

Kubernetes in
Production Best
Practices

Build and manage highly available production-ready
Kubernetes clusters

Aly Saleh

Murat Karslioglu

BIRMINGHAM—MUMBAI

Kubernetes in Production Best Practices
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza

Publishing Product Manager: Vijin Boricha

Senior Editor: Arun Nadar

Content Development Editor: Romy Dias

Technical Editor: Yoginee Marathe

Copy Editor: Safis Editing

Project Coordinator: Neil Dmello

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Prashant Ghare

First published: February 2021

Production reference: 1110221

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80020-245-0

www.packt.com

http://www.packt.com

To the doctors, nurses, public health officials, and first responders who are
protecting us from COVID-19.

Contributors

About the authors
Aly Saleh is a technology entrepreneur, cloud transformation leader, and architect. He has
worked for the past 2 decades on building large-scale software solutions and cloud-based
platforms and services that are used by millions of users. He is a co-founder of MAVS
Cloud, a start-up that empowers organizations to leverage the power of the cloud.
He also played various technical roles at Oracle, Vodafone, FreshBooks, Aurea Software,
and Ceros.

Aly holds degrees in computer science, and he has gained multiple credentials in AWS,
GCP, and Kubernetes, with a focus on building cloud platforms, app modernization,
containerization, and architecting distributed systems. He is an advocate for cloud best
practices, remote work, and globally distributed teams.

I want to thank my wonderful wife, Rabab, my sons, Adham and Adam,
and my big family for giving me the encouragement and support I needed
to write this book, even while the COVID-19 global pandemic was raging

around us.
Murat Karslioglu is a distinguished technologist with years of experience using
infrastructure tools and technologies. Murat is currently the VP of products at MayaData,
a start-up that builds data agility platform for stateful applications, and a maintainer of
open source projects, namely OpenEBS and Litmus. In his free time, Murat is busy writing
practical articles about DevOps best practices, CI/CD, Kubernetes, and running stateful
applications on popular Kubernetes platforms on his blog, Containerized Me. Murat
also runs a cloud-native news curator site, The Containerized Today, where he regularly
publishes updates on the Kubernetes ecosystem.

I want to thank my wife, Svetlana, and the rest of my family for their
continuous support, patience, and encouragement throughout the whole

difficult process of book-writing.

About the reviewers
Renzo Tomà is a seasoned cloud engineer. He has built enterprise cloud infrastructures
that empower 100+ scrum teams with self-service cloud and Kubernetes capabilities.

His Kubernetes experience stems from building multi-cluster setups and dealing with
large-scale problems. At home, he runs Kubernetes on a Raspberry Pi to support home
automation.

Marcos Vale is a software engineer with more than 20 years in the IT industry with
a focus on DevOps, product architecture, design and development in many different
languages (mainly Java), and databases.

He has completed a PhD and a master's degree in data mining and a postgraduate course
in analysis, project, and management systems. He has graduated as a systems engineer and
is also Java certified (SJCP).

He has worked as a DevOps specialist for the last 6 years, working on many different
projects in Brazil, the United States, and across Europe, implementing DevOps with
a focus on IaC, Kubernetes, and CI/CD processes.

I wish to thank my family for supporting me, and I would like to express my
very great gratitude to Aly and Murat and the publisher for giving me the

opportunity to be a part of this great book.

Preface

1
Introduction to Kubernetes Infrastructure and Production-
Readiness

The basics of Kubernetes
infrastructure� 2
Kubernetes components� 3

Why Kubernetes is challenging
in production� 5
Kubernetes production-readiness� 6
The production-readiness checklist� 7

Kubernetes infrastructure best
practices� 11
The 12 principles of infrastructure

design and management� 11
Applications definition and deployment� 15
Processes, team, and culture� 16

Cloud-native approach� 16
The Cloud Native Computing Foundation�17
Why we should care about cloud-native� 17
Cloud-native landscape and ecosystem� 18
Cloud-native trail map� 18

Summary� 20
Further reading� 21

2
Architecting Production-Grade Kubernetes Infrastructure

Understanding Kubernetes
infrastructure design
considerations� 24
Scaling and elasticity� 24
High availability and reliability� 26
Security and compliance� 28
Cost management and optimization� 28
Manageability and operational efficiency�30

Exploring Kubernetes
deployment strategy alternatives�32
Designing an Amazon EKS
infrastructure� 34
Choosing the infrastructure provider� 35
Choosing the cluster and node size� 36
Choosing tools for cluster deployment
and management� 38

Table of Contents

ii Table of Contents

Deciding the cluster architecture� 40 Summary� 41
Further reading� 41

3
Provisioning Kubernetes Clusters Using AWS and Terraform

Technical requirements� 44
Installing Terraform� 44

Implementation principles and
best practices� 45
Cluster deployment and rollout
strategy� 45
Preparing Terraform� 46
Terraform directory structure� 47
Persisting the Terraform state� 47
Creating Terraform state configuration� 47
Provisioning the Terraform state� 52
Utilizing Terraform workspaces� 54

Creating the network
infrastructure� 55
Developing the VPC Terraform module� 55
Developing the cluster VPC� 59
Provisioning the cluster VPC� 62

Creating the cluster
infrastructure� 64
Developing the EKS Terraform module� 64
Developing the workers' Terraform
module� 69
Developing the Kubernetes cluster
Terraform module� 75
Putting all modules together� 77
Provisioning the cluster infrastructure� 80

Cleaning up and destroying
infrastructure resources� 82
Destroying the cluster resources� 82
Destroying the VPC resources� 83
Destroying the shared state resources� 83

Summary� 85
Further reading� 85

4
Managing Cluster Configuration with Ansible

Technical requirements� 88
Installing the required tools� 89
Implementation principles� 90
Kubernetes configuration
management� 90
Kubernetes configuration
management workflow� 92
Configuration management with Ansible�92

Configuring the clusters� 94
The ansible directory's structure� 95
Creating Ansible templates� 96
Creating Ansible variables� 99
Creating Ansible inventories� 100
Creating Ansible tasks� 102
Creating the cluster's playbook� 104
Applying the cluster's Ansible playbook� 105

Table of Contents iii

Destroying the cluster's
resources� 107

Summary� 107
Further reading� 108

5
Configuring and Enhancing Kubernetes Networking Services

Technical requirements� 110
Introducing networking
production readiness� 110
Configuring Kube Proxy� 112
Configuring the Amazon CNI
plugin� 114
Configuring CoreDNS� 117
Configuring ExternalDNS� 120

Configuring NGINX Ingress
Controller� 123
Deploying the cluster's network
services� 126
Destroying the cluster's
resources� 128
Summary� 129
Further reading� 129

6
Securing Kubernetes Effectively

Technical requirements� 132
Securing Kubernetes
infrastructure� 132
Managing cluster access� 134
Cluster authentication� 135
Cluster authorization� 136
Admission controller� 136

Managing secrets and
certificates� 137
Creating and managing secrets� 137
Managing TLS certificates with Cert-
Manager� 139

Securing workloads and apps� 143
Isolating critical workloads� 143
Hardening the default pod security
policy� 144
Limiting pod access� 147

Creating network policies with Calico� 150
Monitoring runtime with Falco� 152

Ensuring cluster security and
compliance� 153
Executing Kubernetes conformance
tests� 153
Scanning cluster security configuration� 155
Executing the CIS Kubernetes
benchmark� 156
Enabling audit logging� 157

Bonus security tips� 157
Deploying the security
configurations� 158
Destroying the cluster� 159
Summary� 160
Further reading� 160

iv Table of Contents

7
Managing Storage and Stateful Applications

Technical requirements� 162
Installing the required tools� 162

Implementation principles� 164
Understanding the challenges
with stateful applications � 165
Tuning Kubernetes storage � 167
Understanding storage primitives in
Kubernetes� 167

Choosing a persistent storage
solution� 175
Deploying stateful applications �177
Installing OpenEBS� 178
Deploying a stateful application on
OpenEBS volumes� 181

Summary� 182
Further reading� 183

8
Deploying Seamless and Reliable Applications

Technical requirements� 186
Understanding the challenges
with container images� 186
Exploring the components of container
images� 187
Choosing the right container base
image� 189
Reducing container image size� 193
Scanning container images for
vulnerabilities� 195
Testing the download speed of a
container image� 197
Applying container base images best

practices� 198

Learning application
deployment strategies� 199
Choosing the deployment model� 200
Monitoring deployments� 201
Using readiness and liveness container
probes� 202

Scaling applications and
achieving higher availability� 204
Summary� 207
Further reading� 207

9
Monitoring, Logging, and Observability

Technical requirements� 210
Understanding the challenges
with Kubernetes observability� 210
Exploring the Kubernetes metrics� 211

Learning site reliability best
practices� 214
Monitoring, metrics, and
visualization� 215

Table of Contents v

Installing the Prometheus stack on
Kubernetes� 215
Monitoring applications with Grafana� 220

Logging and tracing� 223

Installing the EFK stack on Kubernetes� 223

Summary� 232
Further reading� 232

10
Operating and Maintaining Efficient Kubernetes Clusters

Technical requirements� 234
Learning about cluster
maintenance and upgrades� 235
Upgrading kubectl� 235
Upgrading the Kubernetes control
plane � 236
Upgrading Kubernetes components � 238
Upgrading Kubernetes worker nodes � 240

Preparing for backups and
disaster recovery� 244
Installing Velero on Kubernetes� 244

Taking a backup of specific resources
using Velero� 247
Restoring an application resource from
its backup using Velero� 248

Validating cluster quality� 249
Generating compliance reports� 251
Managing and improving the cost of
cluster resources� 253

Summary� 256
Further reading� 257
Why subscribe?� 259

Other Books You May Enjoy
Index

Preface
Kubernetes is an open source container orchestration platform originally developed by
Google and made available to the public in 2014. The popularity of Kubernetes helped
to make the deployment of container-based, complex, distributed systems simpler to
manage for developers. Since its inception, the community has built a large ecosystem
around Kubernetes, with many open source projects that have made the automation of
management functions possible.

This book is specifically designed to quickly help Kubernetes administrators and
site reliability engineers (SREs) to build and manage production-grade Kubernetes
infrastructure following industry best practices and well-proven techniques learned from
early technology adopters of large-scale Kubernetes deployments.

While we use Amazon Elastic Kubernetes Service (EKS) to deliver the practical
exercises in this book, we believe that the explained Kubernetes design, provisioning, and
configuration concepts and techniques remain valid for other cloud providers. Regarding
the selection of provisioning and configuration tools, we decided to use cloud-agnostic
tools such as Terraform and Ansible to ensure portability across cloud providers.

Kubernetes in Production Best Practices gives you the confidence to use Kubernetes to host
your production workloads, having the comprehensive infrastructure design knowledge to
build your clusters and a clear understanding of managing and operating them efficiently.

Who this book is for
This book is ideal for cloud infrastructure architects, SREs, DevOps engineers, system
administrators, and engineering managers who have a basic knowledge of Kubernetes and
are willing to apply cloud industry best practices to design, build, and operate production-
grade Kubernetes clusters.

A basic knowledge of Kubernetes, AWS, Terraform, Ansible, and Bash will be beneficial.

viii Preface

What this book covers
Chapter 1, Introduction to Kubernetes Infrastructure and Production-Readiness, teaches
you about the basics of Kubernetes infrastructure, then explains the principles of
infrastructure designing, and finally the characteristics of production-ready clusters.

Chapter 2, Architecting Production-Grade Kubernetes Infrastructure, teaches you about the
various aspects, trade-offs, and best practices that you need to consider while designing
Kubernetes infrastructure.

Chapter 3, Provisioning Kubernetes Clusters Using AWS and Terraform, teaches you how
to use AWS, Terraform, and infrastructure as code techniques to provision Kubernetes
infrastructure.

Chapter 4, Managing Cluster Configurations with Ansible, teaches you how to use Ansible
to build a flexible and scalable configuration management solution for Kubernetes
clusters.

Chapter 5, Configuring and Enhancing Kubernetes Networking Services, teaches you how
to configure and improve Kubernetes cluster networking, and the essential Kubernetes
networking add-ons to use.

Chapter 6, Securing Kubernetes Effectively, teaches you about Kubernetes security best
practices, and how to validate and ensure the security of clusters.

Chapter 7, Managing Storage and Stateful Applications, teaches you how to overcome
storage challenges in Kubernetes using the best storage management solution in the
ecosystem.

Chapter 8, Deploying Seamless and Reliable Applications, teaches you container and image
best practices, as well as application deployment strategies to achieve scalable service in
production.

Chapter 9, Monitoring, Logging, and Observability, teaches you Kubernetes observability
best practices, important metrics to watch for, as well as the monitoring and logging stacks
available in the market, and when to use each of them.

Chapter 10, Operating and Maintaining Efficient Kubernetes Clusters, teaches you
Kubernetes operation best practices, as well as cluster maintenance tasks such as upgrades
and rotation, backups, and disaster recovery, and the solutions available to improve the
quality of clusters.

Preface ix

To get the most out of this book
To use this book, you will need access to computers, servers, AWS, or other cloud
provider services where you can provision virtual machine instances. To set up the lab
environments, you may also need larger cloud instances that will require you to enable
billing.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Kubernetes-in-Production-Best-
Practices. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at http://bit.ly/36JpElI.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800202450_ColorImages.pdf.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices
https://github.com/PacktPublishing/
http://bit.ly/36JpElI
https://static.packt-cdn.com/downloads/9781800202450_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800202450_ColorImages.pdf

x Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "As a best practice, we recommend that you limit any privileged pods
within the kube-system namespace."

A block of code is set as follows:

terraform {

 required_version = "~> 0.12.24"

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

provider "aws" {

 region = var.aws_region

 version = "~> 2.52.0"

}

Any command-line input or output is written as follows:

$ cd Chapter03/terraform/shared-state

$ terraform init

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Tips or important notes
Appear like this.

Preface xi

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

1
Introduction

to Kubernetes
Infrastructure

and Production-
Readiness

With more and more organizations adopting Kubernetes for their infrastructure
management, it is becoming the industry de facto standard for orchestrating and
managing distributed applications both in the cloud and on premises.

Whether you are an individual contributor who is migrating their company's applications
to the cloud or you are a decision-maker leading a cloud transformation initiative, you
should plan the journey to Kubernetes and understand its challenges.

2 Introduction to Kubernetes Infrastructure and Production-Readiness

If this book has a core purpose, it is guiding you through the journey of building
a production-ready Kubernetes infrastructure while avoiding the common pitfalls. This
is our reason for writing about this topic, as we have witnessed failures and successes
through the years of building and operating Kubernetes clusters on different scales. We are
sure that you can avoid a lot of these failures, saving time and money, increasing reliability,
and fulfilling your business goals.

In this chapter, you will learn about how to deploy Kubernetes production clusters with
best practices. We will explain the roadmap that we will follow for the rest of the book,
and explain foundational concepts that are commonly used to design and implement
Kubernetes clusters. Understanding these concepts and the related principles are the key
to building and operating production infrastructure. Besides, we will set your expectations
about the book's scope.

We will go through the core problems that this book will solve and briefly cover topics
such as Kubernetes production challenges, a production-readiness characteristics, the
cloud-native landscape, and infrastructure design and management principles.

We will cover the following topics in this chapter:

•	 The basics of Kubernetes infrastructure

•	 Why Kubernetes is challenging in production

•	 Kubernetes production-readiness

•	 Kubernetes infrastructure best practices

•	 Cloud-native approach

The basics of Kubernetes infrastructure
If you are reading this book, you already made your decision to take your Kubernetes
infrastructure to an advanced level, which means you are beyond the stage of evaluating
the technology. To build production infrastructure, the investment remains a burden
and it still needs a solid justification to the business and the leadership within your
organization. We will try to be very specific in this section about why we need a reliable
Kubernetes infrastructure, and to clarify the challenges you should expect in production.

The basics of Kubernetes infrastructure 3

Kubernetes adoption is exploding across organizations all over the world, and we expect
this growth to continue to increase, as the International Data Corporation (IDC)
predicts that around 95 percent of new microservices will be deployed in containers
by 2021. Most companies find that containers and Kubernetes help to optimize costs,
simplify deployment and operations, and decrease time to market, as well as play a pivotal
role in the hybrid cloud strategies. Similarly, Gartner predicts that more than 70 percent
of organizations will run two or more containerized applications in production by 2021
compared to less than 20 percent in 2019.

Kubernetes components
"Kubernetes (K8s) is an open-source system for automating deployment,

scaling, and management of containerized applications."

 – kubernetes.io
As we are concerned about building a reliable Kubernetes cluster, we will cover an
overview of the Kubernetes cluster architecture and its components, and then you will
learn about production challenges.

Kubernetes has a distributed systems architecture – specifically, a client-server one. There are
one or more master nodes, and this is where Kubernetes runs its control plane components.

There are worker nodes where Kubernetes deploys the pods and the workloads. A single
cluster can manage up to 5,000 nodes. The Kubernetes cluster architecture is shown in the
following diagram:

Figure 1.1 – Kubernetes cluster architecture

4 Introduction to Kubernetes Infrastructure and Production-Readiness

The preceding diagram represents a typical highly available Kubernetes cluster
architecture with the core components. It shows how the Kubernetes parts communicate
with each other. Although you have a basic understanding of the Kubernetes cluster
architecture, we will need to refresh this knowledge over the next section because we will
interact with most of these components in deeper detail when creating and tuning the
cluster configuration.

Control plane components
Control plane components are the core software pieces that construct the Kubernetes
master nodes. All of them together belong to the Kubernetes project, except etcd,
which is a separate project on its own. These components follow a distributed systems
architecture and can easily scale horizontally to increase cluster capacity and provide high
availability:

•	 kube-apiserver: The API server is the manager of the cluster components and
it is the interface responsible for handling and serving the management APIs and
middling the communication between cluster components.

•	 etcd: This is a distributed, highly available key-value data store that acts as the
backbone of the cluster and stores all of its data.

•	 kube-controller-manager: This manages the controller processes that control
the cluster – for example, the node controller that controls the nodes, the replication
controller that controls the deployments, and the endpoint controller that controls
services endpoints exposed in the cluster.

•	 kube-scheduler: This component is responsible for scheduling the pods across
the nodes. It decides which pod goes to which node according to the scheduling
algorithm, available resources, and the placement configuration.

Node components
Node components are a set of software agents that run on every worker node to maintain
the running pods and provide network proxy services and the base runtime environment
for the containers:

•	 kubelet: An agent service that runs on each node in the cluster, this periodically
takes a set of pod specs (a manifest file in YAML format that describes a pod
specification) and ensures that the pods described through these specs are running
properly. Also, it is responsible for reporting to the master on the health of the node
where it is running.

Why Kubernetes is challenging in production 5

•	 kube-proxy: This is an agent service that runs on each node in the cluster to
create, update, and delete network roles on the nodes, usually using Linux iptables.
These network rules allow inter-pod and intra-pod communication inside and
outside of the Kubernetes cluster.

•	 Container runtime: This is a software component that runs on each node in
the cluster, and it is responsible for running the containers. Docker is the most
famous container runtime; however, Kubernetes supports other runtimes, such as
Container Runtime Interface (CRI-O) and containerd to run containers, and
kubevirt and virtlet to run virtual machines.

Why Kubernetes is challenging in production
Kubernetes could be easy to install, but it is complex to operate and maintain. Kubernetes
in production brings challenges and difficulties along the way, from scaling, uptime,
and security, to resilience, observability, resources utilization, and cost management.
Kubernetes has succeeded in solving container management and orchestration, and it
created a standard layer above the compute services. However, Kubernetes still lacks
proper or complete support for some essential services, such as Identity and Access
Management (IAM), storage, and image registries.

Usually, a Kubernetes cluster belongs to a bigger company's production infrastructure,
which includes databases, IAM, Lightweight Directory Access Protocol (LDAP),
messaging, streaming, and others. Bringing a Kubernetes cluster to production requires
connecting it to these external infrastructure parts.

Even during cloud transformation projects, we expect Kubernetes to manage and integrate
with the on-premises infrastructure and services, and this takes production complexity to
a next level.

Another challenge occurs when teams start adopting Kubernetes with the assumption
that it will solve the scaling and uptime problems that their apps have, but they usually do
not plan for day-2 issues. This ends up with catastrophic consequences regarding security,
scaling, uptime, resource utilization, cluster migrations, upgrades, and performance tuning.

Besides the technical challenges, there are management challenges, especially when we use
Kubernetes across large organizations that have multiple teams, and if the organization is
not well prepared to have the right team structure to operate and manage its Kubernetes
infrastructure. This could lead to teams struggling to align around standard tools, best
practices, and delivery workflows.

6 Introduction to Kubernetes Infrastructure and Production-Readiness

Kubernetes production-readiness
"Your offering is production-ready when it exceeds customer expectations in

a way that allows for business growth."

 – Carter Morgan, Developer Advocate,
Google

Production-readiness is the goal we need to achieve throughout this book, and we may
not have a definitive definition for this buzzword. It could mean a cluster capable to serve
production workloads and real traffic in a reliable and secure fashion. We can further
extend this definition, but what many experts agree on is that there is a minimum set of
requirements that you need to fulfill before you mark your cluster as production-ready.

We have gathered and categorized these readiness requirements according to the typical
Kubernetes production layers (illustrated in the following diagram). We understand that
there are still different production use cases for each organization, and product growth
and business objectives are deeply affecting these use cases and hence the production
readiness requirements. However, we can fairly consider the following production-ready
checklist as an essential list for most mainstream use:

Figure 1.2 – Kubernetes infrastructure layers

Kubernetes production-readiness 7

This diagram describes the typical layers of Kubernetes infrastructure. There are six layers,
which include physical, on-premises, or cloud infrastructure; the infrastructure services
layer; the cluster layer; the cluster services layer; the applications supporting services
layer; and finally, the applications layer. You will learn about these layers in depth while
navigating this book and see how to design a Kubernetes production architecture that
brings these layers seamlessly together.

The production-readiness checklist
We have categorized the production-readiness checklist items and mapped them to
the corresponding infrastructure layers. Each checklist item represents a design and
implementation concern that you need to fulfill to consider your cluster a production-
ready. Throughout this book, we will cover the checklist items and their design and
implementation details.

Cluster infrastructure
The following checklist items cover the production-readiness requirements on the
cluster level:

•	 Run a highly available control plane: You can achieve this by running the control
plane components on three or more nodes. Another recommended best practice
is to deploy the Kubernetes master components and etcd on two separate node
groups. This is generally to ease etcd operations, such as upgrades and backups,
and to decrease the radius of control plane failures.

Also, for large Kubernetes clusters, this allows etcd to get proper resource
allocation by running it on certain node types that fulfill its extensive I/O needs.

Finally, avoid deploying pods to the control plane nodes.
•	 Run a highly available workers group: You can achieve this by running a group

or more of worker nodes with three or more instances. If you are running these
workers groups using one of the public cloud providers, you should deploy them
within an auto-scaling group and in different availability zones.

Another essential requirement to achieve worker high availability is to deploy the
Kubernetes cluster auto scaler, which enables worker nodes to horizontally upscale
and downscale based on the cluster utilization.

8 Introduction to Kubernetes Infrastructure and Production-Readiness

•	 Use a shared storage management solution: You should consider using a shared
storage management solution to persist and manage stateful apps' data. There are
plenty of choices, either open source or commercial, such as AWS Elastic Block
Store (EBS), Elastic File System (EFS), Google Persistent Disk, Azure Disk Storage,
ROOK, Ceph, and Portworx. There is no right or wrong choice among them, but it
all depends on your application use case and requirements.

•	 Deploy infrastructure observability stack: Collecting logs and metrics on the
infrastructure level for nodes, network, storage, and other infrastructure components
is essential for monitoring a cluster's infrastructure, and also to get useful insights
about the cluster's performance, utilization, and troubleshooting outages.

You should deploy a monitoring and alerting stack, such as Node Exporter,
Prometheus, and Grafana, and deploy a central logging stack, such as ELK
(Elasticsearch, Logstash, and Kibana). Alternatively, you can consider a complete
commercial solution, such as Datadog, New Relic, AppDynamics, and so on.

Fulfilling the previous requirements will ensure the production-readiness of the cluster
infrastructure. Later in this book, we will show you in more detail how to achieve each of
these requirements through infrastructure design, Kubernetes configuration tuning, and
third-party tools usage.

Cluster services
The following checklist items cover the production-readiness requirements on the cluster
services level:

•	 Control cluster access: Kubernetes introduces authentication and authorization
choices and lets the cluster's admin configure them according to their needs. As a
best practice, you should ensure authentication and authorization configuration is
tuned and in place. Integrate with an external authentication provider to authenticate
cluster's users, such as LDAP, OpenID Connect (OIDC), and AWS IAM.

For authorization, you need to configure the cluster to enable Role-Based Access
Control (RBAC), Attribute-Based Access Control (ABAC), and webhooks.

•	 Hardening the default pod security policy: Pod security policy (PSP) is a
Kubernetes resource that is used to ensure a pod has to meet specific requirements
before getting created.

As a best practice, we recommend that you limit any privileged pods within the
kube-system namespace. For all other namespaces that host your apps pods, we
recommend assigning a restrictive default PSP.

Kubernetes production-readiness 9

•	 Enforce custom policies and rules: Rules and policy enforcement are essential
for every Kubernetes cluster. This is true for both a small single-tenant cluster
and a large multi-tenant one. Kubernetes introduces native objects to achieve this
purpose, such as pod security policies, network policies, resource limits, and quotas.

For custom rules enforcement, you may deploy an open policy agent, such as OPA
Gatekeeper. This will enable you to enforce rules such as pods must have resource
limits in place, namespaces must have specific labels, images must be from known
repositories, and many others.

•	 Deploy and fine-tune the cluster DNS: Running a DNS for Kubernetes clusters is
essential for name resolution and service connectivity. Managed Kubernetes comes
with cluster DNS pre-deployed, such as CoreDNS. For self-managed clusters, you
should consider deploying CoreDNS too. As a best practice, you should fine-tune
CoreDNS to minimize errors and failure rates, optimize performance, and adjust
caching, and resolution time.

•	 Deploy and restrict network policies: Kubernetes allows all traffic between the
pods inside a single cluster. This behavior is insecure in a multi-tenant cluster. As
a best practice, you need to enable network policies in your cluster, and create a
deny-all default policy to block all traffic among the pods, then you create network
policies with less restrictive ingress/egress rules to allow the traffic whenever it is
needed for between specific pods.

•	 Enforce security checks and conformance testing: Securing a Kubernetes cluster is
not questionable. There are a lot of security configurations to enable and tune for a
cluster. This could get tricky for cluster admins, but luckily, there are different tools
to scan cluster configuration to assess and ensure that it is secure and meets the
minimum security requirements. You have to automate running security scanning
tools, such as kube-scan for security configuration scanning, kube-bench for
security benchmarking, and Sonobuoy to run Kubernetes standard conformance
tests against the cluster.

•	 Deploy a backup and restore solution: As with any system, Kubernetes could
fail, so you should have a proper backup and restore process in place. You should
consider tools to back up data, snapshot the cluster control plane, or back up the
etcd database.

•	 Deploy an observability stack for the cluster components: Monitoring and
central logging is essential for Kubernetes components such as control-plane,
kubelet, container runtime, and more. You should deploy a monitoring and
alerting stack such as Node Exporter, Prometheus, and Grafana, and deploy a
central logging stack, such as EFK (Elasticsearch, Fluentd, and Kibana).

10 Introduction to Kubernetes Infrastructure and Production-Readiness

Fulfilling the previous requirements will ensure the production-readiness of the cluster
services. Later in this book, we will show you in more detail how to achieve each of these
requirements through Kubernetes configuration tuning and third-party tools usage.

Apps and deployments
The following checklist items cover the production-readiness requirements on the apps
and deployments level:

•	 Automate images quality and vulnerability scanning: An app image that runs
a low-quality app or that is written with poor-quality specs can harm the cluster
reliability and other apps running on it. The same goes for images with security
vulnerabilities. For that, you should run a pipeline to scan images deployed to the
cluster for security vulnerabilities and deviations from quality standards.

•	 Deploy Ingress Controller: By default, you can expose Kubernetes services
outside the cluster using load balancers and node ports. However, the majority of
the apps have advanced routing requirements, and deploying an Ingress Controller
such as Nginx's Ingress Controller is a de facto solution that you should include in
your cluster.

•	 Manage certificates and secrets: Secrets and TLS certificates are commonly used
by modern apps. Kubernetes comes with a built-in Secrets object that eases the
creation and management of secrets and certificates inside the cluster. In addition
to that, you can extend secrets object by deploying other third-party services, such
as Sealed Secrets for encrypted secrets, and Cert-Manager to automate certificates
from certificate providers such as Let's Encrypt or Vault.

•	 Deploy apps observability stack: You should make use of Kubernetes' built-in
monitoring capabilities, such as defining readiness and liveness probes for the
pods. Besides that, you should deploy a central logging stack for the applications'
pods. Deploy a blackbox monitoring solution or use a managed service to monitor
your apps' endpoints. Finally, consider using application performance monitoring
solutions, such as New Relic APM, Datadog APM, AppDynamics APM, and more.

Fulfilling the previous requirements will ensure the production-readiness of the apps and
deployments. Later in this book, we will show you in more detail how to achieve each of
these requirements through Kubernetes configuration tuning and third-party tool usage.

Kubernetes infrastructure best practices 11

Kubernetes infrastructure best practices
We have learned about the basics of Kubernetes infrastructure and have got a high-level
understanding of the production readiness characteristics of the Kubernetes clusters. Now,
you are ready to go through the infrastructure best practices and design principles that
will lead you through the way building and operating your production clusters.

The 12 principles of infrastructure design and
management
Building a resilient and reliable Kubernetes infrastructure requires more than just
getting your cluster up and running with a provisioning tool. Solid infrastructure design
is a sequence of architecture decisions and their implementation. Luckily, many
organizations and experts put these principles and architectural decisions into real tests.

The following list summarizes the core principles that may lead the decision-maker
through the Kubernetes infrastructure design process, and throughout this book, you will
learn about these principles in detail, and apply them along the way:

1.	 Go managed: Although managed services could looks pricier than self-hosted ones,
it is still preferred over them. In almost every scenario, a managed service is more
efficient and reliable than its self-hosted counterpart. We apply this principle to
Kubernetes managed services such as Google Kubernetes Engine (GKE), Azure
Kubernetes Service (AKS), and Elastic Kubernetes Service (EKS). This goes
beyond Kubernetes to every infrastructure service, such as databases, object stores,
cache, and many others. Sometimes, the managed service could be less customizable
or more expensive than a self-hosted one, but in every other situation, you should
always consider first the managed service.

2.	 Simplify: Kubernetes is not a simple platform, either to set up or operate. It solves
the complexity of managing internet scale workloads in a world where applications
could scale up to serve millions of users, where cloud-native and microservices
architectures are the chosen approach for most modern apps.

For infrastructure creation and operation, we do not need to add another layer of
complexity as the infrastructure itself is meant to be a seamless and transparent to
the products. Organization's primary concern and focus should remain the product
not the infrastructure.

12 Introduction to Kubernetes Infrastructure and Production-Readiness

Here comes the simplification principle; it does not mean applying trivial solutions
but simplifying the complex ones. This leads us to decisions such as choosing fewer
Kubernetes clusters to operate, or avoiding multi-cloud; as long as we do not have
a solid use case to justify it.

The simplification principle applies to the infrastructure features and services we
deploy to the cluster, as it could be very attractive to add every single service as we
think it will make a powerful and feature-rich cluster. On the contrary, this will end
up complicating the operations and decreasing platform reliability. Besides, we can
apply the same principle to the technology stack and tools we choose, as unifying
the tools and technology stack across the teams is proven to be more efficient than
having a set of inhomogeneous tools that end up hard to manage, and even if one of
these tools is best for a specific use case, simplicity always pays back.

3.	 Everything as Code (XaC): This is the default practice for modern infrastructure
and DevOps teams. It is a recommended approach to use declarative infrastructure
as code (IaC) and configuration as code (CaC) tools and technologies over their
imperative counterparts.

4.	 Immutable infrastructure: Immutability is an infrastructure provisioning concept
and principle where we replace system components for each deployment instead of
updating them in place. We always create immutable components from images or
a declarative code, where we can build, test, and validate these immutable systems
and get the same predictable results every time. Docker images and AWS EC2 AMI
are examples of this concept.

This important principle leads us to achieve one of the desired characteristics of
Kubernetes clusters, which is treating clusters as cattle instead of pets.

5.	 Automation: We live in the era of software automation, as we tend to automate
everything; it is more efficient and easier to manage and scale, but we need to take
automation with Kubernetes to a further level. Kubernetes comes to automate
the containers' life cycle, and it also comes with advanced automation concepts,
such as operators and GitOps, which are efficient and can literally automate the
automations.

6.	 Standardization: Having a set of standards helps to reduce teams' struggle with
aligning and working together, eases the scaling of the processes, improves the
overall quality, and increases productivity. This becomes essential for companies
and teams planning to use Kubernetes in production, as this involves integrating
with different infrastructure parts, migrating services from on-premises to the
cloud, and way more complexities.

Kubernetes infrastructure best practices 13

Defining your set of standards covers processes for operations runbooks and
playbooks, as well as technology standardization as using Docker, Kubernetes,
and standard tools across teams. These tools should have specific characteristics:
open source but battle-tested in production, support the other principles, such as
Infrastructure as code, immutability, being cloud-agnostic, and being simple to use,
and deploy with minimum infrastructure.

7.	 Source of truth: Having a single source of truth is a cornerstone and an enabler
to modern infrastructure management and configuration. Source code control
systems such as Git are the standard choice to store and version infrastructure code,
where having a single and dedicated source code repository for infrastructure is a
recommended practice.

8.	 Design for availability: Kubernetes is a key enabler for the high availability of
both the infrastructure and the application layers. Having high availability as a
design pillar since day 1 is critical for getting the full power of Kubernetes, so at
every design level, you should consider high availability, starting from the cloud
and Infrastructure as a Service (IaaS) level by choosing multi-zone or region
architecture, then going through the Kubernetes layer by designing a multi-master
cluster, and finally, the application layer by deploying multiple replicas of each
service.

9.	 Cloud-agnostic: Being cloud-agnostic means that you can run your workloads on
any cloud with a minimal vendor-lock, but take care of getting obsessed with the
idea, and make it as a goal on its own. Docker and Kubernetes are the community's
answer to creating and managing cloud-agnostic platforms. This principle also goes
further to include other technologies and tool selection (think Terraform versus
CloudFormation).

10.	 Business continuity: Public cloud with its elasticity solved one problem that always
hindered the business continuity for the online services, especially when it made
scaling infrastructure almost instant, which enabled small businesses to have the
same infrastructure luxury that was previously only for the giant tech companies.

14 Introduction to Kubernetes Infrastructure and Production-Readiness

However, coping with the increased scaling needs and making it real-time remains
a challenge, and with introducing containers to deploy and run workload apps
become easy to deploy and scale in seconds. This put the pressure back on Kubernetes
and the underlying infrastructure layers to support such massive real-time scaling
capabilities of the containers. You need to make a scaling decision for the future to
support business expansion and continuity. Questions such as whether to use a single
large cluster versus smaller multiple clusters, how to manage the infrastructure cost,
what the nodes' right sizes are, and what the efficient resource utilization strategy is…
all of these questions require specific answers and important decisions to be taken!

11.	 Plan for failures: A lot of distributed systems characteristics apply to Kubernetes
containerized apps; specifically, fault tolerance, where we expect failures, and we
plan for system components failures. When designing a Kubernetes cluster, you
have to design it to survive outages and failures by using high-availability principles.
But you also have to intentionally plan for failures. You can achieve this through
applying chaos engineering ideas, disaster recovery solutions, infrastructure testing,
and infrastructure CI/CD.

12.	 Operational efficiency: Companies usually underestimate the effort required
to operate containers in production – what to expect on day 2 and beyond, and
how to get prepared for outages, cluster upgrades, backups, performance tuning,
resource utilization, and cost control. At this phase, companies need to figure out
how to deliver changes continuously to an increasing number of production and
non-production environments, and without the proper operations practices, this
could create bottlenecks and slow down the business growth, and moreover, lead
to unreliable systems that cannot fulfill customers' expectations. We witnessed
successful Kubernetes production rollouts, but eventually, things fell apart because
of operations teams and the weak practices.

These 12 principles are proven to be a common pattern for successful large scale cloud
infrastructure rollouts. We will apply these principles through most of this book's
chapters, and we will try to highlight each principle when we make a relevant technical
decision based on it.

Kubernetes infrastructure best practices 15

Applications definition and deployment
Probably, a successful and efficient Kubernetes cluster will not save an application's poor
design and implementation. Usually, when an application does not follow containerization
best practices and a highly available design, it will end up losing the cloud-native benefits
provided by the underlying Kubernetes:

•	 Containerization: This is the de facto standard delivery and deployment form of
cloud workloads. For production reliability, containerization best practices play a
vital role. You will learn about this principle in detail over the upcoming chapters.
Bad practices could lead to production instability and catastrophic outages, such
as ignoring containers' graceful shutdown and processes termination signals, and
improper application retries to connect to dependent services.

•	 Applications' high availability: This is by deploying two or more app replicas and
making use of Kubernetes' advanced placement techniques (node selectors, taints,
Affinity, and labeling) to deploy the replicas into different nodes and availability
zones, as well as defining pod disruption policies.

•	 Application monitoring: This is done by defining readiness and liveness probes
with different checks, deploying Application Performance Monitoring (APM),
and using the famous monitoring approaches, such as RED (Rate, Errors, and
Duration), and USE (Utilization, Saturation, and Errors).

•	 Deployment strategy: Kubernetes and cloud-native make deployments easier
than ever. These frequent deployments bring benefits to the businesses, such as
reducing time to market, faster customer feedback on new features, and increasing
product quality overall. However, there are downsides to these as well, as frequent
deployments could affect product reliability and uptime if you do not plan and
manage properly. This is when defining a deployment and rollback strategy (rolling
update, recreate, canary, blue/green, and deployment) comes in place as one of the
best practices for application deployments.

The consideration of these four areas will ensure smooth application deployment and
operations into the Kubernetes cluster, though further detailed technical decisions
should be taken under each of these areas, based on your organization's preferences and
Kubernetes use case.

16 Introduction to Kubernetes Infrastructure and Production-Readiness

Processes, team, and culture
Cloud transformation came with shocking changes to organizations' culture and
processes, and the way they manage and operate infrastructure and applications. DevOps
is a reflection of this deep impact of adopting the cloud mentality to organizations'
culture, as it affected how companies do dev and ops and how their internal teams are
organized.

Day after another, the line between dev and ops is getting thinner, and by introducing
Kubernetes and the cloud-native approaches DevOps teams are reshaping into a Site
Reliability Engineering (SRE) model and also hiring dedicated platform teams, as both
approaches consider recommended practices for structuring teams to manage and
operate Kubernetes.

Cloud-native approach
The Cloud Native Computing Foundation (CNCF) defines cloud-native as scalable
applications running in modern dynamic environments that use technologies such as
containers, microservices, and declarative APIs. Kubernetes is the first CNCF project, and
it is the world's most popular container orchestration platform.

Cloud-native computing uses an open source and modern commercial third-party
software stack to build, package, and deploy applications as microservices. Containers
and container orchestrators such as Kubernetes are key elements in the cloud-native
approach, and both are enabling achieving a cloud-native state and satisfying the 12-factor
app methodology requirements. These techniques enable resource utilization, distributed
system reliability, scaling, and observability, among others.

The 12-factor app methodology
The 12-factor app methodology defines the characteristics and design aspects
for developers and DevOps engineers building and operating software-as-a-
service. It is tightly coupled with cloud-native architecture and methods. Find
out more about it here: https://12factor.net/.

https://12factor.net/

Cloud-native approach 17

The Cloud Native Computing Foundation
In 2014, Google open sourced Kubernetes, which works much like their internal
orchestrator, Borg. Google has been using Borg in their data centers to orchestrate
containers and workloads for many years. Later, Google partnered with the Linux
Foundation to create CNCF, and Borg implementation was rewritten in Go, renamed to
Kubernetes. After that, a lot of technology companies joined CNCF, including Google's
cloud rivals: Microsoft and Amazon.

CNCF's purpose is building and managing platforms and solutions for modern
application development. It supervises and coordinates the open source technologies and
projects that support cloud-native software development, but there are also key projects by
commercial providers.

Why we should care about cloud-native
CNCF states the following:

"Companies are realizing that they need to be a software company, even if
they are not in the software business. For example, Airbnb is revolutionizing

the hospitality industry and more traditional hotels are struggling to
compete. Cloud native allows IT and software to move faster. Adopting

cloud native technologies and practices enables companies to create
software in-house, allows business people to closely partner with IT people,

keep up with competitors and deliver better services to their customers.
CNCF technologies enable cloud portability without vendor lock-in."

CNCF cloud-native recommendations and software stack are a cornerstone to
high-quality up-to-date Kubernetes infrastructure, and this is a critical part of the
production-grade infrastructure that we intend to deliver and operate. Following CNCF
and keeping track of their solutions landscape is one of the best practices that Kubernetes
platform creators and users should keep at the top of their checklists.

18 Introduction to Kubernetes Infrastructure and Production-Readiness

Cloud-native landscape and ecosystem
The cloud-native landscape is a combination of open source and commercial software
projects supervised and supported by CNCF and its members. CNCF classified these
projects according to the cloud-native functionalities and the infrastructure layers.
Basically, the landscape has four layers:

•	 Provisioning: This layer has projects for infrastructure automation and
configuration management, such as Ansible and Terraform, and container registry,
such as Quay and Harbor, then security and appliance, such as Falco, TUF, and
Aqua, and finally, key management, such as Vault.

•	 Runtime: This layer has projects for container runtime, such as containerd and
CRI-O, cloud-native storage, such as Rook and Ceph, and finally, cloud-native
networking plugins, such as CNI, Calico, and Cilium.

•	 Orchestration and management: This is where Kubernetes belongs as a schedular
and orchestrator, as well as other key projects, such as CoreDNS, Istio, Envoy, gRPC,
and KrakenD.

•	 App definition and development: This layer is mainly about applications and
their life cycle, where it covers CI/CD tools, such as Jenkins and Spinnaker, builds
and app definition, such as Helm and Packer, and finally, distributed databases,
streaming, and messaging.

The CNCF ecosystem provides recommendations that cover every aspect of the cloud-
native and Kubernetes needs. Whenever applicable, we will make use of these CNCF
projects to fulfill cluster requirements.

Cloud-native trail map
The cloud native trail map is CNCF's recommended path through the cloud-native
landscape. While this roadmap is meant for cloud-native transformations, it still intersects
with our Kubernetes path to production, as deploying Kubernetes as the orchestration
manager is a major milestone during this trail map.

Cloud-native approach 19

We have to admit that most Kubernetes users are starting their cloud transformation
journeys or are in the middle of it, so understanding this trail map is a cornerstone for
planning and implementing a successful Kubernetes rollout.

CNCF recommends the following stages for any cloud-native transformation that is also
supported by different projects through the cloud-native landscape:

1.	 Containerization: Containers are the packaging standard for cloud-native
applications, and this is the first stage that you should undergo to cloud-migrate
your applications. Docker containers prove to be efficient, lightweight, and portable.

2.	 Continuous Integration and Continuous Delivery/Deployment (CI/CD):
CI/CD is the second natural step after containerizing your applications, where
you automate building the containers images whenever there are code changes,
which eases testing and application delivery to different environments, including
development, test, stage, and even further to production.

3.	 Orchestration and application definition: Once you deploy your applications'
containers and automate this process, you will face container life cycle management
challenges, and you will end up creating a lot of automation scripts to handle
containers' restart, scaling, log management, health checks, and scheduling. This
is where orchestrators come onto the scene; they provide these management
services out of the box, and with orchestrators such as Kubernetes, you get far more
container life cycle management, but also an infrastructure layer to manage cloud
underlayers and a base for your cloud-native and microservices above it.

4.	 Observability and analysis: Monitoring and logging are integral parts of cloud-
native applications; this information and metrics allow you to operate your systems
efficiently, gain feasibility, and maintain healthy applications and service-level
objectives (SLOs).

5.	 Service proxy, discovery, and mesh: In this stage, your cloud-native apps and
services are getting complex and you will look for providing discovery services,
DNS, advanced load balancing and routing, A/B testing, canary testing and
deployments, rate limiting, and access control.

6.	 Networking and policy: Kubernetes and distributed containers networking models
bring complexity to your infrastructure, and this creates an essential need for
having a standard yet flexible networking standard, such as CNCF CNI. Therefore,
you need to deploy compliant plugins such as Calico, Cilium, or Weave to support
network policies, data filtering, and other networking requirements.

20 Introduction to Kubernetes Infrastructure and Production-Readiness

7.	 Distributed database and storage: The cloud-native app model is about scalability,
and conventional databases could not match the speed of the cloud-native scaling
requirements. This is where CNCF distributed databases fill the gap.

8.	 Streaming and messaging: CNCF proposes using gRPC or NATS, which provide
higher performance than JSON-REST. gRPC is a high-performance open source
RPC framework. NATS is a simple and secure messaging system that can run
anywhere, from large servers and cloud instances to Edge gateways and IoT devices.

9.	 Container registry and runtime: A container registry is a centralized place to store
and manage the container images. Choosing the right registry with features that
include performance, vulnerability analysis, and access control is an essential stage
within the cloud-native journey. Runtime is the software layer that is responsible for
running your containers. Usually, when you start the containerization stage you will
use a Docker runtime, but eventually, you may consider CNCF-supported runtimes,
such as CRI-O or containerd.

10.	 Software distribution: The Update Framework (TUF) and its Notary
implementation are both projects that are sponsored by CNCF, and they provide
modern and cloud-native software distribution.

It is wise to treat the preceding cloud-native transformation stages as a recommended
path. It is unlikely that companies will follow this roadmap rigidly; however, it is a great
basis to kick off your cloud transformation journey.

Summary
Building a production-grade and reliable Kubernetes infrastructure and clusters is more
than just provisioning a cluster and deploying applications to it. It is a continuous journey
that combines infrastructure and services planning, design, implementation, CI/CD,
operations, and maintenance.

Every aspect comes with its own set of technical decisions to make, best practices to
follow, and challenges to overcome.

By now, you have a brief understanding of Kubernetes infrastructure basics, production
challenges, and readiness features. Finally, we looked at the industry best practices for
building and managing successful Kubernetes productions and learned about the
cloud-native approach.

Further reading 21

In the next chapter, we will learn the practical details of how to design and architect
a successful Kubernetes cluster and the related infrastructure, while exploring the
technical and architectural decisions, choices, and alternatives that you need to handle
when rolling out your production clusters.

Further reading
You can refer to the following book if you are unfamiliar with basic Kubernetes concepts:

Getting Started with Kubernetes – Third Edition: https://www.packtpub.com/
virtualization-and-cloud/getting-started-kubernetes-third-
edition

https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition

2
Architecting
Production-

Grade Kubernetes
Infrastructure

In the previous chapter, you learned about the core components of Kubernetes and the
basics of its infrastructure, and why putting Kubernetes in production is a challenging
journey. We introduced the production-readiness characteristics for the Kubernetes
clusters, along with our recommended checklist for the services and configurations that
ensure the production-readiness of your clusters.

We also introduced a group of infrastructure design principles that we learned through
building production-grade cloud environments. We use them as our guideline through
this book whenever we make architectural and design decisions, and we highly
recommend that cloud infrastructure teams consider these when it comes to architecting
new infrastructure for Kubernetes and cloud platforms in general.

