
Learn K
ubernetes Security

Kaizhe H
uang and Pranjal Jum

de

www.packt.com

Securely orchestrate, scale, and manage your microservices
in Kubernetes deployments

Learn

Kubernetes
Security

Kaizhe Huang and Pranjal Jumde
Foreword by Loris Degioanni, Founder and CTO at Sysdig

Learn
Kubernetes Security

Kubernetes is an open source orchestration
platform for managing containerized
applications. Despite widespread adoption
of the technology, DevOps engineers might
be unaware of the pitfalls of containerized
environments. With this comprehensive book,
you'll learn how to use the different security
integrations available on the Kubernetes
platform to safeguard your deployments
in a variety of scenarios.
Learn Kubernetes Security starts by taking
you through the Kubernetes architecture
and the networking model. You'll then learn
about the Kubernetes threat model and get
to grips with securing clusters. Throughout
the book, you'll cover various security aspects

such as authentication, authorization, image
scanning, and resource monitoring. As you
advance, you'll learn about securing cluster
components (the kube-apiserver, CoreDNS,
and kubelet) and pods (hardening image,
security context, and PodSecurityPolicy).
With the help of hands-on examples, you'll
also learn how to use open source tools such
as Anchore, Prometheus, OPA, and Falco to
protect your deployments.
By the end of this Kubernetes book, you'll
have gained a solid understanding of
container security and be able to protect
your clusters from cyberattacks and mitigate
cybersecurity threats.

Things you will learn:

• Understand the basics of Kubernetes
architecture and networking

• Gain insights into different security
integrations provided by the
Kubernetes platform

• Delve into Kubernetes' threat modeling
and security domains

• Explore different security confi gurations
from a variety of practical examples

• Get to grips with using and deploying open
source tools to protect your deployments

• Discover techniques to mitigate or prevent
known Kubernetes hacks

www.packt.com

Learn
Kubernetes Security

Securely orchestrate, scale, and manage your
microservices in Kubernetes deployments

Kaizhe Huang

Pranjal Jumde

BIRMINGHAM—MUMBAI

Learn Kubernetes Security

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani
Senior Editor: Arun Nadar
Content Development Editor: Romy Dias
Technical Editor: Sarvesh Jayant
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Aparna Bhagat

First published: July 2020

Production reference: 2270820

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-650-3

www.packt.com

For my lovely wife, Melody, who encouraged me to step out of my comfort
zone and take on challenges.

– Kaizhe Huang

To my family and all the avid readers.

– Pranjal Jumde

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

Foreword
If you aren't using Kubernetes yet, you will be soon.

Kubernetes is not only the de facto platform to run modern, service-based applications.
With cloud vendors quickly embracing it, it's also becoming the Operating System of the
cloud. The reason for this success is that Kubernetes is powerful, versatile, and designed
with modern software lifecycles in mind. On the other hand, Kubernetes is also a
complicated beast. Gone are the days when running software meant managing processes
on a single server. Now you have to deal with containers running in clusters that can reach
thousands of machines in size, accessed by many developers organized in teams with
different responsibilities.

Security has traditionally been an important area of focus when running software
applications, either large or small. However, the dramatic increase in complexity and the
additional degrees of freedom make Kubernetes security even more critical and harder!

Without doubt, security is one of the most important aspects of running Kubernetes
applications in production. A correct Kubernetes security methodology involves, among
other things, protecting the pipeline through image scanning, ensuring that the principle
of least privilege is respected, defending pods at runtime, and segmenting the network. All
of this while gathering enough information to understand when a threat is happening and
what the blast radius was after it happened.

This is a lot to handle and requires a substantial amount of learning. One of the things
that I love most about Open Source is that all you need to educate yourself is available for
you in a number of forums: docs, tutorials, slack channels, conferences. Kubernetes, from
this point of view, is no exception. Its huge community has produced a lot of content and
you can definitely use it to become an expert. Alternatively, by studying this book, you can
become a Kubernetes security expert by taking advantage of the wisdom of two seasoned
operators, who live and breathe Kubernetes security and have done so for years.

The book will guide you gently, starting from a high-level introduction to the concepts
at the base of Kubernetes before diving into the more advanced and nuanced aspects of
securing a production cluster. It will do it in a way that is digestible even if you are not
an expert, but at the same time will provide useful information even if you already have
experience in the field. While reading it, I particularly appreciated the section questions at
the end of each chapter, where you can test what you learned. I also loved the links section
showing where you can go to get additional details.

Having founded Sysdig, one of the leading companies in Kubernetes security, I consider
myself pretty knowledgeable on the subject. At the same time, the authors of this book are
people I go to when things go beyond my skill level or when I want to learn something
new. You won't be disappointed if you do the same.

Happy reading.

Loris Degioanni

Founder and CTO at Sysdig

Contributors

About the authors
Kaizhe Huang is a security researcher at Sysdig, where he researches how to defend
Kubernetes and containers from attacks ranging from web attacks to kernel attacks.
Kaizhe is one of the maintainers of Falco, an incubation-level CNCF project, and the
original author of multiple open source projects, such as kube-psp-advisor. Before
joining Sysdig, as an employee at Stackrox, Kaizhe helped build a detection data pipeline,
conducted security research, and innovated detection based on machine learning.
Previously, as a senior security engineer at Oracle, he helped build security products:
Database Vault, Database Privilege Analyzer, and Database Assessment Tool. Kaizhe
holds an MS degree in information security from Carnegie Mellon University.

I want to thank my lovely wife, Melody, and my family members – without
your support and prayers, I wouldn't have been able to finish the book.

Thanks to my manager, Omer, for giving me the opportunity and freedom
to explore and innovate. Thanks to my Sysdig coworkers; you always inspire
me. Thank you, Pranjal – without your commitment, I wouldn't have been
able to do this. Thanks to everyone on my publishing team. Thanks to my

dog, Emma, who helped me relax during writing.

Pranjal Jumde is a senior security engineer at Brave Inc. In the security industry, he has
worked on different aspects of security, such as browser security, OS/kernel security,
DevSecOps, web application security, reverse engineering malware, security automation,
and the development of security/privacy features. Before joining Brave, as an employee at
Stackrox, Pranjal helped in the development of detection and enforcement features for the
runtime detection platform. He has also worked at Apple and Adobe, where he worked on
the development of features to harden various platforms. Pranjal holds an MS degree in
information security from Carnegie Mellon University. He has also presented his research
at different conferences, such as ACM CCS and BSides SF/Delhi.

I would like to thank my co-author, Kaizhe, for all his trust in me. Without
your support and commitment, completing this book wouldn't have been

possible. Family is the strongest support that anyone can have – without the
support of mine, this book would not have been possible. A special thanks

to my wife, Swetha, for her patience, encouragement, and support. A special
thanks to the editorial team for all their help.

About the reviewer
Madhu Akula is a cloud-native security researcher with extensive experience in cloud,
container, Kubernetes, and automation security. He frequently speaks and trains at
security conferences around the world, including DEFCON, BlackHat, USENIX,
GitHub, OWASP Appsec, AllDayDevOps, DevSecCon, Nullcon, and c0c0n conferences.
His research has identified vulnerabilities in more than 200 companies and products,
including Google, Microsoft, AT&T, Wordpress, Ntop, and Adobe. He is a co-author of
Security Automation with Ansible 2, a book that is listed as a technical resource by Red
Hat. Madhu is an active member of international security, DevOps, and cloud native
communities and holds industry certifications such as OSCP and CKA.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

Table of Contents
Preface

Section 1:
Introduction to Kubernetes

1
Kubernetes Architecture

The rise of Docker and the
trend of microservices 4
Kubernetes adoption status 6
Kubernetes clusters 6

Kubernetes components 7
The Kubernetes interfaces 9

Kubernetes objects 9
Pods 10
Deployments 10
Services 10
Replica sets 10
Volumes 10
Namespaces 10
Service accounts 11

Network policies 11
Pod security policies 11

Kubernetes variations 11
Minikube 11
K3s 12
OpenShift 12

Kubernetes and cloud providers 13
Kubernetes as a service 13
Kops 15
Why worry about Kubernetes' security? 16

Summary 18
Questions 18
Further reading 18

2
Kubernetes Networking

Overview of the Kubernetes
network model 20

Port-sharing problems 20
Kubernetes network model 21

ii Table of Contents

Communicating inside a pod 23
Linux namespaces and the pause
container 23
Beyond network communication 25

Communicating between pods 26
The Kubernetes service 26
kube-proxy 26

Introducing the Kubernetes
service 30
Service discovery 31

Service types 32
Ingress for routing external requests 32

Introducing the CNI and CNI
plugins 35
CNI specification and plugins 35
Calico 38
Wrapping up 39

Summary 41
Questions 41
Further reading 41

3
Threat Modeling

Introduction to threat modeling 44
Component interactions 46
Threat actors in Kubernetes
environments 50
Threats in Kubernetes clusters 52

Threat modeling application in
Kubernetes 55
Summary 57
Questions 58
Further reading 58

4
Applying the Principle of Least Privilege in Kubernetes

The principle of least privilege 60
Authorization model 60
Rewards of the principle of least privilege 61

Least privilege of Kubernetes
subjects 62
Introduction to RBAC 62
Service accounts, users, and groups 62
Role 63
RoleBinding 64
Kubernetes namespaces 64
Wrapping up least privilege for
Kubernetes subjects 66

Least privilege for Kubernetes
workloads 67
Least privilege for accessing system
resources 67
Wrapping up least privilege for
accessing system resources 70
Least privilege for accessing network
resources 70
Least privilege for accessing
application resources 72

Summary 72
Questions 73
Further reading 73

Table of Contents iii

5
Configuring Kubernetes Security Boundaries

Introduction to security
boundaries 76
Security boundaries versus
trust boundaries 77
Kubernetes security domains 77
Kubernetes entities as security
boundaries 78
Security boundaries in the
system layer 80
Linux namespaces as security

boundaries 80
Linux capabilities as security boundaries 82
Wrapping up security boundaries in
the system layer 84

Security boundaries in the
network layer 84
Network policies 85

Summary 88
Questions 89
Further references 89

Section 2:
Securing Kubernetes Deployments and
Clusters

6
Securing Cluster Components

Securing kube-apiserver 94
Securing kubelet 98
Securing etcd 99
Securing kube-scheduler 100
Securing kube-controller-
manager 101

Securing CoreDNS 102
Benchmarking a cluster's
security configuration 103
Summary 105
Questions 105
Further reading 105

7
Authentication, Authorization, and Admission Control

Requesting a workflow in
Kubernetes 108
Kubernetes authentication 109

Client certificates 109
Static tokens 111
Basic authentication 112

iv Table of Contents

Bootstrap tokens 112
Service account tokens 113
Webhook tokens 114
Authentication proxy 115
User impersonation 115

Kubernetes authorization 116
Request attributes 116
Authorization modes 116
Node 116
ABAC 117
RBAC 118
Webhooks 119

Admission controllers 120

AlwaysPullImages 121
EventRateLimit 121
LimitRanger 121
NodeRestriction 122
PersistentVolumeClaimResize 122
PodSecurityPolicy 122
SecurityContextDeny 123
ServiceAccount 123
MutatingAdmissionWebhook and
ValidatingAdmissionWebhook 123

Introduction to OPA 123
Summary 126
Questions 126
Further reading 127

8
Securing Kubernetes Pods

Hardening container images 130
Container images and Dockerfiles 130
CIS Docker benchmarks 132

Configuring the security
attributes of pods 133
Setting host-level namespaces for pods 134
Security context for containers 135
Security context for pods 137
AppArmor profiles 139

The power of
PodSecurityPolicy 141
Understanding PodSecurityPolicy 141
Kubernetes PodSecurityPolicy Advisor 145

Summary 149
Questions 149
Further reading 149

9
Image Scanning in DevOps Pipelines

Introducing container images
and vulnerabilities 152
Container images 152
Detecting known vulnerabilities 154

Scanning images with Anchore
Engine 157
Introduction to Anchore Engine 158
Scanning images with anchore-cli 159

Table of Contents v

Integrating image scanning into
the CI/CD pipeline 165
Scanning at the build stage 166
Scanning at the deployment stage 168

Scanning at the runtime stage 172

Summary 172
Questions 173
Further references 173

10
Real-Time Monitoring and Resource Management of a
Kubernetes Cluster

Real-time monitoring and
management in monolith
environments 176
Managing resources in
Kubernetes 177
Resource requests and limits 177
Namespace resource quotas 182
LimitRanger 184

Monitoring resources in
Kubernetes 187
Built-in monitors 187
Third-party monitoring tools 193
Prometheus and Grafana 194

Summary 204
Questions 204
Further references 205

11
Defense in Depth

Introducing Kubernetes
auditing 208
Kubernetes audit policy 209
Configuring the audit backend 214

Enabling high availability in a
Kubernetes cluster 216
Enabling high availability of
Kubernetes workloads 216
Enabling high availability of
Kubernetes components 217
Enabling high availability of a cloud
infrastructure 219

Managing secrets with Vault 221
Setting up Vault 221

Provisioning and rotating secrets 224

Detecting anomalies with Falco 227
An overview of Falco 227
Creating Falco rules to detect anomalies 231

Conducting forensics with
Sysdig Inspect and CRIU 235
Using CRIU to collect data 236
Using Sysdig and Sysdig Inspect 238

Summary 243
Questions 243
Further references 244

vi Table of Contents

Section 3:
Learning from Mistakes and Pitfalls

12
Analyzing and Detecting Crypto-Mining Attacks

Analyzing crypto-mining
attacks 248
An introduction to crypto-mining
attacks 248
The crypto-mining attack on Tesla's
Kubernetes cluster 249
Graboid – a crypto-worm attack 250
Lessons learned 251

Detecting crypto-mining
attacks 251
Monitoring CPU utilization 252
Detecting network traffic to a mining
pool 253

Detecting launched crypto-mining
processes 256
Checking the binary signature 258

Defending against attacks 260
Securing Kubernetes cluster
provisioning 260
Securing the build 261
Securing deployment 262
Securing runtime 263

Summary 264
Questions 264
Further reading 264

13
Learning from Kubernetes CVEs

The path traversal issue in
kubectl cp – CVE-2019-11246 269
Mitigation strategy 270

DoS issues in JSON
parsing – CVE-2019-1002100 273
Mitigation strategy 273

A DoS issue in YAML
parsing – CVE-2019-11253 275
Mitigation strategy 275

The Privilege escalation issue in
role parsing – CVE-2019-11247 276
Mitigation strategy 277

Scanning for known
vulnerabilities using
kube-hunter 278
Summary 280
Questions 280
Further references 281

Table of Contents vii

Assessments

Chapter 1 283
Chapter 2 283
Chapter 3 284
Chapter 4 284
Chapter 5 284
Chapter 6 285
Chapter 7 285

Chapter 8 286
Chapter 9 287
Chapter 10 287
Chapter 11 288
Chapter 12 288
Chapter 13 288

Other Books You May Enjoy

Leave a review - let other
readers know what you think 293

Index

Preface
The growing complexity and scalability of real-world applications has led to a transition
from monolithic architecture to microservices architecture. Kubernetes has become the
de facto orchestration platform for deploying microservices. As a developer-friendly
platform, Kubernetes enables different configurations to suit different use cases,
making it the primary choice among most DevOps engineers. The openness and highly
configurable nature of Kubernetes increases its complexity. Increased complexity leads to
misconfigurations and security issues, which if exploited, can cause a significant economic
impact on an organization. If you are planning to use Kubernetes in your environment,
this book is for you.

In this book, you'll learn about how to secure your Kubernetes cluster. We briefly introduce
Kubernetes in the first two chapters (we expect you to have a basic understanding of
Kubernetes before you begin). We then discuss the default configurations of different
Kubernetes components and objects. Default configurations in Kubernetes are often
insecure. We discuss different ways to configure your cluster correctly to ensure that it is
secure. We dive deep to explore different built-in security mechanisms, such as admission
controllers, security contexts, and network policies, that are provided by Kubernetes to help
secure your cluster. We also discuss some open source tools that complement the existing
toolkits in Kubernetes to improve the security of your cluster. Finally, we look at some
real-world examples of attacks and vulnerabilities in Kubernetes clusters and discuss how
to harden your cluster to prevent such attacks.

With this book, we hope you will be able to deploy complex applications in your Kubernetes
clusters securely. Kubernetes is evolving quickly. With the examples that we provide, we
hope you will learn how to reason about the right configurations for your environment.

The Secure DevOps Platform. Scale-up Kubernetes. Scale-down risk.

Learn more at https://sysdig.com/

https://sysdig.com/

x Preface

Who this book is for
This book is for DevOps/DevSecOps professionals who have started adopting Kubernetes
as their main deployment/orchestration platform and have a basic understanding of
Kubernetes. The book is also for developers who'd like to learn how to secure and harden
a Kubernetes cluster.

What this book covers
Chapter 1, Kubernetes Architecture, introduces the basics of Kubernetes components and
Kubernetes objects.

Chapter 2, Kubernetes Networking, introduces Kubernetes' networking model and dives
deep into the communication among microservices.

Chapter 3, Threat Modeling, discusses important assets, threat actors in Kubernetes, and
how to conduct threat modeling for applications deployed in Kubernetes.

Chapter 4, Applying the Principle of Least Privilege in Kubernetes, discusses the security
control mechanisms in Kubernetes that help in implementing the principle of least
privilege in two areas: the least privilege of Kubernetes subjects and the least privilege
of Kubernetes workloads.

Chapter 5, Configuring Kubernetes Security Boundaries, discusses the security domains
and security boundaries in Kubernetes clusters. Also, it introduces security control
mechanisms to strengthen security boundaries.

Chapter 6, Securing Cluster Components, discusses the sensitive configurations in
Kubernetes components, such as kube-apiserver, kubelet, and so on. It introduces
the use of kube-bench to help identify misconfigurations in Kubernetes clusters.

Chapter 7, Authentication, Authorization, and Admission Control, discusses the
authentication and authorization mechanisms in Kubernetes. It also introduces popular
admission controllers in Kubernetes.

Chapter 8, Securing Kubernetes Pods, discusses hardening images with CIS Docker
Benchmark. It introduces Kubernetes security contexts, Pod Security Policies, and
kube-psp-advisor, which helps to generate Pod security policies.

Chapter 9, Image Scanning in DevOps Pipelines, introduces the basic concepts of container
images and vulnerabilities. It also introduces the image scanning tool Anchore Engine and
how it can be integrated into DevOps pipelines.

Preface xi

Chapter 10, Real-Time Monitoring and Resource Management of a Kubernetes Cluster,
introduces built-in mechanisms such as resource request/limits and LimitRanger. It also
introduces built-in tools like Kubernetes Dashboard and metrics server, and third-party
monitoring tools, such as Prometheus and a data visualization tool called Grafana.

Chapter 11, Defense in Depth, discusses various topics related to defense in depth:
Kubernetes auditing, high availability in Kubernetes, secret management, anomaly
detection, and forensics.

Chapter 12, Analyzing and Detecting Crypto-Mining Attacks, introduces the basic concepts
of cryptocurrency and crypto mining attacks. It then discusses a few ways to detect crypto
mining attacks with open source tools such as Prometheus and Falco.

Chapter 13, Learning from Kubernetes CVEs, discusses four well-known Kubernetes CVEs
and some corresponding mitigation strategies. It also introduces the open source tool
kube-hunter, which helps identify known vulnerabilities in Kubernetes.

To get the most out of this book
Before starting this book, we expect you to have a basic understanding of Kubernetes.
While reading this book, we expect you to look at Kubernetes with a security mindset.
This book has a lot of examples of hardening and securing Kubernetes workload
configurations and components. In addition to trying out the examples, you should
also reason about how these examples map to different use cases. We discuss how to use
different open source tools in this book. We hope you spend more time understanding the
features provided by each tool. Diving deep into different features provided by the tools
will help you understand how to configure each tool for different environments:

xii Preface

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying/pasting of code.

Download the example code files
You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-Kubernetes-Security. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/2YZKCJX.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781839216503_ColorImages.pdf.

http://www.packt.com
http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-Kubernetes-Security
https://github.com/PacktPublishing/Learn-Kubernetes-Security
https://github.com/PacktPublishing/
https://bit.ly/2YZKCJX
http://www.packtpub.com/sites/default/files/downloads/9781839216503_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781839216503_ColorImages.pdf

Preface xiii

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "This attribute is also available in PodSecurityContext, which
takes effect at the pod level."

A block of code is set as follows:

{

 "filename": "/tmp/minerd2",

 "gid": 0,

 "linkdest": null,

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

{

 "scans": {

 "Fortinet": {

 "detected": true,

 }

 }

Any command-line input or output is written as follows:

$ kubectl get pods -n insecure-nginx

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is an
example: "The screenshot shows the CPU usage of the insecure-nginx pod monitored
by Prometheus and Grafana."

Tips or important notes
Appear like this.

xiv Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

Section 1:
Introduction to

Kubernetes

In this section, you will grasp the fundamental concepts of Kubernetes' architecture,
network models, threat models, and the core security principles that should be applied to
a Kubernetes cluster.

The following chapters are included in this section:

• Chapter 1, Kubernetes Architecture

• Chapter 2, Kubernetes Networking

• Chapter 3, Threat Modeling

• Chapter 4, Applying the Principle of Least Privilege in Kubernetes

• Chapter 5, Configuring Kubernetes Security Boundaries

1
Kubernetes

Architecture
Traditional applications, such as web applications, are known to follow a modular
architecture, splitting code into an application layer, business logic, a storage layer, and
a communication layer. Despite the modular architecture, the components are packaged
and deployed as a monolith. A monolith application, despite being easy to develop,
test, and deploy, is hard to maintain and scale. This led to the growth of microservices
architecture. Development of container runtimes like Docker and Linux Containers
(LXC) has eased deployment and maintenance of applications as microservices.

Microservices architecture splits application deployment into small and interconnected
entities. The increasing popularity of microservices architecture has led to the growth
of orchestration platforms such as Apache Swarm, Mesos, and Kubernetes. Container
orchestration platforms help manage containers in large and dynamic environments.

Kubernetes is an open source orchestration platform for containerized applications that
support automated deployment, scaling, and management. It was originally developed by
Google in 2014 and it is now maintained by the Cloud Native Computing Foundation
(CNCF). Kubernetes is the first CNCF-graduated project that graduated in 2018. Established
global organizations, such as Uber, Bloomberg, Blackrock, BlaBlaCar, The New York Times,
Lyft, eBay, Buffer, Ancestry, GolfNow, Goldman Sachs, and many others, use Kubernetes
in production at a massive scale (https://kubernetes.io/case-studies/).
Large cloud providers, such as Elastic Kubernetes Service (Amazon), Azure Kubernetes
Service (Microsoft), Google Kubernetes Engine (Google), and Alibaba Cloud Kubernetes
(Alibaba), offer their own managed Kubernetes services.

https://kubernetes.io/case-studies/

4 Kubernetes Architecture

In a microservices model, application developers ensure that the applications work
correctly in containerized environments. They write a Docker file to bundle their
applications. DevOps and infrastructure engineers interact with the Kubernetes cluster
directly. They ensure that the application bundles provided by developers run smoothly
within the cluster. They monitor the nodes, pods, and other Kubernetes components to
ensure the cluster is healthy. However, security requires the joint effort of both parties
and the security team. To learn how to secure a Kubernetes cluster, we will first have
to understand what Kubernetes is and how it works.

In this chapter, we will cover the following topics:

• The rise of Docker and the trend of microservices

• Kubernetes components

• Kubernetes objects

• Kubernetes variations

• Kubernetes and cloud providers

The rise of Docker and the trend of
microservices
Before we start looking into Kubernetes, it's important to understand the growth of
microservices and containerization. With the evolution of a monolithic application,
developers face inevitable problems as the applications evolve:

• Scaling: A monolith application is difficult to scale. It's been proven that the proper
way to solve a scalability problem is via a distributed method.

• Operational cost: The operation cost increases with the complexity of a monolith
application. Updates and maintenance require careful analysis and enough testing
before deployment. This is the opposite of scalability; you can't scale down a
monolithic application easily as the minimum resource requirement is high.

• Longer release cycle: The maintenance and development barrier is significantly
high for monolith applications. For developers, when there is a bug, it takes a lot of
time to identify the root cause in a complex and ever-growing code base. The testing
time increases significantly. Regression, integration, and unit tests take significantly
longer to pass with a complex code base. When the customer's requests come in, it
takes months or even a year for a single feature to ship. This makes the release cycle
long and impacts the company's business significantly.

The rise of Docker and the trend of microservices 5

This creates a huge incentive to break down monolithic applications into microservices.
The benefits are obvious:

• With a well-defined interface, developers only need to focus on the functionality of
the services they own.

• The code logic is simplified, which makes the application easier to maintain and
easier to debug. Furthermore, the release cycle of microservices has shortened
tremendously compared to monolithic applications, so customers do not have
to wait for too long for a new feature.

When a monolithic application breaks down into many microservices, it increases
the deployment and management complexity on the DevOps side. The complexity is
obvious; microservices are usually written in different programming languages that
require different runtimes or interpreters, with different package dependencies, different
configurations, and so on, not to mention the interdependence among microservices.
This is exactly the right time for Docker to come into the picture.

Let's look at the evolution of Docker. Process isolation has been a part of Linux for a long
time in the form of Control Groups (cgroups) and namespaces. With the cgroup setting,
each process has limited resources (CPU, memory, and so on) to use. With a dedicated
process namespace, the processes within a namespace do not have any knowledge of other
processes running in the same node but in different process namespaces. With a dedicated
network namespace, processes cannot communicate with other processes without a
proper network configuration, even though they're running on the same node.

Docker eases process management for infrastructure and DevOps engineers. In 2013,
Docker as a company released the Docker open source project. Instead of managing
namespaces and cgroups, DevOps engineers manage containers through Docker engine.
Docker containers leverage these isolation mechanisms in Linux to run and manage
microservices. Each container has a dedicated cgroup and namespaces.

The interdependency complexity remains. Orchestration platforms are ones that try
to solve this problem. Docker also offered Docker Swarm mode (later renamed Docker
Enterprise Edition, or Docker EE) to support clustering containers, around the same
time as Kubernetes.

6 Kubernetes Architecture

Kubernetes adoption status
According to a container usage report conducted in 2019 by Sysdig (https://sysdig.
com/blog/sysdig-2019-container-usage-report), a container security and
orchestration vendor says that Kubernetes takes a whopping 77% share of orchestrators
in use. The market share is close to 90% if OpenShift (a variation of Kubernetes from
Red Hat) is included:

Figure 1.1 – The market share of orchestration platforms

Although Docker Swarm was released around the same time as Kubernetes,
Kubernetes has now become the de facto choice of platform for container orchestration.
This is because of Kubernetes' ability to work well in production environments. It is
easy to use, supports a multitude of developer configurations, and can handle
high-scale environments.

Kubernetes clusters
A Kubernetes cluster is composed of multiple machines (or Virtual Machines (VMs)) or
nodes. There are two types of nodes: master nodes and worker nodes. The main control
plane, such as kube-apiserver, runs on the master nodes. The agent running on each
worker node is called kubelet, working as a minion on behalf of kube-apiserver,
and runs on the worker nodes. A typical workflow in Kubernetes starts with a user
(for example, DevOps), who communicates with kube-apiserver in the master node,
and kube-apiserver delegates the deployment job to the worker nodes. In the next
section, we will introduce kube-apiserver and kubelet in more detail:

https://sysdig.com/blog/sysdig-2019-container-usage-report
https://sysdig.com/blog/sysdig-2019-container-usage-report

Kubernetes components 7

Figure 1.2 – Kubernetes deployment

The previous diagram shows how a user sends a deployment request to the master node
(kube-apiserver) and kube-apiserver delegates the deployment execution to
kubelet in some of the worker nodes.

Kubernetes components
Kubernetes follows a client-server architecture. In Kubernetes, multiple master nodes
control multiple worker nodes. Each master and worker has a set of components that
are required for the cluster to work correctly. A master node generally has kube-
apiserver, etcd storage, kube-controller-manager, cloud-controller-
manager, and kube-scheduler. The worker nodes have kubelet, kube-proxy,
a Container Runtime Interface (CRI) component, a Container Storage Interface (CRI)
component, and so on. We will go through each of them in detail now:

• kube-apiserver: The Kubernetes API server (kube-apiserver) is a
control-plane component that validates and configures data for objects such as
pods, services, and controllers. It interacts with objects using REST requests.

• etcd: etcd is a high-availability key-value store used to store data such as
configuration, state, and metadata. The watch functionality of etcd provides
Kubernetes with the ability to listen for updates to configuration and make
changes accordingly.

8 Kubernetes Architecture

• kube-scheduler: kube-scheduler is a default scheduler for Kubernetes. It
watches for newly created pods and assigns pods to the nodes. The scheduler first
filters a set of nodes on which the pod can run. Filtering includes creating a list of
possible nodes based on available resources and policies set by the user. Once this
list is created, the scheduler ranks the nodes to find the most optimal node for
the pod.

• kube-controller-manager: The Kubernetes controller manager is a
combination of the core controllers that watch for state updates and make changes
to the cluster accordingly. Controllers that currently ship with Kubernetes include
the following:

• cloud-controller-manager: The cloud container manager was introduced in
v1.6; it runs controllers to interact with the underlying cloud providers. This is an
attempt to decouple the cloud vendor code from the Kubernetes code.

• kubelet: kubelet runs on every node. It registers the node with the API server.
kubelet monitors pods created using Podspecs and ensures that the pods and
containers are healthy.

• kube-proxy: kube-proxy is a networking proxy that runs on each node. It
manages the networking rules on each node and forwards or filters traffic based
on these rules.

• kube-dns: DNS is a built-in service launched at cluster startup. With v1.12,
CoreDNS became the recommended DNS server, replacing kube-dns. CoreDNS
uses a single container (versus the three used for kube-dns). It uses multithreaded
caching and has in-built negative caching, thus being superior to kube-dns in
terms of memory and performance.

Kubernetes objects 9

In this section, we looked at the core components of Kubernetes. These components will
be present in all Kubernetes clusters. Kubernetes also has some configurable interfaces
that allow clusters to be modified to suit the organizational needs.

The Kubernetes interfaces
Kubernetes aims to be flexible and modular, so cluster administrators can modify
the networking, storage, and container runtime capabilities to suit the organization's
requirements. Currently, Kubernetes provides three different interfaces that can be
used by cluster administrators to use different capabilities within the cluster.

The container networking interface
Kubernetes has a default networking provider, kubenet, which is limited in capability.
kubenet only supports 50 nodes per cluster, which obviously cannot meet any
requirements of large-scale deployment. Meanwhile, Kubernetes leverages a Container
Networking Interface (CNI) as a common interface between the network providers and
Kubernetes' networking components to support network communication in a cluster with
a large scale. Currently, the supported providers include Calico, Flannel, kube-router
and so on.

The container storage interface
Kubernetes introduced the container storage interface in v1.13. Before 1.13, new volume
plugins were part of the core Kubernetes code. The container storage interface provides an
interface for exposing arbitrary blocks and file storage to Kubernetes. Cloud providers can
expose advanced filesystems to Kubernetes by using CSI plugins. Plugins such as MapR
and Snapshot are popular among cluster administrators.

The container runtime interface
At the lowest level of Kubernetes, container runtimes ensure containers start, work, and
stop. The most popular container runtime is Docker. The container runtime interface
gives cluster administrators the ability to use other container runtimes, such as frakti,
rktlet, and cri-o.

Kubernetes objects
The storage and compute resources of the system are classified into different objects that
reflect the current state of the cluster. Objects are defined using a .yaml spec and the
Kubernetes API is used to create and manage the objects. We are going to cover some
common Kubernetes objects in detail.

10 Kubernetes Architecture

Pods
A pod is a basic building block of a Kubernetes cluster. It's a group of one or more
containers that are expected to co-exist on a single host. Containers within a pod can
reference each other using localhost or inter-process communications (IPCs).

Deployments
Kubernetes deployments help scale pods up or down based on labels and selectors. The
YAML spec for a deployment consists of replicas, which is the number of instances
of pods that are required, and template, which is identical to a pod specification.

Services
A Kubernetes service is an abstraction of an application. A service enables network access
for pods. Services and deployments work in conjunction to ease the management and
communication between different pods of an application.

Replica sets
Replica sets ensure a given number pods are running in a system at any given time. It
is better to use deployments over replica sets. Deployments encapsulate replica sets and
pods. Additionally, deployments provide the ability to carry out rolling updates.

Volumes
Container storage is ephemeral. If the container crashes or reboots, it starts from its
original state when it starts. Kubernetes volumes help solve this problem. A container can
use volumes to store a state. A Kubernetes volume has a lifetime of a pod; as soon as the
pod perishes, the volume is cleaned up as well. Some of the supported volumes include
awsElasticBlockStore, azureDisk, flocker, nfs, and gitRepo.

Namespaces
Namespaces help a physical cluster to be divided into multiple virtual clusters. Multiple
objects can be isolated within different namespaces. Default Kubernetes ships with three
namespaces: default, kube-system, and kube-public.

Kubernetes variations 11

Service accounts
Pods that need to interact with kube-apiserver use service accounts to identify
themselves. By default, Kubernetes is provisioned with a list of default service accounts:
kube-proxy, kube-dns, node-controller, and so on. Additional service accounts
can be created to enforce custom access control.

Network policies
A network policy defines a set of rules of how a group of pods is allowed to communicate
with each other and other network endpoints. Any incoming and outgoing network
connections are gated by the network policy. By default, a pod is able to communicate
with all pods.

Pod security policies
The pod security policy is a cluster-level resource that defines a set of conditions
that must be fulfilled for a pod to run on the system. Pod security policies define the
security-sensitive configuration for a pod. These policies must be accessible to the
requesting user or the service account of the target pod to work.

Kubernetes variations
In the Kubernetes ecosystem, Kubernetes is the flagship among all variations. However,
there are some other ships that play very important roles. Next, we will introduce some
Kubernetes-like platforms, which serve different purposes in the ecosystem.

Minikube
Minikube is the single-node cluster version of Kubernetes that can be run on Linux,
macOS, and Windows platforms. Minikube supports standard Kubernetes features,
such as LoadBalancer, services, PersistentVolume, Ingress, container runtimes,
and developer-friendly features such as add-ons and GPU support.

Minikube is a great starting place to get hands-on experience with Kubernetes. It's also
a good place to run tests locally, especially cluster dependency or working on proof
of concepts.

12 Kubernetes Architecture

K3s
K3s is a lightweight Kubernetes platform. Its total size is less than 40 MB. It is great
for Edge, Internet of Things (IoT), and ARM, previously Advanced RISC Machine,
originally Acorn RISC Machine, a family of reduced instruction set computing (RISC)
architectures for computer processors, configured for various environments. It is supposed
to be fully compliant with Kubernetes. One significant difference from Kubernetes is that
it uses sqlite as a default storage mechanism, while Kubernetes uses etcd as its default
storage server.

OpenShift
OpenShift version 3 adopted Docker as its container technology and Kubernetes as
its container orchestration technology. In version 4, OpenShift switched to CRI-O as
the default container runtime. It appears as though OpenShift should be the same as
Kubernetes; however, there are quite a few differences.

OpenShift versus Kubernetes
The connections between Linux and Red Hat Linux might first appear to be the same
as the connections between OpenShift and Kubernetes. Now, let's look at some of their
major differences.

Naming
Objects named in Kubernetes might have different names in OpenShift, although
sometimes their functionality is alike. For example, a namespace in Kubernetes is called
a project in OpenShift, and project creation comes with default objects. Ingress in
Kubernetes is called routes in OpenShift. Routes were actually introduced earlier than
Ingress objects. Underneath, routes in OpenShift are implemented by HAProxy, while
there are many ingress controller options in Kubernetes. Deployment in Kubernetes is
called deploymentConfig. However, the implementation underneath is quite different.

Security
Kubernetes is open and less secure by default. OpenShift is relatively closed and offers
a handful of good security mechanisms to secure a cluster. For example, when creating
an OpenShift cluster, DevOps can enable the internal image registry, which is not
exposed to the external one. At the same time, the internal image registry serves as the
trusted registry where the image will be pulled and deployed. There is another thing
that OpenShift projects do better than kubernetes namespaces—when creating a
project in OpenShift, you can modify the project template and add extra objects, such
as NetworkPolicy and default quotas, to the project that are compliant with your
company's policy. It also helps hardening, by default.

Kubernetes and cloud providers 13

Cost
OpenShift is a product offered by Red Hat, although there is a community version project
called OpenShift Origin. When people talk about OpenShift, they usually mean the paid
option of the OpenShift product with support from Red Hat. Kubernetes is a completely
free open source project.

Kubernetes and cloud providers
A lot of people believe that Kubernetes is the future of infrastructure, and there are some
people who believe that everything will end up on the cloud. However, this doesn't mean
you have to run Kubernetes on the cloud, but it does work really well with the cloud.

Kubernetes as a service
Containerization makes applications more portable so that locking down with a specific
cloud provider becomes unlikely. Although there are some great open source tools, such
as kubeadm and kops, that can help DevOps create Kubernetes clusters, Kubernetes
as a service offered by a cloud provider still sounds attractive. As the original creator of
Kubernetes, Google has offered Kubernetes as a service since 2014. It is called Google
Kubernetes Engine (GKE). In 2017, Microsoft offered its own Kubernetes service,
called Azure Kubernetes Service (AKS). AWS offered Elastic Kubernetes Service (EKS)
in 2018.

Kubedex (https://kubedex.com/google-gke-vs-microsoft-aks-vs-
amazon-eks/) have carried out a great comparison of the cloud Kubernetes services.
Some of the differences between the three are listed in the following table:

https://kubedex.com/google-gke-vs-microsoft-aks-vs-amazon-eks/
https://kubedex.com/google-gke-vs-microsoft-aks-vs-amazon-eks/

14 Kubernetes Architecture

Some highlights worth emphasizing from the preceding list are as follows:

• Scalability: GKE supports up to 5,000 nodes per cluster, while AKS and EKS only
support a few hundred nodes or less.

• Advanced security options: GKE supports Istio service meshes, Sandbox, Binary
Authorization, and ingress-managed secure sockets layer (SSL), while AKS and
EKS cannot.

Kubernetes and cloud providers 15

If the plan is to deploy and manage microservices in a Kubernetes cluster provisioned
by cloud providers, you need to consider the scalability capability as well as security
options available with the cloud provider. There are certain limitations if you use a
cluster managed by a cloud provider:

• Some of the cluster configuration and hardenings are done by the cloud provider
by default and may not be subject to change.

• You lose the flexibility of managing the Kubernetes cluster. For example, if you want
to enable Kubernetes' audit policy and export audit logs to splunk, you might
want to make some configuration changes to the kube-apiserver manifest.

• There is limited access to the master node where kube-apiserver is running.
The limitation totally makes sense if you are focused on deploying and managing
microservices. In some cases, you need to enable some admission controllers, then
you will have to make changes to the kube-apiserver manifest as well. These
operations require access to the master node.

If you want to have a Kubernetes cluster with access to the cluster node, an open source
tool—kops—can help you.

Kops
Kubernetes Operations (kops), helps in creating, destroying, upgrading, and maintaining
production-grade, highly available Kubernetes clusters from the command line. It
officially supports AWS and supports GCE and OpenStack in the beta version. The major
difference from provisioning a Kubernetes cluster on a cloud Kubernetes service is that
the provisioning starts from the VM layer. This means that with kops you can control
what OS image you want to use and set up your own admin SSH key to access both the
master nodes and the worker nodes. An example of creating a Kubernetes cluster in AWS
is as follows:

 # Create a cluster in AWS that has HA masters. This cluster

 # will be setup with an internal networking in a private VPC.

 # A bastion instance will be setup to provide instance
access.

 export NODE_SIZE=${NODE_SIZE:-m4.large}

 export MASTER_SIZE=${MASTER_SIZE:-m4.large}

 export ZONES=${ZONES:-'us-east-1d,us-east-1b,us-east-1c'}

 export KOPS_STATE_STORE='s3://my-state-store'

 kops create cluster k8s-clusters.example.com \

 --node-count 3 \

16 Kubernetes Architecture

 --zones $ZONES \

 --node-size $NODE_SIZE \

 --master-size $MASTER_SIZE \

 --master-zones $ZONES \

 --networking weave \

 --topology private \

 --bastion='true' \

 --yes

With the preceding kops command, a three-worker-nodes Kubernetes cluster is created.
The user can choose the size of the master node and the CNI plugin.

Why worry about Kubernetes' security?
Kubernetes was in general availability in 2018 and is still evolving very fast. There are
features that are still under development and are not in a GA state (either alpha or beta).
This is an indication that Kubernetes itself is far from mature, at least from a security
standpoint. But this is not the main reason that we need to be concerned with
Kubernetes security.

Bruce Schneier summed this up best in 1999 when he said 'Complexity is the worst
enemy of security' in an essay titled A Plea for Simplicity, correctly predicting the
cybersecurity problems we encounter today (https://www.schneier.com/
essays/archives/1999/11/a_plea_for_simplicit.html). In order to
address all the major orchestration requirements of stability, scalability, flexibility,
and security, Kubernetes has been designed in a complex but cohesive way. This
complexity no doubt brings with it some security concerns.

Configurability is one of the top benefits of the Kubernetes platform for developers.
Developers and cloud providers are free to configure their clusters to suit their needs. This
trait of Kubernetes is one of the major reasons for increasing security concerns among
enterprises. The ever-growing Kubernetes code and components of a Kubernetes cluster
make it challenging for DevOps to understand the correct configuration. The default
configurations are usually not secure (the openness does bring advantages to DevOps
to try out new features).

https://www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html
https://www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html

Kubernetes and cloud providers 17

With the increase in the usage of Kubernetes, it has been in the news for various security
breaches and flaws:

• Researchers at Palo Alto Networks found 40,000 Docker and Kubernetes containers
exposed to the internet. This was the result of misconfigured deployments.

• Attackers used Tesla's unsecured administrative console to run a crypto-mining rig.

• A privilege escalation vulnerability was found in a Kubernetes version, which
allowed a specially crafted request to establish a connection through the API
server to the backend and send an arbitrary request.

• The use of a Kubernetes metadata beta feature in a production environment led
to an Server-Side Request Forgery (SSRF) attack on the popular e-commerce
platform Shopify. The vulnerability exposed the Kubernetes metadata, which
revealed Google service account tokens and the kube-env details, which allowed
the attacker to compromise the cluster.

A recent survey by The New Stack (https://thenewstack.io/top-challenges-
kubernetes-users-face-deployment/) shows that security is the primary
concern of enterprises running Kubernetes:

Figure 1.3 – Top concerns for Kubernetes users

https://thenewstack.io/top-challenges-kubernetes-users-face-deployment/
https://thenewstack.io/top-challenges-kubernetes-users-face-deployment/

18 Kubernetes Architecture

Kubernetes is not secure by default. We will explain more about this in later chapters.
Security becoming one of the primary concerns of users totally makes sense. It is a
problem that needs to be addressed properly just like other infrastructure or platform.

Summary
The trend of microservices and the rise of Docker has enabled Kubernetes to become the
de facto platform for DevOps to deploy, scale, and manage containerized applications.
Kubernetes abstracts storage and computing resources as Kubernetes objects, which are
managed by components such as kube-apiserver, kubelet, etcd, and so on.

Kubernetes can be created in a private data center or on the cloud or hybrid. This allows
DevOps to work with multiple cloud providers and not get locked down to any one of
them. Although Kubernetes is in GA as of 2018, it is still young and evolving very fast. As
Kubernetes gets more and more attention, the attacks targeted at Kubernetes also become
more notable.

In the next chapter, we are going to cover the Kubernetes network model and understand
how microservices communicate with each other in Kubernetes.

Questions
1. What are the major problems of monolith architecture?

2. What are Kubernetes' master components?

3. What is deployment?

4. What are some variations of Kubernetes?

5. Why do we care about Kubernetes' security?

Further reading
The following links contain more detailed information about Kubernetes, kops, and the
OpenShift platform. You will find them useful when starting to build a Kubernetes cluster:

• https://kubernetes.io/docs/concepts/

• https://kubernetes.io/docs/tutorials/

• https://github.com/kubernetes/kops

• https://docs.openshift.com/container-platform/4.2

• https://cloud.google.com/kubernetes-engine/docs/concepts/
kubernetes-engine-overview

https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/tutorials/
https://github.com/kubernetes/kops
https://docs.openshift.com/container-platform/4.2
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview

2
Kubernetes
Networking

When thousands of microservices are running in a Kubernetes cluster, you may be
curious about how these microservices communicate with each other as well as with
the internet. In this chapter, we will unveil all the communication paths in a Kubernetes
cluster. We want you to not only know how the communication happens but to also look
into the technical details with a security mindset: a regular communication channel can
always be abused as part of the kill chain.

In this chapter, we will cover the following topics:

•	Overview of the Kubernetes network model

•	Communicating inside a pod

•	Communicating between pods

•	 Introducing the Kubernetes service

•	 Introducing the CNI and CNI plugins

20 Kubernetes Networking

Overview of the Kubernetes network model
Applications running on a Kubernetes cluster are supposed to be accessible either
internally from the cluster or externally, from outside the cluster. The implication from
the network's perspective is there may be a Uniform Resource Identifier (URI) or
Internet Protocol (IP) address associated with the application. Multiple applications can
run on the same Kubernetes worker node, but how can they expose themselves without
conflicting with each other? Let's take a look at this problem together, and then dive into
the Kubernetes network model.

Port-sharing problems
Traditionally, if there are two different applications running on the same machine where
the machine IP is public and the two applications are publicly accessible, then the two
applications cannot listen on the same port in the machine. If they both try to listen on
the same port in the same machine, one application will not launch as the port is in use.
A simple illustration of this is provided in the following diagram:

Figure 2.1 – Port-sharing conflict on node (applications)

In order to address the port-sharing confliction issue, the two applications need to use
different ports. Obviously, the limitation here is that the two applications have to share
the same IP address. What if they have their own IP address while still sitting on the same
machine? This is the pure Docker approach. This helps if the application does not need to
expose itself externally, as illustrated in the following diagram:

Overview of the Kubernetes network model 21

Figure 2.2 – Port-sharing conflict on node (containers)

In the preceding diagram, both applications have their own IP address so that they can
both listen on port 80. They can communicate with each other as they are in the same
subnet (for example, a Docker bridge). However, if both applications need to expose
themselves externally through binding the container port to the host port, they can't
bind on the same port 80. At least one of the port bindings will fail. As shown in the
preceding diagram, container B can't bind to host port 80 as the host port 80 is occupied
by container A. The port-sharing confliction issue still exists.

Dynamic port configuration brings a lot of complexity to the system regarding port
allocation and application discovery; however, Kubernetes does not take this approach.
Let's discuss the Kubernetes approach for solving this issue.

Kubernetes network model
In a Kubernetes cluster, every pod gets its own IP address. This means applications can
communicate with each other at a pod level. The beauty of this design is that it offers
a clean, backward-compatible model where pods act like Virtual Machines (VMs) or
physical hosts from the perspective of port allocation, naming, service discovery, load
balancing, application configuration, and migration. Containers inside the same pod share
the same IP address. It's very unlikely that similar applications that use the same default
port (Apache and nginx) will run inside the same pod. In reality, applications bundled
inside the same container usually have a dependency or serve different purposes, and it
is up to the application developers to bundle them together. A simple example would be
that, in the same pod, there is a HyperText Transfer Protocol (HTTP) server or an nginx
container to serve static files, and the main web application to serve dynamic content.

22 Kubernetes Networking

Kubernetes leverages CNI plugins to implement the IP address allocation, management,
and pod communication. However, all the plugins need to follow the two fundamental
requirements listed here:

1. Pods on a node can communicate with all pods in all nodes without using Network
Address Translation (NAT).

2. Agents such as kubelet can communicate with pods in the same node.

These two preceding requirements enforce the simplicity of migrating applications inside
the VM to a pod.

The IP address assigned to each pod is a private IP address or a cluster IP address that is
not publicly accessible. Then, how, can an application become publicly accessible without
conflicting with other applications in the cluster? The Kubernetes service is the one that
surfaces the internal application to the public. We will dive deeper into the Kubernetes
service concept in later sections. For now, it will be useful to summarize the content of
this chapter with a diagram, as follows:

Figure 2.3 – Service exposed to the internet

Communicating inside a pod 23

In the previous diagram, there is a k8s cluster where there are four applications running
in two pods: Application A and Application B are running in Pod X, and they share
the same pod IP address—100.97.240.188—while they are listening on port 8080 and
9090 respectively. Similarly, Application C and Application D are running in Pod Y and
listening on port 8000 and 9000 respectively. All these four applications are accessible
from the public via the following public-facing Kubernetes services: svc.a.com, svc.b.com,
svc.c.com, and svc.d.com. The pods (X and Y in this diagram) can be deployed in one
single worker node or replicated across 1,000 nodes. However, it makes no difference
from a user's or a service's perspective. Although the deployment in the diagram is quite
unusual, there is still a need to deploy more than one container inside the same pod. It's
time to take a look into the containers' communication inside the same pod.

Communicating inside a pod
Containers inside the same pod share the same pod IP address. Usually, it is up to
application developers to bundle the container images together and to resolve any possible
resource usage conflicts such as port listening. In this section, we will dive into the
technical details of how the communication happens among the containers inside the pod
and will also highlight the communications that take place beyond the network level.

