Cloud Platform

With the schedule of 0 9 * * 1-5, the reminder will invoke the function at 09:00
on every day of the week from Monday through Friday.

Chapter 02: Introduction to Serverless in the Cloud | 385

3.	 Check the Slack channel when the time that was defined with the schedule has
arrived for the reminder message.

For the schedule of 0 9 * * 1-5, you will see a message on your selected Slack
channel at 09:00 on workdays, as shown in the following screenshot:

Figure 2.58: Slack reminder message

4.	 Delete the schedule job and function from the cloud provider, as shown in the
following screenshot:

Figure 2.59: Deletion of the scheduler

386 | Appendix

The function can be deleted like so:

Figure 2.60: Deletion of the function

In this activity, we've built the backend of a Slack application using functions. We
started by configuring Slack for incoming webhooks and then created a function to
send data to the webhook. Since our function should be invoked at predefined times, we
used the cloud scheduler services to invoke the function. With a successful reminder
message in Slack, the integration of functions to other cloud services and external
services was illustrated.

Chapter 03: Introduction to Serverless Frameworks | 387

Chapter 03: Introduction to Serverless Frameworks

Activity 3: Daily Weather Status Function for Slack

Solution - Slack Setup

1.	 Execute the following steps to configure Slack:

2.	 In your Slack workspace, click on your username and select Customize Slack:

Figure 3.44: Slack menu

388 | Appendix

3.	 Click on Configure apps in the opened window:

Figure 3.45: Slack configuration menu

Chapter 03: Introduction to Serverless Frameworks | 389

4.	 Click on Browse the App Directory to add a new application from the directory:

Figure 3.46: Slack management

390 | Appendix

5.	 Find Incoming WebHooks from the search box in App Directory:

Figure 3.47: App Directory

Chapter 03: Introduction to Serverless Frameworks | 391

6.	 Click on Set Up for the Incoming WebHooks application:

Figure 3.48: Incoming WebHooks page

392 | Appendix

7.	 Choose a channel for posting joke messages and click on the Add Incoming
WebHooks integration:

Figure 3.49: Channel selection

Chapter 03: Introduction to Serverless Frameworks | 393

8.	 Fill in the configuration for the incoming webhook with your specific channel
name and icon:

Figure 3.50: Incoming WebHook configuration

Copy the Webhook URL and click Save Settings.

394 | Appendix

9.	 Open your Slack workspace and the channel you configured in Step 6 to check the
integration message:

Figure 3.51: Integration message in Slack

Activity Solution

1.	 Execute the following steps to complete this activity:

2.	 In your Terminal, start the Serverless Framework development environment:

docker run -it --entrypoint=bash onuryilmaz/serverless

This command will start a Docker container in interactive mode. In the upcoming
steps, actions will be taken inside this Docker container:

Figure 3.52: Starting a Docker container for serverless

Chapter 03: Introduction to Serverless Frameworks | 395

3.	 In your Terminal, create a Serverless Framework application structure in a folder
called daily-weather.

Create a folder called daily-joker and change it into the following directory:

mkdir daily-weather
cd daily-weather

Note

nano and vim are installed as text editors in the Serverless Framework develop-
ment environment Docker container.

4.	 Create a serverless.yaml file with the following content and replace the value
of SLACK_WEBHOOK_URL with the URL you copied from Step 6 of the Slack
Setup. Furthermore, update the CITY environment variable with the current office
location to get the correct weather information. In addition, you can change the
schedule section, which is currently triggering the function every workday at
08:00:

service: daily-weather

provider:
 name: aws
 runtime: nodejs8.10

functions:
 weather:
 handler: handler.weather
 events:
 - schedule: cron(0 8 ? * 1-5 *)
 environment:
 CITY: Berlin
 SLACK_WEBHOOK_URL: https://hooks.slack.com/services/.../.../...

Note

serverless.yaml is available at https://github.com/TrainingByPackt/Serverless-Archi-
tectures-with-Kubernetes/blob/master/Lesson03/Activity3/serverless.yaml.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson03/Activity3/serverless.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson03/Activity3/serverless.yaml

396 | Appendix

5.	 Create a package.json file to define the Node.js environment in the daily-weather
folder.

package.json defines the function and its dependencies:

{
 "name": "daily-weather",
 "description": "",
 "main": "handler.js",
 "dependencies": {
 "node-fetch": "^2.2.1",
 "slack-node": "0.1.8"
 }
}

Note

package.json is available at https://github.com/TrainingByPackt/Serverless-Archi-
tectures-with-Kubernetes/blob/master/Lesson03/Activity3/package.json.

6.	 Create a handler.js file to implement the actual functionality in the daily-weather
folder.

handler.js consists of the actual Node.js function:

const fetch = require('node-fetch');
const Slack = require('slack-node');

module.exports.weather = (event, context, callback) => {

 const webhookUri = process.env.SLACK_WEBHOOK_URL;
 const location = process.env.CITY;

 const slack = new Slack();
 slack.setWebhook(webhookUri);

 weatherURL = "http://wttr.in/" + encodeURIComponent(location) +
"?m&&format=1"

 console.log(weatherURL)

 fetch(weatherURL)
 .then(response => response.text())

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson03/Activity3/package.json
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson03/Activity3/package.json

Chapter 03: Introduction to Serverless Frameworks | 397

 .then(data => {

 console.log("======== WEATHER TEXT ========")
 console.error(data);
 console.log("======== WEATHER TEXT ========")

 slack.webhook({
 text: "Current weather status is " + data
 }, function(err, response) {
 console.log("======== SLACK SEND STATUS ========")
 console.error(response.status);
 return callback(null, {statusCode: 200, body: "ok" });
 console.log("======== SLACK SEND STATUS ========")

 if (err) {
 console.log("======== ERROR ========")
 console.error(error);
 console.log("======== ERROR ========")
 return callback(null, {statusCode: 500, body: JSON.
stringify({ error}) });
 }
 });

 }).catch((error) => {
 console.log("======== ERROR ========")
 console.error(error);
 console.log("======== ERROR ========")
 return callback(null, {statusCode: 500, body: JSON.
stringify({ error}) });
 });
};

Note

handler.js is available at https://github.com/TrainingByPackt/Serverless-Architec-
tures-with-Kubernetes/blob/master/Lesson03/Activity3/handler.js.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson03/Activity3/handler.js
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson03/Activity3/handler.js

398 | Appendix

7.	 At the end of the file's creation, you will see the following file structure, with three
files:

ls -l

The output should be as follows:

Figure 3.53: Folder structure

8.	 Install the required Node.js dependencies for the serverless application. Run the
following command to install the dependencies:

npm install -i

The output should be as follows:

Figure 3.54: Dependency installation

9.	 Export the AWS credentials as environment variables. Export the following envi-
ronment variables and AWS credentials from Exercise xx:

export AWS_ACCESS_KEY_ID=AKIASVTPHRZR33BS256U
export AWS_SECRET_ACCESS_KEY=B***************************R

The output should be as follows:

Figure 3.55: AWS Credentials

Chapter 03: Introduction to Serverless Frameworks | 399

10.	 Deploy the serverless application to AWS using the Serverless Framework. Run the
following commands to deploy the function:

serverless deploy

These commands will make the Serverless Framework deploy the function into
AWS. The output logs start by packaging the service and creating AWS resources
for source code, artifacts, and functions. After all the resources have been created,
the Service Information section provides a summary of the complete stack as you
can see in the following figure:

Figure 3.56: Serverless Framework deployment output

400 | Appendix

11.	 Check AWS Lambda for the deployed functions in the AWS Console as shown in
the following figure:

Figure 3.57: AWS Lambda in the AWS Console

12.	 Invoke the function with the Serverless Framework's client tools. Run the follow-
ing command in your Terminal:

serverless invoke --function weather

This command invokes the deployed function and prints out the response as you
can see in the following figure:

Figure 3.58: Function output

As we can see, statusCode is 200, and the body of the response also indicates that
the function has responded successfully.

