Kubernetes
INn Production
Best Practices

Build and manage highly available production-ready
Kubernetes clusters

1\

Aly Saleh | Murat Karslioglu

Kubernetes in
Production Best
Practices

Build and manage highly available production-ready
Kubernetes clusters

Aly Saleh

Murat Karslioglu

BIRMINGHAM—MUMBAI

Kubernetes in Production Best Practices
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Vijin Boricha
Senior Editor: Arun Nadar

Content Development Editor: Romy Dias
Technical Editor: Yoginee Marathe

Copy Editor: Safis Editing

Project Coordinator: Neil Dmello
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Prashant Ghare

First published: February 2021

Production reference: 1110221

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80020-245-0

www .packt.com

http://www.packt.com

To the doctors, nurses, public health officials, and first responders who are
protecting us from COVID-19.

Contributors

About the authors

Aly Saleh is a technology entrepreneur, cloud transformation leader, and architect. He has
worked for the past 2 decades on building large-scale software solutions and cloud-based
platforms and services that are used by millions of users. He is a co-founder of MAVS
Cloud, a start-up that empowers organizations to leverage the power of the cloud.

He also played various technical roles at Oracle, Vodafone, FreshBooks, Aurea Software,
and Ceros.

Aly holds degrees in computer science, and he has gained multiple credentials in AWS,
GCP, and Kubernetes, with a focus on building cloud platforms, app modernization,
containerization, and architecting distributed systems. He is an advocate for cloud best
practices, remote work, and globally distributed teams.

I want to thank my wonderful wife, Rabab, my sons, Adham and Adam,

and my big family for giving me the encouragement and support I needed

to write this book, even while the COVID-19 global pandemic was raging
around us.

Murat Karslioglu is a distinguished technologist with years of experience using
infrastructure tools and technologies. Murat is currently the VP of products at MayaData,
a start-up that builds data agility platform for stateful applications, and a maintainer of
open source projects, namely OpenEBS and Litmus. In his free time, Murat is busy writing
practical articles about DevOps best practices, CI/CD, Kubernetes, and running stateful
applications on popular Kubernetes platforms on his blog, Containerized Me. Murat

also runs a cloud-native news curator site, The Containerized Today, where he regularly
publishes updates on the Kubernetes ecosystem.

I want to thank my wife, Svetlana, and the rest of my family for their
continuous support, patience, and encouragement throughout the whole
difficult process of book-writing.

About the reviewers

Renzo Toma is a seasoned cloud engineer. He has built enterprise cloud infrastructures
that empower 100+ scrum teams with self-service cloud and Kubernetes capabilities.

His Kubernetes experience stems from building multi-cluster setups and dealing with
large-scale problems. At home, he runs Kubernetes on a Raspberry Pi to support home
automation.

Marcos Vale is a software engineer with more than 20 years in the IT industry with
a focus on DevOps, product architecture, design and development in many different
languages (mainly Java), and databases.

He has completed a PhD and a master's degree in data mining and a postgraduate course
in analysis, project, and management systems. He has graduated as a systems engineer and
is also Java certified (SJCP).

He has worked as a DevOps specialist for the last 6 years, working on many different
projects in Brazil, the United States, and across Europe, implementing DevOps with
a focus on TaC, Kubernetes, and CI/CD processes.

I wish to thank my family for supporting me, and I would like to express my
very great gratitude to Aly and Murat and the publisher for giving me the
opportunity to be a part of this great book.

Table of Contents

Preface

1

Introduction to Kubernetes Infrastructure and Production-

Readiness

The basics of Kubernetes
infrastructure

Kubernetes components 3

Why Kubernetes is challenging

in production 5
Kubernetes production-readiness 6
The production-readiness checklist 7

Kubernetes infrastructure best
practices 11

The 12 principles of infrastructure

2

design and management 11
Applications definition and deployment 15
Processes, team, and culture 16
Cloud-native approach 16

The Cloud Native Computing Foundation 17
Why we should care about cloud-native 17
Cloud-native landscape and ecosystem 18

Cloud-native trail map 18
Summary 20
Further reading 21

Architecting Production-Grade Kubernetes Infrastructure

Understanding Kubernetes
infrastructure design

considerations 24
Scaling and elasticity 24
High availability and reliability 26
Security and compliance 28
Cost management and optimization 28

Manageability and operational efficiency 30

Exploring Kubernetes
deployment strategy alternatives32

Designing an Amazon EKS

infrastructure 34
Choosing the infrastructure provider 35
Choosing the cluster and node size 36

Choosing tools for cluster deployment
and management 38

ii Table of Contents

Deciding the cluster architecture

3

40

Summary
Further reading

41
41

Provisioning Kubernetes Clusters Using AWS and Terraform

Technical requirements 44 Creating the cluster

Installing Terraform 44 infrastructure 64
) .. Developing the EKS Terraform module 64

ImpIemenFatlon principles and Developing the workers' Terraform

best practices 45 | odule 69

Cluster deployment and rollout Developing the Kubernetes cluster

strategy 45 Terraform module 75

Preparing Terraform 46 Putting all modules together 77

Terraform directory structure 47 Provisioning the cluster infrastructure 80

Persisting the Terraform state 47 Cleaning up and destroying

Creating Terraform state configuration 47 infrastructure resources 82

Prc.>\./ijsioning the Terraform state 52 Destroying the cluster resources 82

Utilizing Terraform workspaces 54 Destroying the VPC resources 83

Creating the network Destroying the shared state resources 83

pevdops e e Tetormmosie 22 ST e

eveloping the erraform module .

Developing the cluster VPC 59 Further reading 85

Provisioning the cluster VPC 62

4

Managing Cluster Configuration with Ansible

Technical requirements 88 Configuring the clusters 94

Installing the required tools 89 The ansible directory's structure 95

Implementation principles 90 Creating Ansible templates 96

Kubernetes configuration Creating Ansible variables 99

management 90 Creat!ng Ans!ble inventories 100
. . Creating Ansible tasks 102

Kubernetes configuration Creating the cluster's playbook 104

management workflow 92

Configuration management with Ansible 92

Applying the cluster's Ansible playbook 105

Table of Contents iii

Destroying the cluster's Summary 107
resources 107 Further reading 108

5

Configuring and Enhancing Kubernetes Networking Services

Technical requirements 110 Configuring NGINX Ingress
Introducing networking Controller 123
production readiness 110 Deploying the cluster's network
Configuring Kube Proxy 112 services 126
Configuring the Amazon CNI Destroying the cluster's

plugin 114 resources 128
Configuring CoreDNS 117 Summary 129
Configuring ExternalDNS 120 Further reading 129

6

Securing Kubernetes Effectively

Technical requirements 132 Creating network policies with Calico 150

Securing Kubernetes Monitoring runtime with Falco 152

infrastructure 132 Ensuring cluster security and

Managing cluster access 134 compliance 153

Cluster authentication 135 Executing Kubernetes conformance

Cluster authorization 136 tests 153

Admission controller 136 Scanning cluster security configuration 155
. Executing the CIS Kubernetes

Managing secrets and benchmark 156

certificates 137 Enabling audit logging 157

Creating and managing secrets 137

Managing TLS certificates with Cert- Bonus security tips 157

Manager 139 Deploying the security

Securing workloads and apps 143 conflgur'atlons 158

Isolating critical workloads 143 Destroying the cluster 159

Hardening the default pod security Summary 160

policy 144 Further reading 160

Limiting pod access 147

iv Table of Contents

7

Managing Storage and Stateful Applications

Technical requirements 162
Installing the required tools 162
Implementation principles 164
Understanding the challenges

with stateful applications 165
Tuning Kubernetes storage 167

Understanding storage primitives in

Choosing a persistent storage
solution 175

Deploying stateful applications 177

Installing OpenEBS 178
Deploying a stateful application on

OpenEBS volumes 181
Summary 182

Kubernetes 167 Further reading 183
Deploying Seamless and Reliable Applications
Technical requirements 186 practices 198
Understanding the challenges Learning application
with container images 186 deployment strategies 199
!Exploring the components of container Choosing the deployment model 200
|mage§ . . 187 Monitoring deployments 201
Choosing the right container base
. Using readiness and liveness container
image 189

. . . . probes 202
Reducing container image size 193
Scanning container images for Scaling applications and
vulnerabilities 195 achieving higher availability 204
Testing the download speed of a Summary 207
container image 197 .
Applying container base images best Further reading 207
Monitoring, Logging, and Observability
Technical requirements 210 Learning site reliability best
Understanding the challenges practices 214
with Kubernetes observability 210 Monitoring, metrics, and
Exploring the Kubernetes metrics 211 Visualization 215

Table of Contents v

Installing the Prometheus stack on
Kubernetes 215

Installing the EFK stack on Kubernetes 223

Monitoring applications with Grafana 220 summary 232

.) Further reading 232
Logging and tracing
Operating and Maintaining Efficient Kubernetes Clusters
Technical requirements 234 Taking a backup of specific resources
Learning about cluster using Velero 247
maintenance and upgrades 235 Restoring an application resource from

. its backup using Velero 248

Upgrading kubectl 235
Upgrading the Kubernetes control Validating cluster quality 249
plane . 236 Generating compliance reports 251
Upgrading Kubernetes components 238 Managing and improving the cost of
Upgrading Kubernetes worker nodes 240 (|yster resources 253
Preparing for backups and Summary 256
dlsasFer recovery 244 cirther reading 257
Installing Velero on Kubernetes 244 Why subscribe? 259

Other Books You May Enjoy

Index

Preface

Kubernetes is an open source container orchestration platform originally developed by
Google and made available to the public in 2014. The popularity of Kubernetes helped
to make the deployment of container-based, complex, distributed systems simpler to
manage for developers. Since its inception, the community has built a large ecosystem
around Kubernetes, with many open source projects that have made the automation of
management functions possible.

This book is specifically designed to quickly help Kubernetes administrators and

site reliability engineers (SREs) to build and manage production-grade Kubernetes
infrastructure following industry best practices and well-proven techniques learned from
early technology adopters of large-scale Kubernetes deployments.

While we use Amazon Elastic Kubernetes Service (EKS) to deliver the practical
exercises in this book, we believe that the explained Kubernetes design, provisioning, and
configuration concepts and techniques remain valid for other cloud providers. Regarding
the selection of provisioning and configuration tools, we decided to use cloud-agnostic
tools such as Terraform and Ansible to ensure portability across cloud providers.

Kubernetes in Production Best Practices gives you the confidence to use Kubernetes to host
your production workloads, having the comprehensive infrastructure design knowledge to
build your clusters and a clear understanding of managing and operating them efficiently.

Who this book is for

This book is ideal for cloud infrastructure architects, SREs, DevOps engineers, system
administrators, and engineering managers who have a basic knowledge of Kubernetes and
are willing to apply cloud industry best practices to design, build, and operate production-
grade Kubernetes clusters.

A basic knowledge of Kubernetes, AWS, Terraform, Ansible, and Bash will be beneficial.

viii Preface

What this book covers

Chapter 1, Introduction to Kubernetes Infrastructure and Production-Readiness, teaches
you about the basics of Kubernetes infrastructure, then explains the principles of
infrastructure designing, and finally the characteristics of production-ready clusters.

Chapter 2, Architecting Production-Grade Kubernetes Infrastructure, teaches you about the
various aspects, trade-offs, and best practices that you need to consider while designing
Kubernetes infrastructure.

Chapter 3, Provisioning Kubernetes Clusters Using AWS and Terraform, teaches you how
to use AWS, Terraform, and infrastructure as code techniques to provision Kubernetes
infrastructure.

Chapter 4, Managing Cluster Configurations with Ansible, teaches you how to use Ansible
to build a flexible and scalable configuration management solution for Kubernetes
clusters.

Chapter 5, Configuring and Enhancing Kubernetes Networking Services, teaches you how
to configure and improve Kubernetes cluster networking, and the essential Kubernetes
networking add-ons to use.

Chapter 6, Securing Kubernetes Effectively, teaches you about Kubernetes security best
practices, and how to validate and ensure the security of clusters.

Chapter 7, Managing Storage and Stateful Applications, teaches you how to overcome
storage challenges in Kubernetes using the best storage management solution in the
ecosystem.

Chapter 8, Deploying Seamless and Reliable Applications, teaches you container and image
best practices, as well as application deployment strategies to achieve scalable service in
production.

Chapter 9, Monitoring, Logging, and Observability, teaches you Kubernetes observability
best practices, important metrics to watch for, as well as the monitoring and logging stacks
available in the market, and when to use each of them.

Chapter 10, Operating and Maintaining Efficient Kubernetes Clusters, teaches you
Kubernetes operation best practices, as well as cluster maintenance tasks such as upgrades
and rotation, backups, and disaster recovery, and the solutions available to improve the
quality of clusters.

Preface ix

To get the most out of this book

To use this book, you will need access to computers, servers, AWS, or other cloud
provider services where you can provision virtual machine instances. To set up the lab
environments, you may also need larger cloud instances that will require you to enable
billing.

Software/hardware covered in the book OS requirements

Terraform v0.14.5, Python v3.9, pip3, virtualenv, | Windows, macOS, or Linux
kubectl, and Helm

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Kubernetes-in-Production-Best-
Practices. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action

Code in Action videos for this book can be viewed at http://bit.1ly/36JpE1IL.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800202450 ColorImages.pdf.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices
https://github.com/PacktPublishing/
http://bit.ly/36JpElI
https://static.packt-cdn.com/downloads/9781800202450_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800202450_ColorImages.pdf

x Preface

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "As a best practice, we recommend that you limit any privileged pods
within the kube - system namespace."

A block of code is set as follows:

terraform {

required version = "~> 0.12.24"

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

provider "aws" {
region = var.aws_ region
version = "~> 2.52.0"

}

Any command-line input or output is written as follows:

$ cd Chapter03/terraform/shared-state

$ terraform init

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Tips or important notes

Appear like this.

Preface xi

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub . com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

1

Introduction
to Kubernetes
Infrastructure

and Production-
Readiness

With more and more organizations adopting Kubernetes for their infrastructure
management, it is becoming the industry de facto standard for orchestrating and
managing distributed applications both in the cloud and on premises.

Whether you are an individual contributor who is migrating their company's applications
to the cloud or you are a decision-maker leading a cloud transformation initiative, you
should plan the journey to Kubernetes and understand its challenges.

2 Introduction to Kubernetes Infrastructure and Production-Readiness

If this book has a core purpose, it is guiding you through the journey of building

a production-ready Kubernetes infrastructure while avoiding the common pitfalls. This

is our reason for writing about this topic, as we have witnessed failures and successes
through the years of building and operating Kubernetes clusters on different scales. We are
sure that you can avoid a lot of these failures, saving time and money, increasing reliability,
and fulfilling your business goals.

In this chapter, you will learn about how to deploy Kubernetes production clusters with
best practices. We will explain the roadmap that we will follow for the rest of the book,
and explain foundational concepts that are commonly used to design and implement
Kubernetes clusters. Understanding these concepts and the related principles are the key
to building and operating production infrastructure. Besides, we will set your expectations
about the book's scope.

We will go through the core problems that this book will solve and briefly cover topics
such as Kubernetes production challenges, a production-readiness characteristics, the
cloud-native landscape, and infrastructure design and management principles.

We will cover the following topics in this chapter:

o The basics of Kubernetes infrastructure

o Why Kubernetes is challenging in production
« Kubernetes production-readiness

o Kubernetes infrastructure best practices

+ Cloud-native approach

The basics of Kubernetes infrastructure

If you are reading this book, you already made your decision to take your Kubernetes
infrastructure to an advanced level, which means you are beyond the stage of evaluating
the technology. To build production infrastructure, the investment remains a burden
and it still needs a solid justification to the business and the leadership within your
organization. We will try to be very specific in this section about why we need a reliable
Kubernetes infrastructure, and to clarify the challenges you should expect in production.

The basics of Kubernetes infrastructure 3

Kubernetes adoption is exploding across organizations all over the world, and we expect
this growth to continue to increase, as the International Data Corporation (IDC)
predicts that around 95 percent of new microservices will be deployed in containers

by 2021. Most companies find that containers and Kubernetes help to optimize costs,
simplify deployment and operations, and decrease time to market, as well as play a pivotal
role in the hybrid cloud strategies. Similarly, Gartner predicts that more than 70 percent
of organizations will run two or more containerized applications in production by 2021
compared to less than 20 percent in 2019.

Kubernetes components

"Kubernetes (K8s) is an open-source system for automating deployment,
scaling, and management of containerized applications.”

— kubernetes.io

As we are concerned about building a reliable Kubernetes cluster, we will cover an
overview of the Kubernetes cluster architecture and its components, and then you will
learn about production challenges.

Kubernetes has a distributed systems architecture - specifically, a client-server one. There are
one or more master nodes, and this is where Kubernetes runs its control plane components.

There are worker nodes where Kubernetes deploys the pods and the workloads. A single
cluster can manage up to 5,000 nodes. The Kubernetes cluster architecture is shown in the

following diagram:
. Cloud Provider
‘ (optional)

Kubernetes Control Plane / Master Node 1 Kubernetes Node N

Kubemetes Control Plane | Master Node N

Kubernetes Node 1

cloud-controller
kube-scheduler manager (optional) _[.]
kube-controller [kubelet:
manager
Pod1 Pod N
App Container App Container

[container-runtime]

Figure 1.1 - Kubernetes cluster architecture

4 Introduction to Kubernetes Infrastructure and Production-Readiness

The preceding diagram represents a typical highly available Kubernetes cluster
architecture with the core components. It shows how the Kubernetes parts communicate
with each other. Although you have a basic understanding of the Kubernetes cluster
architecture, we will need to refresh this knowledge over the next section because we will
interact with most of these components in deeper detail when creating and tuning the
cluster configuration.

Control plane components

Control plane components are the core software pieces that construct the Kubernetes
master nodes. All of them together belong to the Kubernetes project, except etcd,

which is a separate project on its own. These components follow a distributed systems
architecture and can easily scale horizontally to increase cluster capacity and provide high
availability:

o kube-apiserver: The API server is the manager of the cluster components and
it is the interface responsible for handling and serving the management APIs and
middling the communication between cluster components.

o etcd: This is a distributed, highly available key-value data store that acts as the
backbone of the cluster and stores all of its data.

+ kube-controller-manager: This manages the controller processes that control
the cluster - for example, the node controller that controls the nodes, the replication
controller that controls the deployments, and the endpoint controller that controls
services endpoints exposed in the cluster.

o kube-scheduler: This component is responsible for scheduling the pods across
the nodes. It decides which pod goes to which node according to the scheduling
algorithm, available resources, and the placement configuration.

Node components

Node components are a set of software agents that run on every worker node to maintain
the running pods and provide network proxy services and the base runtime environment
for the containers:

« kubelet: An agent service that runs on each node in the cluster, this periodically
takes a set of pod specs (a manifest file in YAML format that describes a pod
specification) and ensures that the pods described through these specs are running
properly. Also, it is responsible for reporting to the master on the health of the node
where it is running.

Why Kubernetes is challenging in production 5

» kube-proxy: This is an agent service that runs on each node in the cluster to
create, update, and delete network roles on the nodes, usually using Linux iptables.
These network rules allow inter-pod and intra-pod communication inside and
outside of the Kubernetes cluster.

» Container runtime: This is a software component that runs on each node in
the cluster, and it is responsible for running the containers. Docker is the most
famous container runtime; however, Kubernetes supports other runtimes, such as
Container Runtime Interface (CRI-O) and containerd to run containers, and
kubevirt and virtlet to run virtual machines.

Why Kubernetes is challenging in production

Kubernetes could be easy to install, but it is complex to operate and maintain. Kubernetes
in production brings challenges and difficulties along the way, from scaling, uptime,

and security, to resilience, observability, resources utilization, and cost management.
Kubernetes has succeeded in solving container management and orchestration, and it
created a standard layer above the compute services. However, Kubernetes still lacks
proper or complete support for some essential services, such as Identity and Access
Management (IAM), storage, and image registries.

Usually, a Kubernetes cluster belongs to a bigger company's production infrastructure,
which includes databases, IAM, Lightweight Directory Access Protocol (LDAP),
messaging, streaming, and others. Bringing a Kubernetes cluster to production requires
connecting it to these external infrastructure parts.

Even during cloud transformation projects, we expect Kubernetes to manage and integrate
with the on-premises infrastructure and services, and this takes production complexity to
a next level.

Another challenge occurs when teams start adopting Kubernetes with the assumption

that it will solve the scaling and uptime problems that their apps have, but they usually do
not plan for day-2 issues. This ends up with catastrophic consequences regarding security,
scaling, uptime, resource utilization, cluster migrations, upgrades, and performance tuning.

Besides the technical challenges, there are management challenges, especially when we use
Kubernetes across large organizations that have multiple teams, and if the organization is
not well prepared to have the right team structure to operate and manage its Kubernetes
infrastructure. This could lead to teams struggling to align around standard tools, best
practices, and delivery workflows.

6 Introduction to Kubernetes Infrastructure and Production-Readiness

Kubernetes production-readiness

"Your offering is production-ready when it exceeds customer expectations in
a way that allows for business growth.”

- Carter Morgan, Developer Advocate,
Google

Production-readiness is the goal we need to achieve throughout this book, and we may
not have a definitive definition for this buzzword. It could mean a cluster capable to serve
production workloads and real traffic in a reliable and secure fashion. We can further
extend this definition, but what many experts agree on is that there is a minimum set of
requirements that you need to fulfill before you mark your cluster as production-ready.

We have gathered and categorized these readiness requirements according to the typical
Kubernetes production layers (illustrated in the following diagram). We understand that
there are still different production use cases for each organization, and product growth
and business objectives are deeply affecting these use cases and hence the production
readiness requirements. However, we can fairly consider the following production-ready
checklist as an essential list for most mainstream use:

Applications and Workloads

Applications services

Ingress Apps Cert- External-

Controller observability Manager DNS Other services

Kubernetes cluster services

Authentication Clust
CoreDNS el
and authorization observability Cluster policies
Kubernetes cluster
Control plane Worker nodes
Infrastructure services
VMs Data services Shared storage Managed services

Public cloud | Private cloud | On-premises

Figure 1.2 - Kubernetes infrastructure layers

Kubernetes production-readiness 7

This diagram describes the typical layers of Kubernetes infrastructure. There are six layers,
which include physical, on-premises, or cloud infrastructure; the infrastructure services
layer; the cluster layer; the cluster services layer; the applications supporting services
layer; and finally, the applications layer. You will learn about these layers in depth while
navigating this book and see how to design a Kubernetes production architecture that
brings these layers seamlessly together.