Linux namespaces and the pause container
Linux namespaces are a feature of the Linux kernel to partition resources for isolation
purposes. With namespaces assigned, a set of processes sees one set of resources,
while another set of processes sees another set of resources. Namespaces are a major
fundamental aspect of modern container technology. It is important for readers to
understand this concept in order to know Kubernetes in depth. So, we set forth all the
Linux namespaces with explanations. Since Linux kernel version 4.7, there are seven kinds
of namespaces, listed as follows:

• cgroup: Isolate cgroup and root directory. cgroup namespaces virtualize the
view of a process's cgroups. Each cgroup namespace has its own set of cgroup
root directories.

• IPC: Isolate System V Interprocess Communication (IPC) objects or Portable
Operating System Interface (POSIX) message queues.

• Network: Isolate network devices, protocol stacks, ports, IP routing tables,
firewall rules, and more.

• Mount: Isolate mount points. Thus, the processes in each of the mount namespace
instances will see distinct single-directory hierarchies.

24 Kubernetes Networking

• PID: Isolate process IDs (PIDs). Processes in different PID namespaces can have
the same PID.

• User: Isolate user IDs and group IDs, the root directory, keys, and capabilities. A
process can have a different user and group ID inside and outside a user namespace.

• Unix Time Sharing (UTS): Isolate the two system identifiers: the hostname and
Network Information Service (NIS) domain name.

Though each of these namespaces is powerful and serves an isolation purpose on different
resources, not all of them are adopted for containers inside the same pod. Containers
inside the same pod share at least the same IPC namespace and network namespace; as
a result, K8s needs to resolve potential conflicts in port usage. There will be a loopback
interface created, as well as the virtual network interface, with an IP address assigned
to the pod. A more detailed diagram will look like this:

Figure 2.4 – Containers inside a pod

In this diagram, there is one Pause container running inside the pod alongside containers
A and B. If you Secure Shell (SSH) into a Kubernetes cluster node and run the docker
ps command inside the node, you will see at least one container that was started with
the pause command. The pause command suspends the current process until a signal
is received. Basically, these containers do nothing but sleep. Despite the lack of activity,
the Pause container plays a critical role in the pod. It serves as a placeholder to hold
the network namespace for all other containers in the same pod. Meanwhile, the Pause
container acquires an IP address for the virtual network interface that will be used by all
other containers to communicate with each other and the outside world.

Communicating inside a pod 25

Beyond network communication
We decide to go beyond network communication a little bit among the containers in the
same pod. The reason for doing so is that the communication path could sometimes become
part of the kill chain. Thus, it is very important to know the possible ways to communicate
among entities. You will see more coverage of this in Chapter 3, Threat Modeling.

Inside a pod, all containers share the same IPC namespace so that containers can
communicate via the IPC object or a POSIX message queue. Besides the IPC channel,
containers inside the same pod can also communicate via a shared mounted volume.
The mounted volume could be a temporary memory, host filesystem, or cloud storage.
If the volume is mounted by containers in the Pod, then containers can read and write
the same files in the volume. Last but not least, in beta, since the 1.12 Kubernetes release,
the shareProcessNamespace feature finally graduates to stable in 1.17. To allow
containers within a pod to share a common PID namespace, users can simply set the
shareProcessNamespace option in the Podspec. The result of this is that Application
A in Container A is now able to see Application B in Container B. Since they're both
in the same PID namespace, they can communicate using signals such as SIGTERM,
SIGKILL, and so on. This communication can be seen in the following diagram:

Figure 2.5 – Possible communication between containers inside a pod

As the previous diagram shows, containers inside the same pod can communicate to each
other via a network, an IPC channel, a shared volume, and through signals.

26 Kubernetes Networking

Communicating between pods
Kubernetes pods are dynamic beings and ephemeral. When a set of pods is created from
a deployment or a DaemonSet, each pod gets its own IP address; however, when patching
happens or a pod dies and restarts, pods may have a new IP address assigned. This leads
to two fundamental communication problems, given a set of pods (frontend) needs to
communicate to another set of pods (backend), detailed as follows:

• Given that the IP addresses may change, what are the valid IP addresses of the
target pods?

• Knowing the valid IP addresses, which pod should we communicate to?

Now, let's jump into the Kubernetes service as it is the solution for these two problems.

The Kubernetes service
The Kubernetes service is an abstraction of a grouping of sets of pods with a definition
of how to access the pods. The set of pods targeted by a service is usually determined by
a selector based on pod labels. The Kubernetes service also gets an IP address assigned,
but it is virtual. The reason to call it a virtual IP address is that, from a node's perspective,
there is neither a namespace nor a network interface bound to a service as there is with
a pod. Also, unlike pods, the service is more stable, and its IP address is less likely to be
changed frequently. Sounds like we should be able to solve the two problems mentioned
earlier. First, define a service for the target sets of pods with a proper selector configured;
secondly, let some magic associated with the service decide which target pod is to receive
the request. So, when we look at pod-to-pod communication again, we're in fact talking
about pod-to-service (then to-pod) communication.

So, what's the magic behind the service? Now, we'll introduce the great network magician:
the kube-proxy component.

kube-proxy
You may guess what kube-proxy does by its name. Generally, what a proxy (not a
reverse proxy) does is, it passes the traffic between the client and the servers over two
connections: inbound from the client and outbound to the server. So, what kube-proxy
does to solve the two problems mentioned earlier is that it forwards all the traffic whose
destination is the target service (the virtual IP) to the pods grouped by the service
(the actual IP); meanwhile, kube-proxy watches the Kubernetes control plane for the
addition or removal of the service and endpoint objects (pods). In order to do this simple
task well, kube-proxy has evolved a few times.

Communicating between pods 27

User space proxy mode
The kube-proxy component in the user space proxy mode acts like a real proxy. First,
kube-proxy will listen on a random port on the node as a proxy port for a particular
service. Any inbound connection to the proxy port will be forwarded to the service's
backend pods. When kube-proxy needs to decide which backend pod to send requests
to, it takes the SessionAffinity setting of the service into account. Secondly, kube-
proxy will install iptables rules to forward any traffic whose destination is the target
service (virtual IP) to the proxy port, which proxies the backend port. The following
diagram from the Kubernetes documentation illustrates this well:

Figure 2.6 – kube-proxy user space proxy mode

By default, kube-proxy in user space mode uses a round-robin algorithm to choose
which backend pod to forward the requests to. The downside of this mode is obvious.
The traffic forwarding is done in the user space. This means that packets are marshaled
into the user space and then marshaled back to the kernel space on every trip through
the proxy. The solution is not ideal from a performance perspective.

28 Kubernetes Networking

iptables proxy mode
The kube-proxy component in the iptables proxy mode offloads the forwarding traffic
job to netfilter using iptables rules. kube-proxy in the iptables proxy mode is
only responsible for maintaining and updating the iptables rules. Any traffic targeted
to the service IP will be forwarded to the backend pods by netfilter, based on the
iptables rules managed by kube-proxy. The following diagram from the Kubernetes
documentation illustrates this:

Figure 2.7 – kube-proxy iptables proxy mode

Compared to the user space proxy mode, the advantage of the iptables mode is obvious.
The traffic will no longer go through the kernel space to the user space and then back to
the kernel space. Instead, it will be forwarded in the kernel space directly. The overhead
is much lower. The disadvantage of this mode is the error handling required. For a case
where kube-proxy runs in the iptables proxy mode, if the first selected pod does not
respond, the connection will fail. While in the user space mode, however, kube-proxy
would detect that the connection to the first pod had failed and then automatically retry
with a different backend pod.

Communicating between pods 29

IPVS proxy mode
The kube-proxy component in the IP Virtual Server (IPVS) proxy mode manages
and leverages the IPVS rule to forward the targeted service traffic to the backend pods.
Just as with iptables rules, IPVS rules also work in the kernel. IPVS is built on top of
netfilter. It implements transport-layer load balancing as part of the Linux kernel,
incorporated into Linux Virtual Server (LVS). LVS runs on a host and acts as a load
balancer in front of a cluster of real servers, and any Transmission Control Protocol
(TCP)- or User Datagram Protocol (UDP)-based traffic to the IPVS service will be
forwarded to the real servers. This makes the IPVS service of the real servers appear
as virtual services on a single IP address. IPVS is a perfect match with the Kubernetes
service. The following diagram from the Kubernetes documentation illustrates this:

Figure 2.8 – kube-proxy IPVS proxy mode

Compared to the iptables proxy mode, both IPVS rules and iptables rules work in the
kernel space. However, iptables rules are evaluated sequentially for each incoming packet.
The more rules there are, the longer the process. The IPVS implementation is different
from iptables: it uses a hash table managed by the kernel to store the destination of a
packet so that it has lower latency and faster rules synchronization than iptables rules.
IPVS mode also provides more options for load balancing. The only limitation for using
IPVS mode is that you must have IPVS Linux available on the node for kube-proxy
to consume.

30 Kubernetes Networking

Introducing the Kubernetes service
Kubernetes deployments create and destroy pods dynamically. For a general three-tier
web architecture, this can be a problem if the frontend and backend are different pods.
Frontend pods don't know how to connect to the backend. Network service abstraction
in Kubernetes resolves this problem.

The Kubernetes service enables network access for a logical set of pods. The logical set
of pods are usually defined using labels. When a network request is made for a service,
it selects all the pods with a given label and forwards the network request to one of the
selected pods.

A Kubernetes service is defined using a YAML Ain't Markup Language (YAML) file,
as follows:

apiVersion: v1

kind: Service

metadata:

 name: service-1

spec:

 type: NodePort

 selector:

 app: app-1

 ports:

 - nodePort: 29763

 protocol: TCP

 port: 80

 targetPort: 9376

In this YAML file, the following applies:

1. The type property defines how the service is exposed to the network.

2. The selector property defines the label for the Pods.

3. The port property is used to define the port exposed internally in the cluster.

4. The targetPort property defines the port on which the container is listening.

Introducing the Kubernetes service 31

Services are usually defined with a selector, which is a label attached to pods that need to
be in the same service. A service can be defined without a selector. This is usually done to
access external services or services in a different namespace. Services without selectors are
mapped to a network address and a port using an endpoint object, as follows:

apiVersion: v1

kind: Endpoints

subsets:

 - addresses:

 - ip: 192.123.1.22

 ports:

 - port: 3909

This endpoint object will route traffic for 192:123.1.22:3909 to the attached service.

Service discovery
To find Kubernetes services, developers either use environment variables or the Domain
Name System (DNS), detailed as follows:

1. Environment variables: When a service is created, a set of environment variables of
the form [NAME]_SERVICE_HOST and [NAME]_SERVICE_PORT are created on
the nodes. These environment variables can be used by other pods or applications
to reach out to the service, as illustrated in the following code snippet:

DB_SERVICE_HOST=192.122.1.23

DB_SERVICE_PORT=3909

2. DNS: The DNS service is added to Kubernetes as an add-on. Kubernetes supports
two add-ons: CoreDNS and Kube-DNS. DNS services contain a mapping of the
service name to IP addresses. Pods and applications use this mapping to connect
to the service.

Clients can locate the service IP from environment variables as well as through a DNS
query, and there are different types of services to serve different types of client.

32 Kubernetes Networking

Service types
A service can have four different types, as follows:

• ClusterIP: This is the default value. This service is only accessible within the cluster.
A Kubernetes proxy can be used to access the ClusterIP services externally. Using
kubectl proxy is preferable for debugging but is not recommended for production
services as it requires kubectl to be run as an authenticated user.

• NodePort: This service is accessible via a static port on every node. NodePorts
expose one service per port and require manual management of IP address changes.
This also makes NodePorts unsuitable for production environments.

• LoadBalancer: This service is accessible via a load balancer. A node balancer per
service is usually an expensive option.

• ExternalName: This service has an associated Canonical Name Record (CNAME)
that is used to access the service.

There are a few types of service to use and they work on layer 3 and layer 4 of the OSI
model. None of them is able to route a network request at layer 7. For routing requests to
applications, it would be ideal if the Kubernetes service supported such a feature. Let's see,
then, how an ingress object can help here.

Ingress for routing external requests
Ingress is not a type of service but is worth mentioning here. Ingress is a smart router that
provides external HTTP/HTTPS (short for HyperText Transfer Protocol Secure) access
to a service in a cluster. Services other than HTTP/HTTPS can only be exposed for the
NodePort or LoadBalancer service types. An Ingress resource is defined using a YAML
file, like this:

apiVersion: extensions/v1beta1

kind: Ingress

spec:

 rules:

 - http:

 paths:

 - path: /testpath

 backend:

 serviceName: service-1

 servicePort: 80

Introducing the Kubernetes service 33

This minimal ingress spec forwards all traffic from the testpath route to the
service-1 route.

Ingress objects have five different variations, listed as follows:

• Single-service Ingress: This exposes a single service by specifying a default backend
and no rules, as illustrated in the following code block:

apiVersion: extensions/v1beta1

kind: Ingress

spec:

 backend:

 serviceName: service-1

 servicePort: 80

This ingress exposes a dedicated IP address for service-1.
• Simple fanout: A fanout configuration routes traffic from a single IP to multiple

services based on the Uniform Resource Locator (URL), as illustrated in the
following code block:

apiVersion: extensions/v1beta1

kind: Ingress

spec:

 rules:

 - host: foo.com

 http:

 paths:

 - path: /foo

 backend:

 serviceName: service-1

 servicePort: 8080

 - path: /bar

 backend:

 serviceName: service-2

 servicePort: 8080

This configuration allows requests to foo.com/foo to reach out to service-1
and for foo.com/bar to connect to service-2.

34 Kubernetes Networking

• Name-based virtual hosting: This configuration uses multiple hostnames for a
single IP to reach out to different services, as illustrated in the following code block:

apiVersion: extensions/v1beta1

kind: Ingress

spec:

 rules:

 - host: foo.com

 http:

 paths:

 - backend:

 serviceName: service-1

 servicePort: 80

 - host: bar.com

 http:

 paths:

 - backend:

 serviceName: service-2

 servicePort: 80

This configuration allows requests to foo.com to connect to service-1 and
requests to bar.com to connect to service-2. The IP address allocated to both
services is the same in this case.

• Transport Layer Security (TLS): A secret can be added to the ingress spec to secure
the endpoints, as illustrated in the following code block:

apiVersion: extensions/v1beta1

kind: Ingress

spec:

 tls:

 - hosts:

 - ssl.foo.com

 secretName: secret-tls

 rules:

 - host: ssl.foo.com

 http:

 paths:

 - path: /

Introducing the CNI and CNI plugins 35

 backend:

 serviceName: service-1

 servicePort: 443

With this configuration, the secret-tls secret provides the private key and
certificate for the endpoint.

• Load balancing: A load balancing ingress provides a load balancing policy, which
includes the load balancing algorithm and weight scheme for all ingress objects.

In this section, we introduced the basic concept of the Kubernetes service, including
ingress objects. These are all Kubernetes objects. However, the actual network
communication magic is done by several components, such as kube-proxy. Next,
we will introduce the CNI and CNI plugins, which is the foundation that serves the
network communication of a Kubernetes cluster.

Introducing the CNI and CNI plugins
In Kubernetes, CNI stands for the Container Network Interface. CNI is a Cloud Native
Computing Foundation (CNCF) project—you can find further information on GitHub
here: https://github.com/containernetworking/cni. Basically, there are
three things in this project: a specification, libraries for writing plugins to configure
network interfaces in Linux containers, and some supported plugins. When people talk
about the CNI, they usually make reference to either the specification or the CNI plugins.
The relationship between the CNI and CNI plugins is that the CNI plugins are executable
binaries that implement the CNI specification. Now, let's look into the CNI specification
and plugins at a high level, and then we will give a brief introduction to one of the CNI
plugins, Calico.

CNI specification and plugins
The CNI specification is only concerned with the network connectivity of containers and
removing allocated resources when the container is deleted. Let me elaborate more on this.
First, from a container runtime's perspective, the CNI spec defines an interface for the
Container Runtime Interface (CRI) component (such as Docker) to interact with—for
example, add a container to a network interface when a container is created, or delete the
network interface when a container dies. Secondly, from a Kubernetes network model's
perspective, since CNI plugins are actually another flavor of Kubernetes network plugins,
they have to comply with Kubernetes network model requirements, detailed as follows:

1. Pods on a node can communicate with all pods in all the nodes without using NAT.

2. Agents such as kubelet can communicate with pods in the same node.

https://github.com/containernetworking/cni

36 Kubernetes Networking

There are a handful of CNI plugins available to choose—just to name a few: Calico,
Cilium, WeaveNet, Flannel, and so on. The CNI plugins' implementation varies, but in
general, what CNI plugins do is similar. They carry out the following tasks:

• Manage network interfaces for containers

• Allocate IP addresses for pods. This is usually done via calling other IP Address
Management (IPAM) plugins such as host-local

• Implement network policies (optional)

The network policy implementation is not required in the CNI specification, but
when DevOps choose which CNI plugins to use, it is important to take security into
consideration. Alexis Ducastel's article (https://itnext.io/benchmark-
results-of-kubernetes-network-plugins-cni-over-10gbit-s-
network-36475925a560) did a good comparison of the mainstream CNI plugins with
the latest update in April 2019. The security comparison is notable, as can be seen in the
following screenshot:

Figure 2.9 – CNI plugins comparison

You may notice that the majority of the CNI plugins on the list don't support encryption.
Flannel does not support Kubernetes network policies, while kube-router supports
ingress network policies only.

https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-36475925a560
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-36475925a560
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-36475925a560

Introducing the CNI and CNI plugins 37

As Kubernetes comes with the default kubenet plugin, in order to use CNI plugins in
a Kubernetes cluster, users must pass the --network-plugin=cni command-line
option and specify a configuration file via the --cni-conf-dir flag or in the /etc/
cni/net.d default directory. The following is a sample configuration defined within the
Kubernetes cluster so that kubelet may know which CNI plugin to interact with:

{

 'name': 'k8s-pod-network',

 'cniVersion': '0.3.0',

 'plugins': [

 {

 'type': 'calico',

 'log_level': 'info',

 'datastore_type': 'kubernetes',

 'nodename': '127.0.0.1',

 'ipam': {

 'type': 'host-local',

 'subnet': 'usePodCidr'

 },

 'policy': {

 'type': 'k8s'

 },

 'kubernetes': {

 'kubeconfig': '/etc/cni/net.d/calico-kubeconfig'

 }

 },

 {

 'type': 'portmap',

 'capabilities': {'portMappings': true}

 }

]

}

38 Kubernetes Networking

The CNI configuration file tells kubelet to use Calico as a CNI plugin and use
host-local to allocate IP addresses to pods. In the list, there is another CNI plugin
called portmap that is used to support hostPort, which allows container ports to be
exposed on the host IP.

When creating a cluster with Kubernetes Operations (kops), you can also specify the
CNI plugin you would like to use, as illustrated in the following code block:

 export NODE_SIZE=${NODE_SIZE:-m4.large}

 export MASTER_SIZE=${MASTER_SIZE:-m4.large}

 export ZONES=${ZONES:-'us-east-1d,us-east-1b,us-east-1c'}

 export KOPS_STATE_STORE='s3://my-state-store'

 kops create cluster k8s-clusters.example.com \

 --node-count 3 \

 --zones $ZONES \

 --node-size $NODE_SIZE \

 --master-size $MASTER_SIZE \

 --master-zones $ZONES \

 --networking calico \

 --topology private \

 --bastion='true' \

 --yes

In this example, the cluster is created using the calico CNI plugin.

Calico
Calico is an open source project that enables cloud-native application connectivity and
policy. It integrates with major orchestration systems such as Kubernetes, Apache Mesos,
Docker, and OpenStack. Compared to other CNI plugins, here are a few things about
Calico worth highlighting:

1. Calico provides a flat IP network, which means there will be no IP encapsulation
appended to the IP message (no overlays). Also, this means that each IP address
assigned to the pod is fully routable. The ability to run without an overlay provides
exceptional throughput characteristics.

Introducing the CNI and CNI plugins 39

2. Calico has better performance and less resource consumption, according to Alexis
Ducastel's experiments.

3. Calico offers a more comprehensive network policy compared to Kubernetes'
built-in network policy. Kubernetes' network policy can only define whitelist rules,
while Calico network policies can define blacklist rules (deny).

When integrating Calico into Kubernetes, you will see three components running inside
the Kubernetes cluster, as follows:

• The calico/node is a DaemonSet service, which means that it runs on every
node in the cluster. It is responsible for programming and routing kernel routes
to local workloads, and enforces the local filtering rules required by the current
network policies in the cluster. It is also responsible for broadcasting the routing
tables to other nodes to keep the IP routes in sync across the cluster.

• The CNI plugin binaries. This includes two binary executables (calico and
calico-ipam) and a configuration file that integrates directly with the Kubernetes
kubelet process on each node. It watches the pod creation event and then adds
pods to the Calico networking.

• The Calico Kubernetes controllers, running as a standalone pod, monitor the
Kubernetes application programming interface (API) to keep Calico in sync.

Calico is a popular CNI plugin and also the default CNI plugin in Google Kubernetes
Engine (GKE). Kubernetes administrators have full freedom to choose whatever CNI
plugin fits their requirement. Just keep in mind that security is essential and is one of the
decision factors. We've talked a lot about the Kubernetes network in the previous sections.
Let's quickly review this again before you forget.

Wrapping up
In a Kubernetes cluster, every pod gets an IP address assigned, but this is an internal IP
address and not accessible externally. Containers inside the same pod can communicate
with each other via the name network interface, as they share the same network
namespace. Containers inside the same pod also need to resolve the port resource
conflict problem; however, this is quite unlikely to happen as applications run in different
containers grouped in the same pod for a specific purpose. Also, it is worth noting that
containers inside the same pod can communicate beyond the network through shared
volume, IPC channel, and process signals.

40 Kubernetes Networking

The Kubernetes service helps pod-to-pod communication to be stabilized, as pods are
usually ephemeral. The service also gets an IP address assigned but this is virtual, meaning
no network interface is created for the service. The kube-proxy network magician
actually routes all traffic to the target service to the backend pods. There are three different
modes of kube-proxy: user space proxy, iptables proxy, and IPVS proxy. The Kubernetes
service not only provides support for pod-to-pod communication but also enables
communication from external sources.

There are a few ways to expose services so that they are accessible from external sources
such as NodePort, LoadBalancer, and ExternalName. Also, you can create an Ingress
object to achieve the same goal. Finally, though it is hard, we'll use the following single
diagram to try to consolidate most of the knowledge we want to highlight in this chapter:

Figure 2.10 – Communications: inside pod, among pods, and from external sources

There is nearly always a load balancer sitting in front of a Kubernetes cluster. With
the different service types we mentioned previously, this could be a single service
that is exposed via the load balancer (this is service A), or it could be exposed via a
NodePort. This is service B using node port 30000 in both nodes to accept external
traffic. Though ingress is not a service type, it is powerful and cost-efficient compared to
a LoadBalancer-type service. Service C and service D routing is controlled by the same
ingress object. Every pod in the cluster may have an internal communication topology
in the preceding callout diagram.

Summary 41

Summary
In this chapter, we started by discussing the typical port resource conflict problem
and how the Kubernetes network model tries to avoid this while maintaining good
compatibility for migrating applications from the VM to Kubernetes pods. Then, we
talked about the communication inside a pod, among pods, and from external sources
to pods.

Last but not least, we covered the basic concept of CNI and introduced how Calico works
in the Kubernetes environment. After the first two chapters, we hope you have a basic
understanding of how Kubernetes components work and how things communicate with
each other.

In the next chapter, we're going to talk about threat modeling a Kubernetes cluster.

Questions
1. In a Kubernetes cluster, is the IP address assigned to a pod or a container?

2. What are the Linux namespaces that will be shared among containers inside the
same pod?

3. What is a pause container and what is it for?

4. What are the types of Kubernetes services?

5. What is the advantage of using Ingress other than the LoadBalancer type service?

Further reading
If you want to build your own CNI plugin or evaluate Calico more, do check out the
following links:

• https://github.com/containernetworking/cni

• https://docs.projectcalico.org/v3.11/reference/
architecture/

• https://docs.projectcalico.org/v3.11/getting-started/
kubernetes/installation/integration

https://github.com/containernetworking/cni
https://docs.projectcalico.org/v3.11/reference/architecture/
https://docs.projectcalico.org/v3.11/reference/architecture/
https://docs.projectcalico.org/v3.11/getting-started/kubernetes/installation/integration
https://docs.projectcalico.org/v3.11/getting-started/kubernetes/installation/integration

3
Threat Modeling

Kubernetes is a large ecosystem comprising multiple components such as kube-
apiserver, etcd, kube-scheduler, kubelet, and more. In the first chapter,
we highlighted the basic functionality of different Kubernetes components. In the
default configuration, interactions between Kubernetes components result in threats
that developers and cluster administrators should be aware of. Additionally, deploying
applications in Kubernetes introduces new entities that the application interacts with,
adding new threat actors and attack surfaces to the threat model of the application.

In this chapter, we will start with a brief introduction to threat modeling and discuss
component interactions within the Kubernetes ecosystem. We will look at the threats in
the default Kubernetes configuration. Finally, we will talk about how threat modeling
an application in the Kubernetes ecosystem introduces additional threat actors and
attack surfaces.

The goal of this chapter is to help you understand that the default Kubernetes
configuration is not sufficient to protect your deployed application from attackers.
Kubernetes is a constantly evolving and community-maintained platform, so some
of the threats that we are going to highlight in this chapter do not have mitigations
because the severity of the threats varies with every environment.

44 Threat Modeling

This chapter aims to highlight the threats in the Kubernetes ecosystem, which includes
the Kubernetes components and workloads in a Kubernetes cluster, so developers and
DevOps engineers understand the risks of their deployments and have a risk mitigation
plan in place for the known threats. In this chapter, we will cover the following topics:

• Introduction to threat modeling

• Component interactions

• Threat actors in the Kubernetes environment

• The Kubernetes components/objects threat model

• Threat modeling applications in Kubernetes

Introduction to threat modeling
Threat modeling is a process of analyzing the system as a whole during the design phase
of the software development life cycle (SDLC) to identify risks to the system proactively.
Threat modeling is used to think about security requirements early in the development
cycle to reduce the severity of risks from the start. Threat modeling involves identifying
threats, understanding the effects of each threat, and finally developing a mitigation
strategy for every threat. Threat modeling aims to highlight the risks in an ecosystem
as a simple matrix with the likelihood and impact of the risk and a corresponding risk
mitigation strategy if it exists.

After a successful threat modeling session, you're able to define the following:

1. Asset: A property of an ecosystem that you need to protect.

2. Security control: A property of a system that protects the asset against identified
risks. These are either safeguards or countermeasures against the risk to the asset.

3. Threat actor: A threat actor is an entity or organization including script kiddies,
nation-state attackers, and hacktivists who exploit risks.

4. Attack surface: The part of the system that the threat actor is interacting with.
It includes the entry point of the threat actor into the system.

5. Threat: The risk to the asset.

6. Mitigation: Mitigation defines how to reduce the likelihood and impact of a threat
to an asset.

Introduction to threat modeling 45

The industry usually follows one of the following approaches to threat modeling:

• STRIDE: The STRIDE model was published by Microsoft in 1999. It is an acronym
for Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service,
and Escalation of Privilege. STRIDE models threats to a system to answer the
question, 'What can go wrong with the system?'

• PASTA: Process for Attack Simulation and Threat Analysis is a risk-centric
approach to threat modeling. PASTA follows an attacker-centric approach, which
is used by the business and technical teams to develop asset-centric mitigation
strategies.

• VAST: Visual, Agile, and Simple Threat modeling aims to integrate threat modeling
across application and infrastructure development with SDLC and agile software
development. It provides a visualization scheme that provides actionable outputs
to all stakeholders such as developers, architects, security researchers, and business
executives.

There are other approaches to threat modeling, but the preceding three are the most used
within the industry.

Threat modeling can be an infinitely long task if the scope for the threat model is not
well defined. Before starting to identify threats in an ecosystem, it is important that the
architecture and workings of each component, and the interactions between components,
are clearly understood.

In previous chapters, we have already looked in detail at the basic functionality of
every Kubernetes component. Now, we will look at the interactions between different
components in Kubernetes before investigating the threats within the Kubernetes
ecosystem.

46 Threat Modeling

Component interactions
Kubernetes components work collaboratively to ensure the microservices running inside
the cluster are functioning as expected. If you deploy a microservice as a DaemonSet,
then the Kubernetes components will make sure there will be one pod running the
microservice in every node, no more, no less. So what happens behind the scenes?
Let's look at a diagram to show the components' interaction at a high level:

Figure 3.1 – Interactions between Kubernetes components

Component interactions 47

A quick recap on what these components do:

• kube-apiserver: The Kubernetes API server (kube-apiserver) is a control plane
component that validates and configures data for objects.

• etcd: etcd is a high-availability key-value store used to store data such as
configuration, state, and metadata.

• kube-scheduler: kube-scheduler is a default scheduler for Kubernetes. It
watches for newly created pods and assigns the pods to nodes.

• kube-controller-manager: The Kubernetes controller manager is a combination
of the core controllers that watch for state updates and make changes to the cluster
accordingly.

• cloud-controller-manager: The cloud controller manager runs controllers to
interact with the underlying cloud providers.

• kubelet: kubelet registers the node with the API server and monitors the pods
created using Podspecs to ensure that the pods and containers are healthy.

It is worth noting that only kube-apiserver communicates with etcd. Other
Kubernetes components such as kube-scheduler, kube-controller-manager,
and cloud-controller manager interact with kube-apiserver running in the
master nodes in order to fulfill their responsibilities. On the worker nodes, both kubelet
and kube-proxy communicate with kube-apiserver.

48 Threat Modeling

Let's use a DaemonSet creation as an example to show how these components talk to
each other:

Figure 3.2 – Creating a DaemonSet in Kubernetes

Component interactions 49

To create a DaemonSet, we use the following steps:

1. The user sends a request to kube-apiserver to create a DaemonSet workload
via HTTPS.

2. After authentication, authorization, and object validation, kube-apiserver
creates the workload object information for the DaemonSet in the etcd database.
Neither data in transit nor at rest is encrypted by default in etcd.

3. The DaemonSet controller watches that a new DaemonSet object is created, and
then sends a pod creation request to kube-apiserver. Note that the DaemonSet
basically means the microservice will run inside a pod in every node.

4. kube-apiserver repeats the actions in step 2 and creates the workload object
information for pods in the etcd database.

5. kube-scheduler watches as a new pod is created, then decides which node to
run the pod on based on the node selection criteria. After that, kube-scheduler
sends a request to kube-apiserver for which node the pod will be running on.

6. kube-apiserver receives the request from kube-scheduler and then updates
etcd with the pod's node assignment information.

7. The kubelet running on the worker node watches the new pod that is assigned
to this node, then sends request to the Container Runtime Interface (CRI)
components, such as Docker, to start a container. After that, the kubelet will send
the pod's status back to kube-apiserver.

8. kube-apiserver receives the pod's status information from the kubelet on the
target node, then updates the etcd database with the pod status.

9. Once the pods (from the DaemonSet) are created, the pods are able to communicate
with other Kubernetes components and the microservice should be up and running.

Note that not all communication between components is secure by default. It depends on
the configuration of those components. We will cover this in more detail in Chapter 6,
Securing Cluster Components.

50 Threat Modeling

Threat actors in Kubernetes environments
A threat actor is an entity or code executing in the system that the asset should be
protected from. From a defense standpoint, you first need to understand who your
potential enemies are, or your defense strategy will be too vague. Threat actors in
Kubernetes environments can be broadly classified into three categories:

1. End user: An entity that can connect to the application. The entry point for this
actor is usually the load balancer or ingress. Sometimes, pods, containers, or
NodePorts may be directly exposed to the internet, adding more entry points
for the end user.

2. Internal attacker: An entity that has limited access inside the Kubernetes cluster.
Malicious containers or pods spawned within the cluster are examples of internal
attackers.

3. Privileged attacker: An entity that has administrator access inside the Kubernetes
cluster. Infrastructure administrators, compromised kube-apiserver instances,
and malicious nodes are all examples of privileged attackers.

Examples of threat actors include script kiddies, hacktivists, and nation-state actors.
All these actors fall into the three aforementioned categories, depending on where in
the system the actor exists.

The following diagram highlights the different actors in the Kubernetes ecosystem:

Threat actors in Kubernetes environments 51

Figure 3.3 – Threat actors in Kubernetes environments

As you can see in this diagram, the end user generally interacts with the HTTP/HTTPS
routes exposed by the ingress controller, the load balancer, or the pods. The end user is
the least privileged. The internal attacker on the other hand has limited access to resources
within the cluster. The privileged attacker is most privileged and has the ability to modify
the cluster. These three categories of attackers help determine the severity of a threat.
A threat involving an end user has a higher severity compared to a threat involving a
privileged attacker. Although these roles seem isolated in the diagram, an attacker can
change from an end user to an internal attacker using an elevation of privilege attack.

52 Threat Modeling

Threats in Kubernetes clusters
With our new understanding of Kubernetes components and threat actors, we're moving
on to the journey of threat modeling a Kubernetes cluster. In the following table, we cover
the major Kubernetes components, nodes, and pods. Nodes and pods are the fundamental
Kubernetes objects that run workloads. Note that all these components are assets and
should be protected from threats. Any of these components getting compromised could
lead to the next step of an attack, such as privilege escalation. Also, note that kube-
apiserver and etcd are the brain and heart of a Kubernetes cluster. If either of them
were to get compromised, that would be game over.

The following table highlights the threats in the default Kubernetes configuration. This
table also highlights how developers and cluster administrators can protect their assets
from these threats:

Threats in Kubernetes clusters 53

54 Threat Modeling

Threat modeling application in Kubernetes 55

This table only highlights some of the threats. There are more threats, which will be
covered in later chapters. We hope the preceding table will inspire you to think out loud
about what needs to be protected and how to protect it in your Kubernetes cluster.

Threat modeling application in Kubernetes
Now that we have looked at threats in a Kubernetes cluster, let's move on to discuss how
threat modeling will differ for an application deployed on Kubernetes. Deployment in
Kubernetes adds additional complexities to the threat model. Kubernetes adds additional
considerations, assets, threat actors, and new security controls that need to be considered
before investigating the threats to the deployed application.

Let's look at a simple example of a three-tier web application:

Figure 3.4 – Threat model of a traditional web application

56 Threat Modeling

The same application looks a little different in the Kubernetes environment:

Figure 3.5 – Threat model of the three-tier web application in Kubernetes

As shown in the previous diagram, the web server, application server, and databases are
all running inside pods. Let's do a high-level comparison of threat modeling between
traditional web architecture and cloud-native architecture:

Summary 57

To summarize the preceding comparison, you will find that more assets need to be
protected in a cloud-native architecture, and you will face more threat actors in this space.
Kubernetes provides more security controls, but it also adds more complexity. More
security controls doesn't necessarily mean more security. Remember: complexity is the
enemy of security.

Summary
In this chapter, we started by introducing the basic concepts of threat modeling. We
discussed the important assets, threats, and threat actors in Kubernetes environments.
We discussed different security controls and mitigation strategies to improve the security
posture of your Kubernetes cluster.

58 Threat Modeling

Then we walked through application threat modeling, taking into consideration
applications deployed in Kubernetes, and compared it to the traditional threat modeling
of monolithic applications. The complexity introduced by the Kubernetes design makes
threat modeling more complicated, as we've shown: more assets to be protected and more
threat actors. And more security control doesn't necessarily mean more safety.

You should keep in mind that although threat modeling can be a long and complex
process, it is worth doing to understand the security posture of your environment.
It's quite necessary to do both application threat modeling and infrastructure threat
modeling together to better secure your Kubernetes cluster.

In the next chapter, to help you learn about securing your Kubernetes cluster to the next
level, we will talk about the principle of least privilege and how to implement it in the
Kubernetes cluster.

Questions
1. When do you start threat modeling your application?

2. What are the different threat actors in Kubernetes environments?

3. Name one of the most severe threats to the default Kubernetes deployment.

4. Why is threat modeling more difficult in a Kubernetes environment?

5. How does the attack surface of deployments in Kubernetes compare to deployments
in traditional architectures?

Further reading
Trail of Bits and Atredis Partners have done a good job on Kubernetes components'
threat modeling. Their whitepaper highlights in detail the threats in each Kubernetes
component. You can find the whitepaper at https://github.com/kubernetes/
community/blob/master/wg-security-audit/findings/Kubernetes%20
Threat%20Model.pdf.

Note that the intent, scope, and approach of threat modeling was different for the
preceding whitepaper. So, the results will look a little different.

https://github.com/kubernetes/community/blob/master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf
https://github.com/kubernetes/community/blob/master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf
https://github.com/kubernetes/community/blob/master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf

4
Applying the

Principle of
Least Privilege in

Kubernetes
The principle of least privilege states that each component of an ecosystem should have
minimal access to data and resources for it to function. In a multitenant environment,
multiple resources can be accessed by different users or objects. The principle of least
privilege ensures that damage to the cluster is minimal if users or objects misbehave in
such environments.
In this chapter, we will first introduce the principle of least privilege. Given the complexity
of Kubernetes, we will first look into the Kubernetes subjects, and then the privileges
available for the subjects. Then, we will talk about the privileges of Kubernetes objects
and possible ways to restrict them. The goal of this chapter is to help you understand
a few critical concepts, such as the principle of least privilege and Role-Based Access
Control (RBAC). In this chapter, we will talk about different Kubernetes objects, such as
namespaces, service accounts, Roles, and RoleBindings, and Kubernetes security features,
such as the security context, the PodSecurityPolicy, and the NetworkPolicy, which can be
leveraged to implement the principle of least privilege for your Kubernetes cluster.

60 Applying the Principle of Least Privilege in Kubernetes

In this chapter, we will cover the following topics:

• The principle of least privilege

• Least privilege of Kubernetes subjects

• Least privilege of Kubernetes workloads

The principle of least privilege
Privilege is the authority to perform an action such as accessing a resource or processing
some data. The principle of least privilege is the idea that any subject, user, program,
process, and so on should only have the minimum required privileges to perform its
function. For example, Alice, a regular Linux user, is able to create a file under her own
home directory. In other words, Alice at least has the privilege or permission to create
a file under her home directory. However, Alice may not be able to create a file under
another user's directory because she doesn't have the privilege or permission to do so.
If none of Alice's daily tasks actually exercises the privilege to create a file in the home
directory, but she does have the privilege to do so, then the administrator for the machine
is not complying with the principle of least privilege. In this section, we will first introduce
the concept of the authorization model from which the concept of least privilege derived,
and then, we will talk about the benefits of implementing the principle of least privilege.

Authorization model
When we talk about least privilege, most of the time we talk in the context of
authorization, and in different environments, there will be different authorization
models. For example, an Access Control List (ACL) is widely used in Linux and network
firewalls, while RBAC is used in database systems. It is also up to the administrator
of the environment to define authorization policies to ensure least privilege based on
authorization models available in the system. The following list defines some popular
authorization models:

• ACL: An ACL defines a list of permissions associated with objects. It specifies
which subjects are granted access to objects, as well as what operations are allowed
on given objects. For example, the -rw file permission is read-write-only by the
file owner.

• RBAC: The authorization decision is based on a subject's roles, which contain a
group of permissions or privileges. For example, in Linux, a user is added
to different groups (such as staff) to grant access to some folders instead
of individually being granted access to folders on the filesystem.

The principle of least privilege 61

• Attribute-Based Access Control (ABAC): The authorization decision is based on
a subject's attributes, such as labels or properties. An attribute-based rule checks
user attributes such as user.id="12345", user.project="project", and
user.status="active" to decide whether a user is able to perform a task.

Kubernetes supports both ABAC and RBAC. Though ABAC is powerful and flexible,
the implementation in Kubernetes makes it difficult to manage and understand. Thus,
it is recommended to enable RBAC instead of ABAC in Kubernetes. Besides RBAC,
Kubernetes also provides multiple ways to restrict resource access. Before we look into
RBAC and ABAC in Kubernetes in the next sections, let's discuss the benefits of ensuring
least privilege.

Rewards of the principle of least privilege
Though it might take quite some time to understand what the minimum privileges for
subjects are in order to perform their functions, the rewards are also significant if the
principle of least privilege has been implemented in your environment:

• Better security: Inside threats, malware propagation, lateral movement, and so on
can be mitigated with the implementation of the principle of least privilege. The leak
by Edward Snowden happened because of a lack of least privilege.

• Better stability: Given the subjects are properly granted with necessary privileges
only, subjects' activities become more predictable. In return, system stability
is bolstered.

• Improved audit readiness: Given the subjects are properly granted with necessary
privileges only, the audit scope will be reduced dramatically. Additionally, many
common regulations call for the implementation of the principle of least privilege
as a compliance requirement.

Now that you have seen the benefits for implementing the principle of least privilege, I
want to introduce the challenge as well: the openness and configurability of Kubernetes
makes implementing the principle of least privilege cumbersome. Let's look at how to
apply the principle of least privilege to Kubernetes subjects.

62 Applying the Principle of Least Privilege in Kubernetes

Least privilege of Kubernetes subjects
Kubernetes service accounts, users, and groups communicate with kube-apiserver
to manage Kubernetes objects. With RBAC enabled, different users or service accounts
may have different privileges to operate Kubernetes objects. For example, users in the
system:master group have the cluster-admin role granted, meaning they can
manage the entire Kubernetes cluster, while users in the system:kube-proxy group
can only access the resources required by the kube-proxy component. First, let's briefly
talk about what RBAC is.

Introduction to RBAC
As discussed earlier, RBAC is a model of regulating access to resources based on roles
granted to users or groups. From version 1.6 onward, RBAC is enabled by default in
Kubernetes. Before version 1.6, RBAC could be enabled by running the Application
Programming Interface (API) server with the --authorization-mode=RBAC flag.
RBAC eases the dynamic configuration of permission policies using the API server.

The core elements of RBAC include the following:

1. Subject: Service accounts, users, or groups requesting access to the Kubernetes API.

2. Resources: Kubernetes objects that need to be accessed by the subject.

3. Verbs: Different types of access the subject needs on a resource—for example,
create, update, list, delete.

Kubernetes RBAC defines the subjects and the type of access they have to different
resources in the Kubernetes ecosystem.

Service accounts, users, and groups
Kubernetes supports three types of subject, as follows:

• Regular users: These users are created by cluster administrators. They do not have
a corresponding object in the Kubernetes ecosystem. Cluster administrators usually
create users by using the Lightweight Directory Access Protocol (LDAP), Active
Directory (AD), or private keys.

• Service accounts: Pods authenticate to the kube-apiserver object using
a service account. Service accounts are created using API calls. They are restricted
to namespaces and have associated credentials stored as secrets. By default,
pods authenticate as a default service account.

Least privilege of Kubernetes subjects 63

• Anonymous users: Any API request that is not associated with a regular or a
service account is associated with an anonymous user.

Cluster administrators can create new service accounts to be associated with pods by
running the following command:

$ kubectl create serviceaccount new_account

A new_account service account will be created in the default namespace. To ensure
least privilege, cluster administrators should associate every Kubernetes resource with
a service account with least privilege to operate.

Role
A role is a collection of permissions—for example, a role in namespace A can allow users
to create pods in namespace A and list secrets in namespace A. In Kubernetes, there are
no deny permissions. Thus, a role is an addition of a set of permissions.

A role is restricted to a namespace. On the other hand, a ClusterRole works at the cluster
level. Users can create a ClusterRole that spans across the complete cluster. A ClusterRole
can be used to mediate access to resources that span across a cluster, such as nodes, health
checks, and namespaced objects, such as pods across multiple namespaces. Here is a
simple example of a role definition:

kind: Role

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 namespace: default

 name: role-1

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get"]

This simple rule allows the get operation to over-resource pods in the default namespace.
This role can be created using kubectl by executing the following command:

$ kubectl apply -f role.yaml

64 Applying the Principle of Least Privilege in Kubernetes

A user can only create or modify a role if either one of the following is true:

• The user has all permissions contained in the role in the same scope (namespaced
or cluster-wide).

• The user is associated with an escalated role in the given scope.

This prevents users from performing privilege escalation attacks by modifying user roles
and permissions.

RoleBinding
A RoleBinding object is used to associate a role with subjects. Similar to ClusterRole,
ClusterRoleBinding can grant a set of permissions to subjects across namespaces. Let's
see a couple of examples:

1. Create a RoleBinding object to associate a custom-clusterole cluster role
to the demo-sa service account in the default namespace, like this:

kubectl create rolebinding new-rolebinding-sa \

 --clusterrole=custom-clusterrole \

 --serviceaccount=default:demo-sa

2. Create a RoleBinding object to associate a custom-clusterrole cluster role
to the group-1 group, like this:

kubectl create rolebinding new-rolebinding-group \

 --clusterrole=custom-clusterrole \

 --group=group-1 \

 --namespace=namespace-1

The RoleBinding object links roles to subjects and makes roles reusable and easy
to manage.

Kubernetes namespaces
A namespace is a common concept in computer science that provides a logical grouping
for related resources. Namespaces are used to avoid name collisions; resources within the
same namespace should have unique names, but resources across namespaces can share
names. In the Linux ecosystem, namespaces allow the isolation of system resources.

Least privilege of Kubernetes subjects 65

In Kubernetes, namespaces allow a single cluster to be shared between teams and projects
logically. With Kubernetes namespaces, the following applies:

• They allow different applications, teams, and users to work in the same cluster.

• They allow cluster administrators to use namespace resource quotas for the
applications.

• They use RBAC policies to control access to specific resources within the
namespaces. RoleBinding helps cluster administrators' control permissions
granted to users within the namespace.

• They allow network segmentation with the network policy defined in the
namespace. By default, all pods can communicate with each other across
different namespaces.

By default, Kubernetes has three different namespaces. Run the following command
to view them:

$ kubectl get namespace

NAME STATUS AGE

default Active 1d

kube-system Active 1d

kube-public Active 1d

The three namespaces are described as follows:

• default: A namespace for resources that are not part of any other namespace.

• kube-system: A namespace for objects created by Kubernetes such as kube-
apiserver, kube-scheduler, controller-manager, and coredns.

• kube-public: Resources within this namespace are accessible to all. By default,
nothing will be created in this namespace.

Let's take a look at how to create a namespace.

Creating a namespace
A new namespace in Kubernetes can be created by using the following command:

$ kubectl create namespace test

66 Applying the Principle of Least Privilege in Kubernetes

Once a new namespace is created, objects can be assigned to a namespace by using the
namespace property, as follows:

$ kubectl apply --namespace=test -f pod.yaml

Objects within the namespace can similarly be accessed by using the namespace
property, as follows:

$ kubectl get pods --namespace=test

In Kubernetes, not all objects are namespaced. Lower-level objects such as Nodes and
persistentVolumes span across namespaces.

Wrapping up least privilege for Kubernetes subjects
By now, you should be familiar with the concepts of ClusterRole/Role,
ClusterRoleBinding/RoleBinding, service accounts, and namespaces. In order to
implement least privilege for Kubernetes subjects, you may ask yourself the following
questions before you create a Role or RoleBinding object in Kubernetes:

• Does the subject need privileges for a namespace or across namespaces?

This is important because once the subject has cluster-level privileges it may be able
to exercise the privileges across all namespaces.

• Should the privileges be granted to a user, group, or service account?

When you grant a role to a group, it means all the users in the group will
automatically get the privileges from the newly granted role. Be sure you understand
the impact before you grant a role to a group. Next, a user in Kubernetes is for
humans, while a service account is for microservices in pods. Be sure you know
what the Kubernetes user's responsibility is and assign privileges accordingly. Also,
note that some microservices do not need any privilege at all as they don't interact
with kube-apiserver or any Kubernetes objects directly.

• What are the resources that the subjects need to access?

When creating a role, if you don't specify the resource name or do set * in the
resourceNames field, it means access is granted to all the resources of the
resource type. If you know which resource name the subject is going to access,
do specify the resource name when creating a role.

Kubernetes subjects interact with Kubernetes objects with the granted privileges.
Understanding the actual tasks your Kubernetes subjects perform will help you
grant privileges properly.

Least privilege for Kubernetes workloads 67

Least privilege for Kubernetes workloads
Usually, there will be a service account (default) associated with a Kubernetes workload.
Thus, processes inside a pod can communicate with kube-apiserver using the service
account token. DevOps should carefully grant necessary privileges to the service account
for the purpose of least privilege. We've already covered this in the previous section.

Besides accessing kube-apiserver to operate Kubernetes objects, processes in a
pod can also access resources on the worker nodes and other pods/microservices in
the clusters (covered in Chapter 2, Kubernetes Networking). In this section, we will talk
about the possible least privilege implementation of access to system resources, network
resources, and application resources.

Least privilege for accessing system resources
Recall that a microservice running inside a container or pod is nothing but a process on
a worker node isolated in its own namespace. A pod or container may access different
types of resources on the worker node based on the configuration. This is controlled by
the security context, which can be configured both at the pod level and the container
level. Configuring the pod/container security context should be on the developers' task
list (with the help of security design and review), while pod security policies—the other
way to limit pod/container access to system resources at the cluster level—should be on
DevOps's to-do list. Let's look into the concepts of security context, PodSecurityPolicy,
and resource limit control.

Security context
A security context offers a way to define privileges and access control settings for pods
and containers with regard to accessing system resources. In Kubernetes, the security
context at the pod level is different from that at the container level, though there are
some overlapping attributes that can be configured at both levels. In general, the security
context provides the following features that allow you to apply the principle of least
privilege for containers and pods:

• Discretionary Access Control (DAC): This is to configure which user ID (UID)
or group ID (GID) to bind to the process in the container, whether the container's
root filesystem is read-only, and so on. It is highly recommended not to run your
microservice as a root user (UID = 0) in containers. The security implication is that
if there is an exploit and a container escapes to the host, the attacker gains the root
user privileges on the host immediately.