Chapter 03: Introduction to Serverless Frameworks | 401

13.	 Check the Slack channel for the posted weather status:

Figure 3.59: Slack message with weather status

402 | Appendix

14.	 Return to your Terminal and delete the function with the Serverless Framework.
Run the following command in your Terminal:

serverless remove

This command will remove the deployed function, along with all its dependencies:

Figure 3.60: Removing the function

15.	 Exit the Serverless Framework development environment container. Run exit in
your Terminal:

Figure 3.61: Exiting the container

In this activity, we have built the backend of a Slack application using a serverless
framework. We started by configuring Slack for incoming webhooks and then
created a serverless application to send data to the webhook. In order to invoke
the function at predefined times, the configuration of the serverless framework
was utilized instead of cloud-specific schedulers. Since serverless frameworks
create an abstraction for the cloud providers, the serverless application that we
developed in this activity is suitable for multi-cloud deployments.

Chapter 04: Kubernetes Deep Dive | 403

Chapter 04: Kubernetes Deep Dive

Activity 4: Collect Gold Prices in a MySQL Database in Kubernetes

Solution:

Execute the following steps to complete this activity:

1.	 Create an application to retrieve the gold price from CurrencyLayer and insert it
into the MySQL database.

It is possible to implement this function in Go with the following main.go file:

...

func main() {

 db, err := sql.Open("mysql", ...
 ...
 r, err := http.Get(fmt.Sprintf(„http://apilayer.net/api/...
 ...
 stmt, err := db.Prepare("INSERT INTO GoldPrices(price) VALUES(?)")
 ...
 _, err = stmt.Exec(target.Quotes.USDXAU)
 ...
 log.Printf("Successfully inserted the price: %v", target.Quotes.
USDXAU)
 ...
}

404 | Appendix

The main function starts with database connection, followed by price retrieval
from CurrencyLayer. Then it continues with creating a SQL statement and
executing on the database connection.

Note

main.go is available at https://github.com/TrainingByPackt/Serverless-Architec-
tures-with-Kubernetes/blob/master/Lesson04/Activity4/main.go.

2.	 Build the application as a Docker container. It is possible to build the application
from Step 1 with the following Dockerfile:

FROM golang:1.12.5-alpine3.9 AS builder
RUN apk add --no-cache git

ADD main.go /go/src/gold-price-to-mysql/main.go
WORKDIR /go/src/gold-price-to-mysql/
RUN go get -v
RUN go build .
FROM alpine:3.9
COPY --from=builder /go/src/gold-price-to-mysql/gold-price-to-mysql ./
gold-price-to-mysql
RUN chmod +x ./gold-price-to-mysql
ENTRYPOINT ["./gold-price-to-mysql"]

Note

Dockerfile is available at https://github.com/TrainingByPackt/Serverless-Architec-
tures-with-Kubernetes/blob/master/Lesson04/Activity4/Dockerfile.

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/main.go
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/main.go
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/Dockerfile
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/Dockerfile

Chapter 04: Kubernetes Deep Dive | 405

3.	 Run the following command in your Terminal:

docker build -t <USERNAME>/gold-price-to-mysql .

This command builds the application as a Docker container, as shown in the
following figure:

Figure 4.26: Docker build

Note

Do not forget to change <USERNAME> to your Docker Hub username.

406 | Appendix

4.	 Push the Docker container to the Docker registry. Run the following command in
your Terminal:

docker push <USERNAME>/gold-price-to-mysql

This command uploads the container image to the Docker Hub, as shown in the
following figure:

Figure 4.27: Docker push

Note

Do not forget to change <USERNAME> to your Docker Hub username.

5.	 Deploy the MySQL database into the Kubernetes cluster. Create a mysql.yaml file
with the MySQL StatefulSet definition:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: mysql
spec:
 selector:
 matchLabels:
 app: mysql
 serviceName: mysql
 replicas: 1
 template:
 metadata:
 labels:
 app: mysql
 spec:
 containers:
 - name: mysql
 image: mysql:5.7
 env:
 - name: MYSQL_ROOT_PASSWORD

Chapter 04: Kubernetes Deep Dive | 407

 value: "root"
 - name: MYSQL_DATABASE
 value: "db"
 - name: MYSQL_USER
 value: "user"
 - name: MYSQL_PASSWORD
 value: "password"
 ports:
 - name: mysql
 containerPort: 3306
 volumeMounts:
 - name: data
 mountPath: /var/lib/mysql
 subPath: mysql
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 1Gi

Note

mysql.yaml is available at https://github.com/TrainingByPackt/Serverless-Architec-
tures-with-Kubernetes/blob/master/Lesson04/Activity4/mysql.yaml.

6.	 Deploy the StatefulSet with the following command in your Terminal:

kubectl apply -f mysql.yaml

This command submits the file to Kubernetes and creates the mysql StatefulSet, as
shown in the following figure:

Figure 4.28: StatefulSet creation

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/mysql.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/mysql.yaml

408 | Appendix

7.	 Deploy a Kubernetes service to expose MySQL database. Create a service.yaml file
with the following Kubernetes Service definition:

apiVersion: v1
kind: Service
metadata:
 name: gold-price-db
spec:
 selector:
 app: mysql
 ports:
 - protocol: TCP
 port: 3306
 targetPort: 3306

Note

service.yaml is available at https://github.com/TrainingByPackt/Serverless-Architec-
tures-with-Kubernetes/blob/master/Lesson04/Activity4/service.yaml.

8.	 Deploy the service with the following command in your Terminal:

kubectl apply -f service.yaml

This command submits the file to Kubernetes and creates the gold-price-db
service, as shown in the following figure:

Figure 4.29: Service creation

9.	 Deploy a CronJob to run every minute. Create an insert-gold-price.yaml file with
the following Kubernetes CronJob definition:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: gold-price-to-mysql
spec:
 schedule: "* * * * *"

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/service.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/service.yaml

Chapter 04: Kubernetes Deep Dive | 409

 jobTemplate:
 spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - name: insert
 image: <USERNAME>/gold-price-to-mysql
 env:
 - name: MYSQL_ADDRESS
 value: "gold-price-db:3306"
 - name: MYSQL_DATABASE
 value: "db"
 - name: MYSQL_USER
 value: "user"
 - name: MYSQL_PASSWORD
 value: "password"
 - name: API_KEY
 value: "<API-KEY>"

Note

insert-gold-price.yaml is available at https://github.com/TrainingByPackt/Server-
less-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/insert-gold-
price.yaml.

Do not forget to change <USERNAME> to your Docker Hub username and <API-KEY>
to your CurrencyLayer API key.