24 Architecting Production-Grade Kubernetes Infrastructure

In this chapter, you will learn about the important architectural decisions that you will
need to tackle while designing your Kubernetes infrastructure. We will explore the
alternatives and the choices that you have for each of these decisions, along with the
possible benefits and drawbacks. In addition to that, you will learn about the cloud
architecture considerations, such as scaling, availability, security, and cost. We do not
intend to make final decisions but provide the guidance because every organization has
different needs and use cases. Our role is to explore them, and guide you through the
decision-making process. When possible, we will state our preferred choices, which we
will follow through this book for the practical exercises.

In this chapter, we will cover the following topics:

•	 Understanding Kubernetes infrastructure design considerations

•	 Exploring Kubernetes deployment strategy alternatives

•	 Designing an Amazon EKS infrastructure

Understanding Kubernetes infrastructure
design considerations
When it comes to Kubernetes infrastructure design, there are a few, albeit important,
considerations to take into account. Almost every cloud infrastructure architecture shares
the same set of considerations; however, we will discuss these considerations from a
Kubernetes perspective, and shed some light on them.

Scaling and elasticity
Public cloud infrastructure, such as AWS, Azure, and GCP, introduced scaling and
elasticity capabilities at unprecedented levels. Kubernetes and containerization
technologies arrived to build upon these capabilities and extend them further.

When you design a Kubernetes cluster infrastructure, you should ensure that your
architecture covers the following two areas:

•	 Scalable Kubernetes infrastructure

•	 Scalable workloads deployed to the Kubernetes clusters

To achieve the first requirement, there are parts that depend on the underlying
infrastructure, either public cloud or on-premises, and other parts that depend on the
Kubernetes cluster itself.

Understanding Kubernetes infrastructure design considerations 25

The first part is usually solved when you choose to use a managed Kubernetes service such
as EKS, AKS, or GKE, as the cluster's control plane and worker nodes will be scalable and
supported by other layers of scalable infrastructure.

However, in some use cases, you may need to deploy a self-managed Kubernetes cluster,
either on-premises or in the cloud, and in this case, you need to consider how to support
scaling and elasticity to enable your Kubernetes clusters to operate at their full capacity.

In all public cloud infrastructure, there is the concept of compute auto scaling groups, and
Kubernetes clusters are built on them. However, because of the nature of the workloads
running on Kubernetes, scaling needs should be synchronized with the cluster scheduling
actions. This is where Kubernetes cluster autoscaler comes to our aid.

Cluster autoscaler (CAS) is a Kubernetes cluster add-on that you optionally deploy to
your cluster, and it automatically scales up and down the size of worker nodes based on
the set of conditions and configurations that you specify in the CAS. Basically, it triggers
cluster upscaling when there is a pod that cannot schedule due to insufficient compute
resources, or it triggers cluster downscaling when there are underutilized nodes, and their
pods can be rescheduled and placed in other nodes. You should take into consideration
the time a cloud provider takes to execute the launch of a new node, as this could be
a problem for time-sensitive apps, and in this case, you may consider CAS configuration
that enables node over provisioning.

For more information about CAS, refer to the following link: https://github.com/
kubernetes/autoscaler/tree/master/cluster-autoscaler.

To achieve the second scaling requirement, Kubernetes provides two solutions to achieve
autoscaling of the pods:

•	 Horizontal Pod Autoscaler (HPA): This works similar to cloud autoscaling groups,
but at a pod deployment level. Think of the pod as the VM instance. HPA scales the
number of pods based on a specific metrics threshold. This can be CPU or memory
utilization metrics, or you can define a custom metric. To understand how HPA
works, you can continue reading about it here: https://kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale/.

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

26 Architecting Production-Grade Kubernetes Infrastructure

•	 Vertical Pod Autoscaler (VPA): This scales the pod vertically by increasing its CPU
and memory limits according to the pod usage metrics. Think of VPA as upscaling/
downscaling the VM instance by changing its type in the public cloud. VPA can
affect CAS and triggers upscaling events, so you should revise the CAS and VPA
configurations to get them aligned and avoid any unpredictable scaling behavior.
To understand how VPA works, you can continue reading about it here: https://
github.com/kubernetes/autoscaler/tree/master/vertical-pod-
autoscaler.

We highly recommend using HPA and VPA for your production deployments (it is not
essential for non-production environments). We will give examples on how to use both of
them in deploying production-grade apps and services in Chapter 8, Deploying Seamless
and Reliable Applications.

High availability and reliability
Uptime means reliability and is usually the top metric that the infrastructure teams
measure and target for enhancement. Uptime drives the service-level objectives (SLOs)
for services, and the service level agreements (SLAs) with customers, and it also indicates
how stable and reliable your systems and Software as a Service (SaaS) products are. High
availability is the key for increasing uptime, and when it comes to Kubernetes clusters'
infrastructure, the same rules still apply. This is why designing a highly available cluster
and workload is an essential requirement for a production-grade Kubernetes cluster.

You can architect a highly available Kubernetes infrastructure on different levels of
availability as follows:

•	 A cluster in a single public cloud zone (single data center): This is considered the
easiest architecture among the others, but it brings the highest risk. We do not
recommend this solution.

•	 A cluster in multiple zones (multiple data centers) but in a single cloud region:
This is still easy to implement, it provides a higher level of availability, and it is
a common architecture for Kubernetes clusters. However, when your cloud provider
has a full region outage, your cluster will be entirely unavailable. Such full region
outages rarely happen, but you still need to be prepared for such a scenario.

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

Understanding Kubernetes infrastructure design considerations 27

•	 Across multi-region clusters, but within the same cloud provider: In this
architecture, you usually run multiple federated Kubernetes clusters to serve your
production workloads. This is usually the preferred solution for high availability,
but it comes at a cost that makes it hard to implement and operate, especially the
possible poor network performance, and shared storage for stateful applications. We
do not recommend this architecture since, for the majority of SaaS products, it is
enough to deploy Kubernetes in a single region and multiple zones. However, if you
have a multi-region as a requirement for a reason other than high availability, you
may consider multi-region Kubernetes federated clusters as a solution.

•	 Multiple clusters across multi-cloud deployment: This architecture is still unpopular
due to the incompatibility limitations across cloud providers, inter-cluster network
complexity, and the higher cost associated with network traffic across providers,
along with implementation and operations. However, it is worth mentioning the
increase in the number of multi-cloud management solutions that are endeavoring
to tackle and solve these challenges, and you may wish to consider a multi-cluster
management solution such as Anthos from Google. You can learn more about it
here: https://cloud.google.com/anthos.

As you may notice, Kubernetes has different architectural flavors when it comes to high
availability setup, and I can say that having different choices makes Kubernetes more
powerful for different use cases. Although the second choice is the most common one
as of now, as it strikes a balance between the ease of implementation and operation, and
the high availability level. We are optimistically searching for a time when we can reach
the fourth level, where we can easily deploy Kubernetes clusters across cloud providers
and gain all the high availability benefits without the burden of tough operations and
increased costs.

As for the cluster availability itself, I believe it goes without saying that Kubernetes
components should run in a highly available mode, that is, having three or more nodes
for a control plane, or preferably letting the cloud manage the control plane for you, as in
EKS, AKE, or GKE. As for workers, you have to run one or more autoscaling groups or
node groups/pools, and this ensures high availability.

The other area where you need to consider achieving high availability is for the pods and
workloads that you will deploy to your cluster. Although this is beyond the scope of this
book, it is still worthwhile mentioning that developing new applications and services,
or modernizing your existing ones so that they can run in a high availability mode, is
the only way to make use of the raft of capabilities provided by the powerful Kubernetes
infrastructure underneath it. Otherwise, you will end up with a very powerful cluster but
with monolithic apps that can only run as a single instance!

https://cloud.google.com/anthos

28 Architecting Production-Grade Kubernetes Infrastructure

Security and compliance
Kubernetes infrastructure security is rooted at all levels of your cluster, starting from the
network layer, going through the OS level, up to cluster services and workloads. Luckily,
Kubernetes has strong support for security, encryption, authentication, and authorization.
We will learn about security in Chapter 6, Securing Kubernetes Effectively, of this book.
However, during the design of the cluster infrastructure, you should give attention to
important decisions relating to security, such as securing the Kubernetes API server
endpoint, as well as the cluster network design, security groups, firewalls, network policies
between the control plane components, workers nodes, and the public internet.

You will also need to plan ahead in terms of the infrastructure components or integrations
between your cluster and identity management providers. This usually depends on your
organization's security policies, which you need to align with your IT and security teams.

Another aspect to consider is the auditing and compliance of your cluster. Most
organizations have cloud governance policies and compliance requirements, which you
need to be aware of before you proceed with deploying your production on Kubernetes.

If you decide to use a multi-tenant cluster, the security requirements could be more
challenging, and setting clear boundaries among the cluster tenants, as well as cluster
users from different internal teams, may result in decisions such as deploying a service
mesh, hardening cluster network policies, and implementing a tougher Role-Based
Access Control (RBAC) mechanism. All of this will impact your decisions while
architecting the infrastructure of your first production cluster.

The Kubernetes community is keen on compliance and quality, and for that there
are multiple tools and tests to ensure that your cluster achieves an acceptable level of
security and compliance. We will learn about these tools and tests in Chapter 6, Securing
Kubernetes Effectively.

Cost management and optimization
Cloud cost management is an important factor for all organizations adopting cloud
technology, both for those just starting and those who are already in the cloud.
Adding Kubernetes to your cloud infrastructure is expected to bring cost savings, as
containerization enables you to highly utilize your computer resources on a scale that was
not possible with VMs ever before. Some organizations achieved cost savings up to 90%
after moving to containers and Kubernetes.

Understanding Kubernetes infrastructure design considerations 29

However, without proper cost control, costs can rise again, and you end up with a lot
of wasted infrastructure cost with uncontrolled Kubernetes clusters. There are many
tools and best practices to consider in relation to cost management, but we mainly want
to focus on the actions and the technical decisions that you need to consider during
infrastructure design.

We believe that there are two important aspects that require decisions, and these decisions
will definitely affect your cluster infrastructure architecture:

•	 Running a single, but multi-tenant, cluster versus multi clusters (that is, a single
cluster per tenant)

•	 The cluster capacity: whether to run few large worker nodes or a lot of small
workers nodes, or a mix of the two

There are no definitive correct decisions, but we will try to explore the choices in the next
section, and how we can reach a decision.

These are other considerations to be made regarding cost optimization where an early
decision can be made:

•	 Using spot/preemptible instances: This has proven to achieve huge cost savings;
however, it comes at a price! There is the threat of losing your workloads at any
time, which affects your product uptime and reliability. Options are available for
overcoming this, such as using spot instances for non-production workloads, such
as development environments or CI/CD pipelines, or any production workloads
that can survive a disruption, such as data batch processing.

We highly recommend using spot instances for worker nodes, and you can run
them in their node group/pool and assign to them the types of workloads where
you are not concerned with them being disrupted.

•	 Kubernetes cost observability: Most cloud platforms provide cost visibility and
analytics for all cloud resources. However, having cost visibility at the deployment/
service level of the cluster is essential, and this needs to be planned ahead, so you
use isolated workloads, teams, users, environments, and also using namespaces
and assign resource quotas to them. By doing that, you will ensure that using a
cost reporting tool will provide you with reports relating the usage to the service
or cluster operations. This is essential for further decision making regarding cost
reductions.

30 Architecting Production-Grade Kubernetes Infrastructure

•	 Kubernetes cluster management: When you run a single-tenant cluster, or one
cluster per environment for development, you usually end up with tons of clusters
sprawled across your account which could lead to increased cloud cost. The solution
to this situation is to set up a cluster management solution from day one. This
solution could be as simple as a cluster auto scaler script that reduces the worker
nodes during periods of inactivity, or it can be a full automation with dashboards
and a master cluster to manage the rest of clusters.

In Chapter 9, Monitoring, Logging, and Observability, and Chapter 10, Operating and
Maintaining Efficient Kubernetes Clusters, we will learn about cost observability and cluster
operations.

Manageability and operational efficiency
Usually, when an organization starts building a Kubernetes infrastructure, they invest
most of their time, effort, and focus in urgent and critical demands for infrastructure
design and deployment, which we usually call Day 0 and Day 1. It is unlikely that an
organization will devote its attention to operational and manageability concerns that we
will face in the future (Day 2).

This is justified by the lack of experience in Kubernetes, and the types of operational
challenges, or by being driven by gaining the benefits of Kubernetes that mainly relate to
development, such as increasing a developer's productivity and agility, and automating
releases and deployment.

All of this leads to organizations and teams being less prepared for Day 2. In this book, we
try to maintain a balance between design, implementation, and operations, and shed some
light on the important aspects of the operation and learn how to plan for it from Day 0,
especially in relation to reliability, availability, security, and observability.

Operational challenges with Kubernetes
These are the common operational and manageability challenges that most teams face
after deploying Kubernetes in production. This is where you need to rethink and consider
solutions beforehand in order to handle these challenges properly:

•	 Reliability and scaling: When your infrastructure scales up, you could end up
with tens or hundreds of clusters, or clusters with hundreds or thousands of nodes,
and tons of configurations for different environment types. This makes it harder to
manage the SLAs/SLOs of your applications, as well as the uptime goals, and even
diagnosing a cluster issue could be very problematic. Teams need to develop their
Kubernetes knowledge and troubleshooting skills.

Understanding Kubernetes infrastructure design considerations 31

•	 Observability: No doubt Kubernetes is complex, and this makes monitoring and
logging a must-have service once your cluster is serving production, otherwise you
will have a very tough time identifying issues and problems. Deploying monitoring
and logging tools, in addition to defining the basic observability metrics and
thresholds, are what you need to take care of in this regard.

•	 Updateability and cluster management: Updating Kubernetes components, such
as the API server, kubelet, etcd, kube-proxy, Docker images, and configuration
for the cluster add-ons, become challenging to manage during the cluster life cycle.
This requires the correct tools to be in place from the outset. Automation and IaC
tools, such as Terraform, Ansible, and Helm, are commonly used to help in this
regard.

•	 Disaster recovery: What happens when you have a partial or complete cluster
failure? What is the recovery plan? How do you mitigate this risk and decrease
the mean time to recover your clusters and workloads. This requires deployment
of the correct tools, and writing the playbooks for backups, recovery, and crisis
management.

•	 Security and governance: You need to ensure that security best practices and
governance policies are applied and enforced in relation to production clusters and
workloads. This becomes challenging due to the complex nature of Kubernetes
and its soft isolation techniques, its agility, and the rapid pace it brings to the
development and release life cycles.

There are other operational challenges. However, we found that most of these can be
mitigated if we stick to the following infrastructure best practices and standards:

•	 Infrastructure as Code (IaC): This is the default practice for modern infrastructure
and DevOps teams. It is also a recommended approach to use declarative IaC tools
and technologies over their imperative counterparts.

•	 Automation: We live in the age of software automation, as we tend to automate
everything; it is more efficient and easier to manage and scale, but we need to take
automation with Kubernetes to another level. Kubernetes comes with the ability to
automate the life cycle of containers, and it also comes with advanced automation
concepts, such as operators and GitOps, which are efficient and can literally
automate automations.

32 Architecting Production-Grade Kubernetes Infrastructure

•	 Standardization: Having a set of standards helps to reduce teams' struggles with
aligning and working together, eases the scaling of the processes, improves the
overall quality, and increases productivity. This becomes essential for companies
and teams that are planning to use Kubernetes in production, as this involves
integrating with different infrastructure parts, migrating services from on-premises
to the cloud, and many further complexities.

Defining your set of standards covers processes for operation runbooks and
playbooks, as well as technology standardization – using Docker, Kubernetes, and
standard tools across teams. These tools should have specific characteristics: open
source but battle-tested in production, the ability to support the other principles,
such as IaC code, immutability, being cloud-agnostic, and being simple to use and
deploy with a minimum of infrastructure.

•	 Single source of truth: Having a source of truth is a cornerstone and enabler to
modern infrastructure management and configuration. Source code control systems
such as Git are becoming the standard choice to store and version infrastructure
code, where having a single and dedicated source code repository for infrastructure
is the recommended practice to follow.

Managing Kubernetes infrastructure is about management complexity. Hence, having
a solid infrastructure design, applying best practices and standards, increasing the team's
Kubernetes-specific skills, and expertise will all result in a smooth operational and
manageability journey.

Exploring Kubernetes deployment strategy
alternatives
Kubernetes and its ecosystem come with vast choices for everything you can do related
to deploying, orchestrating, and operating your workloads. This flexibility is a huge
advantage, and enables Kubernetes to suit different use cases, from regular applications
on-premises and in the cloud to IoT and edge computing. However, choices come with
responsibility, and in this chapter, we learn about the technical decisions that you need to
evaluate and take regarding your cluster deployment architecture..

Exploring Kubernetes deployment strategy alternatives 33

One of the important questions to ask and a decision to make is where to deploy your
clusters, and how many of them you may need in order to run your containerized
workloads? The answer is usually driven by both business and technical factors; elements
such as the existing infrastructure, cloud transformation plan, cloud budget, the team size,
and business growth target. All of these aspects could affect this, and this is why the owner
of the Kubernetes initiative has to collaborate with organization teams and executives to
reach a common understanding of the decision drivers, and agree on the right direction
for their business.

We are going to explore some of the common Kubernetes deployment architecture
alternatives, with their use cases, benefits, and drawbacks:

•	 Multi-availability-zones clusters: This is the mainstream architecture for deploying
a high availability (HA) cluster in a public cloud. Because running clusters in
a multi-availability zones is usually supported by all public cloud providers, and,
at the same time, it achieves an acceptable level of HA. This drives the majority
of new users of Kubernetes to opt for this choice. However, if you have essential
requirements to run your workloads in different regions, this option will not be
helpful.

•	 Multi-region clusters: Unless you have a requirement to run your clusters in
multiple regions, there is little motivation to opt for it. While a public cloud
provider to lose an entire region is a rare thing, but if you have the budget to do
a proper design and overcome the operational challenges, then you can opt for a
multi-region setup. It will definitely provide you with enhanced HA and reliability
levels.

•	 Hybrid cloud clusters: A hybrid cloud is common practice for an organization
migrating from on-premise to the public cloud and that is going through a
transitional period where they have workloads or data split between their old
infrastructure and the new cloud infrastructure. Hybrid could also be a permanent
setup, where an organization wants to keep part of its infrastructure on-premise
either for security reasons (think about sensitive data), or due to the impossibility
of migrating to the cloud. Kubernetes is an enabler of the hybrid cloud model,
especially with managed cluster management solutions such as Google Anthos.
This nevertheless entails higher costs in terms of provision and operation.

34 Architecting Production-Grade Kubernetes Infrastructure

•	 Multi-cloud clusters: Unlike hybrid cloud clusters, I find multi-cloud clusters
to be an uncommon pattern, as it usually lacks the strong drivers behind it. You
can run multiple different systems in multi-cloud clusters for a variety of reasons,
but deploying a single system across two or more clouds over Kubernetes is not
common, and you should be cautious before moving in this direction. However, I
can understand the motivating factors behind some organizations doing this, such
as avoiding cloud lock-in with a particular provider, leveraging pricing models with
different providers for cost optimization, minimizing latency, or even achieving
ultimate reliability for the workloads.

•	 On-premises clusters: If an organization decides not to move to the cloud,
Kubernetes still can manage their infrastructure on-premises, and actually,
Kubernetes is a reasonable choice to manage the on-prem workload in a modern
fashion, however, the solid on-prem managed Kubernetes solutions still very few.

•	 Edge clusters: Kubernetes is gaining traction in edge computing and the IoT world.
It provides an abstraction to the underlying hardware, it is ideal for distributed
computing needs, and the massive Kubernetes ecosystem helps to come out with
multiple open source and third-party projects that fit edge computing nature, such
as KubeEdge and K3s.

•	 Local clusters: You can run Kubernetes on your local machine using tools such as
Minikube or Kind (Kubernetes in Docker). The purpose of using a local cluster is
for trials, learning, and for use by developers.

We have discussed the various clusters deployments architectures and models available
and their use cases. In the next section, we will learn work on designing the Kubernetes
infrastructure that we will use in this book, and the technical decisions around it..

Designing an Amazon EKS infrastructure
In this chapter, we have discussed and explored various aspects of Kubernetes clusters
design, and the different architectural considerations that you need to take into account.
Now, we need to put things together for the design that we will follow during this book.
The decisions that we will make here do not mean that they are the only right ones, but
this is the preferred design that we will follow in terms of having minimally acceptable
production clusters for this book's practical exercise. You can definitely use the same
design, but with modifications, such as cluster sizing.

Designing an Amazon EKS infrastructure 35

In the following sections, we will explore our choices regarding the cloud provider,
provisioning and configuration tools, and the overall infrastructure architecture, and
in the chapters to follow, we will build upon these choices and use them to provision
production-like clusters as well as deploy the configuration and services above the cluster.

Choosing the infrastructure provider
As we learned in the previous sections, there are different ways in which to deploy
Kubernetes. You can deploy it locally, on-premises, or in a public cloud, private cloud,
hybrid, multi-cloud, or an edge location. Each of these infrastructure type has use cases,
benefits, and drawbacks. However, the most common one is the public cloud, followed by
the hybrid model. The remaining choices are still limited to specific use cases.

In a single book like ours, we cannot discuss each of these infrastructure platforms, so
we decided to go with the common choice for deploying Kubernetes, by using one of
the public clouds (AWS, Azure, or GCP). You still can use another cloud provider, a
private cloud, or even an on-premises setup, and most of the concepts and best practices
discussed in this book are still applicable.

When it comes to choosing one of the public clouds, we do not advocate one over the
others, and we definitely recommend using the cloud provider that you already use for
your existing infrastructure, but if you are just embarking on your cloud journey, we
advise you to perform a deeper benchmarking analysis between the public clouds to see
which one is better for your business.

In the practical exercises in this book, we will use AWS and the Elastic Kubernetes
Service (EKS). We explained in the previous chapter regarding the infrastructure design
principle that we always prefer a managed service over its self-managed counterpart, and
this applies here when it comes to choosing between EKS and building our self-managed
clusters over AWS.

36 Architecting Production-Grade Kubernetes Infrastructure

Choosing the cluster and node size
When you plan for your cluster, you need to decide both the cluster and node sizes. This
decision should be based on the estimated utilization of your workloads, which you may
know beforehand based on your old infrastructure, or it can be calculated approximately
and then adjusted after going live in production. In either case, you will need to decide on
the initial cluster and node sizes, and then keep adjusting them until you reach the correct
utilization level to achieve a balance between cost and reliability. You can target
a utilization level of between 70 and 80% unless you have a solid justification for using
a different level.

These are the common cluster and node size choices that you can consider either
individually or in a combination:

•	 Few large clusters: In this setup, you deploy a few large clusters. These can be
production and non-production clusters. A cluster could be large in terms of
node size, node numbers, or both. Large clusters are usually easier to manage
because they are few in number. They are cost efficient because you achieve higher
utilization per node and cluster (assuming you are running the correct amount of
workloads), and this improved utilization comes from saving the resources required
for system management. On the downside, large clusters lack hard isolation for
multi-tenants, as you only use namespaces for soft isolation between tenants. They
also introduce a single point of failure to your production (especially when you run
a single cluster). There is another limitation, as any Kubernetes cluster has an upper
limit of 5,000 nodes that it can manage and when you have a single cluster, you can
hit this upper limit if you are running a large number of pods.

•	 Many small clusters: In this setup, you deploy a lot of small clusters. These could be
small in terms of node size, node numbers, or both. Small clusters are good when
it comes to security as they provide hard isolation between resources and tenants
and also provide strong access control for organizations with multiple teams and
departments. They also reduce the blast radius of failures and avoid having a single
point of failure. On the downside, small clusters come with an operational overhead,
as you need to manage a fleet of clusters. They are also inefficient in terms of
resource usage, as you cannot achieve the utilization levels that you can achieve with
large clusters, in addition to increasing costs, as they require more control plane
resources to manage a fleet of small clusters that manage the same total number of
worker nodes in a large cluster.

Designing an Amazon EKS infrastructure 37

•	 Large nodes: This is about the size of the nodes in a cluster. When you deploy
large nodes in your cluster, you will have better and higher utilization of the node
(assuming you deploy workloads that utilize 70-80% of the node). This is because
a large node can handle application spikes, and it can handle applications with
high CPU/memory requirements. In addition to that, a well utilized large node
usually entails cost savings as it reduces the overall cluster resources required for
system management and you can purchase such nodes at discounted prices from
your cloud provider. On the downside, large nodes can introduce a high blast
radius of failures, thereby affecting the reliability of both the cluster and apps. Also,
adding a new large node to the cluster during an upscaling event will add a lot of
cost that you may not need, so if your cluster is hit by variable scaling events over
a short period, large nodes will be the wrong choice. Added to this is the fact that
Kubernetes has an upper limit in terms of the number of pods that can run on
a single node regardless of its type and size, and for a large node, this limitation
could lead to underutilization.

•	 Small nodes: This is about the size of the nodes per single cluster. When you
deploy small nodes in your cluster, you can reduce the blast radius during failures,
and also reduce costs during upscaling events. On the downside, small nodes are
underutilized, they cannot handle applications with high resource requirements,
and the total amount of system resources required to manage these nodes (kubelet,
etcd, kube-proxy, and so on) is higher than managing the same compute power
for a larger node, in addition to which small nodes have a lower limit for pods
per node.

•	 Centralized versus decentralized clusters: Organizations usually use one of these
approaches in managing their Kubernetes clusters.

In a decentralized approach, the teams or individuals within an organization
are allowed to create and manage their own Kubernetes clusters. This approach
provides flexibility for the teams to get the best out of their clusters, and customize
them to fit their use cases; on the other hand, this increases the operational
overhead, cloud cost, and makes it difficult to enforce standardization, security,
best practices, and tools across the clusters. This approach is more appropriate for
organizations that are highly decentralized, or when they are going through cloud
transformation, product life cycle transitional periods, or exploring and innovating
new technologies and solutions.

38 Architecting Production-Grade Kubernetes Infrastructure

In a centralized approach, the teams or individuals share a single cluster or small
group of identical clusters that use a similar set of standards, configurations, and
services. This approach overcomes and decreases the drawbacks in the decentralized
model; however, it can be inflexible, slow down the cloud transformations, and
decreases teams' agility. This approach is more suitable for organizations working
towards maturity, platform stability, increasing cloud cost reduction, enforcing and
promoting standards and best practices, and focusing on products rather than the
underlaying platform.

Some organizations can run a hybrid models from the aforementioned alternatives, such
as having large, medium, and small nodes to get the best of each type according to their
apps needs. However, we recommend that you run experiments to decide which model
suits your workload's performance, and meets your cloud cost reduction goal.

Choosing tools for cluster deployment and
management
In the early days of Kubernetes, we used to deploy it from scratch, which was commonly
called Kubernetes the Hard Way. Fast forward and the Kubernetes community got bigger
and a lot of tools emerged to automate the deployment. These tools range from simple
automation to complete one-click deployment.

In the context of this book, we are not going to explain each of these tools in the market
(there are a lot), nor to compare and benchmark them. However, we will propose our
choices with a brief reasoning behind the choices.

Infrastructure provisioning
When you deploy Kubernetes for the first time, most likely you will use a command-line
tool with a single command to provision the cluster, or you may use a cloud provider web
console to do that. In both ways, this approach is suitable for experimental and learning
purposes, but when it comes to real implementation across production and development
environments a provisioning tool becomes a must.

The majority of organizations that consider deploying Kubernetes already have an existing
cloud infrastructure or they are going through a cloud migration process. This makes
Kubernetes not the only piece of the cloud infrastructure that they will use. This is why we
prefer a provisioning tool that achieves the following:

•	 It can be used to provision Kubernetes as well as other pieces of infrastructure
(databases, file stores, API gateways, serverless, monitoring, logging, and so on).

•	 It fulfills and empowers the IaC principles.

Designing an Amazon EKS infrastructure 39

•	 It is a cloud-agnostic tool.

•	 It has been battle-tested in production by other companies and teams.

•	 It has community support and active development.

We can find these characteristics in Terraform, and this is why we chose to use it in the
production clusters that we managed, as well as in this practical exercise in this book.
We highly recommend Terraform for you as well, but if you prefer another portioning
tool, you can skip this chapter and then continue reading this book and apply the same
concepts and best practices.

Configuration management
Kubernetes configuration is declarative by nature, so, after deploying a cluster, we need
to manage its configuration. The add-ons deployed provide services for various areas of
functionality, including networking, security, monitoring, and logging. This is why a solid
and versatile configuration management tool is required in your toolset.

The following are solid choices:

•	 Regular configuration management tools, such as Ansible, Chef, and Puppet

•	 Kubernetes-specific tools, such as Helm and Kustomize

•	 Terraform

Our preferred order of suitable tools is as follows:

1.	 Ansible

2.	 Helm

3.	 Terraform

We can debate this order, and we believe that any of these tools can fulfill the
configuration management needs for Kubernetes clusters. However, we prefer to use
Ansible for its versatility and flexibility as it can be used for Kubernetes and also for other
configuration management needs for your environment, which makes it preferable over
Helm. On the other hand, Ansible is preferred over Terraform because it is a provisioning
tool at heart, and while it can handle configuration management, it is not the best tool
for that.

In the hands-on exercises in this book, we decided to use Ansible with Kubernetes module
and Jinja2 templates.

40 Architecting Production-Grade Kubernetes Infrastructure

Deciding the cluster architecture
Each organization has its own way of managing cloud accounts. However, we recommend
having at least two AWS accounts, one for production and another for non-production.
The production Kubernetes cluster resides in the production account, and the
non-production Kubernetes cluster resides in the non-production account. This structure
is preferred for security, reliability, and operational efficiency.

Based on the technical decisions and choices that we made in the previous sections, we
propose the following AWS architecture for the Kubernetes clusters that we will use in
this book, which you can also use to deploy your own production and non-production
clusters:

Figure 2.1 – Cluster architecture diagram

In the previous architecture diagram, we decided to do the following:

•	 Create a separate VPC for the cluster network; we chose the Classless Inter-
Domain Routing (CIDR) range, which has sufficient IPv4 addressing capacity for
future scaling. Each Kubernetes node, pod, and service will have its own IP address,
and we should keep in mind that the number of services will increase.

Summary 41

•	 Create public and private subnets. The publicly accessible resources, such as load
balancers and bastions, are placed in the public subnets, and the privately accessible
resources, such as Kubernetes nodes, databases, and caches, are placed in the private
subnets.

•	 For high availability, we create the resources in three different availability zones. We
placed one private and one public subnet in each availability zone.

•	 For scaling, we run multiple EKS node groups.

We will discuss the details of these design specs in the next chapters, in addition to the
remainder of the technical aspects of the cluster's architecture.

Summary
Provisioning a Kubernetes cluster can be a task that takes 5 minutes with modern tools
and managed cloud services; however, thus this is far from a production-grade Kubernetes
infrastructure and it is only sufficient for education and trials. Building a production-
grade Kubernetes cluster requires hard work in designing and architecting the underlying
infrastructure, the cluster, and the core services running above it.

By now, you have learned about the different aspects and challenges you have to consider
while designing, building, and operating your Kubernetes clusters. We explored the
different architecture alternatives to deploy Kubernetes clusters, and the important
technical decisions associated with this process. Then, we discussed the proposed cluster
design, which we will use during the book for the practical exercises, and we highlighted
our selection of infrastructure platform, tools, and architecture.

In the next chapter, we will see how to put everything together and use the design
concepts we discussed in this chapter to write IaC and follow industry best practices with
Terraform to provision our first Kubernetes cluster.

Further reading
For more information on the topics covered in this chapter, please refer to the
following links:

•	 Mastering Kubernetes – Third Edition: https://www.packtpub.com/
product/mastering-kubernetes-third-edition/9781839211256

•	 Kubernetes on AWS: https://www.packtpub.com/product/kubernetes-
on-aws/9781788390071

https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/kubernetes-on-aws/9781788390071
https://www.packtpub.com/product/kubernetes-on-aws/9781788390071

3
Provisioning

Kubernetes Clusters
Using AWS and

Terraform
In the previous chapter, we learned about Kubernetes clusters and infrastructure design
and how to create a deployment architecture to fulfill best practices and standards. There
are multiple alternatives when it comes to designing and building your Kubernetes
platform. Choosing the solution that works for your use case and satisfies goals in terms
of production readiness is not an easy task. There are still challenges and limitations for
Kubernetes, the underlying technologies, and the surrounding ecosystem.

44 Provisioning Kubernetes Clusters Using AWS and Terraform

In this chapter, we will go through the detailed implementation of the infrastructure
design. Basically, we will learn how to create the Kubernetes infrastructure
declaratively with Terraform. While provisioning the infrastructure, we will learn about
implementation best practices, such as the encapsulation of infrastructure components
into reusable modules, separating Kubernetes clusters per environment without adding an
operational overhead and complexity. In addition, you will practice rolling out your first
Kubernetes cluster and group of clusters with simple Terraform commands.

In this chapter, we will cover the following topics:

•	 Implementation principles and best practices

•	 Cluster deployment and rollout strategy

•	 Preparing Terraform

•	 Creating the network infrastructure

•	 Creating the cluster infrastructure

•	 Cleaning up and destroying infrastructure resources

Technical requirements
We will need the Terraform tool installed for this chapter as a prerequisite.

In addition to this tool, you will need to have an AWS account and user credentials ready
to use. Please ensure the authentication of the AWS CLI with your AWS credentials. You
can refer to the AWS documentation for further instructions at https://docs.aws.
amazon.com/cli/latest/userguide/cli-chap-configure.html.

The code for this chapter is located at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter03.

Check out the following link to see the Code in Action video:

https://bit.ly/39Ocoyq

Installing Terraform
Terraform binary is a command-line utility that is used to develop Infrastructure as Code
(IaC), plan, and execute it to create resources, and manage infrastructure providers such
as AWS, Azure, GCP, Fastly, OKTA, and more.

You can follow the instructions in the official documentation to download the latest
version of Terraform at https://www.terraform.io/downloads.html.

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03
https://bit.ly/39Ocoyq
https://www.terraform.io/downloads.html

Implementation principles and best practices 45

After installing Terraform, you are ready to implement the hands-on exercises in the
coming sections.

Implementation principles and best practices
In Chapter 1, Introduction to Kubernetes Infrastructure and Production-Readiness, you
learned about the 12 infrastructure design principles that we will follow during the
book. I would like to start this chapter by highlighting the principles that drove us to this
implementation of the cluster infrastructure. The following are the three principles that
influenced the implementation decisions in this chapter:

1.	 Infrastructure as code: In this chapter, you will write every piece of infrastructure
code declaratively. You will achieve this by using Terraform.

2.	 Go managed: There are two fundamental ways in which to create a Kubernetes
cluster – either to build and operate Kubernetes control plane and workers on your
own (on-prem or on cloud), or to use one of the managed Kubernetes services in
the cloud, such as Google Kubernetes Engine (GKE), Azure Kubernetes Service
(AKS), and AWS Elastic Kubernetes Service (EKS). In this book, I will use EKS as
this fulfills the managed services principle.

3.	 Standardization: We applied this principle when we selected Terraform as
our provisioning and IaC tool. Terraform is not the easiest way to bootstrap a
Kubernetes cluster, and there are other tools that could be faster to use and easier to
learn. However, we needed to standardize our infrastructure toolset around as few
tools as possible. Therefore, Terraform makes sense because in most use cases, your
production environment is not Kubernetes on its own. There are databases, caching
services, content delivery, load balancers, and so on. These types of infrastructure
components are easier to create and manage by Terraform.

Cluster deployment and rollout strategy
In the previous chapter, we explored different infrastructure design alternatives,
limitations, and corner cases. We made the architecture decisions that fulfill the
infrastructure design principles for the production-grade Kubernetes clusters. And finally,
we came up with a full deployment architecture for our Kubernetes infrastructure, which
we will build and use over this book. Certainly, while we proceed from one chapter to the
next, we will keep enhancing our infrastructure design and implementation, adding more
features, and making it better.

46 Provisioning Kubernetes Clusters Using AWS and Terraform

In terms of implementation, we should address how we will roll out the clusters and
deploy them. Specifically, we are looking for extendibility, simplicity, and operational
efficiency. We will follow these principles during the implementation in the next sections:

1.	 Developing generic infrastructure modules: By encapsulating every infrastructure
resource in a reusable code module, this will enable us to automate cluster
provisioning with minimum to zero code changes. It also promotes code reusability
practices essential for simplifying the IaC and increases operational efficiency.

2.	 Supporting single and multiple clusters: In real life, Kubernetes deployment teams
require multiple clusters to serve the whole company or a specific product. In this
chapter, we will follow a strategy that will enable us to create a group of clusters with
the same infrastructure code and configuration. Also, we will create multiple groups
of clusters with different configurations. This will help us to serve and automate the
provisioning and operation of multiple production and non-production clusters.
This implementation is scalable as we can provision many clusters (up to the limit of
the underlying IaaS provider) without the need to scale your infrastructure teams.

3.	 Separating production and non-production environments with minimal
changes: One of the recommended practices is to have two separate AWS accounts
for production and non-production environments, and our implementation also
supports this model with minimum code changes and administration work.

4.	 Automating infrastructure deployment: Every single piece of infrastructure is
managed by Terraform, and with a limited number of commands, we can provision
the entire Kubernetes cluster. We can build automated pipelines for infrastructure
deployment and testing with traditional CI/CD such as Jenkins.

In fact, cluster deployment is not a one-time task. It is a continuous process that affects the
cluster's quality, stability, operations, and, moreover, the products and services on top of it.
So, we are keen to establish a solid infrastructure deployment strategy, which we will follow
during implementation in this chapter and also keep improving throughout the book.

Preparing Terraform
Before creating the Terraform configuration and code for the Kubernetes cluster, you
need to create a new source code repository for the infrastructure and then create the
Terraform directory structure. In addition to that, you will learn how to configure and
use Terraform's shared state, which is an essential best practice for managing IaC in
production environments.

Preparing Terraform 47

Terraform directory structure
The Terraform directory is where all the Terraform source code lives in your source code
repository. I recommend creating a separate source code repository. This repository
should contain all the infrastructure code and configuration. The following is the directory
structure of the Terraform source code that we will develop in the forthcoming sections:

Figure 3.1 – Terraform directory structure

Persisting the Terraform state
Terraform stores the state of the infrastructure resources under its management to be able to
map it to the existing resources in the real world. By default, the state is stored to local files.
However, this is not recommended for production-scale infrastructure where preserving
consistent state and also sharing it among distributed team members are essential.

As a recommended Terraform best practice, you should configure Terraform to keep the
state remote and locked:

•	 Remote: As you already use AWS as an infrastructure provider, you can utilize an
S3 bucket to remotely store Terraform state files.

•	 Locked: You can achieve Terraform state lock by using a DynamoDB table. Then,
the Terraform state will get locked for the current user until this user finishes up, at
which point other users can acquire the lock.

Creating Terraform state configuration
Apply the following steps to create the Terraform directory structure and the directory for
the shared state configuration:

1.	 Create a root directory named terraform. This is the root directory for all
Terraform source code.

48 Provisioning Kubernetes Clusters Using AWS and Terraform

2.	 Create a subdirectory named shared-state. This is the directory that will
contain Terraform source code to provision both the S3 bucket and the DynamoDB
table. Both of them are used to store the shared state.

In the following steps, you will create the shared state Terraform code under the shared-
state directory with the following structure:

Figure 3.2 – Shared state directory structure

Important note
You can find the complete source code of the shared state Terraform
configuration at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/
master/Chapter03/terraform/shared-state.

Now, let's create the Terraform files under the shared-state directory:

1.	 Terraform can create and manage infrastructure resources from both cloud and
on-prem, and it can achieve this by communicating with the external infrastructure
using a provider that is a kind of software plugin that translates Terraform commands
into the APIs that the infrastructure provider can understand and execute.

2.	 In the config.tf file, you define the provider's configuration that you will use
in this chapter. For each provider, you need to define its name and the version you
intend to use. To learn more about defining a "required provider version," visit
https://www.terraform.io/docs/configuration/terraform.
html#specifying-required-provider-versions

It is important to define the version explicitly, especially when Terraform is used by
multiple users or automation tools. This is to avoid the upgrades to newer versions
that could break the Terraform state:

terraform {

 required_version = "~> 0.14.5"

}

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03/terraform/shared-state
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03/terraform/shared-state
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03/terraform/shared-state

Preparing Terraform 49

This code block defines the AWS provider configuration. You only need to specify
both the AWS region and the provider's version:

provider "aws" {

 region = var.aws_region

 version = "~> 3.27.0"

}

3.	 In the terraform.tfvars file, you define the environment variables that
Terraform needs to use during provisioning of the infrastructure resources.
Using Terraform tfvars files is a good practice to pass environment variables
to Terraform. This enables you to keep all of the configuration, including the
environment variables, versioned in your source control as your source of truth:

aws_region = "us-east-1"

clusters_name_prefix = "packtclusters"

We use us-east-1 as the default AWS region, but you can use any other region as
long as you maintain it for the other exercises.

The second environment variable is the clusters name prefix, which you will use
for your clusters to identify them as a group of clusters. This name prefix could
represent your company's name or the product name. However, you are free to use
any appropriate naming convention.

4.	 In the variables.tf file, you define the input variables that Terraform code will
use. There are two input variables that you will need for the exercises in this chapter.
The first is the AWS region, and the second is the clusters name prefix. Both of them
will get their values from the previous terraform.tfvars file:

variable "aws_region" {

 type = string

}

variable "clusters_name_prefix" {

 type = string

}

5.	 In the tf-state-s3.tf file, you define two S3 bucket resources. The first bucket
stores the state for the VPC and network resources, while the second bucket stores
the state for the Kubernetes cluster resources, such as EKS and workers groups.

50 Provisioning Kubernetes Clusters Using AWS and Terraform

The following code snippet uses the Terraform resource called aws_s3_bucket,
which is a built-in resource in the Terraform AWS provider that can be used to
create AWS S3 buckets and set its configuration parameters.

We will use this S3 bucket to persist the Terraform state. And, as you will notice in
the following code, this S3 bucket has private access to keep it secure from the public.
It also has deletion prevention enabled to protect it from unplanned deletion:

resource "aws_s3_bucket" "clusters_tf_state_s3_bucket" {

 bucket = "${var.clusters_name_prefix}-terraform-state"

 acl = "private"

 versioning {

 enabled = true

 }

 lifecycle {

 prevent_destroy = true

 }

 tags = {

 Name = "${var.clusters_name_prefix} S3 Remote
Terraform State Store"

 ManagedBy = "terraform"

 }

}

The second part of the code is similar to the previous one, but it is used to create
the S3 bucket for the networking infrastructure or the virtual private cloud (VPC)
resources state:

resource "aws_s3_bucket" "clusters_vpc_tf_state_s3_
bucket" {

 bucket = "${var.clusters_name_prefix}-vpc-terraform-
state"

 acl = "private"

 versioning {

 enabled = true

 }

 lifecycle {

 prevent_destroy = true

 }

 tags = {

Preparing Terraform 51

 Name = "${var.clusters_name_prefix} VPC S3
Remote Terraform State Store"

 ManagedBy = "terraform"

 }

}

Splitting the infrastructure state into two files, as we did in the previous code,
is debatable. However, we tend to use a balanced approach as we will not use
a separate state for a resource unless it has an independent life cycle from the
Kubernetes cluster. This separation facilitates change management of the resources
and decouples the critical resources from one another.

6.	 In the tf-state-dynamodb.tf file, you create two DynamoDB tables, the first
for VPC resource state locking, and the second for Kubernetes cluster resources.

The following code snippet uses the Terraform resource called aws_dynamodb_
table, which is a built-in resource in the Terraform AWS provider that is used to
create an AWS DynamoDB table and set its configuration parameters.

This code creates a DynamoDB table to hold the lock for the shared Terraform state
for the Kubernetes cluster resources. This lock will protect parallel runs against the
same state file or the same resources, and this prevents users from applying changes
to infrastructure at the same time. This could be very dangerous, right?

resource "aws_dynamodb_table" "clusters_dynamodb_tf_
state_lock" {

 name = "${var.clusters_name_prefix}-
terraform-state-lock-dynamodb"

 hash_key = "LockID"

 read_capacity = 20

 write_capacity = 20

 attribute {

 name = "LockID"

 type = "S"

 }

}

52 Provisioning Kubernetes Clusters Using AWS and Terraform

The second part of the tf-state-dynamodb.tf file creates a DynamoDB table
to hold the locks for the shared Terraform state for the VPC resources:

resource "aws_dynamodb_table" "clusters_vpc_dynamodb_tf_
state_lock" {

 name = "${var.clusters_name_prefix}-vpc-
terraform-state-lock-dynamodb"

 hash_key = "LockID"

 read_capacity = 20

 write_capacity = 20

 attribute {

 name = "LockID"

 type = "S"

 }

}

When you apply the previous Terraform code file, it will create two DynamoDB tables.
In the coming sections, we will learn how to configure terraform to use them. Then,
Terraform will be able to create locks for its shared state files.

Provisioning the Terraform state
After creating the previous Terraform code files for the shared state resources. You have to
perform the following instructions to provision the resources in your AWS account:

1.	 Initialize the Terraform state:

$ cd Chapter03/terraform/shared-state

$ terraform init

Initializing modules...

Initializing the backend...

Initializing provider plugins...

- Checking for available provider plugins...

- Downloading plugin for provider "aws" (hashicorp/aws)
3.27.0...

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see

any changes that are required for your infrastructure.
All Terraform commands

should now work.

Preparing Terraform 53

If you ever set or change modules or backend
configuration for Terraform,

rerun this command to reinitialize your working
directory. If you forget, other

commands will detect it and remind you to do so if
necessary.

2.	 Run the terraform plan command to validate the planned changes before
applying them:

$ terraform plan

3.	 You will get the following output after the terraform plan command
completes successfully. There are four resources to add – two S3 buckets and two
DynamoDB tables:

Figure 3.3 – Terraform plan command output

4.	 Execute the terraform apply command. Enter yes when you get a prompt to
approve execution:

$ terraform apply

5.	 You will get the following output after the terraform apply command completes
successfully. By then, Terraform has successfully created four AWS resources:

Figure 3.4 – Terraform apply command output

54 Provisioning Kubernetes Clusters Using AWS and Terraform

Now you have completed provisioning of the AWS resources to persist and manage the
Terraform shared state. In the next section, you will learn how to provision the VPC and
the other network resources to run your first Kubernetes cluster.

Utilizing Terraform workspaces
In the previous section, you learned that Terraform configuration has a backend that
defines how operations are executed and where the infrastructure state is persisted, such
as in S3 buckets. Terraform uses workspaces to organize and isolate multiple states under
a single backend.

This concept becomes useful when the user wants to run multiple instances of the same
infrastructure without creating multiple backends and state files. Let's assume that you want
to use Terraform to provision a Kubernetes cluster, ClusterA, and you want to use the same
configuration to provision a second cluster, ClusterB. In this case, workspaces provide an
out-of-the-box and scalable solution, as you will be able to use a single backend for all of your
clusters (N clusters), but you provision each cluster in its workspace with its own state file.

If you have a Terraform configuration with a backend named k8s_s3_backend, and
you want to provision N Kubernetes clusters using the same Terraform base code, then
you can do the following:

$ terraform workspace new cluster1

Created and switched to workspace "cluster1"!

You're now on a new, empty workspace. Workspaces isolate their
state,

so if you run "terraform plan" Terraform will not see any
existing state

for this configuration.

$ terraform apply

<apply outputs>

Then, repeat the same process for every N cluster:

$ terraform workspace new clusterN

Created and switched to workspace "clusterN"!