68 Applying the Principle of Least Privilege in Kubernetes

• Security Enhanced Linux (SELinux): This is to configure the SELinux security
context, which defines the level label, role label, type label, and user label for pods or
containers. With the SELinux labels assigned, pods and containers may be restricted
in terms of being able to access resources, especially volumes on the node.

• Privileged mode: This is to configure whether a container is running in privileged
mode. The power of the process running inside the privileged container is basically
the same as a root user on a node.

• Linux capabilities: This is to configure Linux capabilities for containers. Different
Linux capabilities allow the process inside the container to perform different
activities or access different resources on the node. For example, CAP_AUDIT_
WRITE allows the process to write to the kernel auditing log, while CAP_SYS_
ADMIN allows the process to perform a range of administrative operations.

• AppArmor: This is to configure the AppArmor profile for pods or containers. An
AppArmor profile usually defines which Linux capabilities the process owns, which
network resources and files can be accessed by the container, and so on.

• Secure Computing Mode (seccomp): This is to configure the seccomp profile for
pods or containers. A seccomp profile usually defines a whitelist of system calls
that are allowed to execute and/or a blacklist of system calls that will be blocked
to execute inside the pod or container.

• AllowPrivilegeEscalation: This is to configure whether a process can gain more
privileges than its parent process. Note that AllowPrivilegeEscalation is
always true when the container is either running as privileged or has a CAP_SYS_
ADMIN capability.

We will talk more about security context in Chapter 8, Securing Pods.

PodSecurityPolicy
The PodSecurityPolicy is a Kubernetes cluster-level resource that controls the attributes
of pod specification relevant to security. It defines a set of rules. When pods are to be
created in the Kubernetes cluster, the pods need to comply with the rules defined in the
PodSecurityPolicy or they will fail to start. The PodSecurityPolicy controls or applies the
following attributes:

• Allows a privileged container to be run

• Allows host-level namespaces to be used

• Allows host ports to be used

Least privilege for Kubernetes workloads 69

• Allows different types of volumes to be used

• Allows the host's filesystem to be accessed

• Requires a read-only root filesystem to be run for containers

• Restricts user IDs and group IDs for containers

• Restricts containers' privilege escalation

• Restricts containers' Linux capabilities

• Requires an SELinux security context to be used

• Applies seccomp and AppArmor profiles to pods

• Restricts sysctls that a pod can run

• Allows a proc mount type to be used

• Restricts an FSGroup to volumes

We will cover more about PodSecurityPolicy in Chapter 8, Securing Kubernetes Pods.
A PodSecurityPolicy control is basically implemented as an admission controller. You
can also create your own admission controller to apply your own authorization policy
for your workload. Open Policy Agent (OPA) is another good candidate to implement
your own least privilege policy for a workload. We will look at OPA more in Chapter 7,
Authentication, Authorization, and Admission Control.

Now, let's look at the resource limit control mechanism in Kubernetes as you may not
want your microservices to saturate all the resources, such as the Central Processing
Unit (CPU) and memory, in the system.

Resource limit control
By default, a single container can use as much memory and CPU resources as a node has. A
container with a crypto-mining binary running may easily consume the CPU resources on
the node shared by other pods. It's always a good practice to set resource requests and limits
for workload. The resource request impacts which node the pods will be assigned to by the
scheduler, while the resource limit sets the condition under which the container will be
terminated. It's always safe to assign more resource requests and limits to your workload to
avoid eviction or termination. However, do keep in mind that if you set the resource request
or limit too high, you've caused a resource waste on your cluster, and the resources allocated
to your workload may not be fully utilized. We will cover this topic more in Chapter 10,
Real-Time Monitoring and Resource Management of a Kubernetes Cluster.

70 Applying the Principle of Least Privilege in Kubernetes

Wrapping up least privilege for accessing system
resources
When pods or containers run in privileged mode, unlike the non-privileged pods or
containers, they have the same privileges as admin users on the node. If your workload
runs in privileged mode, why is this the case? When a pod is able to assess host-level
namespaces, the pod can access resources such as the network stack, process, and
Interprocess Communication (IPC) at the host level. But do you really need to grant
host-level namespace access or set privileged mode to your pods or containers? Also, if
you know which Linux capabilities are required for your processes in the container, you'd
better drop those unnecessary ones. And how much memory and CPU is sufficient for
your workload to be fully functional? Please do think through these questions for the
purpose of implementing the principle of least privilege for your Kubernetes workload.
Properly set resource requests and limits, use security context for your workload, and
enforce a PodSecurityPolicy for your cluster. All of this will help ensure the least privilege
for your workload to access system resources.

Least privilege for accessing network resources
By default, any two pods inside the same Kubernetes cluster can communicate with other,
and a pod may be able to communicate with the internet if there is no proxy rule or
firewall rule configured outside the Kubernetes cluster. The openness of Kubernetes blurs
the security boundary of microservices, and we mustn't overlook network resources such
as API endpoints provided by other microservices that a container or pod can access.

Suppose one of your workloads (pod X) in namespace X only needs to access another
microservice A in namespace NS1; meanwhile, there is microservice B in namespace NS2.
Both microservice A and microservice B expose their Representational State Transfer
(RESTful) endpoints. By default, your workload can access both microservice A and
B assuming there is neither authentication nor authorization at the microservice level,
and also no network policies enforced in namespaces NS1 and NS2. Take a look at the
following diagram, which illustrates this:

Least privilege for Kubernetes workloads 71

Figure 4.1 – Network access without network policy

In the preceding diagram, Pod X is able to access both microservices, though they reside
in different namespaces. Note also that Pod X only requires access to Microservice A in
namespace NS1. So, is there anything we can do to restrict Pod X's access to Microservice
A only for the purpose of least privilege? Yes: a Kubernetes network policy can help. We
will cover network policies in more detail Chapter 5, Configuring Kubernetes Security
Boundaries. In general, a Kubernetes network policy defines rules of how a group of pods
are allowed to communicate with each other and other network endpoints. You can define
both ingress rules and egress rules for your workload.

Note
Ingress rules: Rules to define which sources are allowed to communicate with
the pods under the protection of the network policy.

Egress rules: Rules to define which destinations are allowed to communicate
with the pods under the protection of the network policy.

72 Applying the Principle of Least Privilege in Kubernetes

In the following example, to implement the principle of least privilege in Pod X, you will
need to define a network policy in Namespace X with an egress rule specifying that only
Microservice A is allowed:

Figure 4.2 – Network policy blocks access to microservice B

In the preceding diagram, the network policy in Namespace X blocks any request from
Pod X to Microservice B, and Pod X can still access Microservice A, as expected.
Defining an egress rule in your network policy will help ensure least privilege for your
workload to access network resources. Last but not least, we still need to bring your
attention to the application resource level from a least-privilege standpoint.

Least privilege for accessing application resources
Though this topic falls into the category of application security, it is worth bringing up
here. If there are applications that your workload accesses that support multiple users
with different levels of privileges, it's better to examine whether the privileges granted
to the user on your workload's behalf are necessary or not. For example, a user who is
responsible for auditing does not need any write privileges. Application developers should
keep this in mind when designing the application. This helps to ensure the least privilege
for your workload to access application resources.

Summary
In this chapter, we went through the concept of least privilege. Then, we discussed the
security control mechanism in Kubernetes that helps in implementing the principle of
least privilege in two areas: Kubernetes subjects and Kubernetes workloads. It is worth
emphasizing the importance of implementing the principle of the principle of least
privilege holistically. If least privilege is missed in any area, this will potentially leave
an attack surface wide open.

Questions 73

Kubernetes offers built-in security controls to implement the principle of least privilege.
Note that it is a process from development to deployment: application developers should
work with security architects to design the minimum privileges for the service accounts
associated with the application, as well as the minimum capabilities and proper resource
allocation. During deployment, DevOps should consider using a PodSecurityPolicy and
a network policy to enforce least privileges across the entire cluster.

In the next chapter, we will look at the security of Kubernetes from a different angle:
understanding the security boundaries of different types of resources and how to
fortify them.

Questions
1. What is a Role object in Kubernetes?

2. What is a RoleBinding object in Kubernetes?

3. What is the difference between RoleBinding and ClusterRoleBinding objects?

4. By default, a pod can't access host-level namespaces. Name a few settings that allow
pods to access host-level namespaces.

5. If you want to restrict pod access to external network resources (for example,
the internal network or the internet), what you can do?

Further reading
You may have noticed that some of the security control mechanisms we talked about
in this chapter have been around for a long time: SELinux Multi-Category Security/
Multi-Level Security (MCS/MLS), AppArmor, seccomp, Linux capabilities, and so
on. There are already many books or articles introducing these technologies. I would
encourage you to take a look at the following materials for a better understanding of
how to use them to achieve the least privilege goal in Kubernetes:

• SELinux MCS: https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/5/html/deployment_guide/sec-mcs-
getstarted

• AppArmor: https://ubuntu.com/server/docs/security-apparmor

• Linux capabilities: http://man7.org/linux/man-pages/man7/
capabilities.7.html

• Help defining RBAC privilege grants: https://github.com/liggitt/
audit2rbac

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/sec-mcs-getstarted
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/sec-mcs-getstarted
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/sec-mcs-getstarted
https://ubuntu.com/server/docs/security-apparmor
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://github.com/liggitt/audit2rbac
https://github.com/liggitt/audit2rbac

5
Configuring

Kubernetes Security
Boundaries

A security boundary separates security domains where a set of entities share the same
security concerns and access levels, whereas a trust boundary is a dividing line where
program execution and data change the level of trust. Controls in the security boundary
ensure that execution moving between boundaries does not elevate the trust level without
appropriate validation. As data or execution moves between security boundaries without
appropriate controls, security vulnerabilities show up.

In this chapter, we'll discuss the importance of security and trust boundaries. We'll first
focus on the introduction to clarify any confusion between security and trust boundaries.
Then, we'll walk through the security domains and security boundaries within the
Kubernetes ecosystem. Finally, we'll look at some Kubernetes features that enhance
security boundaries for an application deployed in Kubernetes.

You should understand the concepts of security domain and security boundaries, and
also understand the security boundaries built around Kubernetes based on the underlying
container technology as well as the built-in security features, such as PodSecurityPolicy
and NetworkPolicy.

76 Configuring Kubernetes Security Boundaries

We will cover the following topics in this chapter:

• Introduction to security boundaries

• Security boundaries versus trust boundaries

• Kubernetes security domains

• Kubernetes entities as security boundaries

• Security boundaries in the system layer

• Security boundaries in the network layer

Introduction to security boundaries
Security boundaries exist in the data layer, the network layer, and the system layer.
Security boundaries depend on the technologies used by the IT department or
infrastructure team. For example, companies use virtual machines to manage their
applications – a hypervisor is the security boundary for virtual machines. Hypervisors
ensure that code running in a virtual machine does not escape from the virtual machine
or affect the physical node. When companies start embracing microservices and use
orchestrators to manage their applications, containers are one of the security boundaries.
However, compared to hypervisors, containers do not provide a strong security boundary,
nor do they aim to. Containers enforce restrictions at the application layer but do not
prevent attackers from bypassing these restrictions from the kernel layer.

At the network layer, traditionally, firewalls provide strong security boundaries for
applications. In a microservices architecture, Pods in Kubernetes can communicate with
others. Network policies are used to restrict communication among Pods and Services.

Security boundaries at the data layer are well known. Kernels limiting write access to
system or bin directories to only root or system users is a simple example of security
boundaries at the data layer. In containerized environments, chroot prevents containers
from tampering with the filesystems of other containers. Kubernetes restructures the
application deployment in a way that strong security boundaries can be enforced on
both the network and system layers.

Security boundaries versus trust boundaries 77

Security boundaries versus trust boundaries
Security boundary and trust boundary are often used as synonyms. Although similar,
there is a subtle difference between these two terms. A trust boundary is where a system
changes its level of trust. An execution trust boundary is where instructions need different
privileges to run. For example, a database server executing code in /bin is an example
of an execution crossing a trust boundary. Similarly, a data trust boundary is where data
moves between entities with different trust levels. Data inserted by an end user into
a trusted database is an example of data crossing a trust boundary.

Whereas a security boundary is a point of demarcation between different security
domains, a security domain is a set of entities that are within the same access level.
For example, in traditional web architecture, the user-facing applications are part of
a security domain and the internal network is part of a different security domain. Security
boundaries have access controls associated with it. Think of trust boundary as a wall and
security boundary as a fence around the wall.

Identifying security and trust boundaries within an ecosystem is important. It helps
ensure appropriate validation is done for instructions and data before it crosses the
boundaries. In Kubernetes, components and objects span across different security
boundaries. It is important to understand these boundaries to put risk mitigation plans
in place when an attacker crosses a security boundary. CVE-2018-1002105 is a prime
example of an attack caused by missing validation across trust boundaries; proxy request
handling in the API server allowed an unauthenticated user to get admin privileges to the
cluster. Similarly, CVE-2018-18264 allows users to skip the authentication process on the
dashboard to allow unauthenticated users to access sensitive cluster information.

Now let's look at different Kubernetes security domains.

Kubernetes security domains
A Kubernetes cluster can be broadly split into three security domains:

• Kubernetes master components: Kubernetes master components define the control
plane for the Kubernetes ecosystem. The master components are responsible for
decisions required for the smooth operation of the cluster, such as scheduling.
Master components include kube-apiserver, etcd, the kube-controller
manager, DNS server, and kube-scheduler. A breach in the Kubernetes master
components can compromise the entire Kubernetes cluster.

78 Configuring Kubernetes Security Boundaries

• Kubernetes worker components: Kubernetes worker components are deployed
on every worker node and ensure that Pods and containers are running nicely.
Kubernetes worker components use authorization and TLS tunneling for
communicating with the master components. A cluster can function with
compromised worker components. It is analogous to a rogue node within the
environment, which can be removed from the cluster when identified.

• Kubernetes objects: Kubernetes objects are persistent entities that represent the
state of the cluster: deployed applications, volumes, and namespaces. Kubernetes
objects include Pods, Services, volumes, and namespaces. These are deployed by
developers or DevOps. Object specification defines additional security boundaries
for objects: defining a Pod with a SecurityContext, network rules to communicate
with other Pods, and more.

The high-level security domain division should help you focus on the key assets. Keeping
that in mind, we'll start looking at Kubernetes entities and the security boundaries built
around them.

Kubernetes entities as security boundaries
In a Kubernetes cluster, the Kubernetes entities (objects and components) you interact
with have their own built-in security boundaries. The security boundaries are derived
from the design or implementation of the entities. It is important to understand the
security boundaries built within or around them:

• Containers: Containers are a basic component within a Kubernetes cluster. A
container provides minimal isolation to the application using cgroups, Linux
namespaces, AppArmor profiles, and a seccomp profile to the application running
within the container.

• Pods: A pod is a collection of one or more containers. Pods isolate more resources
compared to containers, such as a network and IPC. Features such as security
SecurityContext, NetworkPolicy, and PodSecurityPolicy work at the pod level
to ensure a higher level of isolation.

• Nodes: Nodes in Kubernetes are also a security boundary. Pods can be specified
to run on specific nodes using nodeSelectors. Kernels and hypervisors enforce
security controls for pods running on the nodes. Features such as AppArmor and
SELinux can help improve the security posture along with other host-hardening
mechanisms.

Kubernetes entities as security boundaries 79

• Cluster: A cluster is a collection of pods, containers, and the components on the
master node and worker nodes. A cluster provides a strong security boundary.
Pods and containers running within a cluster are isolated from other clusters at
the network and the system layer.

• Namespaces: Namespaces are virtual clusters that isolate pods and services. The
LimitRanger admission controller is applied at the namespace level to control
resource utilization and denial-of-service attacks. Network policies can be applied
to the namespace level.

• The Kubernetes API server: The Kubernetes API server interacts with all
Kubernetes components, including etcd, controller-manager, and
kubelet, which is used by cluster administrators to configure a cluster. It mediates
communication with master components, so cluster administrators do not have to
directly interact with cluster components.

We discussed three different threat actors in Chapter 3, Threat Modeling: privileged
attackers, internal attackers, and end users. These threat actors may also interact with
the preceding Kubernetes entities. We will see what the security boundaries from these
entities an attacker is facing:

• End user: An end user interacts with either the ingress, exposed Kubernetes
services, or directly to the open ports on the node. For the end user, nodes, Pods,
kube-apiserver, and the external firewall protect the cluster components
from being compromised.

• Internal attacker: Internal attackers have access to Pods and containers.
Namespaces and access control enforced by kube-apiserver prevent these
attackers from escalating privileges or compromising the cluster. Network policy
and RBAC controls can prevent lateral movement.

• Privileged attacker: kube-apiserver is the only security boundary that protects
the master components from compromise by privileged attackers. If a privileged
attacker compromises kube-apiserver, it's game over.

In this section, we looked at security boundaries from a user perspective and showed
you how security boundaries are built in the Kubernetes ecosystem. Next, let's look at
the security boundaries in the system layer, from a microservice perspective.

80 Configuring Kubernetes Security Boundaries

Security boundaries in the system layer
Microservices run inside Pods, where Pods are scheduled to run on worker nodes in
a cluster. In the previous chapters, we already emphasized that a container is a process
assigned with dedicated Linux namespaces. A container or Pod consumes all the
necessary resources provided from the worker node. So, it is important to understand the
security boundaries from the system's perspective and how to fortify it. In this section,
we will talk about the security boundaries built upon Linux namespaces and Linux
capabilities together for microservices.

Linux namespaces as security boundaries
Linux namespaces are a feature of the Linux kernel to partition resources for isolation
purposes. With namespaces assigned, a set of processes sees one set of resources while
another set of processes sees another set of resources. We've already introduced Linux
namespaces in Chapter 2, Kubernetes Networking. By default, each Pod has its own
network namespace and IPC namespace. Each container inside the same pod has its
own PID namespace so that one container has no knowledge about other containers
running inside the same Pod. Similarly, a Pod does not know other Pods exist in the
same worker node.

In general, the default settings offer pretty good isolation for microservices from a security
standpoint. However, the host namespace settings are allowed to be configured in the
Kubernetes workload, and more specifically, in the Pod specification. With such settings
enabled, the microservice uses host-level namespaces:

• HostNetwork: The Pod uses the host's network namespace.

• HostIPC: The Pod uses the host's IPC namespace.

• HostPID: The Pod uses the host's PID namespace.

• shareProcessNamespace: The containers inside the same Pod will share a single
PID namespace.

When you try to configure your workload to use host namespaces, do ask yourself the
question: why do you have to do this? When using host namespaces, pods have full
knowledge of other pods' activities in the same worker node, but it also depends on what
Linux capabilities are assigned to the container. Overall, the fact is, you're disarming other
microservices' security boundaries. Let me give a quick example. This is a list of processes
visible inside a container:

root@nginx-2:/# ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START

Security boundaries in the system layer 81

TIME COMMAND

root 1 0.1 0.0 32648 5256 ? Ss 23:47
0:00 nginx: master process nginx -g daemon off;

nginx 6 0.0 0.0 33104 2348 ? S 23:47
0:00 nginx: worker process

root 7 0.0 0.0 18192 3248 pts/0 Ss 23:48
0:00 bash

root 13 0.0 0.0 36636 2816 pts/0 R+ 23:48
0:00 ps aux

As you can see, inside the nginx container, only nginx processes and bash process are
visible from the container. This nginx pod doesn't use a host PID namespace. Let's a look
at what happens if a pod uses host PID namespace:

root@gke-demo-cluster-default-pool-c9e3510c-tfgh:/# ps axu

USER PID %CPU %MEM VSZ RSS TTY STAT START
TIME COMMAND

root 1 0.2 0.0 99660 7596 ? Ss 22:54
0:10 /usr/lib/systemd/systemd noresume noswap cros_efi

root 20 0.0 0.0 0 0 ? I< 22:54
0:00 [netns]

root 71 0.0 0.0 0 0 ? I 22:54
0:01 [kworker/u4:2]

root 101 0.0 0.1 28288 9536 ? Ss 22:54
0:01 /usr/lib/systemd/systemd-journald

201 293 0.2 0.0 13688 4068 ? Ss 22:54
0:07 /usr/bin/dbus-daemon --system --address=systemd: --nofork
--nopidfile

274 297 0.0 0.0 22520 4196 ? Ss 22:54
0:00 /usr/lib/systemd/systemd-networkd

root 455 0.0 0.0 0 0 ? I 22:54
0:00 [kworker/0:3]

root 1155 0.0 0.0 9540 3324 ? Ss 22:54
0:00 bash /home/kubernetes/bin/health-monitor.sh container-
runtime

root 1356 4.4 1.5 1396748 118236 ? Ssl 22:56
2:30 /home/kubernetes/bin/kubelet --v=2 --cloud-provider=gce
--experimental

root 1635 0.0 0.0 773444 6012 ? Sl 22:56
0:00 containerd-shim -namespace moby -workdir /var/lib/
containerd/io.contai

82 Configuring Kubernetes Security Boundaries

root 1660 0.1 0.4 417260 36292 ? Ssl 22:56
0:03 kube-proxy --master=https://35.226.122.194 --kubeconfig=/
var/lib/kube-

root 2019 0.0 0.1 107744 7872 ? Ssl 22:56
0:00 /ip-masq-agent --masq-chain=IP-MASQ --nomasq-all-reserved-
ranges

root 2171 0.0 0.0 16224 5020 ? Ss 22:57
0:00 sshd: gke-1a5c3c1c4d5b7d80adbc [priv]

root 3203 0.0 0.0 1024 4 ? Ss 22:57
0:00 /pause

root 5489 1.3 0.4 48008 34236 ? Sl 22:57
0:43 calico-node -felix

root 6988 0.0 0.0 32648 5248 ? Ss 23:01
0:00 nginx: master process nginx -g daemon off;

nginx 7009 0.0 0.0 33104 2584 ? S 23:01
0:00 nginx: worker process

The preceding output shows the processes running in the worker node from an nginx
container. Among these processes are system processes, sshd, kubelet, kube-proxy,
and so on. Besides from the Pod using the host PID namespace, you can send signals to
other microservices' processes, such as SIGKILL to kill a process.

Linux capabilities as security boundaries
Linux capabilities are a concept evolved from the traditional Linux permission check:
privileged and unprivileged. Privileged processes bypass all kernel permission checks.
Then, Linux divides privileges associated with Linux superusers into distinct units – Linux
capabilities. There are network-related capabilities, such as CAP_NET_ADMIN, CAP_NET_
BIND_SERVICE, CAP_NET_BROADCAST, and CAP_NET_RAW. And there are audit-
related capabilities: CAP_AUDIT_CONTROL, CAP_AUDIT_READ, and CAP_AUDIT_
WRITE. Of course, there is still an admin-like capability: CAP_SYS_ADMIN.

As mentioned in Chapter 4, Applying the Principle of Least Privilege in Kubernetes, you can
configure Linux capabilities for containers in a pod. By default, here is a list of capabilities
that are assigned to containers in Kubernetes clusters:

• CAP_SETPCAP

• CAP_MKNOD

• CAP_AUDIT_WRITE

• CAP_CHOWN

Security boundaries in the system layer 83

• CAP_NET_RAW

• CAP_DAC_OVERRIDE

• CAP_FOWNER

• CAP_FSETID

• CAP_KILL

• CAP_SETGID

• CAP_SETUID

• CAP_NET_BIND_SERVICE

• CAP_SYS_CHROOT

• CAP_SETFCAP

For most of the microservices, these capabilities should be good enough to perform their
daily tasks. You should drop all the capabilities and only add the required ones. Similar
to host namespaces, granting extra capabilities may disarm the security boundaries of
other microservices. Here is an example output when you run the tcpdump command
in a container:

root@gke-demo-cluster-default-pool-c9e3510c-tfgh:/# tcpdump -i
cali01fb9a4e4b4 -v

tcpdump: listening on cali01fb9a4e4b4, link-type EN10MB
(Ethernet), capture size 262144 bytes

23:18:36.604766 IP (tos 0x0, ttl 64, id 27472, offset 0, flags
[DF], proto UDP (17), length 86)

 10.56.1.14.37059 > 10.60.0.10.domain: 35359+ A? www.google.
com.default.svc.cluster.local. (58)

23:18:36.604817 IP (tos 0x0, ttl 64, id 27473, offset 0, flags
[DF], proto UDP (17), length 86)

 10.56.1.14.37059 > 10.60.0.10.domain: 35789+ AAAA? www.
google.com.default.svc.cluster.local. (58)

23:18:36.606864 IP (tos 0x0, ttl 62, id 8294, offset 0, flags
[DF], proto UDP (17), length 179)

 10.60.0.10.domain > 10.56.1.14.37059: 35789 NXDomain 0/1/0
(151)

23:18:36.606959 IP (tos 0x0, ttl 62, id 8295, offset 0, flags
[DF], proto UDP (17), length 179)

 10.60.0.10.domain > 10.56.1.14.37059: 35359 NXDomain 0/1/0
(151)

84 Configuring Kubernetes Security Boundaries

23:18:36.607013 IP (tos 0x0, ttl 64, id 27474, offset 0, flags
[DF], proto UDP (17), length 78)

 10.56.1.14.59177 > 10.60.0.10.domain: 7489+ A? www.google.
com.svc.cluster.local. (50)

23:18:36.607053 IP (tos 0x0, ttl 64, id 27475, offset 0, flags
[DF], proto UDP (17), length 78)

 10.56.1.14.59177 > 10.60.0.10.domain: 7915+ AAAA? www.
google.com.svc.cluster.local. (50)

The preceding output shows that inside a container, there is tcpdump listening on the
network interface, cali01fb9a4e4b4, which was created for another pod's network
communication. With a host network namespace and CAP_NET_ADMIN granted, you
are able to sniff network traffic from the entire worker node inside a container. In general,
the fewer capabilities granted to containers, the more secure the boundaries are for
other microservices.

Wrapping up security boundaries in the system layer
The dedicated Linux namespaces and the limited Linux capabilities assigned to a container
or a Pod by default establish good security boundaries for microservices. However,
users are still allowed to configure host namespaces or add extra Linux capabilities to a
workload. This will disarm the security boundaries of other microservices running on
the same worker node. You should be very careful of doing so. Usually, monitoring tools
or security tools require access to host namespaces in order to do their monitoring job or
detection job. And it is highly recommended to use PodSecurityPolicy to restrict the
usage of host namespaces as well as extra capabilities so that the security boundaries of
microservices are fortified.

Next, let's look at the security boundaries set up in the network layer, from a
microservice's perspective.

Security boundaries in the network layer
A Kubernetes network policy defines the rules for different groups of Pods that are
allowed to communicate with each other. In the previous chapter, we briefly talked about
the egress rule of a Kubernetes network policy, which can be leveraged to enforce the
principle of least privilege for microservices. In this section, we will go through a little
more on the Kubernetes network policy and will focus on the ingress rule. We will
show how the ingress rules of network policies can help to establish the trust boundaries
among microservices.

Security boundaries in the network layer 85

Network policies
As mentioned in the previous chapter, as per the network model requirement, Pods inside
a cluster can communicate with each other. But still, from a security perspective, you may
want to restrict your microservice to being accessed by only a few services. How can we
achieve that in Kubernetes? Let's take a quick look at the following Kubernetes network
policy example:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: test-network-policy

 namespace: default

spec:

 podSelector:

 matchLabels:

 role: db

 policyTypes:

 - Ingress

 - Egress

 ingress:

 - from:

 - ipBlock:

 cidr: 172.17.0.0/16

 except:

 - 172.17.1.0/24

 - namespaceSelector:

 matchLabels:

 project: myproject

 - podSelector:

 matchLabels:

 role: frontend

 ports:

 - protocol: TCP

 port: 6379

 egress:

 - to:

 - ipBlock:

86 Configuring Kubernetes Security Boundaries

 cidr: 10.0.0.0/24

 ports:

 - protocol: TCP

 port: 5978

The NetworkPolicy policy is named test-network-policy. A few key attributes
from the network policy specification worth mentioning are listed here to help you
understand what the restrictions are:

• podSelector: A grouping of Pods to which the policy applies based on the
Pod labels.

• Ingress: Ingress rules that apply to the Pods specified in the top-level
podSelector. The different elements under Ingress are discussed as follows:

- ipBlock: IP CIDR ranges that are allowed to communicate with ingress sources

- namespaceSelector: Namespaces that are allowed as ingress sources based
on namespace labels

- podSelector: Pods that are allowed as ingress sources based on Pod labels

- ports: Ports and protocols that all pods should be allowed to communicate with
• egress: Egress rules that apply to the Pods specified in the top-level

podSelector. The different elements under Ingress are discussed as follows:

- ipBlock: IP CIDR ranges that are allowed to communicate as egress destinations

- namespaceSelector: Namespaces that are allowed as egress destinations based
on namespace labels

- podSelector: Pods that are allowed as egress destination based on Pod labels

- ports: Destination ports and protocols that all Pods should be allowed to
communicate with

Security boundaries in the network layer 87

Usually, ipBlock is used to specify the external IP block that microservices are
allowed to interact with in the Kubernetes cluster, while the namespace selector and Pod
selector are used to restrict network communications among microservices in the same
Kubernetes cluster.

To strengthen the trust boundaries for microservices from a network aspect, you might
want to either specify the allowed ipBlock from external or allowed microservices from
a specific namespace. The following is another example to restrict the ingress source from
certain Pods and namespaces by using namespaceSelector and podSelector:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: allow-good

spec:

 podSelector:

 matchLabels:

 app: web

 policyTypes:

 - Ingress

 ingress:

 - from:

 - namespaceSelector:

 matchLabels:

 from: good

 podSelector:

 matchLabels:

 from: good

88 Configuring Kubernetes Security Boundaries

Note that there is no - in front of the podSelector attribute. This means the ingress
source can only be pods with the label from: good in the namespace with the label
from: good. This network policy protects Pods with the label app: web in the
default namespace:

Figure 5.1 – Network policy restricting incoming traffic by Pod and namespace labels

In the preceding diagram, the good namespace has the label from: good while the
bad namespace has the label from: bad. It illustrates that only Pods with the label
from: good in the namespace with the label from: good can access the nginx-web
service in the default namespace. Other Pods, no matter whether they're from the good
namespace but without the label from: good or from other namespaces, cannot access
the nginx-web service in the default namespace.

Summary
In this chapter, we discussed the importance of security boundaries. Understanding
the security domains and security boundaries within the Kubernetes ecosystem helps
administrators understand the blast radius of an attack and have mitigation strategies in
place to limit the damage caused in the event of an attack. Knowing Kubernetes entities
is the starting point of fortifying security boundaries. Knowing the security boundaries
built into the system layer with Linux namespaces and capabilities is the next step. Last
but not least, understanding the power of network policies is also critical to build security
segmentation into microservices.

Questions 89

After this chapter, you should grasp the concept of the security domain and security
boundaries. You should also know the security domains, common entities in Kubernetes,
as well as the security boundaries built within or around Kubernetes entities. You should
know the importance of using built-in security features such as PodSecurityPolicy
and NetworkPolicy to fortify security boundaries and configure the security context
of workloads carefully.

In the next chapter, we will talk about how to secure Kubernetes components. In
particular, there are some configuration details you should pay attention to.

Questions
1. What are the security domains in Kubernetes?

2. What are the common Kubernetes entities you interact with?

3. How can you restrict a Kubernetes user to access objects in a specific namespace?

4. What does enable hostPID mean to a pod?

5. Try to configure a network policy to protect your service that only allows specific
Pods as ingress sources.

Further references
• Kubernetes network policies: https://kubernetes.io/docs/concepts/

services-networking/network-policies/

• CVE-2018-18264: https://groups.google.com/forum/#!searchin/
kubernetes-announce/CVE-2018-18264%7Csort:date/kubernetes-
announce/yBrFf5nmvfI/gUO60KIlCAAJ

• CVE-2018-1002105: https://groups.google.com/forum/#!topic/
kubernetes-announce/GVllWCg6L88

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://groups.google.com/forum/#!searchin/kubernetes-announce/CVE-2018-18264%7Csort:date/kubernetes-announce/yBrFf5nmvfI/gUO60KIlCAAJ
https://groups.google.com/forum/#!searchin/kubernetes-announce/CVE-2018-18264%7Csort:date/kubernetes-announce/yBrFf5nmvfI/gUO60KIlCAAJ
https://groups.google.com/forum/#!searchin/kubernetes-announce/CVE-2018-18264%7Csort:date/kubernetes-announce/yBrFf5nmvfI/gUO60KIlCAAJ
https://groups.google.com/forum/#!topic/kubernetes-announce/GVllWCg6L88
https://groups.google.com/forum/#!topic/kubernetes-announce/GVllWCg6L88

Section 2:
Securing Kubernetes

Deployments and
Clusters

In this section, you will learn through hands-on exercises how to secure Kubernetes
deployments/clusters in two ways: you will learn how to secure a DevOps pipeline in
build, deployment, and runtime stages, and you will learn about defense in depth, looking
at compliance, configuration, identity, authorization, resource management, logging and
monitoring, detection, and incident response.

The following chapters are included in this section:

• Chapter 6, Securing Cluster Components

• Chapter 7, Authentication, Authorization, and Admission Control

• Chapter 8, Securing Kubernetes Pods

• Chapter 9, Image Scanning in DevOps Pipelines

• Chapter 10, Real-Time Monitoring and Resource Management of a Kubernetes Cluster

• Chapter 11, Defense in Depth

6
Securing Cluster

Components
In previous chapters, we looked at the architecture of a Kubernetes cluster. A Kubernetes
cluster consists of master components—including kube-apiserver, etcd,
kube-scheduler, CoreDNS, kube-controller-manager, and cloud-
controller-manager—and node components, including kubelet, kube-proxy,
and container-runtime. Master components are responsible for cluster management.
They form the control plane of the cluster. Node components, on the other hand, are
responsible for the functioning of pods and containers on the node.

In Chapter 3, Threat Modeling, we briefly discussed that components in a Kubernetes
cluster need to be configured to ensure the security of the cluster. A compromise of any
cluster component can cause a data breach. Misconfiguration of environments is one of
the primary reasons for data breaches in traditional or microservices environments. It is
important to understand the configurations for each component and how each setting can
open up a new attack surface. So, it's important for cluster administrators to understand
different configurations.

In this chapter, we look in detail at how to secure each component in a cluster. In many
cases, it will not be possible to follow all security best practices, but it is important to
highlight the risks and have a mitigation strategy in place if an attacker tries to exploit
a vulnerable configuration.

94 Securing Cluster Components

For each master and node component, we briefly discuss the function of components
with a security-relevant configuration in a Kubernetes cluster and look in detail at each
configuration. We look at the possible settings for these configurations and highlight the
recommended practices. Finally, we introduce kube-bench and walk through how this
can be used to evaluate the security posture of your cluster.

In this chapter, we will cover the following topics:

• Securing kube-apiserver

• Securing kubelet

• Securing etcd

• Securing kube-scheduler

• Securing kube-controller-manager

• Securing CoreDNS

• Benchmarking a cluster's security configuration

Securing kube-apiserver
kube-apiserver is the gateway to your cluster. It implements a representational
state transfer (REST) application programming interface (API) to authorize and
validate requests for objects. It is the central gateway that communicates and manages
other components within the Kubernetes cluster. It performs three main functions:

• API management: kube-apiserver exposes APIs for cluster management.
These APIs are used by developers and cluster administrators to modify the
state of the cluster.

• Request handling: Requests for object management and cluster management are
validated and processed.

• Internal messaging: The API server interacts with other components in the cluster
to ensure the cluster functions properly.

A request to the API server goes through the following steps before being processed:

1. Authentication: kube-apiserver first validates the origin of the request.
kube-apiserver supports multiple modes of authentication including client
certificates, bearer tokens, and HyperText Transfer Protocol (HTTP) authentication.

Securing kube-apiserver 95

2. Authorization: Once the identity of origin is validated, the API server validates
that the origin is allowed to execute the request. kube-apiserver, by default,
supports Attribute-Based Access Control (ABAC), Role-Based Access Control
(RBAC), node authorization, and Webhooks for authorization. RBAC is the
recommended mode of authorization.

3. Admission controller: Once kube-apiserver authenticates and authorizes the
request, admission controllers parse the request to check if it's allowed within the
cluster. If the request is rejected by any admission controller, the request is dropped.

kube-apiserver is the brain of the cluster. Compromise of the API server causes
cluster compromise, so it's essential that the API server is secure. Kubernetes provides a
myriad of settings to configure the API server. Let's look at some of the security-relevant
configurations next.

To secure the API server, you should do the following:

• Disable anonymous authentication: Use the anonymous-auth=false flag to
set anonymous authentication to false. This ensures that requests rejected by all
authentication modules are not treated as anonymous and are discarded.

• Disable basic authentication: Basic authentication is supported for convenience
in kube-apiserver and should not be used. Basic authentication passwords
persist indefinitely. kube-apiserver uses the --basic-auth-file argument
to enable basic authentication. Ensure that this argument is not used.

• Disable token authentication: --token-auth-file enables token-based
authentication for your cluster. Token-based authentication is not recommended.
Static tokens persist forever and need a restart of the API server to update. Client
certificates should be used for authentication.

• Ensure connections with kubelet use HTTPS: By default, --kubelet-https is
set to true. Ensure that this argument is not set to false for kube-apiserver.

• Disable profiling: Enabling profiling using --profiling exposes unnecessary
system and program details. Unless you are experiencing performance issues,
disable profiling by setting --profiling=false.

• Disable AlwaysAdmit: --enable-admission-plugins can be used to enable
admission control plugins that are not enabled by default. AlwaysAdmit accepts
the request. Ensure that the plugin is not in the --enabled-admission-
plugins list.

96 Securing Cluster Components

• Use AlwaysPullImages: The AlwaysPullImages admission control ensures
that images on the nodes cannot be used without correct credentials. This prevents
malicious pods from spinning up containers for images that already exist on
the node.

• Use SecurityContextDeny: This admission controller should be used if
PodSecurityPolicy is not enabled. SecurityContextDeny ensures that
pods cannot modify SecurityContext to escalate privileges.

• Enable auditing: Auditing is enabled by default in kube-apiserver. Ensure that
--audit-log-path is set to a file in a secure location. Additionally, ensure that
the maxage, maxsize, and maxbackup parameters for auditing are set to meet
compliance expectations.

• Disable AlwaysAllow authorization: Authorization mode ensures that requests
from users with correct privileges are parsed by the API server. Do not use
AlwaysAllow with --authorization-mode.

• Enable RBAC authorization: RBAC is the recommended authorization mode
for the API server. ABAC is difficult to use and manage. The ease of use, and easy
updates to, RBAC roles and role bindings makes RBAC suitable for environments
that scale often.

• Ensure requests to kubelet use valid certificates: By default, kube-apiserver
uses HTTPS for requests to kubelet. Enabling --kubelet-certificate-
authority, --kubelet-client-key, and --kubelet-client-key
ensures that the communication uses valid HTTPS certificates.

• Enable service-account-lookup: In addition to ensuring that the service account
token is valid, kube-apiserver should also verify that the token is present in
etcd. Ensure that --service-account-lookup is not set to false.

• Enable PodSecurityPolicy: --enable-admission-plugins can be used
to enable PodSecurityPolicy. As we have seen in Chapter 5, Configuring
Kubernetes Security Boundaries, PodSecurityPolicy is used to define the
security-sensitive criteria for a pod. We will dive deep into creating pod security
policies in Chapter 8, Securing Kubernetes Pods.

• Use a service account key file: Use of --service-account-key-file enables
rotation of keys for service accounts. If this is not specified, kube-apiserver
uses the private key from the Transport Layer Security (TLS) certificates to sign
the service account tokens.

• Enable authorized requests to etcd: --etcd-certfile and --etcd-keyfile
can be used to identify requests to etcd. This ensures that any unidentified requests
can be rejected by etcd.

Securing kube-apiserver 97

• Do not disable the ServiceAccount admission controller: This admission
control automates service accounts. Enabling ServiceAccount ensures that
custom ServiceAccount with restricted permissions can be used with different
Kubernetes objects.

• Do not use self-signed certificates for requests: If HTTPS is enabled for
kube-apiserver, a --tls-cert-file and a --tls-private-key-file
should be provided to ensure that self-signed certificates are not used.

• Secure connections to etcd: Setting --etcd-cafile allows kube-apiserver
to verify itself to etcd over Secure Sockets Layer (SSL) using a certificate file.

• Use secure TLS connections: Set --tls-cipher-suites to strong ciphers only.
--tls-min-version is used to set the minimum-supported TLS version. TLS
1.2 is the recommended minimum version.

• Enable advanced auditing: Advanced auditing can be disabled by setting the
--feature-gates to AdvancedAuditing=false. Ensure that this field is
present and is set to true. Advanced auditing helps in an investigation if a
breach happens.

On Minikube, the kube-apiserver configuration looks like this:

$ps aux | grep kube-api

root 4016 6.1 17.2 495148 342896 ? Ssl 01:03
0:16 kube-apiserver --advertise-address=192.168.99.100 --allow-
privileged=true --authorization-mode=Node,RBAC --client-ca-
file=/var/lib/minikube/certs/ca.crt --enable-admission-plugin
s=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultSto
rageClass,DefaultTolerationSeconds,NodeRestriction,Mutatin
gAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota
--enable-bootstrap-token-auth=true --etcd-cafile=/var/
lib/minikube/certs/etcd/ca.crt --etcd-certfile=/var/lib/
minikube/certs/apiserver-etcd-client.crt --etcd-keyfile=/
var/lib/minikube/certs/apiserver-etcd-client.key --etcd-
servers=https://127.0.0.1:2379 --insecure-port=0 --kubelet-
client-certificate=/var/lib/minikube/certs/apiserver-
kubelet-client.crt --kubelet-client-key=/var/lib/minikube/
certs/apiserver-kubelet-client.key --kubelet-preferred-
address-types=InternalIP,ExternalIP,Hostname --proxy-client-
cert-file=/var/lib/minikube/certs/front-proxy-client.crt
--proxy-client-key-file=/var/lib/minikube/certs/front-proxy-
client.key --requestheader-allowed-names=front-proxy-client
--requestheader-client-ca-file=/var/lib/minikube/certs/
front-proxy-ca.crt --requestheader-extra-headers-prefix=X-

98 Securing Cluster Components

Remote-Extra- --requestheader-group-headers=X-Remote-Group
--requestheader-username-headers=X-Remote-User --secure-
port=8443 --service-account-key-file=/var/lib/minikube/certs/
sa.pub --service-cluster-ip-range=10.96.0.0/12 --tls-cert-
file=/var/lib/minikube/certs/apiserver.crt --tls-private-key-
file=/var/lib/minikube/certs/apiserver.key

As you can see, by default on Minikube, kube-apiserver does not follow all security
best practices. For example, PodSecurityPolicy is not enabled by default, and strong
cipher suites and the tls minimum version are not set by default. It's the responsibility of
the cluster administrator to ensure that the API server is securely configured.

Securing kubelet
kubelet is the node agent for Kubernetes. It manages the life cycle of objects within the
Kubernetes cluster and ensures that the objects are in a healthy state on the node.

To secure kubelet, you should do the following:

• Disable anonymous authentication: If anonymous authentication is enabled,
requests that are rejected by other authentication methods are treated as
anonymous. Ensure that --anonymous-auth=false is set for each instance
of kubelet.

• Set the authorization mode: The authorization mode for kubelet is set using
config files. A config file is specified using the --config parameter. Ensure that
the authorization mode does not have AlwaysAllow in the list.

• Rotate kubelet certificates: kubelet certificates can be rotated using a
RotateCertificates configuration in the kubelet configuration file. This
should be used in conjunction with RotateKubeletServerCertificate
to auto-request rotation of server certificates.

• Provide a Certificate Authority (CA) bundle: A CA bundle is used by kubelet
to verify client certificates. This can be set using the ClientCAFile parameter in
the config file.

• Disable the read-only port: The read-only port is enabled for kubelet by
default, and should be disabled. The read-only port is served with no authentication
or authorization.

• Enable the NodeRestriction admission controller: The NodeRestriction
admission controller only allows kubelet to modify the node and pod objects
on the node it is bound to.

Securing etcd 99

• Restrict access to the Kubelet API: Only the kube-apiserver component
interacts with the kubelet API. If you try to communicate with the kubelet
API on the node, it is forbidden. This is ensured by using RBAC for kubelet.

On Minikube, the kubelet configuration looks like this:

root 4286 2.6 4.6 1345544 92420 ? Ssl 01:03
0:18 /var/lib/minikube/binaries/v1.17.3/kubelet
--authorization-mode=Webhook --bootstrap-kubeconfig=/etc/
kubernetes/bootstrap-kubelet.conf --cgroup-driver=cgroupfs
--client-ca-file=/var/lib/minikube/certs/ca.crt --cluster-
domain=cluster.local --config=/var/lib/kubelet/config.yaml
--container-runtime=docker --fail-swap-on=false --hostname-
override=minikube --kubeconfig=/etc/kubernetes/kubelet.conf
--node-ip=192.168.99.100 --pod-manifest-path=/etc/kubernetes/
manifests

Similar to the API server, not all secure configurations are used by default on a
kubelet—for example, disabling the read-only port. Next, we talk about how
cluster administrators can secure etcd.

Securing etcd
etcd is a key-value store that is used by Kubernetes for data storage. It stores the state,
configuration, and secrets of the Kubernetes cluster. Only kube-apiserver should
have access to etcd. Compromise of etcd can lead to a cluster compromise.

To secure etcd, you should do the following:

• Restrict node access: Use Linux firewalls to ensure that only nodes that need access
to etcd are allowed access.

• Ensure the API server uses TLS: --cert-file and --key-file ensure that
requests to etcd are secure.

• Use valid certificates: --client-cert-auth ensures that communication from
clients is made using valid certificates, and setting --auto-tls to false ensures
that self-signed certificates are not used.

• Encrypt data at rest: --encryption-provider-config is passed to the API
server to ensure that data is encrypted at rest in etcd.

100 Securing Cluster Components

On Minikube, the etcd configuration looks like this:

$ ps aux | grep etcd

root 3992 1.9 2.4 10612080 48680 ? Ssl 01:03
0:18 etcd --advertise-client-urls=https://192.168.99.100:2379
--cert-file=/var/lib/minikube/certs/etcd/server.crt --client-
cert-auth=true --data-dir=/var/lib/minikube/etcd --initial-
advertise-peer-urls=https://192.168.99.100:2380 --initial-
cluster=minikube=https://192.168.99.100:2380 --key-file=/var/
lib/minikube/certs/etcd/server.key --listen-client-urls=ht
tps://127.0.0.1:2379,https://192.168.99.100:2379 --listen-
metrics-urls=http://127.0.0.1:2381 --listen-peer-urls=ht
tps://192.168.99.100:2380 --name=minikube --peer-cert-file=/
var/lib/minikube/certs/etcd/peer.crt --peer-client-cert-
auth=true --peer-key-file=/var/lib/minikube/certs/etcd/peer.
key --peer-trusted-ca-file=/var/lib/minikube/certs/etcd/ca.crt
--snapshot-count=10000 --trusted-ca-file=/var/lib/minikube/
certs/etcd/ca.crt

etcd stores sensitive data of a Kubernetes cluster, such as private keys and secrets.
Compromise of etcd is compromise of the api-server component. Cluster
administrators should pay special attention while setting up etcd.

Securing kube-scheduler
Next, we look at kube-scheduler. As we have already discussed in Chapter 1, Kubernetes
Architecture, kube-scheduler is responsible for assigning a node to a pod. Once the pod
is assigned to a node, the kubelet executes the pod. kube-scheduler first filters the
set of nodes on which the pod can run, then, based on the scoring of each node, it assigns
the pod to the filtered node with the highest score. Compromise of the kube-scheduler
component impacts the performance and availability of the pods in the cluster.

To secure kube-scheduler, you should do the following:

• Disable profiling: Profiling of kube-scheduler exposes system details. Setting
--profiling to false reduces the attack surface.

• Disable external connections to kube-scheduler: External connections should be
disabled for kube-scheduler. AllowExtTrafficLocalEndpoints is set
to true, enabling external connections to kube-scheduler. Ensure that this
feature is disabled using --feature-gates.

• Enable AppArmor: By default, AppArmor is enabled for kube-scheduler.
Ensure that AppArmor is not disabled for kube-scheduler.

Securing kube-controller-manager 101

On Minikube, the kube-scheduler configuration looks like this:

$ps aux | grep kube-scheduler

root 3939 0.5 2.0 144308 41640 ? Ssl 01:03
0:02 kube-scheduler --authentication-kubeconfig=/etc/
kubernetes/scheduler.conf --authorization-kubeconfig=/etc/
kubernetes/scheduler.conf --bind-address=0.0.0.0 --kubeconfig=/
etc/kubernetes/scheduler.conf --leader-elect=true

Similar to kube-apiserver, the scheduler also does not follow all security best
practices such as disabling profiling.

Securing kube-controller-manager
kube-controller-manager manages the control loop for the cluster. It monitors
the cluster for changes through the API server and aims to move the cluster from the
current state to the desired state. Multiple controller managers are shipped by default
with kube-controller-manager, such as a replication controller and a namespace
controller. Compromise of kube-controller-manager can result in updates to the
cluster being rejected.

To secure kube-controller-manager, you should use --use-service-
account-credentials which, when used with RBAC ensures that control
loops run with minimum privileges.