10.	 Deploy the CronJob with the following command in your Terminal:

kubectl apply -f insert-gold-price.yaml

This command submits the file to Kubernetes and creates the gold-price-to-mysql
CronJob, as shown in the following figure:

Figure 4.30: CronJob creation

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/insert-gold-price.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/insert-gold-price.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson04/Activity4/insert-gold-price.yaml

410 | Appendix

11.	 Wait for a couple of minutes and check the instances of CronJob. Check the
running pods with the following command in your Terminal:

kubectl get pods

This command lists the pods, and you should see a couple of instances whose
names start with gold-price-to-mysql and with a STATUS of Completed, as shown
in the following figure:

Figure 4.31: Pod listing

12.	 Connect to the database and check for the entries:

kubectl run mysql-client --image=mysql:5.7 -i -t --rm --restart=Never \
-- mysql -h gold-price-db -u user -ppassword db -e "SELECT * FROM
GoldPrices;"

This command runs a temporary instance of the mysql:5.7 image and runs the
SELECT * FROM GoldPrices command, as shown in the following figure:

Figure 4.32: Table listing

Chapter 04: Kubernetes Deep Dive | 411

In the GoldPrices MySQL table, there is price data collected every minute. It shows
that MySQL StatefulSet is up and running the database successfully. In addition,
the CronJob has been creating the pods every minute and is running successfully.

13.	 Clean the database and automated tasks from Kubernetes. Clean the resources
with the following command in your Terminal:

kubectl delete -f insert-gold-price.yaml,service.yaml,mysql.yaml

You should see the output shown in the following figure:

Figure 4.33: Resource deletion

In this activity, we have created a MySQL database as a StatefulSet in Kubernetes.
Kubernetes has created the required volume resource and attached to the MySQL
containers. Following that, we have created and packaged our serverless function. The
function is deployed to the Kubernetes cluster as a CronJob. Kubernetes ensures that
the function is scheduled and running every minute. Running functions in Kubernetes
provides two essential advantages. The first one is the reuse of Kubernetes clusters
and resources. In other words, we are not using any extra cloud resources to run our
serverless workloads. The second advantage is the proximity to the data. Since our
microservices are already running on Kubernetes, it is recommended to have our
databases in Kubernetes. When the serverless applications are also running in the same
cluster, it is easier to operate, manage, and troubleshoot the applications.

412 | Appendix

Chapter 05: Production-Ready Kubernetes Clusters

Activity 5: Minimizing the Costs of Serverless Functions in a GKE Cluster

Solution

1.	 Create a new node pool with preemptible servers.

Run the following and upcoming functions in your GCP cloud shell:

gcloud beta container node-pools create preemptible --preemptible \
--min-nodes 1 --max-nodes 10 --enable-autoscaling \
--cluster serverless --zone us-central1-a

Note

Change the zone parameter if your cluster is running in another zone.

This function creates a new node pool named preemptible with an automatically
scaled minimum of 1 node and a maximum of 10 nodes, as shown in the following
figure:

Figure 5.29: Node pool creation

Chapter 05: Production-Ready Kubernetes Clusters | 413

2.	 Taint the preemptible servers to run only serverless functions:

kubectl taint node -l cloud.google.com/gke-nodepool=preemptible \
preemptible="true":NoSchedule

This command will apply taints to all nodes with the label cloud.google.com/node-
pool = preemptible. The taint key will be preemptible, and the value is true. The
action of this limit is NoSchedule, which means only the pods with the matching
toleration will be scheduled to these nodes, as shown in the following figure:

Figure 5.30: Tainting the nodes

3.	 Create a Kubernetes service to reach backend pods:

kubectl expose deployment backend --port 80 --target-port=80

This command creates a service for the deployment backend on port 80, as shown
in the following figure:

Figure 5.31: Exposing the deployment

4.	 Create a CronJob to connect to the backend service every minute. The CronJob
definition should have tolerations to run on preemptible servers.

Create a CronJob definition with the following content inside a file named cronjob.
yaml:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: backend-checker
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 template:
 spec:

414 | Appendix

 containers:
 - name: checker
 image: appropriate/curl
 args:
 - curl
 - -I
 - backend
 nodeSelector:
 cloud.google.com/gke-nodepool: "preemptible"
 tolerations:
 - key: preemptible
 operator: Equal
 value: "true"
 effect: NoSchedule
 restartPolicy: OnFailure

The file has a CronJob definition for running the curl -I backend function every
minute. nodeSelector indicates that the scheduler will choose to run on the nodes
with the label key cloud.google.com/gke-nodepool and a value of preemptible.
However, since there are taints on the preemptible nodes, tolerations are also
added.

Note

cronjob.yaml is available on GitHub: https://github.com/TrainingByPackt/Server-
less-Architectures-with-Kubernetes/blob/master/Lesson05/Activity5/cronjob.yaml.

5.	 Deploy the CronJob with the following command:

kubectl apply -f cronjob.yaml

The output should be as follows:

Figure 5.32: CronJob creation

https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson05/Activity5/cronjob.yaml
https://github.com/TrainingByPackt/Serverless-Architectures-with-Kubernetes/blob/master/Lesson05/Activity5/cronjob.yaml

Chapter 05: Production-Ready Kubernetes Clusters | 415

6.	 Check the node assignments of the CronJob functions:

kubectl get pods -o wide

This command lists the pod with their corresponding nodes. As expected, there
are exactly 10 instances of backend running on high-memory nodes. In addition,
there are 3 instances of the CronJob function running on preemptible nodes, as
shown in the following figure:

Figure 5.33: Pod listing

7.	 Check the logs of CronJob function instances:

kubectl logs brand-checker-<ID>

Note

Replace <ID> with a pod name from Step 5.

The output of the function shows the trail of curl connecting to the nginx
instance, as shown in the following figure:

Figure 5.34: curl output

416 | Appendix

8.	 Clean the backend deployment and serverless functions:

kubectl delete deployment/backend cronjob/backend-checker

This command deletes the backend deployment and backend-checker CronJob, as
shown in the following figure:

Figure 5.35: Cleanup

9.	 Remove the Kubernetes cluster if you do not need it anymore:

gcloud container clusters delete serverless --zone us-central1-a

Note

Change the zone parameter in the command if your cluster is running in another
zone.

This command deletes the cluster from GKE, as shown in the following figure:

Figure 5.36: Cluster removal

In this activity, we have undertaken administrative tasks on a live production cluster.
Creating different types of nodes and running a heterogeneous set of nodes in a
Kubernetes cluster helps to decrease the cost of the complete cluster. Besides,
autoscaling is enabled to meet user demand automatically without human interaction.

Autoscaling and migration of applications are the most common operational tasks on
production clusters. These tasks enable better performance with minimal downtime
and costs. However, the selected Kubernetes platform for your production environment
should also meet such requirements of your daily operations. The capabilities
of Kubernetes and cloud providers are essential to install, monitor, and operate
applications running in the cloud.

Chapter 06: Upcoming Serverless Features in Kubernetes | 417

Chapter 06: Upcoming Serverless Features in Kubernetes

Activity 6: Deploy a Containerized Application in a Serverless Environment

Solution

1.	 First, create a new directory to store the files for this activity and change directory
to the newly created directory:

$ mkdir chapter-06-activity
$ cd chapter-06-activity

2.	 Create an application that can return the current date and time for the given
timezone. We will be using PHP to write this function, but you can choose any
language that you're comfortable with. Create an index.php file with the content
given in step 1.

Now we need to create the Docker image according to the container runtime
contract (https://cloud.google.com/run/docs/reference/container-contract) for
Google Cloud Run. Create a new file named Dockerfile with the content in step 2.