You're now on a new, empty workspace. Workspaces isolate their
state,

Creating the network infrastructure 55

so if you run "terraform plan" Terraform will not see any
existing state

for this configuration.

$ terraform apply

<apply outputs>

Creating the network infrastructure
In Chapter 2, Architecting Production-Grade Kubernetes Infrastructure, you learned in
detail about the infrastructure architecture design recommendations and the technical
decisions that you should take in relation to the production readiness state for your
Kubernetes clusters. In this section, you will use Terraform to provision the network layer
of your Kubernetes production infrastructure.

These are the AWS network resources that you will provision with the Terraform code in
this section:

•	 AWS VPC

•	 Private subnets

•	 Public subnets

•	 Route tables

•	 Internet and NAT gateways

Encapsulating AWS resources into reusable code modules is a recommended IaC practice.
In the next subsection, you will create a VPC Terraform module that includes the previous
AWS resources. You can then reuse this module with no code changes to provision VPCs for
as many Kubernetes clusters as you need.

Developing the VPC Terraform module
Under the terraform root directory, create a directory and name it modules. Then,
create a subdirectory and name it eks-vpc. This subdirectory will contain the following
Terraform code files:

•	 variables.tf

•	 main.tf

•	 outputs.tf

56 Provisioning Kubernetes Clusters Using AWS and Terraform

Input variables
These are the input variables that are accepted by this module. The module's user should
provide the values for each of these variables:

•	 VPC CIDR block: The value of the VPC CIDR, such as 10.40.0.0/17.

•	 Private subnet prefixes: The values of private subnet prefixes. This could be 1 or
another prefix such as 10.40.64.0/20.

•	 Public subnet prefixes: The values of public subnet prefixes. This could be 1 or
another prefix such as 10.40.0.0/20.

•	 Cluster name prefix: The value of the cluster name prefix that is used in naming the
VPC resources.

•	 Common tags: Any AWS tags that you want to assign to the VPC resources to help
identify and classify them later.

The variables.tf file is defined as follows:

variable "eks_vpc_block" {

 type = string

}

variable "eks_private_subnets_prefix_list" {

 type = list(string)

}

variable "eks_public_subnets_prefix_list" {

 type = list(string)

}

variable "clusters_name_prefix" {

 type = string

}

variable "common_tags" {

 type = map(string)

}

The previous code snippet defines five Terraform variable blocks and all of the type
strings. In the Creating the cluster VPC section, you will use this VPC module and learn
how to pass the values for each of these variables.

Creating the network infrastructure 57

Module main resources
The main.tf file defines the network resources that are required to create Kubernetes
AWS network components, including the public and private subnets, internet and NAT
gateways, and routing tables.

The following code snippet uses the Terraform resource called aws_vpc, which is a
built-in resource in the Terraform AWS provider that can be used to create AWS VPC and
set its configuration parameters.

In the following code block, you define the VPC resource, and a data resource that is used
to retrieve the value of the AWS availability zones that you use in the main.tf file:

resource "aws_vpc" "eks_vpc" {

 cidr_block = var.eks_vpc_block

 enable_dns_hostnames = true

 tags = merge(

 var.common_tags,

 {

 Name = "${var.clusters_name_prefix}-vpc"

 },

)

 lifecycle {

 ignore_changes = [

 tags

]

 }

}

data "aws_availability_zones" "availability_zones" {

}

The following code snippet uses the Terraform resource called aws_subnet, which is a
built-in resource in the Terraform AWS provider that can be used to create AWS subnets
and set their configuration parameters.

This code uses the Terraform built-in count construct to create one or more subnets
according to the number of private subnet prefixes:

resource "aws_subnet" "eks_private_subnets" {

 count = length(var.eks_private_subnets_prefix_
list)

58 Provisioning Kubernetes Clusters Using AWS and Terraform

 cidr_block = element(var.eks_private_subnets_prefix_
list, count.index)

 vpc_id = aws_vpc.eks_vpc.id

 availability_zone = data.aws_availability_zones.availability_
zones.names[count.index]

 tags = merge(

 var.common_tags,

 {

 Name = "eks-private-${var.clusters_name_prefix}-${data.
aws_availability_zones.availability_zones.names[count.index]}"

 },

)

 lifecycle {

 ignore_changes = [

 tags

]

 }

}

In the remaining part of the main.tf file, you define an aws_subnet resource, which
is similar to the private subnet resource, but designed for public subnets. Also, you create
complementary VPC network resources that handle the routing, connect the subnets
together and with the internet, such as NAT and internet gateways, routing tables,
and NAT IPs. You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/
master/Chapter03/terraform/modules/eks-vpc/main.tf.

Output values
The outputs.tf file defines the output values from the VPC module. Terraform will
need these values to use them as inputs to the Kubernetes cluster module when you
provision it. There are four outputs from the VPC module: the VPC ID; the private subnet
IDs; the public subnet IDs; and the NAT IPs.

The outputs.tf file is defined as follows:

output "eks_cluster_vpc_id" {

 value = aws_vpc.eks_vpc.id

}

output "eks_private_subnet_ids" {

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-vpc/main.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-vpc/main.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-vpc/main.tf

Creating the network infrastructure 59

 value = aws_subnet.eks_private_subnets.*.id

}

output "eks_public_subnet_ids" {

 value = aws_subnet.eks_public_subnets.*.id

}

output "eks_nat_ips" {

 value = aws_eip.eks_nat_ips.*.public_ip

}

The preceding code snippet defines five Terraform output blocks. In the Provisioning the
cluster section, you will use these outputs as inputs to the Kubernetes terraform modules.

Developing the cluster VPC
Under the terraform root directory, create a directory and name it packtclusters-
vpc. This directory will contain the following Terraform code files:

•	 config.tf

•	 terraform.tfvars

•	 variables.tf

•	 main.tf

•	 outputs.tf

The previous list of Terraform files comprises your Kubernetes cluster VPC. You will learn
about each code and configuration file in the following subsections.

Configuration
config.tf has the Terraform shared state configuration and the AWS provider definition:

terraform {

 backend "s3" {

 bucket = "packtclusters-vpc-terraform-state"

 key = "packtclusters-vpc.tfstate"

 region = "us-east-1"

 dynamodb_table = "packtclusters-vpc-terraform-state-lock-
dynamodb"

 }

60 Provisioning Kubernetes Clusters Using AWS and Terraform

 required_version = "~> 0.14.5"

 required_providers {

 aws = "~> 3.27"

 }

}

provider "aws" {

 region = var.aws_region

 version = "~> 3.27"

}

The preceding code block tells Terraform which S3 bucket to use to persist the state, and
specifies Terraform and AWS provider versions.

Environment variables
The terraform.tfvars file defines the values of the input variables. These values are
required by the VPC module to set the values of these inputs: the AWS region; the VPC IP
CIDR; the private subnet prefix list; and the public subnet prefix list.

The terraform.tfvars file is defined as follows:

aws_region = "us-east-1"

clusters_name_prefix = "packtclusters"

vpc_block = "10.40.0.0/17"

public_subnets_prefix_list = [

 "10.40.0.0/20",

 "10.40.16.0/20",

 "10.40.32.0/20",

]

private_subnets_prefix_list = [

 "10.40.64.0/20",

 "10.40.80.0/20",

 "10.40.96.0/20",

]

Creating the network infrastructure 61

For the preceding code, you can choose a different CIDR block for the VPC IPs range and
different subnet prefixes according to your network topology and applications needs.

Important note
You should make sure that the VPC CIDR is not used by any other VPCs
within your own AWS VPC so as to avoid IPs collisions. You should make
sure the VPC CIDR has a sufficient number of IPs that exceeds the maximum
forecasted number of pods in your Kubernetes cluster.

Input variables
The variables.tf file defines the five input variables that Terraform will use
during creation of the VPC module resources. It is very similar to the previous
variables.tf files. You can view its full source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/
master/Chapter03/terraform/packtclusters-vpc/variables.tf.

The cluster VPC
The main.tf file has two code blocks: the vpc module block, which creates an instance
of the eks-vpc module, and the locals code block, which defines common_tags to
be assigned to VPC resources.

The main.tf file is defined as follows:

locals {

 common_tags = {

 ManagedBy = "terraform"

 }

}

module "vpc" {

 source = "../modules/eks-vpc"

 clusters_name_prefix = var.clusters_name_prefix

 eks_vpc_block = var.vpc_block

 eks_public_subnets_prefix_list = var.public_subnets_prefix_
list

 eks_private_subnets_prefix_list = var.private_subnets_prefix_
list

 common_tags = local.common_tags

}

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters-vpc/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters-vpc/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters-vpc/variables.tf

62 Provisioning Kubernetes Clusters Using AWS and Terraform

Thanks to Terraform modules, this makes the previous code clean and simple, as it hides
the complexity of creating the AWS VPC. In the next subsection, you will create the
Terraform outputs that you will use while creating the cluster VPC.

Output values
The outputs.tf file defines the output values that you need to get after creating the
cluster VPC. These outputs are the VPC ID, the private subnet IDs, and the public
subnet IDs.

The outputs.tf file is defined as follows:

output "vpc_id" {

 value = module.vpc.eks_cluster_vpc_id

}

output "private_subnet_ids" {

 value = module.vpc.eks_private_subnet_ids

}

output "public_subnet_ids" {

 value = module.vpc.eks_public_subnet_ids

}

The outputs from the previous code block are used as the inputs to the Kubernetes cluster
Terraform modules in the next section.

Provisioning the cluster VPC
Once you have completed development of the VPC Terraform files in the previous
sections, you can now provision the VPC resources and create them in your AWS account:

1.	 Initialize the Terraform state:

$ cd Chapter03/terraform/packtclusters-vpc

$ terraform init

Initializing modules...

- vpc in ../../modules/eks-vpc

Initializing the backend...

Initializing provider plugins...

- Checking for available provider plugins...

- Downloading plugin for provider "aws" (hashicorp/aws)
3.27.0...

Creating the network infrastructure 63

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see

any changes that are required for your infrastructure.
All Terraform commands

should now work.

If you ever set or change modules or backend
configuration for Terraform,

rerun this command to reinitialize your working
directory. If you forget, other

commands will detect it and remind you to do so if
necessary.

2.	 Execute the terraform plan command to review the planned changes before
applying them:

$ cd Chapter03/terraform/packtclusters-vpc

$ terraform plan

The following is the expected final output after executing the terraform plan
command. There are 28 resources in the Terraform plan, and when you execute
the terraform apply command, these 28 resources will be created in your
AWS account:

Figure 3.5 – The terraform plan command output

3.	 Execute the terraform apply command. Enter yes when you get a prompt to
approve the execution:

$ cd Chapter03/terraform/packtclusters-vpc

$ terraform apply

64 Provisioning Kubernetes Clusters Using AWS and Terraform

4.	 You will get the following output once the terraform apply command completes
successfully, and by then, Terraform has successfully created 28 network resources:

Figure 3.6 – The terraform apply command output

By completing this section, you should have your Kubernetes cluster VPC and its network
components successfully created in your AWS account. It is now ready to provision the
cluster above it, as you will learn in the next section.

Creating the cluster infrastructure
In this section, you will develop the following Terraform modules:

•	 An EKS module

•	 A Kubernetes worker module

•	 A Kubernetes cluster module that wraps both the EKS control plan and the workers

After that, you will use these modules to Terraform your first cluster, Packt cluster,
and then provision it in your AWS account.

Developing the EKS Terraform module
Under the terraform/modules directory, create a subdirectory with the name
eks-cp. This directory will contain the following Terraform source code files for the EKS
control plane module:

•	 variables.tf

•	 main.tf

•	 security-groups.tf

Creating the cluster infrastructure 65

•	 iam.tf

•	 outputs.tf

The previous list of files together comprises the EKS Terraform module. You will learn
about each of these code and configuration files in the following subsections.

Input variables
The variables.tf file defines the input variables that are accepted in the EKS module.
The module user should provide the values for each of these variables:

•	 Full cluster name

•	 Cluster Kubernetes version

•	 VPC ID

•	 Private subnet IDs

•	 Public subnet IDs

•	 Common tags

This file is similar to the variables.tf file you created in the VPC module. You
can view its full source code at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/eks-cp/variables.tf.

Module main resources
The main.tf file defines the EKS resources that are required to configure and create it.
These include the cluster name, version, and cluster IAM role ARN.

The following code snippet uses the Terraform resource called aws_eks_cluster,
which is a built-in resource in the Terraform AWS provider that can be used to create an
AWS EKS cluster and set its configuration parameters.

The main.tf file is defined as follows:

resource "aws_eks_cluster" "eks_cluster" {

 name = var.cluster_full_name

 version = var.cluster_version

 role_arn = aws_iam_role.eks_cluster_role.arn

 vpc_config {

 security_group_ids = [aws_security_group.eks_cluster_sg.id]

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-cp/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-cp/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-cp/variables.tf

66 Provisioning Kubernetes Clusters Using AWS and Terraform

 subnet_ids = concat(var.private_subnets, var.
public_subnets)

 }

 depends_on = [

 aws_iam_role_policy_attachment.eks_clusterrole_policy_
attachment,

 aws_iam_role_policy_attachment.eks_servicerole_policy_
attachment,

]

}

In the previous code, you will notice that the EKS resource references the values of the
EKS IAM role and the EKS security group. Both of these are created in the EKS module,
but in two separate Terraform files for better code clarity and organization. You will learn
about creating EKS security groups and IAM roles in the following subsections.

Security groups
The following code snippet uses the Terraform resource called aws_security_group,
which is a built-in resource in the Terraform AWS provider that can be used to create an
AWS security group and set its configuration parameters.

The following security-groups.tf file defines a single security group for the EKS
control plane:

resource "aws_security_group" "eks_cluster_sg" {

 name = "${var.cluster_full_name}-cluster"

 description = "EKS cluster Security group"

 vpc_id = var.vpc_id

 tags = merge(

 var.common_tags,

 {

 Name =
"${var.cluster_full_name}-cluster-sg"

 "kubernetes.io/cluster/${var.cluster_full_name}" =
"owned"

 },

)

}

Creating the cluster infrastructure 67

If you notice, the previous security group does not have ingress/egress rules. These rules
will be defined in the cluster workers module.

IAM roles and policies
The iam.tf file uses the Terraform resource called aws_iam_role, which is a built-in
resource in the Terraform AWS provider that can be used to create an AWS IAM role and
set its configuration parameters.

There are specific policies that the EKS cluster must acquire in order to operate properly:

•	 AmazonEKSClusterPolicy

•	 AmazonEKSServicePolicy

These policies must be attached to the EKS cluster IAM role that we will create in the
next code snippet. To learn more about these policies, you can check the EKS official
documentation at https://docs.aws.amazon.com/eks/latest/userguide/
service_IAM_role.html.

The following iam.tf file defines an IAM role and associates two policies with this role:

resource "aws_iam_role" "eks_cluster_role" {

 name = "${var.cluster_full_name}-cluster-role"

 assume_role_policy = <<POLICY

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Service": "eks.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }

]

}

POLICY

 tags = var.common_tags

}

https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html

68 Provisioning Kubernetes Clusters Using AWS and Terraform

The two IAM policies in question are AmazonEKSClusterPolicy and
AmazonEKSServicePolicy. Both of them are AWS-predefined IAM policies:

data "aws_iam_policy" "AmazonEKSClusterPolicy" {

 arn = "arn:aws:iam::aws:policy/AmazonEKSClusterPolicy"

}

data "aws_iam_policy" "AmazonEKSServicePolicy" {

 arn = "arn:aws:iam::aws:policy/AmazonEKSServicePolicy"

}

resource "aws_iam_role_policy_attachment" "eks_clusterrole_
policy_attachment" {

 policy_arn = data.aws_iam_policy.AmazonEKSClusterPolicy.arn

 role = aws_iam_role.eks_cluster_role.name

 depends_on = [data.aws_iam_policy.AmazonEKSClusterPolicy]

}

resource "aws_iam_role_policy_attachment" "eks_servicerole_
policy_attachment" {

 policy_arn = data.aws_iam_policy.AmazonEKSServicePolicy.arn

 role = aws_iam_role.eks_cluster_role.name

 depends_on = [data.aws_iam_policy.AmazonEKSServicePolicy]

}

You need to attach the IAM role defined in the previous code to the EKS cluster to enable
it to operate within the AWS environment. In the next and final subsection, you will
define the EKS module outputs.

Output values
The outputs.tf file defines the output values from the EKS module. There are three
outputs: the security group ID; the cluster certificate authority (CA); and the cluster API
server endpoint.

The outputs.tf file is defined as follows:

output "security_group" {

 value = aws_security_group.eks_cluster_sg.id

}

output "kubeconfig" {

 value = local.kubeconfig

}

Creating the cluster infrastructure 69

output "ca" {

 value = aws_eks_cluster.eks_cluster.certificate_authority[0].
data

}

output "endpoint" {

 value = aws_eks_cluster.eks_cluster.endpoint

}

In this section, you learned to develop a Terraform module for the EKS. You will use it
with other modules to compose your cluster infrastructure. In the next section, you will
learn to develop a Terraform module for the cluster workers.

Developing the workers' Terraform module
Under the terraform/modules directory, create a subdirectory and name it
eks-workers. This directory will contain the following Terraform code files:

•	 variables.tf

•	 main.tf

•	 security-groups.tf

•	 iam.tf

•	 user-data.tf

•	 authconfig.tf

•	 outputs.tf

Important note
AWS recently introduced the managed EKS node group, which is an EKS
service to manage workers on your behalf. This is a new service and it lacks
important features, such as the ability to provide custom user data, which is
essential when it comes to optimizing workers' performance and kubelet
arguments. This is the reason why the preference is to keep using the self-
managed workers until AWS implements this feature.

Input variables
The variables.tf file defines the input variables that are required by this module.
There are multiple inputs for the workers' module, such as the worker AMI ID, EC2
instance type, user data, and instance storage size.

70 Provisioning Kubernetes Clusters Using AWS and Terraform

The variables.tf file is defined as follows:

variable "workers_ami_id" {

 type = string

}

variable "workers_instance_type" {

 type = string

}

variable "workers_storage_size" {

 type = string

}

Important note
AWS periodically releases optimized AMIs for EKS workers. To choose one
of them, please check the EKS documentation at https://docs.aws.
amazon.com/eks/latest/userguide/eks-optimized-ami.
html.

You still can build your own AMI for EKS workers, and you can make use of
the EKS AMI open source project at https://github.com/awslabs/
amazon-eks-ami.

Please view the remainder of the variables and the full source code at
https://github.com/PacktPublishing/Kubernetes-in-Production-
Best-Practices/blob/master/Chapter03/terraform/modules/
eks-workers/variables.tf.

Module main resources
The main.tf file defines the workers' resources and their properties. This module
contains two AWS resources:

•	 Autoscaling group

•	 Launch template

The autoscaling group uses the launch template to add worker instances according to the
launch specs.

The following code snippet uses the Terraform resource called aws_autoscaling_
group, which is a built-in resource in the Terraform AWS provider that can be used to
create an AWS autoscaling group and set its configuration parameters.

https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://github.com/awslabs/amazon-eks-ami
https://github.com/awslabs/amazon-eks-ami
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/variables.tf

Creating the cluster infrastructure 71

The main.tf file is defined as follows:

resource "aws_autoscaling_group" "workers" {

 name = "${var.cluster_full_name}-workers-asg-
${var.workers_instance_type}"

 max_size = var.workers_number_max

 min_size = var.workers_number_min

 vpc_zone_identifier = var.private_subnet_ids

 launch_template {

 id = aws_launch_template.workers.id

 version = "$Latest"

 }

}

Please view the rest of the main.tf source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/
master/Chapter03/terraform/modules/eks-workers/main.tf.

Security groups
The security-groups.tf file defines the workers' security group and the ingress/
egress rules that control the flow of traffic between workers, and between the control plane
and the workers.

Please refer to Chapter 2, Architecting Production-Grade Kubernetes Infrastructure, for
more details about the security group ingress/egress rules and the permitted ports.

The security-groups.tf file is defined as follows:

resource "aws_security_group" "workers" {

 name = "${var.cluster_full_name}-workers"

 description = "Security group for all nodes in the ${var.
cluster_full_name} cluster"

 vpc_id = var.vpc_id

 egress {

 from_port = 0

 to_port = 0

 protocol = "-1"

 cidr_blocks = ["0.0.0.0/0"]

 }

}

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/main.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/main.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/main.tf

72 Provisioning Kubernetes Clusters Using AWS and Terraform

You can view the full source code at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/eks-workers/security-groups.tf.

IAM role and policies
The following iam.tf file defines an IAM role and associates two policies with this role:

resource "aws_iam_role" "workers" {

 name = "${var.cluster_full_name}-workers"

 assume_role_policy = <<POLICY

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Service": "ec2.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }

]

}

POLICY

}

The IAM policies are AmazonEKSWorkerNodePolicy, AmazonEKS_
CNI_Policy, AmazonEC2ContainerRegistryReadOnly, and
CloudWatchAgentServerPolicy. All of them are standard predefined IAM policies:

resource "aws_iam_role_policy_attachment"
"AmazonEKSWorkerNodePolicy" {

 policy_arn = "arn:aws:iam::aws:policy/
AmazonEKSWorkerNodePolicy"

 role = aws_iam_role.workers.name

}

resource "aws_iam_role_policy_attachment" "AmazonEKS_CNI_
Policy" {

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/security-groups.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/security-groups.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/security-groups.tf

Creating the cluster infrastructure 73

 policy_arn = "arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy"

 role = aws_iam_role.workers.name

}

resource "aws_iam_role_policy_attachment"
"AmazonEC2ContainerRegistryReadOnly" {

 policy_arn = "arn:aws:iam::aws:policy/
AmazonEC2ContainerRegistryReadOnly"

 role = aws_iam_role.workers.name

}

resource "aws_iam_role_policy_attachment"
"CloudWatchAgentServerPolicy" {

 policy_arn = "arn:aws:iam::aws:policy/
CloudWatchAgentServerPolicy"

 role = aws_iam_role.workers.name

}

resource "aws_iam_instance_profile" "workers" {

 name = "${var.cluster_full_name}-workers"

 role = aws_iam_role.workers.name

}

You need to attach the IAM role defined in the previous code to the workers in order to
enable them to operate within the AWS environment.

User data
The user-data.tf file defines the user data script that is executed while the worker
instance is booting up.

The following code snippet uses a special Terraform code block called locals, which is
used to define a set of key/value configurations. In our solution, we use it to construct the
worker user data script.

The user-data.tf file is defined as follows:

locals {

 kubelet_extra_args = <<ARGS

--v=3 \

ARGS

 userdata = <<USERDATA

#!/bin/bash

74 Provisioning Kubernetes Clusters Using AWS and Terraform

set -o xtrace

/etc/eks/bootstrap.sh --b64-cluster-ca "${var.cluster_ca}"
--apiserver-endpoint "${var.cluster_endpoint}" \

USERDATA

 workers_userdata = "${local.userdata} --kubelet-extra-args
\"${local.kubelet_extra_args}\" \"${var.cluster_full_name}\""

}

Later in the book, we will update the previous code to bootstrap kubelet with optimized
arguments for worker performance tuning.

Worker authentication
Kubernetes requires workers to be authenticated in order to be able to join the cluster and
communicate with kube-api-server. EKS provides its own solution to perform this
type of authentication, as it requires the cluster admin to create a ConfigMap that contains
the workers' IAM role ARN and map it to the Kubernetes system node group. By doing
that, workers can join the cluster.

To automate this, the authconfig.tf file defines the content of the authconfig
YAML file, which you will use to register and authenticate the workers with the EKS
control plane.

It is worth mentioning that authconfig can be applied separately to the cluster using
kubectl. However, I recommend that you apply it using Terraform to register the nodes
immediately after EKS is provisioned, and then you can apply it again later as part of
Kubernetes configuration management, and add more users and groups to authconfig.

The authconfig.tf file is defined as follows:

locals {

 authconfig = <<AUTHCONFIG

apiVersion: v1

kind: ConfigMap

metadata:

 name: aws-auth

 namespace: kube-system

data:

Creating the cluster infrastructure 75

 mapRoles: |

 - rolearn: "${aws_iam_role.workers.arn}"

 username: system:node:{{EC2PrivateDNSName}}

 groups:

 - system:bootstrappers

 - system:nodes

AUTHCONFIG

}

In Chapter 4, Managing Cluster Configuration with Ansible, we will learn how to extend
aws-auth to authenticate other users with the cluster.

Output values
The outputs.tf file defines the output values from the Workers module, such as the
worker's instance profile ARN, the IAM role ARN, and other outputs. Please view the
full source code of outputs.tf at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/eks-workers/outputs.tf.

In this section, you learned to develop a Terraform module for the cluster workers. You
will use this with other modules to compose your cluster infrastructure. In the next
section, you will learn to develop a Terraform module that wraps both EKS and workers
in a single module that represents the whole Kubernetes cluster.

Developing the Kubernetes cluster Terraform module
Under the terraform/modules directory, create a subdirectory and name it cluster.
This directory will contain the following Terraform code files:

•	 config.tf

•	 terraform.tfvars

•	 variables.tf

•	 main.tf

•	 outputs.tf

This cluster module is a wrapper above both the EKS module and the workers' module.
You will notice that the inputs and outputs to/from this module are a combination of both
EKS and worker modules.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/outputs.tf

76 Provisioning Kubernetes Clusters Using AWS and Terraform

Input variables
The variables.tf file defines the input variables that are needed by this module.
These inputs are a combination of both EKS and worker modules. Please view the source
code with a full list of variables at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/cluster/variables.tf.

EKS control plane
The eks-cp.tf file defines an instance of the EKS module. It is defined as follows:

module "eks" {

 source = "../eks-cp"

 vpc_id = var.vpc_id

 private_subnets = var.private_subnets

 public_subnets = var.public_subnets

 cluster_full_name = var.cluster_full_name

 cluster_version = var.cluster_version

 common_tags = var.common_tags

}

The previous code block creates the EKS control plane by creating an instance from the
EKS module and passing to it the required inputs.

EKS workers
The workers.tf file defines an instance of the workers module:

module "workers" {

 source = "../eks-workers"

 vpc_id = var.vpc_id

 private_subnet_ids = var.private_subnets

 cluster_full_name = var.cluster_full_name

 cluster_endpoint = module.eks.endpoint

 cluster_ca = module.eks.ca

 cluster_security_group = module.eks.security_group

 workers_ami_id = var.workers_ami_id

 workers_instance_type = var.workers_instance_type

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/variables.tf

Creating the cluster infrastructure 77

 workers_number_max = var.workers_number_max

 workers_number_min = var.workers_number_min

 workers_storage_size = var.workers_storage_size

 common_tags = var.common_tags

}

The previous code block creates the cluster workers by creating an instance from the
workers module and passing it to the required inputs. Both of the previous code files
comprise the full Kubernetes cluster.

Output values
The outputs.tf file contains the output values from the cluster module, such
as the cluster's full name, the cluster endpoint, authconfig, and others. Please
view the complete source code at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/cluster/outputs.tf.

In this section, you learned to develop a Terraform module that wraps both EKS and
workers in a single module that is used to provision the whole Kubernetes cluster. In
the next section, you will use the previous modules to develop your first cluster – the
Packt cluster.

Putting all modules together
Now it is time to bring all the modules together by creating your first cluster group,
packtclusters, and a first cluster, prod1.

Under the root terraform directory, create a subdirectory and name it
packtclusters. Then, under this, create the following Terraform code files:

•	 config.tf

•	 terraform.tfvars

•	 variables.tf

•	 main.tf

•	 outputs.tf

In the following subsections, you will create the code files in the previous list and learn all
the details about them.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/outputs.tf

78 Provisioning Kubernetes Clusters Using AWS and Terraform

Configuration
The config.tf file contains the Terraform shared state configuration and the AWS
provider definition. This file is similar to the config.tf file you created in the Developing
the cluster VPC section. Please view the complete source code at https://github.
com/PacktPublishing/Kubernetes-in-Production-Best-Practices/
blob/master/Chapter03/terraform/packtclusters/config.tf.

Environment variables
The terraform.tfvars file defines the input values that are passed to the cluster
module. Some of these values are outputs from the VPC module. To retrieve these
outputs, you have to execute the following command:

$ cd Chapter03/terraform/packtclusters-vpc

$ terraform output

Then, copy the following output values:

•	 VPC ID

•	 Private subnet IDs

•	 Public subnet IDs

Then, paste these values into the terraform.tfvars file into their corresponding
placeholders.

The terraform.tfvars file is defined as follows:

aws_region = "us-east-1"

private_subnet_ids = [

 "subnet-xxxxxxxx",

 "subnet-xxxxxxxx",

 "subnet-xxxxxxxx",

]

public_subnet_ids = [

 "subnet-xxxxxxxx",

 "subnet-xxxxxxxx",

 "subnet-xxxxxxxx",

]

vpc_id = "vpc-xxxxxxxxxx"

clusters_name_prefix = "packtclusters"

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/config.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/config.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/config.tf

Creating the cluster infrastructure 79

cluster_version = "1.16"

workers_instance_type = "t3.medium"

workers_number_min = 1

workers_number_max = 3

workers_storage_size = 10

Some of the preceding values can be tuned according to your infrastructure requirements,
specifically, the instance type and the worker instance count min/max limits.

For educational purposes, you can use the existing values in the previous code block.
However, when you decide to move your cluster to production, please refer to the workers'
sizing section in Chapter 2, Architecting Production-Grade Kubernetes Infrastructure.

Input variables
The variables.tf file defines inputs that Terraform will use while creating the
packtclusters-prod1 cluster. You can view the complete source code at https://
github.com/PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter03/terraform/packtclusters/
variables.tf.

The cluster main resources
The main.tf file defines the cluster module. It takes the input variables required to
configure EKS and the workers.

The main.tf file is defined as follows:

module "packtcluster" {

 source = "../modules/cluster"

 vpc_id = var.vpc_id

 public_subnets = var.public_subnet_ids

 private_subnets = var.private_subnet_ids

 cluster_full_name = "${var.clusters_name_prefix}-
${terraform.workspace}"

 cluster_version = var.cluster_version

 workers_instance_type = var.workers_instance_type

 workers_ami_id = data.aws_ssm_parameter.workers_ami_
id.value

 workers_number_min = var.workers_number_min

 workers_number_max = var.workers_number_max

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/variables.tf

80 Provisioning Kubernetes Clusters Using AWS and Terraform

 workers_storage_size = var.workers_storage_size

 common_tags = local.common_tags

 aws_region = var.aws_region

}

In the previous code block, the cluster_full_name input is constructed by
concatenating cluster_name_prefix, which is packtclusters, and the Terraform
workspace name, prod1. And this is how you can create multiple clusters under one
cluster group such as packtclusters. All you need is to create a new Terraform
workspace and execute your terraform plan.

Output values
The outputs.tf file defines the outputs from packtclusters, primarily
authconfig, which is used to authenticate the workers with the control plane. You
can view the complete source code at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/packtclusters/outputs.tf.

By completing this section, you have a complete Terraform code base that is capable
of creating full Kubernetes clusters. In the next section, you will learn the Terraform
commands to use this code base to provision your first production cluster.

Provisioning the cluster infrastructure
After you have completed developing the cluster Terraform modules in the previous
sections, you can now provision your first Kubernetes cluster and create it in your
AWS account:

1.	 Initialize the Terraform state:

$ cd Chapter03/terraform/packtclusters

$ terraform init

2.	 Create a new Terraform workspace for the first cluster and name it prod1:

$ terraform workspace new prod1

3.	 Execute the terraform plan command to review the planned changes before
applying them:

$ terraform plan

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/outputs.tf

Creating the cluster infrastructure 81

4.	 This is the terraform plan command output that you should get:

Figure 3.7 – Terraform plan command output

5.	 Execute the terraform apply command. Enter yes when you get a prompt to
approve the plan execution:

$ terraform apply

6.	 You will get the following output after the terraform apply command completes
successfully. This means that Terraform has successfully created 22 resources:

Figure 3.8 – Terraform apply command output

7.	 Retrieve the cluster kubeconfig file:

$ aws eks --region $(terraform output aws_region) update-
kubeconfig --name $(terraform output cluster_full_name)

Added new context arn:aws:eks:us-east-
1:698782116220:cluster/packtclusters-prod1 to ~/.kube/
config

82 Provisioning Kubernetes Clusters Using AWS and Terraform

8.	 Apply authconfig to authenticate the workers' nodes with the EKS control plane:

$ terraform output authconfig | kubectl -n kube-system
create -f –

configmap/aws-auth created

9.	 Ensure that the cluster worker nodes are up and in the ready state:

$ kubectl get nodes

NAME			 STATUS	 ROLES	 AGE	 VERSION

ip-10-40-98-176.ec2.internal	Ready	<none>	 90s	
v1.15.10-eks-bac369

After completing the previous instructions, you have a Kubernetes cluster up and running,
but it is still not ready to deploy production workloads. In the next chapters, you will
deploy more services to the cluster, and optimize their configurations to make it capable of
running your production workloads.

Cleaning up and destroying infrastructure
resources
After completing the hands-on exercises in this chapter, you can follow the instructions in
this section to destroy the Kubernetes cluster and its AWS resources.

You will destroy the resources in reverse order from their creation. First, you will destroy the
Kubernetes cluster resources, then the VPC resources, and finally the shared state resources.

Destroying the cluster resources
Follow these Terraform commands to destroy all of the packtclusters resources that
you created in the previous sections of this chapter:

1.	 Initialize the Terraform state:

$ cd Chapter03/terraform/packtclusters

$ terraform init

2.	 Execute the terraform destroy command. Enter yes when you get a prompt
to approve the destruction:

$ terraform destroy

Cleaning up and destroying infrastructure resources 83

3.	 You will get the following output once the terraform destroy command
completes successfully. This means that Terraform has successfully destroyed the 22
resources in the cluster:

Figure 3.9 – The terraform destroy command output

Having observed the previous instructions, packtclusters-prod1 is completely
destroyed. In the next subsection, you will destroy the VPC resources.

Destroying the VPC resources
Follow these Terraform commands to destroy all of the packtclusters-vpc resources
that you created in the previous sections of this chapter:

1.	 Initialize the Terraform state:

$ cd Chapter03/terraform/packtclusters-vpc

$ terraform init

2.	 Execute the terraform destroy command. Enter yes when you get a prompt
to approve the destruction:

$ terraform destroy

3.	 You will get the following output after the terraform destroy command
completes successfully. This means that Terraform has successfully destroyed 28
network resources:

Figure 3.10 – The terraform destroy command output

Having observed the previous instructions, packtclusters-vpc is completely
destroyed. In the next subsection, you will destroy the shared state resources.

Destroying the shared state resources
Usually, you do not have to delete the shared state files. However, for educational
purposes, you can follow these instructions to destroy these resources.

84 Provisioning Kubernetes Clusters Using AWS and Terraform

1.	 As the shared state S3 buckets have destroy prevention and versioning enabled, you
should empty and then destroy Terraform shared state S3 buckets first:

$ aws s3 rm s3://packtclusters-terraform-state
--recursive

$ aws s3 rm s3://packtclusters-vpc-terraform-state
--recursive

$ aws s3 rb s3://packtclusters-terraform-state --force

$ aws s3 rb s3://packtclusters-vpc-terraform-state
--force

2.	 Initialize the Terraform state to destroy the shared state DynamoDB tables:

$ cd Chapter03/terraform/shared-state

$ terraform init

3.	 Execute the terraform destroy command. Enter yes when you get a prompt
to approve the destruction:

$ terraform destroy

4.	 You will get the following output after the terraform destroy command
completes successfully. By then, Terraform has successfully destroyed both of the
DynamoDB tables:

Figure 3.11 – The terraform destroy command output

By now, you have successfully finished destroying your Kubernetes cluster and all of its
AWS resources in your AWS account.

I recommend practicing these instructions and repeating them to provision and destroy
the cluster, and to create multiple clusters by adding new Terraform workspaces, such as
prod2 and prod3.

Summary 85

Summary
In this chapter, you have learned to develop the infrastructure code for Kubernetes
clusters using Terraform and AWS. You went through practical steps to implement
this code. We started by creating the network components, followed by the cluster's
components, using AWS VPC, EKS, autoscaling groups, and other AWS services.

This chapter introduced you to Terraform practical development and its usage in relation
to production infrastructure provisioning. It showed you how to follow the best practices
of the declarative IaC, and also the best practices of decomposing your IaC into modules
and combining them to create Kubernetes clusters.

All of this establishes a foundation for the forthcoming chapters, where we will build
on the knowledge introduced here to take the Kubernetes cluster to the next level of its
production-readiness journey.

In the next chapter, you will learn in detail about Kubernetes cluster configuration
management. You will develop a dynamic templating solution that you can apply to the
cluster-level configurations, and you will learn how to make your solution scalable to
many clusters without introducing operational overheads and complexity.

Further reading
For more information on the topics covered in this chapter, you can refer to the
following books:

•	 Getting Started with Terraform – Second Edition: https://www.packtpub.
com/networking-and-servers/getting-started-terraform-
second-edition

•	 Hands-On Infrastructure Automation with Terraform on AWS: https://www.
packtpub.com/big-data-and-business-intelligence/hands-
infrastructure-automation-terraform-aws-video

https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video

4
Managing Cluster

Configuration with
Ansible

In Chapter 3, Provisioning Kubernetes Clusters Using AWS and Terraform, you learned how
to create a Kubernetes infrastructure with Terraform and AWS, and you also learned how
to develop infrastructure as code and provisioned your first production-like cluster.

This was just the first step towards building operational and production-ready
Kubernetes clusters. By now, you should have an up-and-running cluster with Terraform
infrastructure modules to provision other similar clusters.

These clusters are still plain; they're not configured or optimized to run production
workloads. To make these clusters fully operational, we simply need to deploy and
configure the required Kubernetes services for them.

In this chapter, you will design and develop a configuration management solution that
you can use to manage the configuration of Kubernetes clusters and their supporting
services. This solution is automated and scalable, and it requires a minimum effort to
maintain and operate.

88 Managing Cluster Configuration with Ansible

In this chapter, we will cover the following topics:

•	 Understanding Kubernetes configuration management challenges

•	 Designing a configuration management solution for Kubernetes

•	 Developing a configuration management solution with Ansible

•	 Applying the solution to configure Kubernetes clusters

Technical requirements
In addition to the tools that you installed in Chapter 3, Provisioning Kubernetes Clusters
Using AWS and Terraform, you will need to install the following tools:

•	 python3

•	 pip3

•	 virtualenv

I will go into the specifics of these tools' installation and configuration in the next section.
If you already know how to do this, you can go ahead and set them up now.

You need to have an up-and-running Kubernetes cluster as per the instructions in Chapter
3, Provisioning Kubernetes Clusters Using AWS and Terraform.

The code for this chapter is located at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter04.

Check out the following link to see the Code in Action video:

https://bit.ly/3cGtqjx

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter04
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter04
https://bit.ly/3cGtqjx

Installing the required tools 89

Installing the required tools
python3, pip3, and virtualenv are the prerequisites to execute the Ansible
configuration playbooks that we will develop in this chapter. If you do not have these tools
installed on your system, you can follow these instructions:

•	 Execute the following commands to install python3, pip3, and virtualenv on
Ubuntu Linux:

$ sudo apt-get update

$ sudo apt-get install python3

$ sudo apt-get install python3-pip

$ sudo pip3 install virtualenv

•	 Execute the following commands to install python3, pip3, and virtualenv on
Amazon Linux 2:

$ sudo yum update

$ sudo yum install python3

$ sudo python3 -m pip install --upgrade pip

$ sudo python3 -m pip install virtualenv

•	 Execute the following commands to install python3, pip3, and virtualenv
on macOS:

$ brew install python3

$ curl -O https://bootstrap.pypa.io/get-pip.py

$ sudo python3 get-pip.py

$ sudo -H pip3 install virtualenv

•	 Execute the following commands to install python3, pip3, and virtualenv
on Windows:

C:\> choco install python3

C:\> pip install virtualenv

By installing python3, pip3, and virtualenv, you will be able to execute Ansible
playbooks against your Kubernetes clusters. You will learn how to do that later in
this chapter, but first, we need to go through the design details of our Kubernetes
configuration management solution.

90 Managing Cluster Configuration with Ansible

Implementation principles
In Chapter 1, Introduction to Kubernetes Infrastructure and Production-Readiness, you
learned about the infrastructure design principles that we will follow in this book.
I would like to start this chapter by highlighting the notable principles that influenced the
configuration management solution and the technical decisions in this chapter:

•	 Everything as code: In this chapter, we will keep our commitment to having
everything in the infrastructure as code – cluster configuration is not an exception.
You will use Ansible to achieve this goal by creating a configuration management
solution for your Kubernetes cluster.

•	 Automation: In the previous chapter, we used Terraform tool to automate
infrastructure provisioning. We designed a solution around Terraform that can
scale to serve a growing number of clusters without the need to scale up your
infrastructure teams. Here, you will create a similar solution to manage the
Kubernetes configuration while keeping it automated, scalable, and easy to operate
and maintain.

•	 Simplicity: Ansible fulfills this principle in many aspects as it is easy to learn and
to use. It has a simple syntax compared to other configuration management tools.
It uses YAML, which you do not need to learn a programming language to write.
Moreover, it is agentless, which means you do not need a server to run it, as you can
run Ansible from your computer. Also, it is modular, which enables separation of
concerns and code reusability, which is similar to Terraform. So, they can easily live
together and simplify the automation of the infrastructure.

Kubernetes configuration management
The beauty of Kubernetes is that every part of it is abstracted as an object that can be
managed and configured declaratively with YAML or JSON through its API server. This
makes Kubernetes configuration easier to manage as code. However, it is still challenging
to manage this configuration when you have groups of clusters that run hundreds of
add-ons and services.

Imagine a scenario where you manage a company's infrastructure with Kubernetes, and
you have multiple clusters for development, testing, and production. Add to them the
cluster add-ons that run on the Kubernetes services layer as per the following diagram:

Kubernetes configuration management 91

Figure 4.1 – Kubernetes infrastructure layers

This means that you can have N clusters with a growing number of add-ons and different
environment types, such as development, QA, and production. If we put these together,
we end up with a complex and redundant configuration to manage.

The recommended way to manage clusters' configuration is through Configuration
as Code (CaC). We will deploy these services and add-ons to the cluster and add their
configuration manifests to the source code control. By adopting this pattern, you will
be able to redeploy the same configuration in a seamless and automated fashion to your
clusters. This solution appears to be easy when you start with a single cluster, but it will
be difficult to maintain and scale when provisioning multiple clusters with different
configuration values.

This leads us to an enhanced solution, which is configuration templating. Let's assume
you have a group of clusters that serve product X, and these clusters have different
configurations, such as different users' authentication and authorization, namespaces,
resource quotas, and so on.

This solution uses Ansible templating and Jinja2. You write the templates for the
Kubernetes manifests once, and then Ansible substitutes the variables in these templates
and generates the appropriate manifests for each target cluster. This solution is scalable
and easy to maintain, and it fulfills the infrastructure design principles that we introduced
in Chapter 1, Introduction to Kubernetes Infrastructure and Production-Readiness.

92 Managing Cluster Configuration with Ansible

Kubernetes configuration management workflow
After considering the preceding templating solution, our Kubernetes configuration
management workflow looks like the following:

1.	 Create Ansible Jinja2 templates for the Kubernetes cluster services that you want to
configure and deploy.

2.	 Define the values of the variables and categorize them based on the environments
and the cluster's group.

3.	 Provisioning the clusters with Terraform.

4.	 Pass the Terraform outputs to Ansible.

5.	 Substitute the variables in the Ansible template with the corresponding values.

6.	 Use Ansible to apply the Kubernetes manifests to the target clusters.

In the next sections, we will implement this workflow with Ansible and Jinja2 templates,
then learn how to use it with a basic example.

Configuration management with Ansible
In this chapter, we will use Ansible as the configuration management tool, and we will
build around it our solution for Kubernetes configuration management. In this section,
we are going to briefly discuss the reasoning behind this choice, and some Ansible key
concepts. If you are willing to learn more about Ansible, you can use its official guide here:
https://www.ansible.com/resources/get-started.

Why Ansible?
When it comes to templating Kubernetes configuration, we have battle-tested tools. Most
notable among them are Ansible and Helm, and both of them have pros and cons. But I
am not here to run a full comparison between them. My decision is based on having used
both tools in serving production environments, and also our specific use case here. When
it comes to pure configuration management and templating, Ansible remains the strongest
contender. While Helm supports templating, it remains more like a Kubernetes package
manager than a full configuration management tool. This is why we decided to use
Ansible to develop a configuration management solution for Kubernetes infrastructure.

What is Ansible?
Ansible is an automation and configuration management (CM) tool. It can configure
systems, deploy applications and containers, and provision cloud resources. It can
orchestrate advanced tasks such as continuous deployments and rolling updates.

https://www.ansible.com/resources/get-started

Kubernetes configuration management 93

In this book, we are not going to dig deep into Ansible's features and use cases. We believe
that there are a lot of good books dedicated to this purpose; our main focus is on how to
use Ansible to solve Kubernetes' CM problem in a simple and efficient way.

Ansible key concepts
The CM solution that we will implement and use in this book is built with key Ansible
concepts. I will not dive deep into these concepts; rather, I will provide brief details about
them, as well as highlight how we will utilize each one of them in our CM framework:

•	 Inventory: This is used by Ansible to group similar hosts into groups. This is
accomplished by defining the inventory files with the addresses of the hosts.

•	 Modules: This is how Ansible abstracts and groups a specific task to be reused
against your host's inventories; modules can even be made public and used by
other Ansible users. In our solution, we will use one of the ready-made Kubernetes
modules to execute configuration manifests against the clusters.

•	 Tasks: This is where we instruct Ansible about the steps that it should do; it could
be installing a piece of software or provisioning a whole system. In our solution, we
will create a separate task to configure each Kubernetes component and add-on on
its own.

•	 Playbooks: These are the building blocks of Ansible. They are used to gather
everything together and provide a sequence of instructions that involves other
Ansible blocks, such as tasks, variables, and modules. They then instruct Ansible
on how to configure the target system to reach the desired state. In our solution,
we will use a playbook to hold the configuration tasks for all of the components
and add-ons that are required by all clusters, and we will also have variables and
selectors to enable cluster maintainers to switch specific add-ons on/off.

•	 Variables: We will use variables to hold the values for the configuration that is used
for each cluster add-on, and we will split these variables into groups that represent
different clusters and environments.

•	 Templates: Ansible uses Jinja2 templates to enable dynamic expressions using
variables. This enables Ansible to generate new configuration files based on these
templates during execution time. In our solution, we will define Kubernetes
manifests as Ansible Jinja2 templates, and during configuration execution time,
Ansible will be able to generate the correct Kubernetes manifests for each cluster
based on the provided or predefined variables.

94 Managing Cluster Configuration with Ansible

The previous Ansible concepts are essential to understanding how Ansible works. We will
utilize each of them to develop the CM solution in the next section. You will learn about
each concept and how to use it as you move forward in this chapter.

Configuring the clusters
Now we put the solution we designed in the previous section into action. We will start by
developing the Ansible framework skeleton, which will consist of the following parts:

•	 group_vars: This directory contains the manifest configuration files with
variables' default unless a cluster defines its own private variables in its own
inventory.

•	 inventories: This directory contains the configuration files with variables'
values, which are specific to each cluster or cluster group, meaning that variables
defined here override default variables defined under the groups_vars directory.