The production-readiness checklist

We have categorized the production-readiness checklist items and mapped them to
the corresponding infrastructure layers. Each checklist item represents a design and
implementation concern that you need to fulfill to consider your cluster a production-
ready. Throughout this book, we will cover the checklist items and their design and
implementation details.

Cluster infrastructure

The following checklist items cover the production-readiness requirements on the
cluster level:

 Run a highly available control plane: You can achieve this by running the control
plane components on three or more nodes. Another recommended best practice
is to deploy the Kubernetes master components and et cd on two separate node
groups. This is generally to ease et cd operations, such as upgrades and backups,
and to decrease the radius of control plane failures.

Also, for large Kubernetes clusters, this allows et cd to get proper resource
allocation by running it on certain node types that fulfill its extensive I/O needs.

Finally, avoid deploying pods to the control plane nodes.

+ Run a highly available workers group: You can achieve this by running a group
or more of worker nodes with three or more instances. If you are running these
workers groups using one of the public cloud providers, you should deploy them
within an auto-scaling group and in different availability zones.

Another essential requirement to achieve worker high availability is to deploy the
Kubernetes cluster auto scaler, which enables worker nodes to horizontally upscale
and downscale based on the cluster utilization.

8 Introduction to Kubernetes Infrastructure and Production-Readiness

Use a shared storage management solution: You should consider using a shared
storage management solution to persist and manage stateful apps' data. There are
plenty of choices, either open source or commercial, such as AWS Elastic Block
Store (EBS), Elastic File System (EFS), Google Persistent Disk, Azure Disk Storage,
ROOK, Ceph, and Portworx. There is no right or wrong choice among them, but it
all depends on your application use case and requirements.

Deploy infrastructure observability stack: Collecting logs and metrics on the
infrastructure level for nodes, network, storage, and other infrastructure components
is essential for monitoring a cluster's infrastructure, and also to get useful insights
about the cluster's performance, utilization, and troubleshooting outages.

You should deploy a monitoring and alerting stack, such as Node Exporter,
Prometheus, and Grafana, and deploy a central logging stack, such as ELK
(Elasticsearch, Logstash, and Kibana). Alternatively, you can consider a complete
commercial solution, such as Datadog, New Relic, AppDynamics, and so on.

Fulfilling the previous requirements will ensure the production-readiness of the cluster
infrastructure. Later in this book, we will show you in more detail how to achieve each of
these requirements through infrastructure design, Kubernetes configuration tuning, and
third-party tools usage.

Cluster services

The following checklist items cover the production-readiness requirements on the cluster
services level:

Control cluster access: Kubernetes introduces authentication and authorization
choices and lets the cluster's admin configure them according to their needs. As a
best practice, you should ensure authentication and authorization configuration is
tuned and in place. Integrate with an external authentication provider to authenticate
cluster's users, such as LDAP, OpenID Connect (OIDC), and AWS IAM.

For authorization, you need to configure the cluster to enable Role-Based Access
Control (RBAC), Attribute-Based Access Control (ABAC), and webhooks.

Hardening the default pod security policy: Pod security policy (PSP) is a
Kubernetes resource that is used to ensure a pod has to meet specific requirements
before getting created.

As a best practice, we recommend that you limit any privileged pods within the
kube - system namespace. For all other namespaces that host your apps pods, we
recommend assigning a restrictive default PSP.

Kubernetes production-readiness 9

Enforce custom policies and rules: Rules and policy enforcement are essential

for every Kubernetes cluster. This is true for both a small single-tenant cluster

and a large multi-tenant one. Kubernetes introduces native objects to achieve this
purpose, such as pod security policies, network policies, resource limits, and quotas.

For custom rules enforcement, you may deploy an open policy agent, such as OPA
Gatekeeper. This will enable you to enforce rules such as pods must have resource
limits in place, namespaces must have specific labels, images must be from known
repositories, and many others.

Deploy and fine-tune the cluster DNS: Running a DNS for Kubernetes clusters is
essential for name resolution and service connectivity. Managed Kubernetes comes
with cluster DNS pre-deployed, such as CoreDNS. For self-managed clusters, you
should consider deploying CoreDNS too. As a best practice, you should fine-tune
CoreDNS to minimize errors and failure rates, optimize performance, and adjust
caching, and resolution time.

Deploy and restrict network policies: Kubernetes allows all traffic between the
pods inside a single cluster. This behavior is insecure in a multi-tenant cluster. As
a best practice, you need to enable network policies in your cluster, and create a
deny-all default policy to block all traffic among the pods, then you create network
policies with less restrictive ingress/egress rules to allow the traffic whenever it is
needed for between specific pods.

Enforce security checks and conformance testing: Securing a Kubernetes cluster is
not questionable. There are a lot of security configurations to enable and tune for a
cluster. This could get tricky for cluster admins, but luckily, there are different tools
to scan cluster configuration to assess and ensure that it is secure and meets the
minimum security requirements. You have to automate running security scanning
tools, such as kube - scan for security configuration scanning, kube -bench for
security benchmarking, and Sonobuoy to run Kubernetes standard conformance
tests against the cluster.

Deploy a backup and restore solution: As with any system, Kubernetes could
fail, so you should have a proper backup and restore process in place. You should
consider tools to back up data, snapshot the cluster control plane, or back up the
etcd database.

Deploy an observability stack for the cluster components: Monitoring and
central logging is essential for Kubernetes components such as control-plane,
kubelet, container runtime, and more. You should deploy a monitoring and
alerting stack such as Node Exporter, Prometheus, and Grafana, and deploy a
central logging stack, such as EFK (Elasticsearch, Fluentd, and Kibana).

10

Introduction to Kubernetes Infrastructure and Production-Readiness

Fulfilling the previous requirements will ensure the production-readiness of the cluster
services. Later in this book, we will show you in more detail how to achieve each of these
requirements through Kubernetes configuration tuning and third-party tools usage.

Apps and deployments

The following checklist items cover the production-readiness requirements on the apps
and deployments level:

Automate images quality and vulnerability scanning: An app image that runs

a low-quality app or that is written with poor-quality specs can harm the cluster
reliability and other apps running on it. The same goes for images with security
vulnerabilities. For that, you should run a pipeline to scan images deployed to the
cluster for security vulnerabilities and deviations from quality standards.

Deploy Ingress Controller: By default, you can expose Kubernetes services
outside the cluster using load balancers and node ports. However, the majority of
the apps have advanced routing requirements, and deploying an Ingress Controller
such as Nginx's Ingress Controller is a de facto solution that you should include in
your cluster.

Manage certificates and secrets: Secrets and TLS certificates are commonly used
by modern apps. Kubernetes comes with a built-in Secrets object that eases the
creation and management of secrets and certificates inside the cluster. In addition
to that, you can extend secrets object by deploying other third-party services, such
as Sealed Secrets for encrypted secrets, and Cert-Manager to automate certificates
from certificate providers such as Let's Encrypt or Vault.

Deploy apps observability stack: You should make use of Kubernetes' built-in
monitoring capabilities, such as defining readiness and liveness probes for the
pods. Besides that, you should deploy a central logging stack for the applications'
pods. Deploy a blackbox monitoring solution or use a managed service to monitor
your apps' endpoints. Finally, consider using application performance monitoring
solutions, such as New Relic APM, Datadog APM, AppDynamics APM, and more.

Fulfilling the previous requirements will ensure the production-readiness of the apps and
deployments. Later in this book, we will show you in more detail how to achieve each of
these requirements through Kubernetes configuration tuning and third-party tool usage.

Kubernetes infrastructure best practices 11

Kubernetes infrastructure best practices

We have learned about the basics of Kubernetes infrastructure and have got a high-level
understanding of the production readiness characteristics of the Kubernetes clusters. Now,
you are ready to go through the infrastructure best practices and design principles that
will lead you through the way building and operating your production clusters.

The 12 principles of infrastructure design and
management

Building a resilient and reliable Kubernetes infrastructure requires more than just
getting your cluster up and running with a provisioning tool. Solid infrastructure design
is a sequence of architecture decisions and their implementation. Luckily, many
organizations and experts put these principles and architectural decisions into real tests.

The following list summarizes the core principles that may lead the decision-maker
through the Kubernetes infrastructure design process, and throughout this book, you will
learn about these principles in detail, and apply them along the way:

1. Go managed: Although managed services could looks pricier than self-hosted ones,
it is still preferred over them. In almost every scenario, a managed service is more
efficient and reliable than its self-hosted counterpart. We apply this principle to
Kubernetes managed services such as Google Kubernetes Engine (GKE), Azure
Kubernetes Service (AKS), and Elastic Kubernetes Service (EKS). This goes
beyond Kubernetes to every infrastructure service, such as databases, object stores,
cache, and many others. Sometimes, the managed service could be less customizable
or more expensive than a self-hosted one, but in every other situation, you should
always consider first the managed service.

2. Simplify: Kubernetes is not a simple platform, either to set up or operate. It solves
the complexity of managing internet scale workloads in a world where applications
could scale up to serve millions of users, where cloud-native and microservices
architectures are the chosen approach for most modern apps.

For infrastructure creation and operation, we do not need to add another layer of
complexity as the infrastructure itself is meant to be a seamless and transparent to
the products. Organization's primary concern and focus should remain the product
not the infrastructure.

12 Introduction to Kubernetes Infrastructure and Production-Readiness

Here comes the simplification principle; it does not mean applying trivial solutions
but simplifying the complex ones. This leads us to decisions such as choosing fewer
Kubernetes clusters to operate, or avoiding multi-cloud; as long as we do not have
a solid use case to justify it.

The simplification principle applies to the infrastructure features and services we
deploy to the cluster, as it could be very attractive to add every single service as we
think it will make a powerful and feature-rich cluster. On the contrary, this will end
up complicating the operations and decreasing platform reliability. Besides, we can
apply the same principle to the technology stack and tools we choose, as unifying
the tools and technology stack across the teams is proven to be more efficient than
having a set of inhomogeneous tools that end up hard to manage, and even if one of
these tools is best for a specific use case, simplicity always pays back.

3. Everything as Code (XaC): This is the default practice for modern infrastructure
and DevOps teams. It is a recommended approach to use declarative infrastructure
as code (IaC) and configuration as code (CaC) tools and technologies over their
imperative counterparts.

4. Immutable infrastructure: Immutability is an infrastructure provisioning concept
and principle where we replace system components for each deployment instead of
updating them in place. We always create immutable components from images or
a declarative code, where we can build, test, and validate these immutable systems
and get the same predictable results every time. Docker images and AWS EC2 AMI
are examples of this concept.

This important principle leads us to achieve one of the desired characteristics of
Kubernetes clusters, which is treating clusters as cattle instead of pets.

5. Automation: We live in the era of software automation, as we tend to automate
everything; it is more efficient and easier to manage and scale, but we need to take
automation with Kubernetes to a further level. Kubernetes comes to automate
the containers' life cycle, and it also comes with advanced automation concepts,
such as operators and GitOps, which are efficient and can literally automate the
automations.

6. Standardization: Having a set of standards helps to reduce teams' struggle with
aligning and working together, eases the scaling of the processes, improves the
overall quality, and increases productivity. This becomes essential for companies
and teams planning to use Kubernetes in production, as this involves integrating
with different infrastructure parts, migrating services from on-premises to the
cloud, and way more complexities.

Kubernetes infrastructure best practices 13

10.

Defining your set of standards covers processes for operations runbooks and
playbooks, as well as technology standardization as using Docker, Kubernetes,

and standard tools across teams. These tools should have specific characteristics:
open source but battle-tested in production, support the other principles, such as
Infrastructure as code, immutability, being cloud-agnostic, and being simple to use,
and deploy with minimum infrastructure.

Source of truth: Having a single source of truth is a cornerstone and an enabler

to modern infrastructure management and configuration. Source code control
systems such as Git are the standard choice to store and version infrastructure code,
where having a single and dedicated source code repository for infrastructure is a
recommended practice.

Design for availability: Kubernetes is a key enabler for the high availability of
both the infrastructure and the application layers. Having high availability as a
design pillar since day 1 is critical for getting the full power of Kubernetes, so at
every design level, you should consider high availability, starting from the cloud
and Infrastructure as a Service (Iaa$S) level by choosing multi-zone or region
architecture, then going through the Kubernetes layer by designing a multi-master
cluster, and finally, the application layer by deploying multiple replicas of each
service.

Cloud-agnostic: Being cloud-agnostic means that you can run your workloads on
any cloud with a minimal vendor-lock, but take care of getting obsessed with the
idea, and make it as a goal on its own. Docker and Kubernetes are the community's
answer to creating and managing cloud-agnostic platforms. This principle also goes
further to include other technologies and tool selection (think Terraform versus
CloudFormation).

Business continuity: Public cloud with its elasticity solved one problem that always
hindered the business continuity for the online services, especially when it made
scaling infrastructure almost instant, which enabled small businesses to have the
same infrastructure luxury that was previously only for the giant tech companies.

14

Introduction to Kubernetes Infrastructure and Production-Readiness

11.

12.

However, coping with the increased scaling needs and making it real-time remains

a challenge, and with introducing containers to deploy and run workload apps
become easy to deploy and scale in seconds. This put the pressure back on Kubernetes
and the underlying infrastructure layers to support such massive real-time scaling
capabilities of the containers. You need to make a scaling decision for the future to
support business expansion and continuity. Questions such as whether to use a single
large cluster versus smaller multiple clusters, how to manage the infrastructure cost,
what the nodes' right sizes are, and what the efficient resource utilization strategy is...
all of these questions require specific answers and important decisions to be taken!

Plan for failures: A lot of distributed systems characteristics apply to Kubernetes
containerized apps; specifically, fault tolerance, where we expect failures, and we
plan for system components failures. When designing a Kubernetes cluster, you
have to design it to survive outages and failures by using high-availability principles.
But you also have to intentionally plan for failures. You can achieve this through
applying chaos engineering ideas, disaster recovery solutions, infrastructure testing,
and infrastructure CI/CD.

Operational efficiency: Companies usually underestimate the effort required

to operate containers in production — what to expect on day 2 and beyond, and
how to get prepared for outages, cluster upgrades, backups, performance tuning,
resource utilization, and cost control. At this phase, companies need to figure out
how to deliver changes continuously to an increasing number of production and
non-production environments, and without the proper operations practices, this
could create bottlenecks and slow down the business growth, and moreover, lead
to unreliable systems that cannot fulfill customers' expectations. We witnessed
successful Kubernetes production rollouts, but eventually, things fell apart because
of operations teams and the weak practices.

These 12 principles are proven to be a common pattern for successful large scale cloud
infrastructure rollouts. We will apply these principles through most of this book's
chapters, and we will try to highlight each principle when we make a relevant technical
decision based on it.

Kubernetes infrastructure best practices

15

Applications definition and deployment

Probably, a successful and efficient Kubernetes cluster will not save an application's poor

design and implementation. Usually, when an application does not follow containerization
best practices and a highly available design, it will end up losing the cloud-native benefits

provided by the underlying Kubernetes:

« Containerization: This is the de facto standard delivery and deployment form of

cloud workloads. For production reliability, containerization best practices play a
vital role. You will learn about this principle in detail over the upcoming chapters.
Bad practices could lead to production instability and catastrophic outages, such
as ignoring containers' graceful shutdown and processes termination signals, and
improper application retries to connect to dependent services.

Applications' high availability: This is by deploying two or more app replicas and
making use of Kubernetes' advanced placement techniques (node selectors, taints,
Affinity, and labeling) to deploy the replicas into different nodes and availability
zones, as well as defining pod disruption policies.

Application monitoring: This is done by defining readiness and liveness probes
with different checks, deploying Application Performance Monitoring (APM),
and using the famous monitoring approaches, such as RED (Rate, Errors, and
Duration), and USE (Utilization, Saturation, and Errors).

Deployment strategy: Kubernetes and cloud-native make deployments easier

than ever. These frequent deployments bring benefits to the businesses, such as
reducing time to market, faster customer feedback on new features, and increasing
product quality overall. However, there are downsides to these as well, as frequent
deployments could affect product reliability and uptime if you do not plan and
manage properly. This is when defining a deployment and rollback strategy (rolling
update, recreate, canary, blue/green, and deployment) comes in place as one of the
best practices for application deployments.

The consideration of these four areas will ensure smooth application deployment and
operations into the Kubernetes cluster, though further detailed technical decisions
should be taken under each of these areas, based on your organization's preferences and
Kubernetes use case.

16 Introduction to Kubernetes Infrastructure and Production-Readiness

Processes, team, and culture

Cloud transformation came with shocking changes to organizations' culture and
processes, and the way they manage and operate infrastructure and applications. DevOps
is a reflection of this deep impact of adopting the cloud mentality to organizations'
culture, as it affected how companies do dev and ops and how their internal teams are
organized.

Day after another, the line between dev and ops is getting thinner, and by introducing
Kubernetes and the cloud-native approaches DevOps teams are reshaping into a Site
Reliability Engineering (SRE) model and also hiring dedicated platform teams, as both
approaches consider recommended practices for structuring teams to manage and
operate Kubernetes.

Cloud-native approach

The Cloud Native Computing Foundation (CNCF) defines cloud-native as scalable
applications running in modern dynamic environments that use technologies such as
containers, microservices, and declarative APIs. Kubernetes is the first CNCF project, and
it is the world's most popular container orchestration platform.

Cloud-native computing uses an open source and modern commercial third-party
software stack to build, package, and deploy applications as microservices. Containers

and container orchestrators such as Kubernetes are key elements in the cloud-native
approach, and both are enabling achieving a cloud-native state and satisfying the 12-factor
app methodology requirements. These techniques enable resource utilization, distributed
system reliability, scaling, and observability, among others.

The 12-factor app methodology

The 12-factor app methodology defines the characteristics and design aspects
for developers and DevOps engineers building and operating software-as-a-
service. It is tightly coupled with cloud-native architecture and methods. Find
out more about it here: https://12factor.net/.

https://12factor.net/

Cloud-native approach 17

The Cloud Native Computing Foundation

In 2014, Google open sourced Kubernetes, which works much like their internal
orchestrator, Borg. Google has been using Borg in their data centers to orchestrate
containers and workloads for many years. Later, Google partnered with the Linux
Foundation to create CNCE and Borg implementation was rewritten in Go, renamed to
Kubernetes. After that, a lot of technology companies joined CNCE, including Google's
cloud rivals: Microsoft and Amazon.

CNCF's purpose is building and managing platforms and solutions for modern
application development. It supervises and coordinates the open source technologies and
projects that support cloud-native software development, but there are also key projects by
commercial providers.

Why we should care about cloud-native
CNCEF states the following:

"Companies are realizing that they need to be a software company, even if
they are not in the software business. For example, Airbnb is revolutionizing
the hospitality industry and more traditional hotels are struggling to
compete. Cloud native allows IT and software to move faster. Adopting
cloud native technologies and practices enables companies to create
software in-house, allows business people to closely partner with IT people,
keep up with competitors and deliver better services to their customers.
CNCEF technologies enable cloud portability without vendor lock-in."

CNCF cloud-native recommendations and software stack are a cornerstone to
high-quality up-to-date Kubernetes infrastructure, and this is a critical part of the
production-grade infrastructure that we intend to deliver and operate. Following CNCF
and keeping track of their solutions landscape is one of the best practices that Kubernetes
platform creators and users should keep at the top of their checklists.

18 Introduction to Kubernetes Infrastructure and Production-Readiness

Cloud-native landscape and ecosystem

The cloud-native landscape is a combination of open source and commercial software
projects supervised and supported by CNCF and its members. CNCF classified these
projects according to the cloud-native functionalities and the infrastructure layers.
Basically, the landscape has four layers:

« Provisioning: This layer has projects for infrastructure automation and
configuration management, such as Ansible and Terraform, and container registry,
such as Quay and Harbor, then security and appliance, such as Falco, TUF, and
Aqua, and finally, key management, such as Vault.

« Runtime: This layer has projects for container runtime, such as containerd and
CRI-O, cloud-native storage, such as Rook and Ceph, and finally, cloud-native
networking plugins, such as CNI, Calico, and Cilium.

o Orchestration and management: This is where Kubernetes belongs as a schedular
and orchestrator, as well as other key projects, such as CoreDNS, Istio, Envoy, gRPC,
and KrakenD.

o App definition and development: This layer is mainly about applications and
their life cycle, where it covers CI/CD tools, such as Jenkins and Spinnaker, builds
and app definition, such as Helm and Packer, and finally, distributed databases,
streaming, and messaging.

The CNCF ecosystem provides recommendations that cover every aspect of the cloud-
native and Kubernetes needs. Whenever applicable, we will make use of these CNCF
projects to fulfill cluster requirements.

Cloud-native trail map

The cloud native trail map is CNCF's recommended path through the cloud-native
landscape. While this roadmap is meant for cloud-native transformations, it still intersects
with our Kubernetes path to production, as deploying Kubernetes as the orchestration
manager is a major milestone during this trail map.

Cloud-native approach 19

We have to admit that most Kubernetes users are starting their cloud transformation
journeys or are in the middle of it, so understanding this trail map is a cornerstone for
planning and implementing a successful Kubernetes rollout.

CNCF recommends the following stages for any cloud-native transformation that is also
supported by different projects through the cloud-native landscape:

1.

Containerization: Containers are the packaging standard for cloud-native
applications, and this is the first stage that you should undergo to cloud-migrate
your applications. Docker containers prove to be efficient, lightweight, and portable.

Continuous Integration and Continuous Delivery/Deployment (CI/CD):
CI/CD is the second natural step after containerizing your applications, where
you automate building the containers images whenever there are code changes,
which eases testing and application delivery to different environments, including
development, test, stage, and even further to production.

Orchestration and application definition: Once you deploy your applications'
containers and automate this process, you will face container life cycle management
challenges, and you will end up creating a lot of automation scripts to handle
containers' restart, scaling, log management, health checks, and scheduling. This

is where orchestrators come onto the scene; they provide these management
services out of the box, and with orchestrators such as Kubernetes, you get far more
container life cycle management, but also an infrastructure layer to manage cloud
underlayers and a base for your cloud-native and microservices above it.

Observability and analysis: Monitoring and logging are integral parts of cloud-
native applications; this information and metrics allow you to operate your systems
efficiently, gain feasibility, and maintain healthy applications and service-level
objectives (SLOs).

Service proxy, discovery, and mesh: In this stage, your cloud-native apps and
services are getting complex and you will look for providing discovery services,
DNS, advanced load balancing and routing, A/B testing, canary testing and
deployments, rate limiting, and access control.