3.	 Once the Dockerfile is ready, we can build the Docker image. Replace <your-
gcp-project-name> with the ID of your GCP project. Next, use the docker build
command to build the Docker image. The --tag flag is used to tag the Docker
image as per the [HOSTNAME]/[GCP-PROJECT-ID]/[IMAGE-NAME]:[TAG] format, as we
will be pushing this to Google Container Registry (GCR) in the next step:

$ export GCP_PROJECT=<your-gcp-project-name>
$ docker build . --tag gcr.io/${GCP_PROJECT}/clock:v1.0

The output should be as follows:

Figure 6.57: Building the Docker image

https://cloud.google.com/run/docs/reference/container-contract

418 | Appendix

4.	 Next, we can push the docker image to GCR:

$ docker push gcr.io/${GCP_PROJECT}/clock:v1.0

The output should be as follows:

Figure 6.58: Pushing the Docker image

5.	 Now we have a Docker image created and pushed to the registry. Now navigate
to the GCP console and open the Cloud Run page. Click on the CREATE SERVICE
button to create a new service with the following information:

Container Image URL: gcr.io/<your-gcp-project-id>/clock:v1.0

Deployment platform: Cloud Run (fully managed)

Location: Select any region you prefer from the available options

Service name: clock

Authentication: Allow unauthenticated invocations

Chapter 06: Upcoming Serverless Features in Kubernetes | 419

The page would look as follows:

Figure 6.59: Creating a service

420 | Appendix

6.	 Click on the CREATE button and you will be navigated to the Service details page:

Figure 6.60: Service details

7.	 Open the provided URL from the Service details page. For me, this URL is https://
clock-awsve2jaoa-uc.a.run.app/, but your URL will be different:

Figure 6.61: Timezone error

8.	 We are receiving this error as we have not provided the timezone parameter.

Chapter 06: Upcoming Serverless Features in Kubernetes | 421

9.	 Let's invoke the URL again with the timezone parameter, https://clock-awsve-
2jaoa-uc.a.run.app/?timezone=Europe/London

Figure 6.62: Output with timezone

In this activity, we have successfully deployed a containerized application on Google
Cloud Run that can output the current date and time based on a provided timezone
value.

422 | Appendix

Chapter 07: Kubernetes Serverless with Kubeless

Activity 7: Publishing Messages to Slack with Kubeless

Solution - Slack Setup

1. Visit https://slack.com/create to create a workspace. Enter your email address
and click on Create:

Figure 7.77: Creating a new workspace

Chapter 07 Kubernetes Serverless with Kubeless | 423

2.	 Now, you will receive a six-digit confirmation code to the email that you entered
on the previous page. Enter the received code on the following page:

Figure 7.78: Checking your email

424 | Appendix

3.	 Add a suitable name here. This will be your workspace name:

Figure 7.79: Adding a workspace name

Chapter 07 Kubernetes Serverless with Kubeless | 425

4.	 Add a suitable name here. This will be your Slack channel name:

Figure 7.80: Adding a Slack channel name

426 | Appendix

You can skip the following section if you wish to:

Figure 7.81: Filling in further details or choosing to skip

Chapter 07 Kubernetes Serverless with Kubeless | 427

5.	 Now your Slack channel is ready. Click on See Your Channel in Slack, as shown in
the following screenshot:

Figure 7.82: Seeing the new Slack channel

Once clicked, we should see our channel as follows:

Figure 7.83: Your new Slack channel

428 | Appendix

6.	 Now we are going to add an Incoming Webhook app to our slack. From the left
menu, select Add apps under the Apps section:

Figure 7.84: Adding apps under the Apps section

7.	 Enter Incoming Webhooks in the search field and click on Install for the Incoming
Webhook app:

Figure 7.85: Browsing apps

8.	 Click on Add Configuration:

Figure 7.86: Adding configuration

Chapter 07 Kubernetes Serverless with Kubeless | 429

9.	 Click on Add Incoming WebHooks Integration:

Figure 7.87: Adding incoming webhooks

10.	 Save the webhook URL. We will need this when we are writing the Kubeless func-
tion.

11.	 Now, let's create the function and deploy it. First, we need to create the require-
ments.txt file, which specifies the dependencies we need to install for the func-
tion's runtime. These are the additional modules we need in order to run our func-
tion successfully. We will be using the requests package to send the HTTP POST
request to the Slack webhook endpoint:

Requests==2.22.0

430 | Appendix

Activity Solution

1.	 Create the function as follows.

import json
import requests

def main(event, context):

 webhook_url = 'YOUR_INCOMMING_WEBHOOK_URL'

 response = requests.post(
 webhook_url, data=json.dumps(event['data']),
 headers={'Content-Type': 'application/json'}
)

 if response.status_code == 200:
 return "Your message successfully sent to Slack"
 else:
 return "Error while sending your message to Slack: " + response.
get('error')

2.	 Deploy the function:

$ kubeless function deploy slack --runtime python3.6 \
 --from-file slack.py \
 --handler slack.main \
 --dependencies requirements.txt

Deploying the function will yield the following output:

Figure 7.88: Deploying the function

We are passing the requirements.txt file that we created in the previous step as a
dependency while deploying the slack function. This will ensure that the Kubeless
runtime contains the required Python packages for function execution.

Chapter 07 Kubernetes Serverless with Kubeless | 431

3.	 Invoke the kubeless function:

$ kubeless function call slack --data '{"username": "kubeless-bot",
"text": "Welcome to Serverless Architectures with Kubeless !!!"}'

This yields the following output:

Figure 7.89: Invoking the function

4.	 Go to your Slack workspace and verify that the message was successfully posted
to the Slack channel:

Figure 7.90: Verifying whether the message was successfully posted

In this activity, we created a Slack space and created an incoming webhook. Next, we
created and deployed a Kubeless function that can post messages to the Slack channel.

432 | Appendix

Chapter 08: Introduction to Apache OpenWhisk

Activity 8: Receive Daily Weather Updates via Email

Steps to create an OpenWeather and SendGrid account:

1.	 Create an OpenWeather account at https://home.openweathermap.org/users/
sign_up:

Figure 8.72: Creating an OpenWeather account

2.	 Once you have signed up to OpenWeather, an API key will be generated auto-
matically for you. Go to the API keys tab (https://home.openweathermap.org/
api_keys) and save the API key because this key is required to fetch the data from
OpenWeather API:

https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys

Chapter 08: Introduction to Apache OpenWhisk | 433

Figure 8.73: OpenWeather API key

3.	 Test the OpenWeather API using https://api.openweathermap.org/data/2.5/weath-
er?q=London&appid=<YOUR-API-KEY> in a web browser. Please note that you need to
replace <YOUR-API-KEY> with your API Key from step 2:

Note

It may take a few minutes to get your API key activated. Wait for a few minutes
and retry if you receive Invalid API key. Please see http://openweathermap.org/
faq#error401 for more info. error while invoking the URL.

Figure 8.74: Invoking OpenWeather API

http://openweathermap.org/faq#error401 for more info
http://openweathermap.org/faq#error401 for more info

434 | Appendix

4.	 Create a SendGrid account at https://signup.sendgrid.com/.

It should look as follows:

Figure 8.75: Creating a SendGrid account

https://signup.sendgrid.com/

Chapter 08: Introduction to Apache OpenWhisk | 435

5.	 Go to Settings > API Keys and click on the Create API Key button:

Figure 8.76: API key page in SendGrid

6.	 Provide a name in the API Key Name field, select the Full Access radio button, and
click on the Create & View button to create an API key with full access:

Figure 8.77: Generating an API key in SendGrid

436 | Appendix

7.	 Once the key is generated, copy the API key and save it somewhere safe because
you will see this key only once:

Figure 8.78: Generated API key in SendGrid

Activity Solution

1.	 Create the get-weather.js function with the function code provided in step 3.
Replace <OPEN_WEATHER_API_KEY> with the API key saved in step 1.