•	 tasks: In this directory, we define a separate task for each cluster service and
add-on that we need to deploy and configure; the task definition file is standard
across tasks, as we will use Ansible's k8s module and pass to it the YAML templates
to deploy against the target cluster.

•	 templates: This directory contains the Kubernetes manifest YAMLs and
configuration files for each Kubernetes object we need to manage, and these
template files will have the required variables written in Jinja2 expressions format.

•	 cluster.yaml: This is the main playbook that will be passed to Ansible to
execute against the target cluster. It contains all the tasks that we need to invoke to
configure the cluster objects and add-ons. The playbook also has tags for each task,
and this enables the cluster maintainer to switch specific tasks on/off for each target
cluster whenever needed.

After creating the Ansible skeleton for Kubernetes cluster configuration management, we
will be able to grow it to handle more cluster services and deployments. The development
workflow looks as the following:

1.	 Write Kubernetes manifests in YAML format for the cluster add-ons that you want
to deploy, then deploy them to a test cluster to ensure correctness.

2.	 Convert the Kubernetes manifests from YAML to Jinja2 templates.

3.	 Create a task file to invoke these templates and add this file under the Ansible
tasks directory.

Configuring the clusters 95

4.	 Create the variable values:

- �For default variable values, under the group_vars directory, add the values of
the variables you created in the template in an appropriate YAML file.

- �For cluster-specific variables, under the inventories directory, create a new
directory with the name of the cluster or cluster group that you want to target, and
then create its own group_vars directory, and create under that a YAML file to
contain the variable values mapping.

5.	 Update the playbook file and add a step to invoke the targeted task. Then, associate
to this task the appropriate tags and properties.

In the hands-on exercise, we will configure aws-auth and create a Kubernetes
namespace to illustrate how this Ansible solution works. In the coming chapters, we will
use this solution to deploy more services and add-ons on top of Kubernetes.

The ansible directory's structure
The ansible directory is where all the Ansible source code resides in your infrastructure
repository. As a best practice, I recommend having a dedicated infrastructure source
code repository that contains all the infrastructure as code and configuration for your
Kubernetes clusters and the rest of your infrastructure. The following is the proposed
directory structure of the Ansible configuration that we will develop in this chapter:

Figure 4.2 – Ansible directory structure

96 Managing Cluster Configuration with Ansible

You will learn in detail and with hands-on practices how to develop this solution and all of
the configuration code under the ansible directory.

Creating Ansible templates
In this section, you will create two templates to learn how you can rewrite Kubernetes
manifests into Ansible Jinja2 format.

The second template is for a Kubernetes namespace, which you will use to create new
namespaces.

Creating the aws-auth template
The first template is for aws-auth ConfigMap, which you will use to define AWS
IAM users and roles and then authenticate them to the cluster. You will learn in detail
about aws-auth and how to use it for cluster access in Chapter 6, Securing Kubernetes
Effectively.

You will create a Jinja2 template for the aws-auth ConfigMap. However, let's first have
a look at the default aws-auth ConfigMap without templating:

apiVersion: v1

kind: ConfigMap

metadata:

 name: aws-auth

 namespace: kube-system

data:

 mapRoles: |

 - rolearn: <ARN of instance role (not instance profile)>

 username: system:node:{{EC2PrivateDNSName}}

 groups:

 - system:bootstrappers

 - system:nodes

The previous code block creates an aws-auth ConfigMap with one role for the worker
EC2. But what if we need to add more roles and users? What if we need to use the same
ConfigMap with different clusters and with different worker Amazon Resource Names
(ARNs)? We either create multiple ConfigMaps with different configurations or create
a single template and let Ansible use it to generate the correct aws-auth ConfigMap for
each cluster.

Configuring the clusters 97

The next code block for the aws-auth template defines a list of specific users and
roles who can access the cluster. In the first part of the code, you define the Kubernetes
apiVersion, the object type as ConfigMap, and the metadata:

apiVersion: v1

kind: ConfigMap

metadata:

 name: aws-auth

In the second part of the code, you define the ConfigMap data section that includes the
Identity and Access Management (IAM) users. First, instead of adding each user's data
(name, ARN, and Kubernetes group), you define them inside a Jinja2 for loop with Jinja2
variables that can be substituted by Ansible during the execution time. You notice that we
use a for loop so we can add multiple users:

data:

 mapUsers: |

{% for user in map_users.system_masters %}

 - userarn: "{{ user.arn }}"

 username: "{{ user.name }}"

 groups:

 - system:masters

{% endfor %}

In the second part of the code, you define another ConfigMap data section that includes
the IAM roles. First, instead of adding each user's data (name, ARN, and Kubernetes
group), you define them inside a Jinja2 for loop with Jinja2 variables that can be
substituted by Ansible during execution. You notice that we use a for loop so we can add
multiple roles:

 mapRoles: |

{% for role in map_roles.workers_roles %}

 - rolearn: "{{ role }}"

 username: {% raw -%} "system:node:{{ '{{' }}
EC2PrivateDNSName{{ '}}' }}" {%- endraw %}

 groups:

 - system:bootstrappers

 - system:nodes

{% endfor %}

{% for role in map_roles.system_masters %}

98 Managing Cluster Configuration with Ansible

 - rolearn: "{{ role }}"

 username: {% raw -%} "admin:{{ '{{' }}SessionName{{ '}}'
}}" {%- endraw %}

 groups:

 - system:masters

{% endfor %}

The previous template authenticates IAM users and roles to any cluster, and you can
even extend it more with different group types according to your needs. But the original
concept remains the same, as you have a single template for the aws-auth ConfigMap
that can work for any cluster and for any users and roles.

Creating a Kubernetes namespace template
The next code block is for a Jinja2 template that generates a YAML for a Kubernetes
namespace manifest. This template defines the basic namespace configuration, such as
names, labels, and annotations.

This template can create multiple namespaces as it reads a list of namespaces from the
target cluster's Ansible variables and generates the Kubernetes manifest YAMLs for each
one of these namespaces:

{% for namespace in namespaces_list %}

apiVersion: v1

kind: Namespace

metadata:

 name: {{ namespace.name }}

 labels:

 name: {{ namespace.name }}

 owner: {{ namespace.owner }}

{% endfor %}

The previous template is an example of how you can create your own templates for
Kubernetes objects. I recommend going to the Ansible Jinja2 official documentation when
you write these templates to get more ideas about the code blocks and how to use them:
https://docs.ansible.com/ansible/latest/user_guide/playbooks_
templating.html.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html

Configuring the clusters 99

Creating Ansible variables
As you learned earlier in this chapter, the Ansible group_vars will contain the global
configuration variables that you want to apply to all clusters unless you want to specify
a different value for a specific cluster. In this section, you will define default variables for
the admin user in the aws-auth ConfigMap and define a new namespace.

Defining the aws-auth variables
The following code snippet defines the default variables for a cluster's configuration
whenever the cluster does not have its own private variables. The first variable is worker_
iam_role_arn. Ansible will get the value of worker_iam_role_arn from the
Terraform outputs. The second variable is the clusters' admin. You also add the ARN or
the IAM user that is called admin:

map_roles:

 workers_roles:

 - "{{ worker_iam_role_arn }}"

 system_masters: []

map_users:

 system_masters:

 - arn: "<ARN of the admin user>"

 name: "admin"

You can extend the previous variables and add more roles and users to the cluster
according to your needs. You will also learn in Chapter 6, Securing Kubernetes Effectively,
about the Kubernetes Role-Based Access Control (RBAC) and access management best
practices.

Important note
In Jinja2 templates, you define the variables between double braces, {{ }}.
Please refer to Ansible templating documentation: https://docs.
ansible.com/ansible/latest/user_guide/playbooks_
templating.html.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html

100 Managing Cluster Configuration with Ansible

Configuring the default namespace
You will add a single namespace to the namespaces_list variable. However, you can
add more namespaces according to your needs. This is an illustration to show you how
namespace configuration should work with Ansible:

namespaces_list:

- name: default-namespace

 owner: admin

In this section, you should have learned how to create default configuration variables for
your clusters. It is a simple configuration mechanism but is very powerful and efficient.

Creating Ansible inventories
Not all clusters are equal. In the previous section, you learned how to set default variables
for your configuration. But what if you need to have different values for one of your
clusters? Ansible inventories are the answer. In this section, you will create inventories to
define local cluster variables that override the default variables.

Create Ansible's inventory
The way that Ansible configures hosts (servers/VMs) is very simple. Usually, there is
a host or group of hosts and you have configuration tasks that you want to apply against
these hosts. But our solution is a different use case, as we will use the same concept but not
against any remote hosts. This is because, in reality, we do not configure hosts – instead,
we configure Kubernetes clusters. Ansible just needs to communicate with the Kubernetes
API server.

All you need is to set the Ansible hosts to target the localhost. Then in turn,
localhost will use the kube-server API endpoint defined in kubeconfig to apply
the intended configurations:

[all]

localhost

[override]

localhost

As you will notice in this previous code block, there is only the localhost value defined
as the target host for Ansible. This hosts file should exist for each inventory that Ansible
manages.

Configuring the clusters 101

Overriding the aws-auth variables
To override the aws-auth default variables defined in group_vars, you need to
recreate the aws-auth template file under the packtclusters inventory with the
new variables' values. The next code block shows you how to override aws-auth.
There are two IAM roles defined: the first role for workers and the second for the cluster
administrator role. The second part of the code defines a different user other than the
default one:

map_roles:

 workers_roles:

 - "{{ worker_iam_role_arn }}"

 system_masters:

 - "<ARN of the admin-role user>"

map_users:

 system_masters:

 - arn: "arn:aws:iam::AWS_ACCOUNT_NO:user/packtclusters-
admin"

 name: "packtclusters-admin"

The previous configuration template will replace the default one for packtclusters.
You can do the same for any other template.

Overriding the namespaces variables
To override the namespaces default variables defined in group_vars, you need to
recreate the namespaces template file under the packtclusters inventory with the
new variables' values. In the next code block, there is a new variable that will override
default-namespace with a new one called packtclusters-namespace. So,
when you apply this configuration, packtclusters will have the new namespace
instead of the default one:

namespaces_list:

- name: packtsclusters-namespace

 owner: packtclusters-admin

In this section, you have learned how to override Ansible's default variables to use
different configuration values based on the cluster.

102 Managing Cluster Configuration with Ansible

Creating Ansible tasks
The second step after creating the Ansible templates is creating Ansible tasks. In this
section, you will learn how to create Ansible tasks to deploy your configuration templates.

The tasks will use the Ansible k8s module. This module accepts the templated Kubernetes
YAMLs and then instructs Ansible to apply these tasks against the target cluster. Ansible
can identify the target cluster from the current context in the kubeconfig file.

Important note
You can learn more about Ansible's k8s module from the official
documentation: https://docs.ansible.com/ansible/
latest/user_guide/modules_intro.html.

Creating the aws-auth task
The following task instructs Ansible on how to generate and apply the aws-auth
ConfigMap to the cluster. It takes the path to the template file as an input and applies it to
the target cluster.

In the next code block, you define the task specs, with properties such as name, the
kubeconfig path, state, and whether to force applying the configuration to the cluster
or not. Then, the task defines which Jinja2 template to load and substitutes its variables
with the values from the group_vars or inventory directories.

You will notice that there is a loop directive if there are multiple Jinja2 templates to be
applied by the k8s module. The other important parameters are retries, which tells
Ansible the number of retries until the task succeeds, and delay, which tells Ansible the
time in seconds between each of these retries:

ansible/tasks/auth/aws-auth.yaml

- name: deploy aws auth ConfigMap

 k8s:

 definition: "{{ item }}"

 kubeconfig: "{{ k8s_kubeconfig }}"

 state: "{{ k8s_manifests_state }}"

 force: "{{ k8s_force }}"

 loop:

 - "{{ lookup('template', k8s_manifests_base_dir + 'auth/
aws-auth.yaml') | from_yaml_all | list }}"

 register: k8s_result

https://docs.ansible.com/ansible/latest/user_guide/modules_intro.html
https://docs.ansible.com/ansible/latest/user_guide/modules_intro.html

Configuring the clusters 103

 until: k8s_result is success

 retries: 3

 delay: 2

 no_log: "{{ k8s_no_log }}"

The previous code for the aws-auth task will be invoked by an Ansible playbook that
you will learn about later in this chapter.

Creating the namespaces task
The following Ansible task file is for creating the cluster namespaces. It takes the path to
the namespaces object template file and applies it to the target cluster.

The code structure for the namespaces task is very similar to the previous aws-auth
task, except it has a different name, and it reads a different Jinja2 template file for
namespaces.yaml:

ansible/tasks/namespaces.yaml

- name: create cluster namespaces

 k8s:

 definition: "{{ item }}"

 kubeconfig: "{{ k8s_kubeconfig }}"

 state: "{{ k8s_manifests_state }}"

 force: "{{ k8s_force }}"

 loop: "{{ lookup('template', k8s_manifests_base_dir +
'namespaces/namespaces.yaml') | from_yaml_all | list }}"

 register: k8s_result

 until: k8s_result is success

 retries: 3

 delay: 2

 no_log: "{{ k8s_no_log }}"

The previous code for the namespaces task will be invoked by an Ansible playbook that
you will learn about later in this chapter.

104 Managing Cluster Configuration with Ansible

Creating the cluster's playbook
An Ansible playbook is an Ansible file where you put all tasks in the order that you want
Ansible to execute them in. The following cluster playbook is a simple and standard
Ansible playbook, and it has three sections: the first section is to define the target hosts,
the second section is to define any variables that you want the tasks to use the values of
during execution, and the third section is the list of tasks that Ansible will execute.

The following code block defines the hosts and the connection type. In our solution, we
will use localhost as the target host, as explained before:

ansible/cluster.yaml

- name: deploy k8s add-ons

 hosts: localhost

 connection: local

 gather_facts: no

The following code block defines the variables that are required during the execution
of the tasks. The most notable ones are the physical path to the kubeconfig file and
the base directory where the Kubernetes templates reside. These variables override any
variables with similar names in the group_vars and inventory directories:

 vars:

 Ansible_python_interpreter: "{{ Ansible_playbook_python }}"

 k8s_kubeconfig: ~/.kube/config

 k8s_manifests_base_dir: templates/

 k8s_manifests_state: present

 k8s_force: false

 k8s_no_log: false

The following code block defines the list of tasks that Ansible executes against the target
cluster. You add new tasks to this list and assign meaningful tags to them:

 tasks:

 - import_tasks: tasks/aws-auth.yaml

 tags: aws-auth

 - import_tasks: tasks/namespaces.yaml

 tags: namespaces

Configuring the clusters 105

By completing the development of the playbook, tasks, and all the configurations, you are
ready to put all the Ansible pieces together apply the playbook and have Ansible configure
your cluster. In the next section, you will use the packtclusters-prod1 cluster,
which you created in the previous chapter, to apply the Ansible playbook.

Applying the cluster's Ansible playbook
The next instructions will deploy the Ansible playbook, which will configure your cluster
with the intended configuration:

1.	 Initialize the Terraform state and select the workspace by running the following
commands:

$ cd terraform/packtclusters

$ terraform init

$ terraform workspace select prod1

2.	 Retrieve and configure the localhost kubeconfig with the target cluster:

$ aws eks --region $(terraform output aws_region) update-
kubeconfig --name $(terraform output cluster_full_name)

3.	 Use Python virtualenv to install and execute Ansible:

$ virtualenv $HOME/ansible-k8s-workspace

$ source $HOME/ansible-k8s-workspace/bin/activate

4.	 Install Ansible and the prerequisite modules, openshift, pyyaml, and
requests:

$ pip install ansible==2.9 openshift pyyaml requests

5.	 Execute the Ansible playbook:

$ ansible-playbook -i \

../../ansible/inventories/packtclusters/ \

-e "worker_iam_role_arn=$(terraform output worker_iam_
role_arn)" \

../../ansible/cluster.yaml

106 Managing Cluster Configuration with Ansible

You will get the following output after successful execution:

Figure 4.3 – Ansible execution output

6.	 Execute the following kubectl command to ensure that the cluster configuration
is applied successfully:

$ kubectl get namespaces

You should see an output similar to the following. There is a new namespace called
packtclusters-namespace:

Figure 4.4 – List of cluster namespaces

You applied the cluster playbook and tasks as per the previous instructions. In the
following chapters, you will learn how to use the same configuration management
solution to create other tasks to deploy and configure services on top of your clusters.

Destroying the cluster's resources 107

Destroying the cluster's resources
You can follow the instructions in the Destroying the network and cluster infrastructure
section of Chapter 3, Provisioning Kubernetes Clusters Using AWS and Terraform, to
destroy the Kubernetes cluster and its related AWS resources. Please be sure to destroy the
resources in the following order:

1.	 Cluster packtclusters resources

2.	 Cluster VPC resources

3.	 Terraform shared state resources

After executing the previous steps, all of the cluster AWS resources should be destroyed
successfully. You can still log in to the AWS web console and double-check the destruction
of the resources to avoid any unwanted AWS charges.

Summary
In this chapter, you learned about Kubernetes configuration management challenges and
how to scale your configuration management solution to manage multiple clusters and
environments. We designed and developed a solution that is based on Ansible, and we
went through practical hands-on examples to deploy this code.

We started by creating Ansible templates for Kubernetes objects and add-ons. Then, we
developed the tasks and the playbook to execute the Ansible configuration in sequence
against the targeted clusters.

This chapter introduced you to Ansible basic concepts. It showed you how to use the
best practices of infrastructure and configuration as code, automation, and Ansible
development.

This sets up the base for the coming chapters, where you will use this configuration
management solution to configure and deploy clusters' add-ons and services where these
add-ons are essential to reach production-readiness.

In the next chapter, you will learn about Kubernetes networking and connectivity. The
best practices of deploying and configuring Kubernetes network plugins, cluster DNS,
ingresses, network policies, and service mesh will be covered.

108 Managing Cluster Configuration with Ansible

Further reading
You can refer to the following links for more information on the topics covered in
this chapter:

•	 Ansible 2 for Configuration Management [Video]: https://www.packtpub.
com/product/ansible-2-for-configuration-management-
video/9781838826475

•	 Practical Ansible 2: https://www.packtpub.com/product/practical-
ansible-2/9781789807462

•	 Automation with Ansible Playbooks [Video]: https://www.packtpub.
com/product/automation-with-ansible-playbooks-
video/9781800206496

https://www.packtpub.com/product/ansible-2-for-configuration-management-video/9781838826475
https://www.packtpub.com/product/ansible-2-for-configuration-management-video/9781838826475
https://www.packtpub.com/product/ansible-2-for-configuration-management-video/9781838826475
https://www.packtpub.com/product/practical-ansible-2/9781789807462
https://www.packtpub.com/product/practical-ansible-2/9781789807462
https://www.packtpub.com/product/automation-with-ansible-playbooks-video/9781800206496
https://www.packtpub.com/product/automation-with-ansible-playbooks-video/9781800206496
https://www.packtpub.com/product/automation-with-ansible-playbooks-video/9781800206496

5
Configuring

and Enhancing
Kubernetes

Networking Services
In the previous chapter, you learned how to develop a configuration management solution
for Kubernetes with Ansible. After completing that solution, you are now ready to build
the upper layer of the Kubernetes cluster, and deploy the networking services and add-ons
on top of it.

In this chapter, we will learn about enhancing and fine-tuning the essential networking
services and add-ons, such as CoreDNS, ExternalDNS, and Ingress Controller. We will
not dig into the basic concepts of Kubernetes networking. Topics such as Kubernetes
networking models, inter-pod communication, intra-pod communication, cluster
services, and basic load balancing will not be covered, as in this book we are more
concerned with bringing the cluster to a state of production readiness rather than digging
into the basics, which you can learn about in introductory Kubernetes books.

110 Configuring and Enhancing Kubernetes Networking Services

In this chapter, we will focus on bringing the cluster networking closer to the production
readiness by reconfiguring the pre-deployed services, and also deploying additional
network services that are essential to Kubernetes clusters. You will learn the characteristics
of Kubernetes networking best practices, as well as how to create deployment templates
for the Kubernetes networking services and fine tune them.

In this chapter, we will cover the following topics:

•	 Introducing networking production readiness

•	 Configuring Kube Proxy

•	 Configuring Amazon CNI plugin

•	 Configuring CoreDNS

•	 Configuring ExternalDNS

•	 Configuring NGINX Ingress Controller

•	 Deploying the cluster's network services

•	 Destroying the cluster's resources

Technical requirements
The code for this chapter is located at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter05.

Check out the following link to see the Code in Action video:

https://bit.ly/3rmhLdX

Introducing networking production readiness
Since the beginning of Docker and the containerization era, there have been different
challenges and complexities associated with handling and managing containers
networking. Over the past few years, industry leaders and community contributors
have worked on solutions to tackle and solve these challenges, and the efforts are still in
progress.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05
https://bit.ly/3rmhLdX

Introducing networking production readiness 111

There are multiple container networking models, network plugins, and tools in the
Kubernetes ecosystem that support either mainstream use cases or specific corner cases.
You can learn more about these projects and tools at the CNCF cloud native network
landscape at https://landscape.cncf.io/category=cloud-native-
network&format=card-mode. In this chapter, we will stick to the services that are
essential to the general Kubernetes use cases, and their production readiness, such as
CoreDNS, NGINX Ingress Controller, and ExternalDNS.

In the following sections, you will learn how to enhance and configure the pre-deployed
network components that are usually shipped with AWS Elastic Kubernetes Service
(EKS) and how to improve them. This is aside from deploying networking services and
add-ons that are essential to networking functionality, operations, and reliability.

These are the network services and add-ons that we will cover:

•	 kube-proxy

•	 Amazon VPC K8s CNI

•	 CoreDNS

•	 ExternalDNS

•	 NGINX Ingress Controller

For each of these components, we will use the Ansible configuration management solution
to deploy and configure them by doing the following:

1.	 Defining configuration variables under the cluster's Ansible group_vars
directory, available at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/
Chapter05/ansible/group_vars/all, and the inventories directory,
available at https://github.com/PacktPublishing/Kubernetes-in-
Production-Best-Practices/tree/master/Chapter05/ansible/
inventories/packtclusters/group_vars/override

2.	 Developing a deployment template

3.	 Creating an Ansible task

4.	 Adding an entry to the cluster playbook

If there are parts of the code and templates that do not introduce new concepts or change
the configuration, we will not include their source code in the chapter text. Instead, you
can view them in the book's GitHub source code repository at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/
master/Chapter05.

https://landscape.cncf.io/category=cloud-native-network&format=card-mode
https://landscape.cncf.io/category=cloud-native-network&format=card-mode
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/group_vars/all
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/group_vars/all
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/group_vars/all
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/inventories/packtclusters/group_vars/override
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/inventories/packtclusters/group_vars/override
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/inventories/packtclusters/group_vars/override
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05

112 Configuring and Enhancing Kubernetes Networking Services

Configuring Kube Proxy
kube-proxy is an agent service that runs on each node in the cluster to create, update,
and delete network rules on the nodes, usually through the use of Linux iptables. These
network rules allow inter-pod and intra-pod communication inside and outside the
Kubernetes cluster.

Irrespective of whether you use a self-managed Kubernetes cluster or a hosted one, you
need to control the configuration options that you pass to kube-proxy. As we are using
EKS, kube-proxy comes pre-deployed with the cluster, which leaves us without a full
control over its configuration, and we need to change this.

During the cluster's lifetime, you need to control the periodic updates of kube-proxy
and include them within the cluster's updates' pipeline. Also, you need to optimize its
performance by controlling the runtime parameters, including --iptables-sync-
period, --iptables-min-sync-period, and --proxy-mode.

To learn about the remainder of the configuration options, please check the following
link: https://kubernetes.io/docs/reference/command-line-tools-
reference/kube-proxy/#options.

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter05/ansible/templates/
kube-proxy/kube-proxy.yaml.

Now, let's create the Ansible template and configuration for kube-proxy:

1.	 Define the configuration variables and add them to the group_vars directory
in this path: ansible/group_vars/all/kube-proxy.yaml. The basic
configuration contains the image and its tag, which are useful for keeping track of
the kube-proxy version that is deployed to your cluster, and for controlling its
upgrades:

kube_proxy:

 image: "602401143452.dkr.ecr.us-west-2.amazonaws.com/
eks/kube-proxy"

 tag: "v1.15.11"

2.	 Create the deployment template for the kube-proxy DaemonSet in the following
path: ansible/templates/kube-proxy/kube-proxy.yaml.

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/#options
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/#options
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/kube-proxy/kube-proxy.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/kube-proxy/kube-proxy.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/kube-proxy/kube-proxy.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/kube-proxy/kube-proxy.yaml

Configuring Kube Proxy 113

The following code snippet is part of this template, and the only code lines that you
need to modify are where the image and command specs are defined:

apiVersion: apps/v1

kind: DaemonSet

metadata:

 labels:

 eks.amazonaws.com/component: kube-proxy

 k8s-app: kube-proxy

 name: kube-proxy

 namespace: kube-system

spec:

 selector:

 matchLabels:

 k8s-app: kube-proxy

 template:

 metadata:

 labels:

 k8s-app: kube-proxy

In the following part of the template, you can define and fine-tune the kube-
proxy runtime options and pass them to the container entry point command:

 spec:

 containers:

 - command:

 - kube-proxy

 - --v=2

 - --iptables-sync-period=20s

 - --config=/var/lib/kube-proxy-config/config
image: {{ kube_proxy.image }}:{{ kube_proxy.tag }}

The following are notable configuration options that you need to consider for
kube-proxy:

•	 --proxy-mode: by default, kube-proxy uses the iptables mode, as it
is hardened on production and is faster for small-sized clusters. On the other
hand, the ipvs mode is recommended if you have a scaling cluster with
services numbering above 5,000, as the ipvs implementation ensures superior
performance.

114 Configuring and Enhancing Kubernetes Networking Services

•	 --kube-api-qps: this configuration option limits the queries per second
(QPS) initiated from kube-proxy and hit kube-apiserver. The default value
of this option is 5, but it is recommended to increase it to 10 if you expect your
cluster to run above 5,000 services. However, the more QPS that kube-proxy
sends to kube-apiserver, the busier it will become, and this could affect the
performance of kube-apiserver. You should select the QPS limit based on the
cluster size (number of running services) and your control plane capacity, so your
cluster can serve all kube-proxy requests in a timely manner.

•	 --iptables-sync-period: This option defines the maximum time interval
when iptables rules are refreshed. By default, it is set to 30s, although it is
recommended to decrease this to 20s for small clusters. The cluster admin needs to
decide the appropriate time interval and weigh between the conflicting priorities.

Let's assume you decrease the interval to 1s. This means that kube-proxy needs
to run the sync process every 1s, which means an increased load on the worker
nodes where kube-proxy is running, while also rendering iptables busy and
blocking other operations on them. On the other hand, if you increase the sync
period and run the sync process less frequently, this could result in pods being out
of iptables sync for a fraction of time, which may lead to loss of transactions.

There are other options available that handle configurations for ipvs, conntrack,
config, and metrics. However, you should be careful whenever you modify any
of these, and if you do decide to modify them, you have to deploy the changes to a
non-production cluster to examine the performance prior to promotion to production.

For a complete list of kube-proxy configuration options, please refer to the Kubernetes
official documentation at https://kubernetes.io/docs/reference/command-
line-tools-reference/kube-proxy/.

Configuring the Amazon CNI plugin
In Kubernetes, the Container Network Interface (CNI) provides a specification and
framework for writing container network plugins to manage container networking,
including pod communication and IP Address Management (IPAM). In the context of
this book, we will not go into the details of the CNI plugins and how they work. What
does concern us is how to make the best use of the CNI plugin, and how to configure it
properly.

There are multiple CNI plugins that have been battle-tested over the years. Some of these
satisfy the needs of general use cases, such as Calico, which is a highly recommended CNI
plugin, while there are other CNI plugins that lean toward solving specific use cases.

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/

Configuring the Amazon CNI plugin 115

The list of production tested CNI plugins includes Calico, Cilium, Azure CNI, Contiv,
Flannel, Weave Net, and AWS CNI. The list goes on. You can get a comprehensive list of
the supported CNI plugins and their features from the Kubernetes official documentation
at https://kubernetes.io/docs/concepts/cluster-administration/
networking/.

For the clusters that we provision in this book, we will use the AWS CNI plugin (amazon-
vpc-cni-k8s) because it is the default for EKS, and it is developed to cover the general
networking uses cases to ensure that Kubernetes works smoothly with AWS.

The AWS CNI plugin comes pre-deployed to the cluster with a default configuration in
place. This could be sufficient for simple clusters; however, we need to take full control
over the configuration, so we decided to overwrite its DaemonSet and add it to the
cluster's Ansible configuration for easier control.

During the lifetime of the cluster, you need to control the periodic updates to amazon-
vpc-cni-k8s and include them within the cluster's updates' pipeline. Also, you will
need to optimize its performance by adjusting the configuration variables that are passed
to it, such as MINIMUM_IP_TARGET, WARM_IP_TARGET, and AWS_VPC_ENI_MTU.

To learn more about the other CNI configuration options, please check this link:
https://docs.aws.amazon.com/eks/latest/userguide/cni-env-
vars.html.

Important note
When you redeploy the updated amazon-vpc-cni-k8s DaemonSet
into your cluster, the CNI pods will get restarted. The updated pods are
rolled out one after the other, but this still causes short periods of CNI plugin
unavailability, which may be noticeable in the case of a busy cluster.

You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter05/ansible/templates/
cni/amazon-k8s-cni.yaml.

Now, let's create the Ansible template and configuration for amazon-vpc-cni-k8s:

1.	 Define the configuration variables and add them to the group_vars directory
in this path: ansible/group_vars/all/cni.yaml. The basic configuration
contains the image and its tag, which are useful for keeping track of the amazon-
vpc-cni-k8s version that is deployed to your cluster, and for controlling its
upgrades.

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://docs.aws.amazon.com/eks/latest/userguide/cni-env- vars.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-env- vars.html
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/cni/amazon-k8s-cni.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/cni/amazon-k8s-cni.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/cni/amazon-k8s-cni.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/cni/amazon-k8s-cni.yaml

116 Configuring and Enhancing Kubernetes Networking Services

There are two important configuration values for cluster performance:

- MINIMUM_IP_TARGET, which is important for pre-scaling as it specifies the
number of minimum IP addresses to allocate for pod assignment on the node

- WARM_IP_TARGET, which is important for dynamic scaling as it specifies the
number of free IP addresses that the ipamD daemon should attempt to keep
available for pod assignment on the node.

Both of these variables together ensure that sufficient IP addresses are available for
new pods, which improves the start-up time of pods and enhances cluster uptime
and recovery time. You can specify the values of these variables based on the
estimated number of pods running in the cluster, and the number during spikes:

cni_warm_ip_target: 2

cni_min_ip_target: 10

aws_cni:

 image: "602401143452.dkr.ecr.us-west-2.amazonaws.com/
amazon-k8s-cni"

 tag: "v1.6.2"

2.	 Create the deployment template for the amazon-vpc-cni-k8s DaemonSet in
this path: ansible/templates/cni/amazon-k8s-cni.yaml.

The following code snippet is part of this template, and the only code lines that you
need to modify are where the image and env specs are defined:

 containers:

 - image: {{ aws_cni.image }}:{{ aws_cni.tag }}

 imagePullPolicy: Always

 env:

 - name: AWS_VPC_K8S_CNI_LOGLEVEL

 value: DEBUG

 - name: AWS_VPC_K8S_CNI_VETHPREFIX

 value: eni

 - name: AWS_VPC_ENI_MTU

 value: "9001"

 - name: MINIMUM_IP_TARGET

 value: "{{ cni_min_ip_target }}"

 - name: WARM_IP_TARGET

 value: "{{ cni_warm_ip_target }}"

Configuring CoreDNS 117

 - name: MY_NODE_NAME

 valueFrom:

 fieldRef:

 fieldPath: spec.nodeName

You can configure other options for amazon-vpc-cni-k8s by adding them to the
container environment variables, as in the previous code snippet for the container section
in the DaemonSet template.

Configuring CoreDNS
Kubernetes used to have kube-dns as its default cluster DNS service, but starting
from version 1.11, it uses CoreDNS. Also, it gets pre-deployed by most of the managed
Kubernetes offerings, including EKS, that we use in this book.

For the other Kubernetes managed services that still use kube-dns, such as GKE, we
recommend referring to the official documentation of kube-dns.

CoreDNS is very flexible as it is modular and pluggable. It has a rich set of plugins that
can be enabled to enhance DNS functionalities. This is why it is powerful and generally
preferred over kube-dns and other Kubernetes DNS solutions. To learn more about
the supported plugins, please refer to the following list: https://coredns.io/
plugins/.

During the cluster's lifetime, you need to control CoreDNS configuration as code, its
periodic updates, and include all of this within the cluster's deployment pipeline. Also, you
will need to optimize your cluster DNS performance and add extra DNS functionalities by
enabling CoreDNS plugins.

It is recommended to tune the CoreDNS resource quota for CPU and memory to improve
cluster DNS performance, especially in the case of a heavily scaling cluster. For detailed
resource configuration and scaling, please check this link: https://github.com/
coredns/deployment/blob/master/kubernetes/Scaling_CoreDNS.md#.

Important note
You can find this section's complete source code at https://github.
com/PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter05/ansible/templates/
core-dns/core-dns.yaml.

https://coredns.io/plugins/
https://coredns.io/plugins/
https://github.com/coredns/deployment/blob/master/kubernetes/Scaling_CoreDNS.md#
https://github.com/coredns/deployment/blob/master/kubernetes/Scaling_CoreDNS.md#
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/core-dns/core-dns.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/core-dns/core-dns.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/core-dns/core-dns.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/core-dns/core-dns.yaml

118 Configuring and Enhancing Kubernetes Networking Services

Now, let's create the Ansible template and configuration for coredns:

1.	 Define the configuration variables and add them to the group_vars directory
in this path: ansible/group_vars/all/core-dns.yaml. The basic
configuration contains the image and its tag, which are useful for keeping track
of the CoreDNS version that is deployed to your cluster, and for controlling its
upgrades.

The default IP of the cluster DNS is usually 172.20.0.10 unless you decide
to change it. You can specify the number of CoreDNS pods across the cluster by
setting the number of replicas:

core_dns_replicas: 2

dns_cluster_ip: 172.20.0.10

core_dns:

 image: "602401143452.dkr.ecr.us-east-1.amazonaws.com/
eks/coredns"

 tag: "v1.6.6"

2.	 Create the deployment template for the CoreDNS pods in this path: ansible/
templates/core-dns /core-dns.yaml.

The following code snippet is part of this template, and the notable configuration
here in this deployment template is the number of CoreDNS replicas and the
Docker image:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: coredns

 namespace: kube-system

 labels:

 k8s-app: kube-dns

 kubernetes.io/name: "CoreDNS"

 eks.amazonaws.com/component: coredns

spec:

 replicas: {{ core_dns_replicas }}

Configuring CoreDNS 119

In the following code snippet, you configure the CoreDNS image and tag:
containers:

- name: coredns

 image: {{ core_dns.image }}:{{ core_dns.tag }}

3.	 In the following code snippet, you specify the ConfigMap CoreDNS, where
you can modify Corefile to enable additional plugins and fine-tune their
configurations:

apiVersion: v1

kind: ConfigMap

metadata:

 name: coredns

 namespace: kube-system

 labels:

 eks.amazonaws.com/component: coredns

 k8s-app: kube-dns

data:

 Corefile: |

 .:53 {

 errors

 health

 ready

 kubernetes cluster.local {

 pods insecure

 upstream

 fallthrough in-addr.arpa ip6.arpa

 }

 prometheus :9153

 forward . /etc/resolv.conf

 cache 300

 loop

 reload

 loadbalance

 autopath @kubernetes

 }

120 Configuring and Enhancing Kubernetes Networking Services

In the previous code for the ConfigMap, we added extra plugins that help to improve the
cluster's DNS performance as follows:

•	 ready: An HTTP endpoint on port 8181 will return 200 OK, when all plugins
that are able to signal readiness have done so.

•	 loop: This plugin halts the CoreDNS process if a forwarding loop is detected.

•	 reload: This plugin automatically reloads Corefile whenever it gets changed.

•	 loadbalance: This plugin randomizes the order of DNS records in the answers
and is a round-robin DNS load balancer.

•	 autopath @kubernetes: This plugin follows the chain of search path elements
and return the first reply that is not NXDOMAIN.

•	 cache: This plugin enables a frontend cache. It is enabled by default; however, it
has 30 seconds as a default caching duration, but we recommend increasing this
value to 300 seconds to achieve better performance in the case of large clusters.

I encourage you to use the preceding CoreDNS plugins, and also check the plugins
directory, which could have other interesting and useful plugins that solve specific
problems or provide options for your applications, here: https://coredns.io/
manual/plugins/.

Configuring ExternalDNS
While CoreDNS serves as the internal DNS server for Kubernetes clusters, ExternalDNS
is a Kubernetes add-on that is used to manage your cluster external DNS providers,
including Route 53, AzureDNS, and Google Cloud DNS.

It makes Kubernetes deployments and services discoverable through public DNS services,
such as Route 53. It queries the Kubernetes API to retrieve a list of services and ingresses,
and then it communicates with the public DNS and registers these records.

ExternalDNS allows you to control DNS records (via cloud DNS services such as AWS
Route 53 or Google Cloud DNS) dynamically via Kubernetes services and ingresses.

ExternalDNS does not come pre-installed with the cluster, so you need to deploy it and
specify its configuration, which includes its Docker image, the number of replicas to run,
DNS record syncing and interval updates, the cloud provider type (that is, AWS, Azure,
and so on), and the hosted zone ID (in the case of AWS Route 53).

https://coredns.io/manual/plugins/
https://coredns.io/manual/plugins/

Configuring ExternalDNS 121

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter05/ansible/templates/
external-dns/external-dns.yaml.

Now, let's create the Ansible template and configuration for ExternalDNS:

1.	 Define the configuration variables and add them to the group_vars directory
in this path: ansible/group_vars/all/external-dns.yaml. The basic
configuration contains the image and its tag, which are useful for keeping track of
the ExternalDNS version that is deployed to your cluster, and for controlling its
upgrades.

Also, you specify the values for other configuration variables, including log_
level, provider, aws_zone_type, interval, route53_zone_type, and
external_dns_replicas:

log_level: error

provider: aws

aws_zone_type: private

interval: 1m

route53_zone_id: Z09817802WZ9HZYSUI2RE

external_dns_replicas: 2

external_dns:

 image: "registry.opensource.zalan.do/teapot/external-
dns"

 tag: "v0.5.9"

2.	 Create the deployment template for the ExternalDNS pods in this path: ansible/
templates/external-dns /external-dns.yaml.

In the following code snippet of the template, you configure the number of
ExternalDNS replicas:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: external-dns

 namespace: kube-system

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/external-dns/external-dns.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/external-dns/external-dns.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/external-dns/external-dns.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/external-dns/external-dns.yaml

122 Configuring and Enhancing Kubernetes Networking Services

spec:

 replicas: {{ external_dns_replicas }}

3.	 Then you configure the ExternalDNS image and tag, in addition to the ExternalDNS
runtime configuration variables, including log-level, source, provider,
aws-zone-id, interval, registry, and txt-owner-id:

 spec:

 serviceAccountName: external-dns

 containers:

 - name: external-dns

 image: {{ external_dns.image }}:{{ external_dns.
tag }}

 args:

 - --log-level={{ log_level }}

 - --source=service

 - --source=ingress

 - --provider={{ provider }}

 - --aws-zone-type={{ aws_zone_type }}

 - --interval={{ interval }}

 - --registry=txt

 - --txt-owner-id={{ route53_zone_id }}-{{
cluster_name }}

4.	 For ExternalDNS to operate properly, it needs to access the Route 53 DNS
resources. This is why you need to create the following IAM policy to allow
ExternalDNS to list the hosted zones, list the DNS record sets, and change the DNS
records:

resource "aws_iam_policy" "external_dns_policy" {

 name = "${var.cluster_full_name}-
ExternalDNSPolicy"

 path = "/"

 description = "Allows workers nodes to use route53
resources"

 policy = <<EOF

{

 "Version": "2012-10-17",

 "Statement": [

Configuring NGINX Ingress Controller 123

 {

 "Effect": "Allow",

 "Action": [

 "route53:ChangeResourceRecordSets"

],

 "Resource": ["*"]

 },

 {

 "Effect": "Allow",

 "Action": [

 "route53:ListHostedZones",

 "route53:ListResourceRecordSets"

],

 "Resource": ["*"]

 }

]

}

EOF

}

If you do not create the preceding IAM policy and attach it to the worker nodes or
to the pod, then ExternalDNS will fail to operate.

ExternalDNS can be configured to use the majority of DNS providers, including
AzureDNS, Google Cloud DNS, CloudFlare, and DNSimple.

To get more details and detailed code samples on how to use ExternalDNS with your DNS
provider and your Kubernetes deployments, please check the official documentation at
https://github.com/kubernetes-sigs/external-dns.

Configuring NGINX Ingress Controller
There are three main ways in which to expose Kubernetes services externally: NodePort,
load balancers, and Ingress. In this section, we will focus on ingresses, as they fulfill the
needs of the majority of the workloads and deployments on Kubernetes clusters.

Ingress exposes TCP/IP L7 services (such as HTTP/HTTPS) and it routes traffic from
outside the cluster to services within the cluster. Ingress controls traffic routing through
a defined set of rules for each ingress resource and/or a global configuration for all ingress
resources.

https://github.com/kubernetes-sigs/external-dns

124 Configuring and Enhancing Kubernetes Networking Services

There are many configurations that an ingress can control, including giving services an
external URL, SSL/TLS termination, session validity, and name-based virtual hosting. An
ingress controller is the Kubernetes resource that is responsible for fulfilling the ingress.

The most popular and battle-tested ingress is NGINX Ingress Controller. This is an ingress
controller for Kubernetes that uses NGINX as a reverse proxy and load balancer.

NGINX Ingress Controller does not come pre-installed with the cluster, so you need to
deploy and configure it on your cluster, which includes its Docker image, the number of
replicas to run, runtime arguments, and service and cloud load balancer specs.

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter05/ansible/templates/
ingress-nginx/ingress-nginx.yaml.

Now, let's create the Ansible templates and configuration for ingress-nginx:

1.	 Create the configuration variables and add them to the group_vars directory
in this path: ansible/group_vars/all/ingress-nginx.yaml. The basic
configuration contains the images for nginx-ingress-controller and its
webhook. This is useful for keeping track of the ingress-nginx version that is
deployed to your cluster and for controlling its upgrades:

nginx_ingress_controller:

 image: "quay.io/kubernetes-ingress-controller/nginx-
ingress-controller"

 tag: "0.32.0"

nginx_ingress_webhook_certgen:

 image: "jettech/kube-webhook-certgen"

 tag: "v1.2.0"

2.	 Create the template for the ingress-nginx deployment in this path: ansible/
templates/ingress-nginx/ingress-nginx.yaml:

apiVersion: apps/v1

kind: Deployment

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/ingress-nginx/ingress-nginx.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/ingress-nginx/ingress-nginx.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/ingress-nginx/ingress-nginx.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/ingress-nginx/ingress-nginx.yaml

Configuring NGINX Ingress Controller 125

3.	 In the following code snippet, the deployment gets the value of the container's
image from the ingress-nginx group_vars directory:

 spec:

 dnsPolicy: ClusterFirst

 containers:

 - name: controller

 image: {{ nginx_ingress_controller.image }}:{{
nginx_ingress_controller.tag }}

4.	 In the following code snippet, you create a ConfigMap to configure nginx-
ingress:

apiVersion: v1

kind: ConfigMap

metadata:

 labels:

 app.kubernetes.io/name: ingress-nginx

 app.kubernetes.io/instance: ingress-nginx

 app.kubernetes.io/component: controller

 name: ingress-nginx-controller

 namespace: ingress-nginx

data:

5.	 In the following code snippet, you create the service that is used to expose the
nginx-ingress controller to the public internet. This is achieved by provisioning
AWS Network Load Balancer (NLB) and assigning it to the nginx-ingress
service:

apiVersion: v1

kind: Service

metadata:

 annotations:

 service.beta.kubernetes.io/aws-load-balancer-backend-
protocol: tcp

 service.beta.kubernetes.io/aws-load-balancer-
connection-idle-timeout: '60'

126 Configuring and Enhancing Kubernetes Networking Services

 service.beta.kubernetes.io/aws-load-balancer-cross-
zone-load-balancing-enabled: 'true'

 service.beta.kubernetes.io/aws-load-balancer-type:
nlb

 labels:

 app.kubernetes.io/name: ingress-nginx

 app.kubernetes.io/instance: ingress-nginx

 app.kubernetes.io/component: controller

 name: ingress-nginx-controller

 namespace: ingress-nginx

spec:

 type: LoadBalancer

 externalTrafficPolicy: Local

After completing the creation of the networking services and add-ons with Ansible
templates, you are ready to deploy them and apply the Ansible playbook to your cluster. In
the next section, you will use the packtclusters-prod1 cluster, which you created in
the previous chapter, to apply all of these changes.

Deploying the cluster's network services
The following instructions will deploy the Ansible playbook and configure your cluster
with the networking services and add-ons configuration:

1.	 Initialize the Terraform state and select the workspace by running the following
commands:

$ cd terraform/packtclusters

$ terraform init

$ terraform workspace select prod1

2.	 Execute Terraform to apply the infrastructure we added in this chapter – the IAM
policy and the policy attachment for ExternalDNS:

$ terraform apply -auto-approve

Then you should get the following output:
Apply complete! Resources: 2 added, 0 changed, 0
destroyed.

Releasing state lock. This may take a few moments...

Deploying the cluster's network services 127

3.	 Retrieve and configure kubeconfig for the target cluster:

$ aws eks --region $(terraform output aws_region) update-
kubeconfig --name $(terraform output cluster_full_name)

4.	 Create virtualenv to install and execute Ansible:

$ virtualenv $HOME/Ansible-k8s-workspace

$ source $HOME/Ansible-k8s-workspace/bin/activate

5.	 Install Ansible, along with the prerequisite modules, openshift, pyyaml, and
requests:

$ pip install Ansible==2.8.10 openshift pyyaml requests

6.	 Execute the Ansible playbook:

$ Ansible-playbook -i \

../../Ansible/inventories/packtclusters/ \

-e "worker_iam_role_arn=$(terraform output worker_iam_
role_arn)" \

../../Ansible/cluster.yaml

7.	 You will get the following output following the successful execution of Ansible:

Figure 5.1 – Ansible execution output

8.	 Execute the following kubectl command to get all the pods running in the cluster.
This allows you to verify that the cluster configuration has been applied successfully:

$ kubectl get pods --all-namespaces

128 Configuring and Enhancing Kubernetes Networking Services

You should get the following output, which lists all the pods running in the cluster,
including the new pods for the networking add-ons:

Figure 5.2 – List of all pods

Now you have completed the application of the cluster configuration as per the previous
instructions and your cluster has all of the networking services and add-ons deployed and
configured, ready for production workloads.

Destroying the cluster's resources
First, you should delete the ingress-nginx service to instruct AWS to destroy the NLB
associated with the ingress controller. This step is required because terraform will fail to
destroy this NLB because it has been created by Kubernetes:

$ kubectl -n nginx-ingress delete svc nginx-ingress

Then, you can follow the rest of the instructions in the Destroying the network and cluster
infrastructure section in Chapter 3, Building and Provisioning Kubernetes Clusters, to
destroy the Kubernetes cluster and all related AWS resources. Please ensure that the
resources are destroyed in the following order:

1.	 Kubernetes cluster packtclusters resources

2.	 Cluster VPC resources

3.	 Terraform shared state resources

By executing the previous steps, all Kubernetes and AWS infrastructure resources should
be destroyed and cleaned up ahead of the hands-on practice in the next chapter.