Networking and policy: Kubernetes and distributed containers networking models
bring complexity to your infrastructure, and this creates an essential need for
having a standard yet flexible networking standard, such as CNCF CNI. Therefore,
you need to deploy compliant plugins such as Calico, Cilium, or Weave to support
network policies, data filtering, and other networking requirements.

20 Introduction to Kubernetes Infrastructure and Production-Readiness

7. Distributed database and storage: The cloud-native app model is about scalability,
and conventional databases could not match the speed of the cloud-native scaling
requirements. This is where CNCF distributed databases fill the gap.

8. Streaming and messaging: CNCF proposes using gRPC or NATS, which provide
higher performance than JSON-REST. gRPC is a high-performance open source
RPC framework. NATS is a simple and secure messaging system that can run
anywhere, from large servers and cloud instances to Edge gateways and IoT devices.

9. Container registry and runtime: A container registry is a centralized place to store
and manage the container images. Choosing the right registry with features that
include performance, vulnerability analysis, and access control is an essential stage
within the cloud-native journey. Runtime is the software layer that is responsible for
running your containers. Usually, when you start the containerization stage you will
use a Docker runtime, but eventually, you may consider CNCF-supported runtimes,
such as CRI-O or containerd.

10. Software distribution: The Update Framework (TUF) and its Notary
implementation are both projects that are sponsored by CNCE, and they provide
modern and cloud-native software distribution.

It is wise to treat the preceding cloud-native transformation stages as a recommended
path. It is unlikely that companies will follow this roadmap rigidly; however, it is a great
basis to kick off your cloud transformation journey.

Summary

Building a production-grade and reliable Kubernetes infrastructure and clusters is more
than just provisioning a cluster and deploying applications to it. It is a continuous journey
that combines infrastructure and services planning, design, implementation, CI/CD,
operations, and maintenance.

Every aspect comes with its own set of technical decisions to make, best practices to
follow, and challenges to overcome.

By now, you have a brief understanding of Kubernetes infrastructure basics, production
challenges, and readiness features. Finally, we looked at the industry best practices for
building and managing successful Kubernetes productions and learned about the
cloud-native approach.

Further reading 21

In the next chapter, we will learn the practical details of how to design and architect

a successful Kubernetes cluster and the related infrastructure, while exploring the
technical and architectural decisions, choices, and alternatives that you need to handle
when rolling out your production clusters.

Further reading

You can refer to the following book if you are unfamiliar with basic Kubernetes concepts:

Getting Started with Kubernetes — Third Edition: https://www.packtpub.com/
virtualization-and-cloud/getting-started-kubernetes-third-
edition

https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition

2

Architecting
Production-

Grade Kubernetes
Infrastructure

In the previous chapter, you learned about the core components of Kubernetes and the
basics of its infrastructure, and why putting Kubernetes in production is a challenging
journey. We introduced the production-readiness characteristics for the Kubernetes
clusters, along with our recommended checklist for the services and configurations that
ensure the production-readiness of your clusters.

We also introduced a group of infrastructure design principles that we learned through
building production-grade cloud environments. We use them as our guideline through
this book whenever we make architectural and design decisions, and we highly
recommend that cloud infrastructure teams consider these when it comes to architecting
new infrastructure for Kubernetes and cloud platforms in general.

24 Architecting Production-Grade Kubernetes Infrastructure

In this chapter, you will learn about the important architectural decisions that you will
need to tackle while designing your Kubernetes infrastructure. We will explore the
alternatives and the choices that you have for each of these decisions, along with the
possible benefits and drawbacks. In addition to that, you will learn about the cloud
architecture considerations, such as scaling, availability, security, and cost. We do not
intend to make final decisions but provide the guidance because every organization has
different needs and use cases. Our role is to explore them, and guide you through the
decision-making process. When possible, we will state our preferred choices, which we
will follow through this book for the practical exercises.

In this chapter, we will cover the following topics:

+ Understanding Kubernetes infrastructure design considerations
« Exploring Kubernetes deployment strategy alternatives

 Designing an Amazon EKS infrastructure

Understanding Kubernetes infrastructure
design considerations

When it comes to Kubernetes infrastructure design, there are a few, albeit important,
considerations to take into account. Almost every cloud infrastructure architecture shares
the same set of considerations; however, we will discuss these considerations from a
Kubernetes perspective, and shed some light on them.

Scaling and elasticity

Public cloud infrastructure, such as AWS, Azure, and GCP, introduced scaling and
elasticity capabilities at unprecedented levels. Kubernetes and containerization
technologies arrived to build upon these capabilities and extend them further.

When you design a Kubernetes cluster infrastructure, you should ensure that your
architecture covers the following two areas:

« Scalable Kubernetes infrastructure
o Scalable workloads deployed to the Kubernetes clusters
To achieve the first requirement, there are parts that depend on the underlying

infrastructure, either public cloud or on-premises, and other parts that depend on the
Kubernetes cluster itself.

Understanding Kubernetes infrastructure design considerations 25

The first part is usually solved when you choose to use a managed Kubernetes service such
as EKS, AKS, or GKE, as the cluster's control plane and worker nodes will be scalable and
supported by other layers of scalable infrastructure.

However, in some use cases, you may need to deploy a self-managed Kubernetes cluster,
either on-premises or in the cloud, and in this case, you need to consider how to support
scaling and elasticity to enable your Kubernetes clusters to operate at their full capacity.

In all public cloud infrastructure, there is the concept of compute auto scaling groups, and
Kubernetes clusters are built on them. However, because of the nature of the workloads
running on Kubernetes, scaling needs should be synchronized with the cluster scheduling
actions. This is where Kubernetes cluster autoscaler comes to our aid.

Cluster autoscaler (CAS) is a Kubernetes cluster add-on that you optionally deploy to
your cluster, and it automatically scales up and down the size of worker nodes based on
the set of conditions and configurations that you specify in the CAS. Basically, it triggers
cluster upscaling when there is a pod that cannot schedule due to insufficient compute
resources, or it triggers cluster downscaling when there are underutilized nodes, and their
pods can be rescheduled and placed in other nodes. You should take into consideration
the time a cloud provider takes to execute the launch of a new node, as this could be

a problem for time-sensitive apps, and in this case, you may consider CAS configuration
that enables node over provisioning.

For more information about CAS, refer to the following link: https://github.com/
kubernetes/autoscaler/tree/master/cluster-autoscaler.

To achieve the second scaling requirement, Kubernetes provides two solutions to achieve
autoscaling of the pods:

» Horizontal Pod Autoscaler (HPA): This works similar to cloud autoscaling groups,
but at a pod deployment level. Think of the pod as the VM instance. HPA scales the
number of pods based on a specific metrics threshold. This can be CPU or memory
utilization metrics, or you can define a custom metric. To understand how HPA
works, you can continue reading about it here: https: //kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale/.

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

26 Architecting Production-Grade Kubernetes Infrastructure

« Vertical Pod Autoscaler (VPA): This scales the pod vertically by increasing its CPU
and memory limits according to the pod usage metrics. Think of VPA as upscaling/
downscaling the VM instance by changing its type in the public cloud. VPA can
affect CAS and triggers upscaling events, so you should revise the CAS and VPA
configurations to get them aligned and avoid any unpredictable scaling behavior.

To understand how VPA works, you can continue reading about it here: https://
github.com/kubernetes/autoscaler/tree/master/vertical-pod-
autoscaler.

We highly recommend using HPA and VPA for your production deployments (it is not
essential for non-production environments). We will give examples on how to use both of
them in deploying production-grade apps and services in Chapter 8, Deploying Seamless
and Reliable Applications.

High availability and reliability

Uptime means reliability and is usually the top metric that the infrastructure teams
measure and target for enhancement. Uptime drives the service-level objectives (SLOs)
for services, and the service level agreements (SLAs) with customers, and it also indicates
how stable and reliable your systems and Software as a Service (SaaS) products are. High
availability is the key for increasing uptime, and when it comes to Kubernetes clusters'
infrastructure, the same rules still apply. This is why designing a highly available cluster
and workload is an essential requirement for a production-grade Kubernetes cluster.

You can architect a highly available Kubernetes infrastructure on different levels of
availability as follows:

« A cluster in a single public cloud zone (single data center): This is considered the
easiest architecture among the others, but it brings the highest risk. We do not
recommend this solution.

o A cluster in multiple zones (multiple data centers) but in a single cloud region:
This is still easy to implement, it provides a higher level of availability, and it is
a common architecture for Kubernetes clusters. However, when your cloud provider
has a full region outage, your cluster will be entirely unavailable. Such full region
outages rarely happen, but you still need to be prepared for such a scenario.

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

Understanding Kubernetes infrastructure design considerations 27

 Across multi-region clusters, but within the same cloud provider: In this
architecture, you usually run multiple federated Kubernetes clusters to serve your
production workloads. This is usually the preferred solution for high availability,
but it comes at a cost that makes it hard to implement and operate, especially the
possible poor network performance, and shared storage for stateful applications. We
do not recommend this architecture since, for the majority of SaaS products, it is
enough to deploy Kubernetes in a single region and multiple zones. However, if you
have a multi-region as a requirement for a reason other than high availability, you
may consider multi-region Kubernetes federated clusters as a solution.

« Multiple clusters across multi-cloud deployment: This architecture is still unpopular
due to the incompatibility limitations across cloud providers, inter-cluster network
complexity, and the higher cost associated with network traffic across providers,
along with implementation and operations. However, it is worth mentioning the
increase in the number of multi-cloud management solutions that are endeavoring
to tackle and solve these challenges, and you may wish to consider a multi-cluster
management solution such as Anthos from Google. You can learn more about it
here: https://cloud.google.com/anthos.

As you may notice, Kubernetes has different architectural flavors when it comes to high
availability setup, and I can say that having different choices makes Kubernetes more
powerful for different use cases. Although the second choice is the most common one
as of now, as it strikes a balance between the ease of implementation and operation, and
the high availability level. We are optimistically searching for a time when we can reach
the fourth level, where we can easily deploy Kubernetes clusters across cloud providers
and gain all the high availability benefits without the burden of tough operations and
increased costs.

As for the cluster availability itself, I believe it goes without saying that Kubernetes
components should run in a highly available mode, that is, having three or more nodes
for a control plane, or preferably letting the cloud manage the control plane for you, as in
EKS, AKE, or GKE. As for workers, you have to run one or more autoscaling groups or
node groups/pools, and this ensures high availability.

The other area where you need to consider achieving high availability is for the pods and
workloads that you will deploy to your cluster. Although this is beyond the scope of this
book, it is still worthwhile mentioning that developing new applications and services,

or modernizing your existing ones so that they can run in a high availability mode, is

the only way to make use of the raft of capabilities provided by the powerful Kubernetes
infrastructure underneath it. Otherwise, you will end up with a very powerful cluster but
with monolithic apps that can only run as a single instance!

https://cloud.google.com/anthos

28 Architecting Production-Grade Kubernetes Infrastructure

Security and compliance

Kubernetes infrastructure security is rooted at all levels of your cluster, starting from the
network layer, going through the OS level, up to cluster services and workloads. Luckily,
Kubernetes has strong support for security, encryption, authentication, and authorization.
We will learn about security in Chapter 6, Securing Kubernetes Effectively, of this book.
However, during the design of the cluster infrastructure, you should give attention to
important decisions relating to security, such as securing the Kubernetes API server
endpoint, as well as the cluster network design, security groups, firewalls, network policies
between the control plane components, workers nodes, and the public internet.

You will also need to plan ahead in terms of the infrastructure components or integrations
between your cluster and identity management providers. This usually depends on your
organization's security policies, which you need to align with your IT and security teams.

Another aspect to consider is the auditing and compliance of your cluster. Most
organizations have cloud governance policies and compliance requirements, which you
need to be aware of before you proceed with deploying your production on Kubernetes.

If you decide to use a multi-tenant cluster, the security requirements could be more
challenging, and setting clear boundaries among the cluster tenants, as well as cluster
users from different internal teams, may result in decisions such as deploying a service
mesh, hardening cluster network policies, and implementing a tougher Role-Based
Access Control (RBAC) mechanism. All of this will impact your decisions while
architecting the infrastructure of your first production cluster.

The Kubernetes community is keen on compliance and quality, and for that there

are multiple tools and tests to ensure that your cluster achieves an acceptable level of
security and compliance. We will learn about these tools and tests in Chapter 6, Securing
Kubernetes Effectively.

Cost management and optimization

Cloud cost management is an important factor for all organizations adopting cloud
technology, both for those just starting and those who are already in the cloud.

Adding Kubernetes to your cloud infrastructure is expected to bring cost savings, as
containerization enables you to highly utilize your computer resources on a scale that was
not possible with VMs ever before. Some organizations achieved cost savings up to 90%
after moving to containers and Kubernetes.

Understanding Kubernetes infrastructure design considerations 29

However, without proper cost control, costs can rise again, and you end up with a lot

of wasted infrastructure cost with uncontrolled Kubernetes clusters. There are many
tools and best practices to consider in relation to cost management, but we mainly want
to focus on the actions and the technical decisions that you need to consider during
infrastructure design.

We believe that there are two important aspects that require decisions, and these decisions
will definitely affect your cluster infrastructure architecture:

 Running a single, but multi-tenant, cluster versus multi clusters (that is, a single
cluster per tenant)

o The cluster capacity: whether to run few large worker nodes or a lot of small
workers nodes, or a mix of the two

There are no definitive correct decisions, but we will try to explore the choices in the next
section, and how we can reach a decision.

These are other considerations to be made regarding cost optimization where an early
decision can be made:

« Using spot/preemptible instances: This has proven to achieve huge cost savings;
however, it comes at a price! There is the threat of losing your workloads at any
time, which affects your product uptime and reliability. Options are available for
overcoming this, such as using spot instances for non-production workloads, such
as development environments or CI/CD pipelines, or any production workloads
that can survive a disruption, such as data batch processing.

We highly recommend using spot instances for worker nodes, and you can run
them in their node group/pool and assign to them the types of workloads where
you are not concerned with them being disrupted.

« Kubernetes cost observability: Most cloud platforms provide cost visibility and
analytics for all cloud resources. However, having cost visibility at the deployment/
service level of the cluster is essential, and this needs to be planned ahead, so you
use isolated workloads, teams, users, environments, and also using namespaces
and assign resource quotas to them. By doing that, you will ensure that using a
cost reporting tool will provide you with reports relating the usage to the service
or cluster operations. This is essential for further decision making regarding cost
reductions.

30 Architecting Production-Grade Kubernetes Infrastructure

« Kubernetes cluster management: When you run a single-tenant cluster, or one
cluster per environment for development, you usually end up with tons of clusters
sprawled across your account which could lead to increased cloud cost. The solution
to this situation is to set up a cluster management solution from day one. This
solution could be as simple as a cluster auto scaler script that reduces the worker
nodes during periods of inactivity, or it can be a full automation with dashboards
and a master cluster to manage the rest of clusters.

In Chapter 9, Monitoring, Logging, and Observability, and Chapter 10, Operating and
Maintaining Efficient Kubernetes Clusters, we will learn about cost observability and cluster
operations.

Manageability and operational efficiency

Usually, when an organization starts building a Kubernetes infrastructure, they invest
most of their time, effort, and focus in urgent and critical demands for infrastructure
design and deployment, which we usually call Day 0 and Day 1. It is unlikely that an
organization will devote its attention to operational and manageability concerns that we
will face in the future (Day 2).

This is justified by the lack of experience in Kubernetes, and the types of operational
challenges, or by being driven by gaining the benefits of Kubernetes that mainly relate to
development, such as increasing a developer's productivity and agility, and automating
releases and deployment.

All of this leads to organizations and teams being less prepared for Day 2. In this book, we
try to maintain a balance between design, implementation, and operations, and shed some
light on the important aspects of the operation and learn how to plan for it from Day 0,
especially in relation to reliability, availability, security, and observability.

Operational challenges with Kubernetes

These are the common operational and manageability challenges that most teams face
after deploying Kubernetes in production. This is where you need to rethink and consider
solutions beforehand in order to handle these challenges properly:

« Reliability and scaling: When your infrastructure scales up, you could end up
with tens or hundreds of clusters, or clusters with hundreds or thousands of nodes,
and tons of configurations for different environment types. This makes it harder to
manage the SLAs/SLOs of your applications, as well as the uptime goals, and even
diagnosing a cluster issue could be very problematic. Teams need to develop their
Kubernetes knowledge and troubleshooting skills.

Understanding Kubernetes infrastructure design considerations 31

 Observability: No doubt Kubernetes is complex, and this makes monitoring and
logging a must-have service once your cluster is serving production, otherwise you
will have a very tough time identifying issues and problems. Deploying monitoring
and logging tools, in addition to defining the basic observability metrics and
thresholds, are what you need to take care of in this regard.

« Updateability and cluster management: Updating Kubernetes components, such
as the API server, kubelet, et cd, kube -proxy, Docker images, and configuration
for the cluster add-ons, become challenging to manage during the cluster life cycle.
This requires the correct tools to be in place from the outset. Automation and IaC
tools, such as Terraform, Ansible, and Helm, are commonly used to help in this
regard.

« Disaster recovery: What happens when you have a partial or complete cluster
failure? What is the recovery plan? How do you mitigate this risk and decrease
the mean time to recover your clusters and workloads. This requires deployment
of the correct tools, and writing the playbooks for backups, recovery, and crisis
management.

« Security and governance: You need to ensure that security best practices and
governance policies are applied and enforced in relation to production clusters and
workloads. This becomes challenging due to the complex nature of Kubernetes
and its soft isolation techniques, its agility, and the rapid pace it brings to the
development and release life cycles.

There are other operational challenges. However, we found that most of these can be
mitigated if we stick to the following infrastructure best practices and standards:

« Infrastructure as Code (IaC): This is the default practice for modern infrastructure
and DevOps teams. It is also a recommended approach to use declarative IaC tools
and technologies over their imperative counterparts.

« Automation: We live in the age of software automation, as we tend to automate
everything; it is more efficient and easier to manage and scale, but we need to take
automation with Kubernetes to another level. Kubernetes comes with the ability to
automate the life cycle of containers, and it also comes with advanced automation
concepts, such as operators and GitOps, which are efficient and can literally
automate automations.

32 Architecting Production-Grade Kubernetes Infrastructure

« Standardization: Having a set of standards helps to reduce teams' struggles with
aligning and working together, eases the scaling of the processes, improves the
overall quality, and increases productivity. This becomes essential for companies
and teams that are planning to use Kubernetes in production, as this involves
integrating with different infrastructure parts, migrating services from on-premises
to the cloud, and many further complexities.

Defining your set of standards covers processes for operation runbooks and
playbooks, as well as technology standardization - using Docker, Kubernetes, and
standard tools across teams. These tools should have specific characteristics: open
source but battle-tested in production, the ability to support the other principles,
such as IaC code, immutability, being cloud-agnostic, and being simple to use and
deploy with a minimum of infrastructure.

« Single source of truth: Having a source of truth is a cornerstone and enabler to
modern infrastructure management and configuration. Source code control systems
such as Git are becoming the standard choice to store and version infrastructure
code, where having a single and dedicated source code repository for infrastructure
is the recommended practice to follow.

Managing Kubernetes infrastructure is about management complexity. Hence, having

a solid infrastructure design, applying best practices and standards, increasing the team's
Kubernetes-specific skills, and expertise will all result in a smooth operational and
manageability journey.

Exploring Kubernetes deployment strategy
alternatives

Kubernetes and its ecosystem come with vast choices for everything you can do related
to deploying, orchestrating, and operating your workloads. This flexibility is a huge
advantage, and enables Kubernetes to suit different use cases, from regular applications
on-premises and in the cloud to IoT and edge computing. However, choices come with
responsibility, and in this chapter, we learn about the technical decisions that you need to
evaluate and take regarding your cluster deployment architecture..

Exploring Kubernetes deployment strategy alternatives 33

One of the important questions to ask and a decision to make is where to deploy your
clusters, and how many of them you may need in order to run your containerized
workloads? The answer is usually driven by both business and technical factors; elements
such as the existing infrastructure, cloud transformation plan, cloud budget, the team size,
and business growth target. All of these aspects could affect this, and this is why the owner
of the Kubernetes initiative has to collaborate with organization teams and executives to
reach a common understanding of the decision drivers, and agree on the right direction
for their business.

We are going to explore some of the common Kubernetes deployment architecture
alternatives, with their use cases, benefits, and drawbacks:

 Multi-availability-zones clusters: This is the mainstream architecture for deploying
a high availability (HA) cluster in a public cloud. Because running clusters in
a multi-availability zones is usually supported by all public cloud providers, and,
at the same time, it achieves an acceptable level of HA. This drives the majority
of new users of Kubernetes to opt for this choice. However, if you have essential

requirements to run your workloads in different regions, this option will not be
helpful.

o Multi-region clusters: Unless you have a requirement to run your clusters in
multiple regions, there is little motivation to opt for it. While a public cloud
provider to lose an entire region is a rare thing, but if you have the budget to do
a proper design and overcome the operational challenges, then you can opt for a
multi-region setup. It will definitely provide you with enhanced HA and reliability
levels.

» Hybrid cloud clusters: A hybrid cloud is common practice for an organization
migrating from on-premise to the public cloud and that is going through a
transitional period where they have workloads or data split between their old
infrastructure and the new cloud infrastructure. Hybrid could also be a permanent
setup, where an organization wants to keep part of its infrastructure on-premise
either for security reasons (think about sensitive data), or due to the impossibility
of migrating to the cloud. Kubernetes is an enabler of the hybrid cloud model,
especially with managed cluster management solutions such as Google Anthos.
This nevertheless entails higher costs in terms of provision and operation.

34 Architecting Production-Grade Kubernetes Infrastructure

o Multi-cloud clusters: Unlike hybrid cloud clusters, I find multi-cloud clusters
to be an uncommon pattern, as it usually lacks the strong drivers behind it. You
can run multiple different systems in multi-cloud clusters for a variety of reasons,
but deploying a single system across two or more clouds over Kubernetes is not
common, and you should be cautious before moving in this direction. However, I
can understand the motivating factors behind some organizations doing this, such
as avoiding cloud lock-in with a particular provider, leveraging pricing models with
different providers for cost optimization, minimizing latency, or even achieving
ultimate reliability for the workloads.