2.	 Create the action named getWeather with the get-weather.js function created
in the preceding step and provide the default value of the cityName parameter as
London:

$ wsk action create getWeather get-weather.js --param cityName London

The output should be as follows:

Figure 8.79: Creating the getWeather action

3.	 Verify that the action is working as expected by invoking the action:

$ wsk action invoke getWeather --result

Chapter 08: Introduction to Apache OpenWhisk | 437

Figure 8.80: Invoking the getWeather action

438 | Appendix

4.	 Now we can create the action to send emails (we will be using the API key gener-
ated with SendGrid). We will be using the sendgrid module for this function. First,
we need to create a directory to store the function code and the dependencies:

$ mkdir send-email
$ cd send-email

The output should be as follows:

Figure 8.81: Creating the send-mail directory

5.	 Run the npm init command by accepting the default parameters:

$ npm init

The output should be as follows:

Figure 8.82: npm init

Chapter 08: Introduction to Apache OpenWhisk | 439

6.	 Install the sendgrid npm package, which is required for the function:

$ npm install sendgrid -save

The output should be as follows:

Figure 8.83: Adding the sendgrid dependency package

7.	 Create the index.js file with the function code provided in step 4. Replace <SEND_
GRID_API_KEY> with the key, which was saved when creating the SendGrid account.
Similarly, replace <TO_EMAIL> to receive weather data and <FROM_EMAIL> to send
weather data with your email address.

8.	 Compress the code with all the dependencies:

$ zip -r send-email.zip *

9.	 Now we can create an action named sendEmail using send-email.zip:

$ wsk action create sendEmail send-email.zip --kind nodejs:default

The output should be as follows:

Figure 8.84: Creating the sendEmail action

440 | Appendix

10.	 Verify that the sendEmail action is working as expected:

Note

Make sure to check your spam folder because the email client might have catego-
rized this as a spam email.

$ wsk action invoke sendEmail --param message "Test Message" –result

The output should be as follows:

Figure 8.85: Invoking the sendEmail action

11.	 Create the format-weather-data.js function with the function code provided in
step 5.

12.	 Create the action named formatWeatherData with the format-weather-data.js func-
tion created in the preceding step:

$ wsk action create formatWeatherData format-weather-data.js

The output should be as follows:

Figure 8.86: Creating the formatWeatherData action

13.	 Create a sequence named weatherMailSender by combining the getWeather, format-
WeatherData, and sendEmail actions:

$ wsk action create weatherMailSender --sequence
getWeather,formatWeatherData,sendEmail

The output should be as follows:

Figure 8.87: Creating the weatherMailSender action sequence

Chapter 08: Introduction to Apache OpenWhisk | 441

14.	 Invoke the weatherMailSender sequence:

$ wsk action invoke weatherMailSender --result

The output should be as follows:

Figure 8.88: Invoking the weatherMailSender action sequence

15.	 Check the mail account that you added as <TO_EMAIL> (check the spam folder).
Check the status of email delivery at https://app.sendgrid.com/email_activity.

The output should be as follows:

Figure 8.89: Received email from the weatherMailSender action sequence

16.	 Finally, we need to create the trigger and rule to invoke the sequence every day at
8 AM. First, we will create weatherMailSenderCronTrigger, which will be triggered
daily at 8.00 AM:

$ wsk trigger create weatherMailSenderCronTrigger \
 --feed /whisk.system/alarms/alarm \
 --param cron "0 8 * * *"
ok: invoked /whisk.system/alarms/alarm with id
cf1af9989a7a46a29af9989a7ad6a28c
{
 "activationId": "cf1af9989a7a46a29af9989a7ad6a28c",
 "annotations": [
 {
 "key": "path",
 "value": "whisk.system/alarms/alarm"
 },
 {

https://app.sendgrid.com/email_activity

442 | Appendix

 "key": "waitTime",
 "value": 66
 },
 {
 "key": "kind",
 "value": "nodejs:10"
 },
 {
 "key": "timeout",
 "value": false
 },
 {
 "key": "limits",
 "value": {
 "concurrency": 1,
 "logs": 10,
 "memory": 256,
 "timeout": 60000
 }
 }
],
 "duration": 162,
 "end": 1565457634929,
 "logs": [],
 "name": "alarm",
 "namespace": "sathsara89@gmail.com_dev",
 "publish": false,
 "response": {
 "result": {
 "status": "success"
 },
 "status": "success",
 "success": true
 },
 "start": 1565457634767,
 "subject": "sathsara89@gmail.com",
 "version": "0.0.152"
}
ok: created trigger weatherMailSenderCronTrigger

Chapter 08: Introduction to Apache OpenWhisk | 443

17.	 Then, we will create a rule named weatherMailSenderCronRule to connect the
trigger (weatherMailSenderCronTrigger) and action (weatherMailSender):

$ wsk rule create weatherMailSenderCronRule weatherMailSenderCronTrigger
weatherMailSender

The output should be as follows:

Figure 8.90: Creating weatherMailSenderCronRule

Once the preceding steps are completed, you should receive an email daily at 8.00 AM
to the specified email address with the weather data for the requested city.

444 | Appendix

Chapter 09: Going Serverless with OpenFaaS

Activity 9: OpenFaaS Form Processor

Solution

1.	 First, you need to create a SendGrid account and generate an API key. You can use
the same API key created in the activity from Chapter 08, Introduction to Apache
OpenWhisk. Refer to steps 4-7 in the activity of Chapter 08, Introduction to Apache
OpenWhisk on how to create a SendGrid account and generate an API key.

2.	 Create an OpenFaaS function named contact-form using the python3 template.
This will be the frontend of the contact form:

$ faas-cli new contact-form --lang=python3

The output should be as follows:

Figure 9.59: Creating the contact-form function

3.	 Create a new directory named html inside the contact-form directory to store the
HTML files:

$ mkdir contact-form/html

The output should be as follows:

Figure 9.60: Creating the HTML folder

4.	 Create the contact-us.html file inside the contact-form/html folder with the code
provided in step 2.

Chapter 09: Going Serverless with OpenFaaS | 445

5.	 Update the handler.py Python file inside the contact-form folder. This Python
function will read the content of the contact-us.html file and return it as the func-
tion response:

import os

def handle(req):

 current_directory = os.path.dirname(__file__)
 html_file_path = os.path.join(current_directory, 'html', 'contact-us.
html')

 with(open(html_file_path, 'r')) as html_file:
 html = html_file.read()
		
 return html

6.	 Update the function definition (contact-form.yml) file to specify content_type as
text/html, as explained in the following code:

version: 1.0
provider:
 name: openfaas
 gateway: http://192.168.99.100:31112
functions:
 contact-form:
 lang: python3
 handler: ./contact-form
 image: sathsarasa/contact-form:latest
 environment:
 content_type: text/html

7.	 Build, push, and deploy the contact-form function:

$ faas-cli up -f contact-form.yml

The output of the command should be as follows:

[0] > Building contact-form.
Clearing temporary build folder: ./build/contact-form/
Preparing ./contact-form/ ./build/contact-form//function
Building: sathsarasa/contact-form:latest with python3 template. Please
wait..
Sending build context to Docker daemon 14.34kB
...