On Minikube, the kube-controller-manager configuration looks like this:

$ps aux | grep kube-controller-manager

root 3927 1.8 4.5 209520 90072 ? Ssl 01:03
0:11 kube-controller-manager --authentication-kubeconfig=/
etc/kubernetes/controller-manager.conf --authorization-
kubeconfig=/etc/kubernetes/controller-manager.conf --bind-
address=0.0.0.0 --client-ca-file=/var/lib/minikube/certs/ca.crt
--cluster-signing-cert-file=/var/lib/minikube/certs/ca.crt
--cluster-signing-key-file=/var/lib/minikube/certs/ca.key
--controllers=*,bootstrapsigner,tokencleaner --kubeconfig=/
etc/kubernetes/controller-manager.conf --leader-elect=true
--requestheader-client-ca-file=/var/lib/minikube/certs/front-
proxy-ca.crt --root-ca-file=/var/lib/minikube/certs/ca.crt
--service-account-private-key-file=/var/lib/minikube/certs/
sa.key --use-service-account-credentials=true

Next, let's talk about securing CoreDNS.

102 Securing Cluster Components

Securing CoreDNS
kube-dns was the default Domain Name System (DNS) server for a Kubernetes cluster.
The DNS server helps internal objects such as services, pods, and containers locate each
other. kube-dns is comprised of three containers, detailed as follows:

• kube-dns: This container uses SkyDNS to perform DNS resolution services.

• dnsmasq: A lightweight DNS resolver. It caches responses from SkyDNS.

• sidecar: This monitors health and handles metrics reporting for DNS.

kube-dns has been superseded by CoreDNS since version 1.11 because of security
vulnerabilities in dnsmasq and performance issues in SkyDNS. CoreDNS is a single
container that provides all the functions of kube-dns.

To edit the configuration file for CoreDNS, you can use kubectl, like this:

$ kubectl -n kube-system edit configmap coredns

By default, the CoreDNS config file on Minikube looks like this:

Please edit the object below. Lines beginning with a '#'

will be ignored, and an empty file will abort the edit.

If an error occurs while saving this file will be

reopened with the relevant failures.

apiVersion: v1

data:

 Corefile: |

 .:53 {

 errors

 health {

 lameduck 5s

 }

 ready

 kubernetes cluster.local in-addr.arpa ip6.arpa {

 pods insecure

 fallthrough in-addr.arpa ip6.arpa

 ttl 30

 }

 prometheus :9153

 forward . /etc/resolv.conf

Benchmarking a cluster's security configuration 103

 cache 30

 loop

 reload

 loadbalance

 }

To secure CoreDNS, do the following:

• Ensure that the health plugin is not disabled: The health plugin monitors the
status of CoreDNS. It is used to confirm if CoreDNS is up and running. It is enabled
by adding health to the list of plugins to be enabled in Corefile.

• Enable istio for CoreDNS: istio is a service mesh that is used by Kubernetes to
provide service discovery, load balancing, and authentication. It is not available by
default in Kubernetes and needs to be added as an external dependency. You can
add istio to your cluster by starting the istio service and adding a proxy for
the istio service to the config file, like this:

global:53 {

 errors

 proxy . {cluster IP of this istio-core-dns
service}

 }

Now that we have looked at different configurations of cluster components, it is important
to realize that as the components become more sophisticated, more configuration
parameters will be added. It's not possible for a cluster administrator to remember these
configurations. So, next, we talk about a tool that helps cluster administrators monitor
the security posture of cluster components.

Benchmarking a cluster's security
configuration
The Center for Internet Security (CIS) released a benchmark of Kubernetes that can
be used by cluster administrators to ensure that the cluster follows the recommended
security configuration. The published Kubernetes benchmark is more than 200 pages.

kube-bench is an automated tool written in Go and published by Aqua Security that
runs tests documented in the CIS benchmark. The tests are written in YAML Ain't
Markup Language (YAML), making it easy to evolve.

104 Securing Cluster Components

kube-bench can be run on a node directly using the kube-bench binary, as follows:

$kube-bench node --benchmark cis-1.4

For clusters hosted on gke, eks, and aks, kube-bench is run as a pod. Once the pod
finishes running, you can look at the logs to see the results, as illustrated in the following
code block:

$ kubectl apply -f job-gke.yaml

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

kube-bench-2plpm 0/1 Completed 0 5m20s

$ kubectl logs kube-bench-2plpm

[INFO] 4 Worker Node Security Configuration

[INFO] 4.1 Worker Node Configuration Files

[WARN] 4.1.1 Ensure that the kubelet service file permissions
are set to 644 or more restrictive (Not Scored)

[WARN] 4.1.2 Ensure that the kubelet service file ownership is
set to root:root (Not Scored)

[PASS] 4.1.3 Ensure that the proxy kubeconfig file permissions
are set to 644 or more restrictive (Scored)

[PASS] 4.1.4 Ensure that the proxy kubeconfig file ownership is
set to root:root (Scored)

[WARN] 4.1.5 Ensure that the kubelet.conf file permissions are
set to 644 or more restrictive (Not Scored)

[WARN] 4.1.6 Ensure that the kubelet.conf file ownership is set
to root:root (Not Scored)

[WARN] 4.1.7 Ensure that the certificate authorities file
permissions are set to 644 or more restrictive (Not Scored)

......

== Summary ==

0 checks PASS

0 checks FAIL

37 checks WARN

0 checks INFO

It is important to investigate the checks that have a FAIL status. You should aim to
have zero checks that fail. If this is not possible for any reason, you should have a risk
mitigation plan in place for the failed check.

Summary 105

kube-bench is a helpful tool for monitoring cluster components that are following
security best practices. It is recommended to add/modify kube-bench rules to suit your
environment. Most developers run kube-bench while starting a new cluster, but it's
important to run it regularly to monitor that the cluster components are secure.

Summary
In this chapter, we looked at different security-sensitive configurations for each master
and node component: kube-apiserver, kube-scheduler, kube-controller-
manager, kubelet, CoreDNS, and etcd. We learned how each component can be
secured. By default, components might not follow all the security best practices, so it is
the responsibility of the cluster administrators to ensure that the components are secure.
Finally, we looked at kube-bench, which can be used to understand the security
baseline for your running cluster.

It is important to understand these configurations and ensure that the components follow
these checklists to reduce the chance of a compromise.

In the next chapter, we'll look at authentication and authorization mechanisms in
Kubernetes. We briefly talked about some admission controllers in this chapter. We'll
dive deep into different admission controllers and, finally, talk about how they can be
leveraged to provide a finer-grained access control.

Questions
1. What is token-based authentication?

2. What is a NodeRestriction admission controller?

3. How do you ensure data is encrypted at rest in etcd?

4. Why did CoreDNS supersede kube-dns?

5. How do you use kube-bench on an Elastic Kubernetes Service (EKS) cluster?

Further reading
You can refer to the following links for more information on the topics covered in
this chapter:

• CIS Benchmarks: https://www.cisecurity.org/benchmark/
kubernetes/

• GitHub (kube-bench): https://github.com/aquasecurity/kube-
bench

https://www.cisecurity.org/benchmark/kubernetes/
https://www.cisecurity.org/benchmark/kubernetes/
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench

7
Authentication,

Authorization, and
Admission Control

Authentication and authorization play a very vital role in securing applications. These two
terms are often used interchangeably but are very different. Authentication validates the
identity of a user. Once the identity is validated, authorization is used to check whether
the user has the privileges to perform the desired action. Authentication uses something
the user knows to verify their identity; in the simplest form, this is a username and
password. Once the application verifies the user's identity, it checks what resources the
user has access to. In most cases, this is a variation of an access control list. Access control
lists for the user are compared with the request attributes to allow or deny an action.

In this chapter, we will discuss how a request is processed by authentication, authorization
modules, and admission controllers before it is processed by kube-apiserver. We'll
walk through the details of different modules and admission controllers and highlight the
recommended security configurations.

108 Authentication, Authorization, and Admission Control

We will finally look at Open Policy Agent (OPA), which is an open source tool that can
be used to implement authorization across microservices. In Kubernetes, we will look
at how it can be used as a validating admission controller. Many clusters require a more
granular level of authorization than what is already provided by Kubernetes. With OPA,
developers can define custom authorization policies that can be updated at runtime.
There are several open source tools that leverage OPA, such as Istio.

In this chapter, we will discuss the following topics:

• Requesting a workflow in Kubernetes
• Kubernetes authentication
• Kubernetes authorization
• Admission controllers
• Introduction to OPA

Requesting a workflow in Kubernetes
In Kubernetes, the kube-apiserver processes all requests to modify the state of the
cluster. The kube-apiserver first verifies the origin of the request. It can use one or
more authentication modules, including client certificates, passwords, or tokens. The
request passes serially from one module to the other. If the request is not rejected by all
the modules, it is tagged as an anonymous request. The API server can be configured
to allow anonymous requests.

Once the origin of the request is verified, it passes through the authorization modules
to check whether the origin of the request is permitted to perform the action. The
authorization modules allow the request if a policy permits the user to perform the
action. Kubernetes supports multiple authorization modules, such as Attribute-Based
Access Control (ABAC), Role-Based Access Control (RBAC), and webhooks. Similar
to authentication modules, a cluster can use multiple authorizations:

Figure 7.1 – Requesting parsing before processing with the kube-apiserver

Kubernetes authentication 109

After passing through the authorization and authentication modules, admission
controllers modify or reject the requests. Admission controllers intercept requests that
create, update, or delete an object in the admission controller. Admission controllers fall
into two categories: mutating or validating. Mutating admission controllers run first;
they modify the requests they admit. Validating admission controllers run next. These
controllers cannot modify objects. If any of the admission controllers reject a request, an
error is returned to the user and the request will not be processed by the API server.

Kubernetes authentication
All requests in Kubernetes originate from external users, service accounts, or Kubernetes
components. If the origin of the request is unknown, it is treated as an anonymous
request. Depending on the configuration of the components, anonymous requests can be
allowed or dropped by the authentication modules. In v1.6+, anonymous access is allowed
to support anonymous and unauthenticated users for the RBAC and ABAC authorization
modes. It can be explicitly disabled by passing the --anonymous-auth=false flag to
the API server configuration:

$ps aux | grep api

root 3701 6.1 8.7 497408 346244 ? Ssl 21:06
0:16 kube-apiserver --advertise-address=192.168.99.111 --allow-
privileged=true --anonymous-auth=false

Kubernetes uses one or more of these authentication strategies. Let's discuss them one
by one.

Client certificates
Using X509 Certificate Authority (CA) certificates is the most common authentication
strategy in Kubernetes. It can be enabled by passing --client-ca-file=file_
path to the server. The file passed to the API server has a list of CAs, which creates and
validates client certificates in the cluster. The common name property in the certificate is
often used as the username for the request and the organization property is used to
identify the user's groups:

kube-apiserver --advertise-address=192.168.99.104 --allow-
privileged=true --authorization-mode=Node,RBAC --client-ca-
file=/var/lib/minikube/certs/ca.crt

110 Authentication, Authorization, and Admission Control

To create a new certificate, the following steps need to be taken:

1. Generate a private key. A private key can be generated using openssl, easyrsa,
or cfssl:

openssl genrsa -out priv.key 4096

2. Generate a Certificate Signing Request (CSR). Using the private key and a config
file similar to the following generates a CSR. This CSR is for the test user, which
will be part of the dev group:

[req]

default_bits = 2048

prompt = no

default_md = sha256

distinguished_name = dn

[dn]

CN = test

O = dev

[v3_ext]

authorityKeyIdentifier=keyid,issuer:always
basicConstraints=CA:FALSE

keyUsage=keyEncipherment,dataEncipherment
extendedKeyUsage=serverAuth,clientAuth

You can generate a CSR using openssl:
openssl req -config ./csr.cnf -new -key priv.key -nodes
-out new.csr

3. Sign the CSR. Create a Kubernetes CertificateSigningRequest request
using the following YAML file:

apiVersion: certificates.k8s.io/v1beta1

kind: CertificateSigningRequest

metadata:

 name: mycsr

spec:

 groups:

Kubernetes authentication 111

 - system:authenticated

 request: ${BASE64_CSR}

 usages:

 - digital signature

 - key encipherment

 - server auth

 - client auth

The certificate-signing request generated earlier is used with the preceding YAML
specification to generate a new Kubernetes certificate-signing request:

$ export BASE64_CSR=$(cat ./new.csr | base64 | tr -d
'\n')

$ cat csr.yaml | envsubst | kubectl apply -f -

Once this request is created, it needs to be approved by the cluster administrators
to generate the certificate:

kubectl certificate approve mycsr

4. Export the CRT. The certificate can be exported using kubectl:

kubectl get csr mycsr -o jsonpath='{.status.certificate}'
\

 | base64 --decode > new.crt

Next, we will look at static tokens, which are a popular mode of authentication in
development and debugging environments but should not be used in production clusters.

Static tokens
The API server uses a static file to read the bearer tokens. This static file is passed to the
API server using --token-auth-file=<path>. The token file is a comma-separated
file consisting of secret, user, uid, group1, and group2.

The token is passed as an HTTP header in the request:

Authorization: Bearer 66e6a781-09cb-4e7e-8e13-34d78cb0dab6

The tokens persist indefinitely, and the API server needs to be restarted to update
the tokens. This is not a recommended authentication strategy. These tokens can be
easily compromised if the attacker is able to spawn a malicious pod in a cluster. Once
compromised, the only way to generate a new token is to restart the API server.

112 Authentication, Authorization, and Admission Control

Next, we will look at basic authentication, a variation of static tokens that has been used as
a method for authentication by web services for many years.

Basic authentication
Similar to static tokens, Kubernetes also supports basic authentication. This can be
enabled by using basic-auth-file=<path>. The authentication credentials are
stored in a CSV file as password, user, uid, group1, and group2.

The username and password are passed as an authentication header in the request:

Authentication: Basic base64(user:password)

Similar to static tokens, basic authentication passwords cannot be changed without
restarting the API server. Basic authentication should not be used in production clusters.

Bootstrap tokens
Bootstrap tokens are an improvisation over the static tokens. Bootstrap tokens are the
default authentication method used in Kubernetes. They are dynamically managed and
stored as secrets in kube-system. To enable bootstrap tokens, do the following:

1. Use --enable-bootstrap-token-auth in the API server to enable the
bootstrap token authenticator:

$ps aux | grep api

root 3701 3.8 8.8 497920 347140 ? Ssl 21:06
4:58 kube-apiserver --advertise-address=192.168.99.111
--allow-privileged=true --anonymous-auth=true
--authorization-mode=Node,RBAC --client-ca-file=/var/lib/
minikube/certs/ca.crt --enable-admission-plugins=Namesp
aceLifecycle,LimitRanger,ServiceAccount,DefaultStorageC
lass,DefaultTolerationSeconds,NodeRestriction,Mutating
AdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota
--enable-bootstrap-token-auth=true

2. Enable tokencleaner in the controller manager using the controller flag:

$ ps aux | grep controller

root 3693 1.4 2.3 211196 94396 ? Ssl
21:06 1:55 kube-controller-manager --authentication-
kubeconfig=/etc/kubernetes/controller-manager.conf
--authorization-kubeconfig=/etc/kubernetes/controller-
manager.conf --bind-address=127.0.0.1 --client-ca-

Kubernetes authentication 113

file=/var/lib/minikube/certs/ca.crt --cluster-name=mk
--cluster-signing-cert-file=/var/lib/minikube/certs/
ca.crt --cluster-signing-key-file=/var/lib/minikube/
certs/ca.key --controllers=*,bootstrapsigner,tokencleaner

3. Similar to token authentication, bootstrap tokens are passed as an HTTP header in
the request:

Authorization: Bearer 123456.aa1234fdeffeeedf

The first part of the token is the TokenId value and the second part of it is the
TokenSecret value. TokenController ensures that expired tokens are deleted
from the system secrets.

Service account tokens
The service account authenticator is automatically enabled. It verifies signed bearer
tokens. The signing key is specified using --service-account-key-file. If this
value is unspecified, the Kube API server's private key is used:

$ps aux | grep api

root 3711 27.1 14.9 426728 296552 ? Ssl 04:22
0:04 kube-apiserver --advertise-address=192.168.99.104 ...
--secure-port=8443 --service-account-key-file=/var/lib/
minikube/certs/sa.pub --service-cluster-ip-range=10.96.0.0/12
--tls-cert-file=/var/lib/minikube/certs/apiserver.crt
--tls-private-key-file=/var/lib/minikube/certs/apiserver.key

docker 4496 0.0 0.0 11408 544 pts/0 S+ 04:22
0:00 grep api

Service accounts are created by the kube-apiserver and are associated with the pods.
This is similar to instance profiles in AWS. The default service account is associated with
a pod if no service account is specified.

To create a service account test, you can use the following:

kubectl create serviceaccount test

The service account has associated secrets, which includes the CA of the API server and
a signed token:

$ kubectl get serviceaccounts test -o yaml

apiVersion: v1

114 Authentication, Authorization, and Admission Control

kind: ServiceAccount

metadata:

 creationTimestamp: "2020-03-29T04:35:58Z"

 name: test

 namespace: default

 resourceVersion: "954754"

 selfLink: /api/v1/namespaces/default/serviceaccounts/test

 uid: 026466f3-e2e8-4b26-994d-ee473b2f36cd

secrets:

- name: test-token-sdq2d

If we enumerate the details, we can see the certificate and the token:

$ kubectl get secret test-token-sdq2d -o yaml

apiVersion: v1

data:

 ca.crt: base64(crt)

 namespace: ZGVmYXVsdA==

 token: base64(token)

kind: Secret

Next, we will talk about webhook tokens. Some enterprises have a remote authentication
and authorization server, which is often used across all services. In Kubernetes, developers
can use webhook tokens to leverage the remote services for authentication.

Webhook tokens
In webhook mode, Kubernetes makes a call to a REST API outside the cluster to
determine the user's identity. Webhook mode for authentication can be enabled by
passing --authorization-webhook-config-file=<path> to the API server.

Here is an example of a webhook configuration. In this, authn.example.com/
authenticate is used as the authentication endpoint for the Kubernetes cluster:

clusters:

 - name: name-of-remote-authn-service

 cluster:

 certificate-authority: /path/to/ca.pem

 server: https://authn.example.com/authenticate

http://authn.example.com/authenticate
http://authn.example.com/authenticate

Kubernetes authentication 115

Let's look at another way that a remote service can be used for authentication.

Authentication proxy
kube-apiserver can be configured to identify users using the X-Remote request
header. You can enable this method by adding the following arguments to the API server:

--requestheader-username-headers=X-Remote-User

--requestheader-group-headers=X-Remote-Group

--requestheader-extra-headers-prefix=X-Remote-Extra-

Each request has the following headers to identify them:

GET / HTTP/1.1

X-Remote-User: foo

X-Remote-Group: bar

X-Remote-Extra-Scopes: profile

The API proxy validates the requests using the CA.

User impersonation
Cluster administrators and developers can use user impersonation to debug
authentication and authorization policies for new users. To use user impersonation, a
user must be granted impersonation privileges. The API server uses impersonation the
following headers to impersonate a user:

• Impersonate-User

• Impersonate-Group

• Impersonate-Extra-*

Once the impersonation headers are received by the API server, the API server verifies
whether the user is authenticated and has the impersonation privileges. If yes, the request
is executed as the impersonated user. kubectl can use the --as and --as-group flags
to impersonate a user:

kubectl apply -f pod.yaml --as=dev-user --as-group=system:dev

Once the authentication modules verify the identity of a user, they parse the request to
check whether the user is allowed to access or modify the request.

116 Authentication, Authorization, and Admission Control

Kubernetes authorization
Authorization determines whether a request is allowed or denied. Once the origin of the
request is identified, active authorization modules evaluate the attributes of the request
against the authorization policies of the user to allow or deny a request. Each request
passes through the authorization module sequentially and if any module provides
a decision to allow or deny, it is automatically accepted or denied.

Request attributes
Authorization modules parse a set of attributes in a request to determine whether the
request should be parsed, allowed, or denied:

• User: The originator of the request. This is validated during authentication.

• Group: The group that the user belongs to. This is provided in the authentication
layer.

• API: The destination of the request.

• Request verb: The type of request, which can be GET, CREATE, PATCH, DELETE,
and more.

• Resource: The ID or name of the resource being accessed.

• Namespace: The namespace of the resource being accessed.

• Request path: If the request is for a non-resource endpoint, the path is used to
check whether the user is allowed to access the endpoint. This is true for the api
and healthz endpoints.

Now, let's look at the different authorization modes that use these request attributes
to determine whether the origin is allowed to initiate the request.

Authorization modes
Let's look at the different authorization modes available in Kubernetes.

Node
Node authorization mode grants permissions to kubelets to access services, endpoints,
nodes, pods, secrets, and persistent volumes for a node. The kubelet is identified as
part of the system:nodes group with a username of system:node:<name> to be
authorized by the node authorizer. This mode is enabled by default in Kubernetes.

Kubernetes authorization 117

The NodeRestriction admission controller, which we'll learn about later in this
chapter, is used in conjunction with the node authorizer to ensure that the kubelet
can only modify objects on the node that it is running. The API server uses the
--authorization-mode=Node flag to use the node authorization module:

$ps aux | grep api

root 3701 6.1 8.7 497408 346244 ? Ssl 21:06
0:16 kube-apiserver --advertise-address=192.168.99.111
--allow-privileged=true --anonymous-auth=true
--authorization-mode=Node,RBAC --client-ca-file=/var/lib/
minikube/certs/ca.crt --enable-admission-plugins=Namespa
ceLifecycle,LimitRanger,ServiceAccount,DefaultStorageCla
ss,DefaultTolerationSeconds,NodeRestriction,MutatingAdm-
issionWebhook,ValidatingAdmissionWebhook,ResourceQuota

Node authorization is used in conjunction with ABAC or RBAC, which we will look
at next.

ABAC
With ABAC, requests are allowed by validating policies against the attributes of the
request. ABAC authorization mode can be enabled by using --authorization-
policy-file=<path> and --authorization-mode=ABAC with the API server.

The policies include a JSON object per line. Each policy consists of the following:

• Version: The API version for the policy format.

• Kind: The Policy string is used for policies.

• Spec: This includes the user, group, and resource properties, such as apiGroup,
namespace, and nonResourcePath (such as /version, /apis, readonly)
to allow requests that don't modify the resource.

An example policy is as follows:

{"apiVersion": "abac.authorization.kubernetes.io/v1beta1",
"kind": "Policy", "spec": {"user": "kubelet", "namespace": "*",
"resource": "pods", "readonly": true}}

This policy allows a kubelet to read any pods. ABAC is difficult to configure and maintain.
It is not recommended that you use ABAC in production environments.

118 Authentication, Authorization, and Admission Control

RBAC
With RBAC, access to resources is regulated using roles assigned to users. RBAC is
enabled by default in many clusters since v1.8. To enable RBAC, start the API server
with --authorization-mode=RBAC:

$ ps aux | grep api

root 14632 9.2 17.0 495148 338780 ? Ssl 06:11
0:09 kube-apiserver --advertise-address=192.168.99.104 --allow-
privileged=true --authorization-mode=Node,RBAC ...

RBAC uses Role, which is a set of permissions, and RoleBinding, which grants
permissions to users. Role and RoleBinding are restricted to namespaces. If a role needs
to span across namespaces, ClusterRole and ClusterRoleBinding can be used to grant
permissions to users across namespace boundaries.

Here is an example of a Role property that allows a user to create and modify pods in the
default namespace:

kind: Role

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

 namespace: default

 name: deployment-manager

rules:

- apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list", "watch", "create", "update", "patch",
"delete"]

The corresponding RoleBinding can be used with Role to grant permissions to
the user:

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

 name: binding

 namespace: default

subjects:

- kind: User

 name: employee

Kubernetes authorization 119

 apiGroup: ""

roleRef:

 kind: Role

 name: deployment-manager

 apiGroup: ""

Once RoleBinding is applied, you can switch the context to see whether it worked
correctly:

$ kubectl --context=employee-context get pods

NAME READY STATUS RESTARTS AGE

hello-node-677b9cfc6b-xks5f 1/1 Running 0 12m

However, if you try to view the deployments, it will result in an error:

$ kubectl --context=employee-context get deployments

Error from server (Forbidden): deployments.apps is forbidden:
User "employee" cannot list resource "deployments" in API group
"apps" in the namespace "default"

Since roles and role bindings are restricted to the default namespace, accessing the pods
in a different namespace will result in an error:

$ kubectl --context=employee-context get pods -n test

Error from server (Forbidden): pods is forbidden: User "test"
cannot list resource "pods" in API group "" in the namespace
"test"

$ kubectl --context=employee-context get pods -n kube-system

Error from server (Forbidden): pods is forbidden: User "test"
cannot list resource "pods" in API group "" in the namespace
"kube-system"

Next, we will talk about webhooks, which provide enterprises with the ability to use
remote servers for authorization.

Webhooks
Similar to webhook mode for authentication, webhook mode for authorization uses a
remote API server to check user permissions. Webhook mode can be enabled by using
--authorization-webhook-config-file=<path>.

120 Authentication, Authorization, and Admission Control

Let's look at a sample webhook configuration file that sets https://authz.remote as
the remote authorization endpoint for the Kubernetes cluster:

clusters:

 - name: authz_service

 cluster:

 certificate-authority: ca.pem

 server: https://authz.remote/

Once the request is passed by the authentication and authorization modules, admission
controllers process the request. Let's discuss admission controllers in detail.

Admission controllers
Admission controllers are modules that intercept requests to the API server after the
request is authenticated and authorized. The controllers validate and mutate the request
before modifying the state of the objects in the cluster. A controller can be both mutating
and validating. If any of the controllers reject the request, the request is dropped
immediately and an error is returned to the user so that the request will not be processed.

Admission controllers can be enabled by using the --enable-admission-plugins
flag:

$ps aux | grep api

root 3460 17.0 8.6 496896 339432 ? Ssl 06:53
0:09 kube-apiserver --advertise-address=192.168.99.106 --allow-
privileged=true --authorization-mode=Node,RBAC --client-ca-
file=/var/lib/minikube/certs/ca.crt --enable-admission-plugin
s=PodSecurityPolicy,NamespaceLifecycle,LimitRanger --enable-
bootstrap-token-auth=true

Default admission controllers can be disabled using the --disable-admission-
plugins flag.

In the following sections, we will look at some important admission controllers.

AlwaysAdmit
This admission controller allows all the pods to exist in the cluster. This controller has
been deprecated since 1.13 and should not be used in any cluster. With this controller,
the cluster behaves as if no controllers exist in the cluster.

https://authz.remote

Admission controllers 121

AlwaysPullImages
This controller ensures that new pods always force image pull. This is helpful to ensure
updated images are used by pods. It also ensures that private images can only be used by
users who have the privileges to access them since users without access cannot pull images
when a new pod is started. This controller should be enabled in your clusters.

EventRateLimit
Denial-of-service attacks are common in infrastructure. Misbehaving objects can also
cause high consumption of resources, such as the CPU or network, resulting in increased
cost or low availability. EventRateLimit is used to prevent these scenarios.

The limit is specified using a config file, which can be specified by adding a
--admission-control-config-file flag to the API server.

A cluster can have four types of limits: Namespace, Server, User and
SourceAndObject. With each limit, the user can have a maximum limit for the
Queries Per Second (QPS), the burst and cache size.

Let's look at an example of a configuration file:

limits:

- type: Namespace

 qps: 50

 burst: 100

 cacheSize: 200

- type: Server

 qps: 10

 burst: 50

 cacheSize: 200

This adds the qps, burst, and cacheSize limits to all API servers and namespaces.

Next, we will talk about LimitRanger, which prevents the overutilization of resources
available in the cluster.

LimitRanger
This admission controller observes the incoming request and ensures that it does not
violate any of the limits specified in the LimitRange object.

122 Authentication, Authorization, and Admission Control

An example of a LimitRange object is as follows:

apiVersion: "v1"

kind: "LimitRange"

metadata:

 name: "pod-example"

spec:

 limits:

 - type: "Pod"

 max:

 memory: "128Mi"

With this limit range object, any pod requesting memory of more than 128 Mi will fail:

pods "range-demo" is forbidden maximum memory usage per Pod is
128Mi, but limit is 1073741824

When using LimitRanger, malicious pods cannot consume excess resources.

NodeRestriction
This admission controller restricts the pods and nodes that a kubelet can modify. With
this admission controller, a kubelet gets a username in the system:node:<name>
format and is only able to modify the node object and pods running on its own node.

PersistentVolumeClaimResize
This admission controller adds validations for the PersistentVolumeClaimResize
requests.

PodSecurityPolicy
This admission controller runs on the creation or modification of pods to determine
whether the pods should be run based on the security-sensitive configuration of the pods.
The set of conditions in the policy is checked against the workload configuration to verify
whether the workload creation request should be allowed. A PodSecurityPolicy can check
for fields such as privileged, allowHostPaths, defaultAddCapabilities,
and so on. You'll learn more about PodSecurityPolicy in the next chapter.

Introduction to OPA 123

SecurityContextDeny
This is the recommended admission controller to use if PodSecurityPolicy is not enabled.
It restricts the settings of security-sensitive fields, which can cause privilege escalation,
such as running a privileged pod or adding Linux capabilities to a container:

$ ps aux | grep api

root 3763 6.7 8.7 497344 345404 ? Ssl 23:28
0:14 kube-apiserver --advertise-address=192.168.99.112 --allow-
privileged=true --authorization-mode=Node,RBAC --client-
ca-file=/var/lib/minikube/certs/ca.crt --enable-admission-
plugins=SecurityContextDeny

It is recommended that PodSecurityPolicy is enabled by default in a cluster. However,
due to the administrative overhead, SecurityContextDeny can be used until
PodSecurityPolicy is configured for the cluster.

ServiceAccount
ServiceAccount is an identity of the pod. This admission controller implements
ServiceAccount; it should be used if the cluster uses service accounts.

MutatingAdmissionWebhook and
ValidatingAdmissionWebhook
Similar to webhook configurations for authentication and authorization, webhooks can
be used as admission controllers. MutatingAdmissionWebhook modifies the workload's
specifications. These hooks execute sequentially. ValidatingAdmissionWebhook parses the
incoming request to verify whether it is correct. Validating hooks execute simultaneously.

Now, we have looked at authentication, authorization, and admission control of resources
in Kubernetes. Let's look at how developers can implement fine-grained access control
in their clusters. In the next section, we talk about OPA, an open source tool that is used
extensively in production clusters.

Introduction to OPA
OPA is an open source policy engine that allows policy enforcement in Kubernetes.
Several open source projects, such as Istio, utilize OPA to provide finer-grained controls.
OPA is an incubating project hosted by Cloud Native Computing Foundation (CNCF).

124 Authentication, Authorization, and Admission Control

OPA is deployed as a service alongside your other services. To make authorization
decisions, the microservice makes a call to OPA to decide whether the request should be
allowed or denied. Authorization decisions are offloaded to OPA, but this enforcement
needs to be implemented by the service itself. In Kubernetes environments, it is often
used as a validating webhook:

Figure 7.2 – Open Policy Agent

To make a policy decision, OPA needs the following:

• Cluster information: The state of the cluster. The objects and resources available
in the cluster are important for OPA to make a decision about whether a request
should be allowed or not.

• Input query: The parameters of the request being parsed by the policy agent are
analyzed by the agent to allow or deny the request.

• Policies: The policy defines the logic that parses cluster information and input
query to return the decision. Policies for OPA are defined in a custom language
called Rego.

Let's look at an example of how OPA can be leveraged to deny the creation of pods with
a busybox image. You can use the official OPA documentation (https://www.
openpolicyagent.org/docs/latest/kubernetes-tutorial/) to install OPA
on your cluster.

Here is the policy that restricts the creation and updating of pods with the busybox image:

$ cat pod-blacklist.rego

package kubernetes.admission

import data.kubernetes.namespaces

https://www.openpolicyagent.org/docs/latest/kubernetes-tutorial/
https://www.openpolicyagent.org/docs/latest/kubernetes-tutorial/

Introduction to OPA 125

operations = {"CREATE", "UPDATE"}

deny[msg] {

 input.request.kind.kind == "Pod"

 operations[input.request.operation]

 image := input.request.object.spec.containers[_].image

 image == "busybox"

 msg := sprintf("image not allowed %q", [image])

}

To apply this policy, you can use the following:

kubectl create configmap pod —from-file=pod-blacklist.rego

Once configmap is created, kube-mgmt loads these policies out of configmap in the
opa container, both kube-mgmt and opa containers are in the opa pod. Now, if you try
to create a pod with the busybox image, you get the following:

$ cat busybox.yaml

apiVersion: v1

kind: Pod

metadata:

 name: busybox

spec:

 containers:

 - name: sec-ctx-demo

 image: busybox

 command: ["sh", "-c", "sleep 1h"]

This policy checks the request for the busybox image name and denies creation of pods
with the busybox image with an image not allowed error:

admission webhook "validating-webhook.openpolicyagent.org"
denied the request: image not allowed "busybox"

Similar to the admission controller that we discussed previously, further finer-grained
admission controllers can be created using OPA in the Kubernetes cluster.

126 Authentication, Authorization, and Admission Control

Summary
In this chapter, we looked at the importance of authentication and authorization in
Kubernetes. We discussed the different modules available for authentication and
authorization and discussed these modules in detail, as well as going through detailed
examples of how each module is used. When looking at authentication, we discussed
user impersonation, which can be used by cluster administrators or developers to test
permissions. Next, we talked about admission controllers, which can be used to validate or
mutate requests after authentication and authorization. We also discussed some admission
controllers in detail. Finally, we looked at OPA, which can be used in Kubernetes clusters
to perform a more fine-grained level of authorization.

Now, you should be able to devise appropriate authentication and authorization strategies
for your cluster. You should be able to figure out which admission controllers work for
your environment. In many cases, you'll need more granular controls for authorization,
which can be provided by using OPA.

In the next chapter, we will take a deep dive into securing pods. The chapter will cover
some of the topics that we covered in this chapter in more detail, such as PodSecurityPolicy.
Securing pods is essential to securing application deployment in Kubernetes.

Questions
1. Which authorization modules should not be used in a cluster?

2. How can cluster administrators test permissions granted to a new user?

3. Which authorization modes are recommended for production clusters?

4. What is the difference between the EventRateLimit and LimitRange
admission controllers?

5. Can you write a Rego policy to deny the creation of ingress with the test.
example endpoint?

Further reading 127

Further reading
You can refer to the following links for more information:

• Admission controllers: https://kubernetes.io/docs/reference/
access-authn-authz/admission-controllers/#what-does-each-
admission-controller-do

• OPA: https://www.openpolicyagent.org/docs/latest/

• Kubernetes RBAC: https://rbac.dev/

• audit2RBAC: https://github.com/liggitt/audit2rbac

• KubiScan: https://github.com/cyberark/KubiScan

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://www.openpolicyagent.org/docs/latest/
https://rbac.dev/
https://github.com/liggitt/audit2rbac
https://github.com/cyberark/KubiScan

8
Securing Kubernetes

Pods
Even though a pod is the most fine-grained unit that serves as a placeholder to run
microservices, securing Kubernetes pods is a vast topic as it should cover the entire
DevOps flow: build, deployment, and runtime.

In this chapter, we choose to narrow our focus to the build and runtime stages. To secure
Kubernetes pods in the build stage, we will talk about how to harden a container image
and configure the security attributes of pods (or pod templates) to reduce the attack
surface. Although some of the security attributes of workloads, such as AppArmor
and SELinux labels, take effect in the runtime stage, security control has already been
defined for the workload. To clarify matters further, we're trying to secure Kubernetes
workloads by configuring the runtime effect security attributes in the build stage. To
secure Kubernetes pods in the runtime stage, we will introduce a PodSecurityPolicy
with examples along with the facilitating tool, kube-psp-advisor.

Later chapters will go into more detail regarding runtime security and response. Also note
that exploitation of the application may lead to pods getting compromised. However, we
don't intend to cover application in this chapter.

130 Securing Kubernetes Pods

In this chapter, we will cover the following topics:

• Hardening container images

• Configuring the security attributes of pods

• The power of PodSecurityPolicy

Hardening container images
Container image hardening means to follow security best practices or baselines to
configure a container image in order to reduce the attack surface. Image scanning tools
only focus on finding publicly disclosed issues in applications bundled inside the image.
But, following the best practices along with secure configuration while building the image
ensures that the application has a minimal attack surface.

Before we start talking about the secure configuration baseline, let's look at what a
container image is, as well as a Dockerfile, and how it is used to build an image.

Container images and Dockerfiles
A container image is a file that bundles the microservice binary, its dependencies, and
configurations of the microservice, and so on. A container is a running instance of an
image. Nowadays, application developers not only write code to build microservices;
they also need to build the Dockerfile to containerize the microservice. To help build
a container image, Docker offers a standardized approach, known as a Dockerfile. A
Dockerfile contains a series of instructions, such as copy files, configure environment
variables, configure open ports, and container entry points, which can be understood
by the Docker daemon to construct the image file. Then, the image file will be pushed
to the image registry from where the image is then deployed in Kubernetes clusters.
Each Dockerfile instruction will create a file layer in the image.

Before we look at an example of a Dockerfile, let's understand some basic Dockerfile
instructions:

• FROM: Initialize a new build stage from the base image or parent image. Both
mean the foundation or the file layer on which you're bundling your own image.

• RUN: Execute commands and commit the results on top of the previous file layer.

• ENV: Set environment variables for the running containers.

• CMD: Specify the default commands that the containers will run.

• COPY/ADD: Both commands copy files or directories from the local (or remote)
URL to the filesystem of the image.

Hardening container images 131

• EXPOSE: Specify the port that the microservice will be listening on during
container runtime.

• ENTRYPOINT: Similar to CMD, the only difference is that ENTRYPOINT makes
a container that will run as an executable.

• WORKDIR: Sets the working directory for the instructions that follow.

• USER: Sets the user and group ID for any CMD/ENTRYPOINT of containers.

Now, let's take a look at an example of a Dockerfile:

FROM ubuntu

install dependencies

RUN apt-get install -y software-properties-common python

RUN add-apt-repository ppa:chris-lea/node.js

RUN echo "deb http://us.archive.ubuntu.com/ubuntu/ precise
universe" >> /etc/apt/sources.list

RUN apt-get update

RUN apt-get install -y nodejs

make directory

RUN mkdir /var/www

copy app.js

ADD app.js /var/www/app.js

set the default command to run

CMD ["/usr/bin/node", "/var/www/app.js"]

From the preceding Dockerfile, we can tell that the image was built on top of ubuntu.
Then, it ran a bunch of apt-get commands to install the dependencies, and created
a directory called /var/www. Next, copy the app.js file from the current directory
to /var/www/app.js in the filesystem of the image. Finally, configure the default
command to run this Node.js application. I believe you will see how straightforward
and powerful Dockerfile is when it comes to helping you build an image.

The next question is any security concern, as it looks like you're able to build any kind of
image. Next, let's talk about CIS Docker benchmarks.

132 Securing Kubernetes Pods

CIS Docker benchmarks
Center for Internet Security (CIS) put together a guideline regarding Docker container
administration and management. Now, let's take a look at the security recommendations
from CIS Docker benchmarks regarding container images:

• Create a user for a container image to run a microservice: It is good practice
to run a container as non-root. Although user namespace mapping is available,
it is not enabled by default. Running as root means that if an attacker were to
successfully escape from the container, they would gain root access to the host.
Use the USER instruction to create a user in the Dockerfile.

• Use trusted base images to build your own image: Images downloaded from
public repositories cannot be fully trusted. It is well known that images from public
repositories may contain malware or crypto miners. Hence, it is recommended that
you build your image from scratch or use minimal trusted images, such as Alpine.
Also, perform the image scan after your image has been built. Image scanning will
be covered in the next chapter.

• Do not install unnecessary packages in your image: Installing unnecessary
packages will increase the attack surface. It is recommended that you keep your
image slim. Occasionally, you will probably need to install some tools during the
process of building an image. Do remember to remove them at the end of the
Dockerfile.

• Scan and rebuild an image in order to apply security patches: It is highly likely
that new vulnerabilities will be discovered in your base image or in the packages
you install in your image. It is good practice to scan your image frequently. Once
you identify any vulnerabilities, try to patch the security fixes by rebuilding the
image. Image scanning is a critical mechanism for identifying vulnerabilities at the
build stage. We will cover image scanning in more detail in the next chapter.

• Enable content trust for Docker: Content trust uses digital signatures to ensure
data integrity between the client and the Docker registry. It ensures the provenance
of the container image. However, it is not enabled by default. You can turn it on by
setting the environment variable, DOCKER_CONTENT_TRUST, to 1.

• Add a HEALTHCHECK instruction to the container image: A HEALTHCHECK
instruction defines a command to ask Docker Engine to check the health status of
the container periodically. Based on the health status check result, Docker Engine
then exits the non-healthy container and initiates a new one.

Configuring the security attributes of pods 133

• Ensure that updates are not cached in Dockerfile: Depending on the base image
you choose, you may need to update the package repository before installing
new packages. However, if you specify RUN apt-get update (Debian) in
a single line in the Dockerfile, Docker Engine will cache this file layer, so, when
you build your image again, it will still use the old package repository information
that is cached. This will prevent you from using the latest packages in your
image. Therefore, either use update along with install in a single Dockerfile
instruction or use the --no-cache flag in the Docker build command.

• Remove setuid and setgid permission from files in the image: setuid and
setgid permissions can be used for privilege escalation as files with such
permissions are allowed to be executed with owners' privileges instead of launchers'
privileges. You should carefully review the files with setuid and setgid
permissions and remove those files that don't require such permissions.

• Use COPY instead of ADD in the Dockerfile: The COPY instruction can only
copy files from the local machine to the filesystem of the image, while the ADD
instruction can not only copy files from the local machine but also retrieve files
from the remote URL to the filesystem of the image. Using ADD may introduce
the risk of adding malicious files from the internet to the image.

• Do not store secrets in the Dockerfile: There are many tools that are able to
extract image file layers. If there are any secrets stored in the image, secrets are
no longer secrets. Storing secrets in the Dockerfile renders containers potentially
exploitable. A common mistake is to use the ENV instruction to store secrets in
environment variables.

• Install verified packages only: This is similar to using the trusted base image only.
Observe caution as regards the packages you are going to install within your image.
Make sure they are from trusted package repositories.

If you follow the security recommendations from the preceding CIS Docker benchmarks,
you will be successful in hardening your container image. This is the first step in securing
pods in the build stage. Now, let's look at the security attributes we need to pay attention
to in order to secure a pod.

Configuring the security attributes of pods
As we mentioned in the previous chapter, application developers should be aware of
what privileges a microservice must have in order to perform tasks. Ideally, application
developers and security engineers work together to harden the microservice at the pod
and container level by configuring the security context provided by Kubernetes.

134 Securing Kubernetes Pods

We classify the major security attributes into four categories:

• Setting host namespaces for pods

• Security context at the container level

• Security context at the pod level

• AppArmor profile

By employing such a means of classification, you will find them easy to manage.

Setting host-level namespaces for pods
The following attributes in the pod specification are used to configure the use of host
namespaces:

• hostPID: By default, this is false. Setting it to true allows the pod to have
visibility on all the processes in the worker node.

• hostNetwork: By default, this is false. Setting it to true allows the pod to have
visibility on all the network stacks in the worker node.

• hostIPC: By default, this is false. Setting it to true allows the pod to have
visibility on all the IPC resources in the worker node.

The following is an example of how to configure the use of host namespaces at the pod
level in an ubuntu-1 pod YAML file:

apiVersion: v1

kind: Pod

metadata:

 name: ubuntu-1

 labels:

 app: util

spec:

 containers:

 - name: ubuntu

 image: ubuntu

 imagePullPolicy: Always

 hostPID: true

 hostNetwork: true

 hostIPC: true

Configuring the security attributes of pods 135

The preceding workload YAML configured the ubuntu-1 pod to use a host-level PID
namespace, network namespace, and IPC namespace. Keep in mind that you shouldn't set
these attributes to true unless necessary. Setting these attributes to true also disarms
the security boundaries of other workloads in the same worker node, as has already been
mentioned in Chapter 5, Configuring Kubernetes Security Boundaries.

Security context for containers
Multiple containers can be grouped together inside the same pod. Each container can
have its own security context, which defines privileges and access controls. The design of
a security context at a container level provides a more fine-grained security control for
Kubernetes workloads. For example, you may have three containers running inside the same
pod and one of them has to run in privileged mode, while the others run in non-privileged
mode. This can be done by configuring a security context for individual containers.

The following are the principal attributes of a security context for containers:

• privileged: By default, this is false. Setting it to true essentially makes the
processes inside the container equivalent to the root user on the worker node.

• capabilities: There is a default set of capabilities granted to the container by the
container runtime. The default capabilities granted are as follows: CAP_SETPCAP,
CAP_MKNOD, CAP_AUDIT_WRITE, CAP_CHOWN, CAP_NET_RAW, CAP_DAC_
OVERRIDE, CAP_FOWNER, CAP_FSETID, CAP_KILL, CAP_SETGID, CAP_
SETUID, CAP_NET_BIND_SERVICE, CAP_SYS_CHROOT, and CAP_SETFCAP.

You may add extra capabilities or drop some of the defaults by configuring this
attribute. Capabilities such as CAP_SYS_ADMIN and CAP_NETWORK_ADMIN
should be added with caution. For the default capabilities, you should also drop
those that are unnecessary.

• allowPrivilegeEscalation: By default, this is true. Setting it directly controls
the no_new_privs flag, which will be set to the processes in the container.
Basically, this attribute controls whether the process can gain more privileges than
its parent process. Note that if the container runs in privileged mode, or has the
CAP_SYS_ADMN capability added, this attribute will be set to true automatically.
It is good practice to set it to false.

• readOnlyRootFilesystem: By default, this is false. Setting it to true makes
the root filesystem of the container read-only, which means that the library files,
configuration files, and so on are read-only and cannot be tampered with. It is a
good security practice to set it to true.

136 Securing Kubernetes Pods

• runAsNonRoot: By default, this is false. Setting it to true enables validation
that the processes in the container cannot run as a root user (UID=0). Validation
is done by kubelet. With runAsNonRoot set to true, kubelet will prevent
the container from starting if run as a root user. It is a good security practice to
set it to true. This attribute is also available in PodSecurityContext, which
takes effect at pod level. If this attribute is set in both SecurityContext and
PodSecurityContext, the value specified at the container level takes precedence.

• runAsUser: This is designed to specify to the UID to run the entrypoint process of
the container image. The default setting is the user specified in the image's metadata
(for example, the USER instruction in the Dockerfile). This attribute is also available
in PodSecurityContext, which takes effect at the pod level. If this attribute is
set in both SecurityContext and PodSecurityContext, the value specified
at the container level takes precedence.

• runAsGroup: Similar to runAsUser, this is designed to specify the Group ID or
GID to run the entrypoint process of the container. This attribute is also available in
PodSecurityContext, which takes effect at the pod level. If this attribute is set
in both SecurityContext and PodSecurityContext, the value specified at
the container level takes precedence.

• seLinuxOptions: This is designed to specify the SELinux context to the container. By
default, the container runtime will assign a random SELinux context to the container
if not specified. This attribute is also available in PodSecurityContex, which
takes effect at the pod level. If this attribute is set in both SecurityContext and
PodSecurityContext, the value specified at the container level takes precedence.

Since you now understand what these security attributes are, you may come up with your
own hardening strategy aligned with your business requirements. In general, the security
best practices are as follows:

• Do not run in privileged mode unless necessary.

• Do not add extra capabilities unless necessary.

• Drop unused default capabilities.

• Run containers as a non-root user.

• Enable a runAsNonRoot check.

• Set the container root filesystem as read-only.

Configuring the security attributes of pods 137

Now, let's take a look at an example of configuring SecurityContext for containers:

apiVersion: v1

kind: Pod

metadata:

 name: nginx-pod

 labels:

 app: web

spec:

 hostNetwork: false

 hostIPC: false

 hostPID: false

 containers:

 - name: nginx

 image: kaizheh/nginx

 securityContext:

 privileged: false

 capabilities:

 add:

 - NETWORK_ADMIN

 readOnlyRootFilesystem: true

 runAsUser: 100

 runAsGroup: 1000

The nginx container inside nginx-pod runs as a user with a UID of 100 and a GID of
1000. In addition to this, the nginx container gains extra NETWORK_ADMIN capability
and the root filesystem is set to read-only. The YAML file here only shows an example
of how to configure the security context. Note that adding NETWORK_ADMIN is not
recommended for containers running in production environments.

Security context for pods
A security context is used at the pod level, which means that security attributes will be
applied to all the containers inside the pod.

138 Securing Kubernetes Pods

The following is a list of the principal security attributes at the pod level:

• fsGroup: This is a special supplemental group applied to all containers. The
effectiveness of this attribute depends on the volume type. Essentially, it allows
kubelet to set the ownership of the mounted volume to the pod with the
supplemental GID.

• sysctls: sysctls is used to configure kernel parameters at runtime. In such a
context, sysctls and kernel parameters are used interchangeably. These sysctls
commands are namespaced kernel parameters that apply to the pod. The following
sysctls commands are known to be namespaced: kernel.shm*, kernel.
msg*, kernel.sem, and kernel.mqueue.*. Unsafe sysctls are disabled
by default and should not be enabled in production environments.

• runAsUser: This is designed to specify the UID to run the entrypoint process of the
container image. The default setting is the user specified in the image's metadata
(for example, the USER instruction in the Dockerfile). This attribute is also available
in SecurityContext, which takes effect at the container level. If this attribute is
set in both SecurityContext and PodSecurityContext, the value specified
at the container level takes precedence.

• runAsGroup: Similar to runAsUser, this is designed to specify the GID to
run the entrypoint process of the container. This attribute is also available in
SecurityContext, which takes effect at the container level. If this attribute is set
in both SecurityContext and PodSecurityContext, the value specified at
the container level takes precedence.