Summary 129

Summary
In this chapter, you have learned about Kubernetes networking components and services
that make a cluster ready for production. You developed the templates and configuration
as code for these services with Ansible.

Despite the fact that some of these components come pre-deployed with AWS EKS, you
still need to fine-tune their configurations to fulfill your cluster requirements for scaling,
availability, security, and performance. You also deployed additional add-ons and services,
including ExternalDNS and NGINX Ingress Controller, that proved to be essential for
Kubernetes' networking needs.

By using the Ansible configuration management solution that we introduced in the
previous chapter, writing the Kubernetes manifests of these services becomes simple,
scalable, and maintainable. We follow the same framework and steps to configure each
service, and this is repeated for all services and add-on configurations that you will
develop during this book.

This chapter covered the network production readiness for Kubernetes clusters, but there
are relevant topics that we will cover in the forthcoming chapters, including network
security, network policies, service mesh, and network service observability.

In the next chapter, you will learn in detail about Kubernetes security; the security best
practices, tools, add-ons, and configuration that you need to deploy and optimize for
production-grade clusters.

Further reading
You can refer to the following links for more information on the topics covered in this
chapter:

•	 Getting Started with Kubernetes – Third Edition (Chapter 3, Working with
Networking, Load Balancers, and Ingress): https://www.packtpub.com/
virtualization-and-cloud/getting-started-kubernetes-third-
edition

•	 Mastering Kubernetes – Second Edition (Chapter 10, Advanced Kubernetes
Networking): https://www.packtpub.com/application-development/
mastering-kubernetes-second-edition

•	 Hands-On Kubernetes Networking [Video]: https://www.packtpub.com/
virtualization-and-cloud/hands-kubernetes-networking-video

https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-networking-video
https://www.packtpub.com/virtualization-and-cloud/hands-kubernetes-networking-video

6
Securing Kubernetes

Effectively
In previous chapters, you learned how to design and provision the infrastructure of
Kubernetes clusters, fine-tune their configuration, and deploy extra add-ons and services
on top of the clusters, such as networking, security, monitoring, and scaling.

In this chapter, you will learn about the different aspects of Kubernetes security,
focusing on qualifying the cluster to have a production-grade security. We will follow
an end-to-end security approach to cover all of the essential areas that every production
cluster should have. We will know how to bring the cluster security closer to the
production readiness state by fine-tuning the security configuration of the cluster and its
infrastructure and deploying new security add-ons and tools, and finally ensure cluster
security compliance and conformance to security standards and checks.

In this chapter, we will cover the following topics:

•	 Securing Kubernetes infrastructure

•	 Managing cluster access

•	 Managing secrets and certificates

•	 Securing workloads and apps

•	 Ensuring cluster security and compliance

132 Securing Kubernetes Effectively

•	 Bonus security tips

•	 Deploying the security configurations

•	 Destroying the cluster

Technical requirements
You should have the following tools installed from the previous chapters:

•	 AWS CLI V2

•	 AWS IAM Authenticator

•	 kubectl

•	 Terraform

•	 Python3

•	 PIP 3

•	 virtualenv

•	 You need to have an up-and-running Kubernetes cluster

The code for this chapter is available at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter06.

Check out the following link to see the Code in Action video:

https://bit.ly/2MBwZNk

Securing Kubernetes infrastructure
In Chapter 2, Architecting Production-Grade Kubernetes Infrastructure, we discussed the
best practices for the network infrastructure for Kubernetes clusters and we proposed
design guidelines that are essential for the infrastructure security of clusters. While these
guidelines are essential for you to consider and follow, you still need to evaluate the entire
network security requirements of your infrastructure to be sure that you have a complete
and appropriate security solution for your environment and product.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06
https://bit.ly/2MBwZNk

Securing Kubernetes infrastructure 133

Most of these security recommendations and best practices are implemented within the
Terraform and Ansible configurations that we did in the previous chapters:

•	 Use multiple availability zones (three or more) to deploy your Kubernetes cluster for
high availability.

•	 Deploy the control plane and worker nodes in private subnets only. Use the public
subnets for internet-facing load balancers.

•	 Do not allow public access to worker nodes. Expose services externally through
load balancers or ingress controllers, and not through node ports.

•	 Serve all the traffic between the API server and other control plane components or
workers over TLS.

•	 Limit network access to the Kubernetes API endpoint.

•	 Block access to kubelet.

•	 Use security groups to block access to workers and control plane ports, except
secure ones.

•	 Disable SSH access to worker nodes. You can use AWS Systems Manager Session
Manager instead of running SSHD to connect to nodes.

•	 Restrict access to the EC2 instance profile credentials. By default, the containers in
a pod use the same IAM permissions assigned to the node instance profile. This is
considered an insecure behavior, because it gives the containers full control over the
node and the underlying AWS services. To avoid this behavior, you must disable the
pod's access to the node's instance profile by executing the following iptables
commands inside the node:

$ yum install -y iptables-services

$ iptables --insert FORWARD 1 --in-interface eni+
--destination 169.254.169.254/32 --jump DROP

$ iptables-save | tee /etc/sysconfig/iptables

$ systemctl enable --now iptables

We will achieve the same by using the kube2iam add-on. It manages the pod's
IAM access, and it will block the containers from accessing the instance profile
credentials. You will learn about kube2iam in detail later in this chapter.

134 Securing Kubernetes Effectively

•	 As we are using EKS, it is highly recommended to use a regular Auto Scaling
Group (ASG) instead of the EKS node group. This is because we cannot modify
the user data of the EC2 instances in the EKS node group, which prevents us from
customizing the deployed services to EC2, including the kubelet agent. Another
reason for avoiding EKS node groups is that it enforces the attachment of public IPs
to the worker nodes, which can represent security threats.

The preceding list covers the essential production infrastructure security guidelines for
your Kubernetes clusters. All of these guidelines are covered by cluster provisioning and
configuration management, which we implemented in the previous chapters. It is worth
mentioning that your cluster infrastructure may have extra security requirements that you
should consider during infrastructure design and provisioning.

Managing cluster access
Requests from a cluster's users, either humans or service accounts, need to go through
authentication and authorization stages before hitting the API server and manipulating
the required Kubernetes objects. A typical request goes through three access stages before
it gets either allowed or rejected:

Figure 6.1 – Kubernetes access stages

The request has to go through the authentication stage to verify the client's identity by any
of the mechanisms supported by Kubernetes, then it goes through the authorization stage
to verify which actions are allowed for this user, and finally it goes through the admission
controller stage to decide whether any modifications need to be made. You will learn
about each of these in the following subsections.

Managing cluster access 135

Cluster authentication
Kubernetes cluster users need to successfully authenticate into the cluster to access its
objects. However, normal cluster users, such as developers and administrators, are not
supposed to be managed by Kubernetes, but by an external service outside the cluster,
such as Lightweight Directory Access Protocol (LDAP), OpenID Connect (OIDC),
AWS Identity and Access Management (IAM), or even a file with users and password
pairs. On the other hand, service accounts are managed by Kubernetes, and you can add
or delete them using Kubernetes API calls.

As a cluster owner, you need to decide how you will manage the cluster's normal users, in
other words, which external service to use. To authenticate users in the case of production
clusters, we recommend using AWS IAM as the authentication service. However, it is also
possible to use an OIDC identity provider, such as Azure Active Directory, or GitHub.

It's worth mentioning that Kubernetes has different authentication modules for different
means of authentication, such as client TLS certificates, passwords, and tokens. And the
cluster administrator can configure some or all of them during cluster provisioning.

Authenticating users with AWS IAM
EKS supports the webhook token authentication and service account tokens. The
webhook authentication verifies the bearer tokens. These bearer tokens are generated by
the aws-iam-authenticator client when you execute kubectl commands. Then,
the token is passed to kube-apiserver before being forwarded to the authentication
webhook, which returns the user's account and ARN to kube-apiserver.

Once the user's identity has been authenticated by the AWS IAM service, kube-
apiserver reads the aws-auth ConfigMap in the kube-system namespace to
determine the Role-Based Access Control (RBAC) group to associate with the user. The
aws-auth ConfigMap is used to create a mapping between the IAM users and roles,
and Kubernetes RBAC groups for authorization purposes. These RBAC groups can be
referenced in Kubernetes ClusterRoleBindings or RoleBindings.

We already learned how to create a custom aws-auth ConfigMap in Chapter 4,
Managing Cluster Configuration with Ansible, where we can add IAM users and IAM roles
that users can assume to access the cluster. Please check the aws-auth ConfigMap's
full configuration code here: https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/
ansible/templates/auth/aws-auth.yaml.

We recommend using IAM roles to manage production cluster access, and you can assign
these IAM roles to IAM groups and users, which makes Kubernetes authentication easier
to operate and scale.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/auth/aws-auth.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/auth/aws-auth.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/auth/aws-auth.yaml

136 Securing Kubernetes Effectively

Modifying the EKS cluster creator
It is worth noting that EKS gives the IAM user or whatever IAM role that creates the
cluster a permanent administrator authentication on the cluster's Kubernetes API service.
AWS does not provide any way to change this or to move it to a different IAM user or role.
To minimize the security drawbacks of this limitation, we suggest doing the following:

1.	 Use a dedicated but temporary IAM role to provision each new cluster.

2.	 After provisioning the cluster, remove all IAM permissions from this role.

3.	 Update the aws-auth ConfigMap in the kube-system namespace and add more
IAM users and roles to be able to manage and use the cluster.

4.	 Add these groups as subjects of RoleBindings and ClusterRoleBindings in
the cluster RBAC as needed.

You already learned in Chapter 4, Managing Cluster Configuration with Ansible, how
to handle this drawback in the Ansible cluster configuration as we created a custom
aws-auth ConfigMap and ClusterRoleBindings.

Cluster authorization
The second stage of cluster access is authorization. This determines whether the operation
requested is allowed. In order for Kubernetes to authorize a request, it considers three
inputs; first, the user who initiated the request, then the requested action, and finally the
Kubernetes resource to be modified by the action, such as pods and services.

When you create a cluster, you configure the authorization mode by passing its value to
the API server. However, in EKS, all of the authorization modes (RBAC, attribute-based
access control, and webhooks) are enabled by default, and Kubernetes will check each of
them to authorize the requests.

Admission controller
The final stage of cluster access is passing through the admission controller. In this step,
requests are validated based on the rules defined in the admission controller and the
requested object. There is also another type of admission controller, called a mutating
controller, which can modify the request, such as injecting side car containers or
modifying pod specs before sending the request to kube-api-server.

An admission controller is a powerful authorization mechanism, and it can be extended
by cluster users or third parties to enforce special validations and rules on cluster users.

Managing secrets and certificates 137

Managing secrets and certificates
Secrets and TLS certificates are essential security needs for modern applications, and
while Kubernetes provides a native solution to create and consume secrets and sensitive
data, it remains in need of additional hardening. On the other hand, Kubernetes has no
native answer to certificate issuing and management, which is why we will deploy one of
the popular add-ons and use it for this purpose.

Creating and managing secrets
Kubernetes has a secret resource type that can be used to store sensitive data, such
as passwords, tokens, certificates, and SSH keys. Pods can consume these secrets by
mounting them as volumes or environment variables. However, we do not recommend
environment variables because they can leak out and get compromised.

Another challenge here arises when users decide to store the secrets that YAML manifests
in Git repositories. In such a case, the sensitive data can be easily compromised because
secrets do not use encryption, but Base64 encoding, which can simply be decoded.

Sealed Secrets solves this problem by providing a mechanism to encrypt the secret
sensitive data and make it safe to store in Git repositories.

Sealed Secrets consists of two parts:

1.	 A command-line tool, kubeseal, to transform Custom Resource Definition
(CRD) secrets into sealed secrets.

2.	 A Sealed Secrets controller that is used to generate the encryption key, and decrypt
sealed secrets into secrets to be used by the pods.

To learn more about Sealed Secrets and the kubeseal client, please review these here:
https://github.com/bitnami-labs/sealed-secrets.

This is how it works. kubeseal communicates with the Sealed Secrets controller to
retrieve the encryption public key, and then it uses this key to encrypt the secret CRD into
a sealed secret CRD. And when a pod requires use of the sealed secret, the controller uses
the encryption private key to decrypt the sealed secret CRD and convert it to a regular
secret CRD.

It is worthwhile mentioning that Sealed Secrets mitigates the security risks associated with
secrets in a multi-tenant cluster by introducing the concept of scopes to limit secret use
and manipulation within a namespace, or cluster-wide, and with the possibility to restrict
or change the secret name and namespace. The details of the reasoning behind this can be
found here in the official documentation: https://github.com/bitnami-labs/
sealed-secrets#scopes.

https://github.com/bitnami-labs/sealed-secrets
https://github.com/bitnami-labs/sealed-secrets#scopes
https://github.com/bitnami-labs/sealed-secrets#scopes

138 Securing Kubernetes Effectively

Now, let's create the Ansible template and configuration to deploy the Sealed Secrets
controller to the cluster:

1.	 Define the required configuration variables and add them to the group_vars
directory in this path – ansible/group_vars/all/sealed-secrets.
yaml. The basic configuration contains the number of deployment replicas and the
image tag, which is useful for keeping track of the deployed version and controlling
its upgrades:

sealed_secrets_replicas: 1

seald_secrets:

 image: "quay.io/bitnami/sealed-secrets-controller"

 tag: "v0.12.4"

Important note
You can find the complete source code of the Sealed Secrets deployment
template at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/
master/Chapter06/ansible/templates/sealed-secrets.

2.	 Create the deployment template for the Sealed Secrets controller in this path –
ansible/templates/sealed-secrets/sealed-secrets.yaml. In this
controller, we will only set variables for the deployment replicas and image tags.
You can check the complete manifest YAML file at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/
blob/master/Chapter06/ansible/templates/sealed-secrets/
sealed-secrets.yaml.

3.	 Install the kubeseal CLI for macOS as follows:

$ brew install kubeseal

Install it for Linux using the following command:
$ wget https://github.com/bitnami-labs/sealed-secrets/
releases/download/v0.12.4/kubeseal-linux-amd64 -O
kubeseal

$ sudo install -m 755 kubeseal /usr/local/bin/kubeseal

To deploy the Sealed Secrets controller, please apply the deployment steps covered at the
end of this chapter under the Deploying the security configurations section.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/sealed-secrets
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/sealed-secrets
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/sealed-secrets
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/sealed-secrets/sealed-secrets.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/sealed-secrets/sealed-secrets.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/sealed-secrets/sealed-secrets.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/sealed-secrets/sealed-secrets.yaml

Managing secrets and certificates 139

Managing TLS certificates with Cert-Manager
Cert-Manager is a Kubernetes add-on and controller that allows certificates to be issued
from different sources, such as SelfSigned, CA, Vault, and ACME/Let's Encrypt, and
external issuers, such as AWS Private Certificate Authority and AWS Key Management
Service. It also ensures the validity of certificates and auto-renews and rotates them. You
can learn more about the project here: https://cert-manager.io/docs/.

Cert-Manager will make TLS certificates available out of the box for Kubernetes
workloads, and it will make issuing and managing these certificates a native feature within
the Kubernetes cluster, which is easy to manage and operate.

Cert-Manager does not come pre-installed with the cluster, so you need to deploy it and
specify its configuration, which includes its Docker image, the number of replicas to run,
certificate issuers, DNS Route 53 zones, and so on.

To deploy Cert-Manager, we will create three Kubernetes manifest files: namespace,
controller, and certificate issuers.

There are various issuers supported by Cert-Manager. Please check here: https://
cert-manager.io/docs/configuration/. In this chapter, we decided to use Let's
Encrypt as it is free and commonly used, but you can use Cert-Manager documentation
and the same deployment here with any of the other issuers.

Now, let's create the Ansible template and the configuration for it:

Important note
You can find the complete source code of the Cert-Manager deployment
template at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/
master/Chapter06/ansible/templates/cert-manager.

1.	 Define the required configuration variables and add them to the group_vars
directory in this path – ansible/group_vars/all/cert-manager.yaml.
The basic configuration contains the number of deployment replicas and the
image tags for controller, webhook, and cainjector, which is useful for keeping
track of the version deployed and for controlling its upgrades. Also, there is the
configuration of Let's Encrypt issuers for both prod and nonprod ACME URLs:

log_level: error

letsencrypt_email: security@packt.com

letsencrypt_prod_url: https://acme-v02.api.letsencrypt.
org/directory

https://cert-manager.io/docs/
https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/configuration/
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/cert-manager
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/cert-manager
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/cert-manager

140 Securing Kubernetes Effectively

letsencrypt_nonprod_url: https://acme-staging-v02.api.
letsencrypt.org/directory

cert_manager_replicas: 1

cert_manager_controller:

 image: "quay.io/jetstack/cert-manager-controller"

 tag: "v0.15.2"

cert_manager_cainjector:

 image: "quay.io/jetstack/cert-manager-cainjector"

 tag: "v0.15.2"

cert_manager_webhook:

 image: "quay.io/jetstack/cert-manager-webhook"

 tag: "v0.15.2"

2.	 Create the namespace for Cert-Manager in this path – ansible/templates/
cert-manager/namespace.yaml:

apiVersion: v1

kind: Namespace

metadata:

 name: cert-manager

 labels:

 certmanager.k8s.io/disable-validation: "true"

3.	 Create the deployment template for the Cert-Manager controller resources in this
path – ansible/templates/cert-manager/cert-manager.yaml. In this
controller, we will only set variables for the deployment replicas and image tags.
You can check the complete manifest YAML file here: https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/
blob/master/Chapter06/ansible/templates/cert-manager/cert-
manager.yaml.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/cert-manager/cert-manager.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/cert-manager/cert-manager.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/cert-manager/cert-manager.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter06/ansible/templates/cert-manager/cert-manager.yaml

Managing secrets and certificates 141

4.	 Create the issuer configuration for Let's Encrypt in this path – ansible/
templates/cert-manager/letsencrypt-clusterissuer.yaml. In this
file, there are two configurations, the first for the certificates used for production
workloads, and the other for non-production workloads. The main difference
is that Let's Encrypt will allow you to issue as many certificates as you want for
non-production, but only limited numbers per week for production ones:

apiVersion: certmanager.k8s.io/v1alpha1

kind: ClusterIssuer

metadata:

 name: letsencrypt-prod

spec:

 acme:

 email: {{ letsencrypt_email }}

 server: {{ letsencrypt_prod_url }}

 privateKeySecretRef:

 name: letsencrypt-prod

 solvers:

 - http01:

 ingress:

 class: nginx

 - selector:

 matchLabels:

 use-dns01-solver: "true"

 dns01:

 route53:

 region: {{ aws_default_region }}

 hostedZoneID: {{ route53_zone_id }}

The second part of the previous issuer configuration is very similar to the
production issuer, but with a different Let's Encrypt server.

To deploy the Cert-Manager add-on, please apply the deployment steps at the end of this
chapter under the Deploying the security configurations section.

142 Securing Kubernetes Effectively

Here is an example of how to use Cert-Manager and Let's Encrypt and associate it with an
ingress controller and a domain:

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 annotations:

 cert-manager.io/cluster-issuer: letsencrypt-prod

 name: test-ingress

 namespace: test-ingress

spec:

 rules:

 - host: example.com

 http:

 paths:

 - backend:

 serviceName: myservice

 servicePort: 80

 path: /

 tls:

 - hosts:

 - example.com

 secretName: example-cert

The previous Ingress resource uses the Cert-Manager annotation to connect to the
Let's Encrypt TLS production certificate issuer, and it defines a host with a sample DNS
example.com and secretName as example-cert, where Cert-Manager will
store the TLS certificates retrieved from Let's Encrypt, and to be used by this Ingress
resource. You can use the same Ingress resource, but with a domain name that
you own.

To get an idea of how to use Cert-Manager in other use cases, please check the official
documentation at https://cert-manager.io/docs/usage/.

https://cert-manager.io/docs/usage/

Securing workloads and apps 143

Securing workloads and apps
Kubernetes provides different built-in and third-party solutions to ensure that your
production workloads are running securely. We will explore what we regard as a must-
have for your cluster before going to production, such as workload isolation techniques,
pod security policies, network policies, and monitoring workload runtime security.

Isolating critical workloads
Kubernetes, by design, has a single control plane for each cluster, which makes sharing
a single cluster among tenants and workloads challenging, and requires the cluster owners
to have a clear strategy about cluster multi-tenancy and resource sharing.

There are different use cases where it is critical to address tenant and workload isolation:

•	 In many organizations, there are multiple teams, products, or environments that
share a cluster.

•	 There are cases where you provide Kubernetes as a service for your own
organization or external organizations.

•	 Also, there is a common case when your Kubernetes infrastructure serves
a Software as a Service (SaaS) product.

For the preceding use cases, we need to ensure that the cluster has the required
configuration for workload isolation, where we can approach soft multi-tenancy using
various Kubernetes objects, such as namespaces, RBAC, quotas, and limit ranges. This is
what you will learn in this section and across this chapter.

Now, we need to explore the different techniques for implementing tenants' isolation,
while decreasing the risks associated with Kubernetes' single-tenancy design.

Using namespaces
Namespaces are the first layer of isolation that Kubernetes provides. They provide a soft-
tenancy mechanism to create boundaries for Kubernetes resources. A lot of Kubernetes
security controls, such as network policies, access control, secrets, certificates, and other
important security controls can be scoped on the namespace level. By separating tenant
workloads into their own namespaces, you will be able to limit the impact of security
attacks, as well as intentional and non-intentional mistakes by cluster users.

144 Securing Kubernetes Effectively

Creating separate node groups
We usually avoid privileged containers, but in some cases, such as system pods or
product-specific technical requirements, they are unavoidable. To reduce the impact
of a security break, we isolate these pods on dedicated nodes and node groups where
other tenants' workloads cannot get scheduled. The same can be applied to the pods with
sensitive data. This approach decreases the risk of sensitive data being accessed by a less-
secure application that shares the worker node. However, it does come with a drawback
as it could increase the infrastructure cost, and when you take this design decision, you
should weigh security versus cost.

Implementing hard multi-tenancy
In specific use cases, hard multi-tenancy is a must, which is usually due to laws and
regulatory requirements. In this situation, multi-tenancy can be achieved by provisioning
separate clusters for each tenant, and this is what we call hard multi-tenancy. On the flip
side, however, there are drawbacks, such as the challenges associated with managing
these clusters when they grow in number, the increased total cost, and also the decreased
compute utilization per cluster.

Hardening the default pod security policy
Pod security policy (PSP) is a Kubernetes resource that is used to ensure that a pod has to
meet specific requirements before getting created.

PSPs have different security settings that you can configure either by increasing or
decreasing pod privileges, aspects such as Linux capabilities allowed to the containers,
host network access, and filesystem access.

It is still worthwhile mentioning that PSP is still in beta, and it would be unwelcome to
deploy a beta feature for companies with strict production policies.

You can define multiple PSPs in your cluster and assign them to different types of pods
and namespaces to ensure that every workload and tenant has the correct access rights.
EKS clusters come with a default PSP called eks.privileged, which is automatically
created when you provision the cluster. You can view the specs of the eks.privileged
PSP by describing it as follows:

$ kubectl describe psp eks.privileged

Name: eks.privileged

Settings:

 Allow Privileged: true

 Allow Privilege Escalation: 0xc0004ce5f8

Securing workloads and apps 145

 Default Add Capabilities: <none>

 Required Drop Capabilities: <none>

 Allowed Capabilities: *

 Allowed Volume Types: *

 Allow Host Network: true

 Allow Host Ports: 0-65535

 Allow Host PID: true

 Allow Host IPC: true

 Read Only Root Filesystem: false

 SELinux Context Strategy: RunAsAny

 User: <none>

 Role: <none>

 Type: <none>

 Level: <none>

 Run As User Strategy: RunAsAny

 Ranges: <none>

 FSGroup Strategy: RunAsAny

 Ranges: <none>

 Supplemental Groups Strategy: RunAsAny

 Ranges: <none>

This default eks.privileged PSP allows any authenticated user to run privileged
containers across all namespaces. This behavior is intended to allow system pods such as
the AWS VPC CNI and kube-proxy to run as privileged because they are responsible
for configuring the host's network settings. However, you have to limit this behavior for
other types of pods and namespaces.

As a best practice, we recommend that you limit privileged pods to service accounts
within the kube-system namespace or any other namespace that you use to isolate
system pods. For all other namespaces that host other types of pods, we recommend
assigning a restrictive default PSP. The following manifest defines a PSP to restrict
privileged pods, and accessing the host network. We will add this manifest to our Ansible
template's automation at the following path: ansible/templates/psp/default-
psp.yaml:

apiVersion: extensions/v1beta1

kind: PodSecurityPolicy

metadata:

146 Securing Kubernetes Effectively

 name: default-psp

 annotations:

 seccomp.security.alpha.kubernetes.io/allowedProfileNames:
'docker/default,runtime/default'

 apparmor.security.beta.kubernetes.io/allowedProfileNames:
'runtime/default'

 seccomp.security.alpha.kubernetes.io/defaultProfileName:
'runtime/default'

 apparmor.security.beta.kubernetes.io/defaultProfileName:
'runtime/default'

The following code snippet defines specs of the default PSP. It will not allow privileged
containers, disables container privilege escalation, and drops all Linux capabilities:

spec:

 privileged: false

 defaultAllowPrivilegeEscalation: false

 allowedCapabilities: []

 requiredDropCapabilities:

 - ALL

 You can check the complete source code of the previous PSP resource here: https://
github.com/PacktPublishing/Kubernetes-in-Production-Best-
Practices/tree/master/Chapter06/ansible/templates/psp.

The following ClusterRole definition allows all roles that are bound to it to use the
previous default-psp PSP:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: default-psp-user

rules:

- apiGroups:

 - extensions

 resources:

 - podsecuritypolicies

 resourceNames:

 - default-psp

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/psp
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/psp
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/psp

Securing workloads and apps 147

 verbs:

 - use

The following ClusterRoleBinding definition binds the default-psp-user
ClusterRole to the system:authenticated RBAC group of users, which means
that any user who is added to the cluster RBAC group, system:authenticated, has
to create pods that comply with the default-psp PSP:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: default-psp-users

subjects:

- kind: Group

 name: system:authenticated

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: default-psp-user

You can create additional pod security policies according to your security requirements,
but basically, your cluster needs to have two pod security policies; the first is eks.
privileged for the pods in the kube-system namespace, and the second is
default-psp for any other namespaces.

Limiting pod access
Usually, pods require access to the underlying cloud services, such as object stores,
databases, and the DNS. Ideally, you do not want the production pods to access all
services, or to access a service that they are not intended to use. This is why we need to
limit pod access to just the services they use.

In the AWS world, this can be achieved by utilizing the IAM roles and attaching this role
and an access policy to the pod. kube2iam is one of Kubernetes' add-ons that can do this
job efficiently. It is an open source project that is battle-tested in production. It is easy to
deploy, configure, and use. You can learn more about it here: https://github.com/
jtblin/kube2iam.

https://github.com/jtblin/kube2iam
https://github.com/jtblin/kube2iam

148 Securing Kubernetes Effectively

kube2iam does not come pre-installed with the cluster, so you need to deploy it and
specify its configuration, which includes its Docker image, iptables control, and the host
network interface.

Now, let's create the Ansible template and configuration for them:

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/tree/master/Chapter06/ansible/templates/
kube2iam.

1.	 Define the required configuration variables and add them to the group_vars
directory in this path – ansible/group_vars/all/kube2iam.yaml. The
basic configuration contains the image tag for the kube2iam DaemonSet, which is
useful for keeping track of the deployed version and for controlling its upgrades:

kube2iam:

 image: "jtblin/kube2iam"

 tag: "0.10.9"

2.	 Create the deployment template for the Cert-Manager controller resources in this
path – ansible/templates/cert-manager/cert-manager.yaml. In this
controller, we will only set variables for the deployment replicas and image tags:

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: kube2iam

 namespace: kube-system

 labels:

 app: kube2iam

The following code snippet is the specification of the kube2iam DaemonSet. The
most important part of the spec is the container runtime arguments' section:

spec:

 containers:

 - image: {{ kube2iam.image }}:{{ kube2iam.tag }}

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/kube2iam
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/kube2iam
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/kube2iam
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/kube2iam

Securing workloads and apps 149

 name: kube2iam

 args:

 - "--auto-discover-base-arn"

 - "--auto-discover-default-role=true"

 - "--iptables=true"

 - "--host-ip=$(HOST_IP)"

 - "--node=$(NODE_NAME)"

 - "--host-interface=eni+"

 - "--use-regional-sts-endpoint"

The most notable configuration parameter in the previous YAML file is
"--iptables=true", which allows kube2iam to add iptables rules to block the
pods from accessing the underlying worker node instance profile.

To deploy kube2iam, please apply the deployment steps at the end of this chapter under
the Deploying the cluster's security configuration section.

To use kube2iam with a pod, you have to add the iam.amazonaws.com/role
annotation to the pod annotations section, and add the IAM role to be used by the
pod. Here is an example to illustrate how to use kube2iam with your pods:

apiVersion: v1

kind: Pod

metadata:

 name: aws-cli

 labels:

 name: aws-cli

 annotations:

 iam.amazonaws.com/role: <add-role-arn-here>

spec:

 containers:

 - image: fstab/aws-cli

 command:

 - "/home/aws/aws/env/bin/aws"

 - "s3"

 - "ls"

 - "add-any-bucket-name-here"

 name: aws-cli

150 Securing Kubernetes Effectively

The preceding pod will run an aws-cli container that executes the S3 list command for
a bucket. Please make sure to replace the placeholders with a valid IAM role ARN to the
annotation section, and a valid S3 bucket name in the container command section.

Creating network policies with Calico
Communication between all pods within the cluster is allowed by default. This behavior
is unsecure, especially in multi-tenant clusters. Earlier, you learned about the cluster
network infrastructure and how to use security groups to control the network traffic
among a cluster's nodes. However, security groups are not effective when it comes to
controlling the traffic between pods. This is why Kubernetes provides the Network Policy
API. These network policies allow the cluster's users to enforce ingress and egress rules to
allow or deny network traffic among the pods.

Kubernetes defines the Network Policy API specification, but it does not provide
a built-in capability to enforce these network policies. So, to enforce them, you have to use
a network plugin, such as Calico network policy.

You can check your cluster to see whether there are any network policies in effect by using
the following kubectl command:

$ kubectl get networkpolicies --all-namespaces

No resources found.

Calico is a network policy engine that can be deployed to Kubernetes, and it works
smoothly with EKS as well. Calico implements all of Kubernetes' network policy features,
but it also supports an additional richer set of features, including policy ordering, priority,
deny rules, and flexible match rules. Calico network policy can be applied to different
types of endpoints, including pods, VMs, and host interfaces. Unlike Kubernetes' network
policies, Calico policies can be applied to namespaces, pods, service accounts, or globally
across the cluster.

Creating a default deny policy
As a security best practice, network policies should allow least privileged access. You start
by creating a deny all policy that globally restricts all inbound and outbound traffic
using Calico.

Securing workloads and apps 151

The following Calico global network policy implements a default, deny-all ingress and
egress policy across the cluster:

apiVersion: crd.projectcalico.org/v1

kind: GlobalNetworkPolicy

metadata:

 name: default-deny

spec:

 selector: all()

 types:

 - Ingress

 - Egress

Once you have the default network policy to deny all traffic, you can add allow rules
whenever needed by your pods. One of these policies is to add a global rule to allow pods
to query CoreDNS for DNS resolution:

apiVersion: crd.projectcalico.org/v1

kind: GlobalNetworkPolicy

metadata:

 name: allow-dns-egress

spec:

 selector: all()

 types:

 - Egress

 egress:

 - action: Allow

 protocol: UDP

 destination:

 namespaceSelector: name == "kube-system"

 ports:

 - 53

152 Securing Kubernetes Effectively

The preceding policy will allow egress network traffic from pods at any namespaces to
query the CoreDNS in the kube-system namespace.

EKS does not come with Calico installed by default. So, we will include it in our Ansible
configuration. You can view the full source code here: https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/
master/Chapter06/ansible/templates/calico-np.

Monitoring runtime with Falco
There is an essential need to monitor workloads and containers for security violations at
runtime. Falco enables the cluster's users to react in a timely manner for serious security
threats and violations, or to catch security issues that bypassed cluster security scanning
and testing.

Falco is an open source project originally developed by Sysdig with a core functionality
of threat detection in Kubernetes. It can detect violations and abnormally behaving
applications and send alerts pertaining to them. You can learn more about the Falco
project here: https://github.com/falcosecurity/falco.

Falco runs as a daemon on top of Kubernetes' worker nodes, and it has the violation
rules defined in configuration files that you can customize according to your security
requirements.

Execute the following commands at the worker nodes that you want to monitor. This will
install and deploy Falco:

curl -o install_falco -s https://falco.org/script/install

sudo bash install_falco

To automate Falco's deployment, we will include the previous commands in the worker
node bootstrap user data using Terraform in this file: terraform/modules/
eks-workers/user-data.tf.

One example of the security runtime violations that Falco can detect is detecting
whenever a shell is started inside a container. The Falco rule for this violation appears as
follows:

- macro: container

 condition: container.id != host

- macro: spawned_process

 condition: evt.type = execve and evt.dir=<

- rule: run_shell_in_container

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/calico-np
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/calico-np
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter06/ansible/templates/calico-np
https://github.com/falcosecurity/falco

Ensuring cluster security and compliance 153

 desc: a shell was spawned by a non-shell program in a
container. Container entrypoints are excluded.

 condition: container and proc.name = bash and spawned_process
and proc.pname exists and not proc.pname in (bash, docker)

 output: "Shell spawned in a container other than entrypoint
(user=%user.name container_id=%container.id container_
name=%container.name shell=%proc.name parent=%proc.pname
cmdline=%proc.cmdline)"

 priority: WARNING

There are enormous rules that you can use and define in your Falco configuration. To
learn more about them, refer to the Falco documentation and examples here: https://
falco.org/docs/examples/.

Ensuring cluster security and compliance
There are lots of moving parts and configurations that affect Kubernetes cluster security.
And after deploying the security add-ons and adding more configurations, we need to
make sure of the following:

•	 The cluster security configuration is valid and intact

•	 The cluster is compliant with the standard security guidelines according to the
Center of Internet Security (CIS) benchmark

•	 The cluster passes the conformance tests defined by the CNCF and its partners and
community

In this section, you will learn how to validate and guarantee each of the previous points
through using the relevant tools.

Executing Kubernetes conformance tests
The Kubernetes community and CNCF have defined a set of tests that you can run against
any Kubernetes cluster to ensure that this cluster passes tests in terms of specific storage
features, performance tests, scaling tests, provider tests, and other types of validation that
are defined by CNCF and the Kubernetes community. This gives the cluster operators the
confidence to use it to serve in production.

Sonobuoy is a tool that you can use to run these conformance tests, and we recommend
doing that for the new clusters, and periodically whenever you update your cluster.
Sonobuoy makes it easier for you to ensure the state of your cluster without harming its
operations or causing any downtime.

https://falco.org/docs/examples/
https://falco.org/docs/examples/

154 Securing Kubernetes Effectively

Installing Sonobuoy
Apply the following instructions to install Sonobuoy on your local host:

1.	 Download the latest Sonobuoy release that matches your operating system:
https://github.com/vmware-tanzu/sonobuoy/releases.

2.	 Extract the Sonobuoy binary archive:

$ tar -xvf <RELEASE_TARBALL_NAME>.tar.gz

3.	 Move the Sonobuoy binary archive to your bin folder or to any directory on the
PATH system.

Running Sonobuoy
Apply the following instructions to run Sonobuoy and then view the conformance
test results:

1.	 Execute the following command to let Sonobuoy run the conformance tests and
wait until it finishes:

$ sonobuoy run --wait --mode quick

2.	 To get the test results, execute the following commands:

$ sonobuoy_results=$(sonobuoy retrieve)

$ sonobuoy results $sonobuoy_results

3.	 After you finish, you can delete Sonobuoy and it will remove its namespace and any
resources that it created for testing purposes:

$ sonobuoy delete --wait

To ensure that your Kubernetes cluster is in a conformance state, we recommend
automating execution of the Sonobuoy tests to run periodically on a daily basis or
following the deployment of infrastructure and Kubernetes system-level changes. We
do not recommend more frequent and continuous runs of Sonobuoy tests to avoid the
excessive load this could bring to the cluster.

https://github.com/vmware-tanzu/sonobuoy/releases

Ensuring cluster security and compliance 155

Scanning cluster security configuration
After completing the cluster conformance testing, you need to scan the configurations
and security settings and ensure that there are no insecure or high-risk configurations. To
achieve this, we will use kube-scan, which is a security scanning tool that scans cluster
workloads and the runtime settings and assigns each one a rating from 0 (no risk) to 10
(high risk). kube-scan utilizes a scoring formula based on the Kubernetes Common
Configuration Scoring System framework.

Installing kube-scan
kube-scan is installed as a Kubernetes deployment in your cluster by using the
following kubectl command:

$ kubectl apply -f https://raw.githubusercontent.com/
octarinesec/kube-scan/master/kube-scan.yaml

kube-scan scans the cluster when it starts, and will periodically scan it once every day.
This way, you can enforce rescanning by restarting the kube-scan pod.

Running kube-scan
Apply the following instructions to run kube-scan and view the scanning results:

1.	 To access the kube-scan results, you need to port forward the kube-scan
service to port 8080 on your local machine:

$ kubectl port-forward --namespace kube-scan svc/kube-
scan-ui 8080:80

2.	 Then, open http://localhost:8080 in your browser to view the scan results.

3.	 Once you finish, you can delete kube-scan and its resources by using the
following kubectl command:

$ kubectl delete -f https://raw.githubusercontent.com/
octarinesec/kube-scan/master/kube-scan.yaml

We recommend deploying kube-scan to your cluster and automating the scan result
validation to run periodically on a daily basis or after deploying infrastructure and
Kubernetes system-level changes. We do not recommend more frequent and continuous
runs of Sonobuoy tests to avoid the excessive load this could bring to the cluster.

156 Securing Kubernetes Effectively

Executing the CIS Kubernetes benchmark
In the final security validation stage of the cluster, you should test whether the cluster is
deployed and configured according to the Kubernetes benchmark developed by the CIS.

To execute this test, you will use kube-bench, which is a tool that is used to run CIS
Kubernetes benchmark checks.

Important note
For managed Kubernetes services such as EKS, you cannot use kube-bench
to inspect the master nodes as you do not have access to them. However, it is
still possible to use kube-bench to inspect the worker nodes.

Installing kube-bench
There are multiple ways to install kube-bench, one of them is to use a Docker container
to copy the binary and the configurations to the host machine. The following command
will install it:

$ docker run --rm -v `pwd`:/host aquasec/kube-bench:latest
install

Running kube-bench
Execute kube-bench against a Kubernetes node, and specify the Kubernetes version,
such as 1.14 or any other supported version:

$ kube-bench node --version 1.14

Instead of specifying a Kubernetes version, you can use a CIS Benchmark version, such as
the following:

$ kube-bench node --benchmark cis-1.5

And for EKS, you are allowed to run these specific targets: master, node, etcd, and
policies:

$ kube-bench --benchmark cis-1.5 run --targets
master,node,etcd,policies

The outputs are either PASS; FAIL, which indicate that the test is completed; WARN,
which means the test requires manual intervention; INFO is an informational output that
requires no action.

Bonus security tips 157

Important note
We recommend automating the execution of Sonobuoy, kube-scan, and
kube-bench on a daily basis to verify security and compliance for your
clusters.

Enabling audit logging
Ensure that you enabled the cluster audit logs, and also that they are monitored for
anomalous or unwanted API calls, especially any authorization failures. For EKS, you need
to opt-in to enable these logs and have them streamed to CloudWatch.

To enable this, you need to update the Terraform EKS resource in this file, terraform/
modules/eks-cp/main.tf, and add the following line of code:

enabled_cluster_log_types = var.cluster_log_types

After applying this Terraform change to the EKS configuration, the cluster audit logs will
be streamed to CloudWatch, and you can take it from there and create alerts.

Bonus security tips
These are some general security best practices and tips that did not fit under any of the
previous sections. However, I find them to be useful:

1.	 Always keep Kubernetes updated to the latest version.

2.	 Update worker AMIs to the latest version. You have to be cautious because this
change could introduce some downtime, especially if you are not using a managed
node group.

3.	 Do not run Docker in Docker or mount the socket in a container.

4.	 Restrict the use of hostPath or, if hostPath is necessary, restrict which prefixes
can be used and configure the volume as read-only.

5.	 Set requests and limits for each container to avoid resource contention and Denial
of Service (DoS) attacks.

6.	 Whenever possible, use an optimized operating system for running containers.

7.	 Use immutable infrastructure, and automate the rotation of the cluster worker
nodes.

158 Securing Kubernetes Effectively

8.	 You should not enable the Kubernetes dashboard.

9.	 Enable AWS VPC Flow Logs to capture metadata about the traffic flowing through a
VPC, and then analyze it further for suspicious activities.

Kubernetes security is a fast-growing domain, and you should keep following the latest
guidelines and best practices, and integrate them into your processes and DevSecOps
automations.

Deploying the security configurations
The following instructions will deploy the cluster's Ansible playbook, and it will deploy
the security add-ons and configuration to the cluster:

1.	 Initialize the Terraform state and select the workspace by running the following
commands:

$ cd terraform/packtclusters

$ terraform workspace select prod1

2.	 Retrieve and configure kubeconfig for the target cluster:

$ aws eks --region $(terraform output aws_region) update-
kubeconfig --name $(terraform output cluster_full_name)

3.	 Execute the Ansible playbook:

$ source ~/ansible/bin/activate

$ ansible-playbook -i \

../../ansible/inventories/packtclusters/ \

-e "worker_iam_role_arn=$(terraform output worker_iam_
role_arn) \

cluster_name=$(terraform output cluster_full_name)

aws_default_region=$(terraform output aws_region)" \

../../ansible/cluster.yaml

4.	 You will get the following output following successful Ansible execution:

Figure 6.2 – Ansible execution output

Destroying the cluster 159

5.	 Execute the following kubectl command to get all the pods running in the cluster.
This will ensure that the cluster configuration is applied successfully:

$ kubectl get pods --all-namespaces

You should get the following output, which lists all the pods running in the cluster
including the new pods for the security add-ons:

Figure 6.3 – List of all pods

Now you have completed applying the cluster configuration as per the previous
instructions. And your cluster has all of the security add-ons and configuration deployed
and ready for serving production.

Destroying the cluster
First, you should delete the ingress-nginx service to instruct AWS to destroy the NLB
associated with the ingress controller. We need this step because Terraform will fail to
destroy this NLB because it is created by Kubernetes:

$ kubectl -n nginx-ingress destroy svc nginx-ingress

Then, you can follow the rest of the instructions in the Destroying the network and cluster
infrastructure section in Chapter 3, Provisioning Kubernetes Clusters Using AWS and
Terraform, to destroy the Kubernetes cluster and all related AWS resources. Please ensure
that the resources are destroyed in the following order:

1.	 Kubernetes cluster packtclusters resources

2.	 Cluster VPC resources

3.	 Terraform shared state resources

160 Securing Kubernetes Effectively

By executing the previous steps, you should have all Kubernetes and AWS infrastructure
resources destroyed and cleaned up, ready for the hands-on practice in the next chapter.

Summary
In this chapter, you have learned about Kubernetes security best practices, and learned
how to apply an end-to-end security approach to the cluster's infrastructure, network,
containers, apps, secrets, apps, and the workload's runtime. You also learned how to
apply and validate security compliance checks and tests. You developed all of the required
templates and configuration as code for these best practices, controllers, and add-ons with
Ansible and Terraform.

You deployed Kubernetes add-ons and controllers to provide essential services such as
kube2iam, Cert-Manager, Sealed Secrets, and Falco, in addition to tuning Kubernetes-
native security features such as pod security policies, network policies, and RBAC.

You acquired a solid knowledge of Kubernetes security in this chapter, but you should
do a detailed evaluation of your cluster security requirements and take further action to
deploy any extra tools and configurations that may be required.

In the next chapter, you will learn in detail about Kubernetes observability, and the
monitoring and logging of best practices, tools, add-ons, and configurations that you need
to deploy and optimize for production-grade clusters.

Further reading
You can refer to the following links for more information on the topics covered in
this chapter:

•	 Getting Started with Kubernetes – Third Edition (Chapter 14, Hardening Kubernetes):
https://www.packtpub.com/virtualization-and-cloud/getting-
started-kubernetes-third-edition

•	 Mastering Kubernetes – Second Edition (Chapter 5, Configuring Kubernetes Security,
Limits, and Accounts): https://www.packtpub.com/application-
development/mastering-kubernetes-second-edition

•	 Learn Kubernetes Security: https://www.packtpub.com/security/
learn-kubernetes-security

https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/application-development/mastering-kubernetes-second-edition
https://www.packtpub.com/security/learn-kubernetes-security
https://www.packtpub.com/security/learn-kubernetes-security

7
Managing Storage

and Stateful
Applications

In the previous chapters, we learned how to provision and prepare our Kubernetes
clusters for production workloads. It is part of the critical production readiness
requirement to configure and fine-tune day zero tasks, including networking, security,
monitoring, logging, observability, and scaling, before we bring our applications and
data to Kubernetes. Kubernetes was originally designed for mainly stateless applications
in order to keep containers portable. Therefore, data management and running stateful
applications are still among the top challenges in the cloud native space. There are a
number of ways and a variety of solutions to address storage needs. New solutions emerge
in the Kubernetes and cloud-native ecosystem every day; therefore, we will start with
popular in-production solutions and also learn the approach and criteria to look for when
evaluating future solutions.

In this chapter, we will learn the technical challenges associated with stateful applications
on Kubernetes. We will follow the cloud-native approach completely to fine-tune
Kubernetes clusters for persistent storage. We will learn the different storage solutions and
their shortcomings, and how to use and configure them with our Kubernetes cluster.

162 Managing Storage and Stateful Applications

In this chapter, we will cover the following main topics:

•	 Understanding the challenges with stateful applications

•	 Tuning Kubernetes storage

•	 Choosing a persistent storage solution

•	 Deploying stateful applications

Technical requirements
You should have the following tools installed from the previous chapters:

•	 AWS CLI V2

•	 AWS IAM Authenticator

•	 kubectl

We will also need to install the following tools:

•	 Helm

•	 CSI driver

You need to have an up and running Kubernetes cluster as per the instructions in Chapter
3, Provisioning Kubernetes Clusters Using AWS and Terraform.

The code for this chapter is located at https://github.com/PacktPublishing/
Kubernetes-Infrastructure-Best-Practices/tree/master/Chapter07.

Check out the following link to see the Code in Action video:

https://bit.ly/3jemcot

Installing the required tools
In this section, we will install the tools that we will use to provision applications using
Helm charts and provide dynamically provisioned volumes to the stateful applications in
your Kubernetes infrastructure during this chapter and the upcoming ones. As a cloud
and Kubernetes learner, you may be familiar with these tools from before.

https://github.com/PacktPublishing/Kubernetes-Infrastructure-Best-Practices/tree/master/Chapter07
https://github.com/PacktPublishing/Kubernetes-Infrastructure-Best-Practices/tree/master/Chapter07
https://bit.ly/3jemcot

Technical requirements 163

Installing Helm
Helm is a package manager for Kubernetes. Helm is also a great way to find and deploy
vendor and community published applications on Kubernetes. We will use Helm to deploy
applications on our Kubernetes cluster. If you do not have Helm installed in your cluster,
you can follow these instructions to do that.