446 | Appendix

Successfully built 6c008c91f0bb
Successfully tagged sathsarasa/contact-form:latest
Image: sathsarasa/contact-form:latest built.
[0] < Building contact-form done.
[0] worker done.

[0] > Pushing contact-form [sathsarasa/contact-form:latest].
The push refers to repository [docker.io/sathsarasa/contact-form]
...
latest: digest:
sha256:b4f0a4f474af0755b53acb6a1c0ce26e0f91a9a893bb8bfc78501cab267d823e
size: 4282
[0] < Pushing contact-form [sathsarasa/contact-form:latest] done.
[0] worker done.

Deploying: contact-form.
WARNING! Communication is not secure, please consider using HTTPS.
Letsencrypt.org offers free SSL/TLS certificates.

Deployed. 202 Accepted.
URL: http://192.168.99.100:31112/function/contact-form

8.	 Create the second OpenFaaS function named form-processor using the python3
template. This will be the backend of the contact form:

$ faas-cli new form-processor --lang=python3

The output should be as follows:

Figure 9.61: Creating the form-processor function

Chapter 09: Going Serverless with OpenFaaS | 447

9.	 Update the handler.py Python file inside the form-processor folder. This Python
function performs receives the email, name, and message parameters entered
into the Contact Us form, formats the email body to be sent, sends the email using
SendGrid, and returns the email sending status as the function response.

10.	 Replace <SEND_GRID_API_KEY> with the SendGrid API key saved in step 1, and
<TO_EMAIL> with the email address to receive the Contact Us form data:

 import json
from sendgrid import SendGridAPIClient
from sendgrid.helpers.mail import Mail

def handle(req):

 SENDGRID_API_KEY = '<SEND_GRID_API_KEY>'
 TO_EMAIL = '<TO_EMAIL>'
 EMAIL_SUBJECT = 'New Message from OpenFaaS Contact Form'

 json_req = json.loads(req)
 email = json_req["email"]
 name = json_req["name"]
 message = json_req["message"]
 email_body = 'Name: ' + name + '

Email: ' + email + '

 Message: '
+ message

 email_object = Mail(
 from_email= email,
 to_emails=TO_EMAIL,
 subject=EMAIL_SUBJECT,
 html_content=email_body)

 try:
 sg = SendGridAPIClient(SENDGRID_API_KEY)
 response = sg.send(email_object)
 sendingStatus = "Message sent successfully"
 except Exception as e:
 sendingStatus = "Message sending failed"

 return sendingStatus

448 | Appendix

11.	 Add the sendgrid module as a dependency in form-processor/requirements.txt of
the form-processor function:

sendgrid

12.	 Increase the timeout (read_timeout, write_timeout, and exec_timeout) values in
form-processor.yml, as shown in the following code:

version: 1.0
provider:
 name: openfaas
 gateway: http://192.168.99.100:31112
functions:
 form-processor:
 lang: python3
 handler: ./form-processor
 image: sathsarasa/form-processor:latest
 environment:
 read_timeout: 20
 write_timeout: 20
 exec_timeout: 20

13.	 Build, deploy, and push the form-processor function:

$ faas-cli up -f form-processor.yml

The output of the command should be as follows:

[0] > Building form-processor.
Clearing temporary build folder: ./build/form-processor/
Preparing ./form-processor/ ./build/form-processor//function
Building: sathsarasa/form-processor:latest with python3 template. Please
wait..
Sending build context to Docker daemon 10.24kB
...
Successfully built 128245656019
Successfully tagged sathsarasa/form-processor:latest
Image: sathsarasa/form-processor:latest built.
[0] < Building form-processor done.
[0] worker done.

[0] > Pushing form-processor [sathsarasa/form-processor:latest].
The push refers to repository [docker.io/sathsarasa/form-processor]
...
latest: digest:

Chapter 09: Going Serverless with OpenFaaS | 449

sha256:c700592a3a7f16875c2895dbfa41bd269631780d9195290141c245bec93a2257
size: 4286
[0] < Pushing form-processor [sathsarasa/form-processor:latest] done.
[0] worker done.

Deploying: form-processor.
WARNING! Communication is not secure, please consider using HTTPS.
Letsencrypt.org offers free SSL/TLS certificates.

Deployed. 202 Accepted.
URL: http://192.168.99.100:31112/function/form-processor

14.	 Open the Contact Us form by opening the URL in a web browser:

http://192.168.99.100:31112/function/contact-form

The contact form should appear as follows:

Figure 9.62: Invoking the Contact Us form

450 | Appendix

15.	 Fill in the form and then submit the form, as shown in the following figure:

Figure 9.63: Submitting the contact us form

16.	 Check the email account you provided as <TO_EMAIL> in step 9 to verify the email
delivery:

Figure 9.64: Verifying email delivery

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

A
activation: 259, 271,

274-275, 277-278,
300-301, 304-305

activator:183
add-on:231
allocation:60
analysis: 15, 42,

108, 118, 140
analytics: 154, 181
anomalies:354
apache: 8, 12, 89, 205,

244, 255-257, 314, 318
apache-:249
apigroup:199
apihost:291
apilayer:136
apiserver:117
apiversion: 123-125,

127-129, 131-132,
171, 176-180, 183,
198-199, 202

appendix:311
apt-get:245
autoscaler: 150, 152,

154, 183, 186

B
backend: 1-2, 6, 8-9, 22,

24-25, 113, 127, 141,
155-156, 159-161, 369

backups:301
bashrc: 267, 325
binaries: 214-217, 220-221
bitnami:210
blocks: 2, 5, 111-112, 124, 211
bluemix: 264, 291

C
caches:12
callback:243
celsius:313
cfduid: 295-296
cf-ray: 295, 297
charge: 31-32,

57-58, 143-144
charset: 295-296, 364
checker:160
cityname: 311, 313
client: 72-73, 79, 81,

89, 91, 107, 112-113,
118-119, 123, 137, 140

cloudflare: 295, 297
cloudwatch: 31, 40
cluster: 111-113, 115-120,

123, 125-127, 129,
134, 136-137, 139-141,
143-144, 146-157,
159-161, 163-170, 173,
187, 191-192, 195-197,
202, 206, 209-211,
213, 215, 217-218, 221,
231, 234-236, 253,
317, 320-321, 323,
337, 340, 342, 368

clustering:318
clusterip:230
concurrent:183
config: 119, 167, 247
configmaps:211
connectors:200
console: 32-33, 58, 94,

107, 144, 187, 189, 356
constant:2
container: 1, 8, 14-19,

21-25, 77, 79, 91-92, 104,
107, 112, 114, 123-126,
128, 136, 142, 152-153,
156, 159, 164-166,

168-169, 171, 174-175,
184, 188-189, 191-192,
232, 319, 365, 369

contour:231
controller: 114, 117,

125, 211, 219, 231
coreos:142
cron-based:301
cronjob: 127-129, 134, 136,

160-161, 212, 301-302

D
datetime: 205, 232,

278, 305
debugging: 186, 239
decoupling:127
deprecated:165
devops:113
directory: 14, 72, 82-84,