• runAsNonRoot: Set to false by default, setting it to true enables validation
that the processes in the container cannot run as a root user (UID=0). Validation
is done by kubelet. By setting it to true, kubelet will prevent the container
from starting if run as a root user. It is a good security practice to set it to true.
This attribute is also available in SecurityContext, which takes effect at
the container level. If this attribute is set in both SecurityContext and
PodSecurityContext, the value specified at the container level takes precedence.

• seLinuxOptions: This is designed to specify the SELinux context to the container. By
default, the container runtime will assign a random SELinux context to the container
if not specified. This attribute is also available in SecurityContext, which takes
effect at the container level. If this attribute is set in both SecurityContext and
PodSecurityContext, the value specified at the container level takes precedence.

Configuring the security attributes of pods 139

Notice that the attributes runAsUser, runAsGroup, runAsNonRoot, and
seLinuxOptions are available both in SecurityContext at the container level and
PodSecurityContext at the pod level. This gives users both the flexibility and extreme
importance of security control. fsGroup and sysctls are not as commonly used as the
others, so only use them when you have to.

AppArmor profiles
An AppArmor profile usually defines what Linux capabilities the process owns, what
network resources and files can be accessed by the container, and so on. In order to use an
AppArmor profile to protect pods or containers, you will need to update the annotation
of the pod. Let's look at an example, assuming you have an AppArmor profile to block any
file write activities:

#include <tunables/global>

profile k8s-apparmor-example-deny-write flags=(attach_
disconnected) {

 #include <abstractions/base>

 file,

 # Deny all file writes.

 deny /** w,

}

Note that AppArmor is not a Kubernetes object, like a pod, deployment, and so on. It
can't be operated through kubectl. You will have to SSH to each node and load the
AppArmor profile into the kernel so that the pod may be able to use it.

The following is the command for loading the AppArmor profile:

cat /etc/apparmor.d/profile.name | sudo apparmor_parser -a

Then, put the profile into enforce mode:

sudo aa-enforce /etc/apparmor.d/profile.name

140 Securing Kubernetes Pods

Once the AppArmor profile is loaded, you can update the annotation of the pod to use the
AppArmor profile to protect your container. Here is an example of applying an AppArmor
profile to containers:

apiVersion: v1

kind: Pod

metadata:

 name: hello-apparmor

 annotations:

 # Tell Kubernetes to apply the AppArmor profile

 # "k8s-apparmor-example-deny-write".

 container.apparmor.security.beta.kubernetes.io/hello:

 localhost/k8s-apparmor-example-deny-write

spec:

 containers:

 - name: hello

 image: busybox

 command: ["sh", "-c", "echo 'Hello AppArmor!' && sleep 1h"
]

The container inside hello-apparmor does nothing but sleep after echoing the Hello
AppArmor! message. When it is running, if you launch a shell from a container and
write to any file, it will be blocked by AppArmor. Even though writing a robust AppArmor
profile is not easy, you can still create some basic restrictions, such as denying writing to
certain directories, denying accepting raw packets, and making certain files read-only.
Also, test the profile first before applying it to the production cluster. Open source tools
such as bane can help create AppArmor profiles for containers.

We do not intend to dive into the seccomp profile in this book since writing a seccomp
profile for a microservice is not easy. Even an application developer doesn't have knowledge
of what system calls are legitimate for the microservice they developed. Although you
can turn the audit mode on to avoid breaking the microservice's functionality, building a
robust seccomp profile is still a long way off. Another reason is that this feature is still in
the alpha stage up to version 1.17. According to Kubernetes' official documentation, being
alpha means it is disabled by default, perhaps buggy, and only recommended to run in a
short-lived testing cluster. When there are any new updates on seccomp, we may come
back to introduce seccomp in more detail at a later date.

We've covered how to secure Kubernetes pods in the build time. Next, let's look at how
we can secure Kubernetes pods during runtime.

The power of PodSecurityPolicy 141

The power of PodSecurityPolicy
A Kubernetes PodSecurityPolicy is a cluster-level resource that controls security-sensitive
aspects of the pod specification through which the access privileges of a Kubernetes
pod are limited. As a DevOps engineer, you may want to use a PodSecurityPolicy to
restrict most of the workloads run in limited access privileges, while only allowing a
few workloads to be run with extra privileges.

In this section, we will first take a closer look at a PodSecurityPolicy, and then we will
introduce an open source tool, kube-psp-advisor, which can help build an adaptive
PodSecurityPolicy for the running Kubernetes cluster.

Understanding PodSecurityPolicy
You can think of a PodSecurityPolicy as a policy to evaluate the security attributes
defined in the pod's specification. Only those pods whose security attributes meet
the requirements of PodSecurityPolicy will be admitted to the cluster. For example,
PodSecurityPolicy can be used to block the launch of most privileged pods, while
only allowing those necessary or limited pods access to the host filesystem.

The following are the principal security attributes that are controlled by PodSecurityPolicy:

• privileged: Determines whether a pod can run in privileged mode.

• hostPID: Determines whether a pod can use a host PID namespace.

• hostNetwork: Determines whether a pod can use a host network namespace.

• hostIPC: Determines whether a pod can use a host IPC namespace. The default
setting is true.

• allowedCapabilities: Specifies a list of capabilities that could be added to containers.
The default setting is empty.

• defaultAddCapabilities: Specifies a list of capabilities that will be added to
containers by default. The default setting is empty.

• requiredDropCapabilities: Specifies a list of capabilities that will be dropped
from containers. Note that a capability cannot be specified in both the
allowedCapabilities and requiredDropCapabilities fields.
The default setting is empty.

142 Securing Kubernetes Pods

• readOnlyRootFilesystem: When set to true, the PodSecurityPolicy will force
containers to run with a read-only root filesystem. If the attribute is set to false
explicitly in the security context of the container, the pod will be denied from
running. The default setting is false.

• runAsUser: Specifies the allowable user IDs that may be set in the security context
of pods and containers. The default setting allows all.

• runAsGroup: Specifies the allowable group IDs that may be set in the security
context of pods and containers. The default setting allows all.

• allowPrivilegeEscalation: Determines whether a pod can submit a request to allow
privilege escalation. The default setting is true.

• allowedHostPaths: Specifies a list of host paths that could be mounted by the pod.
The default setting allows all.

• volumes: Specifies a list of volume types that can be mounted by the pod. For
example, secret, configmap, and hostpath are the valid volume types.
The default setting allows all.

• seLinux: Specifies the allowable seLinux labels that may be set in the security
context of pods and containers. The default setting allows all.

• allowedUnsafeSysctl: Allows unsafe sysctls to run. The default setting
allows none.

Now, let's take a look at an example of a PodSecurityPolicy:

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: example

spec:

 allowedCapabilities:

 - NET_ADMIN

 - IPC_LOCK

 allowedHostPaths:

 - pathPrefix: /dev

 - pathPrefix: /run

 - pathPrefix: /

The power of PodSecurityPolicy 143

 fsGroup:

 rule: RunAsAny

 hostNetwork: true

 privileged: true

 runAsUser:

 rule: RunAsAny

 seLinux:

 rule: RunAsAny

 supplementalGroups:

 rule: RunAsAny

 volumes:

 - hostPath

 - secret

This PodSecurityPolicy allows the NET_ADMIN and IPC_LOCK capabilities, mounts /,
/dev, and /run from the host and Kubernetes' secret volumes. It doesn't enforce any
filesystem group ID or supplemental groups and it also allows the container to run as any
user, access the host network namespace, and run as a privileged container. No SELinux
policy is enforced in the policy.

To enable this Pod Security Policy, you can run the following command:

$ kubectl apply -f example-psp.yaml

Now, let's verify that the Pod Security Policy has been created successfully:

$ kubectl get psp

The output will appear as follows:

NAME PRIV CAPS SELINUX
RUNASUSER FSGROUP SUPGROUP READONLYROOTFS VOLUMES

example true NET_ADMIN, IPC_LOCK RunAsAny
RunAsAny RunAsAny RunAsAny false
hostPath,secret

144 Securing Kubernetes Pods

After you have created the Pod Security Policy, there is one more step required in order to
enforce it. You will have to grant the privilege of using the PodSecurityPolicy object
to the users, groups, or service accounts. By doing so, the pod security policies are entitled
to evaluate the workloads based on the associated service account. Here is an example of
how to enforce a PodSecurityPolicy. First, you will need to create a cluster role that uses
the PodSecurityPolicy:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: use-example-psp

rules:

- apiGroups: ['policy']

 resources: ['podsecuritypolicies']

 verbs: ['use']

 resourceNames:

 - example

Then, create a RoleBinding or ClusterRoleBinding object to associate the
preceding ClusterRole object created with the service accounts, users, or groups:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: use-example-psp-binding

roleRef:

 kind: ClusterRole

 name: use-example-psp

 apiGroup: rbac.authorization.k8s.io

subjects:

Authorize specific service accounts:

- kind: ServiceAccount

 name: test-sa

 namespace: psp-test

The power of PodSecurityPolicy 145

The preceding use-example-pspbinding.yaml file created a RoleBinding object
to associate the use-example-psp cluster role with the test-sa service account in
the psp-test namespace. With all of these set up, any workloads in the psp-test
namespace whose service account is test-sa will run through the PodSecurityPolicy
example's evaluation. And only those that meet the requirements will be admitted
to the cluster.

From the preceding example, think of there being different types of workloads running
in your Kubernetes cluster, and each of them may require different privileges to access
different types of resources. It would be a challenge to create and manage pod security
policies for different workloads. Now, let's take a look at kube-psp-advisor and see
how it can help create pod security policies for you.

Kubernetes PodSecurityPolicy Advisor
Kubernetes PodSecurityPolicy Advisor (also known as kube-psp-advisor) is an open
source tool from Sysdig. It scans the security attributes of running workloads in the cluster
and then, on this basis, recommends pod security policies for your cluster or workloads.

First, let's install kube-psp-advisor as a kubectl plugin. If you haven't installed
krew, a kubectl plugin management tool, please follow the instructions (https://
github.com/kubernetes-sigs/krew#installation) in order to install it.
Then, install kube-psp-advisor with krew as follows:

$ kubectl krew install advise-psp

Then, you should be able to run the following command to verify the installation:

$ kubectl advise-psp

A way to generate K8s PodSecurityPolicy objects from a live
K8s environment or individual K8s objects containing pod
specifications

Usage:

 kube-psp-advisor [command]

Available Commands:

 convert Generate a PodSecurityPolicy from a single K8s
Yaml file

 help Help about any command

146 Securing Kubernetes Pods

 inspect Inspect a live K8s Environment to generate a
PodSecurityPolicy

Flags:

 -h, --help help for kube-psp-advisor

 --level string Log level (default "info")

To generate pod security policies for workloads in a namespace, you can run the
following command:

$ kubectl advise-psp inspect --grant --namespace psp-test

The preceding command generates pod security policies for workloads running
inside the psp-test namespace. If the workload uses a default service account, no
PodSecurityPolicy will be generated for it. This is because the default service account
will be assigned to the workload that does not have a dedicated service account associated
with it. And you certainly don't want to have a default service account that is able to use
a PodSecurityPolicy for privileged workloads.

Here is an example of output generated by kube-psp-advisor for workloads in the
psp-test namespace, including Role, RoleBinding, and PodSecurityPolicy in a single
YAML file with multiple pod security policies. Let's take a look at one of the recommended
PodSecurityPolicy:

Pod security policies will be created for service account
'sa-1' in namespace 'psp-test' with following workloads:

Kind: ReplicaSet, Name: busy-rs, Image: busybox

Kind: Pod, Name: busy-pod, Image: busybox

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 creationTimestamp: null

 name: psp-for-psp-test-sa-1

spec:

 allowedCapabilities:

 - SYS_ADMIN

 allowedHostPaths:

 - pathPrefix: /usr/bin

 readOnly: true

 fsGroup:

 rule: RunAsAny

The power of PodSecurityPolicy 147

 hostIPC: true

 hostNetwork: true

 hostPID: true

 runAsUser:

 rule: RunAsAny

 seLinux:

 rule: RunAsAny

 supplementalGroups:

 rule: RunAsAny

 volumes:

 - configMap

 - secret

 - hostPath

Following is the Role generated by kube-psp-advisor:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 creationTimestamp: null

 name: use-psp-by-psp-test:sa-1

 namespace: psp-test

rules:

- apiGroups:

 - policy

 resourceNames:

 - psp-for-psp-test-sa-1

 resources:

 - podsecuritypolicies

 verbs:

 - use

Following is the RoleBinding generated by kube-psp-advisor:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

148 Securing Kubernetes Pods

 creationTimestamp: null

 name: use-psp-by-psp-test:sa-1-binding

 namespace: psp-test

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: use-psp-by-psp-test:sa-1

subjects:

- kind: ServiceAccount

 name: sa-1

 namespace: psp-test

The preceding section is the recommended PodSecurityPolicy, psp-for-psp-
test-sa-1, for the busy-rs and busy-pod workloads, since these two workloads
share the same service account, sa-1. Hence, Role and RoleBinding are created
to use the Pod Security Policy, psp-for-psp-test-sa-1, respectively. The
PodSecurityPolicy is generated based on the aggregation of the security attributes of
workloads using the sa-1 service account:

Pod security policies will NOT be created for service account
'default' in namespace 'psp-test' with following workdloads:

Kind: ReplicationController, Name: busy-rc, Image: busybox

The preceding section mentions that the busy-rc workload uses a default service
account, so there is no Pod Security Policy created for it. This is a reminder that if you
want to generate pod security policies for workloads, don't use the default service account.

Building a Kubernetes PodSecurityPolicy is not straightforward, although it would be ideal
if a single restricted PodSecurityPolicy was to apply to the entire cluster and all workloads
complied with it. DevOps engineers need to be creative in order to build restricted pod
security policies while not breaking workloads' functionalities. kube-psp-advisor
makes the implementation of Kubernetes pod security policies simple, adapts to your
application requirements and, specifically, is fine-grained for each one to allow only the
privilege of least access.

Summary 149

Summary
In this chapter, we covered how to harden a container image with CIS Docker
benchmarks, and then we gave a detailed introduction to the security attributes of
Kubernetes workloads. Next, we looked at the PodSecurityPolicy in detail and introduced
the kube-psp-advisor open source tool, which facilitates the establishment of pod
security policies.

Securing Kubernetes workloads is not a one-shot thing. Security controls need to be
applied from the build, deployment, and runtime stages. It starts with hardening container
images, and then configuring security attributes of Kubernetes workloads in a secure
way. This happens at the build stage. It is also important to build adaptive pod security
policies for different Kubernetes workloads. The goal is to restrict most of the workloads
to run with limited privileges, while allowing only a few workloads to run with extra
privileges, and without breaking workload availability. This happens at the runtime stage.
kube-psp-advisor is able to help build adaptive pod security policies.

In the next chapter, we will talk about image scanning. It is critical in helping to secure
Kubernetes workloads in the DevOps workflow.

Questions
1. What does HEALTHCHECK do in a Dockerfile?
2. Why use COPY instead of ADD in a Dockerfile?
3. If your application doesn't listen on any port, which default capabilities can

be dropped?
4. What does the runAsNonRoot attribute control?
5. When you create a PodSecurityPolicy object, what else do you need to do

in order to enforce that Pod Security Policy on workloads?

Further reading
You can refer to the following links for more information on the topics covered in
this chapter:

• To learn more about kube-psp-advisor, please visit the following link:
https://github.com/sysdiglabs/kube-psp-advisor

• To learn more about AppArmor, please visit the following link: https://
gitlab.com/apparmor/apparmor/-/wikis/Documentation

• To learn more about bane, please visit the following link: https://github.
com/genuinetools/bane

https://github.com/sysdiglabs/kube-psp-advisor
https://gitlab.com/apparmor/apparmor/-/wikis/Documentation
https://gitlab.com/apparmor/apparmor/-/wikis/Documentation
https://github.com/genuinetools/bane
https://github.com/genuinetools/bane

9
Image Scanning in
DevOps Pipelines

It is a good practice to find defects and vulnerabilities in the early stages of the
development life cycle. Identifying issues and fixing them in the early stages helps improve
the robustness and stability of an application. It also helps to reduce the attack surface in
the production environment. Securing Kubernetes clusters has to cover the entire DevOps
flow. Similar to hardening container images and restricting powerful security attributes
in the workload manifest, image scanning can help improve the security posture on the
development side. However, image scanning can definitely go beyond that.

In this chapter, first, we will introduce the concept of image scanning and vulnerabilities,
then we'll talk about a popular open source image scanning tool called Anchore Engine
and show you how you can use it to do image scanning. Last but not least, we will show
you how image scanning can be integrated into CI/CD pipelines.

After this chapter, you should be familiar with the concept of image scanning and feel
comfortable using Anchore Engine to scan images. More importantly, you need to start
thinking of a strategy for integrating image scanning into your CI/CD pipeline if you
haven't so far.

152 Image Scanning in DevOps Pipelines

We will cover the following topics in this chapter:

• Introducing container images and vulnerabilities

• Scanning images with Anchore Engine

• Integrating image scanning into the CI/CD pipeline

Introducing container images and
vulnerabilities
Image scanning can be used to identify vulnerabilities or violations of best practices
(depending on the image scanner's capability) inside an image. Vulnerabilities may come
from application libraries or tools inside the image. Before we jump into image scanning,
it would be good to know a little bit more about container images and vulnerabilities.

Container images
A container image is a file that bundles the microservice binary, its dependency,
configurations of the microservice, and so on. Nowadays, application developers not
only write code to build microservices but also need to build an image to containerize an
application. Sometimes application developers may not follow the security best practices to
write code or download libraries from uncertified sources. This means vulnerabilities could
potentially exist in your own application or the dependent packages that your application
relies on. Still, don't forget the base image you use, which might include another set of
vulnerable binaries and packages. So first, let's look at what an image looks like:

$ docker history kaizheh/anchore-cli

IMAGE CREATED CREATED BY
SIZE COMMENT

76b8613d39bc 8 hours ago /bin/sh -c #(nop) COPY
file:92b27c0a57eddb63… 678B

38ea9049199d 10 hours ago /bin/sh -c #(nop) ENV
PATH=/.local/bin/:/us… 0B

525287c1340a 10 hours ago /bin/sh -c pip install
anchorecli 5.74MB

f0cbce9c40f4 10 hours ago /bin/sh -c apt-get
update && apt-get install… 423MB

a2a15febcdf3 7 months ago /bin/sh -c #(nop) CMD
["/bin/bash"] 0B

Introducing container images and vulnerabilities 153

<missing> 7 months ago /bin/sh -c mkdir -p /
run/systemd && echo 'do… 7B

<missing> 7 months ago /bin/sh -c set -xe &&
echo '#!/bin/sh' > /… 745B

<missing> 7 months ago /bin/sh -c [-z "$(apt-
get indextargets)"] 987kB

<missing> 7 months ago /bin/sh -c #(nop) ADD
file:c477cb0e95c56b51e… 63.2MB

The preceding output shows the file layer of the image kaizheh/anchore-cli (show
full commands with the --no-trunc flag). You may notice that each file layer has a
corresponding command that creates it. After each command, a new file layer is created,
which means the content of the image has been updated, layer by layer (basically, Docker
works on copy-on-write), and you can still see the size of each file layer. This is easy
to understand: when you install new packages or add files to the base, the image size
increases. The missing image ID is a known issue because Docker Hub only stores the
digest of the leaf layer and not the intermediate ones in the parent image. However, the
preceding image history does tell how the image was in the Dockerfile, as follows:

FROM ubuntu

RUN apt-get update && apt-get install -y python-pip jq vim

RUN pip install anchorecli

ENV PATH="$HOME/.local/bin/:$PATH"

COPY ./demo.sh /demo.sh

The workings of the preceding Dockerfile are described as follows:

1. To build the kaizheh/anchore-cli image, I chose to build from ubuntu.

2. Then, I installed the packages python-pip, jq, and vim.

3. Next, I installed anchore-cli using pip, which I installed in the previous step.

4. Then I configured the environment variable path.

5. Lastly, I copied a shell script, demo.sh, to the image.

154 Image Scanning in DevOps Pipelines

The following figure shows the image file layers mapped to the Dockerfile instructions:

Figure 9.1 – Dockerfile instructions map to image file layers

You don't have to remember what has been added in each layer. Ultimately, a container
image is a compressed file that contains all the binaries and packages required for your
application. When a container is created from an image, the container runtime extracts
the image and then creates a directory purposely for the extracted content of the image,
then configures chroot, cgroup, Linux namespaces, Linux capabilities, and so on for the
entry point application in the image before launching it.

Now you know the magic done by the container runtime to launch a container from an
image. But you are still not sure whether your image is vulnerable so that it could easily
be hacked. Let's look at what image scanning really does.

Detecting known vulnerabilities
People make mistakes and so do developers. If flaws in an application are exploitable,
those flaws become security vulnerabilities. There are two types of vulnerability—one
is those that have been discovered, while the other type remains unknown. Security
researchers, penetration testers, and others work very hard to look for security
vulnerabilities so that corresponding fixes reduce the potential for compromise. Once
security vulnerabilities have been patched, developers apply patches as updates to the
application. If these updates are not applied on time, there is a risk of the application
getting compromised. It would cause huge damage to companies if these known security
issues were exploited by malicious guys.

Introducing container images and vulnerabilities 155

In this section, we're not going to talk about how to hunt for security vulnerabilities.
Let the security researchers and ethical hackers do their job. Instead, we will talk about
how to discover and manage those known vulnerabilities uncovered by image scanning
tools by performing vulnerability management. In addition, we also need to know how
vulnerabilities are tracked and shared in the community. So, let's talk about CVE and NVD.

Introduction to vulnerability databases
CVE stands for Common Vulnerability and Exposure. When a vulnerability is identified,
there is a unique ID assigned to it with a description and a public reference. Usually, there
is impacted version information inside the description. This is one CVE entry. Every day,
there are hundreds of vulnerabilities that are identified and get a unique CVE ID assigned
by MITRE.

NVD stands for National Vulnerability Database. It synchronizes the CVE list. Once
there is a new update to the CVE list, the new CVE will show up in NVD immediately.
Besides NVD, there are some other vulnerability databases available, such as Synk.

To explain the magic done by an image scanning tool in a simple way: the image scanning
tool extracts the image file, then looks for all the available packages and libraries in the
image and looks up their version within the vulnerability database. If there is any package
whose version matches with any of the CVE's descriptions in the vulnerability database,
the image scanning tool will report that there is a vulnerability in the image. You shouldn't
be surprised if there are vulnerabilities found in a container image. So, what are you going
to do about them? The first thing you need to do is stay calm and don't panic.

Managing vulnerabilities
When you have a vulnerability management strategy, you won't panic. In general, every
vulnerability management strategy will start with understanding the exploitability and
impact of the vulnerability based on the CVE detail. NVD provides a vulnerability scoring
system also known as Common Vulnerability Scoring System (CVSS) to help you better
understand how severe the vulnerability is.

The following information needs to be provided to calculate the vulnerability score based
on your own understanding of the vulnerability:

• Attack vector: Whether the exploit is a network attack, local attack, or physical attack

• Attack complexity: How hard it is to exploit the vulnerability

• Privileges required: Whether the exploit requires any privileges, such as root or
non-root

156 Image Scanning in DevOps Pipelines

• User interaction: Whether the exploit requires any user interaction

• Scopes: Whether the exploit will lead to cross security domain

• Confidentiality impact: How much the exploit impacts the confidentiality of
the software

• Integrity impact: How much the exploit impacts the integrity of the software

• Availability impact: How much the exploit impacts the availability of the software

The CVSS calculator is available at https://nvd.nist.gov/vuln-metrics/
cvss/v3-calculator:

Figure 9.2 – CVSS calculator

Though the input fields in the preceding screenshot only cover the base score metrics,
they serve as fundamental factors that decide how critical the vulnerability is. There are
two other metrics that can be used to evaluate the criticalness of the vulnerability but
we're not going to cover them in this section. According to CVSS (version 3), there are
four ranges of score:

• Low: 0.1-3.9

• Medium: 4-6.9

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

Scanning images with Anchore Engine 157

• High: 7-8.9

• Critical: 9-10

Usually, image scanning tools will provide the CVSS score when they report any
vulnerabilities in an image. There is at least one more step for the vulnerability analysis
before you take any response action. You need to know that the severity of the vulnerability
may be influenced by your own environment as well. Let me give you a few examples:

• The vulnerability is only exploitable in Windows, but the base OS image is
not Windows.

• The vulnerability can be exploited from network access but the processes in the
image only send outbound requests and never accept inbound requests.

The preceding scenarios show good examples that the CVSS score is not the only factor
that matters. You should focus on the vulnerabilities that are both critical and relevant.
However, our recommendation is still to prioritize vulnerabilities wisely and fix them
as soon as possible.

If there is a vulnerability found in an image, it is always better to fix it early. If
vulnerabilities are found in the development stage, then you should have enough time
to respond. If vulnerabilities are found in a running production cluster, you should
patch the images and redeploy as soon as a patch is available. If a patch is not available,
having a mitigation strategy in place prevents compromise of the cluster.

This is why an image scanning tool is critical to your CI/CD pipeline. It's not realistic
to cover vulnerability management in one section, but I think a basic understanding of
vulnerability management will help you make the most use of any image scanning tool.
There are a few popular open source image scanning tools available, such as Anchore,
Clair, Trivvy, and so on. Let's look at one such image scanning tool with examples.

Scanning images with Anchore Engine
Anchore Engine is an open source image scanning tool. It not only analyzes Docker
images but also allows users to define an acceptance image scanning policy. In this
section, we will first give a high-level introduction to Anchore Engine, then we will
show how to deploy Anchore Engine and the basic image scanning use case of Anchore
Engine by using Anchore's own CLI tool, anchore-cli.

158 Image Scanning in DevOps Pipelines

Introduction to Anchore Engine
When an image is submitted to Anchore Engine for analysis, Anchore Engine will first
retrieve the image metadata from image registry, then download the image and queue
the image for analysis. The following are the items that Anchore Engine will analyze:

• Image metadata

• Image layers

• Operating system packages such as deb, rpm, apkg, and so on

• File data

• Application dependency packages:

 - Ruby gems

 - Node.js NPMs

 - Java archives

 - Python packages
• File content

To deploy Anchore Engine in a Kubernetes cluster with Helm—CNCF project which is
a package manage tool for the Kubernetes cluster, run the following command:

$ helm install anchore-demo stable/anchore-engine

Anchore Engine is composed of a few microservices. When deployed in a Kubernetes
cluster, you will find the following workloads are running:

$ kubectl get deploy

NAME READY UP-TO-DATE
AVAILABLE AGE

anchore-demo-anchore-engine-analyzer 1/1 1
1 3m37s

anchore-demo-anchore-engine-api 1/1 1
1 3m37s

anchore-demo-anchore-engine-catalog 1/1 1
1 3m37s

anchore-demo-anchore-engine-policy 1/1 1
1 3m37s

Scanning images with Anchore Engine 159

anchore-demo-anchore-engine-simplequeue 1/1 1
1 3m37s

anchore-demo-postgresql 1/1 1
1 3m37s

Anchore Engine decouples image scanning services into the microservices shown in the
preceding log:

• API: Accepts the image scan request

• Catalog: Maintains the states of the image scan job

• Policy: Loads image analysis results and performs policy evaluation

• Analyzer: Pulls images from image registry and performs analysis

• Simplequeue: Queues image scanning tasks

• PostgreSQL: Stores image analysis results and state

Now Anchore Engine is successfully deployed in a Kubernetes cluster, let's see how we can
do image scanning with anchore-cli.

Scanning images with anchore-cli
Anchore Engine supports access both from the RESTful API and anchore-cli.
anchore-cli is handy to use in an iterative way. anchore-cli does not need to
run in a Kubernetes cluster. You need to configure the following environment variables
to enable CLI access to Anchore Engine:

• ANCHORE_CLI_URL: Anchore Engine API endpoint

• ANCHORE_CLI_USER: Username to access Anchore Engine

• ANCHORE_CLI_PASS: Password to access Anchore Engine

Once you've configured the environment variables successfully, you can verify the
connectivity to Anchore Engine with the following command:

root@anchore-cli:/# anchore-cli system status

And the output should be like the following:

Service analyzer (anchore-demo-anchore-engine-analyzer-
5fd777cfb5-jtqp2, http://anchore-demo-anchore-engine-
analyzer:8084): up

160 Image Scanning in DevOps Pipelines

Service apiext (anchore-demo-anchore-engine-api-6dd475cf-n24xb,
http://anchore-demo-anchore-engine-api:8228): up

Service policy_engine (anchore-demo-anchore-engine-policy-
7b8f68fbc-q2dm2, http://anchore-demo-anchore-engine-
policy:8087): up

Service simplequeue (anchore-demo-anchore-engine-simplequeue-
6d4567c7f4-7sll5, http://anchore-demo-anchore-engine-
simplequeue:8083): up

Service catalog (anchore-demo-anchore-engine-catalog-949bc68c9-
np2pc, http://anchore-demo-anchore-engine-catalog:8082): up

Engine DB Version: 0.0.12

Engine Code Version: 0.6.1

anchore-cli is able to talk to Anchore Engine in a Kubernetes cluster. Now let's scan
an image with the following command:

root@anchore-cli:/# anchore-cli image add kaizheh/nginx-docker

And the output should be like the following:

Image Digest:
sha256:416b695b09a79995b3f25501bf0c9b9620e82984132060bf7d66d877
6c1554b7

Parent Digest:
sha256:416b695b09a79995b3f25501bf0c9b9620e82984132060bf7d66d877
6c1554b7

Analysis Status: analyzed

Image Type: docker

Analyzed At: 2020-03-22T05:48:14Z

Image ID:
bcf644d78ccd89f36f5cce91d205643a47c8a5277742c5b311c9d9
6699a3af82

Dockerfile Mode: Guessed

Distro: debian

Distro Version: 10

Size: 1172316160

Scanning images with Anchore Engine 161

Architecture: amd64

Layer Count: 16

Full Tag: docker.io/kaizheh/nginx-docker:latest

Tag Detected At: 2020-03-22T05:44:38Z

You will get the image digest, full tag, and more from the image. It may take some time for
Anchore Engine to analyze the image depending on the image size. Once it is analyzed,
you will see the Analysis Status field has been updated to analyzed. Use the
following command to check the image scanning status:

root@anchore-cli:/# anchore-cli image get kaizheh/nginx-docker

And the output should be like the following:

Image Digest:
sha256:416b695b09a79995b3f25501bf0c9b9620e82984132060bf7d66d877
6c1554b7

Parent Digest:
sha256:416b695b09a79995b3f25501bf0c9b9620e82984132060bf7d66d877
6c1554b7

Analysis Status: analyzed

Image Type: docker

Analyzed At: 2020-03-22T05:48:14Z

Image ID:
bcf644d78ccd89f36f5cce91d205643a47c8a5277742c5b311c9d96699a3a
f82

Dockerfile Mode: Guessed

Distro: debian

Distro Version: 10

Size: 1172316160

Architecture: amd64

Layer Count: 16

Full Tag: docker.io/kaizheh/nginx-docker:latest

Tag Detected At: 2020-03-22T05:44:38Z

162 Image Scanning in DevOps Pipelines

We briefly mentioned Anchore Engine policies earlier; Anchore Engine policies allow you
to define rules to handle vulnerabilities differently based on their severity. In the default
Anchore Engine policy, you will find the following rules in the default policy with two
rules. The first rule is as follows:

{

 "action": "WARN",

 "gate": "vulnerabilities",

 "id": "6063fdde-b1c5-46af-973a-915739451ac4",

 "params": [{

 "name": "package_type",

 "value": "all"

 },

 {

 "name": "severity_comparison",

 "value": "="

 },

 {

 "name": "severity",

 "value": "medium"

 }

],

 "trigger": "package"

},

The first rule defines that any package that has medium-level vulnerability will still set the
policy evaluation result to pass. The second rule is as follows:

 {

 "action": "STOP",

 "gate": "vulnerabilities",

 "id": "b30e8abc-444f-45b1-8a37-55be1b8c8bb5",

 "params": [{

 "name": "package_type",

 "value": "all"

 },

 {

Scanning images with Anchore Engine 163

 "name": "severity_comparison",

 "value": ">"

 },

 {

 "name": "severity",

 "value": "medium"

 }

],

 "trigger": "package"

 },

The second rule defines that any package that has high or critical vulnerability will set the
policy evaluation result to fail. After the image is analyzed, use the following command
to check with the policy:

root@anchore-cli:/# anchore-cli --json evaluate check
sha256:416b695b09a79995b3f25501bf0c9b9620e82984132060bf7d66d877
6c1554b7 --tag docker.io/kaizheh/nginx-docker:latest

And the output should be like the following:

[

 {

 "sha256:416b695b09a79995b3f25501bf0c9b9620e82984132060
bf7d66d8776c1554b7": {

 "docker.io/kaizheh/nginx-docker:latest": [

 {

 "detail": {},

 "last_evaluation": "2020-03-22T06:19:44Z",

 "policyId": "2c53a13c-1765-11e8-82ef-235277
61d060",

 "status": "fail"

 }

]

 }

 }

]

164 Image Scanning in DevOps Pipelines

So the image docker.io/kaizheh/nginx-docker:latest failed the default
policy evaluation. This means that there must be some vulnerabilities at a high or critical
level. Use the following command to list all the vulnerabilities in the image:

root@anchore-cli:/# anchore-cli image vuln docker.io/kaizheh/
nginx-docker:latest all

And the output should be like the following:

Vulnerability ID Package
Severity Fix CVE Refs
Vulnerability URL

CVE-2019-9636 Python-2.7.16
Critical None CVE-2019-
9636 https://nvd.nist.gov/vuln/detail/CVE-2019-9636

CVE-2020-7598 minimist-0.0.8
Critical None CVE-2020-
7598 https://nvd.nist.gov/vuln/detail/CVE-2020-7598

CVE-2020-7598 minimist-1.2.0
Critical None CVE-2020-
7598 https://nvd.nist.gov/vuln/detail/CVE-2020-7598

CVE-2020-8116 dot-prop-4.2.0
Critical None CVE-2020-
8116 https://nvd.nist.gov/vuln/detail/CVE-2020-8116

CVE-2013-1753 Python-2.7.16
High None CVE-2013-
1753 https://nvd.nist.gov/vuln/detail/CVE-2013-1753

CVE-2015-5652 Python-2.7.16
High None CVE-2015-
5652 https://nvd.nist.gov/vuln/detail/CVE-2015-5652

CVE-2019-13404 Python-2.7.16
High None CVE-2019-
13404 https://nvd.nist.gov/vuln/detail/CVE-2019-13404

CVE-2016-8660 linux-compiler-gcc-8-x86-
4.19.67-2+deb10u1 Low None
CVE-2016-8660 https://security-tracker.debian.org/
tracker/CVE-2016-8660

CVE-2016-8660 linux-headers-4.19.0-6-amd64-
4.19.67-2+deb10u1 Low None
CVE-2016-8660 https://security-tracker.debian.org/
tracker/CVE-2016-8660

Integrating image scanning into the CI/CD pipeline 165

The preceding list shows all the vulnerabilities in the image with information including
CVE ID, package name, severity, whether a fix is available, and references. Anchore
Engine policies essentially help you filter out less severe vulnerabilities so that you can
focus on the more severe ones. Then you can start engaging with the security team for
vulnerability analysis.

Note
Sometimes, if a fix is not available for a high-level or critical-level vulnerability
in a package or library, you should find an alternative instead of continuing to
use the vulnerable one.

In the next section, we are going to talk about how to integrate image scanning into the
CI/CD pipeline.

Integrating image scanning into the CI/CD
pipeline
Image scanning can be triggered at multiple stages in the DevOps pipeline and we've
already talked about the advantages of scanning an image in an early stage of the pipeline.
However, new vulnerabilities will be discovered, and your vulnerability database should
be updated constantly. This indicates that passing an image scan in the build stage doesn't
mean it will pass at the runtime stage if there is a new critical vulnerability found that also
exists in the image. You should stop the workload deployment when it happens and apply
mitigation strategies accordingly. Before we dive into integration, let's look at a rough
definition of the DevOps stages that are applicable for image scanning:

• Build: When the image is built in the CI/CD pipeline

• Deployment: When the image is about to be deployed in a Kubernetes cluster

• Runtime: After the image is deployed to a Kubernetes cluster and the containers
are up and running

Though there are many different CI/CD pipelines and many different image scanning
tools for you to choose from, the notion is that integrating image scanning into the
CI/CD pipeline secures Kubernetes workloads as well as Kubernetes clusters.

166 Image Scanning in DevOps Pipelines

Scanning at the build stage
There are so many CI/CD tools, such as Jenkins, Spinnaker, and Screwdriver, for you
to use. In this section, we're going to show how image scanning can be integrated into
a GitHub workflow. A workflow in GitHub is a configurable automated process that
contains multiple jobs. It is a similar concept to the Jenkins pipeline but defined in
YAML format. A simple workflow with image scanning is like defining a trigger. Usually
done when a pull request or commit is pushed, setting up the build environment,
for example, Ubuntu.

Then define the steps in the workflow:

1. Check out the PR branch.

2. Build the image from the branch.

3. Push the image to the registry – this is optional. You should be able to launch the
image scanner to scan the image when the image is built locally.

4. Scan the newly built or pushed image.

5. Fail the workflow if policy violations occur.

The following is a sample workflow defined in GitHub:

name: CI

...

 build:

 runs-on: ubuntu-latest

 steps:

 # Checks-out your repository under $GITHUB_WORKSPACE, so
your job can access it

 - uses: actions/checkout@v2

 # Runs a set of commands using the runners shell

 - name: Build and Push

 env:

 DOCKER_SECRET: ${{ secrets.DOCKER_SECRET }}

 run: |

 cd master/chapter9 && echo "Build Docker Image"

 docker login -u kaizheh -p ${DOCKER_SECRET}

Integrating image scanning into the CI/CD pipeline 167

 docker build -t kaizheh/anchore-cli . && docker push
kaizheh/anchore-cli

 - name: Scan

 env:

 ANCHORE_CLI_URL: ${{ secrets.ANCHORE_CLI_URL }}

 ANCHORE_CLI_USER: ${{ secrets.ANCHORE_CLI_USER }}

 ANCHORE_CLI_PASS: ${{ secrets.ANCHORE_CLI_PASS }}

 run: |

 pip install anchorecli # install anchore-cli

 export PATH="$HOME/.local/bin/:$PATH"

 img="kaizheh/anchore-cli"

 anchore-cli image add $img # add image

 sha=$(anchore-cli --json --api-version=0.2.4 image
get $img | jq .[0].imageDigest -r) # get sha
value

 anchore-cli image wait $img # wait for image
analyzed

 anchore-cli --json evaluate check $sha --tag $img #
evaluate

 - name: Post Scan

 run: |

 # Slack to notify developers scan result or invite new
reviewer if failed

 exit 1 # purposely ends here

In the first step of the build pipeline, I used the checkout GitHub action to check out
the branch. A GitHub action to a workflow is like a function to a programming language.
It encapsulates the details you don't need to know but performs tasks for you. It may take
input parameters and return results. In the second step, we ran a few commands to build
the image kaizheh/anchore-cli and push the image to the registry. In the third step,
we used anchore-cli to scan the image (yes, we use Anchore Engine to scan our own
anchore-cli image).

168 Image Scanning in DevOps Pipelines

Note that I configured the GitHub secrets to store sensitive information such as the
Docker Hub access token, Anchore username, and password. In the last step, we failed
purposely for demo purposes. But usually, the last step comes with a notification and
response to the image scanning result as the comments suggest. And you will find the
result details of the workflow in GitHub, as follows:

Figure 9.3 – GitHub image scanning workflow

The preceding screenshot shows the status of each step in the workflow, and you will find
the detail of each step when you click into it. Anchore also offers an image scan GitHub
action called Anchore Container Scan. It launches the Anchore Engine scanner on
the newly built image and returns the vulnerabilities, manifests, and a pass/fail policy
evaluation that can be used to fail the build if desired.

Scanning at the deployment stage
Though deployment is a seamless process, I want to bring it up in a separate section about
conducting image scanning at the deployment stage for two reasons:

• New vulnerabilities may be found when you deploy applications to a Kubernetes
cluster, even though they passed the image scanning check when they were built. It
is better to block them before you find the vulnerabilities when they are running in
a Kubernetes cluster.

• Image scanning can be part of the validation admission process in Kubernetes.

Integrating image scanning into the CI/CD pipeline 169

We've already introduced the concept of ValidatingAdmissionWebhook in
Chapter 7, Authentication, Authorization, and Admission Control. Now, let's see how image
scanning can help validate the workload by scanning its images before the workload is
admitted to run in the Kubernetes cluster. Image scanning admission controller is an
open source project from Sysdig. It scans images from the workload that is about to be
deployed. If an image fails the image scanning policy, the workload will be rejected. The
following is the workflow diagram:

Figure 9.4 – Image scanning admission workflow

The preceding diagram shows the workload admission process validated based on
image scanning:

1. There is a workload creation request sent to kube-apiserver.

2. kube-apiserver forwards the request to the registered validating webhook
server based on the validating webhook configurations.

3. The validating webhook server extracts image information from the workload's
specification and sends it to the Anchore Engine API server.

4. Based on the image scanning policy, Anchore Engine will return the policy
evaluation result as a validation decision back to the server.

5. The validating webhook server forwards the validation decision to
kube-apiserver.

6. kube-apiserver either admits or rejects the workload based on the validation
decision from the image scan policy evaluation result.

To deploy the image scanning admission controller, first check out the GitHub repository
(https://github.com/sysdiglabs/image-scanning-admission-
controller) and then run the following command:

$ make deploy

https://github.com/sysdiglabs/image-scanning-admission-controller
https://github.com/sysdiglabs/image-scanning-admission-controller

170 Image Scanning in DevOps Pipelines

And you should find the webhook servers and services are created:

NAME READY
STATUS RESTARTS AGE

pod/image-scan-k8s-webhook-controller-manager-0 1/1
Running 1 16s

NAME
TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/image-scan-k8s-webhook-controller-manager-service
ClusterIP 100.69.225.172 <none> 443/TCP 16s

service/webhook-server-service
ClusterIP 100.68.111.117 <none> 443/TCP 8s

NAME
READY AGE

statefulset.apps/image-scan-k8s-webhook-controller-manager
1/1 16s

Besides the webhook server deployment, the script also creates a
ValidatingWebhookConfiguration object to register the image scan admission
webhook server, which is defined in generic-validatingewebhookconfig.yaml
to the kube-apiserver:

apiVersion: admissionregistration.k8s.io/v1beta1

kind: ValidatingWebhookConfiguration

metadata:

 name: validating-webhook-configuration

webhooks:

- name: validating-create-pods.k8s.io

 clientConfig:

 service:

 namespace: image-scan-k8s-webhook-system

 name: webhook-server-service

 path: /validating-create-pods

 caBundle: {{CA_BUNDLE}}

 rules:

 - operations:

 - CREATE

Integrating image scanning into the CI/CD pipeline 171

 apiGroups:

 - ""

 apiVersions:

 - "v1"

 resources:

 - pods

 failurePolicy: Fail

The validating webhook configuration object basically tells kube-apiserver to forward
any pod creation request to webhook-server-service in the image-scan-
webhook-system namespace using the /validating-create-pod URL path.

You can use the test cases provided by image scanning admission controller to verify your
setup as follows:

$ make test

In the test, three different pods will be deployed in the Kubernetes cluster. One of them
has a critical vulnerability that violates the image scanning policy. So, the workload with
the critical vulnerability is rejected as follows:

+ kubectl run --image=bitnami/nginx --restart=Never nginx

pod/nginx created

+ kubectl run --image=kaizheh/apache-struts2-cve-2017-5638
--restart=Never apache-struts2

Error from server (Image failed policy check: kaizheh/apache-
struts2-cve-2017-5638): admission webhook "validating-create-
pods.k8s.io" denied the request: Image failed policy check:
kaizheh/apache-struts2-cve-2017-5638

+ kubectl run --image=alpine:3.2 --restart=Never alpine

pod/alpine created

The preceding output shows that the workload with image kaizheh/apache-
struts2-cve-2017-5638 is rejected. The image runs the Apache Struts 2 service,
which contains a critical vulnerability with a CVSS score of 10 (https://nvd.nist.
gov/vuln/detail/CVE-2017-5638). Though the CVE in the test is old, you should
be able to discover it at an earlier stage. However, new vulnerabilities will be found, and
the vulnerability database keeps updating. It's critical to set a gatekeeper for any workload
that is going to be deployed in a Kubernetes cluster. Image scanning as validating
admission is a good security practice for Kubernetes deployment. Now, let's talk about
image scanning at the runtime stage in a Kubernetes cluster.

https://nvd.nist.gov/vuln/detail/CVE-2017-5638
https://nvd.nist.gov/vuln/detail/CVE-2017-5638

172 Image Scanning in DevOps Pipelines

Scanning at the runtime stage
Good job! The workload's image passed the image scanning policy evaluation in the build
and deployment stages. But it still doesn't mean the image is vulnerability free. Remember,
new vulnerabilities will be discovered. Usually, the vulnerability database that the image
scanner uses will update every few hours. Once the vulnerability database is updated,
you should trigger the image scanner to scan images that are actively running in the
Kubernetes cluster. There are a couple of ways to do it:

• Scan images pulled on each worker node directly. To scan images on the
worker nodes, you can use tools such as secure-inline-scan from Sysdig
(https://github.com/sysdiglabs/secure-inline-scan).

• Scan images in the registry regularly, directly after the vulnerability database
has been updated.

Again, once you identify impactful vulnerabilities in the images in use, you should patch
vulnerable images and redeploy them to reduce the attack surface.

Summary
In this chapter, we first briefly talked about container images and vulnerabilities. Then we
introduced an open source image scanning tool, Anchore Engine, and showed how to use
anchore-cli to do image scanning. Last but not least, we talked about how to integrate
image scanning into a CI/CD pipeline at three different stages: build, deployment, and
runtime. Image scanning showed great value in securing the DevOps flow. A secure
Kubernetes cluster requires securing the entire DevOps flow.

You should now feel comfortable deploying Anchore Engine and using anchore-cli
to trigger image scanning. Once you find any vulnerabilities in an image, filter them out
by using an Anchore Engine policy and understand their real impact. I know it's going to
take time, but it is necessary and awesome to set up image scanning as gatekeepers in your
CI/CD pipeline. By doing so, you'll make your Kubernetes cluster more secure.

In the next chapter, we will talk about resource management and real-time monitoring in
a Kubernetes cluster.

https://github.com/sysdiglabs/secure-inline-scan

Questions 173

Questions
Let's use some questions to help you understand this chapter better:

1. Which Docker command can be used to list image file layers?

2. According to the CVSS3 standard, what vulnerability score range is considered high?

3. What is the anchore-cli command to start scanning an image?

4. What is the anchore-cli command to list an image's vulnerabilities?

5. What is the anchore-cli command to evaluate an image with an Anchore
Engine policy?

6. Why is it so important to integrate image scanning into CI/CD pipelines?

Further references
• To learn more about Anchore Engine, read: https://docs.anchore.com/

current/docs/engine/general/

• To learn more about the Anchore scan action: https://github.com/
marketplace/actions/anchore-container-scan

• To learn more about Sysdig's image scanning admission controller: https://
github.com/sysdiglabs/image-scanning-admission-controller

• To learn more about GitHub actions: https://help.github.com/en/
actions

https://docs.anchore.com/current/docs/engine/general/
https://docs.anchore.com/current/docs/engine/general/
https://github.com/marketplace/actions/anchore-container-scan
https://github.com/marketplace/actions/anchore-container-scan
https://github.com/sysdiglabs/image-scanning-admission-controller
https://github.com/sysdiglabs/image-scanning-admission-controller
https://help.github.com/en/actions
https://help.github.com/en/actions

10
Real-Time

Monitoring
and Resource

Management of a
Kubernetes Cluster

The availability of services is one of the critical components of the Confidentiality,
Integrity and Availability (CIA) triad. There have been many instances of malicious
attackers using different techniques to disrupt the availability of services for users. Some of
these attacks on critical infrastructure such as the electricity grid and banks have resulted
in significant losses to the economy. One of the most significant attacks was an attack on
Amazon AWS Route 53 infrastructure that resulted in the disruption of core IT services
all over the world. To avoid such issues, infrastructure engineers monitor resource usage
and application health in real time to ensure the availability of services offered by an
organization. Real-time monitoring is often plugged into an alert system that notifies
the stakeholders when symptoms of service disruption are observed.

176 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

In this chapter, we will look at how you can ensure that services in the Kubernetes
cluster are always up and running. We will begin by discussing monitoring and resource
management in monolith environments. Next, we will discuss resource requests and
resource limits, two concepts at the heart of resource management in Kubernetes. We
will then look at tools such as LimitRanger, which Kubernetes provides for resource
management, before shifting our focus to resource monitoring. We will look at built-in
monitors, such as Kubernetes Dashboard and Metrics Server. Finally, we will look at open
source tools, such as Prometheus and Grafana, that can be used to monitor the state of a
Kubernetes cluster.

In this chapter, we will discuss the following:

• Real-time monitoring and management in monolith environments

• Managing resources in Kubernetes

• Monitoring resources in Kubernetes

Real-time monitoring and management in
monolith environments
Resource management and monitoring are important in monolith environments as well.
In monolith environments, infrastructure engineers often pipe the output of Linux tools
such as top, ntop, and htop to data visualization tools in order to monitor the state of
VMs. In managed environments, built-in tools such as Amazon CloudWatch and Azure
Resource Manager help to monitor resource usage.