Execute the following commands to install Helm 3 in your Kubernetes cluster:

$ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/
helm/helm/master/scripts/get-helm-3

$ chmod 700 get_helm.sh

$./get_helm.sh

Next, we will install the CSI drivers.

Installing CSI drivers
Container Storage Interface (CSI) is the standardized APIs to extend Kubernetes with
third-party storage provider solutions. CSI drivers are vendor specific and, of course, you
only need an AWS EBS CSI driver if you are running on AWS infrastructure, including
EC2 or EKS-based clusters. To install the latest AWS EBS CSI drivers, refer to the Amazon
EKS official documentation at https://docs.aws.amazon.com/eks/latest/
userguide/ebs-csi.htm.

If you are running on a self-managed Kubernetes solution, bare metal/on-premises, or
virtualized environment, you may need to use another vendor's CSI driver or Container
Attached Storage (CAS) solutions. To install other CSI vendor drivers, you can refer
the links to specific driver instructions on the official CSI documentation at https://
kubernetes-csi.github.io/docs/drivers.html.

Now that we have installed the prerequisites required in the chapter to deploy
Helm Charts and consume AWS EBS volumes using the CSI driver, let's go over the
implementation principles we will be following, making storage provider decisions with
a view to solving our stateful application challenges.

https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.htm
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.htm
https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes-csi.github.io/docs/drivers.html

164 Managing Storage and Stateful Applications

Implementation principles
In Chapter 1, Introduction to Kubernetes Infrastructure and Production-Readiness, we
learned about the infrastructure design principles that we will follow during the book.
I would like to start this chapter by highlighting the notable principles that influenced the
cloud-native data management suggestions and the technical decisions in this chapter:

•	 Simplication: In this chapter, we will retain our commitment to the simplification
principle. Unless you are operating in a multi-cloud environment, it is not necessary
to introduce new tools and complicate operations. On public clouds, we will use the
native storage data management technology stack provided, and which is supported
by your managed service vendor. Many stateful applications today are designed to
fail and provide built-in, high-availability functionality. We will identify different
types of stateful applications and learn how to simply data paths and fine-tune
for performance. We will also learn the additional design principles to achieve
higher availability across availability zones, as well as unifying data management in
on-premises and hybrid cloud environments.

•	 Cloud agnostic: Data has gravity. When running stateless applications, cloud
vendor lock-in may not be as important since container images can be brought up
almost instantly on any infrastructure, but when dealing with stateful workloads,
it is easy to get into this situation. We will use cloud-native solutions to abstract
storage layers and eliminate dependencies. The solutions we will implement will
work exactly the same way on any cloud provider, managed Kubernetes service, and
even on a self-managed on-premise environment.

•	 Design for availability: CSI is great, but, at the same time, it is nothing more than
standardized APIs. Your data still needs to be stored on a highly available media
somewhere. It is important to consider the blast radius of your storage solution.
It doesn't make sense to store your loosely coupled applications in a single scale-
out storage solution, or on a legacy storage appliance. Doing so would create scale
bottlenecks and will slow you down along the way. We will learn the benefits of
cloud-native storage solutions. We will also learn how to use snapshots, clones, and
backups for increased service availability and quick service recovery.

•	 Automation: You can't automate your CI/CD pipelines unless everything can be
dynamically provisioned. We will learn about Kubernetes storage primitives and the
use of dynamic provisioners.

In this section, we have covered the implementation principles we will be following when
making storage provider decisions. Let's now take a look at some of the common stateful
application challenges we will need to address.

Understanding the challenges with stateful applications 165

Understanding the challenges with stateful
applications
Kubernetes was initially built for stateless applications in order to keep containers
portable. Even when we run stateful applications, the applications themselves are actually
very often stateless containers where the state is stored separately and mounted from
a resource called Persistent Volume (PV). We will learn the different resource types used
to maintain state and also keep some form of flexibility later in the Understanding storage
primitives in Kubernetes section.

I would like to highlight the six notable stateful application challenges that we will try to
address in this chapter:

•	 Deployment challenges: Especially when running a mission-critical service in
production, finding the ideal deployment method of a certain stateful application
can be challenging to start with. Should we use a YAML file we found in a blog
article, open source repository examples, Helm charts, or an operator? Your choice
will have an impact on future scalability, manageability, upgrades, and service
recoverability. We will learn the best practices to follow for deploying a stateful
application later in this chapter in the Deploying stateful applications section.

•	 Persistency challenges: Storing the actual persistent data that makes the application
stateful needs to be carefully picked. You should never store the state inside the
application container itself since the container images and pods can be restarted
and updated, which would result in losing the data. Similarly, if you are running
your cluster across multiple availability zones on top of EBS volumes when a node is
restarted, your application may come up in a node located on a separate availability
zone with no access to previous EBS volumes. In that case, you should consider
a container-attached storage solution with across availability zone (AZ) replication
functionality.

On the other hand, if your application is a distributed database with built-in high
availability, adding an additional layer of high availability from a storage provider
would have a negative impact on capacity, cost, and performance. Persistency
decisions need to carefully consider an application's requirements.

166 Managing Storage and Stateful Applications

•	 Scalability challenges: One of the main reasons behind the popularity of
the Kubernetes orchestration platform is the flexibility of scaling up services.
Kubernetes platforms allow you to start on a single worker node and dynamically
scale up to thousands of nodes according to demand and increasing loads. Not
every storage solution is designed for scale. We will learn the best practices to follow
and the differences between the storage options to consider when deploying
a scalable stateful application later in this chapter in the Choosing a persistent storage
solution section.

•	 Mobility challenges: Data mobility means being able to get data where and
when you need it. Especially in an infrastructure where hybrid or multi-cloud
are requirements, your choice of storage provider becomes a key factor. This
requirement is also aligned with the cloud-agnostic design principles that we
introduced in Chapter 1, Introduction to Kubernetes Infrastructure and Production-
Readiness. If needed, your stateful applications should be able to migrate to different
zones and even different storage and cloud vendors.

•	 Life cycle manageability challenges: The real challenge starts after you deploy your
stateful applications. Day two operations need to be planned in advance before you
go to production with your services. This sometimes creates a dependency and
requirement on your deployment method as well. You need to pick the deployment
method that will support rollover upgrades, monitoring, observability, and
troubleshooting.

•	 Disaster recovery (DR) and backup challenges: You need to plan for service
availability in case of application and or infrastructure failures. Your data needs
to be backed up on a regular basis. Some applications may require application-
consistent backups, and some might be good with just crash-consistent backups.
CSI-operated snapshots and copying that data to object storage needs to be
scheduled. Taking a backup is one side of the problem, but being able to recover
from your backup in a timely fashion is another challenge. When there is a service
outage, end user service impact is measured using mainly two data points; the
Recovery Time Objective (RTO) and the Recovery Point Objective (RPO).
RTO measures the time required to bring a service back, while RPO measures the
backup frequency. Data created by your application may grow quickly when you go
to production with your services. Recovering a large amount of data from S3-like
object storage will take time. In that case, stream backup solutions need to be
considered. This requirement is also aligned with the design for availability design
principles that I introduced in Chapter 1, Introduction to Kubernetes Infrastructure
and Production-Readiness. If needed, your application needs to be able to switch to
its DR copy as quickly as possible with minimal downtime.

Tuning Kubernetes storage 167

These six core challenges contribute to the architectural design decisions we need to make
in order to run stateful applications in production. We will consider these challenges
later in this chapter when we evaluate our storage options and make a relevant technical
decision based on it.

Tuning Kubernetes storage
At some point, we have all experienced and been frustrated by storage performance
and the technical limitations of it. In this chapter, we will learn the fundamentals of
Kubernetes storage, including storage primitives, creating static persistent volumes
(PVs), and using storage classes to provision dynamic PVs to simplify management.

Understanding containerized stateful applications requires us to get into the cloud-native
mindset. Although referred to as stateful, data used by pods is either accessed remotely or
orchestrated and stored in Kubernetes as separate resources. Therefore, some flexibility
is maintained to schedule applications across worker nodes and update when needed
without losing the data. Before we get into the tuning, let's understand some of the basic
storage primitives in Kubernetes.

Understanding storage primitives in Kubernetes
The beauty of Kubernetes is that every part of it is abstracted as an object that can be
managed and configured declaratively with YAML or JSON through the kube-api
server. This makes Kubernetes configuration easier to manage as code. Storage is also
handled as abstracted objects. To be able to understand the reasoning behind the best
practices, I highly recommend that you learn the separation of the storage object. In this
section, we will learn the following core storage primitives to request persistent storage
from Kubernetes and orchestrate the provisioning through storage providers associated
with it:

•	 Volume

•	 Persistent Volume (PV)

•	 Persistent Volume Claim (PVC)

•	 Storage Class (SC)

Let's discuss each of these in the following sections.

168 Managing Storage and Stateful Applications

Volumes
Kubernetes volumes are basically just a directory accessible to the applications running
in containers in a pod. How this directory is created and protected, and where it is stored
really depends on the type of volume used, which makes this a critical decision when
running stateful applications in production. Kubernetes supports many types of volumes.
For a detailed list of support volume types, refer to the official Kubernetes documentation
at https://kubernetes.io/docs/concepts/storage/volumes/. Some of the
volume types are ephemeral, in other words, their lifespan is limited to its pod. Therefore,
they should only be used for stateless applications where the persistency of data is not
necessary across restarts. In the context of stateful applications, our focus is PV types,
including remote PVs and local PVs. Let's now learn about the use of PV objects.

PVs
PVs are volumes that can retain the data during pod restarts or other resource failures.
PVs can be created either statically in advance or dynamically when requested by the user
application. I will explain the use of static or dynamic PV objects with a practical example
while we deploy a Percona server.

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter07/stateful/percona/
pv-percona.yaml.

Let's start with a static volume to understand its limitations, in other words, the value and
logic behind the dynamic provisioning:

1.	 Create an AWS Elastic Block Store volume with a size of 100 GB using the volume
type gp2. Make sure that the EBS volume is in the same availability zone as your
Kubernetes worker nodes:

$ aws ec2 create-volume --size=10 --availability-zone=us-
east-1a --volume-type=gp2

2.	 Repeat the previous step to create one volume per worker node available in your
cluster. If you have three nodes available, then create a total of three volumes.
Execute the following command to get the list of InstanceId strings for
the nodes:

$ aws ec2 describe-instances | grep InstanceId

https://kubernetes.io/docs/concepts/storage/volumes/
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/pv-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/pv-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/pv-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/pv-percona.yaml

Tuning Kubernetes storage 169

3.	 Execute the following command to attach each volume you have created to one
worker node in your cluster at a time using the AWS CLI. Replace WORKER_NODE_
ID and VOLUME_ID from the output of step 1:

$ aws ec2 attach-volume --device /dev/sdf --instance-id
<WORKER_NODE_ID> --volume-id <YOUR_VOLUME_ID>

4.	 Create a Kubernetes PV named percona-pv1 with a size of 5Gi in the following
path – stateful/percona/pv-percona.yaml. Make sure to replace
volumeID with a valid volume ID of your EBS volume:

apiVersion: v1

kind: PersistentVolume

metadata:

 name : percona-pv1

spec:

 accessModes:

 - ReadWriteOnce

 capacity:

 storage: 5Gi

 persistentVolumeReclaimPolicy: Retain

 awsElasticBlockStore:

 volumeID: <YOUR EBS VOLUME ID HERE>

 fsType: xfs

5.	 Execute the following kubectl command to create a static PV in the cluster:

$ kubectl apply -f pv-percona.yaml

Now you have created a PV that can bind to your stateful application. As you can see, if
you have a dynamically scaling environment, creating volumes manually in advance will
not provide a scalable option.

PV claims
A PV claim (PVC) is a request for storage. PVC requests can be fulfilled either by static or
dynamic PVs.

170 Managing Storage and Stateful Applications

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter07/stateful/percona/
pvc-percona.yaml.

Here, we will create a PVC manifest to request the static PV we created earlier:

1.	 Create a PVC named percona-pv1 with a size of 5Gi in the following path –
stateful/percona/pvc-percona.yaml:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: percona-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 5Gi

2.	 In the following part of the template, we will set storageClassName to blank.
Otherwise, the default storage class will be used and a PV is created dynamically
using the default storage provisioner. This time, we are specifically requesting a PV
with no storage class specified, so it can only be bound to our existing PV:

 storageClassName: ""

3.	 Execute the following kubectl command to create a PVC object in the cluster:

$ kubectl apply -f pv-percona.yaml

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter07/stateful/percona/
deployment-percona.yaml.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/pvc-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/pvc-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/pvc-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/pvc-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona.yaml

Tuning Kubernetes storage 171

In the following code snippet, you create the percona deployment that will use the PVC
to request the PV we created earlier:

1.	 Create a Kubernetes secret to keep the Percona root password by executing the
following command. This will be used in the deployment later. You can read more
about the detailed usage of Kubernetes secrets at https://kubernetes.io/
docs/concepts/configuration/secret/:

$ kubectl create secret generic mysql-root \

 --from-literal=mysql-root-passwd=MyP@ssW0rcl \

 --dry-run -o yaml | kubectl apply -f -

2.	 Create the template for the percona deployment in the following path –
stateful/percona/deployment-percona.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: percona

spec:

 selector:

 matchLabels:

 app: percona

 template:

 metadata:

 labels:

 app: percona

 spec:

 containers:

 - image: percona

 name: percona

 env:

 - name: MYSQL_ROOT_PASSWORD

 valueFrom:

 secretKeyRef:

 name: mysql-root

 key: mysql-root-passwd

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

172 Managing Storage and Stateful Applications

 ports:

 - containerPort: 3306

 name: percona

3.	 In the following part of the template, we will define the volumeMounts using the
name percona-volume, with the mountPath parameter configured as the path
/var/lib/mysql, where your PV will be mounted inside the container:

 volumeMounts:

 - name: percona-volume

 mountPath: /var/lib/mysql

4.	 Finally, in the following part of the template, we will define where your request will
be directed. In our case, as defined before in the case of claimName, this should be
percona-pvc:

 volumes:

 - name: percona-volume

 persistentVolumeClaim:

 claimName: percona-pvc

5.	 Execute the following kubectl command to create percona deployment in the
cluster:

$ kubectl apply -f deployment-percona.yaml

Now you have created a stateful application deployment with a binding to a static PV.
Although it can be useful to know how to clone an existing volume and mount it to
a new pod, this is not a scalable solution. Therefore, we will now learn about the dynamic
provisioning of PVs using StorageClass.

Storage class
The StorageClass object allows dynamic provisioning requests through a PVC. You
can maintain multiple classes that map to different availability and QoS levels using
internal or external third-party provisioners. The StorageClass concept is similar to
tiers or profiles in traditional storage solutions.

Tuning Kubernetes storage 173

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter07/stateful/percona/
deployment-percona.yaml.

Let's review a StorageClass template used for provisioning EBS volumes on AWS:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: gp2

In the following part of the template, we set StorageClass as the default storage class.
It is highly recommended good practice to set a default storage class, so PVCs missing the
storageClassName field are automatically assigned to your default class:

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

In the following part of the template, we set the EBS volume type to gp2, with AWS EBS
volumes of io1, gp2, sc1, or st1. You can read about the differences in the official
AWS documentation at https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ebs-volume-types.html. We also set fsType to ext4:

parameters:

 type: gp2

 fsType: ext4

In the following part of the template, we set the provisioner type to kubernetes.
io/aws-ebs. This field can be internal or an external provisioner. In our following
template, it is set to Kubernetes' internal aws-ebs provisioner, kubernetes.io/
aws-ebs. We will review the available storage options later in this chapter in the
Choosing a persistent storage solution section:

provisioner: kubernetes.io/aws-ebs

reclaimPolicy: Retain

allowVolumeExpansion: true

volumeBindingMode: Immediate

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona.yaml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

174 Managing Storage and Stateful Applications

reclaimPolicy can be set to Delete, Recycle, or Retain and it defines the
action when a corresponding PVC is deleted. When Retain is selected, after the PVC
is removed, the PV is moved to the Released state. Hence, Retain is the suggested
option to avoid accidents.

The allowVolumeExpansion field is used if you need to request a larger size PVC later
and you want the same volume to be resized instead of getting a new volume. You can
only expand a PVC if its storage class has the allowVolumeExpansion parameter set
to true.

Note
AWS EBS volume expansions can take time and one modification is allowed
every 6 hours.

volumeBindingMode can be set to Immediate or WaitForFirstConsumer. This
parameter stipulates when the volume binding should occur.

To learn about the remainder of the StorageClass parameters, please check the official
Kubernetes documentation here: https://kubernetes.io/docs/concepts/
storage/storage-classes/.

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter07/stateful/percona/
deployment-percona-sc.yaml.

Now, we will modify the pvc-percona.yaml and deployment-percona.
yaml manifest files. We will adjust the percona deployment to use a storage class to
dynamically request a PV through a PVC:

1.	 Edit the template for the percona-pvc PVC in this path, stateful/percona/
pvc-percona.yaml, using your preferred text editor. Adjust the name and
storageClassName fields as follows:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: percona-pvc-gp2

spec:

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona-sc.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona-sc.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona-sc.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter07/stateful/percona/deployment-percona-sc.yaml

Choosing a persistent storage solution 175

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 5Gi

 storageClassName: gp2

2.	 Edit the template for the percona deployment in this path, stateful/
percona/deployment-percona.yaml, using your preferred text editor.
Adjust the last line, claimName, as follows:

 claimName: percona-pvc-gp2

3.	 Execute the following kubectl commands to create a percona deployment in the
cluster using a dynamically provisioned PV:

$ kubectl apply -f pv-percona.yaml

$ kubectl apply -f deployment-percona.yaml

Now you have created a stateful application deployment with a binding to a dynamically
provisioned PV using StorageClass. This step completely eliminated the need for
manual EBS volume creation. Therefore, we will use this method later in this chapter
when creating new stateful applications.

Choosing a persistent storage solution
Two of the biggest stateful application challenges in Kubernetes are storage orchestration
and data management. There are an infinite number of solutions out there. First, we will
explain the main storage attributes and topologies we need to consider when evaluating
storage alternatives. Let's review the topologies used by the most common storage
systems:

•	 Centralized: Traditional, or also referred to as monolithic, storage systems are most
often tightly coupled with a proprietary hardware and internal communication
protocols. They are usually associated with scale-up models since it is difficult to
scale-out tightly coupled components of the storage nodes.

•	 Distributed: Distributed storage systems are more likely to be a software-defined
solution and they may be architected to favor availability, consistency, durability,
performance, or scalability. Usually, distributed systems scale out better than others
to support many storage server nodes in parallel.

176 Managing Storage and Stateful Applications

•	 Hyperconverged: Hyperconverged storage solutions are designed to take advantage
of the same network and compute resources where the applications run. They are
largely designed to run as software and are orchestrated by the same platform used
to manage applications, VMs, or containers, such as a hypervisor or container
orchestrators.

•	 Sharded: Sharded storage solutions partition the data into datasets and store them
across multiple nodes. Sharded storage solutions can be complex to manage and
rebalance and performance is limited to the performance of a single node where the
dataset is located.

The category of storage solutions available for the cloud-native application is known as
cloud-native storage by the Cloud Native Computing Foundation (CNCF). Currently,
there are 17 open source and 32 proprietary solutions, hence a total of 49 solutions, listed
in the category.

For the most up-to-date list of solutions, you can refer to the official CNCF cloud-native
interactive landscape documentation at https://landscape.cncf.io/:

Figure 7.1 – CNCF cloud-native landscape with cloud-native storage providers

https://landscape.cncf.io/

Deploying stateful applications 177

When the challenges mentioned in the Understanding the challenges with stateful
applications section are considered for the simplicity of the deployment and life cycle
management of block storage, Container Attached Storage (CAS) and Cloud Storage
are preferred over the centralized topology. To satisfy persistence across different
infrastructure and data mobility requirements, CAS and Distributed solutions should
be preferred over the solutions on the right. When we talk about Kubernetes-grade
scalability, again Cloud Storage and CAS solutions offer significant advantages over
the centralized topology. Overall, CAS and Cloud Storage providers satisfy all the
architectural concerns. That said, on many occasions, we will have to utilize your
company's existing investment. Cloud storage is only available on the cloud vendor
provided infrastructure, and if you are running on-premises/private clouds, you may
need to utilize your existing hardware solutions. In that case, you can still leverage CAS
solutions to unify data management, add the advantages of cloud-native storage, including
data mobility and scalability, and simplify the life cycle management of PVs on top of your
investment.

Now that you have learned the storage topologies used by the most common storage
solutions, let's focus on how we can use a CAS solution to deploy a stateful application.

Deploying stateful applications
Kubernetes provides a number of controller APIs to manage the deployment of pods
within a Kubernetes cluster. Initially designed for stateless applications, these controllers
are used to group pods based on need. In this section, we will briefly learn the differences
between the following Kubernetes objects – pods, ReplicaSets, deployments, and
StatefulSets. In the event of a node failure, individual Pods will not be rescheduled on
other nodes. Therefore, they should be avoided when running stateful workloads.

Deployments are used when managing pods, and ReplicaSets when we need to roll out
changes to replica Pods. Both ReplicaSets and Deployments are used when provisioning
stateless applications. To learn about Deployments, please check the official Kubernetes
documentation here: https://kubernetes.io/docs/concepts/workloads/
controllers/deployment/.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

178 Managing Storage and Stateful Applications

StatefulSets are another controller that reached a General Availability (GA) milestone
with the release of Kubernetes 1.9. The real adoption of stateful applications started
following the introduction of the StatefulSets object. With StatefulSets, every pod replica
has its own state, in other words, its own volume, and therefore retains its state and
identity across restarts. When deploying stateful applications, and when we need storage
to be stateful, we will use StatefulSets. The following diagram shows the components of an
application deployed using StatefulSets:

Figure 7.2 – Kubernetes StatefulSet deployment diagram

StatefulSets require a headless service for handling the network identity of the related
pods. When a StatefulSet requests volumes to be created, it uses the StorageClass to call
the PV provisioner. Earlier in this chapter, you learned to use StorageClass to dynamically
provision PVs.

Before we deploy a stateful application, we will learn how to install one of the popular
open source storage provisioner options, OpenEBS, which we mentioned in the Choosing
a persistent storage solution section.

Installing OpenEBS
OpenEBS is an open source CNCF project for Kubernetes designed to enable stateful
applications to easily access dynamic local PVs, or replicated and highly available PVs.
OpenEBS is an example of the new category of cloud-native storage solutions known
as CAS. CAS solutions are easy to maintain, are portable, can run on any platform, are
scalable, and fulfil the infrastructure design principles that I introduced in Chapter 1,
Introduction to Kubernetes Infrastructure and Production-Readiness.

Deploying stateful applications 179

To learn more about its prerequisites and the detailed usage of OpenEBS, please refer to
the following link: https://docs.openebs.io/.

Now, let's install OpenEBS on your Kubernetes cluster and prepare your cluster to provide
dynamically provisioned PVs:

1.	 Create a namespace called openebs:

$ kubectl create ns openebs

2.	 Add the OpenEBS Helm chart repository to your local repository list:

$ helm repo add openebs https://openebs.github.io/charts

3.	 Update the Helm chart repositories:

$ helm repo update

4.	 Install openebs from its Helm repository:

$ helm install --namespace openebs openebs openebs/
openebs

5.	 Verify successful installation by executing the following command:

$ kubectl get pods -n openebs

6.	 The output of the preceding command should look as follows:

Figure 7.3 – List of the OpenEBS pods running following successful installation

Now that you can use OpenEBS for dynamically creating PVs, you can either create a new
SC or use one of the default storage classes provided by OpenEBS.

https://docs.openebs.io/

180 Managing Storage and Stateful Applications

OpenEBS provides various types of block storage options, including storage engines called
Jiva, cStor, and Mayastor, for persistent workloads that require highly available
volumes during node failures and Dynamic Local PV (device, host path, ZFS)
alternatives for distributed applications, such as Cassandra, Elastic, Kafka, or MinIO.

Execute the following command to get the list of default storage classes in your cluster:

$ kubectl get sc

You will notice the new storage classes, openebs-device, openebs-hostpath,
openebs-jiva-default, and openebs-snapshot-promoter, added to your list.

Here is an example of a YAML manifest to create a PVC using the default openebs-
jiva-default storage class:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: openebs-pvc

spec:

 storageClassName: openebs-jiva-default

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 5G

Now you have learned who to create a PV for with your stateful applications using an
open source CAS alternative – OpenEBS.

From now on, if running on an AWS infrastructure, you can continue to consume your
existing EBS volumes using the gp2 storage class or the ebs-sc storage class created
earlier using Amazon_EBS_CSI_Driver, or take advantage of OpenEBS to abstract
data management. OpenEBS, in the same way as CAS solutions, helps to reduce many of
the challenges we described in the Understanding the challenges with stateful applications
section earlier in this chapter.

Now that we have learned how to use storage provisioners to dynamically provision a PV,
let's use it, along with a stateful application, to simplify the life cycle of data management.

Deploying stateful applications 181

Deploying a stateful application on OpenEBS volumes
OpenEBS provides a flexible data plane with a few storage engines options that are
optimized for different application and performance expectations. You can read about
the differences between storage engines on the official OpenEBS documentation site at
https://docs.openebs.io/docs/next/casengines.html. Here, we will dive
into one of the defaults, the low-footprint storage engine option, Jiva.

Now, we will modify the pvc-percona.yaml and deployment-percona.
yaml manifest files. We will adjust the percona deployment to use a StorageClass to
dynamically request a PV through a PVC:

1.	 Create a StorageClass named openebs-jiva-3r with a ReplicaCount of
3 in the following path – stateful/percona/sc-openebs-jiva.yaml. This
will create three copies of the volume and make it highly available in the event of
node failure:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: openebs-jiva-3r

 annotations:

 openebs.io/cas-type: jiva

 cas.openebs.io/config: |

 - name: ReplicaCount

 value: "3"

 - name: StoragePool

 value: default

provisioner: openebs.io/provisioner-iscsi

2.	 Execute the following kubectl command to create the StorageClass:

$ kubectl apply -f sc-openebs-jiva.yaml

3.	 Edit the template for the percona-pvc PVC in this path, stateful/percona/
pvc-percona.yaml, using your preferred text editor. Adjust the name and
storageClassName fields as follows:

 storageClassName: openebs-jiva-3r

https://docs.openebs.io/docs/next/casengines.html

182 Managing Storage and Stateful Applications

4.	 Edit the template for the percona deployment in this path, stateful/
percona/deployment-percona.yaml, using your preferred text editor.
Adjust the last line, claimName, as follows:

 claimName: percona-pvc-openebs

5.	 Execute the following kubectl commands to create the percona deployment in
the cluster using a dynamically provisioned PV:

$ kubectl apply -f pvc-percona.yaml

$ kubectl apply -f deployment-percona.yaml

Now you have created a stateful application deployment backed by dynamically created
OpenEBS PVs. This step helped us to abstract data management on cloud and bare-metal
or VM-based Kubernetes clusters.

Summary
In this chapter, we learned the stateful application challenges and best practices to
consider when choosing the best storage management solutions, both open source and
commercial, and finally, the stateful application considerations when deploying them in
production using Kubernetes' StatefulSet and deployment objects.

We deployed the AWS EBS CSI driver and OpenEBS. We also created a highly available
replicated storage using OpenEBS and deployed our application on OpenEBS volumes.

We gained a solid understanding of Kubernetes storage in this chapter, but you should
perform a detailed evaluation of your cluster storage requirements and take further action
to deploy any extra tools and configurations that may be required, including your storage
provider's CSI driver.

In the next chapter, we will learn in detail about seamless and reliable applications. We
will also get to grips with containerization best practices to easily scale our applications.

Further reading 183

Further reading
You can refer to the following links for more information on the topics covered in
this chapter:

•	 Kubernetes – A Complete DevOps Cookbook (Chapter 5, Preparing for Stateful
Workloads): https://www.packtpub.com/product/kubernetes-a-
complete-devops-cookbook/9781838828042.

•	 Kubernetes Container Storage Interface (CSI) Documentation:
https://kubernetes-csi.github.io/docs/introduction.html

•	 QuickStart Guide to OpenEBS: https://docs.openebs.io/docs/next/
quickstart.html

https://www.packtpub.com/product/kubernetes-a-complete-devops-cookbook/9781838828042
https://www.packtpub.com/product/kubernetes-a-complete-devops-cookbook/9781838828042
https://kubernetes-csi.github.io/docs/introduction.html
https://docs.openebs.io/docs/next/quickstart.html
https://docs.openebs.io/docs/next/quickstart.html

8
Deploying Seamless

and Reliable
Applications

In previous chapters, we learned how to prepare our platform and infrastructure
components for production usage. We also learned Kubernetes data management
considerations and storage best practices to deploy our first stateful application using the
Operator Framework. One of the most underestimated topics in container orchestration
is container image management. Although developing applications in Kubernetes is out
of the scope of this book, we need to understand the critical components of our images.
There are multiple sources, public container registries, and vendors where we can find
ready-to-consume application images. Mishandling container images can not only
cause overutilization of our cluster resources but, more importantly, can also impact the
reliability and security of our services.

In this chapter, we will discuss topics such as containers and image management. We will
learn about the technical challenges when selecting or creating our application images that
affect the Kubernetes cluster's stability and security. We will focus on application rollout
best practices when deploying and creating our production services before hosting on our
cluster to avoid creating instability or misuse of the cluster. This will help us to get the full
benefits of using Kubernetes to orchestrate our services securely.

186 Deploying Seamless and Reliable Applications

In this chapter, we're going to cover the following main topics:

•	 Understanding the challenges with container images

•	 Learning application deployment strategies

•	 Scaling applications and achieving higher availability

Technical requirements
You should have the following tools installed from previous chapters:

•	 kubectl

•	 metrics-server

You need to have an up-and-running Kubernetes cluster as per the instructions in Chapter
3, Provisioning Kubernetes Clusters Using AWS and Terraform.

The code for this chapter is located at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter08.

Check out the following link to see the Code in Action video:

https://bit.ly/3rpWeRN

Understanding the challenges with container
images
In this section, we will learn about the considerations and best practices followed by
industry experts when building or selecting the right container images. Before we discuss
the challenges and get into our options, let's learn what goes into a container image.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter08
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter08
https://bit.ly/3rpWeRN

Understanding the challenges with container images 187

Exploring the components of container images
To understand the behavior of a container image, we need to have basic knowledge of the
Operating System (OS) and hierarchical protection domains. For security segregation
purposes, the OS handles virtual memory in two layers called kernel space and user
space. Basically, the kernel runs in the most privileged protection ring, called Ring 0, and
interacts directly with critical resources such as CPU and memory. The kernel needs to be
stable since any problem or instability would cause instability in the overall system and
bring everything to a panic state. As we can see in Figure 8.1, drivers, low-level system
components, and all user applications run in the least privileged protection rings and in
user space:

Figure 8.1 – Privilege rings, also called hierarchical protection domains

To learn about the user space, please check out the detailed explanation here: https://
debian-handbook.info/browse/stable/sect.user-space.html.

Linux containers take the segregation of security one step further and allow us to manage
application and OS dependencies separately in what is called the container host and
container image.

https://debian-handbook.info/browse/stable/sect.user-space.html
https://debian-handbook.info/browse/stable/sect.user-space.html

188 Deploying Seamless and Reliable Applications

The container host is where the OS runs along with the container runtime (some of the
popular container runtimes include containerd, CRI-O, Firecracker, and Kata) and
container engine (some of the popular container engines include Docker and the Linux
Container Daemon (LXD)). In this book, we will not discuss the differences between
container runtimes and engines, since most of the time they are part of the platform,
which is outside of our scope. In traditional monolithic architectures, we run applications
on top of the OS along with OS dependencies and other applications, whereas in cloud-
native microservices architectures, we run applications and their dependencies inside
a container image (see Figure 8.2):

Figure 8.2 – Comparison of monolithic and microservices architecture

When we run an application in Kubernetes, such as NGINX, Cassandra, Kafka,
MongoDB, and so on, our container engine pulls the container image from its container
registry to the local registry, then it wraps one or more containers into an object called
a pod and schedules it on an available worker node.

The container image (most of the time, this term is misused instead of base image) used
in this process is a layered image consisting of the user application and the container
base image.

Understanding the challenges with container images 189

The container base image contains the interchangeable user space components of the
OS. The container image is packaged following the Docker image or Open Container
Initiative (OCI) industry standards. This is where our options and challenges come
in. Most container base images contain a root filesystem with the minimal user space
applications of an OS distribution, some other external libraries, utilities, and files.
Container images are typically used for software development and provide a functional
application written in common programming languages. Programming languages,
including both compiled and interpreted ones, depend on external drivers and libraries.
These dependencies make the container base image selection critically important.

Before we build our application or run an application based on an existing image in
production, we need to understand the critical differences between the popular container
base images. Now that you've learned what goes into container images, let's learn the
differences between the common container base images and some of the best practices for
choosing the right image type.

Choosing the right container base image
Choosing a container base image is not much different than choosing your container
hosts' Linux distribution. Similar criteria such as security, performance, dependencies,
core utilities, package managers, the size of its community and ecosystem, and the security
response and support must be considered.

I would like to highlight the five notable container image challenges that we will try to
address in this chapter:

•	 Image size: One of the important benefits of container images is portability.
A smaller container image size reduces the build and rollout times since pulling the
image itself will be faster. Smaller images are achieved by limiting extra binaries,
which also bring a minimized attack surface and increased security benefits.

•	 Stability: Updating base images is not fun, but updating every container image
is the worst. Container images that only include your application and its runtime
dependencies, such as distroless images, may sound attractive. Still, when it comes
to patching Common Vulnerabilities and Exposures (CVEs), you will need to
update all your containers that can introduce stability issues.

190 Deploying Seamless and Reliable Applications

Important note
Distroless images are container images that don't contain package managers
or any other application. You can read more about distroless Docker
images and watch a presentation here: https://github.com/
GoogleContainerTools/distroless.

•	 Security: Every binary that is added to our container images adds unpredictable
risks to the overall platform security. When choosing base images, their update
frequency, ecosystem and community size, and vulnerability tracking methods
such as a CVE database and Open Vulnerability and Assessment Language
(OVAL) data are important factors to consider. Check the properties of executables
such as the Position Independent Executable (PIE), Relocation Read-Only
(RELRO), Patches for the Linux Kernel (PaX), canaries, Address Space Layout
Randomization (ASLR), FORTIFY_SOURCE, and the RPATH and RUNPATH
runtime search paths.

Important note
You can find the Bash script to check the properties of the binary hardening
tools at https://github.com/slimm609/checksec.sh.

•	 Speed/performance: Popular container base images may not always be the fastest.
Although Alpine is famous for its size and is recommended in some cases, it may
cause serious build performance issues. Alpine might be acceptable if you are using
the Go language. If you are using Python instead, you will quickly notice that Alpine
images will sometimes get two to three times larger, are more than 10 times slower
to build, and might even cause build problems.

Important note
You can find the Kubernetes-related performance test tools here: https://
github.com/kubernetes/perf-tests.

•	 Dependencies: The C library used in the container image should not be
underestimated. While most base images use glibc, Alpine includes muslc and
can show implementation differences. Also, utilities included in the image for
troubleshooting and support need to be considered.

https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://github.com/slimm609/checksec.sh
https://github.com/kubernetes/perf-tests
https://github.com/kubernetes/perf-tests

Understanding the challenges with container images 191

The following are some of the common container base image options compared by their
size, security, and support options:

•	 Alpine (alpine:3.12): A very popular lightweight container base image mainly used
to reduce image size. Technically, it is busybox with a package manager. glibc/
musl library differences are known to cause problems and performance issues that
are hard to track down:

- Size: 2.6 MB.

- �Security: Community-updated; Alpine Linux bug tracker available at https://
bugs.alpinelinux.org/projects/alpine/issues.

- �Support: Support via community. 386, AMD64, ARMv6, ARMv7, ARM64v8,
ppc64le, and S390x architectures supported.

•	 Amazon Linux 2 (amazonlinux:2): A Linux image maintained by Amazon Web
Services (AWS) to be used on Amazon EC2 instances. It is binary-compatible with
RHEL and CentOS:

- Size: 59.14 MB.

- �Security: Vendor-updated; Amazon Linux Security Center available at https://
alas.aws.amazon.com/alas2.html.

- �Support: LTS support included with AWS EC2; AMD64 and ARM64v8
architectures supported.

•	 CentOS (centos:8): Community-driven container base image of the popular
Linux distribution. Due to the rollout of CentOS Stream, its future is unknown. At
this point, it is better to wait for the replacement Rocky Linux base images or use
Amazon Linux 2:

- Size: 71.7 MB.

- �Security: Community-updated; CentOS security alerts can be found here:
https://lwn.net/Alerts/CentOS/.

- �Support: Support via community only. AMD64, ARM64v8, and ppc64le
architectures supported.

https://bugs.alpinelinux.org/projects/alpine/issues
https://bugs.alpinelinux.org/projects/alpine/issues
https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/alas2.html
https://lwn.net/Alerts/CentOS/

192 Deploying Seamless and Reliable Applications

•	 Debian (debian:buster-slim): A large community-driven container base image of
the popular Debian Linux distribution. Debian is preferred over Alpine due to a
more compatible C library (libc) included in Debian images:

- Size: 26.47 MB

- �Security: Community-updated; Security Bug Tracker (https://security-
tracker.debian.org/tracker/) and OVAL at https://www.debian.
org/security/oval/

- �Support: Support via community only. 386, AMD64, and ARM64v5 architectures
supported

•	 Ubuntu (ubuntu:21.04): A Debian-based larger community and enterprise-
supported Linux distribution base image:

- Size: 29.94 MB

- �Security: Ubuntu CVE Tracker at https://people.canonical.
com/~ubuntu-security/cve/ and cloud image bug tracker at https://
bugs.launchpad.net/cloud-images

- �Support: Community and commercial support. AMD64, ARMv7, and ARM64v8
architectures supported

•	 Red Hat Universal Base Image (UBI) (registry.redhat.io/ubi8/ubi-minimal:8.3):
A Red Hat Enterprise Linux (RHEL)-based stripped-down image that uses
microdnf as a package manager. It is preferred when running applications on the
Red Hat OpenShift platform. Red Hat UBI provides three base images, minimal
(ubi-minimal), standard (ubi), and multi-service (ubi-init), for different
use cases:

- Size: 37.6 MB.

- �Security: The best container base image in terms of completeness of vulnerability
checks. Errata provided at https://access.redhat.com/errata and
OVAL data provided at https://www.redhat.com/security/data/
oval/.

- �Support: Community and commercial support. AMD64, ARM64v8, ppc64le, and
S390x architectures supported.

https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://www.debian.org/security/oval/
https://www.debian.org/security/oval/
https://people.canonical.com/~ubuntu-security/cve/
https://people.canonical.com/~ubuntu-security/cve/
https://bugs.launchpad.net/cloud-images
https://bugs.launchpad.net/cloud-images
https://access.redhat.com/errata
https://www.redhat.com/security/data/oval/
https://www.redhat.com/security/data/oval/

Understanding the challenges with container images 193

•	 Distroless (gcr.io/distroless/base-debian10): Builds on the Debian distribution by
Google. They don't contain package managers or shells. Preferred for security and
size. Additional builds can be found at https://console.cloud.google.
com/gcr/images/distroless/GLOBAL:

- Size: 75.1 MB

- �Security: Avoids image vulnerabilities, but introduces another challenge where
dependent library updates need to be carefully tracked for every container image

- �Support: Support via community only. AMD64, ARM, ARM64, ppc64le, and
S390x architectures supported

Now you have learned about the challenges we deal with when choosing the right
container base image and how the most common popular base images compare. Let's
find out some of the best practices for reducing your final image size and scanning your
container images for vulnerabilities.

Reducing container image size
An excellent way to achieve smaller container images would be by starting with small base
images such as Alpine, ubi-minimal, or distroless base images.

Note
For reproducible builds and deployment, you can also use the Nix package
manager and create slim builds. There is a lot of enthusiasm around Nix,
but since there is a steep learning curve and custom expression language is
involved, we will not discuss Nix in this book. You can learn about building
container images using Nix here at the official NixOS documentation page:
https://nixos.org/guides/building-and-running-
docker-images.html.

Excluding some of the unnecessary files, using a .dockerignore file can help us to
reduce our image size. Here is an example of a .dockerignore file:

ignoring git folder

.git

#ignoring visual studio code related temp data

.vs

.vscode

other files and CI manifests

.DS_Store

https://console.cloud.google.com/gcr/images/distroless/GLOBAL
https://console.cloud.google.com/gcr/images/distroless/GLOBAL
https://nixos.org/guides/building-and-running-docker-images.html
https://nixos.org/guides/building-and-running-docker-images.html

194 Deploying Seamless and Reliable Applications

.dockerignore

.editorconfig

.gitignore

.gitlab-ci.yml

.travis.yml

ignore all files and directories starting with temp

in any subdirectory

/temp

ignore all files and directories starting with temp

in any subdirectory two levels below root

//temp*

ignore all files and directories starting with temp

followed by any character

temp?

Size-optimized images can be achieved by utilizing multistage builds and avoiding extra
layers. Multistage builds add a couple of new syntaxes and allow us to use a FROM section
in our Dockerfile multiple times to start a new stage of the build and copy only the
artifacts we want to take from previous stages. You can learn more about the multistage
build on the official Docker documentation website at https://docs.docker.com/
develop/develop-images/multistage-build/.

Here is an example of a Dockerfile with two stages:

FROM node:14.15 AS base

ADD . /app

WORKDIR /app

RUN npm install

FROM gcr.io/distroless/nodejs AS stage2

COPY --from=base /app /app

WORKDIR /app

EXPOSE 8080

CMD ["server.js"]

In our preceding example, the first stage, base, starts with the node:14.15 Node.js
base image. We copy our application code to the /app directory and execute the npm
install command.

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/

Understanding the challenges with container images 195

We move to the second stage, called stage2, this time using a distroless/nodejs
base image. Then, we copy our application code and our node_modules from the first
stage using the COPY --from=base /app /app syntax. This way, we are reducing
our container image size as well as the attack surface since distroless images do not
contain bash or other tools that can be maliciously executed.

You can read about the best practices for writing Dockerfiles at https://docs.
docker.com/develop/develop-images/dockerfile_best-practices/.

Now we have learned a few techniques for reducing our container image size. Let's look at
how we can proactively scan our images against security vulnerabilities and patch them in
a timely manner before running them in production.

Scanning container images for vulnerabilities
We've built our container images or pulled some of the vendor-provided images to our
local registry and now we are ready to run in our production environment. How do we
know they are safe to run? How do we know they have the latest security vulnerabilities
patched? Most Continuous Integration and Continuous Delivery (CI/CD) solutions
today have additional security scanning tools. It is one of the golden rules not to roll out
any service into production before going through a quick image validation during our
pipeline. For this purpose, we will now learn about a popular open source solution
called Trivy.

Trivy is a comprehensive vulnerability scanner for container images. Trivy is capable of
detecting vulnerabilities in most images based on popular base images, including Alpine,
CentOS, and Red Hat UBI, and application package dependencies such as npm, yarn,
bundler, and composer.

Here, we will manually install the trivy binaries and run a vulnerability analysis:

1.	 Let's get the latest release version tag of trivy and keep it in a variable called
TRIVYVERSION:

$ TRIVYVERSION=$(curl –silent "https://api.github.com/
repos/aquasecurity/trivy/releases/latest" | grep '"tag_
name":' | \

sed -E 's/.*"v([^"]+)".*/\1/')

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

196 Deploying Seamless and Reliable Applications

2.	 Now, download the latest trivy binary and install it:

$ curl --silent --location "https://github.com/
aquasecurity/trivy/releases/download/v${TRIVYVERSION}/
trivy_${TRIVYVERSION}_Linux-64bit.tar.gz" | tar xz -C /
tmp

$ sudo mv /tmp/trivy /usr/local/bin

3.	 Confirm that the installation is successfully completed by executing the following
command:

$ trivy --version

Version: 0.14.0

4.	 Run trivy checks with a target image location and its tag. In our example, we
scanned the alpine:3.12 base image from its official Docker Hub repository:

$ trivy alpine:3.12

The output of the preceding command should look as follows since no issues are
found in the particular container image:

Figure 8.3 – Trivy results of a container image with no known vulnerabilities

5.	 Now, let's scan a publicly available version of the popular MongoDB database
container image. MongoDB is used by many modern cloud-native applications and
services:

$ trivy mongo:4.4

6.	 You will notice that Trivy returned 93 known vulnerabilities, including 2 high and
28 medium severity issues:

Understanding the challenges with container images 197

Figure 8.4 – Trivy results showing vulnerabilities

In the long analysis returned by the Trivy scanner, you can find vulnerability IDs and
severity URLs to learn more about the issues. You can also see that some issues come from
the Ubuntu 18.04 base image used in the container image and can be resolved by just
updating the base image of the container.

Trivy supports most CI tools, including Travis CI, CircleCI, Jenkins, and GitLab CI. To
learn more about Trivy and integration details, you can read the official documentation at
https://github.com/aquasecurity/trivy.

Now we have learned how to test container images against known vulnerabilities. It is
highly recommended to have test conditions in your build pipelines. Let's look into how
we can test the impact of container image downloads from public repositories.

Testing the download speed of a container image
CI is a key component of automation, and the reduction of every second spent in the
pipeline execution will be important. Download time also impacts the speed of the new
container image rollout to the production environment. Therefore, we need to consider
the download speeds of the container images used.

Here, we will use the time command in Linux to execute docker run in a specified
container base image and compare the summary of the real-time user CPU time and
system CPU time spent during the process:

1.	 Install the curl utility in the debian:buster-slim Debian base image:

$ time docker run --rm debian:buster-slim sh -c "apt-get
update && apt-get install curl -y"

real 0m43.837s

user 0m0.024s

sys 0m0.043s

https://github.com/aquasecurity/trivy

198 Deploying Seamless and Reliable Applications

2.	 For comparison, let's now run the same command in the alpine:3.12 image:

$ time docker run --rm alpine:3.12 sh -c "apk update &&
apk add --update curl"

real 0m2.644s

user 0m0.034s

sys 0m0.021s

Note that both images were not available in the local registry and were pulled for the first
time from the public Docker Hub location. As you can see, the Alpine image completed
the task in close to 2 seconds, whereas the same request took more than 40 seconds longer
to finish using the Debian image.

Now we have learned about measuring the command execution speed in containers based
on different base images. Let's summarize everything we have learned in this section into
a short list of simple container image best practices.

Applying container base images best practices
Technically, most applications will run in containers layered on top of all the common and
popular container base images. This may be acceptable for development and test purposes,
but before rolling out any container images into production, there are a few common-
sense best practices we should consider:

•	 The size of the container image is important as long as the container base
image does not introduce a performance tax and vulnerabilities. Using a stable,
compatible, and supported base image is preferred over saving a few megabytes.

•	 Never use the latest tag to pull base images when building your container
images.

•	 Make sure to use container images with the exact tested and validated version of the
image. You can also specify its digest by replacing <image-name>:<tag> with
<image-name>@<digest> to generate stable reproducible builds.

•	 Check imagePullPolicy in your application manifests. Unless required
otherwise, it is suggested to use IfNotPresent.

•	 When possible, use the same base OS in your container host and container images.

•	 Integrate image vulnerability scanners into your CI pipelines and make sure to clear
at least high and critical severity vulnerabilities before rolling your images into
production.

Learning application deployment strategies 199

•	 Monitor container image size changes over time and notify maintainers of sudden
large size changes.