99, 106-107, 246-247
disk-node-: 154-155
docker: 1, 6, 13-14, 18-21,

24, 77-80, 89, 91-92,
114, 134, 136, 171, 176,
183, 187, 191, 202,
205-206, 268, 318-320,
325-326, 330-333, 335,
338-339, 343-344, 348,
352-353, 357, 368

dockerfile: 17-18, 20,
24, 205, 326

doctype: 350-351, 364

E
e-commerce: 8-9
ecosystem: 7, 30
endpoint: 24, 32, 39-41,

44, 85, 175, 243, 338
engine: 28, 142-145,

167, 213

entities: 263, 265-267
entrypoint: 17, 82
ephemeral: 5, 7, 12, 16, 125

F
faas-cli: 318, 320-321,

324-328, 330-340,
343, 345, 347, 350,
352, 362-363, 368

faas-netes:322
fail-safe:175
fargate:192
fclose:352
figlet: 341-343, 362-363
filename:224
filesize:352
fin-tech:113
firebase:56
firestore:56
fnproject: 77-78, 80
fnserver:80
fprint:60
fprintf: 13, 20

G
gb-second:57
gcloud: 152-153, 156,

159, 167-169
gemfile:84
generator:184
getenv:351
ghz-second: 57-58
golang: 14, 17, 210,

212, 318-319
googleapis: 116, 119,

184, 214, 216
grafana: 181-182, 186,

317, 356-363, 368

H
handlefunc:14
handler: 13, 15, 35, 107,

243, 247-248, 329-330,
338, 346-347, 351-352

hashicorp:192
header: 241, 295, 346, 350
heptio:142
heroku:28
hostname:234
htmloutput:347
httpbin:338
httponly: 295-296
hyperkit:115
hypervisor: 115, 213

I
ibm-cli: 263-264
ibmcloud: 264-267
identifier:270
in-cluster:211
increments:57
incubator:212
in-depth:4
index-:351
ingress: 173, 230-231, 234
inittime: 273, 276, 303
inline: 60-61
in-portal:50
ip-info: 337-340
isolation: 3, 5

J
javaone:77
javascript: 43, 51, 89,

256, 268-269, 274,
280-281, 283, 287, 290,
298, 311-313, 364

jsonpath: 173, 177, 179,
181, 355, 358

jsonstr:72

K
knative: 163-184,

186-187, 206
kubeadm:213
kubeconfig:149
kubectl: 112, 118-120,

122, 129-134, 137, 149,
151-158, 167, 169-170,
172-173, 176-181,
184-185, 191, 193,
197, 199, 202-203,
210, 216-219, 221,
225, 228-230, 232,
234, 236, 238, 241,
243-244, 322-324,
334, 355, 357-358

kubeless: 12, 206,
209-213, 218-244,
246-253, 256, 369

kubelet: 114, 117-118,
124, 163-164, 191-193,
200-202, 204, 206

kube-probe:243
kube-proxy: 114, 118
kubernetes: 1, 6, 8, 15-17,

25, 111-119, 123-129,
134-137, 139-145,
150, 152, 154-155,
158-161, 163-173, 183,
187, 191-193, 196-197,
202-203, 206, 209-211,
213, 218-219, 221, 225,
228, 230-232, 234-236,
243, 253, 256, 318-319,
322-323, 334, 362, 369

L
labels: 120, 124-126, 129,

202, 235, 244, 362
lambda: 4, 9, 12, 15-16,

30-43, 56-57, 73, 76, 89,
91-92, 105, 107, 244, 369

latency:7
library:252
license:249
linux-amd:220
localhost: 15, 19,

21-22, 81, 86-87
lock-in: 7, 16, 76-77, 90, 112

M
max-age: 294-297
mechanism: 212, 234, 236
memory: 31, 43, 57, 60,

120, 123, 155-156,
161, 191, 223, 273,
276, 303, 354

metadata: 120, 123-132,
171, 176-181, 183-184,
198-199, 202,
272, 274, 277

minikube: 115-120, 141,
209, 213-218, 221, 231,
235, 253, 317, 320, 323,
325, 355, 358, 368

monolith: 7, 11, 112
monolithic: 7-8
mountpath: 126, 130
myrule: 299-300
mytrigger: 298-301

N
namespace: 149, 171,

173, 176-181, 183, 195,
198-199, 218-219,

229-230, 232, 236,
238, 273, 275, 291, 299,
304, 306-307, 322,
334, 346, 351, 357

network: 4-5, 56-58, 123,
140, 166, 195, 323

newbuffer:72
nodejs: 171, 173, 245,

270-272, 276, 303
node-pools: 156, 159
nodeport: 355, 357-358
node-port:355
nodesource:245
non-json: 290, 314
non-rbac:218
noschedule: 154-155, 203

O
offline:125
openfaas: 206, 314,

317-320, 322-326,
328-338, 340-343,
345-347, 350-352,
354-358, 361-365,
368-369

openshift: 143, 218
openstack:192
openwhisk: 12, 89, 206,

244, 253, 255-257,
263, 265-271, 278-284,
286-288, 290-297, 299,
301-302, 306-307,
311-314, 318, 369

operation: 4, 30, 143
operator: 155, 203
oracle: 77, 213-214, 216
outsource:3
overridden: 325, 330

P
packages: 2-3, 255-256,

306-307, 314
parameter: 53, 76, 129,

152-153, 156, 159, 204,
240, 243, 281-282,
284, 290, 292-295,
311, 330, 351

params: 280-282,
284-285, 287-288,
290, 293, 298, 308,
311-313, 351

parsed:354
payload: 86, 290-291
pipeline:314
plugin: 92, 168, 231, 244,

247-249, 263, 265, 267
powershell: 43, 193
prefix: 308, 325, 330
prepended:330
primitives:159
principles:112
printf:136
println: 13-14
prometheus: 317, 319,

354-357, 361-362, 368
pubsub: 209-210,

234-238, 253

R
read-only:174
redundancy:150
registries:142
relational:9
release: 56, 119, 165,

169, 216, 218, 324
replica: 334, 342,

362-363, 368
report-uri: 295, 297
repository: 31, 90,

212, 298, 322, 326,
339, 348, 353

robust: 2, 5-6, 10,
143-144, 161, 369

roleref:199
routes: 174, 176
routing: 166, 174-175
rule-name:299
runlatest: 171, 175, 183
runtimes: 210-212,

222, 240, 283, 325

S
sandbox:191
scalable: 2-3, 5-6, 10, 12,

16, 113-115, 125-126,
143-144, 150, 161

scheduler: 58, 64-71,
73, 106, 113, 119,
124, 149, 155

selector: 124-125, 127,
129, 131, 202

sendgrid: 310-312, 364
server: 4, 8, 14, 28, 30,

79, 81, 89, 113-114,
118-119, 124-125, 140,
144, 154, 191, 222,
243, 295-297, 319

serverless: 1-2, 4-16, 20,
22, 24-25, 27-32, 42-43,
54, 56, 58, 73, 75-76, 78,
80, 82, 89-93, 99-105,
107-108, 112, 123, 134,
137, 140, 147, 152-154,
156-157, 159-161,
163-165, 187, 192-193,
204, 206, 209-210,
228, 230, 244-251,
253, 256-257, 301,
314, 317-318, 325, 330,
353-354, 361, 364, 369

setapikey:312
set-cookie: 294-296
shopify:6
showresult: 288-289
sidebar:342
signup: 43, 134, 310
simplify:175
slackbot:251
slideshare:5
snapshot:175
snippet: 72, 125, 127-128,

169, 183, 330
sprintf: 136, 330
standard: 154, 192,

196, 211, 267, 271,
290, 297, 319, 336

stateful: 15, 125, 129
stateless: 12, 15, 125,

161, 187, 206
statuscode: 35, 101, 247,

275, 293-294, 297, 311
stdout:319
subpath: 126, 130
subset:56
subtract:307
switching:175
syncusers:12
syntax:241