« On-premises clusters: If an organization decides not to move to the cloud,
Kubernetes still can manage their infrastructure on-premises, and actually,
Kubernetes is a reasonable choice to manage the on-prem workload in a modern
fashion, however, the solid on-prem managed Kubernetes solutions still very few.

o Edge clusters: Kubernetes is gaining traction in edge computing and the IoT world.
It provides an abstraction to the underlying hardware, it is ideal for distributed
computing needs, and the massive Kubernetes ecosystem helps to come out with
multiple open source and third-party projects that fit edge computing nature, such
as KubeEdge and K3s.

o Local clusters: You can run Kubernetes on your local machine using tools such as
Minikube or Kind (Kubernetes in Docker). The purpose of using a local cluster is
for trials, learning, and for use by developers.

We have discussed the various clusters deployments architectures and models available
and their use cases. In the next section, we will learn work on designing the Kubernetes
infrastructure that we will use in this book, and the technical decisions around it..

Designing an Amazon EKS infrastructure

In this chapter, we have discussed and explored various aspects of Kubernetes clusters
design, and the different architectural considerations that you need to take into account.
Now, we need to put things together for the design that we will follow during this book.
The decisions that we will make here do not mean that they are the only right ones, but
this is the preferred design that we will follow in terms of having minimally acceptable
production clusters for this book's practical exercise. You can definitely use the same
design, but with modifications, such as cluster sizing.

Designing an Amazon EKS infrastructure 35

In the following sections, we will explore our choices regarding the cloud provider,
provisioning and configuration tools, and the overall infrastructure architecture, and

in the chapters to follow, we will build upon these choices and use them to provision
production-like clusters as well as deploy the configuration and services above the cluster.

Choosing the infrastructure provider

As we learned in the previous sections, there are different ways in which to deploy
Kubernetes. You can deploy it locally, on-premises, or in a public cloud, private cloud,
hybrid, multi-cloud, or an edge location. Each of these infrastructure type has use cases,
benefits, and drawbacks. However, the most common one is the public cloud, followed by
the hybrid model. The remaining choices are still limited to specific use cases.

In a single book like ours, we cannot discuss each of these infrastructure platforms, so
we decided to go with the common choice for deploying Kubernetes, by using one of
the public clouds (AWS, Azure, or GCP). You still can use another cloud provider, a
private cloud, or even an on-premises setup, and most of the concepts and best practices
discussed in this book are still applicable.

When it comes to choosing one of the public clouds, we do not advocate one over the
others, and we definitely recommend using the cloud provider that you already use for
your existing infrastructure, but if you are just embarking on your cloud journey, we
advise you to perform a deeper benchmarking analysis between the public clouds to see
which one is better for your business.

In the practical exercises in this book, we will use AWS and the Elastic Kubernetes
Service (EKS). We explained in the previous chapter regarding the infrastructure design
principle that we always prefer a managed service over its self-managed counterpart, and
this applies here when it comes to choosing between EKS and building our self-managed
clusters over AWS.

36 Architecting Production-Grade Kubernetes Infrastructure

Choosing the cluster and node size

When you plan for your cluster, you need to decide both the cluster and node sizes. This
decision should be based on the estimated utilization of your workloads, which you may
know beforehand based on your old infrastructure, or it can be calculated approximately
and then adjusted after going live in production. In either case, you will need to decide on
the initial cluster and node sizes, and then keep adjusting them until you reach the correct
utilization level to achieve a balance between cost and reliability. You can target

a utilization level of between 70 and 80% unless you have a solid justification for using

a different level.

These are the common cluster and node size choices that you can consider either
individually or in a combination:

« Few large clusters: In this setup, you deploy a few large clusters. These can be
production and non-production clusters. A cluster could be large in terms of
node size, node numbers, or both. Large clusters are usually easier to manage
because they are few in number. They are cost efficient because you achieve higher
utilization per node and cluster (assuming you are running the correct amount of
workloads), and this improved utilization comes from saving the resources required
for system management. On the downside, large clusters lack hard isolation for
multi-tenants, as you only use namespaces for soft isolation between tenants. They
also introduce a single point of failure to your production (especially when you run
a single cluster). There is another limitation, as any Kubernetes cluster has an upper
limit of 5,000 nodes that it can manage and when you have a single cluster, you can
hit this upper limit if you are running a large number of pods.

o Many small clusters: In this setup, you deploy a lot of small clusters. These could be
small in terms of node size, node numbers, or both. Small clusters are good when
it comes to security as they provide hard isolation between resources and tenants
and also provide strong access control for organizations with multiple teams and
departments. They also reduce the blast radius of failures and avoid having a single
point of failure. On the downside, small clusters come with an operational overhead,
as you need to manage a fleet of clusters. They are also inefficient in terms of
resource usage, as you cannot achieve the utilization levels that you can achieve with
large clusters, in addition to increasing costs, as they require more control plane
resources to manage a fleet of small clusters that manage the same total number of
worker nodes in a large cluster.

Designing an Amazon EKS infrastructure 37

« Large nodes: This is about the size of the nodes in a cluster. When you deploy
large nodes in your cluster, you will have better and higher utilization of the node
(assuming you deploy workloads that utilize 70-80% of the node). This is because
a large node can handle application spikes, and it can handle applications with
high CPU/memory requirements. In addition to that, a well utilized large node
usually entails cost savings as it reduces the overall cluster resources required for
system management and you can purchase such nodes at discounted prices from
your cloud provider. On the downside, large nodes can introduce a high blast
radius of failures, thereby affecting the reliability of both the cluster and apps. Also,
adding a new large node to the cluster during an upscaling event will add a lot of
cost that you may not need, so if your cluster is hit by variable scaling events over
a short period, large nodes will be the wrong choice. Added to this is the fact that
Kubernetes has an upper limit in terms of the number of pods that can run on
a single node regardless of its type and size, and for a large node, this limitation
could lead to underutilization.

« Small nodes: This is about the size of the nodes per single cluster. When you
deploy small nodes in your cluster, you can reduce the blast radius during failures,
and also reduce costs during upscaling events. On the downside, small nodes are
underutilized, they cannot handle applications with high resource requirements,
and the total amount of system resources required to manage these nodes (kubelet,
etcd, kube-proxy, and so on) is higher than managing the same compute power
for a larger node, in addition to which small nodes have a lower limit for pods
per node.

+ Centralized versus decentralized clusters: Organizations usually use one of these
approaches in managing their Kubernetes clusters.

In a decentralized approach, the teams or individuals within an organization

are allowed to create and manage their own Kubernetes clusters. This approach
provides flexibility for the teams to get the best out of their clusters, and customize
them to fit their use cases; on the other hand, this increases the operational
overhead, cloud cost, and makes it difficult to enforce standardization, security,
best practices, and tools across the clusters. This approach is more appropriate for
organizations that are highly decentralized, or when they are going through cloud
transformation, product life cycle transitional periods, or exploring and innovating
new technologies and solutions.

38 Architecting Production-Grade Kubernetes Infrastructure

In a centralized approach, the teams or individuals share a single cluster or small
group of identical clusters that use a similar set of standards, configurations, and
services. This approach overcomes and decreases the drawbacks in the decentralized
model; however, it can be inflexible, slow down the cloud transformations, and
decreases teams' agility. This approach is more suitable for organizations working
towards maturity, platform stability, increasing cloud cost reduction, enforcing and
promoting standards and best practices, and focusing on products rather than the
underlaying platform.

Some organizations can run a hybrid models from the aforementioned alternatives, such
as having large, medium, and small nodes to get the best of each type according to their
apps needs. However, we recommend that you run experiments to decide which model
suits your workload's performance, and meets your cloud cost reduction goal.

Choosing tools for cluster deployment and
management

In the early days of Kubernetes, we used to deploy it from scratch, which was commonly
called Kubernetes the Hard Way. Fast forward and the Kubernetes community got bigger
and a lot of tools emerged to automate the deployment. These tools range from simple
automation to complete one-click deployment.

In the context of this book, we are not going to explain each of these tools in the market
(there are a lot), nor to compare and benchmark them. However, we will propose our
choices with a brief reasoning behind the choices.

Infrastructure provisioning

When you deploy Kubernetes for the first time, most likely you will use a command-line
tool with a single command to provision the cluster, or you may use a cloud provider web
console to do that. In both ways, this approach is suitable for experimental and learning
purposes, but when it comes to real implementation across production and development
environments a provisioning tool becomes a must.

The majority of organizations that consider deploying Kubernetes already have an existing
cloud infrastructure or they are going through a cloud migration process. This makes
Kubernetes not the only piece of the cloud infrastructure that they will use. This is why we
prefer a provisioning tool that achieves the following:

o It can be used to provision Kubernetes as well as other pieces of infrastructure
(databases, file stores, API gateways, serverless, monitoring, logging, and so on).

o It fulfills and empowers the IaC principles.

Designing an Amazon EKS infrastructure 39

« Itisa cloud-agnostic tool.
o It has been battle-tested in production by other companies and teams.

o It has community support and active development.

We can find these characteristics in Terraform, and this is why we chose to use it in the
production clusters that we managed, as well as in this practical exercise in this book.
We highly recommend Terraform for you as well, but if you prefer another portioning
tool, you can skip this chapter and then continue reading this book and apply the same
concepts and best practices.

Configuration management

Kubernetes configuration is declarative by nature, so, after deploying a cluster, we need

to manage its configuration. The add-ons deployed provide services for various areas of
functionality, including networking, security, monitoring, and logging. This is why a solid
and versatile configuration management tool is required in your toolset.

The following are solid choices:

+ Regular configuration management tools, such as Ansible, Chef, and Puppet
+ Kubernetes-specific tools, such as Helm and Kustomize

o Terraform
Our preferred order of suitable tools is as follows:

1. Ansible
2. Helm

3. Terraform

We can debate this order, and we believe that any of these tools can fulfill the
configuration management needs for Kubernetes clusters. However, we prefer to use
Ansible for its versatility and flexibility as it can be used for Kubernetes and also for other
configuration management needs for your environment, which makes it preferable over
Helm. On the other hand, Ansible is preferred over Terraform because it is a provisioning
tool at heart, and while it can handle configuration management, it is not the best tool

for that.

In the hands-on exercises in this book, we decided to use Ansible with Kubernetes module
and Jinja2 templates.

40 Architecting Production-Grade Kubernetes Infrastructure

Deciding the cluster architecture

Each organization has its own way of managing cloud accounts. However, we recommend
having at least two AWS accounts, one for production and another for non-production.
The production Kubernetes cluster resides in the production account, and the
non-production Kubernetes cluster resides in the non-production account. This structure
is preferred for security, reliability, and operational efficiency.

Based on the technical decisions and choices that we made in the previous sections, we
propose the following AWS architecture for the Kubernetes clusters that we will use in

this book, which you can also use to deploy your own production and non-production
clusters:

Figure 2.1 - Cluster architecture diagram

In the previous architecture diagram, we decided to do the following:

+ Create a separate VPC for the cluster network; we chose the Classless Inter-
Domain Routing (CIDR) range, which has sufficient IPv4 addressing capacity for
future scaling. Each Kubernetes node, pod, and service will have its own IP address,
and we should keep in mind that the number of services will increase.

Summary 41

+ Create public and private subnets. The publicly accessible resources, such as load
balancers and bastions, are placed in the public subnets, and the privately accessible
resources, such as Kubernetes nodes, databases, and caches, are placed in the private
subnets.

« For high availability, we create the resources in three different availability zones. We
placed one private and one public subnet in each availability zone.

« For scaling, we run multiple EKS node groups.

We will discuss the details of these design specs in the next chapters, in addition to the
remainder of the technical aspects of the cluster's architecture.

Summary

Provisioning a Kubernetes cluster can be a task that takes 5 minutes with modern tools
and managed cloud services; however, thus this is far from a production-grade Kubernetes
infrastructure and it is only sufficient for education and trials. Building a production-
grade Kubernetes cluster requires hard work in designing and architecting the underlying
infrastructure, the cluster, and the core services running above it.

By now, you have learned about the different aspects and challenges you have to consider
while designing, building, and operating your Kubernetes clusters. We explored the
different architecture alternatives to deploy Kubernetes clusters, and the important
technical decisions associated with this process. Then, we discussed the proposed cluster
design, which we will use during the book for the practical exercises, and we highlighted
our selection of infrastructure platform, tools, and architecture.

In the next chapter, we will see how to put everything together and use the design
concepts we discussed in this chapter to write IaC and follow industry best practices with
Terraform to provision our first Kubernetes cluster.

Further reading

For more information on the topics covered in this chapter, please refer to the
following links:

e Mastering Kubernetes — Third Edition: https://www.packtpub.com/
product/mastering-kubernetes-third-edition/9781839211256

o Kubernetes on AWS: https://www.packtpub.com/product/kubernetes-
on-aws/9781788390071

https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/mastering-kubernetes-third-edition/9781839211256
https://www.packtpub.com/product/kubernetes-on-aws/9781788390071
https://www.packtpub.com/product/kubernetes-on-aws/9781788390071

3

Provisioning
Kubernetes Clusters
Using AWS and
Terraform

In the previous chapter, we learned about Kubernetes clusters and infrastructure design
and how to create a deployment architecture to fulfill best practices and standards. There
are multiple alternatives when it comes to designing and building your Kubernetes
platform. Choosing the solution that works for your use case and satisfies goals in terms
of production readiness is not an easy task. There are still challenges and limitations for
Kubernetes, the underlying technologies, and the surrounding ecosystem.

44 Provisioning Kubernetes Clusters Using AWS and Terraform

In this chapter, we will go through the detailed implementation of the infrastructure
design. Basically, we will learn how to create the Kubernetes infrastructure

declaratively with Terraform. While provisioning the infrastructure, we will learn about
implementation best practices, such as the encapsulation of infrastructure components
into reusable modules, separating Kubernetes clusters per environment without adding an
operational overhead and complexity. In addition, you will practice rolling out your first
Kubernetes cluster and group of clusters with simple Terraform commands.

In this chapter, we will cover the following topics:

« Implementation principles and best practices
o Cluster deployment and rollout strategy

o Preparing Terraform

o Creating the network infrastructure

« Creating the cluster infrastructure

« Cleaning up and destroying infrastructure resources

Technical requirements

We will need the Terraform tool installed for this chapter as a prerequisite.

In addition to this tool, you will need to have an AWS account and user credentials ready
to use. Please ensure the authentication of the AWS CLI with your AWS credentials. You
can refer to the AWS documentation for further instructions at https://docs.aws.
amazon.com/cli/latest/userguide/cli-chap-configure.html.

The code for this chapter is located at https: //github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter03.

Check out the following link to see the Code in Action video:

https://bit.ly/390coyqg

Installing Terraform

Terraform binary is a command-line utility that is used to develop Infrastructure as Code
(IaC), plan, and execute it to create resources, and manage infrastructure providers such
as AWS, Azure, GCP, Fastly, OKTA, and more.

You can follow the instructions in the official documentation to download the latest
version of Terraform at https://www.terraform.io/downloads.html.

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03
https://bit.ly/39Ocoyq
https://www.terraform.io/downloads.html

Implementation principles and best practices 45

After installing Terraform, you are ready to implement the hands-on exercises in the
coming sections.

Implementation principles and best practices

In Chapter 1, Introduction to Kubernetes Infrastructure and Production-Readiness, you
learned about the 12 infrastructure design principles that we will follow during the
book. I would like to start this chapter by highlighting the principles that drove us to this
implementation of the cluster infrastructure. The following are the three principles that
influenced the implementation decisions in this chapter:

1. Infrastructure as code: In this chapter, you will write every piece of infrastructure
code declaratively. You will achieve this by using Terraform.

2. Go managed: There are two fundamental ways in which to create a Kubernetes
cluster - either to build and operate Kubernetes control plane and workers on your
own (on-prem or on cloud), or to use one of the managed Kubernetes services in
the cloud, such as Google Kubernetes Engine (GKE), Azure Kubernetes Service
(AKS), and AWS Elastic Kubernetes Service (EKS). In this book, I will use EKS as
this fulfills the managed services principle.

3. Standardization: We applied this principle when we selected Terraform as
our provisioning and I[aC tool. Terraform is not the easiest way to bootstrap a
Kubernetes cluster, and there are other tools that could be faster to use and easier to
learn. However, we needed to standardize our infrastructure toolset around as few
tools as possible. Therefore, Terraform makes sense because in most use cases, your
production environment is not Kubernetes on its own. There are databases, caching
services, content delivery, load balancers, and so on. These types of infrastructure
components are easier to create and manage by Terraform.

Cluster deployment and rollout strategy

In the previous chapter, we explored different infrastructure design alternatives,
limitations, and corner cases. We made the architecture decisions that fulfill the
infrastructure design principles for the production-grade Kubernetes clusters. And finally,
we came up with a full deployment architecture for our Kubernetes infrastructure, which
we will build and use over this book. Certainly, while we proceed from one chapter to the
next, we will keep enhancing our infrastructure design and implementation, adding more
features, and making it better.

46 Provisioning Kubernetes Clusters Using AWS and Terraform

In terms of implementation, we should address how we will roll out the clusters and
deploy them. Specifically, we are looking for extendibility, simplicity, and operational
efficiency. We will follow these principles during the implementation in the next sections:

1. Developing generic infrastructure modules: By encapsulating every infrastructure
resource in a reusable code module, this will enable us to automate cluster
provisioning with minimum to zero code changes. It also promotes code reusability
practices essential for simplifying the [aC and increases operational efficiency.

2. Supporting single and multiple clusters: In real life, Kubernetes deployment teams
require multiple clusters to serve the whole company or a specific product. In this
chapter, we will follow a strategy that will enable us to create a group of clusters with
the same infrastructure code and configuration. Also, we will create multiple groups
of clusters with different configurations. This will help us to serve and automate the
provisioning and operation of multiple production and non-production clusters.
This implementation is scalable as we can provision many clusters (up to the limit of
the underlying Iaa$ provider) without the need to scale your infrastructure teams.

3. Separating production and non-production environments with minimal
changes: One of the recommended practices is to have two separate AWS accounts
for production and non-production environments, and our implementation also
supports this model with minimum code changes and administration work.

4. Automating infrastructure deployment: Every single piece of infrastructure is
managed by Terraform, and with a limited number of commands, we can provision
the entire Kubernetes cluster. We can build automated pipelines for infrastructure
deployment and testing with traditional CI/CD such as Jenkins.

In fact, cluster deployment is not a one-time task. It is a continuous process that affects the
cluster's quality, stability, operations, and, moreover, the products and services on top of it.
So, we are keen to establish a solid infrastructure deployment strategy, which we will follow
during implementation in this chapter and also keep improving throughout the book.

Preparing Terraform

Before creating the Terraform configuration and code for the Kubernetes cluster, you
need to create a new source code repository for the infrastructure and then create the
Terraform directory structure. In addition to that, you will learn how to configure and
use Terraform's shared state, which is an essential best practice for managing IaC in
production environments.

Preparing Terraform 47

Terraform directory structure

The Terraform directory is where all the Terraform source code lives in your source code
repository. I recommend creating a separate source code repository. This repository
should contain all the infrastructure code and configuration. The following is the directory
structure of the Terraform source code that we will develop in the forthcoming sections:

— packt-infra-repo
L— terraform
F— modules
| — cluster
— eks-cp

[

[— eks-vpc

I L— eks-workers
F— packtclusters

b— packtclusters-vpc
L— shared-state

Figure 3.1 - Terraform directory structure

Persisting the Terraform state

Terraform stores the state of the infrastructure resources under its management to be able to
map it to the existing resources in the real world. By default, the state is stored to local files.
However, this is not recommended for production-scale infrastructure where preserving
consistent state and also sharing it among distributed team members are essential.

As a recommended Terraform best practice, you should configure Terraform to keep the
state remote and locked:

« Remote: As you already use AWS as an infrastructure provider, you can utilize an
S3 bucket to remotely store Terraform state files.

» Locked: You can achieve Terraform state lock by using a DynamoDB table. Then,
the Terraform state will get locked for the current user until this user finishes up, at
which point other users can acquire the lock.

Creating Terraform state configuration

Apply the following steps to create the Terraform directory structure and the directory for
the shared state configuration:

1. Create a root directory named terraform. This is the root directory for all
Terraform source code.

48 Provisioning Kubernetes Clusters Using AWS and Terraform

2. Create a subdirectory named shared-state. This is the directory that will

contain Terraform source code to provision both the S3 bucket and the DynamoDB
table. Both of them are used to store the shared state.

In the following steps, you will create the shared state Terraform code under the shared-
state directory with the following structure:

— config.tf
— terraform.tfvars

— tf-state-dynamodb.tf
— tf-state-s3.tf
L— variables.tf

Figure 3.2 - Shared state directory structure

Important note

You can find the complete source code of the shared state Terraform
configuration at https: //github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/
master/Chapter03/terraform/shared-state.

Now, let's create the Terraform files under the shared-state directory:

1.

Terraform can create and manage infrastructure resources from both cloud and
on-prem, and it can achieve this by communicating with the external infrastructure
using a provider that is a kind of software plugin that translates Terraform commands
into the APIs that the infrastructure provider can understand and execute.

In the config. tf file, you define the provider's configuration that you will use
in this chapter. For each provider, you need to define its name and the version you
intend to use. To learn more about defining a "required provider version," visit
https://www.terraform.io/docs/configuration/terraform.
html#specifying-required-provider-versions

It is important to define the version explicitly, especially when Terraform is used by
multiple users or automation tools. This is to avoid the upgrades to newer versions
that could break the Terraform state:

terraform {

required version = "~> 0.14.5"

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03/terraform/shared-state
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03/terraform/shared-state
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter03/terraform/shared-state

Preparing Terraform 49

This code block defines the AWS provider configuration. You only need to specify
both the AWS region and the provider's version:
provider "aws" {
region = var.aws_region
version = "~> 3.27.0"

}

In the terraform. t fvars file, you define the environment variables that
Terraform needs to use during provisioning of the infrastructure resources.
Using Terraform tfvars files is a good practice to pass environment variables
to Terraform. This enables you to keep all of the configuration, including the
environment variables, versioned in your source control as your source of truth:

aws_region = "us-east-1"

clusters name prefix = "packtclusters"

We use us-east -1 as the default AWS region, but you can use any other region as
long as you maintain it for the other exercises.

The second environment variable is the clusters name prefix, which you will use
for your clusters to identify them as a group of clusters. This name prefix could
represent your company's name or the product name. However, you are free to use
any appropriate naming convention.

In the variables. tf file, you define the input variables that Terraform code will
use. There are two input variables that you will need for the exercises in this chapter.
The first is the AWS region, and the second is the clusters name prefix. Both of them
will get their values from the previous terraform. tfvars file:

variable "aws region" {
type = string

variable "clusters name prefix" {
type = string

}

In the tf-state-s3.tf file, you define two S3 bucket resources. The first bucket
stores the state for the VPC and network resources, while the second bucket stores
the state for the Kubernetes cluster resources, such as EKS and workers groups.