In addition to resource monitoring, infrastructure engineers proactively allocate minimum
resource requirements and usage limits for processes and other entities. This ensures that
sufficient resources are available to services. Furthermore, resource management ensures
that misbehaving or malicious processes do not hog resources and prevent other processes
from working. For monolith deployments, resources such as CPU, memory, and spawned
processes are capped for different processes. On Linux, process limits can be capped
using prlimit:

$prlimit --nproc=2 --pid=18065

This command sets the limit of child processes that a parent process can spawn to 2. With
this limit set, if a process with a PID of 18065 tries to spawn more than 2 child processes,
it will be denied.

Managing resources in Kubernetes 177

Similar to monolith environments, a Kubernetes cluster runs multiple pods, deployments,
and services. If an attacker is able to spawn up Kubernetes objects such as pods or
deployments, the attacker can cause a denial-of-service attack by depleting resources
available in the Kubernetes cluster. Without adequate resource monitoring and resource
management in place, unavailability of the services running in the cluster can cause an
economic impact to the organization.

Managing resources in Kubernetes
Kubernetes provides the ability to proactively allocate and limit resources available to
Kubernetes objects. In this section, we will discuss resource requests and limits, which
form the basis for resource management in Kubernetes. Next, we explore namespace
resource quotas and limit ranges. Using these two feature, clusters, administrators can
cap the compute and storage limits available to different Kubernetes objects.

Resource requests and limits
kube-scheduler, as we discussed in Chapter 1, Kubernetes Architecture, is the default
scheduler and runs on the master node. kube-scheduler finds the most optimal
node for the unscheduled pods to run on. It does that by filtering the nodes based on the
storage and compute resources requested for the pod. If the scheduler is not able to find a
node for the pod, the pod will remain in a pending state. Additionally, if all the resources
of the node are being utilized by the pods, kubelet on the node will clean up dead pods
– unused images. If the cleanup does not reduce the stress, kubelet will start evicting
those pods that consume more resources.

Resource requests specify what a Kubernetes object is guaranteed to get. Different
Kubernetes variations or cloud providers have different defaults for resource requests.
Custom resource requests for Kubernetes objects can be specified in the workload's
specifications. Resource requests can be specified for CPU, memory, and HugePages.
Let's look at an example of resource requests.

Let's create a pod without a resource request in the yaml specification, as follows:

apiVersion: v1

kind: Pod

metadata:

 name: demo

spec:

 containers:

 - name: demo

178 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

The pod will use the default resource request for deployment:

$kubectl get pod demo —output=yaml

apiVersion: v1

kind: Pod

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"v1","kind":"Pod","metadata":{"annotations"
:{},"name":"demo","namespace":"default"},"spec":{"containers":
[{"image":"nginx","name":"demo"}]}}

 kubernetes.io/limit-ranger: 'LimitRanger plugin set: cpu
request for container

 demo'

 creationTimestamp: "2020-05-07T21:54:47Z"

 name: demo

 namespace: default

 resourceVersion: "3455"

 selfLink: /api/v1/namespaces/default/pods/demo

 uid: 5e783495-90ad-11ea-ae75-42010a800074

spec:

 containers:

 - image: nginx

 imagePullPolicy: Always

 name: demo

 resources:

 requests:

 cpu: 100m

For the preceding example, the default resource request is for 0.1 CPU cores for the pod.
Let's now add a resource request to the .yaml specification and see what happens:

apiVersion: v1

kind: Pod

metadata:

 name: demo

spec:

Managing resources in Kubernetes 179

 containers:

 - name: demo

 image: nginx

 resources:

 limits:

 hugepages-2Mi: 100Mi

 requests:

 cpu: 500m
 memory: 300Mi
 hugepages-2Mi: 100Mi

This specification creates a pod with a resource request of 0.5 CPU cores, 300 MB, and
hugepages-2Mi of 100 MB. You can check the resource request for a pod using the
following command:

$kubectl get pod demo —output=yaml

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: "2020-05-07T22:02:16Z"

 name: demo-1

 namespace: default

 resourceVersion: "5030"

 selfLink: /api/v1/namespaces/default/pods/demo-1

 uid: 6a276dd2-90ae-11ea-ae75-42010a800074

spec:

 containers:

 - image: nginx

 imagePullPolicy: Always

 name: demo

 resources:

 limits:

 hugepages-2Mi: 100Mi

 requests:

 cpu: 500m

 hugepages-2Mi: 100Mi

 memory: 300Mi

180 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

As you can see from the output, the pod uses a custom resource request of 0.5 CPU cores,
300 MB of memory, and 100 MB of 2 MB hugepages, instead of the default 1 MB.

Limits, on the other hand, are hard limits on the resources that the pod can use. Limits
specify the maximum resources that a pod should be allowed to use. Pods are restricted if
more resources are required than are specified in the limit. Similar to resource requests,
you can specify limits for CPU, memory, and HugePages. Let's look at an example of limits:

$ cat stress.yaml

apiVersion: v1

kind: Pod

metadata:

 name: demo

spec:

 containers:

 - name: demo

 image: polinux/stress

 command: ["stress"]

 args: ["--vm", "1", "--vm-bytes", "150M", "--vm-hang", "1"]

This pod initiates a stress process that tries to allocate memory of 150M at startup. If no
limits are specified in the .yaml specification, the pod runs without any issues:

$ kubectl create -f stress.yaml
pod/demo created

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
demo 1/1 Running 0 3h

Limits are added to the container section of the yaml specification for the pod:

containers:

 - name: demo

 image: polinux/stress

 resources:

 limits:

 memory: "150Mi"

 command: ["stress"]

args: ["--vm", "1", "--vm-bytes", "150M", "--vm-hang", "1"]

Managing resources in Kubernetes 181

The stress process fails to run and the pod runs into CrashLoopBackOff:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

demo 1/1 Running 0 44s

demo-1 0/1 CrashLoopBackOff 1 5s

You can see that the pod was terminated with an OOMKilled error when you described
the pod:

$ kubectl describe pods demo

Name: demo

Namespace: default

...

Containers:

 demo:

 Container ID: docker://a43de56a456342f7d53fa9752aa4fa7366
cd4b8c395b658d1fc607f2703750c2

 Image: polinux/stress

 Image ID: docker-pullable://polinux/stress@sha256:b61
44f84f9c15dac80deb48d3a646b55c7043ab1d83ea0a697c09097aaad21aa

...

 Command:

 stress

 Args:

 --vm

 1

 --vm-bytes

 150M

 --vm-hang

 1

 State: Waiting

 Reason: CrashLoopBackOff

 Last State: Terminated

 Reason: OOMKilled

 Exit Code: 1

 Started: Mon, 04 May 2020 10:48:14 -0700

 Finished: Mon, 04 May 2020 10:48:14 -0700

182 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

Resource requests and limits are converted, mapped to docker arguments
– —cpu-shares and —memory flags – and passed to the container runtime.

We looked at examples of how resource requests and limits work for pods, but the same
examples apply to DaemonSet, Deployments, and StatefulSets. Next, we look at how
namespace resource quotas can help set an upper limit for the resources that can be
used by namespaces.

Namespace resource quotas
Resource quotas for namespaces help define the resource requests and limits available to
all objects within the namespace. Using resource quotas, you can limit the following:

• request.cpu: The maximum resource request for CPU for all objects in the
namespace.

• request.memory: The maximum resource request for memory for all objects in
the namespace.

• limit.cpu: The maximum resource limit for CPU for all objects in the namespace.

• limit.memory: The maximum resource limit for memory for all objects in
the namespace.

• requests.storage: The sum of storage requests in a namespace cannot exceed
this value.

• count: Resource quotas can also be used to limit the count of different
Kubernetes objects in a cluster, including pods, services, PersistentVolumeClaims,
and ConfigMaps.

By default, cloud providers or different variations have standard limits applied to
the namespace. On Google Kubernetes Engine (GKE), the cpu request is set to 0.1
CPU cores:

$ kubectl describe namespace default

Name: default

Labels: <none>

Annotations: <none>

Status: Active

Resource Quotas

 Name: gke-resource-quotas

Managing resources in Kubernetes 183

 Resource Used Hard

 -------- --- ---

 count/ingresses.extensions 0 100

 count/jobs.batch 0 5k

 pods 2 1500

 services 1 500

Resource Limits

 Type Resource Min Max Default Request Default Limit
Max Limit/Request Ratio

 ---- -------- --- --- --------------- -------------

 Container cpu - - 100m -
-

Let's see an example of what happens when resource quotas are applied to a namespace:

1. Create a namespace demo:

$ kubectl create namespace demo

namespace/demo created

2. Define a resource quota. In this example, the quota limits the resource request CPU
to 1 CPU:

$ cat quota.yaml

apiVersion: v1

kind: ResourceQuota

metadata:

 name: compute-resources

spec:

 hard:

 requests.cpu: "1"

3. Apply the quota to the namespace by using the following command:

$ kubectl apply -f quota.yaml --namespace demo

resourcequota/compute-resources created

184 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

4. You can check whether the resource quota is applied successfully to the namespace
by executing the following command:

$ kubectl describe namespace demo

Name: demo

Labels: <none>

Annotations: <none>

Status: Active

Resource Quotas

 Name: compute-resources

 Resource Used Hard

 -------- --- ---

 requests.cpu 0 1

 Name: gke-resource-quotas

 Resource Used Hard

 -------- --- ---

 count/ingresses.extensions 0 100

 count/jobs.batch 0 5k

 pods 0 1500

 services 0 500

5. Now, if we try to create two pods that use 1 CPU, the second request will fail with
the following error:

$ kubectl apply -f nginx-cpu-1.yaml --namespace demo

Error from server (Forbidden): error when creating
"nginx-cpu-1.yaml": pods "demo-1" is forbidden: exceeded
quota: compute-resources, requested: requests.cpu=1,
used: requests.cpu=1, limited: requests.cpu=1

Resource quotas ensure quality of service for namespaced Kubernetes objects.

LimitRanger
We discussed the LimitRanger admission controller in Chapter 7, Authentication,
Authorization, and Admission Control. Cluster administrators can leverage limit ranges
to ensure that misbehaving pods, containers, or PersistentVolumeClaims don't
consume all available resources.

Managing resources in Kubernetes 185

To use limit ranges, enable the LimitRanger admission controller:

$ ps aux | grep kube-api

root 3708 6.7 8.7 497216 345256 ? Ssl 01:44
0:10 kube-apiserver --advertise-address=192.168.99.116 --allow-
privileged=true --authorization-mode=Node,RBAC --client-ca-
file=/var/lib/minikube/certs/ca.crt --enable-admission-plugin
s=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStora
geClass,DefaultTolerationSeconds,NodeRestriction,MutatingAdm-
issionWebhook,ValidatingAdmissionWebhook,ResourceQuota

Using LimitRanger, we can enforce default, min, and max limits on storage and
compute resources. Cluster administrators create a limit range for objects such as pods,
containers, and PersistentVolumeClaims. For any request for object creation or update,
the LimitRanger admission controller verifies that the request does not violate any limit
ranges. If the request violates any limit ranges, a 403 Forbidden response is sent.

Let's look at an example of a simple limit range:

1. Create a namespace in which a limit range will be applied:

$kubectl create namespace demo

2. Define a LimitRange for the namespace:

$ cat limit_range.yaml

apiVersion: "v1"

kind: "LimitRange"

metadata:

 name: limit1

 namespace: demo

spec:

 limits:

 - type: "Container"

 max:

 memory: 512Mi

 cpu: 500m

 min:

 memory: 50Mi

 cpu: 50m

186 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

3. Verify that the limitrange was applied:

$ kubectl get limitrange -n demo

NAME CREATED AT

limit1 2020-04-30T02:06:18Z

4. Create a pod that violates the limit range:

$cat nginx-bad.yaml

apiVersion: v1

kind: Pod

metadata:

 name: nginx-bad

spec:

 containers:

 - name: nginx-bad

 image: nginx-bad

 resources:

 limits:

 memory: "800Mi"

 cpu: "500m"

This request will be denied:
$ kubectl apply -f nginx-bad.yaml -n demo

Error from server (Forbidden): error when creating
"nginx-bad.yaml": pods "nginx-bad" is forbidden: maximum
memory usage per Container is 512Mi, but limit is 800M

If a LimitRanger specifies a CPU or memory, all pods and containers should have the
CPU or memory request or limits. LimitRanger works when the request to create or
update the object is received by the API Server but not at runtime. If a pod has a violating
limit before the limit is applied, it will keep running. Ideally, limits should be applied
to the namespace when it is created.

Now that we have looked at a couple of features that can be used for proactive resource
management, we switch gears and look at tools that can help us monitor the cluster and
notify us before matters deteriorate.

Monitoring resources in Kubernetes 187

Monitoring resources in Kubernetes
As we discussed earlier, resource monitoring is an essential step for ensuring the
availability of your services in your cluster. Resource monitoring uncovers early signs
or symptoms of service unavailability in your clusters. Resource monitoring is often
complemented with alert management to ensure that stakeholders are notified as soon as
any problems, or symptoms associated with any problems, in the cluster are observed.

In this section, we first look at some built-in monitors provided by Kubernetes, including
Kubernetes Dashboard and Metrics Server. We look at how we can set it up and discuss
how to use these tools efficiently. Next, we look at some open source tools that can plug
into your Kubernetes cluster and provide far more in-depth insight than the built-in tools.

Built-in monitors
Let's look at some tools provided by Kubernetes that are used for monitoring Kubernetes
resources and objects – Metrics Server and Kubernetes Dashboard.

Kubernetes Dashboard
Kubernetes Dashboard provides a web UI for cluster administrators to create, manage,
and monitor cluster objects and resources. Cluster administrators can also create pods,
services, and DaemonSets using the dashboard. The dashboard shows the state of the
cluster and any errors in the cluster.

Kubernetes Dashboard provides all the functionality a cluster administrator requires
in order to manage resources and objects within the cluster. Given the functionality
of the dashboard, access to the dashboard should be limited to cluster administrators.
The dashboard has a login functionality starting v1.7.0. In 2018, a privilege escalation
vulnerability (CVE-2018-18264) was identified in the dashboard that allowed
unauthenticated users to log in to the dashboard. There were no known in-the-wild
exploits for this issue, but this simple vulnerability could have wreaked havoc on many
Kubernetes distributions.

188 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

Current login functionality allows logging in using a service account and kubeconfig.
It is recommended that service account tokens should be used to access Kubernetes
Dashboard:

Figure 10.1 – Kubernetes Dashboard

To allow a service account to use the Kubernetes dashboard, you need to add the
cluster-admin role to the service account. Let's look at an example of how a service
account can be used to access the Kubernetes dashboard:

1. Create a service account in the default namespace:

$kubectl create serviceaccount dashboard-admin-sa

2. Associate the cluster-admin role with the service account:

$kubectl create clusterrolebinding dashboard-
admin-sa --clusterrole=cluster-admin
--serviceaccount=default:dashboard-admin-sa

Monitoring resources in Kubernetes 189

3. Fetch the token for the service account:

$ kubectl describe serviceaccount dashboard-admin-sa

Name: dashboard-admin-sa

Namespace: default

Labels: <none>

Annotations: <none>

Image pull secrets: <none>

Mountable secrets: dashboard-admin-sa-token-5zwpw

Tokens: dashboard-admin-sa-token-5zwpw

Events: <none>

4. Use the following command to fetch the token for the service account:

$ kubectl describe secrets dashboard-admin-sa-token-5zwpw

Name: dashboard-admin-sa-token-5zwpw

Namespace: default

Labels: <none>

Annotations: kubernetes.io/service-account.name:
dashboard-admin-sa

 kubernetes.io/service-account.uid:
83218a92-915c-11ea-b763-42010a800022

Type: kubernetes.io/service-account-token

Data

====

ca.crt: 1119 bytes

namespace: 7 bytes

token: <token>

190 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

5. Use the service account token to log in to the dashboard:

Figure 10.2 – Kubernetes dashboard login

Using Kubernetes Dashboard, administrators have insight into resource availability,
resource allocation, Kubernetes objects, and event logs:

Figure 10.3 – Kubernetes Dashboard – resource allocation

Monitoring resources in Kubernetes 191

The preceding screenshot shows resource allocation on a node for resource
requests and limits. The following screenshot highlights the events for a node
on the Kubernetes dashboard:

Figure 10.4 – Kubernetes Dashboard – event logs

Kubernetes Dashboard runs as a container on the master node. You can see this by
enumerating the Docker containers on the master node:

$ docker ps | grep dashboard

a963e6e6a54b 3b08661dc379 "/metrics-
sidecar" 4 minutes ago Up 4 minutes
k8s_dashboard-metrics-scraper_dashboard-metrics-scraper-
84bfdf55ff-wfxdm_kubernetes-dashboard_5a7ef2a8-b3b4-4e4c-ae85-
11cc8b61c1c1_0

c28f0e2799c1 cdc71b5a8a0e "/
dashboard --insecu…" 4 minutes ago Up 4 minutes
k8s_kubernetes-dashboard_kubernetes-dashboard-bc446cc64-czmn8_
kubernetes-dashboard_40630c71-3c6a-447b-ae68-e23603686ede_0

10f0b024a13f k8s.gcr.io/pause:3.2 "/
pause" 4 minutes ago Up 4 minutes
k8s_POD_dashboard-metrics-scraper-84bfdf55ff-wfxdm_kubernetes-
dashboard_5a7ef2a8-b3b4-4e4c-ae85-11cc8b61c1c1_0

f9c1e82174d8 k8s.gcr.io/pause:3.2 "/
pause" 4 minutes ago Up 4 minutes
k8s_POD_kubernetes-dashboard-bc446cc64-czmn8_kubernetes-
dashboard_40630c71-3c6a-447b-ae68-e23603686ede_0

192 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

The dashboard process runs with a set of arguments on the master node:

$ ps aux | grep dashboard

dbus 10727 0.9 1.1 136752 46240 ? Ssl 05:46
0:02 /dashboard --insecure-bind-address=0.0.0.0 --bind-
address=0.0.0.0 --namespace=kubernetes-dashboard --enable-skip-
login --disable-settings-authorizer

docker 11889 0.0 0.0 11408 556 pts/0 S+ 05:51
0:00 grep dashboard

Ensure that the dashboard container is running with the following arguments:

• Disable insecure port: --insecure-port enables Kubernetes Dashboard to
receive requests over HTTP. Ensure that it is disabled in production environments.

• Disable insecure address: --insecure-bind-address should be disabled to
avoid a situation where Kubernetes Dashboard is accessible via HTTP.

• Bind address to localhost: --bind-address should be set to 127.0.0.1 to
prevent hosts from being connected over the internet.

• Enable TLS: Use tls-cert-file and tls-key-file to access the dashboard
over secure channels.

• Ensure token authentication mode is enabled: Authentication mode can be
specified using the --authentication-mode flag. By default, it is set to token.
Ensure that basic authentication is not used with the dashboard.

• Disable insecure login: Insecure login is used when the dashboard is available
via HTTP. This should be disabled by default.

• Disable skip login: Skip login allows unauthenticated users to access the
Kubernetes dashboard. --enable-skip-login enables skip login; this
should not be present in production environments.

• Disable settings authorizer: --disable-settings-authorizer allows
unauthenticated users to access the settings page. This should be disabled in
production environments.

Monitoring resources in Kubernetes 193

Metrics Server
Metrics Server aggregates cluster usage data using the Summary API exposed
by each kubelet on each node. It is registered with kube-apiserver using
kube-aggregator. Metrics Server exposes the collected metrics through the Metrics
API, which are used by the horizontal pod autoscalar and the vertical pod autoscalar.
kubectl top, which is used to debug clusters, also uses the Metrics API. Metrics
Server is specifically designed for autoscaling.

Metrics Server is enabled by default on some Kubernetes distributions. You can enable it
on minikube by using the following command:

$ minikube addons enable metrics-server

You can check whether Metrics Server is enabled by using the following command:

$ kubectl get apiservices | grep metrics

v1beta1.metrics.k8s.io kube-system/metrics-
server True 7m17s

Once Metrics Server is enabled, it takes some time to query the Summary API and
co-relate the data. You can see the current metrics by using kubectl top node:

$ kubectl top node

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

minikube 156m 7% 1140Mi 30%

$ kubectl top pod

NAME CPU(cores) MEMORY(bytes)

nginx-good 0m 2Mi

Similar to other services and components, Metrics Server also has configuration
parameters. In production clusters, make sure that Metrics Server does not use the
--kubelet-insecure-tls flag, which allows Metrics Server to skip verification
of certificates by the CA.

Third-party monitoring tools
Third-party monitoring tools integrate in Kubernetes to provide many more features
and insights into the health of Kubernetes resources. In this section, we will discuss
Prometheus and Grafana, which are the most popular monitoring tools in the open
source community.

194 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

Prometheus and Grafana
Prometheus is an open source instrumentation and data collection framework developed
by SoundCloud and adopted by CNCF. Prometheus can be used to see time series data
for different data points. Prometheus uses a pull system. It sends an HTTP request
called a scrape, which fetches data from the system components, including API Server,
node-exporter, and kubelet. The response to the scrape and the metrics are stored
in a custom database on the Prometheus server.

Let's see how Prometheus can be set up to monitor a namespace in Kubernetes:

1. Create a namespace:

$kubectl create namespace monitoring

2. Define a cluster role to read Kubernetes objects such as pods, nodes, and services
and add the role binding to a service account. In this example, we are using the
default service account:

$ cat prometheus-role.yaml

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRole

metadata:

 name: prometheus

rules:

- apiGroups: [""]

 resources:

 - nodes

 - nodes/proxy

 - services

 - endpoints

 - pods

 verbs: ["get", "list", "watch"]

- apiGroups:

 - extensions

 resources:

 - ingresses

 verbs: ["get", "list", "watch"]

- nonResourceURLs: ["/metrics"]

 verbs: ["get"]

Monitoring resources in Kubernetes 195

$ kubectl create -f prometheus-role.yaml

clusterrole.rbac.authorization.k8s.io/prometheus created

Now, we create a role binding to associate the role with the default service account:
$ cat prometheus-rolebinding.yaml

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRoleBinding

metadata:

 name: prometheus

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: prometheus

subjects:

- kind: ServiceAccount

 name: default

 namespace: monitoring

3. Prometheus uses ConfigMap to specify the scrape rule. The following rule-scrapes
the kube-apiserver. Multiple scraps can be defined to fetch metrics:

$ cat config_prometheus.yaml
apiVersion: v1

kind: ConfigMap

metadata:

 name: prometheus-server-conf

 labels:

 name: prometheus-server-conf

 namespace: monitoring

data:

 prometheus.yml: |-

 global:

 scrape_interval: 5s

 evaluation_interval: 5s

 scrape_configs:
 - job_name: 'kubernetes-apiservers'

 kubernetes_sd_configs:

 - role: endpoints

196 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

 scheme: https

 tls_config:

 ca_file: /var/run/secrets/kubernetes.io/
serviceaccount/ca.crt

 bearer_token_file: /var/run/secrets/kubernetes.io/
serviceaccount/token

 relabel_configs:

 - source_labels: [__meta_kubernetes_namespace, __
meta_kubernetes_service_name, __meta_kubernetes_endpoint_
port_name]

 action: keep

 regex: default;kubernetes;https

4. Create a deployment for Prometheus:

spec:

 containers:

 - name: prometheus

 image: prom/prometheus:v2.12.0

 args:

 - "--config.file=/etc/prometheus/prometheus.
yml"

 - "--storage.tsdb.path=/prometheus/"

 ports:

 - containerPort: 9090

 volumeMounts:

 - name: prometheus-config-volume

 mountPath: /etc/prometheus/

 - name: prometheus-storage-volume

 mountPath: /prometheus/

 volumes:

 - name: prometheus-config-volume

 configMap:

 defaultMode: 420

 name: prometheus-server-conf

 - name: prometheus-storage-volume

 emptyDir: {}

Monitoring resources in Kubernetes 197

5. Once deployment is successful, port forwarding or Kubernetes services can be used
to access the dashboard:

$ kubectl port-forward <prometheus-pod> 8080:9090 -n
monitoring

This enables port forwarding for the Prometheus pod. Now, you can access it using
the cluster IP on port 8080:

Figure 10.5 – Prometheus Dashboard

Queries can be entered as expressions and the results viewed as Graph or Console
messages. Using Prometheus queries, cluster administrators can view the status of clusters,
nodes, and services that are being monitored by Prometheus.

Let's look at some examples of Prometheus queries that will be helpful for cluster
administrators:

• Kubernetes CPU usage:

sum(rate(container_cpu_usage_seconds_total{container_
name!="POD",pod_name!=""}[5m]))

• Kubernetes CPU usage by namespace:

sum(rate(container_cpu_usage_seconds_total{container_
name!="POD",namespace!=""}[5m])) by (namespace)

198 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

• CPU requests by pod:

sum(kube_pod_container_resource_requests_cpu_cores) by
(pod)

Let's look at CPU usage by namespace for the demo cluster:

Figure 10.6 – CPU usage by namespace

Prometheus also allows cluster administrators to set alerts using ConfigMaps:

prometheus.rules: |-

 groups:

 - name: Demo Alert

 rules:

 - alert: High Pod Memory

 expr: sum(container_memory_usage_bytes{pod!=""}) by
(pod) > 1000000000

 for: 1m

 labels:

 severity: high

 annotations:

 summary: High Memory Usage

Monitoring resources in Kubernetes 199

This alert triggers an alert with a label severity of high when container memory usage is
greater than 1000 MB for 1 minute:

Figure 10.7 – Prometheus Alerts

Using Alertmanager with Prometheus helps deduplicate, group, and route alerts
from applications such as Prometheus and route it to integrated clients, including email,
OpsGenie, and PagerDuty.

Prometheus integrates well with other third-party tools that enhance data visualization
and alert management. Grafana is one such tool. Grafana allows visualization, querying,
and alerting on data retrieved from Prometheus.

Let's now look at how we set up Grafana with Prometheus:

1. Grafana needs a data source for ingestion; in this case, it is Prometheus. The data
source can be added using the UI or can be specified using a ConfigMap:

$ cat grafana-data.yaml
apiVersion: v1

kind: ConfigMap

metadata:

 name: grafana-datasources

 namespace: monitoring

data:

 prometheus.yaml: |-

200 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

 {

 "apiVersion": 1,

 "datasources": [

 {

 "access":"proxy",

 "editable": true,

 "name": "prometheus",

 "orgId": 1,

 "type": "prometheus",

 "url": "http://192.168.99.128:30000",

 "version": 1

 }

]

 }

2. Create a deployment for Grafana:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: grafana

 namespace: monitoring

spec:

 replicas: 1

 selector:

 matchLabels:

 app: grafana

 template:

 metadata:

 name: grafana

 labels:

 app: grafana

 spec:

 containers:

 - name: grafana

 image: grafana/grafana:latest

 ports:

Monitoring resources in Kubernetes 201

 - name: grafana

 containerPort: 3000

 volumeMounts:

 - mountPath: /var/lib/grafana

 name: grafana-storage

 - mountPath: /etc/grafana/provisioning/
datasources

 name: grafana-datasources

 readOnly: false

 volumes:

 - name: grafana-storage

 emptyDir: {}

 - name: grafana-datasources

 configMap:

 name: grafana-datasources

3. Port forwarding or Kubernetes services can then be used to access the dashboard:

apiVersion: v1

kind: Service

metadata:

 name: grafana

 namespace: monitoring

 annotations:

 prometheus.io/scrape: 'true'

 prometheus.io/port: '3000'

spec:

 selector:

 app: grafana

 type: NodePort

 ports:

 - port: 3000

 targetPort: 3000

 nodePort: 32000

202 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

4. The dashboard, by default, has admin as a username and password. Once logged in,
you can either set up a new dashboard or import one from Grafana. To import one,
you can click + > Import, where you will be presented with the following screen.
Enter 315 in the first textbox to import dashboard 315 from Grafana:

Figure 10.8 – Importing a dashboard in Grafana

5. This dashboard was created by Instrumentisto Team. On import, all fields on the
next screen will be filled up automatically:

Figure 10.9 – Grafana Dashboard – 315

Monitoring resources in Kubernetes 203

6. A new dashboard can also be created with custom Prometheus queries:

Figure 10.10 – Custom dashboard

7. Similar to Prometheus, you can set up alerts on each dashboard:

Figure 10.11 – New alerts in Grafana

There are other tools that integrate with Prometheus that make it such a valuable tool for
DevOps and cluster administrators.

204 Real-Time Monitoring and Resource Management of a Kubernetes Cluster

Summary
In this chapter, we discussed availability as an important part of the CIA triad. We
discussed the importance of resource management and real-time resource monitoring
from a security standpoint. We then introduced resource requests and limits, core
concepts for resource management in Kubernetes. Next, we discussed resource
management and how cluster administrators can proactively ensure that Kubernetes
objects can be prevented from misbehaving.

We dived deep into the details of namespace resource quotas and limit ranges and looked
at examples on how to set it up. We then shifted gears to resource monitoring. We looked
at some built-in monitors that are available as part of Kubernetes, including Dashboard
and Metrics Server. Finally, we looked at a number of third-party tools – Prometheus and
Grafana – that are much more powerful and preferred by most cluster administrators and
DevOps engineers.

Using resource management, cluster administrators can ensure that services in a
Kubernetes cluster have sufficient resources available for operation and that malicious or
misbehaving entities don't hog all the resources. Resource monitoring, on the other hand,
helps to identify issues and the symptoms in real time. With alert management used in
conjunction with resource monitoring, stakeholders are notified of symptoms, such as
reduced disk space or high memory consumption, as soon as they occur, ensuring that
downtime is minimal.

In the next chapter, we will discuss Defense in Depth in detail. We will look at how cluster
administrators and DevOps engineers can supplement secure configuration, resource
management, and resource monitoring with a layered approach to security. Defense
in Depth will introduce more toolkits to ensure that attacks are easily detected and
mitigated in production environments.

Questions
1. What is the difference between a resource request and limits?

2. Define a resource quota that limits the memory limit to 500 mi.

3. How does limit-range differ from resource-quotas?

4. What is the recommended authentication method for Kubernetes Dashboard?

5. Which is the most widely recommended resource monitoring tool?

Further references 205

Further references
You can refer to the following links for more information on topics covered in this chapter:

• Denial-of-service attacks on electrical systems: https://www.cnbc.
com/2019/05/02/ddos-attack-caused-interruptions-in-power-
system-operations-doe.html

• Amazon Route53 DDoS: https://www.cpomagazine.com/cyber-
security/ddos-attack-on-amazon-web-services-raises-cloud-
safety-concerns/

• Limit Ranger design documentation: https://github.com/kubernetes/
community/blob/master/contributors/design-proposals/
resource-management/admission_control_limit_range.md

• Kubernetes Dashboard: https://github.com/kubernetes/dashboard/
blob/master/docs/README.md

• Privilege escalation using Kubernetes Dashboard: https://sysdig.com/
blog/privilege-escalation-kubernetes-dashboard/

• Metrics Server: https://github.com/kubernetes-sigs/metrics-
server

• Aggregated API servers: https://github.com/kubernetes/community/
blob/master/contributors/design-proposals/api-machinery/
aggregated-api-servers.md

• Prometheus queries: https://prometheus.io/docs/prometheus/
latest/querying/examples/

• Grafana documentation: https://grafana.com/docs/grafana/latest/

https://www.cnbc.com/2019/05/02/ddos-attack-caused-interruptions-in-power-system-operations-doe.html
https://www.cnbc.com/2019/05/02/ddos-attack-caused-interruptions-in-power-system-operations-doe.html
https://www.cnbc.com/2019/05/02/ddos-attack-caused-interruptions-in-power-system-operations-doe.html
https://www.cpomagazine.com/cyber-security/ddos-attack-on-amazon-web-services-raises-cloud-safety-concerns/
https://www.cpomagazine.com/cyber-security/ddos-attack-on-amazon-web-services-raises-cloud-safety-concerns/
https://www.cpomagazine.com/cyber-security/ddos-attack-on-amazon-web-services-raises-cloud-safety-concerns/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/admission_control_limit_range.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/admission_control_limit_range.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/admission_control_limit_range.md
https://github.com/kubernetes/dashboard/blob/master/docs/README.md
https://github.com/kubernetes/dashboard/blob/master/docs/README.md
https://sysdig.com/blog/privilege-escalation-kubernetes-dashboard/
https://sysdig.com/blog/privilege-escalation-kubernetes-dashboard/
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/aggregated-api-servers.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/aggregated-api-servers.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/aggregated-api-servers.md
https://prometheus.io/docs/prometheus/latest/querying/examples/
https://prometheus.io/docs/prometheus/latest/querying/examples/
https://grafana.com/docs/grafana/latest/

11
Defense in Depth

Defense in depth is an approach in cybersecurity that applies multiple layers of security
controls to protect valuable assets. In a traditional or monolithic IT environment, we can
list quite a few: authentication, encryption, authorization, logging, intrusion detection,
antivirus, a virtual private network (VPN), firewalls, and so on. You may find that these
security controls also exist in the Kubernetes cluster (and they should).

We've discussed topics such as authentication, authorization, admission controllers,
securing Kubernetes components, securing a configuration, hardening images, and
Kubernetes workloads in the previous chapters. All these build up different security
control layers to protect your Kubernetes cluster. In this chapter, we're going to discuss
topics that build up additional security control layers, and these are most related to
runtime defense in a Kubernetes cluster. These are the questions we're going to address
in this chapter: Does your cluster expose any sensitive data? If an attack happens in the
Kubernetes cluster, can you detect the attack? Can your Kubernetes cluster sustain the
attack? How do you respond to the attack?

In this chapter, we will talk about Kubernetes auditing, then we will introduce the
concept of high availability and talk about how we can apply high availability in the
Kubernetes cluster. Next, we will introduce Vault, a handy secrets management product
for the Kubernetes cluster. Then, we will talk about how to use Falco to detect anomalous
activities in the Kubernetes cluster. Last but not least, we will introduce Sysdig Inspect
and Checkpoint and Resource In Userspace (also known as CRIU) for forensics.

208 Defense in Depth

The following topics will be covered in this chapter:

• Introducing Kubernetes auditing

• Enabling high availability in a Kubernetes cluster

• Managing secrets with Vault

• Detecting anomalies with Falco

• Conducting forensics with Sysdig Inspect and CRIU

Introducing Kubernetes auditing
Kubernetes auditing was introduced in the 1.11 version. Kubernetes auditing records
events such as creating a deployment, patching pods, deleting namespaces, and more in a
chronological order. With auditing, a Kubernetes cluster administrator is able to answer
questions such as the following:

• What happened? (A pod is created and what kind of pod it is)

• Who did it? (From user/admin)

• When did it happen? (The timestamp of the event)

• Where did it happen? (In which namespace is the pod created?)

From a security standpoint, auditing enables DevOps and the security team to do
better anomaly detection and prevention by tracking events happening inside the
Kubernetes cluster.

In a Kubernetes cluster, it is kube-apiserver that does the auditing. When a request
(for example, create a namespace) is sent to kube-apiserver, the request may go
through multiple stages. There will be an event generated per stage. The following are
the known stages:

• RequestReceived: The event is generated as soon as the request is received by
the audit handler without processing it.

• RequestStarted: The event is generated between the time that the response
header is sent and the response body is sent, and only applies for long-running
requests such as watch.

• RequestComplete: The event is generated when the response body is sent.

• Panic: The event is generated when panic occurs.

Introducing Kubernetes auditing 209

In this section, we will first introduce the Kubernetes audit policy, and then show you how
to enable a Kubernetes audit and a couple of ways to persist audit records.

Kubernetes audit policy
As it is not realistic to record everything happening inside the Kubernetes cluster, an
audit policy allows users to define rules about what kind of event should be recorded
and how much detail of the event should be recorded. When an event is processed by
kube-apiserver, it compares the list of rules in the audit policy in order. The first
matching rules also dictate the audit level of the event. Let's take a look at what an audit
policy looks like. Here is an example:

apiVersion: audit.k8s.io/v1 # This is required.

kind: Policy

Skip generating audit events for all requests in
RequestReceived stage. This can be either set at the policy
level or rule level.

omitStages:

 - "RequestReceived"

rules:

 # Log pod changes at RequestResponse level

 - level: RequestResponse

 verbs: ["create", "update"]

 namespace: ["ns1", "ns2", "ns3"]

 resources:

 - group: ""

Only check access to resource "pods", not the sub-resource of
pods which is consistent with the RBAC policy.

 resources: ["pods"]

Log "pods/log", "pods/status" at Metadata level

 - level: Metadata

 resources:

 - group: ""

 resources: ["pods/log", "pods/status"]

Don't log authenticated requests to certain non-resource URL
paths.

 - level: None

 userGroups: ["system:authenticated"]

 nonResourceURLs: ["/api*", "/version"]

210 Defense in Depth

Log configmap and secret changes in all other namespaces at
the Metadata level.

 - level: Metadata

 resources:

 - group: "" # core API group

 resources: ["secrets", "configmaps"]

You can configure multiple audit rules in the audit policy. Each audit rule will be
configured by the following fields:

• level: The audit level that defines the verbosity of the audit event.

• resources: The Kubernetes objects under audit. Resources can be specified by
an Application Programming Interface (API) group and an object type.

• nonResourcesURL: A non-resource Uniform Resource Locator (URL) path that
is not associated with any resources under audit.

• namespace: Decides which Kubernetes objects from which namespaces will be
under audit. An empty string will be used to select non-namespaced objects, and
an empty list implies every namespace.

• verb: Decides the specific operation of Kubernetes objects that will be under
audit—for example, create, update, or delete.

• users: Decides the authenticated user the audit rule applies to

• userGroups: Decides the authenticated user group the audit rule applies to.

• omitStages: Skips generating events on the given stages. This can also be set at
the policy level.

The audit policy allows you to configure a policy at a fine-grained level by specifying verb,
namespace, resources, and more. It is the audit level of the rule that defines how much
detail of the event should be recorded. There are four audit levels, detailed as follows:

• None: Do not log events that match the audit rule.

• Metadata: When an event matches the audit rule, log the metadata (such as user,
timestamp, resource, verb, and more) of the request to kube-apiserver.

• Request: When an event matches the audit rule, log the metadata as well as the
request body. This does not apply for the non-resource URL.

• RequestResponse: When an event matches the audit rule, log the metadata,
request-and-response body. This does not apply for the non-resource request.

Introducing Kubernetes auditing 211

The request-level event is more verbose than the metadata level events, while the
RequestResponse level event is more verbose than the request-level event. The
high verbosity requires more input/output (I/O) throughputs and storage. It is quite
necessary to understand the differences between the audit levels so that you can define
audit rules properly, both for resource consumption and security. With an audit policy
successfully configured, let's take a look at what audit events look like. The following is
a metadata-level audit event:

{

 "kind": "Event",

 "apiVersion": "audit.k8s.io/v1",

 "level": "Metadata",

 "auditID": "05698e93-6ad7-4f4e-8ae9-046694bee469",

 "stage": "ResponseComplete",

 "requestURI": "/api/v1/namespaces/ns1/pods",

 "verb": "create",

 "user": {

 "username": "admin",

 "uid": "admin",

 "groups": [

 "system:masters",

 "system:authenticated"

]

 },

 "sourceIPs": [

 "98.207.36.92"

],

 "userAgent": "kubectl/v1.17.4 (darwin/amd64)
kubernetes/8d8aa39",

 "objectRef": {

 "resource": "pods",

 "namespace": "ns1",

 "name": "pod-1",

 "apiVersion": "v1"

 },

 "responseStatus": {

 "metadata": {},

212 Defense in Depth

 "code": 201

 },

 "requestReceivedTimestamp": "2020-04-09T07:10:52.471720Z",

 "stageTimestamp": "2020-04-09T07:10:52.485551Z",

 "annotations": {

 "authorization.k8s.io/decision": "allow",

 "authorization.k8s.io/reason": ""

 }

}

The preceding audit event shows the user, timestamp, the object being accessed, the
authorization decision, and so on. A request-level audit event provides extra information
within the requestObject field in the audit event. You will find out the specification
of the workload in the requestObject field, as follows:

 "requestObject": {

 "kind": "Pod",

 "apiVersion": "v1",

 "metadata": {

 "name": "pod-2",

 "namespace": "ns2",

 "creationTimestamp": null,

 ...

 },

 "spec": {

 "containers": [

 {

 "name": "echo",

 "image": "busybox",

 "command": [

 "sh",

 "-c",

 "echo 'this is echo' && sleep 1h"

],

 ...

 "imagePullPolicy": "Always"

Introducing Kubernetes auditing 213

 }

],

 ...

 "securityContext": {},

 },

The RequestResponse-level audit event is the most verbose. The responseObject
instance in the event is almost the same as requestObject, with extra information
such as resource version and creation timestamp, as shown in the following code block:

{

 "responseObject": {

 ...

 "selfLink": "/api/v1/namespaces/ns3/pods/pod-3",

 "uid": "3fd18de1-7a31-11ea-9e8d-0a39f00d8287",

 "resourceVersion": "217243",

 "creationTimestamp": "2020-04-09T07:10:53Z",

 "tolerations": [

 {

 "key": "node.kubernetes.io/not-ready",

 "operator": "Exists",

 "effect": "NoExecute",

 "tolerationSeconds": 300

 },

 {

 "key": "node.kubernetes.io/unreachable",

 "operator": "Exists",

 "effect": "NoExecute",

 "tolerationSeconds": 300

 }

],

 ...

 },

 }

214 Defense in Depth

Please do choose the audit level properly. More verbose logs provide deeper insight
into the activities being carried out. However, it does cost more in storage and time to
process the audit events. One thing worth mentioning is that if you set a request or a
RequestResponse audit level on Kubernetes secret objects, the secret content will be
recorded in the audit events. If you set the audit level to be more verbose than metadata
for Kubernetes objects containing sensitive data, you should use a sensitive data redaction
mechanism to avoid secrets being logged in the audit events.

The Kubernetes auditing functionality offers a lot of flexibility to audit Kubernetes
objects by object kind, namespace, operations, user, and so on. As Kubernetes auditing
is not enabled by default, next, let's look at how to enable Kubernetes auditing and store
audit records.

Configuring the audit backend
In order to enable Kubernetes auditing, you need to pass the --audit-policy-file
flag with your audit policy file when starting kube-apiserver. There are two types of
audit backends that can be configured to use process audit events: a log backend and a
webhook backend. Let's have a look at them.

Log backend
The log backend writes audit events to a file on the master node. The following flags are
used to configure the log backend within kube-apiserver:

• --log-audit-path: Specify the log path on the master node. This is the flag
to turn ON or OFF the log backend.

• --audit-log-maxage: Specify the maximum number of days to keep the
audit records.

• --audit-log-maxbackup: Specify the maximum number of audit files to keep
on the master node.

• --audit-log-maxsize: Specify the maximum size in megabytes of an audit
log file before it gets rotated.

Let's take a look at the webhook backend.

Introducing Kubernetes auditing 215

Webhook backend
The webhook backend writes audit events to the remote webhook registered to
kube-apiserver. To enable the webhook backend, you need to set the --audit-
webhook-config-file flag with the webhook configuration file. This flag is also
specified when starting kube-apiserver. The following is an example of a webhook
configuration to register a webhook backend for the Falco service, which will be
introduced later in more detail:

apiVersion: v1

kind: Config

clusters:

- name: falco

 cluster:

 server: http://$FALCO_SERVICE_CLUSTERIP:8765/k8s_audit

contexts:

- context:

 cluster: falco

 user: ""

 name: default-context

current-context: default-context

preferences: {}

users: []

The URL specified in the server field (http://$FALCO_SERVICE_
CLUSTERIP:8765/k8s_audit) is the remote endpoint that the audit events will
be sent to. Since version 1.13 of Kubernetes, the webhook backend can be configured
dynamically via the AuditSink object, which is still in the alpha stage.

In this section, we talked about Kubernetes auditing by introducing the audit policy
and audit backends. In the next section, we will talk about high availability in the
Kubernetes cluster.

216 Defense in Depth

Enabling high availability in a Kubernetes
cluster
Availability refers to the ability of the user to access the service or system. The high
availability of a system ensures an agreed level of uptime of the system. For example,
if there is only one instance to serve the service and the instance is down, users can no
longer access the service. A service with high availability is served by multiple instances.
When one instance is down, the standby instance or backup instance can still provide the
service. The following diagram describes services with and without high availability:

Figure 11.1 – Services with and without high availability

In a Kubernetes cluster, there will usually be more than one worker node. The high availability
of the cluster is guaranteed as even if one worker node is down, there are some other worker
nodes to host the workload. However, high availability is more than running multiple nodes
in the cluster. In this section, we will look at high availability in Kubernetes clusters from
three levels: workloads, Kubernetes components, and cloud infrastructure.

Enabling high availability of Kubernetes workloads
For Kubernetes workloads such as a deployment and a StatefulSet, you can specify the
replicas field in the specification for how many replicated pods are running for the
microservice, and controllers will ensure there will be x number of pods running on
different worker nodes in the cluster, as specified in the replicas field. A DaemonSet is
a special workload; the controller will ensure there will be one pod running on every node
in the cluster, assuming your Kubernetes cluster has more than one node. So, specifying
more than one replica in the deployment or the StatefulSet, or using a DaemonSet, will
ensure the high availability of your workload. In order to ensure the high availability of
the workload, the high availability of Kubernetes components needs to be ensured as well.

Enabling high availability in a Kubernetes cluster 217

Enabling high availability of Kubernetes components
High availability also applies to the Kubernetes components. Let's review a few critical
Kubernetes components, as follows:

• kube-apiserver: The Kubernetes API server (kube-apiserver) is a control
plane component that validates and configures data for objects such as pods,
services, and controllers. It interacts with the objects using REepresentational
State Transfer (REST) requests.

• etcd: etcd is a high-availability key-value store used to store data such
as configuration, state, and metadata. Its watch functionality provides
Kubernetes with the ability to listen for updates to a configuration and make
changes accordingly.

• kube-scheduler: kube-scheduler is a default scheduler for Kubernetes.
It watches for newly created pods and assigns the pods to the nodes.

• kube-controller-manager: The Kubernetes controller manager is a
combination of the core controllers that watch for state updates and make
changes to the cluster accordingly.

If the kube-apiserver is down, then basically your cluster is down, as users or other
Kubernetes components rely on communicating to the kube-apiserver to perform
their tasks. If etcd is down, no states of the cluster and objects are available to be
consumed. kube-scheduler and kube-controller-manager are also important
to make sure the workloads are running properly in the cluster. All these components
are running on the master node, to ensure the high availability of the components. One
straightforward way is to bring up multiple master nodes for your Kubernetes cluster,
either via kops or kubeadm. You will find something like this:

$ kubectl get pods -n kube-system

...

etcd-manager-events-ip-172-20-109-109.ec2.internal 1/1
Running 0 4h15m

etcd-manager-events-ip-172-20-43-65.ec2.internal 1/1
Running 0 4h16m

etcd-manager-events-ip-172-20-67-151.ec2.internal 1/1
Running 0 4h16m

etcd-manager-main-ip-172-20-109-109.ec2.internal 1/1
Running 0 4h15m

218 Defense in Depth

etcd-manager-main-ip-172-20-43-65.ec2.internal 1/1
Running 0 4h15m

etcd-manager-main-ip-172-20-67-151.ec2.internal 1/1
Running 0 4h16m

kube-apiserver-ip-172-20-109-109.ec2.internal 1/1
Running 3 4h15m

kube-apiserver-ip-172-20-43-65.ec2.internal 1/1
Running 4 4h16m

kube-apiserver-ip-172-20-67-151.ec2.internal 1/1
Running 4 4h15m

kube-controller-manager-ip-172-20-109-109.ec2.internal 1/1
Running 0 4h15m

kube-controller-manager-ip-172-20-43-65.ec2.internal 1/1
Running 0 4h16m

kube-controller-manager-ip-172-20-67-151.ec2.internal 1/1
Running 0 4h15m

kube-scheduler-ip-172-20-109-109.ec2.internal 1/1
Running 0 4h15m

kube-scheduler-ip-172-20-43-65.ec2.internal 1/1
Running 0 4h15m

kube-scheduler-ip-172-20-67-151.ec2.internal 1/1
Running 0 4h16m

Now you have multiple kube-apiserver pods, etcd pods, kube-controller-
manager pods, and kube-scheduler pods running in the kube-system namespace,
and they're running on different master nodes. There are some other components such
as kubelet and kube-proxy that are running on every node, so, their availability is
guaranteed by the availability of the nodes, and kube-dns are spun up with more than
one pod by default, so their high availability is ensured. No matter if your Kubernetes
cluster is running on the public cloud or in a private data center—the infrastructure is the
pillar to support the availability of the Kubernetes cluster. Next, we will talk about the high
availability of a cloud infrastructure and use cloud providers as an example.

Enabling high availability in a Kubernetes cluster 219

Enabling high availability of a cloud infrastructure
Cloud providers offers cloud services all over the world through multiple data centers
located in different areas. Cloud users can choose in which region and zone (the actual
data center) to host their service. Regions and zones provide isolation from most types
of physical infrastructure and infrastructure software service failures. Note that the
availability of a cloud infrastructure also impacts the services running on your Kubernetes
cluster if the cluster is hosted in the cloud. You should leverage the high availability of the
cloud and ultimately ensure the high availability of the service running on the Kubernetes
cluster. The following code block provides an example of specifying zones using kops to
leverage the high availability of a cloud infrastructure:

export NODE_SIZE=${NODE_SIZE:-t2.large}

export MASTER_SIZE=${MASTER_SIZE:-t2.medium}

export ZONES=${ZONES:-"us-east-1a,us-east-1b,us-east-1c"}

export KOPS_STATE_STORE="s3://my-k8s-state-store2/"

kops create cluster k8s-clusters.k8s-demo-zone.com \

 --cloud aws \

 --node-count 3 \

 --zones $ZONES \

 --node-size $NODE_SIZE \

 --master-size $MASTER_SIZE \

 --master-zones $ZONES \

 --networking calico \

 --kubernetes-version 1.14.3 \

 --yes \

The nodes of the Kubernetes clusters look like this:

$ kops validate cluster

...