•	 When using public container registries, store your container images in multiple
registries. Some public registries include Docker Hub, GitLab Container Registry,
Red Hat Quay, Amazon ECR, Azure Container Registry, and Google Cloud
Container Registry.

•	 For increased security, use a private container registry and monitor public container
registry pulls into the production environment.

Now we have learned about the challenges of choosing container images and production
best practices. Let's look at different deployment strategies and their use cases.

Learning application deployment strategies
Organizations without the expertise to design an application deployment strategy before
getting their services to production users can face great operational complexity when
managing their application life cycle. Many users still face container and microservices
adoption issues later in their digital transformation journey and end up going back to
the more expensive Database as a Service (DbaaS) model or even using traditional
deployment methods in VMs. To avoid common mistakes and production anti-patterns,
we need to be aware of some of the common strategies that will ensure our success in
deploying and managing applications on Kubernetes.

We learned about the differences between different Kubernetes controllers such as
Deployments, ReplicaSets, and StatefulSets in the Deploying stateful applications section in
Chapter 7, Managing Storage and Stateful Applications.

In this section, we will learn about the following containerized application deployment
best practices:

•	 Choosing the deployment model

•	 Monitoring deployments

•	 Using readiness and liveness probes

Let's discuss each of them in the following sections.

200 Deploying Seamless and Reliable Applications

Choosing the deployment model
In Kubernetes, applications can be rolled out following various deployment procedures.
Choosing the right strategy is not always easy since it really depends on your services
and how your applications are accessed by users. Now, we will review the most common
models:

•	 A/B testing

•	 Blue/green

•	 Canary release

•	 Clean deployment

•	 Incremental deployment

Let's learn about the advantages of each of them in the following sections.

A/B testing
A/B testing deployments allow routing groups of users to a new deployment based on
conditions such as HTTP headers, location, browser cookies, or other user metadata. A/B
testing deployments are preferred when a specific feature of the application needs to be
tested on a certain group of users and rollout needs to continue based on the conversation
rate. Price and UX testing are also done using A/B testing. Other than the complexity of
the parameters that need to be managed, it is the most flexible model with low cloud cost,
minimum impact on users, and quick rollback times.

Blue/green
In the blue/green deployment model, an equal amount of instances of each application
is deployed on your cluster. This model can be executed either by traffic switching or by
traffic mirroring when a service mesh such as Istio is used. It is preferred when service
changes need to be tested for load and compliance with no impact on actual users. When
the metrics return successful data, a new deployment (green) gets promoted. This model
cannot be used to target a specific group of users and can be expensive in terms of cloud
resource consumption cost due to its full deployment model.

Learning application deployment strategies 201

Canary release
Canary deployments gradually shift traffic from one deployment to another based on
percentage, sometimes triggered by metrics such as success rate or health. Canary releases
are preferred when confidence in the new releases is not high or when deploying releases
on a completely new platform. Groups of users cannot be targeted. This method doesn't
increase public cloud costs and rollback times can be rather quick.

Clean deployment
In this method, one version of the application is destroyed and a new version is deployed.
It is preferred in deployment since it is the simplest method, although this method
should not be used in production unless the service is not in use. If the deployment fails
compared to the other methods, the rollback time would be the highest, and the service
downtime would be the longest.

Incremental deployment
In this method, a new version of the application is deployed in a rolling update fashion
and slowly migrated. The only advantage of this model compared to a clean deployment is
that incremental deployment does not introduce downtime.

Some of the methods can only be implemented with the help of service mesh solutions,
such as Istio, Linkerd, or AWS App Mesh, and ingress controllers, including Contour,
Gloo, NGINX, or Traefik.

Orchestration of multiple deployment strategies can turn into a complex configuration
puzzle. In this case, the usage of an application delivery operator can be very useful.
Flagger is one of the most complete progressive delivery Kubernetes operators in the
Kubernetes ecosystem. Flagger can automate complex rollover scenarios using Istio,
Linkerd, App Mesh, NGINX, Skipper, Contour, Gloo, or Traefik based on the metrics
analysis from the metrics collected by Prometheus. To learn more about Flagger operators
and a tutorial covering the models discussed here, you can read the official documentation
at https://docs.flagger.app/.

Monitoring deployments
Smooth, production-ready application deployment and canary analysis cannot be
achieved without monitoring the application usage metrics. We can monitor our
applications using tools such as Prometheus, Datadog, or Splunk.

https://docs.flagger.app/

202 Deploying Seamless and Reliable Applications

We will cover monitoring, visualizations, logging, tracing solutions, and how to make
visualization dashboards relevant to serve our production needs in Chapter 9, Monitoring,
Logging, and Observability.

Using readiness and liveness container probes
When a new pod is scheduled in our Kubernetes cluster, its phase is represented by
the PodStatus object. These phases reported as Pending, Running, Succeeded,
Failed, or Unknown do not represent or guarantee our application's intended function.
You can read more about the pod life cycle and its phases on the official Kubernetes
documentation site at https://kubernetes.io/docs/concepts/workloads/
pods/pod-lifecycle/.

To monitor our application's real health status inside the container, a regular diagnostic
task can be executed. These diagnostic tests performed periodically are called container
probes. kubelet can perform three types of container probes, as follows:

•	 livenessProbe

•	 readinessProbe

•	 startupProbe

It is highly recommended to use at minimum the readiness and liveness probes to
control your application's health when starting and periodically after it is scheduled
in your Kubernetes cluster. When enabled, kubelet can call three different handlers,
ExecAction, TCPSocketAction, and HTTPGetAction, inside or against the pod's
IP and validate your application's health.

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter08/probes/liveness/
busybox.yaml.

In the next code snippet, we will create a busybox pod example that will use
livenessProbe to execute a command inside the container image to check our pod's
liveness.

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter08/probes/liveness/busybox.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter08/probes/liveness/busybox.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter08/probes/liveness/busybox.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter08/probes/liveness/busybox.yaml

Learning application deployment strategies 203

Create the template for the busybox pod in this probes/liveness/busybox.yaml
path:

apiVersion: v1

kind: Pod

metadata:

 labels:

 test: liveness

 name: liveness-execaction

spec:

 containers:

 - name: liveness

 image: k8s.gcr.io/busybox

 args:

 - /bin/sh

 - -c

 - touch /tmp/alive; sleep 30; rm -rf /tmp/alive; sleep 300

 livenessProbe:

 exec:

 command:

 - cat

 - /tmp/alive

 initialDelaySeconds: 10

 periodSeconds: 10

When the container starts, it executes the command specified under the args section.
This command first creates a file under /tmp/alive, and then waits 30 seconds and
removes it. livenessProbe, as specified in the same file, first waits 10 seconds, as
defined by the initialDelaySeconds parameter, and then periodically, every 10
seconds, as defined by the periodSeconds parameter, executes the cat /tmp/alive
command. In the first 30 seconds, our command will be successful and once the file is
removed, livenessProbe will fail, and our pod will be restarted for losing its liveness
state. Make sure you allow enough time for the pod to start by setting a reasonable
initialDelaySeconds value.

Similarly, we can add readinessProbe by replacing the livenessProbe field with
readinessProbe.

204 Deploying Seamless and Reliable Applications

Now we have learned about the production deployment best practices on Kubernetes.
We have also learned about common deployment strategies for rolling production
applications and using container probes for verifying the health of our application. Next,
we will learn how to scale our applications.

Scaling applications and achieving higher
availability
The Kubernetes container orchestration platform provides a wide range of functionality
to help us deploy our applications in a scalable and highly available way. When designing
architecture that will support horizontally scalable services and applications, we need to
be aware of some common strategies that will help to successfully scale our applications
on Kubernetes clusters.

In the previous section, Learning application deployment strategies, we covered some
strategies that would help us to scale our applications, including deployment strategies
and implementing health checks using container probes. In this section, we will learn
about scaling applications using the Horizontal Pod Autoscaler (HPA).

When we first deploy our application on Kubernetes clusters, applications will very likely
not get accessed immediately and usage will gradually increase over time. In that case,
rolling out a deployment with many replicas would result in wasting our infrastructure
resources. HPA in Kubernetes helps us increase the necessary resources in different
scenarios.

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter08/hpa/deployment-
nginx.yaml.

Now, we will learn about configuring a basic HPA based on CPU utilization metrics. You
can read more about HPA on the official Kubernetes documentation site at https://
kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/:

1.	 If you haven't installed it before, make sure to install Metrics Server by executing
the following command:

$ kubectl apply -f https://github.com/kubernetes-sigs/
metrics-server/releases/download/v0.4.1/components.yaml

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter08/hpa/deployment-nginx.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter08/hpa/deployment-nginx.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter08/hpa/deployment-nginx.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter08/hpa/deployment-nginx.yaml
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Scaling applications and achieving higher availability 205

2.	 Create a deployment named nginx-hpa with a replicas count of 1 in the hpa/
deployment-nginx.yaml path. Make sure to have resources.request.
cpu set, otherwise HPA cannot function. In our example, we used an NGINX
deployment. You can instead use any deployment you would like to apply HPA to:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-hpa

 namespace: default

spec:

 replicas: 1

 selector:

 matchLabels:

 app: nginx-hpa

 template:

 metadata:

 labels:

 app: nginx-hpa

 spec:

 containers:

 - name: nginx-hpa

 image: nginx:1.19.6

 ports:

 - containerPort: 80

 resources:

 requests:

 cpu: "200m"

3.	 Execute the following command to create the deployment:

$ kubectl apply -f deployment-nginx.yaml

4.	 Confirm that your deployment is successful by checking its state:

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

nginx-hpa 1/1 1 1 11s

206 Deploying Seamless and Reliable Applications

5.	 Now create an HPA named nginx-autoscale with a minReplicas count of 1,
a maxReplicas count of 5, and targetCPUUtilizationPercentage set to
50 in the hpa/hpa-nginx.yaml path:

apiVersion: autoscaling/v1

kind: HorizontalPodAutoscaler

metadata:

 name: nginx-autoscale

 namespace: default

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: nginx-hpa

 minReplicas: 1

 maxReplicas: 5

 targetCPUUtilizationPercentage: 50

6.	 Execute the following command to create the deployment:

$ kubectl apply -f hpa-nginx.yaml

7.	 Confirm that our HPA is successfully created:

$ kubectl get hpa

NAME REFERENCE TARGETS
MINPODS MAXPODS REPLICAS AGE

nginx-autoscale Deployment/nginx-hpa 0%/50% 1
5 0 15s

8.	 The output of the preceding command should look as follows:

Figure 8.5 – HPA monitoring for CPU metrics to scale the application

Summary 207

In the preceding example, we used CPU utilization as our metric. HPA can use multiple
metrics, including CPU, memory, and other custom external metrics such as service
latency and I/O load, using custom metrics adapters. In addition to HPA, we can use Pod
Disruption Budgets (PDBs) to avoid voluntary and involuntary disruptions to provide
higher availability. You can read more about specifying a PDB for your application at
https://kubernetes.io/docs/tasks/run-application/configure-
pdb/.

Summary
In this chapter, we explored the components of container images, best practices for
creating container images, and choosing the right base image type. We reduced our
container image size by removing unnecessary files and using multistage builds. We
learned how to scan our container images for vulnerabilities proactively. We learned about
application deployment strategies to test and roll out new features and releases of our
applications. We created an HPA to scale our applications. All the recommendations and
best practices mentioned in this chapter help us reduce the attack surface and increase
stability to improve efficiency in our production environment.

In the next chapter, we will learn about Kubernetes observability and key metrics to
monitor in production. We will learn about the tools and stacks to use or build, compare
the best tools in the ecosystem, and learn how to deal with observability from a site
reliability perspective.

Further reading
You can refer to the following links for more information on the topics covered in this
chapter:

•	 A Practical Introduction to Container Terminology: https://developers.
redhat.com/blog/2018/02/22/container-terminology-
practical-introduction/

•	 Open Container Initiative: https://opencontainers.org/

•	 Hardening ELF binaries using Relocation Read-Only (RELRO): https://
www.redhat.com/en/blog/hardening-elf-binaries-using-
relocation-read-only-relro

https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/
https://opencontainers.org/
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro

208 Deploying Seamless and Reliable Applications

•	 A Comparison of Linux Container Images:
http://crunchtools.com/comparison-linux-container-images/

•	 Alpine makes Python Docker builds way too (50×) slower, and images double (2×)
larger: https://lih-verma.medium.com/alpine-makes-python-
docker-builds-way-too-50-slower-and-images-double-2-
larger-61d1d43cbc79

•	 Why Elastic moved from Alpine to CentOS base images: https://www.elastic.
co/blog/docker-base-centos7

•	 Introducing multi-architecture container images for Amazon ECR: https://
aws.amazon.com/blogs/containers/introducing-multi-
architecture-container-images-for-amazon-ecr/

•	 How to use distroless Docker images: https://github.com/
GoogleContainerTools/distroless

•	 Best practices for building containers:
https://cloud.google.com/solutions/best-practices-for-
building-containers

•	 Automated rollback of Helm releases based on logs or metrics: https://blog.
container-solutions.com/automated-rollback-helm-releases-
based-logs-metrics

•	 Kubernetes – A Complete DevOps Cookbook (Chapter 7, Scaling and Upgrading
Applications): https://www.packtpub.com/product/kubernetes-a-
complete-devops-cookbook/9781838828042

http://crunchtools.com/comparison-linux-container-images/
https://lih-verma.medium.com/alpine-makes-python-docker-builds-way-too-50-slower-and-images-double-2-larger-61d1d43cbc79
https://lih-verma.medium.com/alpine-makes-python-docker-builds-way-too-50-slower-and-images-double-2-larger-61d1d43cbc79
https://lih-verma.medium.com/alpine-makes-python-docker-builds-way-too-50-slower-and-images-double-2-larger-61d1d43cbc79
https://www.elastic.co/blog/docker-base-centos7
https://www.elastic.co/blog/docker-base-centos7
https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/
https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/
https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/
https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://cloud.google.com/solutions/best-practices-for-building-containers
https://cloud.google.com/solutions/best-practices-for-building-containers
https://blog.container-solutions.com/automated-rollback-helm-releases-based-logs-metrics
https://blog.container-solutions.com/automated-rollback-helm-releases-based-logs-metrics
https://blog.container-solutions.com/automated-rollback-helm-releases-based-logs-metrics
https://www.packtpub.com/product/kubernetes-a-complete-devops-cookbook/9781838828042
https://www.packtpub.com/product/kubernetes-a-complete-devops-cookbook/9781838828042

9
Monitoring, Logging,

and Observability
In previous chapters, we learned about application deployment best practices on
Kubernetes to modernize our architecture. We learned how Kubernetes creates an
abstraction layer on top of a group of container hosts that makes it easier to deploy
applications and, at the same time, changes development teams' responsibilities compared
to traditional monolithic applications. Adopting microservice architectures requires
implementing new observability practices to efficiently monitor the layers introduced by
the Kubernetes platform. Whether you plan to expand your existing monitoring stack
to include Kubernetes or are looking for a complete cloud-native solution, it is essential
to know the critical metrics to monitor and create a strategy to enhance observability to
troubleshoot and take effective action when needed.

In this chapter, we will discuss the vital infrastructure components and Kubernetes
object metrics. We will understand how to define production service-level objectives
(SLOs). We will learn about monitoring and logging stacks and solutions available in the
market and when to use each of them. We will learn how to deploy the core observability
(monitoring and logging) stacks for our infrastructure, use dashboards, and fine-tune our
applications' observability by adding new dashboards to use with visualization tools. By
the end of this chapter, you will be able to detect cluster and application abnormalities and
pinpoint critical problems.

210 Monitoring, Logging, and Observability

In this chapter, we're going to cover the following main topics:

•	 Understanding the challenges with Kubernetes observability

•	 Learning site reliability best practices

•	 Monitoring, metrics, and visualization

•	 Logging and tracing

Technical requirements
You should have the following tools installed from previous chapters:

•	 kubectl

•	 Helm 3

•	 metrics-server

•	 KUDO Operator

•	 cert-manager

•	 A Cassandra instance

You need to have an up-and-running Kubernetes cluster as per the instructions in Chapter
3, Provisioning Kubernetes Clusters Using AWS and Terraform.

The code for this chapter is located at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter09.

Check out the following link to see the Code in Action video:

https://bit.ly/36IMIRH

Understanding the challenges with
Kubernetes observability
In this section, we will learn the differences between monitoring and observability from
a Kubernetes perspective. We will retain the key metrics we need to monitor to resolve
outages quickly. Before discussing the best practices and getting into our monitoring
options, let's learn what are considered important metrics in Kubernetes.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter09
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter09
https://bit.ly/36IMIRH

Understanding the challenges with Kubernetes observability 211

Exploring the Kubernetes metrics
When we explored the components of container images in Chapter 8, Deploying
Seamless and Reliable Applications, we also compared the monolithic and microservices
architectures and learned about the function of a container host. When we containerize
an application, our container host (2) needs to run a container runtime (4) and
Kubernetes layers (5) on top of our OS to orchestrate scheduling of the Pod. Then
our container images are (6) scheduled on Kubernetes nodes. During the scheduling
operation, the state of the application running on these new layers needs to be probed (see
Figure 9.1):

Figure 9.1 – Comparison of monolithic and microservices architecture monitoring layers

Considering all the new levels and failure points we have introduced, we can summarize
the most important metrics into three categories:

•	 Kubernetes cluster health and resource utilization metrics

•	 Application deployment and pods resource utilization metrics

•	 Application health and performance metrics

212 Monitoring, Logging, and Observability

It is quite common in production clusters to run into scheduling issues due to
insufficient resources or missing labels and annotations. When scheduling issues
happen, your applications can quickly get into an unstable state, directly impacting your
service availability. Multiple reasons can trigger these issues, and the best way to start
troubleshooting is by observing changes in critical cluster health and resource utilization
metrics. Kubernetes provides detailed information at every level to detect the bottlenecks
impacting our cluster performance.

Most of the useful metrics are available in real-time through the Metrics API and the /
metrics endpoint of the HTTP server. It is recommended to scrape metrics regularly
in a time series database similar to the Prometheus server in production. You can read
more about the resource metrics pipeline at the official Kubernetes documentation site:
https://kubernetes.io/docs/tasks/debug-application-cluster/
resource-metrics-pipeline/.

Here is a brief list of useful cluster resources and internal metrics we need to watch.

Kubernetes cluster health and resource utilization metrics
The number of active nodes is a crucial metric that can tell us the direct impact on cluster
cost and health. Node resource utilization can be observed by watching the metrics listed
here:

•	 CPU utilization, CPU requests commitment, and CPU limits commitment

•	 Memory usage, memory requests commitment, and memory limits commitment

•	 Network I/O pressure

•	 Disk I/O, disk space usage, and volume space usage

The Kubernetes control plane makes the critical scheduling decisions with the help of
components including the Kubernetes API server (kube-apiserver), a highly available
key-value store (etcd), a scheduler function (kube-scheduler), and a daemon that
handles the Kubernetes control loop (kube-controller-manager). The Kubernetes
control plane usually runs on dedicated master nodes. Therefore, the control plane's
health and availability are critically important for our cluster's scheduling capabilities' core
function. We can observe the control plane state by watching the metrics listed here:

•	 API server availability and API server read/write Service-Level Indicators (SLIs)

•	 etcd uptime and etcd total leader elections

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/

Understanding the challenges with Kubernetes observability 213

•	 Scheduler uptime, scheduling rate, POST request latency, and GET request
latency

•	 Controller manager uptime, work queue add rate, and work queue latency

All the metrics listed here collectively indicate the resource and control plane availability
in our Kubernetes cluster.

Application deployment and pods resource utilization metrics
From application pod and deployment health monitoring perspectives, allocations are
important to watch. We can observe the following metrics categorized in Kubernetes
constructs such as pods, deployments, namespaces, workloads, and StatefulSets to
troubleshoot pending or failed deployments:

•	 Compute resources (by namespace, pod, and workload)

•	 StatefulSet-desired replicas and replicas of the current version

•	 Kubelet uptime, pod start duration, and operation error rate

We should watch for abnormalities in the individual node resource utilization to maintain
even pod distribution across nodes. We can also use resource utilization by namespaces or
workloads to calculate project and team chargeback.

Application health and performance metrics
Pod and deployment resource utilization or even their states will not always provide us
with a full view of the application. Every application comes with different expectations
and, therefore, specific application-provided metrics to watch. As an example, for the
Prometheus application, metrics such as target sync, scrape failures, appended samples,
and uptime would be useful to watch. For other applications, as an example, Cassandra,
we may want to watch metrics such as total node count, the number of nodes down, repair
ratio, cluster ops, read and write ops, latencies, timeouts, and others. Later in this chapter,
in the Monitoring applications with Grafana section, we will learn how to enable metric
exporters for our applications and add their dashboards to Grafana to monitor.

Now, we have learned about some of the Kubernetes observability challenges and key
metrics to watch. Let's look into how we can apply our knowledge to real production use
cases using site reliability best practices.

214 Monitoring, Logging, and Observability

Learning site reliability best practices
In this section, we will learn about considerations and best practices followed by the
industry site reliability experts that handle technical site availability issues when observed.

Site Reliability Engineering (SRE) is a discipline introduced by the Google engineering
team. Google's approach of operating their core services at scale still represents a model
for SRE best practices today. You can read more about the foundations and practices
on the Google SRE resources site at https://sre.google/resources/. Before
we learn about the monitoring and metric visualization tools, let's learn about a few
common-sense SRE best practices we should consider:

•	 Automate everything possible and automate now: SREs should take every
opportunity to automate time-consuming infrastructure tasks. As part of a DevOps
culture, SREs work with autonomous teams choosing their own services, which
makes the unification of tools almost impossible, but any effort for standardizing
tools and services can enable small SRE teams to support very large teams and
services.

•	 Use incremental deployment strategies: In Chapter 8, Deploying Seamless and
Reliable Applications, in the Learning application deployment strategies section, we
learned about alternative deployment strategies for different services you can use to
implement this practice.

•	 Define meaningful alerts and set the correct response priorities and actions: We
can't expect different level response speeds from SREs if all our notifications and
alerts go into one bucket or email address. Categorize alerts into a minimum of
three or more response categories similar to must react now (pager), will react later
(tickets), and logs available for analysis (logs).

•	 Plan for scale and always expect failures: Set resource utilization thresholds
and plan capacity to address service overloads and infrastructure failure. Chaos
engineering is also a great practice to follow to avoid surprises in production.

•	 Define your SLO from the end user's perspective: This includes taking the client-
side metrics before server-side metrics. If the user-experienced latency is high,
positive metrics measuring on the server side cannot be accepted alone.

Now we have learned about Kubernetes observability challenges and site reliability best
practices. Let's look into how we can deploy a monitoring stack on Kubernetes and
visualize metrics we collect from metrics exporters.

https://sre.google/resources/

Monitoring, metrics, and visualization 215

Monitoring, metrics, and visualization
In this section, we will learn about popular monitoring solutions in the cloud-native
ecosystem and how to get a monitoring stack quickly up and running. Monitoring,
logging, and tracing are often misused as interchangeable tools; therefore, understanding
each tool's purpose is extremely important.

The most recent 2020 Cloud Native Computing Foundation (CNCF) survey suggests
that companies use multiple tools (on average five or more) to monitor their cloud-native
services. The list of the popular tools and projects includes Prometheus, OpenMetrics,
Datadog, Grafana, Splunk, Sentry, CloudWatch, Lightstep, StatsD, Jaeger, Thanos,
OpenTelemetry, and Kiali. Studies suggest that the most common and adopted tools
are open source. You can read more about the CNCF community radar observations at
https://radar.cncf.io/2020-09-observability.

Prometheus and Grafana used together is the most relevant combined solution for
Kubernetes workloads. It is not possible to cover all the tools in this book. Therefore, we
will focus on popular Prometheus and Grafana solutions. We will learn how to install the
stacks to get some of the core cluster and application metrics.

Installing the Prometheus stack on Kubernetes
Prometheus is the most adopted open source monitoring and alerting solution in the
ecosystem. Prometheus provides a multi-dimensional data model and uses a flexible
query language called PromQL to take advantage of its dimensionality. The Kubernetes
Prometheus stack includes multiple components to properly monitor your cluster,
including Prometheus Operator, highly available Prometheus, Alertmanager, Prometheus
Node Exporter, Prometheus Adapter for Kubernetes Metrics APIs, kube-state-
metrics, and Grafana. You can read more about Prometheus and its concepts on
the official Prometheus documentation site at https://prometheus.io/docs/
introduction/overview/.

https://radar.cncf.io/2020-09-observability
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/

216 Monitoring, Logging, and Observability

Now, let's install Prometheus using kube-prometheus-stack (formerly Prometheus
Operator) and prepare our cluster to start monitoring the Kubernetes API server for
changes:

1.	 Create a namespace called monitoring:

$ kubectl create ns monitoring

2.	 Add the kube-prometheus-stack Helm Chart repository to your local
repository list:

$ helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts

3.	 Add the Helm stable chart repository to your local repository list:

$ helm repo add stable https://charts.helm.sh/stable

4.	 Update Helm Chart repositories:

$ helm repo update

5.	 Install kube-prometheus-stack from its Helm repository:

$ helm install --namespace monitoring prometheus
prometheus-community/kube-prometheus-stack

6.	 Verify successful installation by executing the following command:

$ kubectl get pods -n monitoring

7.	 The output of the preceding command should look as follows:

Figure 9.2 – List of the Prometheus pods running after successful installation

Monitoring, metrics, and visualization 217

8.	 Now we have kube-prometheus-stack installed. Let's access the included
Grafana service instance. Create port forwarding to access the Prometheus interface
and Grafana dashboards locally:

$ kubectl port-forward -n monitoring svc/prometheus-k8s
9090

$ kubectl port-forward -n monitoring svc/grafana 3000

Important note
Instead of port forwarding Prometheus and Grafana service IPs, you can
choose to expose service IPs externally through your cloud provider's
load balancer options, changing the service type from NodePort to
LoadBalancer.

9.	 Verify service IPs by executing the following command:

$ kubectl get svc -n monitoring

10.	 The output of the preceding command should look as follows:

Figure 9.3 – List of the services exposed in the monitoring namespace

218 Monitoring, Logging, and Observability

11.	 If you used port forwarding, you can access the service interface on your host using
http://localhost:9090 (for Prometheus) and http://localhost:3000
(for Grafana). If you used LoadBalancer instead, then use the external IP from
the output of the kubectl get svc -nmonitoring command with the port
address. You will get to a Grafana login screen similar to the following:

Figure 9.4 – Grafana service login screen

12.	 Use the default admin Grafana username and the prom-operator password to
access the Grafana dashboards. If you have used a custom password, you can always
get it from its secret resource by executing the following command:

$ kubectl get secret \

 --namespace monitoring prometheus-grafana \

 -o jsonpath="{.data.admin-password}" \

 | base64 --decode ; echo

13.	 Click on the Search button on the upper-left corner of the dashboard to search
the available dashboards and select the dashboards you want to view. You can see
the cluster resource consumption used by pods in namespaces similar to what
is displayed in the following screenshot by selecting the Kubernetes / Compute
Resources / Cluster dashboard:

Monitoring, metrics, and visualization 219

Figure 9.5 – Kubernetes cluster resources dashboard in Grafana

As part of the kube-prometheus stack, there are around 20 dashboards you can
immediately start monitoring. A list of important dashboards is as follows:

•	 etcd

•	 Kubernetes: API server

•	 Kubernetes / Compute Resources / Cluster - Namespace (pods), Namespace
(Workloads), Node (pods), Pod, Workload

•	 Kubernetes / Controller Manager

•	 Kubernetes / Kubelet

•	 Kubernetes / Networking / Cluster - Namespace (Pods), Namespace
(Workloads), Pod, Workload

•	 Kubernetes / Persistent Volumes:

•	 Kubernetes / Proxy

•	 Kubernetes / Scheduler

•	 Kubernetes / StatefulSets

•	 Nodes

We have now learned how to get essential components to get our Prometheus-based
monitoring stack running on our Kubernetes clusters. Let's add new dashboards to our
Grafana instance to monitor our applications.

220 Monitoring, Logging, and Observability

Monitoring applications with Grafana
Grafana is an open source observability platform. It is used to visualize data provided
from various databases with plugins. Grafana is very often used in combination with
Prometheus to visualize metrics provided from Kubernetes endpoints. Grafana's large
community makes it very easy to start composing observability dashboards or use its
official and community-driven dashboards. Now, we will learn how to add additional
dashboards to the Grafana interface to observe our application state.

You can read more about Grafana and its concepts on the official Grafana documentation
site at https://grafana.com/docs/grafana/latest/.

In Chapter 7, Managing Storage and Stateful Applications, in the Stateful workload
operators section, we deployed a Cassandra instance using the KUDO. Here, we will
use our existing instance and add a dashboard to Grafana to monitor its state. If you
don't have a Cassandra instance deployed, you can follow the instructions in Chapter 7,
Managing Storage and Stateful Applications, to provision it or use these instructions as a
guideline to monitor other applications.

Now, enable the Prometheus exporter on our existing Cassandra instance and add the
dashboard:

1.	 By default, the Prometheus exporter on our KUDO-operated application instance is
disabled. We can enable the metric exporter by executing the following command:

$ kubectl kudo update \

 -p PROMETHEUS_EXPORTER_ENABLED=true \

 --instance $instance_name -n $namespace_name

2.	 Update the servicemonitor labels to fetch the metrics from our Prometheus
instance:

$ kubectl label servicemonitor cassandra-monitor \

 -n $namespace_name release=prometheus --overwrite

https://grafana.com/docs/grafana/latest/

Monitoring, metrics, and visualization 221

3.	 Click on the + button on the upper-left corner of the Grafana interface and select
Import:

Figure 9.6 – Import menu view to add new Grafana dashboards

4.	 Paste the https://grafana.com/api/dashboards/10849/
revisions/1/download link into the Import via garafana.com field and click
on the Load button.

https://grafana.com/api/dashboards/10849/revisions/1/download
https://grafana.com/api/dashboards/10849/revisions/1/download

222 Monitoring, Logging, and Observability

5.	 On the next screen, select Prometheus as the data source and click on the Import
button to load the dashboard, similar to the screen shown in the following
screenshot:

Figure 9.7 – Importing new dashboards from Grafana.com

Now, we've learned how to add custom dashboards to monitor our applications' state in
Kubernetes. Similarly, you can find community-built dashboards on the Grafana website
at https://grafana.com/grafana/dashboards to monitor your applications
and common Kubernetes components.

https://grafana.com/grafana/dashboards

Logging and tracing 223

Logging and tracing
In this section, we will learn about the popular logging solutions in the cloud-native
ecosystem and how to get a logging stack quickly up and running.

Handling logs for applications running on Kubernetes is quite different than traditional
application log handling. With monolithic applications, when a server or an application
crashes, our server can still retain logs. In Kubernetes, a new pod is scheduled when a pod
crashes, causing the old pod and its records to get wiped out. The main difference with
containerized applications is how and where we ship and store our logs for future use.

Two cloud-native-focused popular logging stacks are the Elasticsearch, Fluentd, and
Kibana (EFK) stack and the Promtail, Loki, and Grafana (PLG) stack. Both have
fundamental design and architectural differences. The EFK stack uses Elasticsearch as an
object store, Fluentd for log routing and aggregation, and Kibana for the visualization of
logs. The PLG stack is based on a horizontally scalable log aggregation system designed by
the Grafana team that uses the Promtail agent to send logs to Loki clusters. You can read
more about Loki at https://grafana.com/oss/loki/.

In this section, we will focus on the EFK stack as our centralized logging solution. We will
learn how to install the stack to store and visualize our logs.

Installing the EFK stack on Kubernetes
Let's follow these steps to get our logging solution up and running. We will start with
installing Elasticsearch using the Elasticsearch Operator, then deploy a Kibana instance,
and finally, add Fluent Bit to aggregate our logs:

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter09/logging/eck/
elastic.yaml.

1.	 Add the elastic Helm Chart repository to your local repository list:

$ helm repo add elastic https://helm.elastic.co

2.	 Update Helm Chart repositories:

$ helm repo update

https://grafana.com/oss/loki/
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/elastic.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/elastic.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/elastic.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/elastic.yaml
https://helm.elastic.co

224 Monitoring, Logging, and Observability

3.	 Install eck-operator and its Custom Resource Definitions (CRDs) from its
Helm repository:

$ helm install eck-operator \

 elastic/eck-operator --version 1.3.1

4.	 Verify that the CRDs have been created and installation is successful by executing
the following command:

$ kubectl get pods,crds -nelastic-system|grep elastic

Important note
Logs are the best place to start troubleshooting when we run into an issue with
deploying applications on Kubernetes. If the deployment of ECK pods cannot
complete, review the logs by executing the kubectl -n elastic-
system logs -f statefulset.apps/elastic-operator
command.

5.	 The output of the preceding command should look as follows:

Figure 9.8 – List of the ECK pods running and CRDs created after successful installation

6.	 Create a namespace called logging:

$ kubectl create ns logging

7.	 Create an Elasticsearch instance manifest named elastic with the desired
number of nodes, with NodeSets.count set to 3 in the logging/eck/
elastic.yaml path. Make sure to replace version if you would like to deploy a
newer version:

apiVersion: elasticsearch.k8s.elastic.co/v1

kind: Elasticsearch

metadata:

 name: elastic

 namespace: logging

spec:

 version: 7.10.1

Logging and tracing 225

 nodeSets:

 - name: default

 count: 3

 config:

 node.store.allow_mmap: false

8.	 Execute the following kubectl command to create an Elasticsearch instance in the
cluster:

$ kubectl apply -f elastic.yaml

9.	 Verify the state of the Elasticsearch nodes we have created by executing the
following command:

$ kubectl get pods -n logging

10.	 The output of the preceding command should look as follows:

Figure 9.9 – Status of all Elasticsearch nodes in the ready state

11.	 We can verify the state of Elasticsearch pods by executing the following command:

$ kubectl get elasticsearch -n logging

12.	 The output of the preceding command should look as follows:

Figure 9.10 – All Elasticsearch pods are ready and running

13.	 Store the credentials created for the elastic user in a variable called ES_
PASSWORD:

$ ES_PASSWORD=$(kubectl get secret \

 elastic-es-elastic-user -n logging \

 -o go-template='{{.data.elastic | base64decode}}')

14.	 Get the list of services created in the logging namespace:

$ kubectl get svc -n logging

226 Monitoring, Logging, and Observability

15.	 The output of the preceding command should look as follows:

Figure 9.11 – List of services created by the Elasticsearch Operator

Important note
When accessing from our workstation, we can create port forwarding to access
the service endpoint locally by creating a port forwarding to localhost
using the following command: $ kubectl port-forward
service/elastic-es-http 9200.

16.	 Get the address of the Elasticsearch endpoint using the password we have saved and
the service name by executing the following command:

$ curl -u "elastic:$ES_PASSWORD" \

 -k https://elastic-es-http:9200

17.	 The output of the preceding command should look as follows:

Figure 9.12 – List of services created by the Elasticsearch Operator

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter09/logging/eck/
kibana.yaml.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/kibana.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/kibana.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/kibana.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/kibana.yaml

Logging and tracing 227

18.	 Now we have our Elasticsearch instance deployed. Let's deploy a Kibana instance
and bundle it with our existing Elasticsearch instance. Create a Kibana instance
manifest named kibana with a desired number of nodes of 3 in the logging/
eck/kibana.yaml path. Make sure to replace version if you would like to
deploy a newer version when available:

apiVersion: kibana.k8s.elastic.co/v1

kind: Kibana

metadata:

 name: kibana

 namespace: logging

spec:

 version: 7.10.1

 count: 3

 elasticsearchRef:

 name: elastic

19.	 Execute the following kubectl command to create a Kibana instance in the
cluster:

$ kubectl apply -f kibana.yaml

20.	 Verify the state of the Kibana nodes we have created by executing the following
command:

$ kubectl get kibana -n logging

21.	 The output of the preceding command should look as follows:

Figure 9.13 – Status of all Kibana nodes in a healthy state

22.	 We can verify the state of associated Kibana pods by executing the following
command:

$ kubectl get pods -n logging \

 --selector='kibana.k8s.elastic.co/name=kibana'

228 Monitoring, Logging, and Observability

23.	 The output of the preceding command should look as follows:

Figure 9.14 – All Kibana pods are ready and running

24.	 Get the list of services created in the logging namespace:

$ kubectl get svc -n logging \

 --selector='kibana.k8s.elastic.co/name=kibana'

25.	 When accessing from our local workstation, we can create port forwarding to
access the service endpoint by creating port forwarding to localhost using the
following command:

$ kubectl port-forward service/kibana-kb-http 5601

26.	 Get the elastic user password we previously obtained by executing the following
command:

$ echo $ES_PASSWORD

27.	 Now, open https://localhost:5601 in your browser. Use the elastic user
and the password we copied from the previous step to access the Kibana interface.

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter09/logging/eck/
fluent-bit-values.yaml.

28.	 Now, we have both Elasticsearch and Kibana instances installed. As the last
step, let's deploy the fluent-bit instance to aggregate logs. Create a Helm
configuration file named fluent-bit-values.yaml. Make sure to replace the
host address and http_password parameters if necessary:

backend:

 type: es

 es:

 host: elastic-es-http

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/fluent-bit-values.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/fluent-bit-values.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/fluent-bit-values.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter09/logging/eck/fluent-bit-values.yaml

Logging and tracing 229

 port: 9200

 http_user: elastic

 http_passwd: ${ES_PASSWORD}

 tls: "on"

 tls_verify: "off"

parsers:

 enabled: true

 regex:

 - name: log_parser

 regex: ^(?<logtimestamp>[^]+)
(?<stream>stdout|stderr) (?<logtag>[^]*) (?<log>.*)$

 timeKey: logtimestamp

 timeFormat: "%Y-%m-%dT%H:%M:%S.%L%z"

input:

 tail:

 parser: log_parser

29.	 Add the Helm stable Chart repository to your local repository list:

$ helm repo add stable https://charts.helm.sh/stable

30.	 Update Helm Chart repositories:

$ helm repo update

31.	 Install fluent-bit from its Helm repository:

$ helm install fluent-bit stable/fluent-bit \

 -n logging -f fluent-bit-values.yaml

32.	 Verify a successful installation by executing the following command:

$ kubectl get pods -n logging

230 Monitoring, Logging, and Observability

33.	 The output of the preceding command should look as follows:

Figure 9.15 – List of all necessary pods to complete our logging stack

34.	 Now, we will switch to the Kibana interface on our browser. If you closed the
browser window, repeat steps 26 and 27 to access the Kibana interface. Click on the
Kibana icon on the dashboard.

35.	 On the Kibana getting started dashboard, click on the Add your data button. The
dashboard should look similar to the following screenshot:

Figure 9.16 – Kibana's Getting started interface

36.	 Now, Kibana will detect data forwarded by Fluent Bit. On the next screen, click on
the Create index pattern button to create an index pattern matching our indices.

Logging and tracing 231

37.	 As we can see in the following screenshot, Fluent Bit creates indices following
the kubernetes_cluster-YYY.MM.DD pattern. Here, use kubernetes_
cluster-* as our index pattern name and click on the Next step button to
continue:

Figure 9.17 – Creating an index pattern on Kibana to match the source data

38.	 Finally, enter @timestamp in the Time Filter field and click on the Create index
pattern button to complete indexing.

Now we have learned how to deploy a logging solution based on the ECK stack on our
Kubernetes stack to aggregate and visualize our cluster logs. When running in production,
make sure to separate the cluster running your logging stack from the clusters you collect
logs from. We need to make sure that when clusters are not accessible for any reason, our
logs and the logging stack that is necessary to troubleshoot issues are still accessible.

232 Monitoring, Logging, and Observability

Summary
In this chapter, we explored important Kubernetes metrics and learned about the SRE
best practices for maintaining higher availability. We learned how to get a Prometheus
and Grafana-based monitoring and visualization stack up and running and added custom
application dashboards to our Grafana instance. We also learned how to get Elasticsearch,
Kibana, and Fluent Bit-based ECK logging stacks up and running on our Kubernetes
cluster.

In the next and final chapter, we will learn about Kubernetes operation best practices. We
will cover cluster maintenance topics such as upgrades and rotation, disaster recovery
and avoidance, cluster and application troubleshooting, quality control, continuous
improvement, and governance.

Further reading
You can refer to the following links for more information on the topics covered in this
chapter:

•	 CNCF End User Technology Radar: Observability: https://www.cncf.
io/blog/2020/09/11/cncf-end-user-technology-radar-
observability-september-2020/

•	 Hands-On Infrastructure Monitoring with Prometheus: https://www.
packtpub.com/product/hands-on-infrastructure-monitoring-
with-prometheus/9781789612349

•	 Prometheus official documentation: https://prometheus.io/docs/
introduction/overview/

•	 Learn Grafana 7.0: https://www.packtpub.com/product/learn-
grafana-7-0/9781838826581

•	 Grafana official and community-built dashboards: https://grafana.com/
grafana/dashboards

•	 ECK Operator official documentation: https://www.elastic.co/guide/en/
cloud-on-k8s/current/k8s-operating-eck.html

•	 Logging in Kubernetes: EFK vs PLG Stack: https://www.cncf.io/
blog/2020/07/27/logging-in-kubernetes-efk-vs-plg-stack/

https://www.cncf.io/blog/2020/09/11/cncf-end-user-technology-radar-observability-september-2020/
https://www.cncf.io/blog/2020/09/11/cncf-end-user-technology-radar-observability-september-2020/
https://www.cncf.io/blog/2020/09/11/cncf-end-user-technology-radar-observability-september-2020/
https://www.packtpub.com/product/hands-on-infrastructure-monitoring-with-prometheus/9781789612349
https://www.packtpub.com/product/hands-on-infrastructure-monitoring-with-prometheus/9781789612349
https://www.packtpub.com/product/hands-on-infrastructure-monitoring-with-prometheus/9781789612349
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.packtpub.com/product/learn-grafana-7-0/9781838826581
https://www.packtpub.com/product/learn-grafana-7-0/9781838826581
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-operating-eck.html
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-operating-eck.html
https://www.cncf.io/blog/2020/07/27/logging-in-kubernetes-efk-vs-plg-stack/
https://www.cncf.io/blog/2020/07/27/logging-in-kubernetes-efk-vs-plg-stack/

10
Operating and

Maintaining Efficient
Kubernetes Clusters

In previous chapters, we learned about production best practices for automating
Kubernetes and its infrastructure components. We discussed challenges with provisioning
stateless workloads in our clusters, including getting persistent storage up and running,
choosing container images, and deployment strategies. We also learned about important
observability tools in the ecosystem and building monitoring and logging stacks in our
cluster to provide a solid base for our troubleshooting needs. Once we have a production-
ready cluster and have started to serve workloads, it is vital to have efficient operations to
oversee the cluster maintenance, availability, and other service-level objectives (SLOs).

In this chapter, we will focus on Kubernetes operation best practices and cover topics
related to cluster maintenance, such as upgrades and rotation, backups, disaster recovery
and avoidance, cluster and troubleshooting failures of the cluster control plane, workers,
and applications. Finally, we will learn about the solutions available to validate and
improve our cluster's quality.

234 Operating and Maintaining Efficient Kubernetes Clusters

In this chapter, we're going to cover the following main topics:

•	 Learning about cluster maintenance and upgrades

•	 Preparing for backups and disaster recovery

•	 Validating cluster quality

Technical requirements
You should have the following tools installed from previous chapters:

•	 AWS CLI v2

•	 AWS IAM authenticator

•	 kubectl

•	 Terraform

•	 Helm 3

•	 metrics-server

•	 MinIO instance (optional as an S3 target for backups)

You need to have an up-and-running Kubernetes cluster as per the instructions in
Chapter 3, Provisioning Kubernetes Clusters Using AWS and Terraform.

The code for this chapter is located at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter10.

Check out the following link to see the Code in Action video:

https://bit.ly/3aAdPzl

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10
https://bit.ly/3aAdPzl

Learning about cluster maintenance and upgrades 235

Learning about cluster maintenance and
upgrades
In this section, we will learn about upgrading our Kubernetes clusters in production.
Generally, a new major Kubernetes version is announced quarterly, and every minor
version is supported around 12 months after its initial release date. Following the rule of
thumb for software upgrades, it is not common to upgrade to a new version immediately
after its release unless it is a severe time-sensitive security patch. Cloud providers also
follow the same practice and run their conformance tests before releasing a new image
to the public. Therefore, cloud providers' Kubernetes releases usually follow a couple
of versions behind the upstream release of Kubernetes. If you'd like to read about the
latest releases, you can find the Kubernetes release notes on the official Kubernetes
documentation site at https://kubernetes.io/docs/setup/release/notes/.

In Chapter 3, Provisioning Kubernetes Clusters Using AWS and Terraform, we learned
about cluster deployment and rollout strategies. We also learned that cluster deployment
is not a one-time task. It is a continuous process that affects the cluster's quality, stability,
and operations, as well as the products and services on top of it. In previous chapters,
we established a solid infrastructure deployment strategy, and now we will follow it with
production-grade upgrade best practices in this chapter.

In Chapter 3, Provisioning Kubernetes Clusters Using AWS and Terraform, we automated
our cluster deployment using Terraform. Let's use the same cluster and upgrade it to a
newer Kubernetes release.

Upgrading kubectl
First, we will upgrade kubectl to the latest version. Your kubectl version should be at
least equal to or greater than the Kubernetes version you are planning to upgrade to:

1.	 Download the latest kubectl binary and copy it to the bin directory:

$ curl -LO https://storage.googleapis.com/kubernetes-
release/release/$(curl -s https://storage.googleapis.com/
kubernetes-release/release/stable.txt)/bin/linux/amd64/
kubectl

$ chmod +x ./kubectl && sudo mv ./kubectl /usr/local/bin/
kubectl

236 Operating and Maintaining Efficient Kubernetes Clusters

2.	 Confirm that the kubectl binary is updated to the newer version by executing the
following command:

$ kubectl version --short
Client Version: v1.20.1

Server Version: v1.15.12-eks-31566f

3.	 Now, check your node status and version by executing the following command:

$ kubectl get nodes

The output of the preceding command should look as follows:

Figure 10.1 – The kubectl command showing the node status and its version

Here, we have updated kubectl to the latest version. Let's move on to the next step and
upgrade our cluster version.

Upgrading the Kubernetes control plane
AWS EKS clusters can be upgraded one version at a time. This means that if we are on
version 1.15, we can upgrade to 1.16, then to 1.17, and so on.

Important note
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/tree/master/Chapter10/terraform.