50 Provisioning Kubernetes Clusters Using AWS and Terraform

The following code snippet uses the Terraform resource called aws_s3 bucket,
which is a built-in resource in the Terraform AWS provider that can be used to
create AWS S3 buckets and set its configuration parameters.

We will use this S3 bucket to persist the Terraform state. And, as you will notice in
the following code, this S3 bucket has private access to keep it secure from the public.
It also has deletion prevention enabled to protect it from unplanned deletion:

resource "aws s3 bucket" "clusters tf state s3 bucket" ({
bucket = "${var.clusters name prefix}-terraform-state"
acl = "private"

versioning
enabled = true
}
lifecycle {
prevent_destroy = true
}
tags = {

Name = "${var.clusters name prefix} S3 Remote
Terraform State Store"

ManagedBy = "terraform"

}

The second part of the code is similar to the previous one, but it is used to create
the S3 bucket for the networking infrastructure or the virtual private cloud (VPC)
resources state:

resource "aws_ s3 bucket" "clusters vpc tf state s3
bucket" {

bucket = "${var.clusters name prefix}-vpc-terraform-
state"

acl = "private"

versioning
enabled = true
}
lifecycle {
prevent destroy = true

}

tags = {

Preparing Terraform 51

Name = "${var.clusters name prefix} VPC S3
Remote Terraform State Store"

ManagedBy = "terraform"

}

Splitting the infrastructure state into two files, as we did in the previous code,

is debatable. However, we tend to use a balanced approach as we will not use

a separate state for a resource unless it has an independent life cycle from the
Kubernetes cluster. This separation facilitates change management of the resources
and decouples the critical resources from one another.

In the tf-state-dynamodb. t £ file, you create two DynamoDB tables, the first
for VPC resource state locking, and the second for Kubernetes cluster resources.

The following code snippet uses the Terraform resource called aws _dynamodb
table, which is a built-in resource in the Terraform AWS provider that is used to
create an AWS DynamoDB table and set its configuration parameters.

This code creates a DynamoDB table to hold the lock for the shared Terraform state
for the Kubernetes cluster resources. This lock will protect parallel runs against the
same state file or the same resources, and this prevents users from applying changes
to infrastructure at the same time. This could be very dangerous, right?

resource "aws_ dynamodb table" "clusters dynamodb tf
state lock" {

name = "${var.clusters name prefix}-
terraform-state-lock-dynamodb"

hash key = "LockID"

read capacity = 20

write capacity = 20

attribute {
name = "LockID"
type = ngn

52 Provisioning Kubernetes Clusters Using AWS and Terraform

The second part of the t - state-dynamodb. t £ file creates a DynamoDB table
to hold the locks for the shared Terraform state for the VPC resources:

resource "aws dynamodb table" "clusters vpc dynamodb tf
state lock" {

name = "${var.clusters name prefix}-vpc-
terraform-state-lock-dynamodb"

hash key = "LockID"

read capacity = 20
write capacity = 20
attribute {

name "LockID"

type = "S"

}

When you apply the previous Terraform code file, it will create two DynamoDB tables.
In the coming sections, we will learn how to configure terraform to use them. Then,
Terraform will be able to create locks for its shared state files.

Provisioning the Terraform state

After creating the previous Terraform code files for the shared state resources. You have to
perform the following instructions to provision the resources in your AWS account:

1. Initialize the Terraform state:

$ cd Chapter03/terraform/shared-state

$ terraform init

Initializing modules...

Initializing the backend...

Initializing provider plugins...

- Checking for available provider plugins...

- Downloading plugin for provider "aws" (hashicorp/aws)
3.27.0...

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see

any changes that are required for your infrastructure.
All Terraform commands

should now work.

Preparing Terraform 53

If you ever set or change modules or backend
configuration for Terraform,

rerun this command to reinitialize your working
directory. If you forget, other

commands will detect it and remind you to do so if
necessary.

2. Runthe terraform plancommand to validate the planned changes before
applying them:

$ terraform plan

3. You will get the following output after the terraform plan command
completes successfully. There are four resources to add - two S3 buckets and two
DynamoDB tables:

Plan: 4 to add, @ to change, @ to destroy.

Note: You didn't specify an "-out" parameter to save this plan, so Terraform
can't guarantee that exactly these actions will be performed if
“terraform apply" is subsequently run.

Figure 3.3 - Terraform plan command output

4. Execute the terraform apply command. Enter yes when you get a prompt to
approve execution:

$ terraform apply

5. You will get the following output after the terraform apply command completes
successfully. By then, Terraform has successfully created four AWS resources:

Plan: 4 to add, @ to change, @ to destroy.

Do you want to perform these actions?
Terraform will perform the actions ribed above.
Only will be accepted to approve.
Enter a value: yes

aws_dynamodb_table . clusters_vpc_dynamodb_tf_state_lock: Creating...

(aws_dynamodb_table. clusters_dynamodb_tf_state_lock: Creating...

aws_s3_bucket . clusters_tf_state_s3_bucket: Creating...

jows_s3_bucket . clusters_vpc_tf_state_s3_buck

aws_dynamadh_table. clusters_dynamodb_tf_s k: -ion complete after 6s [id=packtclusters-terraform-state-lock-dynamodh]
ows_s3_bucket . clusters_vpc_tf_state_s3_buck reation complete after 7s [idspacktclus vpc-terraform-state]
ows_s3_bucket . clusters_tf_state_s3_bucket: Creation complete after 75 [idepacktclusters-terraform-state]

aws_dynamodb_table. clusters_vpc_dynamodb_tf_state_lock: Creation complete after 18s [id=packtclusters-vpc-terraform-state-lock-dynaomodb]

Apply lete sources: 4 added, ® changed, @ destroyed

Figure 3.4 — Terraform apply command output

54 Provisioning Kubernetes Clusters Using AWS and Terraform

Now you have completed provisioning of the AWS resources to persist and manage the
Terraform shared state. In the next section, you will learn how to provision the VPC and
the other network resources to run your first Kubernetes cluster.

Utilizing Terraform workspaces

In the previous section, you learned that Terraform configuration has a backend that
defines how operations are executed and where the infrastructure state is persisted, such
as in S3 buckets. Terraform uses workspaces to organize and isolate multiple states under
a single backend.

This concept becomes useful when the user wants to run multiple instances of the same
infrastructure without creating multiple backends and state files. Let's assume that you want
to use Terraform to provision a Kubernetes cluster, ClusterA, and you want to use the same
configuration to provision a second cluster, ClusterB. In this case, workspaces provide an
out-of-the-box and scalable solution, as you will be able to use a single backend for all of your
clusters (N clusters), but you provision each cluster in its workspace with its own state file.

If you have a Terraform configuration with a backend named k8s_s3_backend, and
you want to provision N Kubernetes clusters using the same Terraform base code, then
you can do the following:

$ terraform workspace new clusterl

Created and switched to workspace "clusterl"!

You're now on a new, empty workspace. Workspaces isolate their
state,

so if you run "terraform plan" Terraform will not see any
existing state

for this configuration.

$ terraform apply
<apply outputs>

Then, repeat the same process for every N cluster:

$ terraform workspace new clusterN

Created and switched to workspace "clusterN"!

You're now on a new, empty workspace. Workspaces isolate their
state,

Creating the network infrastructure 55

so if you run "terraform plan" Terraform will not see any
existing state

for this configuration.

$ terraform apply
<apply outputs>

Creating the network infrastructure

In Chapter 2, Architecting Production-Grade Kubernetes Infrastructure, you learned in
detail about the infrastructure architecture design recommendations and the technical
decisions that you should take in relation to the production readiness state for your
Kubernetes clusters. In this section, you will use Terraform to provision the network layer
of your Kubernetes production infrastructure.

These are the AWS network resources that you will provision with the Terraform code in
this section:

o« AWSVPC

o Private subnets
o Public subnets
o Route tables

o Internet and NAT gateways
Encapsulating AWS resources into reusable code modules is a recommended IaC practice.
In the next subsection, you will create a VPC Terraform module that includes the previous

AWS resources. You can then reuse this module with no code changes to provision VPCs for
as many Kubernetes clusters as you need.

Developing the VPC Terraform module

Under the terraform root directory, create a directory and name it modules. Then,
create a subdirectory and name it eks-vpc. This subdirectory will contain the following
Terraform code files:

e variables.tf
e main.tf

e outputs.tf

56 Provisioning Kubernetes Clusters Using AWS and Terraform

Input variables

These are the input variables that are accepted by this module. The module's user should
provide the values for each of these variables:

o VPC CIDR block: The value of the VPC CIDR, suchas 10.40.0.0/17.

« Private subnet prefixes: The values of private subnet prefixes. This could be 1 or
another prefix suchas 10.40.64.0/20.

o Public subnet prefixes: The values of public subnet prefixes. This could be 1 or
another prefix suchas 10.40.0.0/20.

« Cluster name prefix: The value of the cluster name prefix that is used in naming the
VPC resources.

« Common tags: Any AWS tags that you want to assign to the VPC resources to help
identify and classify them later.

The variables.tf file is defined as follows:

variable "eks vpc block"
type = string

}

variable "eks private subnets prefix list" (
type = list (string)

}

variable "eks public subnets prefix list™ {
type = list (string)

}

variable "clusters name prefix"
type = string

}

variable "common tags" {
type = map (string)

}

The previous code snippet defines five Terraform variable blocks and all of the type
strings. In the Creating the cluster VPC section, you will use this VPC module and learn
how to pass the values for each of these variables.

Creating the network infrastructure 57

Module main resources

The main. tf file defines the network resources that are required to create Kubernetes
AWS network components, including the public and private subnets, internet and NAT
gateways, and routing tables.

The following code snippet uses the Terraform resource called aws_vpc, which is a
built-in resource in the Terraform AWS provider that can be used to create AWS VPC and
set its configuration parameters.

In the following code block, you define the VPC resource, and a data resource that is used
to retrieve the value of the AWS availability zones that you use in the main. t £ file:

resource "aws vpc" "eks vpc" {
cidr_block = var.eks vpc_block
enable dns hostnames = true

tags = merge (

var.common tags,

{
Name = "${var.clusters name prefix}-vpc"
b
)
lifecycle {
ignore changes = [
tags
]
}
}
data "aws_availability zones" "availability zones" {
}

The following code snippet uses the Terraform resource called aws _subnet, which is a
built-in resource in the Terraform AWS provider that can be used to create AWS subnets
and set their configuration parameters.

This code uses the Terraform built-in count construct to create one or more subnets
according to the number of private subnet prefixes:

resource "aws subnet" "eks private subnets" {

count = length(var.eks private subnets prefix
list)

58 Provisioning Kubernetes Clusters Using AWS and Terraform

cidr block = element (var.eks private subnets prefix
list, count.index)

vpc_id = aws_vpc.eks vpc.id
availability zone = data.aws_availability zones.availability
zones .names [count . index]

tags = merge (
var.common tags,

{

Name = "eks-private-${var.clusters name prefix}-${data.
aws_availability zones.availability zones.names [count.index] }"

b
)
lifecycle {
ignore changes = [

tags

}

In the remaining part of the main. t £ file, you define an aws_subnet resource, which
is similar to the private subnet resource, but designed for public subnets. Also, you create
complementary VPC network resources that handle the routing, connect the subnets
together and with the internet, such as NAT and internet gateways, routing tables,

and NAT IPs. You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/
master/Chapter03/terraform/modules/eks-vpc/main.tf.

Output values

The outputs. t £ file defines the output values from the VPC module. Terraform will
need these values to use them as inputs to the Kubernetes cluster module when you
provision it. There are four outputs from the VPC module: the VPC ID; the private subnet
IDs; the public subnet IDs; and the NAT IPs.

The outputs. tf file is defined as follows:
output "eks cluster vpc id" {

value = aws_vpc.eks vpc.id

}

output "eks private subnet ids" {

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-vpc/main.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-vpc/main.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-vpc/main.tf

Creating the network infrastructure 59

value = aws_subnet.eks private subnets.*.id

}

output "eks public subnet ids"
value = aws_subnet.eks public subnets.*.id

}
output "eks nat ips" {

value = aws_eip.eks nat ips.*.public ip

}

The preceding code snippet defines five Terraform output blocks. In the Provisioning the
cluster section, you will use these outputs as inputs to the Kubernetes terraform modules.

Developing the cluster VPC

Under the terraform root directory, create a directory and name it packtclusters-
vpc. This directory will contain the following Terraform code files:

e config.tf
e terraform.tfvars
e variables.tf
e main.tf
e outputs.tf
The previous list of Terraform files comprises your Kubernetes cluster VPC. You will learn

about each code and configuration file in the following subsections.

Configuration
config. tf has the Terraform shared state configuration and the AWS provider definition:

terraform {
backend "s3" {

bucket = "packtclusters-vpc-terraform-state"

key = "packtclusters-vpc.tfstate"

region = "us-east-1"

dynamodb_table = "packtclusters-vpc-terraform-state-lock-
dynamodb™"

}

60 Provisioning Kubernetes Clusters Using AWS and Terraform

required version = "~> 0.14.5"

required providers {

aws = "~> 3.27"
provider "aws"
region = var.aws_region
version = "~> 3.27"

}

The preceding code block tells Terraform which S3 bucket to use to persist the state, and
specifies Terraform and AWS provider versions.

Environment variables

The terraform. tfvars file defines the values of the input variables. These values are
required by the VPC module to set the values of these inputs: the AWS region; the VPC IP
CIDR; the private subnet prefix list; and the public subnet prefix list.

The terraform.tfvars file is defined as follows:

aws_region "us-east-1"

clusters name prefix = "packtclusters"
vpc_block = "10.40.0.0/17"
public subnets prefix list = [

"10.40.0.0/20",
"10.40.16.0/20",
"10.40.32.0/20",

]

private subnets prefix list = [
"10.40.64.0/20",
"10.40.80.0/20",
"10.40.96.0/20",

Creating the network infrastructure 61

For the preceding code, you can choose a different CIDR block for the VPC IPs range and
different subnet prefixes according to your network topology and applications needs.

Important note

You should make sure that the VPC CIDR is not used by any other VPCs
within your own AWS VPC so as to avoid IPs collisions. You should make
sure the VPC CIDR has a sufficient number of IPs that exceeds the maximum
forecasted number of pods in your Kubernetes cluster.

Input variables

The variables. t £ file defines the five input variables that Terraform will use

during creation of the VPC module resources. It is very similar to the previous
variables.tf files. You can view its full source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/
master/Chapter03/terraform/packtclusters-vpc/variables.tf.

The cluster VPC

The main. t £ file has two code blocks: the vpc module block, which creates an instance
of the eks-vpc module, and the 1ocals code block, which defines common_tags to
be assigned to VPC resources.

The main. tf file is defined as follows:

locals
common tags = {
ManagedBy = "terraform"
}
}
module "vpc" {
source = "../modules/eks-vpc"
clusters name prefix = var.clusters name prefix
eks vpc block = var.vpc_block
eks public subnets prefix list = var.public subnets prefix
list
eks private subnets prefix list = var.private subnets prefix
list
common_tags = local.common tags

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters-vpc/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters-vpc/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters-vpc/variables.tf

62 Provisioning Kubernetes Clusters Using AWS and Terraform

Thanks to Terraform modules, this makes the previous code clean and simple, as it hides
the complexity of creating the AWS VPC. In the next subsection, you will create the
Terraform outputs that you will use while creating the cluster VPC.

Output values

The outputs. t£ file defines the output values that you need to get after creating the
cluster VPC. These outputs are the VPC ID, the private subnet IDs, and the public
subnet IDs.

The outputs. tf file is defined as follows:

output "vpc id" {
value = module.vpc.eks cluster vpc id
}
output "private subnet ids" {
value = module.vpc.eks private subnet ids
}
output "public subnet ids" {
value = module.vpc.eks public subnet ids

}

The outputs from the previous code block are used as the inputs to the Kubernetes cluster
Terraform modules in the next section.

Provisioning the cluster VPC

Once you have completed development of the VPC Terraform files in the previous
sections, you can now provision the VPC resources and create them in your AWS account:

1. Initialize the Terraform state:

$ cd Chapter03/terraform/packtclusters-vpc

$ terraform init

Initializing modules...

- vpc in ../../modules/eks-vpc

Initializing the backend...

Initializing provider plugins...

- Checking for available provider plugins...

- Downloading plugin for provider "aws" (hashicorp/aws)
3.27.0...

Creating the network infrastructure 63

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running
"terraform plan" to see

any changes that are required for your infrastructure.
All Terraform commands

should now work.

If you ever set or change modules or backend
configuration for Terraform,

rerun this command to reinitialize your working
directory. If you forget, other

commands will detect it and remind you to do so if
necessary.

2. Execute the terraform plan command to review the planned changes before
applying them:

$ cd Chapter03/terraform/packtclusters-vpc

$ terraform plan

The following is the expected final output after executing the terraform plan
command. There are 28 resources in the Terraform plan, and when you execute
the terraform apply command, these 28 resources will be created in your
AWS account:

Plan: 28 to add, @ to change, @ to destroy.

Note: You didn't specify an
can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

-out" parameter to save this plan, so Terraform

Figure 3.5 - The terraform plan command output

3. Execute the terraform apply command. Enter yes when you get a prompt to
approve the execution:

$ cd Chapter03/terraform/packtclusters-vpc
$ terraform apply

64 Provisioning Kubernetes Clusters Using AWS and Terraform

4. You will get the following output once the terraform apply command completes
successfully, and by then, Terraform has successfully created 28 network resources:

Releasing state lock. This may take a few moment

Figure 3.6 — The terraform apply command output

By completing this section, you should have your Kubernetes cluster VPC and its network
components successfully created in your AWS account. It is now ready to provision the
cluster above it, as you will learn in the next section.

Creating the cluster infrastructure

In this section, you will develop the following Terraform modules:

e An EKS module
o A Kubernetes worker module

o A Kubernetes cluster module that wraps both the EKS control plan and the workers

After that, you will use these modules to Terraform your first cluster, Packt cluster,
and then provision it in your AWS account.

Developing the EKS Terraform module

Under the terraform/modules directory, create a subdirectory with the name
eks-cp. This directory will contain the following Terraform source code files for the EKS
control plane module:

e variables.tf
e main.tf

e security-groups.tf

Creating the cluster infrastructure 65

e iam.tf
e outputs.tf

The previous list of files together comprises the EKS Terraform module. You will learn
about each of these code and configuration files in the following subsections.

Input variables
The variables. t £ file defines the input variables that are accepted in the EKS module.
The module user should provide the values for each of these variables:

o Full cluster name

o Cluster Kubernetes version
« VPCID

o Private subnet IDs

o Public subnet IDs

» Common tags

This file is similar to the variables. tf£ file you created in the VPC module. You

can view its full source code at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/eks-cp/variables.tf.

Module main resources

The main. tf file defines the EKS resources that are required to configure and create it.
These include the cluster name, version, and cluster IAM role ARN.

The following code snippet uses the Terraform resource called aws _eks cluster,
which is a built-in resource in the Terraform AWS provider that can be used to create an
AWS EKS cluster and set its configuration parameters.

The main. t £ file is defined as follows:

resource "aws eks cluster" "eks cluster" {
name = var.cluster full name
version = var.cluster version
role arn = aws_iam role.eks cluster role.arn
vpc_config {

security group ids = [aws_security group.eks cluster sg.id]

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-cp/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-cp/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-cp/variables.tf

66 Provisioning Kubernetes Clusters Using AWS and Terraform

subnet ids = concat (var.private subnets, var.
public subnets)

}

depends on = [
aws_iam role policy attachment.eks clusterrole policy
attachment,

aws_iam role policy attachment.eks servicerole policy
attachment,

]
}

In the previous code, you will notice that the EKS resource references the values of the
EKS IAM role and the EKS security group. Both of these are created in the EKS module,
but in two separate Terraform files for better code clarity and organization. You will learn
about creating EKS security groups and IAM roles in the following subsections.

Security groups

The following code snippet uses the Terraform resource called aws_security group,
which is a built-in resource in the Terraform AWS provider that can be used to create an
AWS security group and set its configuration parameters.

The following security-groups. tf file defines a single security group for the EKS
control plane:

resource "aws security group" "eks cluster sg" {

name = "${var.cluster full name}-cluster"
description = "EKS cluster Security group"
vpc_id = var.vpc_id

tags = merge (
var.common tags,

{

Name =
"${var.cluster full name}-cluster-sg"

"kubernetes.io/cluster/${var.cluster full name}"
"owned"

b

Creating the cluster infrastructure 67

If you notice, the previous security group does not have ingress/egress rules. These rules
will be defined in the cluster workers module.

IAM roles and policies

The iam. t £ file uses the Terraform resource called aws iam role, which is a built-in
resource in the Terraform AWS provider that can be used to create an AWS IAM role and
set its configuration parameters.

There are specific policies that the EKS cluster must acquire in order to operate properly:

e AmazonEKSClusterPolicy

e AmazonEKSServicePolicy

These policies must be attached to the EKS cluster IAM role that we will create in the
next code snippet. To learn more about these policies, you can check the EKS official
documentation at https://docs.aws.amazon.com/eks/latest/userguide/
service IAM role.html.

The following iam. t £ file defines an IAM role and associates two policies with this role:
resource "aws iam role" "eks cluster role" ({

name = "${var.cluster full name}-cluster-role"

assume role policy = <<POLICY

"Version": "2012-10-17",
"Statement": [
"Effect": "Allow",
"Principal": {
"Service": "eks.amazonaws.com"
"Action": "sts:AssumeRole"
]
POLICY

tags = var.common tags

https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html

68 Provisioning Kubernetes Clusters Using AWS and Terraform

The two IAM policies in question are AmazonEKSClusterPolicy and
AmazonEKSServicePolicy. Both of them are AWS-predefined IAM policies:

data "aws iam policy" "AmazonEKSClusterPolicy" {

arn = "arn:aws:iam::aws:policy/AmazonEKSClusterPolicy"
data "aws iam policy" "AmazonEKSServicePolicy" {

arn = "arn:aws:iam::aws:policy/AmazonEKSServicePolicy"

}

resource "aws_ iam role policy attachment" "eks clusterrole
policy attachment" {
policy arn = data.aws_ iam policy.AmazonEKSClusterPolicy.arn

role = aws_ilam role.eks cluster role.name
depends on = [data.aws_iam policy.AmazonEKSClusterPolicy]
resource "aws_iam role policy attachment" "eks servicerole

policy attachment" {
policy arn = data.aws_ iam policy.AmazonEKSServicePolicy.arn
role = aws_iam role.eks cluster role.name

depends on = [data.aws iam policy.AmazonEKSServicePolicy]

}

You need to attach the IAM role defined in the previous code to the EKS cluster to enable
it to operate within the AWS environment. In the next and final subsection, you will
define the EKS module outputs.