T
tabular:120
tagged: 18, 20, 331,

339, 348, 353
targetport: 127, 131
tekton: 165
telegram: 7
terminates: 128
text-align: 364
threshold: 362
tiller: 198-200
timeout: 223, 272-273,

276, 303
timers: 43, 51
timestamp:67
timezone: 204-205
tomcat:8
transition: 2-3, 11,

25, 29, 112
trigger: 17, 19, 27, 30-31,

37-43, 51, 56, 58, 60-62,
69-70, 73, 76, 82-86,
212, 230-235, 237-238,
298-304, 306, 313

turnkey: 142-143, 161
typescript:43

U
ubuntu: 123, 213
upstream:143
urandom:322
us-central: 152-153,

156, 159, 167, 190
user-agent: 294-296
us-south: 265,

292, 294-297

V
validation:54
variable: 154, 171, 173, 176,

178, 189-190, 204-205,
320, 330, 340

virtualbox: 115, 213-216
vmware:115

W
watchdog: 319, 331
web-action: 290, 293-294
webhook: 6, 51,

72, 251-252
webserver: 124-125

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introduction to Serverless
	Introduction to Serverless
	Serverless Origin and Manifesto
	Serverless Use Cases

	Serverless Architecture and Function as a Service (FaaS)
	Function as a Service (FaaS)
	Exercise 1: Creating an HTTP Function

	Kubernetes and Serverless
	Exercise 2: Packaging an HTTP Function as a Container
	Exercise 3: Parameterized HTTP Functions
	Activity 1: Twitter Bot Backend for Bike Points in London

	Summary

	Chapter 2: Introduction to Serverless in the Cloud
	 Introduction
	Serverless and the Cloud Evaluation Criteria
	AWS Lambda
	Exercise 4: Creating a Function in AWS Lambda and Invoking It via the AWS Gateway API
	Azure Functions
	Exercise 5: Creating a Parameterized Function in Azure Functions
	Google Cloud Functions
	Exercise 6: Creating a Scheduled Function in GCF
	Activity 2: Daily Stand-Up Meeting Reminder Function for Slack

	Summary

	Chapter 3: Introduction to Serverless Frameworks
	Introduction
	Fn Framework
	Exercise 7: Getting Started with the Fn Framework
	Exercise 8: Running Functions in the Fn Framework

	The Serverless Framework
	Exercise 9: Running Functions with the Serverless Framework
	Activity 3: Daily Weather Status Function for Slack

	Summary

	Chapter 4: Kubernetes Deep Dive
	Introduction to Kubernetes
	Kubernetes Design and Components
	Exercise 10: Starting a Local Kubernetes Cluster

	Kubernetes Client Tool: kubectl
	Exercise 11: Accessing Kubernetes Clusters Using the Client Tool: kubectl

	Kubernetes Resources
	Pod
	Deployment
	StatefulSet
	Service
	Job and CronJob
	Exercise 12: Installing a Stateful MySQL Database and Connecting inside Kubernetes
	Activity 4: Collect Gold Prices in a MySQL Database in Kubernetes

	Summary

	Chapter 5: Production-Ready Kubernetes Clusters
	Introduction
	Kubernetes Setup
	Managed Platforms
	Turnkey Platforms
	Custom Platforms

	Google Kubernetes Engine
	Exercise 13: Creating a Kubernetes Cluster on GCP

	Autoscaling Kubernetes Clusters
	 Exercise 14: Autoscaling a GKE Cluster in Production

	Application Migration in Kubernetes Clusters
	Exercise 15: Migrating Applications Running in a GKE Cluster
	Activity 5: Minimizing the Costs of Serverless Functions in a GKE Cluster

	Summary

	Chapter 6: Upcoming Serverless Features in Kubernetes
	Introduction to Serverless with Kubernetes
	Introduction to Knative
	Getting Started with Knative on GKE
	Exercise 16: Deploying a Sample Application on Knative

	Knative Serving Component
	Canary Deployment
	Exercise 17: Canary Deployment with Knative

	Knative Monitoring
	Knative Autoscaler
	Exercise 18: Autoscaling with Knative
	Google Cloud Run
	Exercise 19: Deploying Containers on Google Cloud Run

	Introduction to Virtual Kubelet
	Exercise 20: Deploying Virtual Kubelet on AKS
	Activity 6: Deploy a Containerized Application in a Serverless Environment

	Summary

	Chapter 7: Kubernetes Serverless with Kubeless
	Introduction to Kubeless
	Kubeless Architecture

	Creating a Kubernetes Cluster
	Creating a Kubernetes Cluster with Minikube

	Installing Kubeless
	Installing the Kubeless Framework
	Installing the Kubeless CLI
	The Kubeless UI

	Kubeless Functions
	Creating a Kubeless Function
	Deploying the Kubeless Function
	Listing the Kubeless Function
	Invoking the Kubeless Function
	Updating the Kubeless Function
	Deleting the Kubeless Function
	Exercise 21: Creating Your First Kubeless Function

	Kubeless HTTP Triggers
	Exercise 22: Creating an HTTP Trigger for a Kubeless Function

	Kubeless PubSub Triggers
	Exercise 23: Creating a PubSub Trigger for a Kubeless Function

	Monitoring a Kubeless Function
	Debugging a Kubeless Function
	Serverless Plugin for Kubeless
	Activity 7: Publishing Messages to Slack with Kubeless

	Summary

	Chapter 8: Introduction to Apache OpenWhisk
	Introduction to OpenWhisk
	Running OpenWhisk with IBM Cloud Functions
	Exercise 24: Setting Up an IBM Cloud Account
	Exercise 25: Installing the IBM Cloud CLI

	OpenWhisk Actions
	Writing Actions for OpenWhisk
	Creating Actions on the OpenWhisk Framework
	Listing OpenWhisk Actions
	Invoking OpenWhisk Actions
	Updating OpenWhisk Actions
	Deleting OpenWhisk Actions
	Exercise 26: Creating Your First OpenWhisk Action
	OpenWhisk Sequences
	Exercise 27: Creating OpenWhisk Sequences
	OpenWhisk Web Actions

	OpenWhisk Feeds, Triggers, and Rules
	OpenWhisk CronJob Triggers
	Exercise 28: Creating CronJob Triggers
	OpenWhisk Packages
	Exercise 29: Creating OpenWhisk Packages
	Activity 8: Receive Daily Weather Updates via Email

	Summary

	Chapter 9: Going Serverless with OpenFaaS
	Introduction to OpenFaaS
	Getting Started with OpenFaas on Your Local Minikube Cluster

	OpenFaaS Functions
	Creating OpenFaaS Functions
	Building OpenFaaS Functions
	Pushing the OpenFaaS Function Image
	Deploying the OpenFaaS Functions
	Listing the OpenFaaS Functions
	Invoking OpenFaaS Functions
	Deleting OpenFaaS Functions
	Exercise 30: Creating an OpenFaaS Function with Dependencies
	Deploying and Invoking Functions with OpenFaaS Portal
	OpenFaaS Functions with HTML Output
	Exercise 31: Returning HTML Based on Path Parameters
	OpenFaaS Function Observability
	Exercise 32: Installing an OpenFaaS Grafana Dashboard
	OpenFaaS Function Autoscaling
	Activity 9: OpenFaaS Form Processor

	Summary

	Appendix
	Index