Let's upgrade our controller nodes using the Terraform scripts we also used in Chapter 3,
Provisioning Kubernetes Clusters Using AWS and Terraform, to deploy our clusters:

1.	 Edit the terraform.tfvars file under the Chapter10/terraform/
packtclusters directory and increase the cluster_version value to the
next release version number. In our example, we have increased the version from
1.15 to 1.16:

aws_region = "us-east-1"

private_subnet_ids = [

 "subnet-0b3abc8b7d5c91487",

 "subnet-0e692b14dbcd957ac",

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10/terraform
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10/terraform
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10/terraform

Learning about cluster maintenance and upgrades 237

 "subnet-088c5e6489d27194e",

]

public_subnet_ids = [

 "subnet-0c2d82443c6f5c122",

 "subnet-0b1233cf80533aeaa",

 "subnet-0b86e5663ed927962",

]

vpc_id = "vpc-0565ee349f15a8ed1"

clusters_name_prefix = "packtclusters"

cluster_version = "1.16" #Upgrade from 1.15

workers_instance_type = "t3.medium"

workers_number_min = 2

workers_number_max = 3

workers_storage_size = 10

2.	 Run the terraform plan command to validate the planned changes before
applying them:

$ cd chapter-10/terraform/packtclusters

$ terraform plan

You will get the following output after the terraform plan command completes
successfully. There is one resource to change. We are only changing the cluster
version:

Figure 10.2 – The terraform plan command output

3.	 Execute the terraform apply command. Enter yes when you get a prompt to
approve the in-place update:

$ terraform apply

238 Operating and Maintaining Efficient Kubernetes Clusters

While an upgrade is in progress, we can track the progress both from the command
line or in the AWS console. The cluster status in the AWS console will look similar
to the following screenshot:

Figure 10.3 – AWS console output showing the cluster status as Updating
You will get the following result after the terraform apply command completes
successfully. By then, Terraform has successfully changed one AWS resource:

Figure 10.4 – The terraform apply command output

Here, we have updated our Kubernetes control plane to the next version available. Let's
move on to the next step and upgrade our node groups.

Upgrading Kubernetes components
Upgrading the Kubernetes control plane doesn't upgrade the worker nodes or our
Kubernetes add-ons, such as kube-proxy, CoreDNS, and the Amazon VPC CNI
plugin. Therefore, after upgrading the control plane, we need to carefully upgrade each
and every component to a supported version if needed. You can read more about the
supported component versions and Kubernetes upgrade prerequisites on the Amazon
EKS documentation site at https://docs.aws.amazon.com/eks/latest/
userguide/update-cluster.html. The following figure shows an example support
matrix table for the upgrade path we will follow in our example:

https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html

Learning about cluster maintenance and upgrades 239

Figure 10.5 – An example of a Kubernetes component support matrix

Some version upgrades may also require changes in your application's YAML manifest to
reference the new APIs. It is highly recommended to test your application behavior using
a continuous integration workflow.

Now that our EKS control plane is upgraded, let's upgrade kube-proxy:

1.	 Get the current version of the kube-proxy component by executing the following
command:

$ kubectl get daemonset kube-proxy --namespace kube-
system -o=jsonpath='{$.spec.template.spec.containers[:1].
image}'

The output of the preceding command should look as follows. Note that your
account ID and region will be different:

123412345678.dkr.ecr.us-east-1.amazonaws.com/eks/kube-
proxy:v1.15.11-eksbuild.1

2.	 Now, upgrade the kube-proxy image to the supported version from Figure 10.5
by using the output of the previous command:

$ kubectl set image daemonset.apps/kube-proxy \

 -n kube-system \

 kube-proxy=123412345678.dkr.ecr.us-west-2.amazonaws.
com/eks/kube-proxy:v1.16.15-eksbuild.1

3.	 Run the command from step 1 to confirm the version change. This time, the output
of the preceding command should look as follows:

123412345678.dkr.ecr.us-east-1.amazonaws.com/eks/kube-
proxy:v1.16.15-eksbuild.1

4.	 Let's learn how we can upgrade coredns when needed. Note that only an upgrade
from 1.17 to 1.18 requires the coredns version to be at 1.7.0. Confirm that your
cluster uses coredns as the DNS provider by executing the following command:

$ kubectl get pod -n kube-system -l k8s-app=kube-dns

240 Operating and Maintaining Efficient Kubernetes Clusters

The output of the preceding command should look as follows:

Figure 10.6 – CoreDNS pods running on the Kubernetes cluster

5.	 Get the current version of the coredns component by executing the following
command:

$ kubectl get deployment coredns --namespace kube-system
-o=jsonpath='{$.spec.template.spec.containers[:1].image}'

The output of the preceding command should look as follows. Note that your
account ID and region will be different:

123412345678.dkr.ecr.us-east-1.amazonaws.com/eks/
coredns:v1.6.6-eksbuild.1

6.	 Now, upgrade the coredns image to the supported version from Figure 10.5 by
using the output of the previous command:

$ kubectl set image deployment.apps/coredns \

 -n kube-system \

 coredns=123412345678.dkr.ecr.us-west-2.amazonaws.com/
eks/coredns:v1.7.0-eksbuild.1

7.	 Run the command from step 1 to confirm the version change. This time, the output
of the preceding command should look as follows:

123412345678.dkr.ecr.us-east-1.amazonaws.com/eks/
coredns:v1.7.0-eksbuild.1

Here, we have updated our Kubernetes components to the next version available. Let's
move on to the next step and upgrade our worker nodes.

Upgrading Kubernetes worker nodes
After upgrading AWS EKS controllers, we will follow with adding new worker nodes
using updated AMI images. We will drain the old nodes and help Kubernetes to migrate
workloads to the newly created nodes.

Learning about cluster maintenance and upgrades 241

Let's upgrade our worker nodes:

1.	 Edit the config.tf file under the Chapter03/terraform/packtclusters
directory and change the name of the workers AMI ID increased version from
1.15 to 1.16:

terraform {

 backend "s3" {

 bucket = "packtclusters-terraform-state"

 key = "packtclusters.tfstate"

 region = "us-east-1"

 dynamodb_table = "packtclusters-terraform-state-lock-
dynamodb"

 }

 required_version = "~> 0.12.24"

 required_providers {

 aws = "~> 2.54"

 }

}

provider "aws" {

 region = var.aws_region

 version = "~> 2.54.0"

}

data "aws_ssm_parameter" "workers_ami_id" {

 name = "/aws/service/eks/optimized-ami/1.16/
amazon-linux-2/recommended/image_id"

 with_decryption = false

}

2.	 Edit the terraform.tfvars file under the Chapter03/terraform/
packtclusters directory and increase workers_number_min if you like:

aws_region = "us-east-1"

private_subnet_ids = [

 "subnet-0b3abc8b7d5c91487",

 "subnet-0e692b14dbcd957ac",

 "subnet-088c5e6489d27194e",

242 Operating and Maintaining Efficient Kubernetes Clusters

]

public_subnet_ids = [

 "subnet-0c2d82443c6f5c122",

 "subnet-0b1233cf80533aeaa",

 "subnet-0b86e5663ed927962",

]

vpc_id = "vpc-0565ee349f15a8ed1"

clusters_name_prefix = "packtclusters"

cluster_version = "1.16"

workers_instance_type = "t3.medium"

workers_number_min = 2

workers_number_max = 5

workers_storage_size = 10

3.	 Run the terraform plan command to validate the planned changes before
applying them:

$ cd chapter-10/terraform/packtclusters

$ terraform plan

You will get the following output after the terraform plan command completes
successfully. There is one resource to change. We are only changing the cluster
version:

Figure 10.7 – The terraform plan command output

4.	 Execute the terraform apply command. Enter yes when you get a prompt to
approve the in-place update:

$ terraform apply

You will get the following output after the terraform apply command
completes successfully. By then, Terraform has successfully changed one AWS
resource:

Learning about cluster maintenance and upgrades 243

Figure 10.8 – The Terraform command output after changes are applied

5.	 Execute the kubectl get nodes command to get the name of your old nodes.
You will get the following output and as we can see, two out of three nodes in our
cluster are still on v1.15.12:

Figure 10.9 – The kubectl output showing node names and version

6.	 Now that we've confirmed one new node is added to our cluster, we need to move
our pods from the old nodes to the new nodes. First, one by one, taint the old nodes
and drain them:

$ kubectl taint nodes ip-10-40-102-5.ec2.internal
key=value:NoSchedule

node/ip-10-40-102-5.ec2.internal tainted

$ kubectl drain ip-10-40-102-5.ec2.internal --ignore-
daemonsets --delete-emptydir-data

7.	 Then, remove the old nodes from your cluster. New nodes will be automatically
created and added to our cluster. Let's confirm all nodes are upgraded by executing
the kubectl get nodes command. The output of the command should look as
follows:

Figure 10.10 – The kubectl output showing updated node version

We have now learned how to upgrade the Kubernetes control plane and workers using
Terraform. It is a production best practice to have a regular backup of persistent data and
applications from our clusters. In the next section, we will focus on taking a backup of
applications and preparing our clusters for disaster recovery.

244 Operating and Maintaining Efficient Kubernetes Clusters

Preparing for backups and disaster recovery
In this section, we will be taking a complete, instant, or scheduled backup of the
applications running in our cluster. Not every application requires or can even take
advantage of regular backups. Stateless application configuration is usually stored in
a Git repository and can be easily deployed as part of the Continuous Integration and
Continuous Delivery (CI/CD) pipelines when needed. Of course, this is not the case
for stateful applications such as databases, user data, and content. Our business running
online services can be challenged to meet legal requirements and industry-specific
regulations and retain copies of data for a certain time.

For reasons external or internal to our clusters, we can lose applications or the whole
cluster and may need to recover services as quickly as possible. In that case, for disaster
recovery use cases, we will learn how to use our backup data stored in an S3 target
location to restore services.

In this section, we will use the open source Velero project as our backup solution. We
will learn how to install Velero to take a scheduled backup of our data and restore it.

Installing Velero on Kubernetes
Traditional backup solutions and similar services offered by cloud vendors focus
on protecting node resources. In Kubernetes, an application running on nodes can
dynamically move across nodes, therefore taking a backup of node resources does not
fulfill the requirements of a container orchestration platform. Cloud-native applications
require a granular, application-aware backup solution. This is exactly the kind of solution
cloud-native backup solutions such as Velero focus on. Velero is an open source project
to back up and restore Kubernetes resources and their persistent volumes. Velero can be
used to perform migration operations and disaster recovery on Kubernetes resources. You
can read more about Velero and its concepts on the official Velero documentation site at
https://velero.io/docs/main/.

Information
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/tree/master/Chapter10/velero.

https://velero.io/docs/main/
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10/velero
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10/velero
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10/velero

Preparing for backups and disaster recovery 245

Now, let's install Velero using its latest version and prepare our cluster to start taking
a backup of our resources:

1.	 Let's get the latest release version tag of velero and keep it in a variable called
VELEROVERSION:

$ VELEROVERSION=$(curl –silent "https://api.github.com/
repos/vmware-tanzu/velero/releases/latest" | grep '"tag_
name":' | \

 sed -E 's/.*"v([^"]+)".*/\1/')

2.	 Now, download the latest velero release binary and install by executing the
following command:

$ curl --silent --location "https://github.com/vmware-
tanzu/velero/releases/download/v${VELEROVERSION}/velero-
v${VELEROVERSION}-linux-amd64.tar.gz" | tar xz -C /tmp

$ sudo mv /tmp/velero-v${VELEROVERSION}-linux-amd64/
velero /usr/local/bin

3.	 Confirm that the velero command can execute:

$ velero version

Client:

 Version: v1.5.2

 Git commit:
e115e5a191b1fdb5d379b62a35916115e77124a4

<error getting server version: no matches for kind
"ServerStatusRequest" in version "velero.io/v1">

4.	 Create the credentials file for Velero to access your S3 target in this chapter10/
velero/credentials-velero path. Replace aws_access_key_id and
aws_secret_access_key with your AWS ID and access key and save the file:

[default]

aws_access_key_id = MY_KEY

aws_secret_access_key = MY_ACCESS_KEY

246 Operating and Maintaining Efficient Kubernetes Clusters

5.	 Before you run the following command, update s3Url with your AWS S3 bucket
address or S3-compatible object storage, such as a MinIO object storage server
address. Install the Velero server components by executing the following command:

$ velero install \

 --provider aws \

 --plugins velero/velero-plugin-for-aws:v1.0.0 \

 --bucket velero \

 --secret-file ./credentials-velero \

 --use-restic \

 --backup-location-config
region=minio,s3ForcePathStyle="true",s3Url=http://
abcd123456789-1234567891.us-east-1.elb.amazonaws.com:9000

The output of the preceding command should look as follows:

Figure 10.11 – Velero installer output showing successful installation

6.	 Confirm that the Velero server components are successfully installed by executing
the following command:

$ kubectl get deployments -l component=velero -n velero

The output of the preceding command should look as follows:

Figure 10.12 – Velero deployments status showing ready

Now we have Velero installed and configured to take a backup of resources to an S3 target.
Next, we will learn how to take a bundled backup of Kubernetes resources.

Preparing for backups and disaster recovery 247

Taking a backup of specific resources using Velero
Let's follow the steps here to get a backup of Kubernetes resources we would like to
protect. For this example, we will need a stateful application. We will deploy a MinIO
object storage workload, upload some files on it, and take a backup of all resources to
demonstrate the backup and restoration capabilities. You can apply the same steps to any
application you wish:

Information
You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/tree/master/Chapter10/velero/backup.

1.	 If you already have a stateful application with persistent volumes to protect, you
can skip to step 4. Otherwise, execute the following command to deploy a MinIO
instance to continue with the scenario:

$ kubectl apply -f https://raw.githubusercontent.com/
PacktPublishing/Kubernetes-Infrastructure-Best-Practices/
master/Chapter10/velero/backup/deployment-minio.yaml

2.	 Verify that MinIO pods, service, and persistent volumes are created by executing
the following command:

$ kubectl get pods,svc,pvc -nminio-demo

The output of the preceding command should look as follows:

Figure 10.13 – Status of the MinIO pods, service, and persistent volume

3.	 Now, we will create a backup for all resources that have the label app=minio. Make
sure to match the selector if you are using different labels. Execute the following
command to create a backup:

$ velero backup create minio-backup --selector app=minio

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10/velero/backup
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10/velero/backup
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter10/velero/backup

248 Operating and Maintaining Efficient Kubernetes Clusters

Important note
To create scheduled backups, you can add a schedule parameter to the backup
using a cron expression. For example, to create a daily backup, you can use
either the --schedule="0 1 * * *" or --schedule="@daily"
parameters. Later, you can get a list of scheduled backup jobs using the
velero schedule get command.

4.	 Run the following command to verify that the backup job is completed:

$ velero backup describe minio-backup

5.	 As an alternative, we can back up resources in an entire namespace. Let's make
another backup, this time using a namespace, by executing the following command:

$ velero backup create minio-backup-ns --include-
namespaces minio-demo

Now, we have learned how to create a backup of our first resource group and namespace
in Kubernetes. Let's simulate a disaster scenario and test recovering our application.

Restoring an application resource from its backup
using Velero
Let's follow these steps to completely remove resources in a namespace and restore the
previous backup to recover them. You can apply the same steps on any application to
migrate from one cluster to another. This method can also serve as a cluster upgrade
strategy to reduce upgrade time:

1.	 Delete all resources in a namespace of your application by executing the following
command:

$ kubectl delete ns minio-demo

2.	 Create a new namespace and execute the following command to restore the
application and its resources from its backup:

$ kubectl create ns minio-demo

$ velero restore create –from-backup minio-backup

Validating cluster quality 249

3.	 Wait for a couple of second for resources to be restored and verify that your MinIO
pods, service, and persistent volume are restored by executing the following
command:

$ kubectl get pods,svc,pvc -nminio-demo

4.	 The output of the preceding command should look as follows:

Figure 10.14 – Status of the MinIO pods, service, and persistent volume

Now we have learned how to restore a resource group backup of the service in our
production Kubernetes clusters. Let's take a look at how we can improve by continuously
validating the quality of our clusters and troubleshooting issues.

Validating cluster quality
In this section, we will learn about some of the best practices and tools in the ecosystem
to improve different aspects of our Kubernetes clusters. Continuous improvement is a
wide-ranging concept that encompasses everything from providing a smooth platform to
services on Kubernetes and setting a particular Quality of Service (QoS) for resources,
to making sure resources are evenly distributed and unused resources are released to
reduce the pressure on cluster resources and the overall cost of providing services. The
definition of improvement itself is gradually getting more granular, and it is not limited
to the practices that we will discuss here. Before we learn about the conformance and cost
management tools, let's learn about a few common-sense quality best practices we should
consider:

•	 Generate state-of-cluster reports: Although it is expected that Kubernetes clusters
should behave the same whether it's a managed Kubernetes service provided
by a public cloud provider, a distribution provided by a specific vendor, or
a self-managed cluster based on upstream Kubernetes, the reality is there may be
limitations and configuration differences that we should validate. Conformance
testing is a great way to ensure that the clusters we support are properly configured
and conform to official Kubernetes specifications.

250 Operating and Maintaining Efficient Kubernetes Clusters

•	 Define QoS for pods: Unless configured correctly, pods scheduled on Kubernetes
clusters can consume all the resources available to them. When Kubernetes
schedules a pod, it also assigns a QoS class. These classes can be either
Guaranteed, Burstable, or BestEffort.

•	 Reduce latency to closer to users' location: There is a reason why cloud providers
offer clusters in different geographic locations. It is common to start locally
and observe end user latencies and traffic before spinning clusters in different
geographies. Observe issues and bottlenecks, and expand to additional regions
closer to users when needed.

•	 Define storage classes with different QoSes: In a Kubernetes cluster, the CPU,
memory, and also to a degree, the network, QoS can be managed by Kubernetes.
Storage QoS is expected to be handled by storage providers. Storage can be provided
by the external storage of the cluster or hyper-converged Container Attached
Storage (CAS) outside. A best practice is to abstract data management from specific
storage vendors to provide vendor-agnostic service flexibility with storage classes.
Different storage classes can be used to provide cold storage, SSD, or NVMe-backed
storage depending on the application's needs. We learned about tuning Kubernetes
storage and choosing the storage solution in Chapter 7, Managing Storage and
Stateful Applications.

•	 Optimize container images: It is recommended to continuously monitor your
cluster resources' top consumers, improve their consumption, and look for ways to
optimize their consumption. Optimizing container images can have a significant
impact on resource utilization and performance. You can read more about the
challenges and best practices of improving container images in Chapter 8, Deploying
Seamless and Reliable Applications.

•	 Optimize cluster resource spend: In theory, the only limit on the cloud provider's
resources is your budget. It is recommended to monitor the cost of resources and
project allocation to get the full cost of running a product.

Now we have learned the best practices for improving the quality of our cluster; we
have touched on some of the topics in previous chapters. Let's look into the remaining
areas that we haven't covered yet, including how we can validate cluster resources in
a non-destructive manner and monitoring the cost of resources.

Validating cluster quality 251

Generating compliance reports
There are many ways and tools to get a Kubernetes cluster up and running. It is an
administrative challenge to maintain a proper configuration. Fortunately, there are
tools to validate reports and detect configuration problems. Sonobuoy is one of the
popular open source tools available to run Kubernetes conformance tests and validate
our cluster's health. Sonobuoy is cluster-agnostic and can generate reports of our
cluster's characteristics. These reports are used to ensure the best practices applied by
eliminating distribution-specific issues and conforming clusters can be ported into our
clusters. You can read more about custom data collection capabilities using plugins and
integrated end-to-end (e2e) testing at Sonobuoy's official documentation site, https://
sonobuoy.io/docs/v0.20.0/. Now, let's install the latest version of Sonobuoy and
validate our cluster by running a Kubernetes conformance test:

1.	 Let's get the latest release version tag of Sonobuoy and keep it in a variable called
SONOBUOYVERSION:

$ SONOBUOYVERSION=$(curl –silent "https://api.github.
com/repos/vmware-tanzu/sonobuoy/releases/latest" | grep
'"tag_name":' | \

 sed -E 's/.*"v([^"]+)".*/\1/')

2.	 Now, download the latest sonobuoy release binary and install by executing the
following command (https://github.com/vmware-tanzu/sonobuoy/
releases/download/v0.20.0/sonobuoy_0.20.0_linux_amd64.tar.
gz):

$ curl --silent --location "https://github.com/vmware-
tanzu/sonobuoy/releases/download/v${SONOBUOYVERSION}/
sonobuoy_${SONOBUOYVERSION}_linux_amd64.tar.gz" | tar xz
-C /tmp

$ sudo mv /tmp/sonobuoy /usr/local/bin

3.	 Confirm that Sonobuoy is installed, and the command can execute:

$ sonobuoy version

Sonobuoy Version: v0.20.0

MinimumKubeVersion: 1.17.0

MaximumKubeVersion: 1.99.99

GitSHA: f6e19140201d6bf2f1274bf6567087bc25154210

https://github.com/vmware-tanzu/sonobuoy/releases/download/v0.20.0/sonobuoy_0.20.0_linux_amd64.tar.gz
https://github.com/vmware-tanzu/sonobuoy/releases/download/v0.20.0/sonobuoy_0.20.0_linux_amd64.tar.gz
https://github.com/vmware-tanzu/sonobuoy/releases/download/v0.20.0/sonobuoy_0.20.0_linux_amd64.tar.gz

252 Operating and Maintaining Efficient Kubernetes Clusters

4.	 Make sure that the cluster has enough resources to execute all the tests. You can
find a specific suggestion for every provider on Sonobuoy's source repository at
https://github.com/cncf/k8s-conformance/tree/master/v1.16.
For EKS, the suggested cluster size is 10 c5.xlarge worker instances. Start the
conformance tests on your EKS cluster by executing the following command:

$ sonobuoy run --wait \

 --sonobuoy-image projects.registry.vmware.com/
sonobuoy/sonobuoy:v0.20.0

5.	 To shorten testing and validate the configuration rather than full certified
conformance, we can run the test with the --mode quick option:

$ sonobuoy run --wait --mode quick

6.	 Validation will take up to an hour to complete depending on the tests executed
on the cluster. Once finished, execute the following command to get the plugins'
results and inspect the results for failures. For a detailed list of options to inspect
results, see the documentation at https://sonobuoy.io/docs/v0.20.0/
results/:

$ results=$(sonobuoy retrieve)
$ sonobuoy results $results

The output of the preceding command should look as follows:

Figure 10.15 – Sonobuoy validation results

7.	 Delete the Sonobuoy components from the cluster and clean up the resources:

$ sonobuoy delete --wait

Now we have learned how to validate our Kubernetes cluster configuration. Let's look into
how we can detect overprovisioned, idle resources and optimize our cluster's total cost.

https://github.com/cncf/k8s-conformance/tree/master/v1.16
https://sonobuoy.io/docs/v0.20.0/results/
https://sonobuoy.io/docs/v0.20.0/results/

Validating cluster quality 253

Managing and improving the cost of cluster resources
Monitoring project cost and team chargeback and managing total cluster spending are
some of the big challenges of managing Kubernetes on public cloud providers. Since we
have a theoretically unlimited scale available through cloud vendors, utilization fees can
quickly go up and become a problem if not managed. Kubecost helps you monitor and
continuously improve the cost of Kubernetes clusters. You can read more about the cost
and capacity management capabilities of Kubecost at Kubecost's official documentation
site: https://docs.kubecost.com/.

Now, let's install Kubecost using Helm and start analyzing cost allocation in our cluster:

1.	 Create a namespace called kubecost:

$ kubectl create ns kubecost

2.	 Add the cost-analyzer Helm Chart repository to your local repository list:

$ helm repo add kubecost \

 https://kubecost.github.io/cost-analyzer/

3.	 Update the Helm Chart repositories:

$ helm repo update

4.	 Install cost-analyzer from its Helm repository:

$ helm install kubecost kubecost/cost-analyzer \
 --namespace kubecost \
 --set
kubecostToken="bXVyYXRAbWF5YWRhdGEuaW8=xm343yadf98"

5.	 Verify successful installation by executing the following command:

$ kubectl get pods -n kubecost

The output of the preceding command should look as follows:

Figure 10.16 – List of the pods deployed by Kubecost after successful installation

254 Operating and Maintaining Efficient Kubernetes Clusters

Important note
Kubecost installs Prometheus, Grafana, and kube-state-metrics in
the kubecost namespace. Your existing Prometheus and Grafana instance
deployment of the node-exporter pod can get stuck in the pending state
due to a port number conflict with the existing instances. You can resolve this
issue by changing port number instances deployed with the Kubecost chart.

6.	 Now we have cost-analyzer installed. Let's access the Kubecost dashboard.
Create port forwarding to access the Kubecost interface locally:

$ kubectl port-forward --namespace kubecost deployment/
kubecost-cost-analyzer 9090

Important note
Instead of port forwarding Prometheus and Grafana service IPs, you can
choose to expose service IPs externally through your cloud provider's
load balancer options, changing the service type from NodePort to
LoadBalancer.

7.	 Open a browser window and visit http://localhost:9090, which is
forwarded to the kubecost-cost-analyzer service running in the cluster. The
dashboard will immediately show the running monthly cost of your cluster, similar
to the following:

Figure 10.17 – Kubecost Available Clusters screen

8.	 Click on your cluster from the list and access the Kubecost dashboard. The top part
of the dashboard will show a summary of the total cost and any potential identified
savings, similar to that in the following screenshot:

Validating cluster quality 255

Figure 10.18 – Kubecost dashboard

9.	 Let's scroll down the dashboard screen to find a summary of the controller
component and service allocation. At the bottom of the dashboard, we will see
the health scores. A health score is an assessment of infrastructure reliability and
performance risks:

Figure 10.19 – Kubecost dashboard showing the cluster health assessment score

256 Operating and Maintaining Efficient Kubernetes Clusters

10.	 The most important quick summary pages on the dashboard are the health
assessment and estimated saving detail pages. Let's click on each to get to the
areas where you can improve your cluster's cost and performance. In the following
screenshot, we can see an example of a significant saving suggestion from Kubecost
after analyzing our cluster:

Figure 10.20 – Kubecost estimated savings dashboard

11.	 Click on the arrow button next to one of the saving categories and review the
recommendations to optimize your cluster cost.

Now we have learned how to identify monthly cluster costs, resource efficiency, cost
allocation, and potential savings by optimizing request sizes, cleaning up abandoned
workloads, and using many other ways to manage underutilized nodes in our cluster.

Summary
In this chapter, we explored Kubernetes operation best practices and covered cluster
maintenance topics such as upgrades, backups, and disaster recovery. We learned how
to validate our cluster configuration to avoid cluster and application problems. Finally,
we learned ways to detect and improve resource allocation and the cost of our cluster
resources.

Further reading 257

By completing this last chapter in the book, we now have the complete knowledge to
build and manage production-grade Kubernetes infrastructure following the industry
best practices and well-proven techniques learned from early technology adopters and
real-life, large-scale Kubernetes deployments. Kubernetes offers a very active user and
partner ecosystem. In this book, we focused on the best practices known today. Although
principles will not change quickly, as with every new technology, there will be new
solutions and new approaches to solving the same problems. Please let us know how we
can improve this book in the future by reaching out to us via the methods mentioned in
the Preface section.

Further reading
You can refer to the following links for more information on the topics covered in
this chapter:

•	 Amazon EKS Kubernetes release calendar: https://docs.aws.amazon.com/
eks/latest/userguide/kubernetes-versions.html#kubernetes-
release-calendar

•	 Disaster recovery for multi-region Kafka at Uber: https://eng.uber.com/
kafka/

•	 Disaster Recovery Preparedness for Your Kubernetes Clusters: https://rancher.
com/blog/2020/disaster-recovery-preparedness-kubernetes-
clusters

•	 The official website of the Velero project: https://velero.io/

•	 The official website of the Sonobuoy project: https://sonobuoy.io/

•	 KubeDR, an alternative open source Kubernetes cluster backup solution:
https://github.com/catalogicsoftware/kubedr

•	 Kasten, an alternative Kubernetes backup, disaster recovery, and mobility solution:
https://www.kasten.io/

https://eng.uber.com/kafka/
https://eng.uber.com/kafka/
https://rancher.com/blog/2020/disaster-recovery-preparedness-kubernetes-clusters
https://rancher.com/blog/2020/disaster-recovery-preparedness-kubernetes-clusters
https://rancher.com/blog/2020/disaster-recovery-preparedness-kubernetes-clusters
https://velero.io/
https://sonobuoy.io/
https://github.com/catalogicsoftware/kubedr
https://www.kasten.io/

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

260 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

kubectl: Command-Line Kubernetes in a Nutshell

Rimantas Mocevicius

ISBN: 978-1-80056-187-8

•	 Get to grips with the basic kubectl commands

•	 Delve into different cluster nodes and their resource usages

•	 Understand the most essential features of kubectl

•	 Discover how to patch Kubernetes deployments with Kustomize

•	 Find out ways to develop and extend kubectl tools with their own plugins

•	 Explore how to use Helm as an advanced tool for deploying apps

https://www.packtpub.com/product/kubectl-command-line-kubernetes-in-a-nutshell/9781800561878

Why subscribe? 261

Kubernetes and Docker - An Enterprise Guide

Scott Surovich and Marc Boorshtein

ISBN: 978-1-83921-340-3

•	 Create a multinode Kubernetes cluster using kind

•	 Implement Ingress, MetalLB, and ExternalDNS

•	 Configure a cluster OIDC using impersonation

•	 Map enterprise authorization to Kubernetes

•	 Secure clusters using PSPs and OPA

•	 Enhance auditing using Falco and EFK

•	 Back up your workload for disaster recovery and cluster migration

•	 Deploy to a platform using Tekton, GitLab, and ArgoCD

https://www.packtpub.com/product/kubernetes-and-docker-an-enterprise-guide/9781839213403

262 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

Symbols
12-factor app methodology

URL 16

A
A/B testing deployments 200
Address Space Layout Randomization

(ASLR) 190
admission controller 136
Alpine 191
Amazon CNI plugin

configuring 114-117
Amazon EKS infrastructure

cluster and node size, selecting 36, 37
cluster architecture, deciding 40, 41
designing 34
infrastructure provider, selecting 35
tools, selecting for cluster deployment

and management 38
Amazon EKS infrastructure, cluster

deployment and management tools
configuration management 39
infrastructure provisioning 38, 39

Amazon Linux 2 191

Amazon Resource Names (ARNs) 96
amazon-vpc-cni-k8s 115
Amazon Web Services (AWS) 191
Ansible

about 92
Kubernetes configuration

management 92
need for 92

Ansible configuration playbooks
required tools, installing 89

ansible directory
structure 95

Ansible inventories
creating 100

Ansible, key concepts
about 93
inventory 93
modules 93
playbooks 93
tasks 93
templates 93
variables 93

Ansible tasks
aws-auth task 102, 103
creating 102
namespaces task 103

264 Index

Ansible templates
aws-auth template 96
creating 96
Kubernetes namespace template 98

Ansible variables
aws-auth variables 99
creating 99
default namespace, configuring 100

Anthos
reference link 27

application deployment strategies
learning 199

Application Performance
Monitoring (APM) 15

applications
monitoring, with Grafana 220-222
scaling 204-207
securing 143

Attribute-Based Access Control (ABAC) 8
audit logging

enabling 157
availability zone (AZ) replication

functionality 165
aws-auth task

creating 102, 103
aws-auth template

creating 96-98
aws-auth variables

defining 99
overriding 101

AWS EBS CSI drivers
reference link 163

AWS IAM
users, authenticating 135

Azure Kubernetes Service (AKS) 11, 45

B
backups and disaster recovery

preparing for 244
blue/green deployment model 200

C
Calico

network policies, creating 150
canary release 201
Center of Internet Security (CIS) 153
CentOS 191
centralized storage systems 175
certificates

managing 137
Cert-Manager

about 139
TLS certificates, managing 139-142

CIS Kubernetes benchmark
executing 156

Classless Inter-Domain
Routing (CIDR) 40

clean deployment 201
cloud-native approach 16, 17
Cloud Native Computing Foundation

(CNCF) 16, 17, 176, 215
cloud-native landscape

about 18
app definition and development layer 18
orchestration and management layer 18
provisioning layer 18
runtime layer 18

cloud native trail map 18
cloud-native transformation

stages 19, 20

Index 265

Cloud Storage 177
cluster access

managing 134
cluster authentication 135
cluster authorization 136
cluster autoscaler (CAS)

reference link 25
cluster compliance

ensuring 153
cluster deployment 45, 46
cluster infrastructure

configuration 78
creating 64
environment variables 78, 79
input variables 79
main resources 79
modules, placing 77
output values 80
provisioning 80-82

cluster maintenance 235
cluster quality

compliance reports, generating 251, 252
validating 249, 250

cluster resources
cost, improving 253-256
cost, managing 253-256
destroying 82

clusters
configuring 94, 95
destroying 159
implementation principles 45
network services, deploying 126-128
resources, destroying 128

cluster's Ansible playbook
applying 105, 106

cluster security
ensuring 153

cluster security configuration
scanning 155

cluster's playbook
creating 104, 105

cluster's resources
destroying 107

cluster upgrades 235
cluster VPC

about 61, 62
configuration 59, 60
developing 59
environment variables 60, 61
input variables 61
output values 62
provisioning 62-64

CNCF cloud native network landscape
reference link 111

CNCF community radar observations
reference link 215

Common Vulnerabilities and
Exposures (CVEs) 189

community-built dashboards, Grafana
reference link 222

Configuration as Code (CaC) 91
configuration management (CM) 92
Container Attached Storage

(CAS) 163, 177, 250
container base images

best practices, applying 198, 199
selecting 189-193

containerd 188
container engine 188
container host 187, 211
container images

about 187
challenges 186
components 187, 188

266 Index

download speed, testing of 197, 198
scanning, for vulnerabilities 195-197

container image size
reducing 193, 194

container images, Nix
reference link 193

Container Network Interface (CNI) 114
container probes

readiness and liveness container
probes, using 202, 203

container runtime 188
Container Runtime Interface (CRI-O) 5
Container Storage Interface (CSI) 163
Continuous Integration and Continuous

Delivery (CI/CD) 195, 244
control plane components

about 4
etcd 4
kube-apiserver 4
kube-controller-manager 4
kube-scheduler 4

CoreDNS
configuring 117-120
reference link 117

CoreDNS plugins
reference link 120

cost optimization, considerations
Kubernetes cluster management 30
Kubernetes cost observability 29
spot/preemptible instances, using 29

CRI-O 188
critical workloads

isolating 143
CSI drivers

installing 163
CSI vendor drivers

reference link 163
custom metrics adapters 207

Custom Resource Definition
(CRD) 137, 224

D
Database as a Service (DbaaS) model 199
Debian 192
default deny policy

creating 150-152
default namespace

configuring 100
default pod security policy

hardening 144-147
Denial of Service (DoS) attacks 157
deployment model

selecting 200
deployments

monitoring 201
distributed storage systems 175
Distroless 193
distroless Docker images

reference link 190
Dockerfiles

reference link 195

E
edge clusters 34
EFK stack

installing, on Kubernetes 223-231
EKS cluster creator

modifying 136
EKS Terraform module

developing 64, 65
IAM policies 67, 68
IAM roles 67, 68
input variables 65

Index 267

main resources 65, 66
output values 68
security groups 66

Elastic Block Store (EBS) 8
Elastic File System (EFS) 8
Elastic Kubernetes Service

(EKS) 11, 35, 45, 111
Elasticsearch, Fluentd, and

Kibana (EFK) stack 223
end-to-end (e2e) testing 251
ExternalDNS

configuring 120-123

F
Falco

reference link 153
runtime, monitoring 152, 153

Firecracker 188
Flagger

about 201
reference link 201

G
General Availability (GA) 178
Google Kubernetes Engine (GKE) 11, 45
Google SRE resources site

reference link 214
Grafana

about 215, 220
reference link 220
used, for monitoring

applications 220-222

H
hard multi-tenancy

implementing 144
Helm

about 163
installing 163

higher availability
achieving 204-207

highly available (HA) cluster 33
Horizontal Pod Autoscaler (HPA)

about 25, 204
reference link 25

hybrid cloud clusters 33
hyperconverged storage solutions 176

I
Identity and Access Management

(IAM) 5, 97
Infrastructure as a Service (IaaS) 13
infrastructure as Code (IaC) 31
infrastructure resources

cleaning up 82
destroying 82

International Data Corporation (IDC) 3
IP Address Management (IPAM) 114

K
k8s module

reference link 102
Kata 188
kernel space 187

268 Index

kube-bench
installing 156
running 156

Kubecost
URL 253

kubectl
upgrading 235

kube-proxy 112
Kube Proxy

configuring 112-114
kube-proxy configuration options

reference link 114
Kubernetes

about 3
application deployment metrics 213
application health and

performance metrics 213
challenges, in production 5
cluster health metrics 212
EFK stack, installing on 223-231
pods resource utilization metrics 213
Prometheus stack, installing on 215-218
resource utilization metrics 212
storage primitives 167
Velero, installing on 244-246

Kubernetes cluster architecture 3
Kubernetes cluster Terraform module

developing 75
EKS control plane 76
EKS workers 76, 77
input variables 76
output values 77

Kubernetes components
about 3, 4
control plane components 4
node components 4, 5
upgrading 238-240

Kubernetes configuration management
about 90, 91
with Ansible 92
workflow 92

Kubernetes conformance tests
executing 153

Kubernetes control plane
upgrading 236-238

Kubernetes, deployment
strategy alternatives

edge clusters 34
exploring 32
hybrid cloud clusters 33
local clusters 34
multi-availability-zones clusters 33
multi-cloud clusters 34
multi-region clusters 33
on-premises clusters 34

Kubernetes infrastructure
12 principles of infrastructure design

and management 11-14
applications definition and

deployment 15
basics 2
best practices 11
culture 16
layers 7
processes 16
securing 132-134
team 16

Kubernetes, infrastructure best
practices and standards

automation 31
Infrastructure as Code (IaC) 31
single source of truth 32
standardization 32

Index 269

Kubernetes, infrastructure
design considerations

compliance 28
cost management 28
cost optimization 28
elasticity 24, 25
high availability 26, 27
manageability 30
operational efficiency 30
reliability 26, 27
scaling 24, 25
security 28

Kubernetes metrics 211, 212
Kubernetes namespace template

creating 98
Kubernetes observability

challenges 210
Kubernetes, operational challenges

about 30
disaster recovery 31
observability 31
reliability and scaling 30
security and governance 31
updateability and cluster

management 31
Kubernetes-related performance test tools

reference link 190
Kubernetes release notes

reference link 235
Kubernetes storage

tuning 167
Kubernetes the Hard Way 38
Kubernetes worker nodes

upgrading 240-243
kube-scan

installing 155
running 155

kubeseal 137

L
Lightweight Directory Access

Protocol (LDAP) 5, 135
Linux Container Daemon (LXD) 188
local clusters 34
logging 223
Loki

reference link 223

M
metrics 215
monitoring 215
multi-availability-zones clusters 33
multi-cloud clusters 34
multi-region clusters 33
multistage build, Docker

reference link 194

N
namespaces

using 143
namespaces task

creating 103
namespaces variables

overriding 101
network infrastructure

creating 55
networking production

readiness 111
network policies

creating, with Calico 150
Network Policy API 150
NGINX Ingress Controller

configuring 123-125

270 Index

node components
about 4
container runtime 5
kubelet 4
kube-proxy 5

O
on-premises clusters 34
Open Container Initiative (OCI) 189
OpenEBS

installing 178-180
URL 179

OpenEBS volumes
stateful application, deploying

on 181, 182
OpenID Connect (OIDC) 8, 135
Open Vulnerability and Assessment

Language (OVAL) 190
Operating System (OS) 187

P
Patches for the Linux Kernel (PaX) 190
persistent storage solution

selecting 175-177
Persistent Volume Claim

(PVC) 169, 171, 172
Persistent Volume (PV) 165, 168, 169
pip3 89
pod 188
pod access

limiting 147-149
Pod Disruption Budgets (PDBs) 207
pod security policy (PSP) 8, 144
Position Independent

Executable (PIE) 190
production-readiness 6

production-readiness checklist
about 7
apps and deployments 10
cluster infrastructure 7, 8
cluster services 8, 9

Prometheus
about 215
reference link 215

Prometheus stack
installing, on Kubernetes 215-218

PromQL 215
Promtail, Loki, and Grafana

(PLG) stack 223
python3 89

Q
Quality of Service (QoS) 249
queries per second (QPS) 114

R
Recovery Point Objective (RPO) 166
Recovery Time Objective (RTO) 166
Red Hat OpenShift platform 192
Red Hat Universal Base Image (UBI) 192
Relocation Read-Only (RELRO) 190
ReplicaSets 177
Ring 0 187
Role-Based Access Control

(RBAC) 8, 28, 99
rollout strategy 45, 46
runtime

monitoring, with Falco 152, 153

S
schedules 188

Index 271

Sealed Secrets
about 137
deploying 138
reference link 137

secrets
creating 137
managing 137

security configurations
deploying 158

separate node groups
creating 144

service level agreements (SLA) 26
service level objectives (SLO) 19, 26
service mesh 201
sharded storage solutions 176
shared state resources

destroying 83, 84
site reliability

best practices 214
Site Reliability Engineering (SRE) 16, 214
Software as a Service (SaaS) 26, 143
Sonobuoy

installing 154
running 154

stateful application
deploying 177, 178
deploying, on OpenEBS

volumes 181, 182
stateful applications, challenges

about 165
deployment challenges 165
disaster recovery (DR) and

backup challenges 166
life cycle manageability challenges 166
mobility challenges 166
persistency challenges 165
scalability challenges 166

StatefulSets 178
storage class 172-175
storage primitives, Kubernetes

about 167
Persistent Volume Claim

(PVC) 169, 170, 172
Persistent Volume (PV) 168, 169
storage class 172-175
volumes 168

storage provider decisions
implementation principles 164

supported CNI plugins, Kubernetes
reference link 115

T
Terraform

directory structure 47
download link 44
installing 44
preparing 46

Terraform state
persisting 47
provisioning 52-54

Terraform state configuration
creating 47-52

Terraform workspaces
utilizing 54

The Update Framework (TUF) 20
TLS certificates

managing, with Cert-Manager 139-142
tracing 223
Trivy

about 195
reference link 197

272 Index

U
Ubuntu 192
users

authenticating, with AWS IAM 135
user space

reference link 187

V
Velero

installing, on Kubernetes 244-246
reference link 244
used, for restoring application

resource from backup 248, 249
used, for taking backup of

resources 247, 248
vertical pod autoscaler (VPA)

about 26
reference link 26

virtualenv 89
virtual private cloud (VPC) 50
visualization 215
volumes 168
volume types, Kubernetes

reference link 168
VPC resources

destroying 83
VPC Terraform module

developing 55
input variables 56
main resources 57, 58
output values 58

vulnerabilities
container images, scanning for 195-197

W
workers' Terraform module

developing 69
IAM policies 72, 73
IAM roles 72, 73
input variables 69
main resources 70, 71
output values 75
security groups 71, 72
user data 73, 74
worker authentication 74, 75

workloads
securing 143

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Kubernetes Infrastructure and Production-Readiness
	The basics of Kubernetes infrastructure
	Kubernetes components

	Why Kubernetes is challenging in production
	Kubernetes production-readiness
	The production-readiness checklist

	Kubernetes infrastructure best practices
	The 12 principles of infrastructure design and management
	Applications definition and deployment
	Processes, team, and culture

	Cloud-native approach
	The Cloud Native Computing Foundation
	Why we should care about cloud-native
	Cloud-native landscape and ecosystem
	Cloud-native trail map

	Summary
	Further reading

	Chapter 2: Architecting Production-Grade Kubernetes Infrastructure
	Understanding Kubernetes infrastructure design considerations
	Scaling and elasticity
	High availability and reliability
	Security and compliance
	Cost management and optimization
	Manageability and operational efficiency

	Exploring Kubernetes deployment strategy alternatives
	Designing an Amazon EKS infrastructure
	Choosing the infrastructure provider
	Choosing the cluster and node size
	Choosing tools for cluster deployment and management
	Deciding the cluster architecture

	Summary
	Further reading

	Chapter 3: Provisioning Kubernetes Clusters Using AWS and Terraform
	Technical requirements
	Installing Terraform

	Implementation principles and best practices
	Cluster deployment and rollout strategy
	Preparing Terraform
	Terraform directory structure
	Persisting the Terraform state
	Creating Terraform state configuration
	Provisioning the Terraform state
	Utilizing Terraform workspaces

	Creating the network infrastructure
	Developing the VPC Terraform module
	Developing the cluster VPC
	Provisioning the cluster VPC

	Creating the cluster infrastructure
	Developing the EKS Terraform module
	Developing the workers' Terraform module
	Developing the Kubernetes cluster Terraform module
	Putting all modules together
	Provisioning the cluster infrastructure

	Cleaning up and destroying infrastructure resources
	Destroying the cluster resources
	Destroying the VPC resources
	Destroying the shared state resources

	Summary
	Further reading

	Chapter 4: Managing Cluster Configuration with Ansible
	Technical requirements
	Installing the required tools
	Implementation principles
	Kubernetes configuration management
	Kubernetes configuration management workflow
	Configuration management with Ansible

	Configuring the clusters
	The ansible directory's structure
	Creating Ansible templates
	Creating Ansible variables
	Creating Ansible inventories
	Creating Ansible tasks
	Creating the cluster's playbook
	Applying the cluster's Ansible playbook

	Destroying the cluster's resources
	Summary
	Further reading

	Chapter 5: Configuring and Enhancing Kubernetes Networking Services
	Technical requirements
	Introducing networking production readiness
	Configuring Kube Proxy
	Configuring the Amazon CNI plugin
	Configuring CoreDNS
	Configuring ExternalDNS
	Configuring NGINX Ingress Controller
	Deploying the cluster's network services
	Destroying the cluster's resources
	Summary
	Further reading

	Chapter 6: Securing Kubernetes Effectively
	Technical requirements
	Securing Kubernetes infrastructure
	Managing cluster access
	Cluster authentication
	Cluster authorization
	Admission controller

	Managing secrets and certificates
	Creating and managing secrets
	Managing TLS certificates with Cert-Manager

	Securing workloads and apps
	Isolating critical workloads
	Hardening the default pod security policy
	Limiting pod access
	Creating network policies with Calico
	Monitoring runtime with Falco

	Ensuring cluster security and compliance
	Executing Kubernetes conformance tests
	Scanning cluster security configuration
	Executing the CIS Kubernetes benchmark
	Enabling audit logging

	Bonus security tips
	Deploying the security configurations
	Destroying the cluster
	Summary
	Further reading

	Chapter 7: Managing Storage and Stateful Applications
	Technical requirements
	Installing the required tools

	Implementation principles
	Understanding the challenges with stateful applications
	Tuning Kubernetes storage
	Understanding storage primitives in Kubernetes

	Choosing a persistent storage solution
	Deploying stateful applications
	Installing OpenEBS
	Deploying a stateful application on OpenEBS volumes

	Summary
	Further reading

	Chapter 8: Deploying Seamless and Reliable Applications
	Technical requirements
	Understanding the challenges with container images
	Exploring the components of container images
	Choosing the right container base image
	Reducing container image size
	Scanning container images for vulnerabilities
	Testing the download speed of a container image
	Applying container base images best practices

	Learning application deployment strategies
	Choosing the deployment model
	Monitoring deployments
	Using readiness and liveness container probes

	Scaling applications and achieving higher availability
	Summary
	Further reading

	Chapter 9: Monitoring, Logging, and Observability
	Technical requirements
	Understanding the challenges with Kubernetes observability
	Exploring the Kubernetes metrics

	Learning site reliability best practices
	Monitoring, metrics, and visualization
	Installing the Prometheus stack on Kubernetes
	Monitoring applications with Grafana

	Logging and tracing
	Installing the EFK stack on Kubernetes

	Summary
	Further reading

	Chapter 10: Operating and Maintaining Efficient Kubernetes Clusters
	Technical requirements
	Learning about cluster maintenance and upgrades
	Upgrading kubectl
	Upgrading the Kubernetes control plane
	Upgrading Kubernetes components
	Upgrading Kubernetes worker nodes

	Preparing for backups and disaster recovery
	Installing Velero on Kubernetes
	Taking a backup of specific resources using Velero
	Restoring an application resource from its backup using Velero

	Validating cluster quality
	Generating compliance reports
	Managing and improving the cost of cluster resources

	Summary
	Further reading

	About Packt
	Other Books You May Enjoy
	Index