Output values

The outputs. t £ file defines the output values from the EKS module. There are three
outputs: the security group ID; the cluster certificate authority (CA); and the cluster API
server endpoint.

The outputs. tf file is defined as follows:

output "security group" {

value = aws_security group.eks cluster sg.id
}
output "kubeconfig"

value = local.kubeconfig

Creating the cluster infrastructure 69

output "ca" {

value = aws_eks cluster.eks cluster.certificate authority([0].
data

output "endpoint" {
value = aws_eks cluster.eks cluster.endpoint

}

In this section, you learned to develop a Terraform module for the EKS. You will use it
with other modules to compose your cluster infrastructure. In the next section, you will
learn to develop a Terraform module for the cluster workers.

Developing the workers' Terraform module

Under the terraform/modules directory, create a subdirectory and name it
eks-workers. This directory will contain the following Terraform code files:

e variables.tf

e main.tf

e security-groups.tf
e iam.tf

e user-data.tf

e authconfig.tf

e outputs.tf

Important note

AWS recently introduced the managed EKS node group, which is an EKS
service to manage workers on your behalf. This is a new service and it lacks
important features, such as the ability to provide custom user data, which is
essential when it comes to optimizing workers' performance and kubelet
arguments. This is the reason why the preference is to keep using the self-
managed workers until AWS implements this feature.

Input variables

The variables. tf file defines the input variables that are required by this module.
There are multiple inputs for the workers' module, such as the worker AMI ID, EC2
instance type, user data, and instance storage size.

70 Provisioning Kubernetes Clusters Using AWS and Terraform

The variables.tf file is defined as follows:

variable "workers ami_ id"
type = string

variable "workers instance type" {
type = string

variable "workers storage size" {

type = string

Important note

AWS periodically releases optimized AMIs for EKS workers. To choose one

of them, please check the EKS documentation at https://docs.aws.
amazon.com/eks/latest/userguide/eks-optimized-ami.
html.

You still can build your own AMI for EKS workers, and you can make use of
the EKS AMI open source project at https: //github.com/awslabs/
amazon-eks-ami.

Please view the remainder of the variables and the full source code at
https://github.com/PacktPublishing/Kubernetes-in-Production-
Best-Practices/blob/master/Chapter03/terraform/modules/
eks-workers/variables.tf.

Module main resources

The main. t £ file defines the workers' resources and their properties. This module
contains two AWS resources:

« Autoscaling group

o Launch template

The autoscaling group uses the launch template to add worker instances according to the
launch specs.

The following code snippet uses the Terraform resource called aws_autoscaling
group, which is a built-in resource in the Terraform AWS provider that can be used to
create an AWS autoscaling group and set its configuration parameters.

https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://github.com/awslabs/amazon-eks-ami
https://github.com/awslabs/amazon-eks-ami
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/variables.tf

Creating the cluster infrastructure 71

The main. t £ file is defined as follows:

resource "aws_ autoscaling group" "workers" {

name = "${var.cluster full name}-workers-asg-
${var.workers instance type}"

max size = var.workers number max

min size = var.workers number min

vpc zone identifier = var.private subnet ids
launch template {
id = aws_launch template.workers.id
version = "SLatest"

}

Please view the rest of the main. t £ source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/
master/Chapter03/terraform/modules/eks-workers/main.tf.

Security groups

The security-groups.tf file defines the workers' security group and the ingress/
egress rules that control the flow of traffic between workers, and between the control plane
and the workers.

Please refer to Chapter 2, Architecting Production-Grade Kubernetes Infrastructure, for
more details about the security group ingress/egress rules and the permitted ports.

The security-groups.tf file is defined as follows:

resource "aws security group" "workers" {

name = "${var.cluster full name}-workers"

description = "Security group for all nodes in the ${var.
cluster full name} cluster"

vpc_id = var.vpc id

egress {

from port

to_port =0
protocol = n-qn
cidr blocks = ["0.0.0.0/0"]

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/main.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/main.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/main.tf

72 Provisioning Kubernetes Clusters Using AWS and Terraform

You can view the full source code at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/eks-workers/security-groups.tf.

IAM role and policies
The following iam. t £ file defines an IAM role and associates two policies with this role:

resource "aws iam role" "workers" {

name "${var.cluster full name}-workers"

assume_role policy = <<POLICY

"Version": "2012-10-17",
"Statement": [
"Effect": "Allow",
"Principal": ({
"Service": "ec2.amazonaws.com"

b

"Action": "sts:AssumeRole"

}

POLICY

}

The IAM policies are AmazonEKSWorkerNodePolicy, AmazonEKS
CNI Policy, AmazonEC2ContainerRegistryReadOnly, and
CloudWatchAgentServerPolicy. All of them are standard predefined IAM policies:

resource "aws_ iam role policy attachment"
"AmazonEKSWorkerNodePolicy" {

policy arn = "arn:aws:lam::aws:policy/
AmazonEKSWorkerNodePolicy"

role = aws_iam role.workers.name

}

resource "aws iam role policy attachment" "AmazonEKS CNI
Policy" {

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/security-groups.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/security-groups.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/security-groups.tf

Creating the cluster infrastructure

73

policy arn = "arn:aws:iam::aws:policy/AmazonEKS CNI Policy"

role

aws_iam role.workers.name

}

resource "aws iam role policy attachment"
"AmazonEC2ContainerRegistryReadOnly" {

policy arn = "arn:aws:liam::aws:policy/
AmazonEC2ContainerRegistryReadOnly"
role = aws_iam role.workers.name

}

resource "aws iam role policy attachment"
"CloudWatchAgentServerPolicy" {

policy arn = "arn:aws:iam::aws:policy/
CloudWatchAgentServerPolicy"

role = aws_ilam role.workers.name
resource "aws iam instance profile" "workers" {

name = "${var.cluster full name}-workers"

role = aws_iam role.workers.name

}

You need to attach the IAM role defined in the previous code to the workers in order to

enable them to operate within the AWS environment.

User data

The user-data. tf file defines the user data script that is executed while the worker

instance is booting up.

The following code snippet uses a special Terraform code block called 1ocals, which is
used to define a set of key/value configurations. In our solution, we use it to construct the

worker user data script.

The user-data. t £ file is defined as follows:

locals

kubelet extra args = <<ARGS
--v=3 \
ARGS

userdata = <<USERDATA
#!/bin/bash

74 Provisioning Kubernetes Clusters Using AWS and Terraform

set -o Xtrace

/etc/eks/bootstrap.sh --b64-cluster-ca "${var.cluster ca}"
--apiserver-endpoint "${var.cluster endpoint}" \

USERDATA

workers userdata = "${local.userdata} --kubelet-extra-args
\"${local.kubelet extra args}\" \"${var.cluster full name}\""

}

Later in the book, we will update the previous code to bootstrap kubelet with optimized
arguments for worker performance tuning.

Worker authentication

Kubernetes requires workers to be authenticated in order to be able to join the cluster and
communicate with kube-api-server. EKS provides its own solution to perform this
type of authentication, as it requires the cluster admin to create a ConfigMap that contains
the workers' IAM role ARN and map it to the Kubernetes system node group. By doing
that, workers can join the cluster.

To automate this, the authconfig. tf file defines the content of the authconfig
YAML file, which you will use to register and authenticate the workers with the EKS
control plane.

It is worth mentioning that authconf ig can be applied separately to the cluster using
kubect1. However, I recommend that you apply it using Terraform to register the nodes
immediately after EKS is provisioned, and then you can apply it again later as part of
Kubernetes configuration management, and add more users and groups to authconfig.

The authconfig. tf file is defined as follows:

locals {

authconfig = <<AUTHCONFIG
apiVersion: vl
kind: ConfigMap
metadata:

name: aws-auth

namespace: kube-system
data:

Creating the cluster infrastructure 75

mapRoles: |
- rolearn: "${aws iam role.workers.arn}"
username: system:node:{{EC2PrivateDNSName} }
groups:
- system:bootstrappers
- system:nodes
AUTHCONFIG

}

In Chapter 4, Managing Cluster Configuration with Ansible, we will learn how to extend
aws-auth to authenticate other users with the cluster.

Output values

The outputs. tf file defines the output values from the Workers module, such as the
worker's instance profile ARN, the IAM role ARN, and other outputs. Please view the
full source code of outputs.tf athttps://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/eks-workers/outputs.tf.

In this section, you learned to develop a Terraform module for the cluster workers. You
will use this with other modules to compose your cluster infrastructure. In the next
section, you will learn to develop a Terraform module that wraps both EKS and workers
in a single module that represents the whole Kubernetes cluster.

Developing the Kubernetes cluster Terraform module

Under the terraform/modules directory, create a subdirectory and name it cluster.
This directory will contain the following Terraform code files:

e config.tf
e terraform.tfvars
o« variables.tf
e main.tf
e outputs.tf
This cluster module is a wrapper above both the EKS module and the workers' module.

You will notice that the inputs and outputs to/from this module are a combination of both
EKS and worker modules.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/eks-workers/outputs.tf

76 Provisioning Kubernetes Clusters Using AWS and Terraform

Input variables

The variables. tf file defines the input variables that are needed by this module.
These inputs are a combination of both EKS and worker modules. Please view the source
code with a full list of variables at ht tps: //github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/cluster/variables.tf.

EKS control plane
The eks-cp . t£ file defines an instance of the EKS module. It is defined as follows:

module "eks" {
source = "../eks-cp"
vpc_id = var.vpc_id

private subnets

var.private subnets

public subnets var.public subnets

cluster full name var.cluster full name

cluster version var.cluster version

common_tags

}

The previous code block creates the EKS control plane by creating an instance from the
EKS module and passing to it the required inputs.

var.common_tags

EKS workers

The workers. t £ file defines an instance of the workers module:

module "workers"

source = ", ./eks-workers"
vpc_id = var.vpc_id

private subnet ids = var.private_ subnets
cluster_ full name = var.cluster_ full name
cluster endpoint = module.eks.endpoint
cluster ca = module.eks.ca

cluster security group = module.eks.security group
workers ami_id = var.workers ami_id

workers_ instance type = var.workers_ instance_type

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/variables.tf

Creating the cluster infrastructure 77

workers number max = var.workers number max
workers number min = var.workers number min
workers storage size = var.workers storage size
common_tags = var.common_tags

}

The previous code block creates the cluster workers by creating an instance from the
workers module and passing it to the required inputs. Both of the previous code files
comprise the full Kubernetes cluster.

Output values

The outputs. tf file contains the output values from the cluster module, such

as the cluster's full name, the cluster endpoint, authconfig, and others. Please

view the complete source code at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/modules/cluster/outputs.tf.

In this section, you learned to develop a Terraform module that wraps both EKS and
workers in a single module that is used to provision the whole Kubernetes cluster. In
the next section, you will use the previous modules to develop your first cluster - the
Packt cluster.

Putting all modules together

Now it is time to bring all the modules together by creating your first cluster group,
packtclusters, and a first cluster, prod1.

Under the root terraform directory, create a subdirectory and name it
packtclusters. Then, under this, create the following Terraform code files:

e config.tf

e terraform.tfvars
e variables.tf

e main.tf

e outputs.tf

In the following subsections, you will create the code files in the previous list and learn all
the details about them.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/modules/cluster/outputs.tf

78 Provisioning Kubernetes Clusters Using AWS and Terraform

Configuration

The config. tf file contains the Terraform shared state configuration and the AWS
provider definition. This file is similar to the config. t £ file you created in the Developing
the cluster VPC section. Please view the complete source code at https://github.
com/PacktPublishing/Kubernetes-in-Production-Best-Practices/
blob/master/Chapter03/terraform/packtclusters/config.tf.

Environment variables

The terraform. tfvars file defines the input values that are passed to the cluster
module. Some of these values are outputs from the VPC module. To retrieve these
outputs, you have to execute the following command:

$ cd Chapter03/terraform/packtclusters-vpc

$ terraform output
Then, copy the following output values:

« VPCID
e Private subnet IDs

o Public subnet IDs

Then, paste these values into the terraform. t fvars file into their corresponding
placeholders.

The terraform. tfvars file is defined as follows:

aws_region = "us-east-1"

private subnet ids = [
"subnet - XxXxXxXx",
"subnet - XXXXXxXXX",
"subnet -xXxxXxxXxXx",

1

public subnet ids = [
"subnet - XXXxXXxXx",
"subnet - XXXXXxXXX",
"subnet - xXxxXxxXxXXx",

1

vpc_id

"VPC - XXXXXXXXXX"

clusters name prefix

"packtclusters"

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/config.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/config.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/config.tf

Creating the cluster infrastructure 79

cluster version = "l.1le6"
workers instance type = "t3.medium"
workers number min =1

workers number max =3

10

workers storage size

Some of the preceding values can be tuned according to your infrastructure requirements,
specifically, the instance type and the worker instance count min/max limits.

For educational purposes, you can use the existing values in the previous code block.
However, when you decide to move your cluster to production, please refer to the workers'
sizing section in Chapter 2, Architecting Production-Grade Kubernetes Infrastructure.

Input variables

The variables. tf file defines inputs that Terraform will use while creating the
packtclusters-prodl cluster. You can view the complete source code at https://
github.com/PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter03/terraform/packtclusters/
variables.tf.

The cluster main resources

The main. t £ file defines the cluster module. It takes the input variables required to
configure EKS and the workers.

The main. tf file is defined as follows:

module "packtcluster"

source = "../modules/cluster"

vpc_id = var.vpc_id

public subnets = var.public subnet ids
private subnets = var.private subnet ids
cluster full name = "${var.clusters name prefix}-

${terraform.workspace}"
cluster version = var.cluster version

workers instance type = var.workers instance_ type

workers ami_id = data.aws_ssm parameter.workers ami_
id.value
workers number min = var.workers number min

workers number max = var.workers number max

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/variables.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/variables.tf

80 Provisioning Kubernetes Clusters Using AWS and Terraform

workers storage size = var.workers storage size

common_tags

local.common_tags
aws_region = var.aws_region

}

In the previous code block, the cluster full name input is constructed by
concatenating cluster name prefix, which is packtclusters, and the Terraform
workspace name, prod1. And this is how you can create multiple clusters under one
cluster group such as packtclusters. All you need is to create a new Terraform
workspace and execute your terraform plan.

Output values

The outputs. t £ file defines the outputs from packtclusters, primarily
authconfig, which is used to authenticate the workers with the control plane. You

can view the complete source code at https://github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/
terraform/packtclusters/outputs.tf.

By completing this section, you have a complete Terraform code base that is capable
of creating full Kubernetes clusters. In the next section, you will learn the Terraform
commands to use this code base to provision your first production cluster.

Provisioning the cluster infrastructure

After you have completed developing the cluster Terraform modules in the previous
sections, you can now provision your first Kubernetes cluster and create it in your
AWS account:

1. [Initialize the Terraform state:

$ cd Chapter03/terraform/packtclusters

$ terraform init

2. Create a new Terraform workspace for the first cluster and name it prod1i:

$ terraform workspace new prodl

3. Execute the terraform plan command to review the planned changes before
applying them:

$ terraform plan

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/outputs.tf
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter03/terraform/packtclusters/outputs.tf

Creating the cluster infrastructure 81

4. 'Thisis the terraform plan command output that you should get:

Plan: 22 to add, @ to change, @ to destroy.

Note: You didn't specify an "-out" parameter to save this plan, so Terraform
can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

Figure 3.7 - Terraform plan command output

Execute the terraform apply command. Enter yes when you get a prompt to
approve the plan execution:

$ terraform apply

You will get the following output after the terraform apply command completes
successfully. This means that Terraform has successfully created 22 resources:

omplet 22 a @ ch
state lock. This may take a few moments

Figure 3.8 — Terraform apply command output

Retrieve the cluster kubeconfig file:

$ aws eks --region $(terraform output aws region) update-
kubeconfig --name $(terraform output cluster full name)
Added new context arn:aws:eks:us-east-
1:698782116220:cluster/packtclusters-prodl to ~/.kube/
config

82 Provisioning Kubernetes Clusters Using AWS and Terraform

8. Apply authconfig to authenticate the workers' nodes with the EKS control plane:

$ terraform output authconfig | kubectl -n kube-system
create -f -

configmap/aws-auth created

9. Ensure that the cluster worker nodes are up and in the ready state:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION

ip-10-40-98-176.ec2.internal Ready <none> 90s
v1l.15.10-eks-bac369

After completing the previous instructions, you have a Kubernetes cluster up and running,
but it is still not ready to deploy production workloads. In the next chapters, you will
deploy more services to the cluster, and optimize their configurations to make it capable of
running your production workloads.

Cleaning up and destroying infrastructure
resources

After completing the hands-on exercises in this chapter, you can follow the instructions in
this section to destroy the Kubernetes cluster and its AWS resources.

You will destroy the resources in reverse order from their creation. First, you will destroy the
Kubernetes cluster resources, then the VPC resources, and finally the shared state resources.

Destroying the cluster resources

Follow these Terraform commands to destroy all of the packtclusters resources that
you created in the previous sections of this chapter:

1. Initialize the Terraform state:

$ cd Chapter03/terraform/packtclusters

$ terraform init

2. Execute the terraform destroy command. Enter yes when you get a prompt
to approve the destruction:

$ terraform destroy

Cleaning up and destroying infrastructure resources 83

3. You will get the following output once the terraform destroy command
completes successfully. This means that Terraform has successfully destroyed the 22
resources in the cluster:

Releasing state lock. This may take a few moments...

Figure 3.9 - The terraform destroy command output

Having observed the previous instructions, packtclusters-prodl is completely
destroyed. In the next subsection, you will destroy the VPC resources.

Destroying the VPC resources

Follow these Terraform commands to destroy all of the packtclusters-vpc resources
that you created in the previous sections of this chapter:

1. Initialize the Terraform state:

$ cd Chapter03/terraform/packtclusters-vpc

$ terraform init

2. Execute the terraform destroy command. Enter yes when you get a prompt
to approve the destruction:

$ terraform destroy

3. You will get the following output after the terraform destroy command
completes successfully. This means that Terraform has successfully destroyed 28
network resources:

Destrov complete! Resources: 28 destroved

Releasing state lock. This may take a few moments. ..

Figure 3.10 - The terraform destroy command output

Having observed the previous instructions, packtclusters-vpc is completely
destroyed. In the next subsection, you will destroy the shared state resources.

Destroying the shared state resources

Usually, you do not have to delete the shared state files. However, for educational
purposes, you can follow these instructions to destroy these resources.

84 Provisioning Kubernetes Clusters Using AWS and Terraform

1. As the shared state S3 buckets have destroy prevention and versioning enabled, you
should empty and then destroy Terraform shared state S3 buckets first:

$ aws s3 rm s3://packtclusters-terraform-state
--recursive

$ aws s3 rm s3://packtclusters-vpc-terraform-state
--recursive

$ aws 83 rb s3://packtclusters-terraform-state --force

$ aws s3 rb s3://packtclusters-vpc-terraform-state
--force

2. Initialize the Terraform state to destroy the shared state DynamoDB tables:

$ cd Chapter03/terraform/shared-state

$ terraform init

3. Execute the terraform destroy command. Enter yes when you get a prompt
to approve the destruction:

$ terraform destroy

4. You will get the following output after the terraform destroy command
completes successfully. By then, Terraform has successfully destroyed both of the
DynamoDB tables:

Plan: @ to add, @ to change, 2 to destroy.
Do you really want to destroy all resources?
Terraform will destroy all your managed infrastructure, as shown above.

There is no undo. Only 'yes' will be accepted to confirm.

Enter a value: yes

aws_dynamodb_table.clusters_dynamodb_tf_state_lock: Destroying... [id=packtclusters-terraform-state-lock-dynamodb]
aws_dynamodb_table. clusters_vpc_dynamodb_tf_state_lock: Destroying... [id=packtclusters-vpc-terraform-state-lock-dynamodb]
aws_dynamodb_table.clusters_dynamodb_tf_state_lock: Destruction complete after 2s
aws_dynamodb_table.clusters_vpc_dynamodb_tf_state_lock: Destruction complete after 4s

Destroy complete! Resources: 2 destroyed.

Figure 3.11 - The terraform destroy command output

By now, you have successfully finished destroying your Kubernetes cluster and all of its
AWS resources in your AWS account.

I recommend practicing these instructions and repeating them to provision and destroy
the cluster, and to create multiple clusters by adding new Terraform workspaces, such as
prod2 and prod3.

Summary 85

Ssummary

In this chapter, you have learned to develop the infrastructure code for Kubernetes
clusters using Terraform and AWS. You went through practical steps to implement
this code. We started by creating the network components, followed by the cluster's
components, using AWS VPC, EKS, autoscaling groups, and other AWS services.

This chapter introduced you to Terraform practical development and its usage in relation
to production infrastructure provisioning. It showed you how to follow the best practices
of the declarative IaC, and also the best practices of decomposing your IaC into modules
and combining them to create Kubernetes clusters.

All of this establishes a foundation for the forthcoming chapters, where we will build
on the knowledge introduced here to take the Kubernetes cluster to the next level of its
production-readiness journey.

In the next chapter, you will learn in detail about Kubernetes cluster configuration
management. You will develop a dynamic templating solution that you can apply to the
cluster-level configurations, and you will learn how to make your solution scalable to
many clusters without introducing operational overheads and complexity.

Further reading

For more information on the topics covered in this chapter, you can refer to the
following books:

o Getting Started with Terraform — Second Edition: https://www.packtpub.
com/networking-and-servers/getting-started-terraform-
second-edition

» Hands-On Infrastructure Automation with Terraform on AWS: https://www.
packtpub.com/big-data-and-business-intelligence/hands-
infrastructure-automation-terraform-aws-video

https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/networking-and-servers/getting-started-terraform-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video
https://www.packtpub.com/big-data-and-business-intelligence/hands-infrastructure-automation-terraform-aws-video

4

Managing Cluster
Configuration with
Ansible

In Chapter 3, Provisioning Kubernetes Clusters Using AWS and Terraform, you learned how
to create a Kubernetes infrastructure with Terraform and AWS, and you also learned how
to develop infrastructure as code and provisioned your first production-like cluster.