INSTANCE GROUPS

NAME ROLE MACHINETYPE MIN MAX SUBNETS

master-us-east-1a Master t2.medium 1 1
us-east-1a

master-us-east-1b Master t2.medium 1 1
us-east-1b

220 Defense in Depth

master-us-east-1c Master t2.medium 1 1
us-east-1c

nodes Node t2.large 3 3 us-east-
1a,us-east-1b,us-east-1c

The preceding code block shows three master nodes running on the us-east-1a,
us-east-1b, and us-east-1c availability zones respectively. So, as worker nodes,
even if one of the data centers is down or under maintenance, both master nodes and
worker nodes can still function in other data centers.

In this section, we've talked about the high availability of Kubernetes workloads,
Kubernetes components, and a cloud infrastructure. Let's use the following diagram
to recap on the high availability of a Kubernetes cluster:

Figure 11.2 – High availability of Kubernetes cluster in the cloud

Now, let's move to the next topic about managing secrets in the Kubernetes cluster.

Managing secrets with Vault 221

Managing secrets with Vault
Secrets management is a big topic, and many open source and proprietary solutions have
been developed to help solve the secrets management problem on different platforms. So,
in Kubernetes, its built-in Secret object is used to store secret data, and the actual data
is stored in etcd along with other Kubernetes objects. By default, the secret data is stored
in plaintext (encoded format) in etcd. etcd can be configured to encrypt secrets at rest.
Similarly, if etcd is not configured to encrypt communication using Transport Layer
Security (TLS), secret data is transferred in plaintext too. Unless the security requirement
is very low, it is recommended to use a third-party solution to manage secrets in a
Kubernetes cluster.

In this section, we're going to introduce Vault, a Cloud Native Computing Foundation
(CNCF) secrets management project. Vault supports secure storage of secrets, dynamic
secrets' generation, data encryption, key revocation, and so on. In this section, we will focus
on the use case of how to store and provision secrets for applications in the Kubernetes
cluster using Vault. Now, let's see how to set up Vault for the Kubernetes cluster.

Setting up Vault
You can deploy Vault in the Kubernetes cluster using helm, as follows:

helm install vault --set='server.dev.enabled=true' https://
github.com/hashicorp/vault-helm/archive/v0.4.0.tar.gz

Note that server.dev.enabled=true is set. This is good for a development
environment but is not recommended to be set in a production environment. You
should see two pods are running, as follows:

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

vault-0 1/1 Running 0
80s

vault-agent-injector-7fd6b9588b-fgsnj 1/1 Running 0
80s

The vault-0 pod is the one to manage and store secrets, while the vault-agent-
injector-7fd6b9588b-fgsnj pod is responsible for injecting secrets into pods
with special vault annotation, which we will show in more detail in the Provisioning and
rotating secrets section. Next, let's create an example secret for a postgres database
connection, like this:

vault kv put secret/postgres username=alice password=pass

222 Defense in Depth

Note that the preceding command needs to be executed inside the vault-0 pod. Since
you want to restrict only the relevant application in the Kubernetes cluster to access the
secret, you may want to define a policy to achieve that, as follows:

cat <<EOF > /home/vault/app-policy.hcl

path "secret*" {

 capabilities = ["read"]

}

EOF

vault policy write app /home/vault/app-policy.hcl

Now, you have a policy defining a privilege to read the secret under the secret
path, such as secret/postgres. Next, you want to associate the policy with allowed
entities, such as a service account in Kubernetes. This can be done by executing the
following commands:

vault auth enable kubernetes

vault write auth/kubernetes/config \

 token_reviewer_jwt="$(cat /var/run/secrets/kubernetes.io/
serviceaccount/token)" \

 kubernetes_host=https://${KUBERNETES_PORT_443_TCP_ADDR}:443
\

 kubernetes_ca_cert=@/var/run/secrets/kubernetes.io/
serviceaccount/ca.crt

vault write auth/kubernetes/role/myapp \

 bound_service_account_names=app \

 bound_service_account_namespaces=demo \

 policies=app \

 ttl=24h

Vault can leverage naive authentication from Kubernetes and then bind the secret access
policy to the service account. Now, the service account app in the namespace demo can
access the postgres secret. Now, let's deploy a demo application in the vault-app.
yaml file, as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

Managing secrets with Vault 223

 name: app

 labels:

 app: vault-agent-demo

spec:

 selector:

 matchLabels:

 app: vault-agent-demo

 replicas: 1

 template:

 metadata:

 annotations:

 labels:

 app: vault-agent-demo

 spec:

 serviceAccountName: app

 containers:

 - name: app

 image: jweissig/app:0.0.1

apiVersion: v1

kind: ServiceAccount

metadata:

 name: app

 labels:

 app: vault-agent-demo

Note that in the preceding .yaml file, there is no annotation added yet, so the secret is
not injected, nor is the sidecar container added when the application is created. The code
can be seen in the following snippet:

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

app-668b8bcdb9-js9mm 1/1 Running 0
3m23s

Next, we will show how secret injection works.

224 Defense in Depth

Provisioning and rotating secrets
The reason we don't show secret injection when the application is deployed is that we want
to show you the detailed difference before and after injection to the demo application pod.
Now, let's patch the deployment with the following Vault annotations:

$ cat patch-template-annotation.yaml

spec:

 template:

 metadata:

 annotations:

 vault.hashicorp.com/agent-inject: "true"

 vault.hashicorp.com/agent-inject-status: "update"

 vault.hashicorp.com/agent-inject-secret-postgres:
"secret/postgres"

 vault.hashicorp.com/agent-inject-template-postgres: |

 {{- with secret "secret/postgres" -}}

 postgresql://{{ .Data.data.username }}:{{ .Data.data.
password }}@postgres:5432/wizard

 {{- end }}

 vault.hashicorp.com/role: "myapp"

The preceding annotation dictates which secret will be injected, and in what format and
using which role. Once we update the demo application deployment, we will find the
secret has been injected, as follows:

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

app-68d47bb844-2hlrb 2/2 Running 0
13s

$ kubectl -n demo exec -it app-68d47bb844-2hlrb -c app -- cat /
vault/secrets/postgres

postgresql://alice:pass@postgres:5432/wizard

Managing secrets with Vault 225

And let's look at the specification of the pod (not the patched deployment)—you will
find the following (marked in bold) were added, compared to the specification of the
patched deployment:

 containers:

 - image: jweissig/app:0.0.1

 ...

 volumeMounts:

 - mountPath: /vault/secrets

 name: vault-secrets

 - args:

 - echo ${VAULT_CONFIG?} | base64 -d > /tmp/config.json &&
vault agent -config=/tmp/config.json

 command:

 - /bin/sh

 - -ec

 image: vault:1.3.2

 name: vault-agent

 volumeMounts:

 - mountPath: /vault/secrets

 name: vault-secrets

 initContainers:

 - args:

 - echo ${VAULT_CONFIG?} | base64 -d > /tmp/config.json &&
vault agent -config=/tmp/config.json

 command:

 - /bin/sh

 - -ec

 image: vault:1.3.2

 name: vault-agent-init

 volumeMounts:

 - mountPath: /vault/secrets

 name: vault-secrets

 volumes:

 - emptyDir:

 medium: Memory

 name: vault-secrets

226 Defense in Depth

A few things worth mentioning from the preceding changes listed: one init container
named vault-agent-init and one sidecar container named vault-agent have
been injected, as well as an emptyDir type volume named vault-secrets. That's
why you saw two containers are running in the demo application pod after the patch.
Also, the vault-secrets volume is mounted in the init container, the sidecar
container, and the app container with the /vault/secrets/ directory. The secret
is stored in the vault-secrets volume. The pod specification modification is done
by the vault-agent-injector pod through a predefined mutating webhook
configuration (installed via helm), as follows:

apiVersion: admissionregistration.k8s.io/v1beta1

kind: MutatingWebhookConfiguration

metadata:

 ...

 name: vault-agent-injector-cfg

webhooks:

- admissionReviewVersions:

 - v1beta1

 clientConfig:

 caBundle: <CA_BUNDLE>

 service:

 name: vault-agent-injector-svc

 namespace: demo

 path: /mutate

 failurePolicy: Ignore

 name: vault.hashicorp.com

 namespaceSelector: {}

 rules:

 - apiGroups:

 - ""

 apiVersions:

 - v1

 operations:

 - CREATE

 - UPDATE

 resources:

 - pods

 scope: '*'

Detecting anomalies with Falco 227

The mutating webhook configuration registered with kube-apiserver basically tells
kube-apiserver to redirect any pods, create or update the request to the vault-
agent-injector-svc service in the demo namespace. Behind the service is the
vault-agent-injector pod. Then, the vault-agent-injector pod will look
up the relevant annotations and inject the init container and the sidecar container, as
well as the volume that stores the secret, to the specification of the pod on request. Why
do we need one init container and one sidecar container? The init container is to
prepopulate our secret, and the sidecar container is to keep that secret data in sync
throughout our application's life cycle.

Now, let's update the secret by running the following code and see what happens:

vault kv put secret/postgres username=alice password=changeme

Now, the password has been updated to changeme from pass in the vault pod. And,
on the demo application side, we can see from the following code block that it is updated
as well, after waiting a few seconds:

$ kubectl -n demo exec -it app-68d47bb844-2hlrb -c app -- cat /
vault/secrets/postgres

postgresql://alice:changeme@postgres:5432/wizard

Vault is a powerful secrets management solution and a lot of its features cannot be covered
in a single section. I would encourage you to read the documentation and try it out to
understand Vault better. Next, let's talk about runtime threat detection in Kubernetes
with Falco.

Detecting anomalies with Falco
Falco is a CNCF open source project that detects anomalous behavior or runtime threats
in cloud-native environments, such as a Kubernetes cluster. It is a rule-based runtime
detection engine with about 100 out-of-the-box detection rules. In this section, we will
first take an overview of Falco, and then we will show you how to write Falco rules so
that you can build your own Falco rules to protect your Kubernetes cluster.

An overview of Falco
Falco is widely used to detect anomalous behavior in cloud-native environments,
especially in the Kubernetes cluster. So, what is anomaly detection? Basically, it uses
behavioral signals to detect security abnormalities, such as leaked credentials or unusual
activity, and the behavioral signals can be derived from your knowledge of the entities in
terms of what the normal behavior is.

228 Defense in Depth

Challenges faced
To identify what normal behaviors are in the Kubernetes cluster is not easy. From a
running application's perspective, we may group them into three categories, as follows:

• Kubernetes components: kube-apiserver, kube-proxy, kubelet, the
Container Runtime Interface (CRI) plugin, the Container Networking Interface
(CNI) plugin, and so on

• Self-hosted applications: Java, Node.js, Golang, Python, and so on

• Vendor services: Cassandra, Redis, MySQL, NGINX, Tomcat, and so on

Or, from a system's perspective, we have the following types of activities:

• File activities such as open, read, and write

• Process activities such as execve and clone system calls

• Network activities such as accept, connect, and send

Or, from a Kubernetes object's perspective: pod, secret, deployment, namespace,
serviceaccount, configmap, and so on

In order to cover all these activities or behaviors happening in the Kubernetes cluster, we
will need rich sources of information. Next, let's talk about the event sources that Falco
relies on to do anomalous detection, and how the sources cover the preceding activities
and behaviors.

Event sources for anomaly detection
Falco relies on two event sources to do anomalous detection. One is system calls and the
other is the Kubernetes audit events. For system call events, Falco uses a kernel module to
tap into the stream of system calls on a machine, and then passes those system calls to a
user space (ebpf is recently supported as well). Within the user space, Falco also enriches
the raw system call events with more context such as the process name, container ID,
container name, image name, and so on. For Kubernetes audit events, users need to enable
the Kubernetes audit policy and register the Kubernetes audit webhook backend with the
Falco service endpoint. Then, the Falco engine checks any of the system call events or
Kubernetes audit events matching any Falco rules loaded in the engine.

Detecting anomalies with Falco 229

It's also important to talk about the rationale for using system calls and Kubernetes audit
events as event sources to do anomalous detection. System calls are a programmatic way
for applications to interact with the operating system in order to access resources such
as files, devices, the network, and so on. Considering containers are a bunch of processes
with their own dedicated namespaces and that they share the same operating system
on the node, a system call is the one unified event source that can be used to monitor
activities from containers. It doesn't matter what programming language the application is
written in; ultimately, all the functions will be translated into system calls to interact with
the operating system. Take a look at the following diagram:

Figure 11.3 – Containers and system calls

In the preceding diagram, there are four containers running different applications. These
applications may be written in different programming languages, and all of them call a
function to open a file with a different function name (for example, fopen, open, and
os.Open). However, from the operating system's perspective, all these applications call
the same system call, open, but maybe with different parameters. Falco is able to retrieve
events from system calls so that it doesn't matter what kind of applications they are or
what kind of programming language is in use.

On the other hand, with the help of Kubernetes audit events, Falco has full visibility
into a Kubernetes object's life cycle. This is also important for anomalous detection. For
example, it may be abnormal that there is a pod with a busybox image launched as a
privileged pod in a production environment.

230 Defense in Depth

Overall, the two event sources—system calls and Kubernetes audit events—are sufficient
to cover all the meaningful activities happening in the Kubernetes cluster. Now, with
an understanding of Falco event sources, let's wrap up our overview on Falco with a
high-level architecture diagram.

High-level architecture
Falco is mainly composed of a few components, as follows:

• Falco rules: Rules that are defined to detect whether an event is an anomaly.

• Falco engine: Evaluate an incoming event with Falco rules and throw an output if
an event matches any of the rules.

• Kernel module/Sysdig libraries: Tag system call events and enrich them before
sending to the Falco engine for evaluation.

• Web server: Listen on Kubernetes audit events and pass on to the Falco engine
for evaluation.

The following diagram shows Falco's internal architecture:

Figure 11.4 – Falco's internal architecture

Now, we have wrapped up our overview of Falco. Next, let's try to create some Falco rules
and detect any anomalous behavior.

Detecting anomalies with Falco 231

Creating Falco rules to detect anomalies
Before we dive into Falco rules, make sure you have Falco installed by running the
following command:

helm install --name falco stable/falco

The Falco DaemonSet should be running in your Kubernetes cluster, as illustrated in the
following code block:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

falco-9h8tg 1/1 Running 10 62m

falco-cnt47 1/1 Running 5 3m45s

falco-mz6jg 1/1 Running 0 6s

falco-t4cpw 1/1 Running 0 10s

To enable the Kubernetes audit and register Falco as the webhook backend, please follow
the instructions in the Falco repository (https://github.com/falcosecurity/
evolution/tree/master/examples/k8s_audit_config).

There are three types of elements in the Falco rules, as follows:

• Rule: A condition under which an alert will be triggered. A rule has the following
attributes: rule name, description, condition, priority, source, tags, and output.
When an event matches any rule's condition, an alert is generated based on the
output definition of the rule.

• Macro: A rule condition snippet that can be reused by other rules or macros.

• List: A collection of items that can be used by macros and rules.

To facilitate Falco users in building their own rules, Falco provides a handful of default
lists and macros.

Creating the system call rule
Falco system call rules evaluate system call events—more precisely, the enriched system
calls. System call event fields are provided by the kernel module and are identical to the
Sysdig (an open source tool built by the Sysdig company) filter fields. The policy engine
uses Sysdig's filter to extract information such as the process name, container image, and
file path from system call events and evaluate them with Falco rules.

https://github.com/falcosecurity/evolution/tree/master/examples/k8s_audit_config
https://github.com/falcosecurity/evolution/tree/master/examples/k8s_audit_config

232 Defense in Depth

The following are the most common Sysdig filter fields that can be used to build
Falco rules:

• proc.name: Process name

• fd.name: File name that is written to or read from

• container.id: Container ID

• container.image.repository: Container image name without tag

• fd.sip and fd.sport: Server Internet Protocol (IP) address and server port

• fd.cip and fd.cport: Client IP and client port

• evt.type: System call event (open, connect, accept, execve, and so on)

Let's try to build a simple Falco rule. Assume that you have a nginx pod that serves static
files from the /usr/share/nginx/html/ directory only. So, you can create a Falco
rule to detect any anomalous file read activities as follows:

 - rule: Anomalous read in nginx pod

 desc: Detect any anomalous file read activities in Nginx
pod.

 condition: (open_read and container and container.image.
repository="kaizheh/insecure-nginx" and fd.directory != "/usr/
share/nginx/html")

 output: Anomalous file read activity in Nginx pod
(user=%user.name process=%proc.name file=%fd.name container_
id=%container.id image=%container.image.repository)

 priority: WARNING

The preceding rule used two default macros: open_read and container. The
open_read macro checks if the system call event is open in read mode only, while the
container macro checks if the system call event happened inside a container. Then,
the rule applies to containers running the kaizheh/insecure-nginx image only, and
the fd.directory filter retrieves the file directory information from the system call
event. In this rule, it checks if there is any file read outside of the /usr/share/nginx/
html/ directory. So, what if there is misconfiguration of nginx that leads to file path
traversal (reading files under arbitrary directories)? An example of this is shown in the
following code block:

curl insecure-nginx.insecure-nginx.svc.cluster.local/files../
etc/passwd

root:x:0:0:root:/root:/bin/bash

Detecting anomalies with Falco 233

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/
gnats:/usr/sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

_apt:x:100:65534::/nonexistent:/bin/false

At the same time, Falco detects file access beyond the designated directory, with the
following output:

08:22:19.484698397: Warning Anomalous file read activity
in Nginx pod (user=<NA> process=nginx file=/etc/passwd
container_id=439e2e739868 image=kaizheh/insecure-nginx) k8s.
ns=insecure-nginx k8s.pod=insecure-nginx-7c99fdf44b-gffp4
container=439e2e739868 k8s.ns=insecure-nginx k8s.pod=insecure-
nginx-7c99fdf44b-gffp4 container=439e2e739868

Next, let's look at how to use K8s audit rules.

234 Defense in Depth

Creating K8s audit rules
K8s audit rules evaluate Kubernetes audit events. We've already shown what a Kubernetes
audit event record looks like, earlier in this chapter. Similar to Sysdig filters, there are
two ways to retrieve the information out of a Kubernetes audit event. One is to use the
JavaScript Object Notation (JSON) pointer; the other is to use Falco built-in filters. The
following are a few commonly used Falco built-in filters to retrieve the information of
Kubernetes audit events:

• ka.verb: The verb field of the Kubernetes audit event. jevt.value[/verb] is
its corresponding JSON pointer.

• ka.target.resource: The resource field of the Kubernetes audit event.
jevt.value[/objectRef/resource] is its corresponding JSON pointer.

• ka.user.name: The username field of the Kubernetes audit event. jevt.
value[/user/username] is its corresponding JSON pointer.

• ka.uri: The requestURI field of the Kubernetes audit event. jet.value[/
requestURI] is its corresponding JSON pointer.

Let's try to build a simple K8s audit rule. Assume that you don't want to deploy images in
the kube-system namespaces except a few trusted images for services such as kube-
apiserver, etcd-manager, and more. So, you can create a Falco rule, as follows:

- list: trusted_images

 items: [calico/node, kopeio/etcd-manager, k8s.gcr.io/kube-
apiserver, k8s.gcr.io/kube-controller-manager, k8s.gcr.io/kube-
proxy, k8s.gcr.io/kube-scheduler]

- rule: Untrusted Image Deployed in kube-system Namespace

 desc: >

 Detect an untrusted image deployed in kube-system namespace

 condition: >

 kevt and pod

 and kcreate

 and ka.target.namespace=kube-system

 and not ka.req.pod.containers.image.repository in (trusted_
images)

 output: Untrusted image deployed in kube-system namespace
(user=%ka.user.name image=%ka.req.pod.containers.image.
repository resource=%ka.target.name)

Conducting forensics with Sysdig Inspect and CRIU 235

 priority: WARNING

 source: k8s_audit

 tags: [k8s]

First, we define a list of trusted images that will be allowed to be deployed in the kube-
system namespace. In the rule, we use two default macros: pod and kcreate. The pod
macro checks if the target resource is a pod, while kcreate checks if the verb is create.
We also check if the target namespace is kube-system and that the deploying image is
not in the trusted_images list. The k8s_audit value from the source field of the
rule indicates this rule evaluates the Kubernetes audit events. Then, if we try to deploy a
busybox image pod in the kube-system namespace, we will see the following alert
from Falco:

21:47:15.063915008: Warning Untrusted image deployed in kube-
system namespace (user=admin image=busybox resource=pod-1)

Note that in order for this rule to work, the audit level for a pod's creation needs to be at
least at the Request level, with which the audit events include the pod's specification
information, such as the image.

In this section, we introduced Falco and showed you how to create Falco rules from both
event sources: system calls and Kubernetes audit events. Both rules are used to detect
anomalous activities based on the known benign activities of the workload or cluster.
Next, let's talk about how to do forensics in the Kubernetes cluster.

Conducting forensics with Sysdig Inspect
and CRIU
Forensics in cybersecurity means collecting, processing, and analyzing information in
support of vulnerability mitigation and/or fraud, counterintelligence, or law enforcement
investigations. The more data you can preserve and the faster the analysis you can conduct
on the collected data, the quicker you will trace down an attack and respond to the
incident better. In this section, we will show you how to use the CRIU and Sysdig open
source tools to collect data, and then introduce Sysdig Inspect, an open source tool for
analyzing data collected by Sysdig.

236 Defense in Depth

Using CRIU to collect data
CRIU is the abbreviation of Checkpoint and Restore In Userspace. It is a tool that
can freeze a running container and capture the container's state on disk. Later on, the
container's and application's data saved on the disk can be restored to the state it was
at the time of the freeze. It is useful for container snapshots, migration, and remote
debugging. From a security standpoint, it is especially useful to capture malicious
activities in action in the container (so that you may kill the container right after the
checkpoint) and then restore the state in a sandboxed environment for further analysis.

CRIU works as a Docker plugin and is still in experimental mode, and there is a known
issue that CRIU is not working properly in the most recent few versions (https://
github.com/moby/moby/issues/37344). For demo purposes, I have used an
older Docker version (Docker CE 17.03) and will show how to use CRIU to checkpoint
a running container and restore the state back as a new container.

To enable CRIU, you will need to enable the experimental mode in the Docker
daemon, as follows:

echo "{\"experimental\":true}" >> /etc/docker/daemon.json

And then, after restarting the Docker daemon, you should be able to execute the docker
checkpoint command successfully, like this:

docker checkpoint

Usage: docker checkpoint COMMAND

Manage checkpoints

Options:

 --help Print usage

Commands:

 create Create a checkpoint from a running container

 ls List checkpoints for a container

 rm Remove a checkpoint

Then, follow the instructions to install CRIU (https://criu.org/Installation).
Next, let's see a simple example to show how powerful CRIU is. I have a simple busybox
container running to increase the counter by 1 every second, as illustrated in the
following code snippet:

docker run -d --name looper --security-opt seccomp:unconfined
busybox /bin/sh -c 'i=0; while true; do echo $i; i=$(expr $i +
1); sleep 1; done'

91d68fafec8fcf11e7699539dec0b037220b1fcc856fb7050c58ab90ae8cbd13

https://github.com/moby/moby/issues/37344
https://github.com/moby/moby/issues/37344
https://criu.org/Installation

Conducting forensics with Sysdig Inspect and CRIU 237

After sleeping for a few seconds, I then see the output of the counter increasing, as follows:

sleep 5

docker logs looper

0

1

2

3

4

5

Next, I would like to checkpoint the container and store the state to the local filesystem,
like this:

docker checkpoint create --checkpoint-dir=/tmp looper
checkpoint

checkpoint

Now, the checkpoint state has been saved under the /tmp directory. Note that the
container looper will be killed after the checkpoint unless you specify a --leave-
running flag when creating the checkpoint.

Then, create a mirror container without running it, like this:

docker create --name looper-clone --security-opt
seccomp:unconfined busybox /bin/sh -c 'i=0; while true; do echo
$i; i=$(expr $i + 1); sleep 1; done'

49b9ade200e7da6bbb07057da02570347ad6fefbfc1499652ed286b874b59f2b

Now, we can start the new looper-clone container with the stored state. Let's wait another
few seconds and see what happens. The result can be seen in the following code snippet:

docker start --checkpoint-dir=/tmp --checkpoint=checkpoint
looper-clone

sleep 5

docker logs looper-clone

6

7

8

9

10

238 Defense in Depth

The new looper-clone container starts counting at 6, which means the state
(the counter was 5) was successfully restored and used.

CRIU is very useful for container forensics, especially when there are some suspicious
activities happening in a container. You can checkpoint the container (assuming you have
multiple replicas running within the cluster), let CRIU kill the suspicious container, and
then restore the suspicious state of the container in a sandboxed environment for further
analysis. Next, let's talk about another way to capture data for forensics.

Using Sysdig and Sysdig Inspect
Sysdig is an open source tool for Linux system exploration and troubleshooting with
support for containers. Sysdig can also be used to create trace files for system activity
through instrumenting into the Linux kernel and capturing system calls and other
operating system events. The capture capability makes it an awesome forensics tool for
a containerized environment. To support capture system calls in the Kubernetes cluster,
Sysdig offers a kubectl plugin, kubectl-capture, which enables you to capture
system calls of the target pods as simply as with some other kubectl commands. After
the capture is finished, Sysdig Inspect, a powerful open source tool, can be used to do
troubleshooting and security investigation.

Let's continue to use insecure-nginx as an example, since we've got a Falco alert, as
illustrated in the following code snippet:

08:22:19.484698397: Warning Anomalous file read activity
in Nginx pod (user=<NA> process=nginx file=/etc/passwd
container_id=439e2e739868 image=kaizheh/insecure-nginx) k8s.
ns=insecure-nginx k8s.pod=insecure-nginx-7c99fdf44b-gffp4
container=439e2e739868 k8s.ns=insecure-nginx k8s.pod=insecure-
nginx-7c99fdf44b-gffp4 container=439e2e739868

By the time the alert was triggered, it is still possible the nginx pod was undergoing an
attack. There are a few things you can do to respond. Starting a capture and then analyzing
more context out of the Falco alert is one of them.

To trigger a capture, download kubectl-capture from https://github.com/
sysdiglabs/kubectl-capture and place it with the other kubectl plugins,
like this:

$ kubectl plugin list

The following compatible plugins are available:

https://github.com/sysdiglabs/kubectl-capture
https://github.com/sysdiglabs/kubectl-capture

Conducting forensics with Sysdig Inspect and CRIU 239

/Users/kaizhehuang/.krew/bin/kubectl-advise_psp

/Users/kaizhehuang/.krew/bin/kubectl-capture

/Users/kaizhehuang/.krew/bin/kubectl-ctx

/Users/kaizhehuang/.krew/bin/kubectl-krew

/Users/kaizhehuang/.krew/bin/kubectl-ns

/Users/kaizhehuang/.krew/bin/kubectl-sniff

Then, start a capture on the nginx pod, like this:

$ kubectl capture insecure-nginx-7c99fdf44b-4fl5s -ns insecure-
nginx

Sysdig is starting to capture system calls:

Node: ip-172-20-42-49.ec2.internal

Pod: insecure-nginx-7c99fdf44b-4fl5s

Duration: 120 seconds

Parameters for Sysdig: -S -M 120 -pk -z -w /capture-insecure-
nginx-7c99fdf44b-4fl5s-1587337260.scap.gz

The capture has been downloaded to your hard disk at:

/Users/kaizhehuang/demo/chapter11/sysdig/capture-insecure-
nginx-7c99fdf44b-4fl5s-1587337260.scap.gz

Under the hood, kubectl-capture starts a new pod to do the capture on the host
where the suspected victim pod is running, with a 120-second capture duration, so
that we can see everything that is happening right now and in the next 120 seconds in
that host. Once the capture is done, the zipped capture file will be created in the current
working directory. You can bring in Sysdig Inspect as a Docker container to start a
security investigation, like this:

$ docker run -d -v /Users/kaizhehuang/demo/chapter11/sysdig:/
captures -p3000:3000 sysdig/sysdig-inspect:latest

17533f98a947668814ac6189908ff003475b10f340d8f3239cd3627fa9747769

240 Defense in Depth

Now, log in to http://localhost:3000, and you should see the login user interface
(UI). Remember to unzip the scap file so that you should be able to see the overview
page of the capture file, as follows:

Figure 11.5 – Sysdig Inspect overview

Sysdig Inspect provides a full-blown insight into the activities happening inside the
containers from the following angles:

• Executed commands

• File access

• Network connections

• System calls

Let's do a little more digging than just the Falco alert. From the alert, we may suspect this
is a file path traversal issue as it is the nginx process accessing the /etc/passwd file,
and we know that this pod serves static files only so that the nginx process should never
access any files outside of the /usr/share/nginx/html/ directory. Now, let's take a
look at the following screenshot to see what the network requests sent to nginx pod were:

Conducting forensics with Sysdig Inspect and CRIU 241

Figure 11.6 – Sysdig Inspect investigating network connections to nginx

After looking into the connections, we see that the requests came from a single IP,
100.123.226.66, which looks like a pod IP. Could it be from the same cluster? Click
the Containers view on the left panel and specify fd.cip=100.123.226.66 in the
filter. Then, you will find out it is from the anchore-cli container, as shown in the
following screenshot:

Figure 11.7 – Sysdig Inspect investigating a container sending a request to nginx

The anchore-cli pod actually happens to run on the same node as the nginx pod,
as shown in the following code block:

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES

anchore-cli 1/1 Running 1 77m 100.123.226.66
ip-172-20-42-49.ec2.internal <none> <none>

$ kubectl get pods -n insecure-nginx -o wide

NAME READY STATUS RESTARTS
AGE IP NODE NOMINATED
NODE READINESS GATES

insecure-nginx-7c99fdf44b-4fl5s 1/1 Running 0
78m 100.123.226.65 ip-172-20-42-49.ec2.internal <none>
<none>

242 Defense in Depth

Now we know that there might be some file path traversal attack launched from the
anchore-cli pod, let's look at what this is (just double-click on the entry in the
preceding Sysdig Inspect page), as follows:

Figure 11.8 – Sysdig Inspect investigating path traversal attack commands

We found that there is list of file path traversal commands executed in the anchore-cli
pod, detailed as follows:

• curl 100.71.138.95/files../etc/

• curl 100.71.138.95/files../

• curl 100.71.138.95/files../etc/passwd

• curl 100.71.138.95/files../etc/shadow

We're now able to get a step closer to the attacker, and the next step is to try to investigate
more into how the attacker landed in the anchore-cli pod.

Both CRIU and Sysdig are powerful tools to conduct forensics in a containerized
environment. Hopefully, the CRIU issue can be fixed soon. And note that CRIU also
requires the Docker daemon to be run in experimental mode, while Sysdig and Sysdig
Inspect work more at the Kubernetes level. Sysdig Inspect provides a nice UI to help
navigate through different activities that happened in the pods and containers.

Summary 243

Summary
In this long chapter, we covered Kubernetes auditing, high availability for a Kubernetes
cluster, managing secrets with Vault, detecting anomalous activities with Falco, and
conducting forensics with CRIU and Sysdig. Though you may find it will take quite some
time to get familiar with all the practices and tools, defense in depth is a huge topic and it
is worth digging deeper into security so that you may build up a stronger fence for your
Kubernetes cluster.

Most of the tools we talked about are easy to install and deploy. I would encourage you
to try them out: add your own Kubernetes audit rules, use Vault to manage secrets in
Kubernetes clusters, build your own Falco rules to detect anomalous behavior because
you know your cluster better than anyone else, and use Sysdig to collect all the forensics
data. Once you get familiar with all of these tools, you should feel confident that your
Kubernetes cluster is a bit more under control.

In the next chapter, we're going to talk about some known attacks, such as the crypto
mining hack against Kubernetes clusters, and see how we can use the techniques we
learned in this book to mitigate these attacks.

Questions
1. Why should we not set the audit level to Request or RequestResponse for

secret objects?

2. What flag is used to set up multiple master nodes in kops?

3. What does the sidecar container do when a secret is updated in Vault?

4. What are the event sources that Falco uses?

5. Which filter does Falco use to retrieve the process name from the system call event?

6. What can CRIU do to a running container?

7. What can you do with Sysdig Inspect?

244 Defense in Depth

Further references
• Kubernetes auditing: https://kubernetes.io/docs/tasks/debug-

application-cluster/audit/

• High availability with kubeadm: https://kubernetes.io/docs/setup/
production-environment/tools/kubeadm/high-availability/

• Vault: https://www.vaultproject.io/docs/internals/architecture

• Falco: https://falco.org/docs/

• Sysdig filtering: https://github.com/draios/sysdig/wiki/Sysdig-
User-Guide#user-content-filtering

• CRIU: https://criu.org/Docker

• Sysdig kubectl-capture: https://sysdig.com/blog/tracing-in-
kubernetes-kubectl-capture-plugin/

• Sysdig Inspect: https://github.com/draios/sysdig-inspect

• Sysdig: https://github.com/draios/sysdig

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://www.vaultproject.io/docs/internals/architecture
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#user-content-filtering
https://github.com/draios/sysdig/wiki/Sysdig-User-Guide#user-content-filtering
https://criu.org/Docker
https://sysdig.com/blog/tracing-in-kubernetes-kubectl-capture-plugin/
https://sysdig.com/blog/tracing-in-kubernetes-kubectl-capture-plugin/
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig

Section 3:
Learning from

Mistakes and Pitfalls

In this section, you will learn about some attack scenarios involving Kubernetes clusters,
from known attacks and CVEs to mitigation and prevention strategies.

The following chapters are included in this section:

• Chapter 12, Analyzing and Detecting Crypto-Mining Attacks

• Chapter 13, Learning from Kubernetes CVEs

12
Analyzing and

Detecting Crypto-
Mining Attacks

Crypto-mining attacks are becoming more notable as blockchain and cryptocurrency
are becoming more and more popular. Cryptocurrency is earned as the transaction fee of
decentralized transactions on a blockchain for utilizing compute resources. The process
of earning cryptocurrency for validating transactions using compute resources is called
crypto-mining and is conducted by a software called a crypto-miner. Security researchers
have found hacking incidents related to various crypto-miner binaries running within
victims' infrastructures. The default openness of Kubernetes clusters and the availability
of the extensive compute power required for mining makes Kubernetes clusters a perfect
target for crypto-mining attacks. The complexity of Kubernetes clusters also makes
crypto-mining activities hard to detect.

Since we've already been introduced to different Kubernetes built-in security mechanisms
and open source tools to secure Kubernetes clusters, we'll now look at how to use them in
a concrete scenario. In this chapter, we will first analyze a couple of known crypto-mining
attacks, then we will discuss the detection mechanisms for crypto-mining attacks by using
open source tools. Last but not least, we will recap the topics we discussed in previous
chapters and see how they should be applied to defend our environment against attacks
in general.

248 Analyzing and Detecting Crypto-Mining Attacks

The following topics will be covered in this chapter:

• Analyzing crypto-mining attacks

• Detecting mining attacks

• Defending against attacks

Analyzing crypto-mining attacks
In this section, we will first provide a brief introduction to crypto-mining attacks, and then
we will analyze some publicly disclosed crypto-mining attacks. We hope that you are aware
of the crypto-mining attack patterns as well as the flaws that make the attack possible.

An introduction to crypto-mining attacks
Blockchain forms the basis for cryptocurrency. In short, blockchain is a chain of digital
assets represented as blocks. These blocks have information about the transaction and who
was involved in the transaction as a digital signature. Each cryptocurrency is associated
with a blockchain. The process of verifying transactional records is called mining. Mining
adds history to the blockchain to ensure that blocks cannot be modified in the future.
Mining is designed to be resource-intensive to ensure the decentralized property of a
blockchain. By successfully mining blocks, miners earn the transaction fee that is associated
with the transaction. So, if you have a laptop or PC, you can use it to mine cryptocurrency,
too; but most likely, you will need some dedicated GPUs or specialized hardware, such as
Field-Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuit
(ASIC) in order to do a good job of mining. The availability of resources in Kubernetes
clusters makes them an ideal target for attackers to earn cryptocurrency.

A crypto-mining attack is just like free riding on Wi-Fi. Just as your network bandwidth
will be shared by the free rider, some (or most) of your CPU or computing resources will
be occupied by the mining processes without your consent. The impact is also similar.
If the Wi-Fi free rider is downloading movies via BitTorrent using your Wi-Fi network,
you may have a poor experience while watching Netflix. When there is a mining process
running, other applications running in the same node will be severely impacted as the
mining process may occupy the CPU most of the time.

Crypto-mining attacks have become one of the most appealing attacks to hackers as
it is an almost guaranteed way of gaining some benefits out of a successful intrusion.
Thieves come only to steal or destroy. If disruption is not the goal of the intrusion,
a crypto-mining attack is probably one of the main choices for hackers.

Analyzing crypto-mining attacks 249

At least two ways for hackers to launch a crypto-mining attack on a target victim have
been reported. One is through application vulnerabilities, such as cross-site scripting, SQL
injection, remote code execution, and more, so that the hacker gains access to the system,
then downloads and executes the miner binary. The other way is through a malicious
container image. When a container is created from the image that contains the mining
binary, the mining process starts.

Although there are different types of crypto-mining binaries available on the internet,
in general, the mining process is computation heavy and occupies a lot of CPU cycles.
The mining process sometimes joins a mining pool in order to carry out mining in a
collaborative way.

Next, let's look at a couple of crypto-mining attacks that have occurred in the real world. We
will discuss the flaws that made the attacks possible and we will look at the attack patterns.

The crypto-mining attack on Tesla's Kubernetes cluster
A crypto-mining attack on Tesla's Kubernetes cluster occurred in 2018 and was reported
by RedLock. Although the attack took place quite a while ago, there are at least two things
we can learn from it—the flaw that made the attack possible and the attack patterns.

The flaw
The hacker infiltrated the Kubernetes dashboard, which was not protected by a password.
From the dashboard, the hacker gained some important secrets to access the Amazon
S3 buckets.

The attack patterns
The hackers did a pretty good job of hiding their footprint so that they could avoid being
detected. The following are a few patterns worth mentioning:

• The mining process did not occupy too many CPU cycles, so the CPU usage of the
pod was not too high.

• Unlike most crypto-mining cases, the mining process did not join any well-known
mining pools. Instead, it had its own mining server, which sat behind Cloudflare,
a Content Delivery Network (CDN) service.

• The communication between the mining process and the mining server
was encrypted.

250 Analyzing and Detecting Crypto-Mining Attacks

With the preceding maneuver, the hacker purposely tried to hide the crypto-mining
pattern so that they could evade detection.

Graboid – a crypto-worm attack
This crypto-worm attack was discovered by the Palo Alto Network Unit42 research team
in late 2019. Although the attack was not directed against Kubernetes clusters, this was
aimed at Docker daemons, which is one of the foundation pillars in a Kubernetes cluster.
In one of the attack steps, the toolkit downloaded images containing a crypto-mining
binary from Docker Hub and launched. This step can also be applied to Kubernetes
clusters too.

The flaw
The Docker engine was exposed to the internet while it was configured without
authentication and authorization. The attacker could easily take full control of the
Docker engine.

The attack patterns
Once the hacker took control over the Docker engine, they started downloading a
malicious image and launched a container. The following are a few patterns worth
mentioning regarding the malicious container:

• The malicious container contacted the command and control server to download
some malicious scripts.

• The malicious container contained a Docker client binary, which was used to
control other insecure Docker engines.

• The malicious container initiated commands via the Docker client to other insecure
Docker engines to download and launch another image, which contained the
crypto-mining binary.

According to Shodan, a search engine for internet-connected devices, more than 2,000
Docker engines were exposed to the internet. The preceding steps were repeated so that
the crypto-mining worm spread.

Detecting crypto-mining attacks 251

Lessons learned
To recap what we have discussed about the two known crypto-mining attacks,
misconfiguration is one of the major issues that make hacking easy. Crypto-mining has
some typical patterns—for example, the mining process will communicate with mining
pools and the mining process usually occupies a lot of CPU cycles. However, hackers may
purposely disguise their mining behavior to evade detection. Once hackers get into the
pod, they can start the contacting command and control server to download and execute
the mining binary; on the other hand, they can also start reconnaissance. It would be
easy for them to make a lateral move if the security domain in your Kubernetes cluster is
not properly configured. Next, let's use the open source tools we introduced in previous
chapters to detect typical crypto-mining activities in Kubernetes clusters.

Detecting crypto-mining attacks
In this section, we are going to talk about detecting crypto-mining activities in the
Kubernetes cluster with some of the open source tools we introduced in earlier chapters.
We detect crypto-mining activities based on the known patterns of crypto-mining: high
CPU usage, communicating to mining pools, the executed command line of miner,
and the binary signature. Note that each individual measure has its own limitations.
Combining them improves the efficiency of detection for sure. However, there are still
some advanced crypto-mining attacks, such as the one that attacked Tesla. It's necessary
for you to work with your security team to apply a comprehensive detection strategy for
your Kubernetes cluster to cover all kinds of intrusion.

In order to demonstrate each tool to detect crypto-mining, we simulate a victim
nginx pod:

$ kubectl get pods -n insecure-nginx

NAME READY STATUS RESTARTS
AGE

insecure-nginx-8455b6d49c-z6wb9 1/1 Running 0
163m

Inside the nginx pod, there is a miner binary located in the /tmp directory:

root@insecure-nginx-8455b6d49c-z6wb9:/# ls /tmp

minerd2 perg

252 Analyzing and Detecting Crypto-Mining Attacks

minerd2 is the mining binary. We can assume that minerd2 is either seeded in the
image or downloaded from a command and control server. First, let's see how monitoring
the CPU usage can help detect crypto-mining activities.

Note
It is not recommended that you run crypto-mining binaries in your production
servers. This is for educational purposes only.

Monitoring CPU utilization
As we discussed in Chapter 10, Real-Time Monitoring and Resource Management of
a Kubernetes Cluster, resource management and resource monitoring are crucial to
maintaining a service's availability. Crypto-mining usually occupies tons of CPU cycles,
which leads to the CPU usage of a container or a pod reaching a significantly higher level.
Let's take a look at an example by comparing the CPU usage before and after crypto-mining
happens within an nginx pod:

Figure 12.1 – The CPU usage of an nginx pod before mining happens in Grafana metrics

The preceding screenshot shows the CPU usage of the insecure-nginx pod monitored
by Prometheus and Grafana. In general, the maximum CPU usage rate is less than 0.1.
When the crypto-mining binary is executed, you will find that the CPU usage skyrockets:

Detecting crypto-mining attacks 253

Figure 12.2 – The CPU usage of an nginx pod after mining happens

The CPU usage rate hikes from an average rate of 0.07 to around 2.4. No matter
what happens behind the scenes, such a huge CPU usage hike should get your attention
immediately. It's also quite obvious that even with this CPU surge, it doesn't mean there
is a crypto-mining binary running inside the pod. The CPU surge can be caused by some
other reasons, too.

On the flip side, if the hacker purposely restricts the crypto-mining attack progress, as was
the case with the attack on Tesla, there may only be a little hike in the CPU that is hard to
notice. Next, let's look at how Falco can help detect crypto-mining activities.

Detecting network traffic to a mining pool
One typical crypto-mining process behavior is where the mining process works
collaboratively with other mining processes within the same mining pool for the purpose
of mining efficiently. The mining processes communicate with the mining pool server
during mining.

In Falco's default rules, there is one rule to detect outbound connections to known mining
pools. Let's take a closer look at this rule. First, there are predefines lists for mining ports
and the mining domain (https://github.com/falcosecurity/falco/blob/
master/rules/falco_rules.yaml#L2590):

- list: miner_ports

 items: [

 25, 3333, 3334, 3335, 3336, 3357, 4444,

 5555, 5556, 5588, 5730, 6099, 6666, 7777,

https://github.com/falcosecurity/falco/blob/master/rules/falco_rules.yaml#L2590
https://github.com/falcosecurity/falco/blob/master/rules/falco_rules.yaml#L2590

254 Analyzing and Detecting Crypto-Mining Attacks

 7778, 8000, 8001, 8008, 8080, 8118, 8333,
 8888, 8899, 9332, 9999, 14433, 14444,
 45560, 45700
]

- list: miner_domains
 items: [
 "Asia1.ethpool.org","ca.minexmr.com", "monero.crypto-
pool.fr",
 ...
 "xmr-jp1.nanopool.org","xmr-us-east1.nanopool.org",
 "xmr-us-west1.nanopool.org","xmr.crypto-pool.fr",
 "xmr.pool.minergate.com"
]

Then, there is a predefined macro for network connections to the preceding miner ports
and miner domains:

- macro: minerpool_other

 condition: (fd.sport in (miner_ports) and fd.sip.name in
(miner_domains))

Besides the minerpool_other macro, there are two other macros for HTTP and
HTTPS connections, respectively—minerpool_http and minerpool_https—and
all of them combine to get the main detection logic:

- macro: net_miner_pool

 condition: (evt.type in (sendto, sendmsg) and evt.dir=<
and (fd.net != "127.0.0.0/8" and not fd.snet in (rfc_1918_
addresses)) and ((minerpool_http) or (minerpool_https) or
(minerpool_other)))

The net_miner_pool macro is then used by the Detect outbound connections
to common miner pool ports rule to detect outbound connections to
miner domains:

The rule is disabled by default.

Note: Falco will send DNS requests to resolve miner pool
domains which may trigger alerts in your environment.

- rule: Detect outbound connections to common miner pool ports

 desc: Miners typically connect to miner pools on common
ports.

Detecting crypto-mining attacks 255

 condition: net_miner_pool and not trusted_images_query_miner_
domain_dns

 enabled: true

 output: Outbound connection to IP/Port flagged by cryptoioc.
ch (command=%proc.cmdline port=%fd.rport ip=%fd.rip
container=%container.info image=%container.image.repository)

 priority: CRITICAL

 tags: [network, mitre_execution]

If there is a crypto-mining process running and communicating to the miner domains
defined in the list, the alert will be triggered, as follows:

19:46:37.939287649: Critical Outbound connection to
IP/Port flagged by cryptoioc.ch (command=minerd2 -a
cryptonight -o stratum+tcp://monero.crypto-pool.fr:3333 -u
49TfoHGd6apXxNQTSHrMBq891vH6JiHmZHbz5Vx36nLRbz6WgcJunTtgcxno
G6snKFeGhAJB5LjyAEnvhBgCs5MtEgML3LU -p x port=37110
ip=100.97.244.198 container=k8s.ns=insecure-nginx k8s.
pod=insecure-nginx-8455b6d49c-z6wb9 container=07dce07d5100
image=kaizheh/victim) k8s.ns=insecure-nginx k8s.pod=insecure-
nginx-8455b6d49c-z6wb9 container=07dce07d5100 k8s.
ns=insecure-nginx k8s.pod=insecure-nginx-8455b6d49c-z6wb9
container=07dce07d5100

The Detect outbound connections to common miner pool ports rule
is straightforward. If there is an alert generated by this rule, you should address it as
high-priority. The limitation of the rule is also obvious; you will have to keep the mining
domain and mining ports updated. If there is a new mining domain available or a new
mining server port is used and they are not added to the Falco list, then the rule will miss
detecting the crypto-mining activities. Note that the rule is disabled by default. As Falco
needs to send DNS requests to resolve the miner pool domains, these DNS requests will
be alerted by some cloud providers. A side note is that an open source tool such as Hubble
from Cilium can help monitor network traffic.

Another approach is to use the whitelist approach. If you know the target port or IP blocks
in the outbound connections of your microservices, you can create Falco rules to alert any
outbound connection's destination IPs or ports that are not on the whitelist. The following
is an example:

- list: trusted_server_addresses

 items: [...]

- list: trusted_server_ports

256 Analyzing and Detecting Crypto-Mining Attacks

 items: [...]

- rule: Detect anomalous outbound connections

 desc: Detect anomalous outbound connections

 condition: (evt.type in (sendto, sendmsg) and container and
evt.dir=< and (fd.net != "127.0.0.0/8" and not fd.snet in
(trusted_server_addresses) or not fd.sport in (trusted_server_
ports)))

 output: Outbound connection to anomalous IP/
Port(command=%proc.cmdline port=%fd.rport ip=%fd.rip
container=%container.info image=%container.image.repository)

 priority: CRITICAL

The preceding rule alerts any outbound connection to IP addresses or ports outside of
trusted_server_ports or trusted_server_addresses. Given that the attack
happened in Tesla, Falco will alert that there is an anomalous connection, even though
the IP address looks normal. Next, let's look at another Falco rule to detect potential
crypto-mining activities based on patterns in the command line.

Detecting launched crypto-mining processes
Stratum mining protocol is the most common protocol for the mining process
to communicate with mining servers. Some mining binaries allow users to specify
protocols to communicate with the mining pool server when executed.