This was just the first step towards building operational and production-ready
Kubernetes clusters. By now, you should have an up-and-running cluster with Terraform
infrastructure modules to provision other similar clusters.

These clusters are still plain; they're not configured or optimized to run production
workloads. To make these clusters fully operational, we simply need to deploy and
configure the required Kubernetes services for them.

In this chapter, you will design and develop a configuration management solution that
you can use to manage the configuration of Kubernetes clusters and their supporting
services. This solution is automated and scalable, and it requires a minimum effort to
maintain and operate.

88 Managing Cluster Configuration with Ansible

In this chapter, we will cover the following topics:

o Understanding Kubernetes configuration management challenges
+ Designing a configuration management solution for Kubernetes
« Developing a configuration management solution with Ansible

« Applying the solution to configure Kubernetes clusters

Technical requirements

In addition to the tools that you installed in Chapter 3, Provisioning Kubernetes Clusters
Using AWS and Terraform, you will need to install the following tools:

¢ python3
e pip3
e virtualenv

I will go into the specifics of these tools' installation and configuration in the next section.
If you already know how to do this, you can go ahead and set them up now.

You need to have an up-and-running Kubernetes cluster as per the instructions in Chapter
3, Provisioning Kubernetes Clusters Using AWS and Terraform.

The code for this chapter is located at https: //github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter04.

Check out the following link to see the Code in Action video:

https://bit.ly/3cGtgix

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter04
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter04
https://bit.ly/3cGtqjx

Installing the required tools 89

Installing the required tools

python3, pip3, and virtualenv are the prerequisites to execute the Ansible
configuration playbooks that we will develop in this chapter. If you do not have these tools
installed on your system, you can follow these instructions:

« Execute the following commands to install python3, pip3, and virtualenv on
Ubuntu Linux:

$ sudo apt-get update
$ sudo apt-get install python3
$ sudo apt-get install python3-pip

$ sudo pip3 install virtualenv

+ Execute the following commands to install python3, pip3, and virtualenv on
Amazon Linux 2:

$ sudo yum update

$ sudo yum install python3

$ sudo python3 -m pip install --upgrade pip
$ sudo python3 -m pip install virtualenv

+ Execute the following commands to install python3, pip3, and virtualenv
on macOS:

$ brew install python3
$ curl -0 https://bootstrap.pypa.io/get-pip.py
$ sudo python3 get-pip.py

$ sudo -H pip3 install virtualenv

« Execute the following commands to install python3, pip3, and virtualenv
on Windows:

C:\> choco install python3
C:\> pip install virtualenv

By installing python3, pip3, and virtualenv, you will be able to execute Ansible
playbooks against your Kubernetes clusters. You will learn how to do that later in

this chapter, but first, we need to go through the design details of our Kubernetes
configuration management solution.

90 Managing Cluster Configuration with Ansible

Implementation principles

In Chapter 1, Introduction to Kubernetes Infrastructure and Production-Readiness, you
learned about the infrastructure design principles that we will follow in this book.

I would like to start this chapter by highlighting the notable principles that influenced the
configuration management solution and the technical decisions in this chapter:

+ Everything as code: In this chapter, we will keep our commitment to having
everything in the infrastructure as code - cluster configuration is not an exception.
You will use Ansible to achieve this goal by creating a configuration management
solution for your Kubernetes cluster.

o Automation: In the previous chapter, we used Terraform tool to automate
infrastructure provisioning. We designed a solution around Terraform that can
scale to serve a growing number of clusters without the need to scale up your
infrastructure teams. Here, you will create a similar solution to manage the
Kubernetes configuration while keeping it automated, scalable, and easy to operate
and maintain.

« Simplicity: Ansible fulfills this principle in many aspects as it is easy to learn and
to use. It has a simple syntax compared to other configuration management tools.
It uses YAML, which you do not need to learn a programming language to write.
Moreover, it is agentless, which means you do not need a server to run it, as you can
run Ansible from your computer. Also, it is modular, which enables separation of
concerns and code reusability, which is similar to Terraform. So, they can easily live
together and simplify the automation of the infrastructure.

Kubernetes configuration management

The beauty of Kubernetes is that every part of it is abstracted as an object that can be
managed and configured declaratively with YAML or JSON through its API server. This
makes Kubernetes configuration easier to manage as code. However, it is still challenging
to manage this configuration when you have groups of clusters that run hundreds of
add-ons and services.

Imagine a scenario where you manage a company's infrastructure with Kubernetes, and
you have multiple clusters for development, testing, and production. Add to them the
cluster add-ons that run on the Kubernetes services layer as per the following diagram:

Kubernetes configuration management 91

Applications and Workloads

Application services

Ingress Apps cert-

i of bility e ExternalDNS | Other services

Kubernetes cluster services

Authentication Clust
CoreDNS ol
and authorization observability Cluster policies
Kubernetes cluster
Control plane Worker nodes
Infrastructure services
VMs Data services Shared storage Managed services

Public cloud | Private cloud | On-premises

Figure 4.1 - Kubernetes infrastructure layers

This means that you can have N clusters with a growing number of add-ons and different
environment types, such as development, QA, and production. If we put these together,
we end up with a complex and redundant configuration to manage.

The recommended way to manage clusters' configuration is through Configuration

as Code (CaC). We will deploy these services and add-ons to the cluster and add their
configuration manifests to the source code control. By adopting this pattern, you will
be able to redeploy the same configuration in a seamless and automated fashion to your
clusters. This solution appears to be easy when you start with a single cluster, but it will
be difficult to maintain and scale when provisioning multiple clusters with different
configuration values.

This leads us to an enhanced solution, which is configuration templating. Let's assume
you have a group of clusters that serve product X, and these clusters have different
configurations, such as different users' authentication and authorization, namespaces,
resource quotas, and so on.

This solution uses Ansible templating and Jinja2. You write the templates for the
Kubernetes manifests once, and then Ansible substitutes the variables in these templates
and generates the appropriate manifests for each target cluster. This solution is scalable
and easy to maintain, and it fulfills the infrastructure design principles that we introduced
in Chapter 1, Introduction to Kubernetes Infrastructure and Production-Readiness.

92 Managing Cluster Configuration with Ansible

Kubernetes configuration management workflow

After considering the preceding templating solution, our Kubernetes configuration
management workflow looks like the following:

1. Create Ansible Jinja2 templates for the Kubernetes cluster services that you want to
configure and deploy.

2. Define the values of the variables and categorize them based on the environments
and the cluster's group.

Provisioning the clusters with Terraform.

3

4. Pass the Terraform outputs to Ansible.

5. Substitute the variables in the Ansible template with the corresponding values.
6

Use Ansible to apply the Kubernetes manifests to the target clusters.

In the next sections, we will implement this workflow with Ansible and Jinja2 templates,
then learn how to use it with a basic example.

Configuration management with Ansible

In this chapter, we will use Ansible as the configuration management tool, and we will
build around it our solution for Kubernetes configuration management. In this section,
we are going to briefly discuss the reasoning behind this choice, and some Ansible key
concepts. If you are willing to learn more about Ansible, you can use its official guide here:
https://www.ansible.com/resources/get-started.

Why Ansible?

When it comes to templating Kubernetes configuration, we have battle-tested tools. Most
notable among them are Ansible and Helm, and both of them have pros and cons. But I
am not here to run a full comparison between them. My decision is based on having used
both tools in serving production environments, and also our specific use case here. When
it comes to pure configuration management and templating, Ansible remains the strongest
contender. While Helm supports templating, it remains more like a Kubernetes package
manager than a full configuration management tool. This is why we decided to use
Ansible to develop a configuration management solution for Kubernetes infrastructure.

What is Ansible?

Ansible is an automation and configuration management (CM) tool. It can configure
systems, deploy applications and containers, and provision cloud resources. It can
orchestrate advanced tasks such as continuous deployments and rolling updates.

https://www.ansible.com/resources/get-started

Kubernetes configuration management 93

In this book, we are not going to dig deep into Ansible's features and use cases. We believe
that there are a lot of good books dedicated to this purpose; our main focus is on how to
use Ansible to solve Kubernetes' CM problem in a simple and efficient way.

Ansible key concepts

The CM solution that we will implement and use in this book is built with key Ansible
concepts. I will not dive deep into these concepts; rather, I will provide brief details about
them, as well as highlight how we will utilize each one of them in our CM framework:

« Inventory: This is used by Ansible to group similar hosts into groups. This is
accomplished by defining the inventory files with the addresses of the hosts.

» Modules: This is how Ansible abstracts and groups a specific task to be reused
against your host's inventories; modules can even be made public and used by
other Ansible users. In our solution, we will use one of the ready-made Kubernetes
modules to execute configuration manifests against the clusters.

o Tasks: This is where we instruct Ansible about the steps that it should do; it could
be installing a piece of software or provisioning a whole system. In our solution, we
will create a separate task to configure each Kubernetes component and add-on on
its own.

« Playbooks: These are the building blocks of Ansible. They are used to gather
everything together and provide a sequence of instructions that involves other
Ansible blocks, such as tasks, variables, and modules. They then instruct Ansible
on how to configure the target system to reach the desired state. In our solution,
we will use a playbook to hold the configuration tasks for all of the components
and add-ons that are required by all clusters, and we will also have variables and
selectors to enable cluster maintainers to switch specific add-ons on/off.

« Variables: We will use variables to hold the values for the configuration that is used
for each cluster add-on, and we will split these variables into groups that represent
different clusters and environments.

» Templates: Ansible uses Jinja2 templates to enable dynamic expressions using
variables. This enables Ansible to generate new configuration files based on these
templates during execution time. In our solution, we will define Kubernetes
manifests as Ansible Jinja2 templates, and during configuration execution time,
Ansible will be able to generate the correct Kubernetes manifests for each cluster
based on the provided or predefined variables.

94 Managing Cluster Configuration with Ansible

The previous Ansible concepts are essential to understanding how Ansible works. We will
utilize each of them to develop the CM solution in the next section. You will learn about
each concept and how to use it as you move forward in this chapter.

Configuring the clusters

Now we put the solution we designed in the previous section into action. We will start by
developing the Ansible framework skeleton, which will consist of the following parts:

o group vars: This directory contains the manifest configuration files with
variables' default unless a cluster defines its own private variables in its own
inventory.

« inventories: This directory contains the configuration files with variables'
values, which are specific to each cluster or cluster group, meaning that variables
defined here override default variables defined under the groups_vars directory.

o tasks: In this directory, we define a separate task for each cluster service and
add-on that we need to deploy and configure; the task definition file is standard
across tasks, as we will use Ansible's k8s module and pass to it the YAML templates
to deploy against the target cluster.

o templates: This directory contains the Kubernetes manifest YAMLs and
configuration files for each Kubernetes object we need to manage, and these
template files will have the required variables written in Jinja2 expressions format.

o cluster.yaml: This is the main playbook that will be passed to Ansible to
execute against the target cluster. It contains all the tasks that we need to invoke to
configure the cluster objects and add-ons. The playbook also has tags for each task,
and this enables the cluster maintainer to switch specific tasks on/oft for each target
cluster whenever needed.

After creating the Ansible skeleton for Kubernetes cluster configuration management, we
will be able to grow it to handle more cluster services and deployments. The development
workflow looks as the following:

1. Write Kubernetes manifests in YAML format for the cluster add-ons that you want
to deploy, then deploy them to a test cluster to ensure correctness.
2. Convert the Kubernetes manifests from YAML to Jinja2 templates.

3. Create a task file to invoke these templates and add this file under the Ansible
tasks directory.

Configuring the clusters 95

4. Create the variable values:

- For default variable values, under the group vars directory, add the values of
the variables you created in the template in an appropriate YAML file.

- For cluster-specific variables, under the inventories directory, create a new
directory with the name of the cluster or cluster group that you want to target, and
then create its own group_vars directory, and create under that a YAML file to
contain the variable values mapping.

5. Update the playbook file and add a step to invoke the targeted task. Then, associate
to this task the appropriate tags and properties.

In the hands-on exercise, we will configure aws -auth and create a Kubernetes
namespace to illustrate how this Ansible solution works. In the coming chapters, we will
use this solution to deploy more services and add-ons on top of Kubernetes.

The ansible directory's structure

The ansible directory is where all the Ansible source code resides in your infrastructure
repository. As a best practice, I recommend having a dedicated infrastructure source

code repository that contains all the infrastructure as code and configuration for your
Kubernetes clusters and the rest of your infrastructure. The following is the proposed
directory structure of the Ansible configuration that we will develop in this chapter:

s-infra
ansible
f— cluster.yaml
— group_vars
— gll
F— aws-auth.yaml
L— namespaces.yaml
inventories
L— packtclusters
— group_vars
I L— override
I F— aws-auth.yaml
| L— namespaces.yaml
— hosts
tasks
— aws-auth.yaml
L— namespaces.yaml
templates
F— auth
| — aws-auth.yaml
L— namespaces
L— namespaces.yaml

Figure 4.2 - Ansible directory structure

96 Managing Cluster Configuration with Ansible

You will learn in detail and with hands-on practices how to develop this solution and all of
the configuration code under the ansible directory.

Creating Ansible templates

In this section, you will create two templates to learn how you can rewrite Kubernetes
manifests into Ansible Jinja2 format.

The second template is for a Kubernetes namespace, which you will use to create new
namespaces.

Creating the aws-auth template

The first template is for aws -auth ConfigMap, which you will use to define AWS
IAM users and roles and then authenticate them to the cluster. You will learn in detail
about aws -auth and how to use it for cluster access in Chapter 6, Securing Kubernetes
Effectively.

You will create a Jinja2 template for the aws -auth ConfigMap. However, let's first have
a look at the default aws -auth ConfigMap without templating:

apiVersion: vl
kind: ConfigMap
metadata:
name: aws-auth
namespace: kube-system
data:
mapRoles: |
- rolearn: <ARN of instance role (not instance profile) >
username: system:node:{{EC2PrivateDNSName} }
groups :
- system:bootstrappers

- system:nodes

The previous code block creates an aws -auth ConfigMap with one role for the worker
EC2. But what if we need to add more roles and users? What if we need to use the same
ConfigMap with different clusters and with different worker Amazon Resource Names
(ARNs)? We either create multiple ConfigMaps with different configurations or create

a single template and let Ansible use it to generate the correct aws-auth ConfigMap for
each cluster.

Configuring the clusters 97

The next code block for the aws - auth template defines a list of specific users and
roles who can access the cluster. In the first part of the code, you define the Kubernetes
apiVersion, the object type as Conf igMap, and the metadata:

apiVersion: vl
kind: ConfigMap
metadata:

name: aws-auth

In the second part of the code, you define the ConfigMap data section that includes the
Identity and Access Management (IAM) users. First, instead of adding each user's data
(name, ARN, and Kubernetes group), you define them inside a Jinja2 for loop with Jinja2
variables that can be substituted by Ansible during the execution time. You notice that we
use a for loop so we can add multiple users:

data:
mapUsers: |

{% for user in map users.system masters %}

- userarn: "{{ user.arn }}"
username: "{{ user.name }}"
groups:

- system:masters

{% endfor %}

In the second part of the code, you define another ConfigMap data section that includes
the IAM roles. First, instead of adding each user's data (name, ARN, and Kubernetes
group), you define them inside a Jinja2 for loop with Jinja2 variables that can be
substituted by Ansible during execution. You notice that we use a for loop so we can add
multiple roles:

mapRoles: |
{$ for role in map roles.workers roles %}
- rolearn: "{{ role }}"

username: {% raw -%} "system:node:{{ '{{' }}
EC2PrivateDNSName{{ '}}' }}" {%- endraw %}

groups :
- system:bootstrappers
- system:nodes

{% endfor %}

{% for role in map roles.system masters %}

98 Managing Cluster Configuration with Ansible

- rolearn: "{{ role }}"
username: {% raw -%} "admin:{{ '{{' }}SessionName{{ '}}"'
P} {%- endraw %}
groups:
- system:masters

{% endfor %}

The previous template authenticates IAM users and roles to any cluster, and you can
even extend it more with different group types according to your needs. But the original
concept remains the same, as you have a single template for the aws-auth ConfigMap
that can work for any cluster and for any users and roles.

Creating a Kubernetes namespace template

The next code block is for a Jinja2 template that generates a YAML for a Kubernetes
namespace manifest. This template defines the basic namespace configuration, such as
names, labels, and annotations.

This template can create multiple namespaces as it reads a list of namespaces from the
target cluster's Ansible variables and generates the Kubernetes manifest YAMLs for each
one of these namespaces:

[)

{$ for namespace in namespaces list %}
apivVersion: vl
kind: Namespace
metadata:
name: {{ namespace.name }}
labels:
name: {{ namespace.name }}
owner: {{ namespace.owner }}

{¢ endfor %}

The previous template is an example of how you can create your own templates for
Kubernetes objects. I recommend going to the Ansible Jinja2 official documentation when
you write these templates to get more ideas about the code blocks and how to use them:
https://docs.ansible.com/ansible/latest/user guide/playbooks
templating.html.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html

Configuring the clusters 99

Creating Ansible variables

As you learned earlier in this chapter, the Ansible group vars will contain the global
configuration variables that you want to apply to all clusters unless you want to specify
a different value for a specific cluster. In this section, you will define default variables for
the admin user in the aws -auth ConfigMap and define a new namespace.

Defining the aws-auth variables

The following code snippet defines the default variables for a cluster's configuration
whenever the cluster does not have its own private variables. The first variable is worker
iam role arn. Ansible will get the value of worker iam role arn from the
Terraform outputs. The second variable is the clusters' admin. You also add the ARN or
the IAM user that is called admin:

map_roles:
workers roles:
- "{{ worker iam role arn }}"
system masters: []
map users:
system masters:
- arn: "<ARN of the admin users>"

name: "admin"

You can extend the previous variables and add more roles and users to the cluster
according to your needs. You will also learn in Chapter 6, Securing Kubernetes Effectively,
about the Kubernetes Role-Based Access Control (RBAC) and access management best
practices.

Important note

In Jinja2 templates, you define the variables between double braces, { { }}.
Please refer to Ansible templating documentation: https://docs.
ansible.com/ansible/latest/user guide/playbooks
templating.html.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html

100 Managing Cluster Configuration with Ansible

Configuring the default namespace

You will add a single namespace to the namespaces_1list variable. However, you can
add more namespaces according to your needs. This is an illustration to show you how
namespace configuration should work with Ansible:

namespaces list:
- name: default-namespace

owner: admin

In this section, you should have learned how to create default configuration variables for
your clusters. It is a simple configuration mechanism but is very powerful and efficient.

Creating Ansible inventories

Not all clusters are equal. In the previous section, you learned how to set default variables
for your configuration. But what if you need to have different values for one of your
clusters? Ansible inventories are the answer. In this section, you will create inventories to
define local cluster variables that override the default variables.

Create Ansible's inventory

The way that Ansible configures hosts (servers/VMs) is very simple. Usually, there is

a host or group of hosts and you have configuration tasks that you want to apply against
these hosts. But our solution is a different use case, as we will use the same concept but not
against any remote hosts. This is because, in reality, we do not configure hosts - instead,
we configure Kubernetes clusters. Ansible just needs to communicate with the Kubernetes
API server.

All you need is to set the Ansible hosts to target the localhost. Then in turn,
localhost will use the kube-server API endpoint defined in kubeconfig to apply
the intended configurations:

[all]
localhost
[overridel

localhost

As you will notice in this previous code block, there is only the localhost value defined
as the target host for Ansible. This host s file should exist for each inventory that Ansible
manages.

Configuring the clusters 101

Overriding the aws-auth variables

To override the aws-auth default variables defined in group_vars, you need to
recreate the aws -auth template file under the packtclusters inventory with the
new variables' values. The next code block shows you how to override aws-auth.
There are two IAM roles defined: the first role for workers and the second for the cluster
administrator role. The second part of the code defines a different user other than the
default one:

map_roles:
workers roles:
- "{{ worker iam role arn }}"
system masters:
- "<ARN of the admin-role user>"
map_ users:
system masters:

- arn: "arn:aws:iam::AWS ACCOUNT NO:user/packtclusters-
admin"

name: "packtclusters-admin"

The previous configuration template will replace the default one for packtclusters.
You can do the same for any other template.

Overriding the namespaces variables

To override the namespaces default variables defined in group_vars, you need to
recreate the namespaces template file under the packtclusters inventory with the
new variables' values. In the next code block, there is a new variable that will override
default-namespace with a new one called packtclusters-namespace. So,
when you apply this configuration, packtclusters will have the new namespace
instead of the default one:

namespaces list:
- name: packtsclusters-namespace

owner: packtclusters-admin

In this section, you have learned how to override Ansible's default variables to use
different configuration values based on the cluster.

102 Managing Cluster Configuration with Ansible

Creating Ansible tasks

The second step after creating the Ansible templates is creating Ansible tasks. In this
section, you will learn how to create Ansible tasks to deploy your configuration templates.

The tasks will use the Ansible k8s module. This module accepts the templated Kubernetes
YAMLs and then instructs Ansible to apply these tasks against the target cluster. Ansible
can identify the target cluster from the current context in the kubeconfig file.

Important note

You can learn more about Ansible's k8s module from the official
documentation: https://docs.ansible.com/ansible/
latest/user_guide/modules_intro.html.

Creating the aws-auth task
The following task instructs Ansible on how to generate and apply the aws-auth

ConfigMap to the cluster. It takes the path to the template file as an input and applies it to
the target cluster.

In the next code block, you define the task specs, with properties such as name, the
kubeconfig path, state, and whether to force applying the configuration to the cluster
or not. Then, the task defines which Jinja2 template to load and substitutes its variables
with the values from the group_ vars or inventory directories.

You will notice that there is a 1oop directive if there are multiple Jinja2 templates to be
applied by the k8s module. The other important parameters are retries, which tells
Ansible the number of retries until the task succeeds, and delay, which tells Ansible the
time in seconds between each of these retries:

ansible/tasks/auth/aws-auth.yaml
- name: deploy aws auth ConfigMap
k8s:
definition: "{{ item }}"
kubeconfig: "{{ k8s_kubeconfig }}"
state: "{{ k8s manifests state }}"
force: "{{ k8s force }}"
loop:
- "{{ lookup('template', k8s manifests base dir + 'auth/
aws-auth.yaml') | from yaml all | list }}"

register: k8s result

https://docs.ansible.com/ansible/latest/user_guide/modules_intro.html
https://docs.ansible.com/ansible/latest/user_guide/modules_intro.html

Configuring the clusters 103

until: k8s result is success
retries: 3

delay: 2

no log: "{{ k8s no log }}"

The previous code for the aws -auth task will be invoked by an Ansible playbook that
you will learn about later in this chapter.

Creating the namespaces task

The following Ansible task file is for creating the cluster namespaces. It takes the path to
the namespaces object template file and applies it to the target cluster.

The code structure for the namespaces task is very similar to the previous aws-auth
task, except it has a different name, and it reads a different Jinja2 template file for
namespaces.yaml:

ansible/tasks/namespaces.yaml
- name: create cluster namespaces
k8s:
definition: "{{ item }}"
kubeconfig: "{{ k8s kubeconfig }}"
state: "{{ k8s manifests state }}"
force: "{{ k8s_force }}"

loop: "{{ lookup('template', k8s manifests base dir +
'namespaces/namespaces.yaml') | from yaml all | list }}"

register: k8s result

until: k8s result is success
retries: 3

delay: 2

no log: "{{ k8s no log }}"

The previous code for the namespaces task will be invoked by an Ansible playbook that
you will learn about later in this chapter.

104 Managing Cluster Configuration with Ansible

Creating the cluster's playbook

An Ansible playbook is an Ansible file where you put all tasks in the order that you want
Ansible to execute them in. The following cluster playbook is a simple and standard
Ansible playbook, and it has three sections: the first section is to define the target hosts,
the second section is to define any variables that you want the tasks to use the values of
during execution, and the third section is the list of tasks that Ansible will execute.

The following code block defines the hosts and the connection type. In our solution, we
will use localhost as the target host, as explained before:

ansible/cluster.yaml

- name: deploy k8s add-ons
hosts: localhost
connection: local

gather facts: no

The following code block defines the variables that are required during the execution
of the tasks. The most notable ones are the physical path to the kubeconfig file and
the base directory where the Kubernetes templates reside. These variables override any
variables with similar names in the group vars and inventory directories:

vars:
Ansible python interpreter: "{{ Ansible playbook python }}"
k8s kubeconfig: ~/.kube/config
k8s manifests base dir: templates/
k8s manifests state: present
k8s_ force: false

k8s no log: false

The following code block defines the list of tasks that Ansible executes against the target
cluster. You add new tasks to this list and assign meaningful tags to them:

tasks:

- import tasks: tasks/aws-auth.yaml
tags: aws-auth

- import tasks: tasks/namespaces.yaml

tags: namespaces

Configuring the clusters

105

By completing the development of the playbook, tasks, and all the configurations, you are
ready to put all the Ansible pieces together apply the playbook and have Ansible configure
your cluster. In the next section, you will use the packtclusters-prodl cluster,
which you created in the previous chapter, to apply the Ansible playbook.

Applying the cluster's Ansible playbook

The next instructions will deploy the Ansible playbook, which will configure your cluster
with the intended configuration:

1.

Initialize the Terraform state and select the workspace by running the following
commands:

$ cd terraform/packtclusters
$ terraform init

$ terraform workspace select prodl

Retrieve and configure the localhost kubeconfig with the target cluster:

$ aws eks --region $(terraform output aws region) update-
kubeconfig --name $(terraform output cluster full name)

Use Python virtualenv to install and execute Ansible:

$ virtualenv $HOME/ansible-k8s-workspace

$ source $HOME/ansible-k8s-workspace/bin/activate

Install Ansible and the prerequisite modules, openshift, pyyaml, and
requests:

$ pip install ansible==2.9 openshift pyyaml requests

Execute the Ansible playbook:

$ ansible-playbook -i \
../../ansible/inventories/packtclusters/ \

-e "worker iam role arn=$(terraform output worker iam
role arn)" \

../../ansible/cluster.yaml

106 Managing Cluster Configuration with Ansible

You will get the following output after successful execution:

(ansible-kB&s-workspace) packtclusters ¥ ansible-playbook -1 %
/ nsible/inventories/packtclusters/
iom_role_arn=3(terraform output worker_iom_role_arn)®
nsibles/cluster. yoml

PLAY [depl L B T
LTI

WS AUER COnFigmap] Soeeees e SRR R AR RS R S RS R NSRS R SRR SR SRR

unreachable=d failed=f skipped=2 rescuad= ignored=9

Figure 4.3 — Ansible execution output

6. Execute the following kubect1 command to ensure that the cluster configuration
is applied successfully:

$ kubectl get namespaces

You should see an output similar to the following. There is a new namespace called
packtclusters-namespace:
(ansible-k8s-workspace) packtclusters % kubectl get namespaces

NAME STATUS
default Active

kube-node-lease Active
kube-public Active
kube-system Active
packtsclusters-namespace Active

Figure 4.4 - List of cluster namespaces

You applied the cluster playbook and tasks as per the previous instructions. In the
following chapters, you will learn how to use the same configuration management
solution to create other tasks to deploy and configure services on top of your clusters.

Destroying the cluster's resources 107

Destroying the cluster's resources

You can follow the instructions in the Destroying the network and cluster infrastructure
section of Chapter 3, Provisioning Kubernetes Clusters Using AWS and Terraform, to
destroy the Kubernetes cluster and its related AWS resources. Please be sure to destroy the
resources in the following order:

1. Cluster packtclusters resources
2. Cluster VPC resources

3. Terraform shared state resources

After executing the previous steps, all of the cluster AWS resources should be destroyed
successfully. You can still log in to the AWS web console and double-check the destruction
of the resources to avoid any unwanted AWS charges.

Summary

In this chapter, you learned about Kubernetes configuration management challenges and
how to scale your configuration management solution to manage multiple clusters and
environments. We designed and developed a solution that is based on Ansible, and we
went through practical hands-on examples to deploy this code.

We started by creating Ansible templates for Kubernetes objects and add-ons. Then, we
developed the tasks and the playbook to execute the Ansible configuration in sequence
against the targeted clusters.

This chapter introduced you to Ansible basic concepts. It showed you how to use the
best practices of infrastructure and configuration as code, automation, and Ansible
development.

This sets up the base for the coming chapters, where you will use this configuration
management solution to configure and deploy clusters' add-ons and services where these
add-ons are essential to reach production-readiness.

In the next chapter, you will learn about Kubernetes networking and connectivity. The
best practices of deploying and configuring Kubernetes network plugins, cluster DNS,
ingresses, network policies, and service mesh will be covered.

108 Managing Cluster Configuration with Ansible

Further reading

You can refer to the following links for more information on the topics covered in
this chapter:

o Ansible 2 for Configuration Management [Video]: https: //www.packtpub.
com/product/ansible-2-for-configuration-management-
video/9781838826475

o Practical Ansible 2: https://www.packtpub.com/product/practical-
ansible-2/9781789807462

o Automation with Ansible Playbooks [Video]: https://www.packtpub.
com/product/automation-with-ansible-playbooks-
video/9781800206496

https://www.packtpub.com/product/ansible-2-for-configuration-management-video/9781838826475
https://www.packtpub.com/product/ansible-2-for-configuration-management-video/9781838826475
https://www.packtpub.com/product/ansible-2-for-configuration-management-video/9781838826475
https://www.packtpub.com/product/practical-ansible-2/9781789807462
https://www.packtpub.com/product/practical-ansible-2/9781789807462
https://www.packtpub.com/product/automation-with-ansible-playbooks-video/9781800206496
https://www.packtpub.com/product/automation-with-ansible-playbooks-video/9781800206496
https://www.packtpub.com/product/automation-with-ansible-playbooks-video/9781800206496

5
Configuring
and Enhancing

Kubernetes
Networking Services

In the previous chapter, you learned how to develop a configuration management solution
for Kubernetes with Ansible. After completing that solution, you are now ready to build
the upper layer of the Kubernetes cluster, and deploy the networking services and add-ons
on top of it.

In this chapter, we will learn about enhancing and fine-tuning the essential networking
services and add-ons, such as CoreDNS, External DNS, and Ingress Controller. We will
not dig into the basic concepts of Kubernetes networking. Topics such as Kubernetes
networking models, inter-pod communication, intra-pod communication, cluster
services, and basic load balancing will not be covered, as in this book we are more
concerned with bringing the cluster to a state of production readiness rather than digging
into the basics, which you can learn about in introductory Kubernetes books.

110 Configuring and Enhancing Kubernetes Networking Services

In this chapter, we will focus on bringing the cluster networking closer to the production
readiness by reconfiguring the pre-deployed services, and also deploying additional
network services that are essential to Kubernetes clusters. You will learn the characteristics
of Kubernetes networking best practices, as well as how to create deployment templates
for the Kubernetes networking services and fine tune them.

In this chapter, we will cover the following topics:

« Introducing networking production readiness
 Configuring Kube Proxy

« Configuring Amazon CNI plugin

« Configuring CoreDNS

« Configuring External DNS

 Configuring NGINX Ingress Controller

« Deploying the cluster's network services

« Destroying the cluster's resources

Technical requirements

The code for this chapter is located at https: //github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/Chapter05.

Check out the following link to see the Code in Action video:

https://bit.ly/3rmhLdX

Introducing networking production readiness

Since the beginning of Docker and the containerization era, there have been different
challenges and complexities associated with handling and managing containers
networking. Over the past few years, industry leaders and community contributors
have worked on solutions to tackle and solve these challenges, and the efforts are still in
progress.

https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05
https://bit.ly/3rmhLdX

Introducing networking production readiness 111

There are multiple container networking models, network plugins, and tools in the
Kubernetes ecosystem that support either mainstream use cases or specific corner cases.
You can learn more about these projects and tools at the CNCF cloud native network
landscape at https://landscape.cncf.io/category=cloud-native-
network&format=card-mode. In this chapter, we will stick to the services that are
essential to the general Kubernetes use cases, and their production readiness, such as
CoreDNS, NGINX Ingress Controller, and External DNS.

In the following sections, you will learn how to enhance and configure the pre-deployed
network components that are usually shipped with AWS Elastic Kubernetes Service
(EKS) and how to improve them. This is aside from deploying networking services and
add-ons that are essential to networking functionality, operations, and reliability.

These are the network services and add-ons that we will cover:

e kube-proxy

e Amazon VPC K8s CNI

o CoreDNS

o ExternalDNS

o NGINX Ingress Controller

For each of these components, we will use the Ansible configuration management solution
to deploy and configure them by doing the following:

1. Defining configuration variables under the cluster's Ansible group vars
directory, available at ht tps: //github.com/PacktPublishing/
Kubernetes-in-Production-Best-Practices/tree/master/
Chapter05/ansible/group vars/all, and the inventories directory,
available at https://github.com/PacktPublishing/Kubernetes-in-
Production-Best-Practices/tree/master/Chapter05/ansible/
inventories/packtclusters/group vars/override

2. Developing a deployment template

3. Creating an Ansible task

4. Adding an entry to the cluster playbook
If there are parts of the code and templates that do not introduce new concepts or change
the configuration, we will not include their source code in the chapter text. Instead, you
can view them in the book's GitHub source code repository at https://github.com/

PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/
master/Chapter05.

https://landscape.cncf.io/category=cloud-native-network&format=card-mode
https://landscape.cncf.io/category=cloud-native-network&format=card-mode
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/group_vars/all
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/group_vars/all
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/group_vars/all
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/inventories/packtclusters/group_vars/override
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/inventories/packtclusters/group_vars/override
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05/ansible/inventories/packtclusters/group_vars/override
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/tree/master/Chapter05

112 Configuring and Enhancing Kubernetes Networking Services

Configuring Kube Proxy

kube -proxy is an agent service that runs on each node in the cluster to create, update,
and delete network rules on the nodes, usually through the use of Linux iptables. These
network rules allow inter-pod and intra-pod communication inside and outside the
Kubernetes cluster.

Irrespective of whether you use a self-managed Kubernetes cluster or a hosted one, you
need to control the configuration options that you pass to kube -proxy. As we are using
EKS, kube -proxy comes pre-deployed with the cluster, which leaves us without a full
control over its configuration, and we need to change this.

During the cluster's lifetime, you need to control the periodic updates of kube -proxy
and include them within the cluster's updates' pipeline. Also, you need to optimize its
performance by controlling the runtime parameters, including - - iptables-sync-
period, --iptables-min-sync-period, and - -proxy-mode.

To learn about the remainder of the configuration options, please check the following
link: https://kubernetes.io/docs/reference/command-line-tools-
reference/kube-proxy/#options.

Important note

You can find the complete source code at https://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter05/ansible/templates/
kube-proxy/kube-proxy.yaml.

Now, let's create the Ansible template and configuration for kube -proxy:

1. Define the configuration variables and add them to the group_vars directory
in this path: ansible/group vars/all/kube-proxy.yaml. The basic
configuration contains the image and its tag, which are useful for keeping track of
the kube -proxy version that is deployed to your cluster, and for controlling its
upgrades:

kube proxy:
image: "602401143452.dkr.ecr.us-west-2.amazonaws.com/
eks/kube-proxy"

tag: "v1.15.11"

2. Create the deployment template for the kube -proxy DaemonSet in the following
path: ansible/templates/kube-proxy/kube-proxy.yaml.

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/#options
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/#options
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/kube-proxy/kube-proxy.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/kube-proxy/kube-proxy.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/kube-proxy/kube-proxy.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/kube-proxy/kube-proxy.yaml

Configuring Kube Proxy 113

The following code snippet is part of this template, and the only code lines that you
need to modify are where the image and command specs are defined:
apiVersion: apps/vl
kind: DaemonSet
metadata:
labels:
eks.amazonaws .com/component : kube-proxy
k8s-app: kube-proxy
name: kube-proxy
namespace: kube-system
spec:
selector:
matchLabels:
k8s-app: kube-proxy
template:
metadata:
labels:
k8s-app: kube-proxy

In the following part of the template, you can define and fine-tune the kube -
proxy runtime options and pass them to the container entry point command:
spec:
containers:
- command:
- kube-proxy
- --v=2
- --iptables-sync-period=20s

- --config=/var/lib/kube-proxy-config/config
image: {{ kube proxy.image }}:{{ kube proxy.tag }}

The following are notable configuration options that you need to consider for
kube-proxy:

+ --proxy-mode: by default, kube -proxy uses the iptables mode, as it
is hardened on production and is faster for small-sized clusters. On the other
hand, the ipvs mode is recommended if you have a scaling cluster with
services numbering above 5,000, as the ipvs implementation ensures superior
performance.

114 Configuring and Enhancing Kubernetes Networking Services

e --kube-api-qgps: this configuration option limits the queries per second
(QPS) initiated from kube -proxy and hit kube-apiserver. The default value
of this option is 5, but it is recommended to increase it to 10 if you expect your
cluster to run above 5,000 services. However, the more QPS that kube-proxy
sends to kube-apiserver, the busier it will become, and this could affect the
performance of kube -apiserver. You should select the QPS limit based on the
cluster size (number of running services) and your control plane capacity, so your
cluster can serve all kube-proxy requests in a timely manner.

o --iptables-sync-period: This option defines the maximum time interval
when iptables rules are refreshed. By default, it is set to 30s, although it is
recommended to decrease this to 20s for small clusters. The cluster admin needs to
decide the appropriate time interval and weigh between the conflicting priorities.

Let's assume you decrease the interval to 1s. This means that kube - proxy needs
to run the sync process every 1s, which means an increased load on the worker
nodes where kube -proxy is running, while also rendering iptables busy and
blocking other operations on them. On the other hand, if you increase the sync
period and run the sync process less frequently, this could result in pods being out
of iptables sync for a fraction of time, which may lead to loss of transactions.

There are other options available that handle configurations for ipvs, conntrack,
config, and metrics. However, you should be careful whenever you modify any

of these, and if you do decide to modify them, you have to deploy the changes to a
non-production cluster to examine the performance prior to promotion to production.

For a complete list of kube -proxy configuration options, please refer to the Kubernetes
official documentation at https: //kubernetes.io/docs/reference/command-
line-tools-reference/kube-proxy/.

Configuring the Amazon CNI plugin

In Kubernetes, the Container Network Interface (CNI) provides a specification and
framework for writing container network plugins to manage container networking,
including pod communication and IP Address Management (IPAM). In the context of
this book, we will not go into the details of the CNI plugins and how they work. What
does concern us is how to make the best use of the CNI plugin, and how to configure it

properly.
There are multiple CNI plugins that have been battle-tested over the years. Some of these

satisfy the needs of general use cases, such as Calico, which is a highly recommended CNI
plugin, while there are other CNI plugins that lean toward solving specific use cases.

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/

Configuring the Amazon CNI plugin 115

The list of production tested CNI plugins includes Calico, Cilium, Azure CNI, Contiv,
Flannel, Weave Net, and AWS CNI. The list goes on. You can get a comprehensive list of
the supported CNI plugins and their features from the Kubernetes official documentation
athttps://kubernetes.io/docs/concepts/cluster-administration/
networking/.

For the clusters that we provision in this book, we will use the AWS CNI plugin (amazon-
vpc-cni-k8s) because it is the default for EKS, and it is developed to cover the general
networking uses cases to ensure that Kubernetes works smoothly with AWS.

The AWS CNI plugin comes pre-deployed to the cluster with a default configuration in
place. This could be sufficient for simple clusters; however, we need to take full control
over the configuration, so we decided to overwrite its DaemonSet and add it to the
cluster's Ansible configuration for easier control.

During the lifetime of the cluster, you need to control the periodic updates to amazon-
vpc-cni-k8s and include them within the cluster's updates' pipeline. Also, you will
need to optimize its performance by adjusting the configuration variables that are passed
to it, such as MINIMUM_IP_TARGET, WARM IP_TARGET, and AWS VPC_ENI_MTU.

To learn more about the other CNI configuration options, please check this link:
https://docs.aws.amazon.com/eks/latest/userguide/cni-env-
vars.html.

Important note

When you redeploy the updated amazon-vpc-cni-k8s DaemonSet
into your cluster, the CNI pods will get restarted. The updated pods are
rolled out one after the other, but this still causes short periods of CNI plugin
unavailability, which may be noticeable in the case of a busy cluster.

You can find the complete source code athttps://github.com/
PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter05/ansible/templates/
cni/amazon-k8s-cni.yaml.

Now, let's create the Ansible template and configuration for amazon-vpc-cni-k8s:

1. Define the configuration variables and add them to the group vars directory
in this path: ansible/group vars/all/cni.yaml. The basic configuration
contains the image and its tag, which are useful for keeping track of the amazon-
vpc-cni-k8s version that is deployed to your cluster, and for controlling its
upgrades.

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://docs.aws.amazon.com/eks/latest/userguide/cni-env- vars.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-env- vars.html
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/cni/amazon-k8s-cni.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/cni/amazon-k8s-cni.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/cni/amazon-k8s-cni.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/cni/amazon-k8s-cni.yaml

116

Configuring and Enhancing Kubernetes Networking Services

There are two important configuration values for cluster performance:

-MINIMUM IP TARGET, which is important for pre-scaling as it specifies the
number of minimum IP addresses to allocate for pod assignment on the node

-WARM_ IP_ TARGET, which is important for dynamic scaling as it specifies the
number of free IP addresses that the ipamD daemon should attempt to keep
available for pod assignment on the node.

Both of these variables together ensure that sufficient IP addresses are available for
new pods, which improves the start-up time of pods and enhances cluster uptime
and recovery time. You can specify the values of these variables based on the
estimated number of pods running in the cluster, and the number during spikes:
cni warm ip target: 2
cni min ip target: 10
aws_cni:
image: "602401143452.dkr.ecr.us-west-2.amazonaws.com/
amazon-k8s-cni"
tag: "vl.e.2"

Create the deployment template for the amazon-vpc-cni-k8s DaemonSet in
this path: ansible/templates/cni/amazon-k8s-cni.yaml.

The following code snippet is part of this template, and the only code lines that you
need to modify are where the image and env specs are defined:

containers:
- image: {{ aws cni.image }}:{{ aws cni.tag }}
imagePullPolicy: Always
env:
- name: AWS VPC K8S CNI_ LOGLEVEL
value: DEBUG
- name: AWS VPC_K8S CNI_ VETHPREFIX
value: eni
- name: AWS_VPC_ENI_MTU
value: "9001"
- name: MINIMUM IP TARGET
value: "{{ cni min ip target }}"
- name: WARM IP TARGET

value: "{{ cni warm ip target }}"

Configuring CoreDNS 117

- name: MY NODE NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName

You can configure other options for amazon-vpc-cni-k8s by adding them to the
container environment variables, as in the previous code snippet for the container section
in the DaemonSet template.

Configuring CoreDNS

Kubernetes used to have kube -dns as its default cluster DNS service, but starting
from version 1.11, it uses CoreDNS. Also, it gets pre-deployed by most of the managed
Kubernetes offerings, including EKS, that we use in this book.

For the other Kubernetes managed services that still use kube -dns, such as GKE, we
recommend referring to the official documentation of kube -dns.

CoreDNS is very flexible as it is modular and pluggable. It has a rich set of plugins that
can be enabled to enhance DNS functionalities. This is why it is powerful and generally
preferred over kube -dns and other Kubernetes DNS solutions. To learn more about
the supported plugins, please refer to the following list: https://coredns.io/
plugins/.

During the cluster's lifetime, you need to control CoreDNS configuration as code, its
periodic updates, and include all of this within the cluster's deployment pipeline. Also, you
will need to optimize your cluster DNS performance and add extra DNS functionalities by
enabling CoreDNS plugins.

It is recommended to tune the CoreDNS resource quota for CPU and memory to improve
cluster DNS performance, especially in the case of a heavily scaling cluster. For detailed
resource configuration and scaling, please check this link: https: //github.com/
coredns/deployment /blob/master/kubernetes/Scaling CoreDNS.md#.

Important note

You can find this section's complete source code at https://github.
com/PacktPublishing/Kubernetes-in-Production-Best-
Practices/blob/master/Chapter05/ansible/templates/
core-dns/core-dns.yaml.

https://coredns.io/plugins/
https://coredns.io/plugins/
https://github.com/coredns/deployment/blob/master/kubernetes/Scaling_CoreDNS.md#
https://github.com/coredns/deployment/blob/master/kubernetes/Scaling_CoreDNS.md#
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/core-dns/core-dns.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/core-dns/core-dns.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/core-dns/core-dns.yaml
https://github.com/PacktPublishing/Kubernetes-in-Production-Best-Practices/blob/master/Chapter05/ansible/templates/core-dns/core-dns.yaml

118 Configuring and Enhancing Kubernetes Networking Services

Now, let's create the Ansible template and configuration for coredns:

1.

Define the configuration variables and add them to the group vars directory
in this path: ansible/group vars/all/core-dns.yaml. The basic
configuration contains the image and its tag, whic