In Falco's default rules, there is one to detect the crypto binaries' execution based on
keywords in the command line:

- rule: Detect crypto miners using the Stratum protocol

 desc: Miners typically specify the mining pool to connect to
with a URI that begins with 'stratum+tcp'

 condition: spawned_process and proc.cmdline contains
"stratum+tcp"

 output: Possible miner running (command=%proc.cmdline
container=%container.info image=%container.image.repository)

 priority: CRITICAL

 tags: [process, mitre_execution]

Detecting crypto-mining attacks 257

The Detect crypto miners using the Stratum protocol rule will raise an
alert if Falco detects any processes launched with stratum+tcp and is specified in the
process's command line. The output looks as follows:

19:46:37.779784798: Critical Possible miner running
(command=minerd2 -a cryptonight -o stratum+tcp://monero.crypto-
pool.fr:3333 -u 49TfoHGd6apXxNQTSHrMBq891vH6JiHmZHbz5Vx36
nLRbz6WgcJunTtgcxnoG6snKFeGhAJB5LjyAEnvhBgCs5MtEgML3LU -p
x container=k8s.ns=insecure-nginx k8s.pod=insecure-nginx-
8455b6d49c-z6wb9 container=07dce07d5100 image=kaizheh/victim)
k8s.ns=insecure-nginx k8s.pod=insecure-nginx-8455b6d49c-z6wb9
container=07dce07d5100 k8s.ns=insecure-nginx k8s.pod=insecure-
nginx-8455b6d49c-z6wb9 container=07dce07d5100

The minerd2 -a cryptonight -o stratum+tcp://monero.crypto-pool.
fr:3333 -u 49TfoHGd6apXxNQTSHrMBq891vH6JiHmZHbz5Vx36nLRbz6Wgc
JunTtgcxnoG6snKFeGhAJB5LjyAEnvhBgCs5MtEgML3LU -p x command
line that was executed contains the stratum+tcp keyword. That's why the alert
was triggered.

Like other name-based detection rules, the limitation of the rule is obvious. If the crypto
binary execution does not contain stratum+tcp, the rule will not be triggered.

The preceding rule uses the blacklist approach. Another way is to use a whitelist approach
if you know the processes that are going to run in the microservices. You can define a
Falco rule to raise an alert when any process that is not on the trusted list is launched.
The following is an example of this:

- list: trusted_nginx_processes

 items: ["nginx"]

- rule: Detect Anomalous Process Launched in Nginx Container

 desc: Anomalous process launched inside container.

 condition: spawned_process and container and not proc.name in
(trusted_nginx_processes) and image.repository.name="nginx"

 output: Anomalous process running in Nginx container
(command=%proc.cmdline container=%container.info
image=%container.image.repository)

 priority: CRITICAL

 tags: [process]

258 Analyzing and Detecting Crypto-Mining Attacks

The preceding rule will alert any anomalous process launched in an nginx container,
which includes the crypto-mining processes. Last but not least, let's look at how image
scanning tools can help detect the existence of crypto-mining binaries through integrating
with malware feed services.

Checking the binary signature
Crypto-mining binaries can sometimes be recognized as malware. Like traditional
anti-virus software, we can also check the hash value of running binaries against the
malware feeds. With the help of an image scanning tool, such as Anchore, we can get
the file's hash values:

root@anchore-cli:/# anchore-cli --json image content kaizheh/
victim:nginx files | jq '.content | .[] | select(.filename=="/
tmp/minerd2")'

{

 "filename": "/tmp/minerd2",

 "gid": 0,

 "linkdest": null,

 "mode": "00755",

 "sha256": "e86db6abf96f5851ee476eeb8c847cd73aebd0bd903827a362
c07389d71bc728",

 "size": 183048,

 "type": "file",

 "uid": 0

}

The hash value of the /tmp/minerd2 file is e86db6abf96f5851ee476eeb8c847
cd73aebd0bd903827a362c07389d71bc728. Then, we can check the hash value
against VirusTotal, which provides malware feed service:

$ curl -H "Content-Type: application/json" "https://www.
virustotal.com/vtapi/v2/file/report?apikey=$VIRUS_FEEDS_API_
KEY&resource=e86db6abf96f5851ee476eeb8c847cd73aebd0bd903827a
362c07389d71bc728" | jq .

Detecting crypto-mining attacks 259

$VIRUS_FEEDS_API_KEY is your API key to access the VirusTotal API service, which
then provides the following report:

{

 "scans": {

 "Fortinet": {

 "detected": true,

 "version": "6.2.142.0",

 "result": "Riskware/CoinMiner",

 "update": "20200413"

 },

 ...

 "Antiy-AVL": {

 "detected": true,

 "version": "3.0.0.1",

 "result": "RiskWare[RiskTool]/Linux.BitCoinMiner.a",

 "update": "20200413"

 },

 },

 ...

 "resource":
"e86db6abf96f5851ee476eeb8c847cd73aebd0bd903827a362c07389d71bc
728",

 "scan_date": "2020-04-13 18:22:56",

 "total": 60,

 "positives": 25,

 "sha256":
"e86db6abf96f5851ee476eeb8c847cd73aebd0bd903827a362c07389d71bc
728",

 }

The VirusTotal report shows that /tmp/minerd2 has been reported as malware by 25
different feed sources, such as Fortinet and Antiy AVL. By integrating an image scanning
tool and malware feeds service in your CI/CD pipeline, you can help detect malware at an
early stage in the development life cycle. However, the downside of this single approach
is that you will miss the crypto-mining attack if the mining binary is downloaded from
the command and control server into a running pod. Another limitation is that if the feed
server doesn't have any information about the crypto binary, you will definitely miss it.

260 Analyzing and Detecting Crypto-Mining Attacks

We have talked about four different approaches to detect crypto-mining attacks. Each of
these approaches has its own advantages and limitations; it would be ideal to apply some
of these approaches together to improve their detection capability and detection efficacy.

Next, let's recap what we've discussed in this book, and comprehensively use this
knowledge to prevent attacks in general.

Defending against attacks
In the previous section, we talk about a few ways of detecting crypto-mining activities.
In this section, we will talk about defending against attacks in general by securing
Kubernetes clusters. So, this involves more than just defending against a particular attack,
but defending against all kinds of attacks. The four major defense areas are Kubernetes
cluster provisioning, build, deployment, and runtime. First, let's talk about securing
Kubernetes cluster provisioning.

Securing Kubernetes cluster provisioning
There are multiple ways to provision Kubernetes clusters such as kops and kubeadm.
No matter which tool you use to provision a cluster, each Kubernetes component
needs to be configured securely. Use kube-bench to benchmark your Kubernetes
cluster and improve the security configurations. Make sure that RBAC is enabled, the
--anonymous-auth flag is disabled, network connections are encrypted, and so on.
The following are the key areas we covered in Chapter 6, Securing Cluster Components,
and Chapter 7, Authentication, Authorization, and Admission Control:

• Properly configuring authentication and authorization for the Kubernetes control
plane, kubelet, and so on

• Securing communication between Kubernetes components—for example,
communication between kube-apiserver, kubelet, kube-apiserver,
and etcd

• Enabling data encryption at rest for etcd

• Ensuring you do not launch unnecessary components, such as the dashboard

• Making sure all the necessary admission controllers are enabled while the
deprecated ones are disabled

Defending against attacks 261

With the Kubernetes clusters securely provisioned, there are fewer chances for hackers to
hack into your Kubernetes cluster easily, as was the case with Tesla's clusters (where the
dashboard did not require authentication). Next, let's talk about securing the build.

Securing the build
Securing Kubernetes clusters also includes securing microservices. Securing microservices
has to start at the beginning of the CI/CD pipeline. The following are some key
countermeasures, as discussed in Chapter 8, Securing Kubernetes Pods, and Chapter 9,
Image Scanning in DevOps Pipelines to secure microservices at the build stage:

• Address vulnerabilities discovered by image scanning tools properly for your
microservices so that the possibility of a successful intrusion through exploiting
application vulnerabilities is slim.

• Benchmark Dockerfiles to improve security configuration for images. Make sure no
sensitive data is stored in the image, that all the dependent packages are updated,
and so on.

• Scan executable files in the image to make sure no malware is seeded inside
the image.

• Configure Kubernetes security contexts properly for workloads. Follow the
principle of least privileges, limit access to system resources, such as using host-level
namespaces, host paths, and so on, and remove unnecessary Linux capabilities, only
granting the ones that are required.

• Do not enable an auto-mount service account. If no service account is required for
the workload, don't create a service account for it.

• Follow the principle of least privileges, try to understand the tasks your workloads
are carrying out, and only grant the required privileges to the service account.

• Follow the principle of least privileges, try to estimate the resource usage for
workloads, and apply proper resource requests and limits to workloads.

Of course, securing the build can also be expanded to secure the entire CI/CD pipeline,
such as source code management and CI/CD components. However, that is beyond the
scope of this book. We will only suggest the options we think are most relevant to securing
your Kubernetes clusters. Next, let's talk about securing deployment.

262 Analyzing and Detecting Crypto-Mining Attacks

Securing deployment
We've already talked about different kinds of admission controllers in Kubernetes clusters
in Chapter 7, Authentication, Authorization, and Admission Control, and Chapter 8,
Securing Kubernetes Pods, and the need to use them properly with an example of an
image-scanning admission controller (Chapter 9, Image Scanning in DevOps Pipelines).
Using admission controllers and other built-in mechanisms serves as a great security
gatekeeper for your workloads. The following are some key counter-measures:

• Apply network policies for namespaces and workloads. This could either be to
restrict access to workloads (inbound network policies) or to implement the
principle of least privileges (outbound network policies). When given a workload,
if you know the destination IP block for outbound connection, you should create
a network policy for that workload to restrict its outbound connection. The
outbound network policy should block any traffic with a destination beyond the
whitelisted IP block, such as downloading a crypto-mining binary from command
and control server.

• Use Open Policy Agent (OPA) to ensure only images from trusted image registries
are allowed to run in the cluster. With this policy, OPA should block any images
from untrusted sources from running. For example, malicious images that contain
crypto-mining binaries may reside in Docker Hub, so you should never consider
Docker Hub as a trusted image registry.

• Use image-scanning admission controllers to ensure only images compliant with
the scanning policy are allowed to run in the cluster. We already talked about
this in Chapter 9, Image Scanning in DevOps Pipelines. New vulnerabilities may
be discovered and the vulnerabilities' databases will be updated when you deploy
workloads. It is necessary to scan before deploying.

• Use OPA or pod security policies to ensure workloads with limited Linux
capabilities and restricted access to the host-level namespaces, host paths,
and so on.

• It would be ideal to have AppArmor enabled on worker nodes and for each image
that is deployed to have an AppArmor profile applied to it. Confining AppArmor
profiles is done when workloads deploy, although the actual protection happens
during runtime. A good use case is to build an AppArmor profile to whitelist
the allowed processes when you know the processes that are running inside the
container so that other processes, such as crypto-mining processes, will be blocked
by AppArmor.

Do leverage the power of admission controllers and build a gatekeeper for your workload's
deployment. Next, let's talk about securing workloads in runtime.

Defending against attacks 263

Securing runtime
Most likely, your Kubernetes clusters are the front battlefield to fight against hackers.
Although we discussed different tactics to secure the build and deployment, all of these
tactics ultimately aim to reduce the attack surface in the Kubernetes clusters. You cannot
simply close your eyes and assume everything is going to be fine in your Kubernetes
cluster. That's why we talk about resource monitoring in Chapter 10, Real-Time Monitoring
and Resource Management of a Kubernetes Cluster, and auditing, secret management,
detection, and forensics in Chapter 11, Defense in Depth. To recap what was covered in
those two chapters, the following are the key counter-measures to secure runtime:

• Deploy decent monitor tools, such as Prometheus and Grafana, to monitor resource
usage in your Kubernetes cluster. This is critical to ensure the availability of services
and also, attacks such as crypto mining may trigger surges in CPU usage.

• Enable Kubernetes' audit policy to log Kubernetes events and activities.

• Ensure high availability across your infrastructure, Kubernetes components,
and workloads.

• Use decent secret management tools, such as Vault, to manage and provision secrets
for microservices.

• Deploy decent detection tools, such as Falco, to detect suspicious activities in
Kubernetes clusters.

• It would be ideal to have forensics tools to collect and analyze suspicious events.

You may notice that securing communication among microservices is not mentioned.
Service meshes are a hot topic that could help secure communication among microservices
and beyond. However, service meshes are not covered in this book for two reasons:

• A service mesh introduces performance overhead to workloads and Kubernetes
clusters, so they are not yet a perfect solution to secure communication
among services.

• From an application security standpoint, it is easy to enforce service listening on
port 443 with a CA-signed certificate so that the communication is encrypted. If
microservices also perform authentication and authorization, then only trusted
microservices can access authorized resources. A service mesh is not an irreplaceable
solution to secure communication among services.

To defend against attacks to Kubernetes clusters, we need to secure the provisioning,
build, deployment, and runtime of our Kubernetes clusters from end to end. They should
all be considered as equally important as the strength of your defense is determined by
your weakest link.

264 Analyzing and Detecting Crypto-Mining Attacks

Summary
In this chapter, we went through a couple of the crypto-mining attacks that occurred over
the last two years that brought a lot of attention to the need for securing containerized
environments. Then, we showed you how to detect crypto-mining attacks with different
open source tools. Last but not the least, we talked about how to defend your Kubernetes
clusters against attacks in general by recapping what we discussed in previous chapters.

We hope you understand the core concepts of securing a Kubernetes cluster, which means
securing the cluster provisioning, build, deployment, and runtime stages. You should also
feel comfortable with starting to use Anchore, Prometheus, Grafana, and Falco.

As we know, Kubernetes is still evolving and it's not perfect. In the next chapter, we're
going to talk about some known Kubernetes Common Vulnerabilities and Exposures
(CVEs) and some mitigations that can protect your cluster against unknown variations.
The purpose of the following chapter is to prepare you to be able to respond to handling
any Kubernetes CVEs discovered in the future.

Questions
• What was the flaw that made a crypto-mining attack possible in Tesla's

Kubernetes cluster?

• If you were the DevOps of Tesla, what would you do to prevent the
crypto-mining attack?

• When you see CPU usage surge in a container, can you conclude that there has
been a crypto-mining attack?

• Can you think of a crypto-mining process that can bypass the Detect crypto
miners using the Stratum protocol Falco rule?

• What are the four areas you need to secure in order to secure your Kubernetes cluster?

Further reading
Refer to the following links for more information on the topics covered in this chapter:

• The Tesla crypto-mining attack: https://redlock.io/blog/
cryptojacking-tesla

• The crypto-worm attack: https://unit42.paloaltonetworks.com/
graboid-first-ever-cryptojacking-worm-found-in-images-on-
docker-hub/

https://redlock.io/blog/cryptojacking-tesla
https://redlock.io/blog/cryptojacking-tesla
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/

Further reading 265

• Prometheus: https://prometheus.io/docs/introduction/overview/

• Falco: https://falco.org/docs/

• The VirusTotal API: https://developers.virustotal.com/v3.0/
reference

• The crypto-mining attack analysis: https://kromtech.com/blog/
security-center/cryptojacking-invades-cloud-how-modern-
containerization-trend-is-exploited-by-attackers

• Hubble: https://github.com/cilium/hubble

https://prometheus.io/docs/introduction/overview/
https://falco.org/docs/
https://developers.virustotal.com/v3.0/reference
https://developers.virustotal.com/v3.0/reference
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://github.com/cilium/hubble

13
Learning from

Kubernetes CVEs
Common Vulnerabilities and Exposures (CVEs) are identifications for publicly known
security vulnerabilities and exposures that are found in popular applications. The CVE ID
is made up of the CVE string followed by the year and the ID number for the vulnerability.
The CVE database is publicly available and is maintained by the MITRE Corporation. The
CVE entries include a brief description of each issue, which is helpful to understand the
root cause and severity of the issue. These entries do not include technical details about the
issue. CVEs are useful for IT professionals to coordinate and prioritize updates. Each CVE
has a severity associated with it. MITRE uses a Common Vulnerability Scoring System
(CVSS) to assign a severity rating to a CVE. It is recommended to patch high-severity
CVEs immediately. Let's look at an example of a CVE entry on cve.mitre.org.

http://cve.mitre.org

268 Learning from Kubernetes CVEs

As you can see in the following screenshot, a CVE entry includes the ID, a brief
description, references, the name of the CVE Numbering Authority (CNA), and
the date on which the entry was created:

Figure 13.1 – MITRE entry for CVE-2018-18264

For security researchers and attackers, the most interesting part of a CVE entry is the
References section. References for CVEs are links to blogs published by researchers
covering the technical details of the issue, as well as links to issue descriptions and
pull requests. Security researchers study the references to understand the vulnerability
and develop mitigations for similar issues or for known issues that don't have a fix yet.
Attackers, on the other hand, study the references to find unpatched variations of the issue.

In this chapter, we'll discuss four publicly known security vulnerabilities of Kubernetes.
First, we will look at a path-traversal issue—CVE-2019-11246. This issue allowed attackers
to modify the content on the client side, which could potentially lead to exfiltration or
code execution on the cluster administrator's machine. Next, we will discuss CVE-2019-
1002100, which allows users to cause Denial-of-Service (DoS) attacks on the API server.
Then, we will discuss CVE-2019-11253, which allows unauthenticated users to cause DoS
attacks on kube-apiserver. Lastly, we will discuss CVE-2019-11247, which allows users
with namespace privileges to modify cluster-wide resources. We will discuss mitigation
strategies for each CVE. Upgrading to the latest version of Kubernetes and kubectl,
which patches vulnerabilities, should be your first priority. The latest stable version of
Kubernetes can be found at https://github.com/kubernetes/kubernetes/
releases. The mitigation strategies that we will discuss will help strengthen your cluster
against attacks of a similar nature. Finally, we will introduce kube-hunter, which can be
used to scan Kubernetes clusters for known security vulnerabilities.

https://github.com/kubernetes/kubernetes/releases
https://github.com/kubernetes/kubernetes/releases

The path traversal issue in kubectl cp – CVE-2019-11246 269

We will cover the following topics in this chapter:

• The path traversal issue in kubectl cp—CVE-2019-11246

• The DoS issue in JSON parsing—CVE-2019-1002100

• The DoS issue in YAML parsing—CVE-2019-11253

• The privilege-escalation issue in role parsing—CVE-2019-11247

• Scanning known vulnerabilities using kube-hunter

The path traversal issue in kubectl
cp – CVE-2019-11246
Developers often copy files to or from containers in a Pod for debugging. kubectl cp
allows developers to copy files from or to a container in a Pod (by default, this is done in
the first container within the Pod).

To copy files to a Pod, you can use the following:

kubectl cp /tmp/test <pod>:/tmp/bar

To copy files from a Pod, you can use the following:

kubectl cp <some-pod>:/tmp/foo /tmp/bar

When files are copied from a pod, Kubernetes first creates a TAR archive of the files
inside the container. It then copies the TAR archive to the client and then finally unpacks
the TAR archive for the client. In 2018, researchers found a way to use kubectl cp to
overwrite files on the client's host. If an attacker has access to a pod, this vulnerability
could be used to replace the TAR archive with special files that use relative paths by
overwriting the original TAR binary with a malicious one. When the malformed TAR file
was copied to the host, it could overwrite the files on the host when it was extracted. This
could lead to data compromise and code execution on the host.

Let's look at an example where the attacker modifies the TAR archive to have two files:
regular.txt and foo/../../../../bin/ps. In this archive, regular.txt is
the file that the user is expecting and ps is a malicious binary. If this archive is copied
to /home/user/admin, the malicious binary overwrites the well-known ps binary in
the bin folder. The first patch for this issue was incomplete and attackers found a way
to exploit the same issue using symlinks. Researchers found a way to bypass the fix for
symlinks, which was finally addressed in versions 1.12.9, 1.13.6, and 1.14.2, and was
assigned CVE-2019-11246.

270 Learning from Kubernetes CVEs

Mitigation strategy
You can use the following strategies to harden your cluster against this issue and issues
similar to CVE-2019-11246 that haven't yet been found:

• Always use the updated version of kubectl: You can find the latest version of the
kubectl binary by using the following command:

$ curl https://storage.googleapis.com/kubernetes-release/
release/stable.txt

v1.18.3

• Use admission controllers to limit the use of kubectl cp: As we discussed in
Chapter 7, Authentication, Authorization, and Admission Control, Open Policy
Agent can be used as an admission controller. Let's look at a policy that denies
calls to kubectl cp:

deny[reason] {

 input.request.kind.kind == "PodExecOptions"

 input.request.resource.resource == "pods"

 input.request.subResource == "exec"

 input.request.object.command[0] == "tar"

 reason = sprintf("kubectl cp was detected on %v/%v by
user: %v", [

 input.request.namespace,

 input.request.object.container,

 input.request.userInfo.username])

}

This policy denies the execution of a TAR binary in the pod, thereby disabling
kubectl cp for all users. You can update this policy to allow kubectl cp
for specific users or groups.

• Apply appropriate access controls to the client: If you are an administrator of a
production cluster, there are many secrets on your work machine that the attackers
might want access to. Ideally, the build machine should not be your work laptop.
Having dedicated hardware that admins can ssh into to access the Kubernetes
cluster is good practice. You should also ensure that any sensitive data on the build
machine has appropriate access controls.

The path traversal issue in kubectl cp – CVE-2019-11246 271

• Set the security context for all pods: As discussed in Chapter 8, Securing
Kubernetes Pods, ensure that pods have readOnlyRootFilesystem, which will
prevent the files from being tampered with (for example, overwrite /bin/tar
binary) by attackers in the filesystem:

spec:

 securityContext:

 readOnlyRootFilesystem: true

• Use Falco rules to detect file modification: We discussed Falco in Chapter 11,
Defense in Depth. Falco rules (which can be found at https://github.com/
falcosecurity/falco/blob/master/rules/falco_rules.yaml)
can be set up to do the following:

Detect modification of a binary in a pod: Use Write below monitored dir
in the default Falco rules to detect changes to the TAR binary:

- rule: Write below monitored dir

 desc: an attempt to write to any file below a set of
binary directories

 condition: >

 evt.dir = < and open_write and monitored_dir

 and not package_mgmt_procs

 and not coreos_write_ssh_dir

 and not exe_running_docker_save

 and not python_running_get_pip

 and not python_running_ms_oms

 and not google_accounts_daemon_writing_ssh

 and not cloud_init_writing_ssh

 and not user_known_write_monitored_dir_conditions

 output: >

 File below a monitored directory opened for writing
(user=%user.name

 command=%proc.cmdline file=%fd.name parent=%proc.
pname pcmdline=%proc.pcmdline gparent=%proc.aname[2]
container_id=%container.id image=%container.image.
repository)

 priority: ERROR

 tags: [filesystem, mitre_persistence]

https://github.com/falcosecurity/falco/blob/master/rules/falco_rules.yaml
https://github.com/falcosecurity/falco/blob/master/rules/falco_rules.yaml

272 Learning from Kubernetes CVEs

Detect the use of a vulnerable kubectl instance: kubectl versions 1.12.9, 1.13.6,
and 1.14.2 have a fix for this issue. The use of any versions earlier than this will
trigger the following rule:

- macro: safe_kubectl_version

 condition: (jevt.value[/userAgent] startswith "kubectl/
v1.15" or

 jevt.value[/userAgent] startswith "kubectl/
v1.14.3" or

 jevt.value[/userAgent] startswith "kubectl/
v1.14.2" or

 jevt.value[/userAgent] startswith "kubectl/
v1.13.7" or

 jevt.value[/userAgent] startswith "kubectl/
v1.13.6" or

 jevt.value[/userAgent] startswith "kubectl/
v1.12.9")

CVE-2019-1002101

Run kubectl version --client and if it does not say
client version 1.12.9,

1.13.6, or 1.14.2 or newer, you are running a vulnerable
version.

- rule: K8s Vulnerable Kubectl Copy

 desc: Detect any attempt vulnerable kubectl copy in pod

 condition: kevt_started and pod_subresource and kcreate
and

 ka.target.subresource = "exec" and ka.uri.
param[command] = "tar" and

 not safe_kubectl_version

 output: Vulnerable kubectl copy detected (user=%ka.
user.name pod=%ka.target.name ns=%ka.target.namespace
action=%ka.target.subresource command=%ka.uri.
param[command] userAgent=%jevt.value[/userAgent])

 priority: WARNING

 source: k8s_audit

 tags: [k8s]

DoS issues in JSON parsing – CVE-2019-1002100 273

CVE-2019-11246 is a great example of why you need to keep track of security advisories
and read through the technical details to add mitigation strategies to your cluster to ensure
that if any variations of an issue are discovered, your cluster is safe. Next, we will look at
CVE-2019-1002100, which can be used to cause DoS issues on kube-apiserver.

DoS issues in JSON parsing – CVE-2019-1002100
Patching is a commonly used technique used to update API objects at runtime.
Developers use kubectl patch to update API objects at runtime. A simple
example of this can be adding a container to a pod:

spec:

 template:

 spec:

 containers:

 - name: db

 image: redis

The preceding patch file allows a pod to be updated to have a new Redis container.
kubectl patch allows patches to be in JSON format. The issue was in the JSON
parsing code of kube-apiserver, which allowed an attacker to send a malformed
json-patch instance to cause a DoS attack in the API server. In Chapter 10,
Real-Time Monitoring and Resource Management of a Kubernetes Cluster, we discussed
the importance of the availability of services within Kubernetes clusters. The root cause
of this issue was unchecked error conditions and unbounded memory allocation to
kube-apiserver for the patch requests.

Mitigation strategy
You can use the following strategies to harden your cluster against this issue and issues
similar to CVE-2019-100210 that haven't yet been found:

• Use resource monitoring tools in Kubernetes clusters: As discussed in Chapter 10,
Real-Time Monitoring and Resource Management of a Kubernetes Cluster,
resource-monitoring tools such as Prometheus and Grafana can help identify issues
of higher memory consumption in the master node. High values in the graphs for
Prometheus metrics could look as follows:

container_memory_max_usage_bytes{pod_ name="kube-
apiserver-xxx" }

sum(rate(container_cpu_usage_seconds_total{pod_
name="kube-apiserver-xxx"}[5m]))

274 Learning from Kubernetes CVEs

sum(rate(container_network_receive_bytes_total{pod_
name="kube-apiserver-xxx"}[5m]))

These resources graph maximum memory, CPU, and network usage by
kube-apiserver over 5-minute intervals. Any abnormality in these usage
patterns is a sign of an attack on kube-apiserver.

• Set up high-availability Kubernetes masters: We learned about high-availability
clusters in Chapter 11, Defense in Depth. High-availability clusters have multiple
instances of Kubernetes components. If the load on one component is high, other
instances can be used until the load is reduced or the first instance is restarted.

Using kops, you can use --master-zones={zone1, zone2} to have
multiple masters:

kops create cluster k8s-clusters.k8s-demo-zone.com \

 --cloud aws \

 --node-count 3 \

 --zones $ZONES \

 --node-size $NODE_SIZE \

 --master-size $MASTER_SIZE \

 --master-zones $ZONES \

 --networking calico \

 --kubernetes-version 1.14.3 \

 --yes \

kube-apiserver-ip-172-20-43-65.ec2.internal
1/1 Running 4 4h16m

kube-apiserver-ip-172-20-67-151.ec2.internal
1/1 Running 4 4h15m

As you can see, there are multiple kube-apiserver pods running in this cluster.
• Limit users' privileges using RBAC: Privileges to users should also follow the

principle of least privilege, which was discussed in Chapter 4, Applying the Principle
of Least Privilege in Kubernetes. If a user does not require access to PATCH privileges
for any resource, the role should be updated so that they don't have access.

• Test your patches in the staging environment: Staging environments should be
set up as a replica of the production environment. Developers are not perfect, so
it's possible for a developer to create a malformed patch. If patches or updates to
the cluster are tested in the staging environment, bugs in the patch can be found
without disrupting the production services.

A DoS issue in YAML parsing – CVE-2019-11253 275

DoS is often considered a low-severity issue, but if it happens to the core component of
your cluster, you should take it seriously. DoS attacks on kube-apiserver can disrupt
the availability of the whole cluster. Next, we look at another DoS attack against an API
server. This attack can be performed by unauthenticated users, making it more severe
than CVE-2019-1002100.

A DoS issue in YAML parsing – CVE-2019-11253
XML bombs, or billion laughs attacks, are popular with any XML parsing code.
Similar to parsing issues in XML, this was a parsing issue in YAML files that were sent to
kube-apiserver. If a YAML file sent to the server has recursive references, it triggers
the kube-apiserver to consume CPU resources, which causes availability issues on
the API server. In most cases, requests parsed by kube-apiserver are restricted to
authenticated users, so unauthenticated users should not be able to trigger this issue.
There was an exception to this rule in the Kubernetes versions preceding 1.14 that allowed
unauthenticated users to check whether they could perform an action using kubectl
auth can-i.

This issue is similar to CVE-2019-1002100, but is more severe as unauthenticated users
can also trigger this issue.

Mitigation strategy
You can use the following strategies to harden your cluster against this issue and issues
similar to CVE-2019-11253 that haven't yet been found:

• Use resource-monitoring tools in Kubernetes clusters: Similar to CVE-2019-
1002100, resource-monitoring tools, such as Prometheus and Grafana, which we
discussed in Chapter 10, Real-Time Monitoring and Resource Management of a
Kubernetes Cluster, can help identify issues of higher memory consumption in
the master node.

• Enable RBAC: The vulnerability is caused by the improper handling of recursive
entities in the YAML file by kube-apiserver and the ability of unauthenticated
users to interact with the kube-apiserver. We discussed RBAC in Chapter 7,
Authentication, Authorization, and Admission Control. RBAC is enabled by
default in the current version of Kubernetes. You can also enable it by passing
--authorization-mode=RBAC to the kube-apiserver. In this case,
unauthenticated users should not be allowed to interact with kube-apiserver.
For authenticated users, the principle of least privilege should be followed.

276 Learning from Kubernetes CVEs

• Disable auth can-i for unauthenticated users (for v1.14.x): Unauthenticated users
should not be allowed to interact with kube-apiserver. In Kubernetes v1.14.x,
you can disable auth can-i for unauthenticated servers using the RBAC file at
https://github.com/kubernetes/kubernetes/files/3735508/
rbac.yaml.txt:

kubectl auth reconcile -f rbac.yaml --remove-extra-
subjects --remove-extra-permissions

kubectl annotate --overwrite clusterrolebinding/
system:basic-user rbac.authorization.kubernetes.io/
autoupdate=false

The second command disables auto-updates for clusterrolebinding, which
will ensure that the changes are not overwritten on restart.

• kube-apiserver should not be exposed to the internet: Allowing access to the API
servers from trusted entities using a firewall or VPCs is good practice.

• Disable anonymous-auth: We discussed anonymous-auth as an option
that should be disabled if possible in Chapter 6, Securing Cluster Components.
Anonymous authentication is enabled by default in Kubernetes 1.16+ for legacy
policy rules. If you are not using any legacy rules, it is recommended to disable
anonymous-auth by default passing --anonymous-auth=false to the
API server.

As we discussed earlier, a DoS attack on kube-apiserver can cause a disruption of
services throughout the cluster. In addition to using the latest version of Kubernetes,
which includes a patch for this issue, it is important to follow these mitigation strategies
to avoid similar issues in your cluster. Next, we will discuss an issue in the authorization
module that triggers privilege escalation for authenticated users.

The Privilege escalation issue in role
parsing – CVE-2019-11247
We discussed RBAC in detail in Chapter 7, Authentication, Authorization, and Admission
Control. Roles and RoleBindings allow users to get the privileges to perform certain
actions. These privileges are namespaced. If a user needs a cluster-wide privilege,
ClusterRoles and ClusterRolebindings are used. This issue allowed users to make
cluster-wide modifications even if their privileges were namespaced. Configurations
for admission controllers, such as Open Policy Access, could be modified by users
with a namespaced role.

https://github.com/kubernetes/kubernetes/files/3735508/rbac.yaml.txt
https://github.com/kubernetes/kubernetes/files/3735508/rbac.yaml.txt

The Privilege escalation issue in role parsing – CVE-2019-11247 277

Mitigation strategy
You can use the following strategies to harden your cluster against this issue and issues
similar to CVE-2019-11247 that haven't yet been found:

• Avoid wildcards in Roles and RoleBindings: Roles and ClusterRoles should be
specific to the resource names, verbs, and API groups. Adding * to roles can
allow users to have access to resources that they should not have access to. This
adheres to the principle of least privilege, which we discussed in Chapter 4,
Applying the Principle of Least Privilege in Kubernetes.

• Enable Kubernetes auditing: We discussed auditing and audit policies for
Kubernetes in Chapter 11, Defense in Depth. Kubernetes auditing can help identify
any unintended actions in a Kubernetes cluster. In most cases, a vulnerability such
as this will be used to modify and delete any additional controls within the cluster.
You can use the following policy to identify instances of these kinds of exploits:

 apiVersion: audit.k8s.io/v1 # This is required.

 kind: Policy

 rules:

 - level: RequestResponse

 verbs: ["patch", "update", "delete"]

 resources:

 - group: ""

 resources: ["pods"]

 namespaces: ["kube-system", "monitoring"]

This policy logs any instances of the deletion or modification of pods in
kube-system or the monitoring namespace.

This issue is certainly an interesting one since it highlights that the security features
provided by Kubernetes can also be harmful if they are misconfigured. Next, we will talk
about kube-hunter, which is an open source tool to find any known security issues in
your cluster.

278 Learning from Kubernetes CVEs

Scanning for known vulnerabilities using
kube-hunter
Security advisories and announcements (https://kubernetes.io/docs/
reference/issues-security/security/) published by Kubernetes are
the best way to keep track of new security vulnerabilities found in Kubernetes. The
announcements and advisory emails can get a bit overwhelming and it's always possible
to miss an important vulnerability. To avoid these situations, a tool that periodically
checks the cluster for any known CVEs comes to the rescue. kube-hunter is an open
source tool that is developed and maintained by Aqua that helps identify known security
issues in your Kubernetes cluster.

The steps to set up kube-hunter are as follows:

1. Clone the repository:

$git clone https://github.com/aquasecurity/kube-hunter

2. Run the kube-hunter pod in your cluster:

$./kubectl create -f job.yaml

3. View the logs to find any issues with your cluster:

$./kubectl get pods

NAME READY STATUS RESTARTS
AGE

kube-hunter-7hsfc 0/1 ContainerCreating 0
12s

https://kubernetes.io/docs/reference/issues-security/security/
https://kubernetes.io/docs/reference/issues-security/security/

Scanning for known vulnerabilities using kube-hunter 279

The following output shows a list of known vulnerabilities in Kubernetes v1.13.0:

Figure 13.2 – Results of kube-hunter

This screenshot highlights some of the issues discovered by kube-hunter for a
Kubernetes v1.13.0 cluster. The issues found by kube-hunter should be treated
as critical and should be addressed immediately.

280 Learning from Kubernetes CVEs

Summary
In this chapter, we discussed the importance of CVEs. These publicly known identifiers
are important for cluster administrators, security researchers, and attackers. We discussed
the important aspects of CVE entries, which are maintained by MITRE. We then looked
at four well-known CVEs and discussed the issue and the mitigation strategy for each
CVE. As a cluster administrator, upgrading the kubectl client and Kubernetes version
should always be your first priority. However, adding mitigation strategies to detect and
prevent exploits caused by similar issues that have not been reported publicly is equally
important. Finally, we discussed an open source tool, kube-hunter, which can be used
to periodically identify issues in your Kubernetes cluster. This removes the overhead of
cluster administrators keeping a close eye on security advisories and announcements
by Kubernetes.

Now, you should be able to understand the importance of publicly disclosed
vulnerabilities and how these advisories help strengthen the overall security posture of
your Kubernetes cluster. Reading through these advisories will help you identify any
problems in your cluster and help harden your cluster going forward.

Questions
1. What are the most important parts of a CVE entry for cluster administrators,

security researchers, and attackers?

2. Why are client-side security issues such as CVE-2019-11246 important for a
Kubernetes cluster?

3. Why are DoS issues in the kube-apiserver treated as high-severity issues?

4. Compare authenticated versus unauthenticated DoS issues in the API server.

5. Discuss the importance of kube-hunter.

Further references 281

Further references
• The CVE list: https://cve.mitre.org/cve/search_cve_list.html

• Detecting CVE-2019-11246 with Falco: https://sysdig.com/blog/
how-to-detect-kubernetes-vulnerability-cve-2019-11246-
using-falco/

• Preventing CVE-2019-11246 with OPA: https://blog.styra.com/blog/
investigate-and-correct-cves-with-the-k8s-api

• The GitHub issue for CVE-2019-1002100: https://github.com/
kubernetes/kubernetes/issues/74534

• The GitHub issue for CVE-2019-11253: https://github.com/kubernetes/
kubernetes/issues/83253

• The GitHub issue for CVE-2019-11247: https://github.com/kubernetes/
kubernetes/issues/80983

• kube-hunter: https://github.com/aquasecurity/kube-hunter

• The GitHub issue for CVE 2020-8555: https://github.com/kubernetes/
kubernetes/issues/91542

• The GitHub issue for CVE 2020-8555: https://github.com/kubernetes/
kubernetes/issues/91507

https://cve.mitre.org/cve/search_cve_list.html
https://sysdig.com/blog/how-to-detect-kubernetes-vulnerability-cve-2019-11246-using-falco/
https://sysdig.com/blog/how-to-detect-kubernetes-vulnerability-cve-2019-11246-using-falco/
https://sysdig.com/blog/how-to-detect-kubernetes-vulnerability-cve-2019-11246-using-falco/
https://blog.styra.com/blog/investigate-and-correct-cves-with-the-k8s-api
https://blog.styra.com/blog/investigate-and-correct-cves-with-the-k8s-api
https://github.com/kubernetes/kubernetes/issues/74534
https://github.com/kubernetes/kubernetes/issues/74534
https://github.com/kubernetes/kubernetes/issues/83253
https://github.com/kubernetes/kubernetes/issues/83253
https://github.com/kubernetes/kubernetes/issues/80983
https://github.com/kubernetes/kubernetes/issues/80983
https://github.com/aquasecurity/kube-hunter
https://github.com/kubernetes/kubernetes/issues/91542
https://github.com/kubernetes/kubernetes/issues/91542
https://github.com/kubernetes/kubernetes/issues/91507
https://github.com/kubernetes/kubernetes/issues/91507

Assessments

Chapter 1
1. Scaling, operational cost, and longer release cycle.

2. Master components run on the master node. These components are responsible
for the management of the worker nodes. The master components include
kube-apiserver, etcd, kube-scheduler, kube-controller-manager,
cloud-controller-manager, and dns-server.

3. Kubernetes Deployments help scale pods up/down based on labels and selectors.
Deployments encapsulate replica sets and pods. The YAML spec for a Deployment
consists of number of instances of pods and template, which is identical to a
Pod specification.

4. OpenShift, K3S, and Minikube.

5. Kubernetes environments are highly configurable and are composed of a myriad of
components. Configurability and complexity with insecure defaults is a big cause
of concern. Additionally, the compromise of master components in cluster is the
easiest way to cause a breach.

Chapter 2
1. Pod.

2. Network namespace and IPC namespace.

3. A placeholder to hold a network namespace for other containers.

4. ClusterIP, NodePort, LoadBalancer, and ExternalName.

5. Ingress supports layer 7 routing and doesn't require extra load balancers from the
cloud provider, while LoadBalancer services require one load balancer per service.

284 Assessments

Chapter 3
1. Threat modeling is an iterative process that starts at the design phase.

2. End user, internal attacker, and privileged attacker.

3. Unencrypted data stored in etcd.

4. The complexity of the Kubernetes environment increases the difficulty of using
threat modeling applications in Kubernetes environments.

5. Kubernetes introduces additional assets and interactions with applications. This
increases the complexity of applications in Kubernetes, increasing the attack surface.

Chapter 4
1. A Role object contains rules consisting of verbs and resources that indicate the

operational privileges for resources in a namespace.

2. A RoleBinding object links the Role object in a namespace to a group
of subjects (for example, User and ServiceAccount). It is used to grant
privileges defined in the Role objects to the subjects.

3. RoleBinding indicates that the privileges the subjects have are effective in the
RoleBinding object's namespace. ClusterRoleBinding indicates that the
privileges the subjects have are effective in the entire cluster.

4. hostPID, hostNetwork, and hostIPC.

5. Create a network policy for the Pod with an egress rule.

Chapter 5
1. Master components, worker components, and Kubernetes objects.

2. Pod, service/Ingress, api-server, nodes, and namespace.

3. RBAC and network policy.

4. Processes in the Pod can access host the PID namespace, viewing all the processes
running in the worker node.

kind: NetworkPolicy

metadata:

 name: allow-good

Chapter 6 285

spec:

 podSelector:

 matchLabels:

 app: web

 policyTypes:

 - Ingress

 ingress:

 - from:

 - namespaceSelector:

 matchLabels:

 from: <allowed_label>

Chapter 6
1. Token-based authentication enables static tokens to be used to identify the origin of

requests in the cluster. Static tokens cannot be updated without restarting the API
server and so should not be used.

2. The NodeRestriction admission controller ensures that a kubelet can only
modify the node and Pod objects for the node that it is running on.

3. Pass --encryption-provider-config to the API server to ensure data is
encrypted at rest in etcd.

4. Security vulnerabilities in dnsmasq, performance issues in SkyDNS, and a single
container instead of three for kube-dns to provide the same functionality.

5. You can use kube-bench on an EKS cluster as follows:

$ git clone : https://github.com/aquasecurity/kube-bench
$ kubectl apply -f job-eks.yaml

Chapter 7
1. Static tokens and basic authentication should not be used in production clusters.

These modules use static credentials, which require a restart of the API server
to be updated.

2. Cluster administrators can use the user impersonation privileges to test the
permissions granted to a new user. Using kubectl, cluster administrators
can use the --as --as-group flags to run requests as a different user.

286 Assessments

3. Node and RBAC are enabled by default in Kubernetes. These should be used. If the
cluster uses a remote API for authorization, Webhook mode should be used instead.

4. The EventRateLimit admission controller specifies the maximum limit for
requests that can be serviced by the API server. On the other hand, LimitRanger
ensures that Kubernetes objects adhere to the resource limits specified by the
LimitRange object.

5. The rego policy to deny the creation of an Ingress with the test.example
endpoint is as follows:

package kubernetes.admission

import data.kubernetes.namespaces

operations = {"CREATE", "UPDATE"}

deny[msg] {

 input.request.kind.kind == "Ingress"

 operations[input.request.operation]

 host := input.request.object.spec.rules[_].host

 host == "test.example"

 msg := sprintf("invalid ingress host %q", [host])

}

Chapter 8
1. Defines a command to ask Docker Engine to check the health status of the

container periodically.

2. The COPY instruction can only copy files from build machine to the filesystem
of the image, while the ADD instruction can not only copy files from localhost but
also retrieve files from remote URLs to the filesystem of the image. Using ADD may
introduce the risk of adding malicious files from the internet to the image.

3. CAP_NET_BIND_SERVICE.

4. With the runAsNonRoot setting set to true, kubelet will block the container
from starting if run as root user.

5. Create a role with privilege, use the PodSecurityPolicy object, and create
a rolebinding object to assign the role to the service account that is used
by the workload.

Chapter 9 287

Chapter 9
1. Docker history <image name>.

2. 7-8.9.

3. anchore-cli image add <image name>.

4. anchore-cli image vuln <image name> all.

5. anchore-cli evaluate check <image digets> --tag <image
full tag>.

6. It helps identify images with latest publicly known vulnerabilities.

Chapter 10
1. Resource requests specify what a Kubernetes object is guaranteed to get, whereas

limits specify the maximum resources a Kubernetes object can use.

2. The resource quota that limits memory to 500 mi is as follows:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: pods-medium

spec:

 hard:

 memory: 500Mi

3. LimitRanger is an admission controller that enforces LimitRanges. LimitRange
defines constraints on a Kubernetes resources. A limit range can be applied to a Pod,
container, or persistantvolumeclaim. Namespace resource quotas are similar
to LimitRange, but are enforced for the entire namespace.

4. Service account tokens.

5. Prometheus and Grafana.

288 Assessments

Chapter 11
1. The secret data will be recorded in the Kubernetes audit log.

2. --master-zones.

3. Sync the updated secret to the Pod's mounted volume.

4. System calls and Kubernetes audit events.

5. proc.name.

6. Checkpoint a running container, which can be restored later in a sandboxed
environment.

7. Troubleshooting and security investigation.

Chapter 12
1. Dashboard is used without authentication enabled.

2. Do not run Dashboard, or enable authentication for Dashboard.

3. No. It could be a crypto mining attack, but it could also be caused by some other
things, such as application errors.

4. The crypto mining binary uses the HTTP or HTTPS protocol to connect to the
mining pool server instead of stratum.

5. Kubernetes cluster provisioning, build, deployment, and runtime.

Chapter 13
1. Cluster administrators keep track of CVE IDs to ensure that the Kubernetes cluster

is not vulnerable to a publicly known issue. Security researchers study the references
section to understand the technical details of the issue to develop mitigations for a
CVE. Lastly, attackers study the references section to find unpatched variations or
use similar techniques to discover issues in other parts of the code.

2. Client-side issues often lead to data exfiltration or code execution on the client
side. Build machines or machines of cluster administrators often contain sensitive
data, and an attack on such machines can have a significant economic impact
on the organization.

Chapter 13 289

3. DoS issues on api-server can lead to disruption of the availability of the
entire cluster.

4. Unauthenticated DoS issues are more severe than authenticated DoS issues. Ideally,
unauthenticated users should not be able to communicate with api-server.
If an unauthenticated user is able to send requests and cause a DoS issue for
api-server, it is worse than an authenticated user. Authenticated DoS requests are
also very severe since a misconfiguration in the cluster can allow an unauthenticated
user to escalate privileges and become an authenticated user.

5. Security advisories and announcements by Kubernetes are a great way to learn
about any new publicly known vulnerabilities. These announcements and advisories
are fairly noisy, and administrators can easily miss an important issue. Running
kube-hunter regularly helps cluster admins identify any publicly known issues
that administrators might have missed.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Kubernetes on Windows

Piotr Tylenda

ISBN: 978-1-83882-156-2

• Understand containerization as a packaging format for applications

• Create a development environment for Kubernetes on Windows

• Grasp the key architectural concepts in Kubernetes

• Discover the current limitations of Kubernetes on the Windows platform

• Provision and interact with a Kubernetes cluster from a Windows machine

• Create hybrid Windows Kubernetes clusters in on-premises and cloud environments

https://www.packtpub.com/virtualization-and-cloud/azure-networking-cookbook

292 Other Books You May Enjoy

Kubernetes - A Complete DevOps Cookbook

Murat Karslioglu

ISBN: 978-1-83882-804-2

• Deploy cloud-native applications on Kubernetes

• Automate testing in the DevOps workflow

• Discover and troubleshoot common storage issues

• Dynamically scale containerized services to manage fluctuating traffic needs

• Understand how to monitor your containerized DevOps environment

• Build DevSecOps into CI/CD pipelines

https://www.packtpub.com/virtualization-and-cloud/hands-cloud-administration-azure

Leave a review - let other readers know what you think 293

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Access Control List (ACL) 60
Acorn RISC Machine 12
Active Directory (AD) 62
admission controllers

about 120
AlwaysAdmit 120
AlwaysPullImages 121
EventRateLimit 121
LimitRanger 121, 122
MutatingAdmissionWebhook 123
NodeRestriction 122
PersistentVolumeClaimResize 122
PodSecurityPolicy 122
SecurityContextDeny 123
ServiceAccount 123
ValidatingAdmissionWebhook 123

Advanced RISC Machine (ARM) 12
AllowPrivilegeEscalation 68
AlwaysAdmit admission controller 120
AlwaysPullImages admission

controller 121
anchore-cli

used, for scanning images 159-165

Anchore Engine
about 158, 159
used, for scanning images 157

AppArmor 68
AppArmor profile 139, 140
application programming interface

(API) 39, 62, 94
Application-Specific Integrated

Circuit (ASIC) 248
assets

about 44
protecting, from threats 52

attacks
defending against 260

attack surface 44
Attribute-Based Access Control

(ABAC) 61, 95, 108
audit backend

configuring 214
log backend, configuring 214
webhook backend, configuring 215

audit policy
about 209-214
audit backend, configuring 214
audit rules, configuring 210
levels 210

296 Index

authorization models
about 60
Access Control List (ACL) 60
Attribute-Based Access

Control (ABAC) 61
Role-Based Access Control (RBAC) 60

advanced security options 14
Azure Kubernetes Service (AKS) 13

B
built-in monitors

Kubernetes Dashboard 187-192
Metrics Server 193

C
Calico 38, 39
Canonical Name Record (CNAME) 32
Center for Internet Security

(CIS) 103, 132
central processing unit (CPU) 69
certificates

about 109
creating 110, 111

Certificate Signing Request (CSR) 110
cgroup 23
Checkpoint and Restore In

Userspace (CRIU)
forensics, conducting 235
used, for collecting data 236-238

CI/CD pipeline
image scanning, integrating into 165

CIS Docker benchmark
about 132, 133
security recommendation 132, 133

Cloud Native Computing Foundation
(CNCF) 35, 123

cloud providers 13
cluster 79
ClusterIP 32
cluster managed, cloud providers

limitations 15
ClusterRole 63
cluster’s security configuration

benchmarking 103-105
CNI plugins

Calico 38, 39
Common Vulnerabilities and

Exposures (CVEs) 267, 268
Common Vulnerability Scoring

System (CVSS) 155
component interactions 46, 47
container images

about 130, 152-154
hardening 130

Container Network Interface (CNI)
about 9, 35
plugins 35
specification and plugins 35-38

Container Runtime Interface
(CRI) 9, 35, 49

containers
about 78
principal attributes of security

context 135-137
container usage report

reference link 6
container vulnerabilities

about 152
databases 155
detecting 154, 155
management strategy 155-157
score, calculating 155

Content Delivery Network (CDN) 249
Control Groups (cgroups) 5

Index 297

CoreDNS
securing 102
security, configuration settings 103

crypto-mining attack, on Tesla’s
Kubernetes cluster

about 249
attack patterns 249
flaw 249

crypto-mining attacks
about 248, 249
analyzing 248
binary signature, verifying 258, 259
CPU utilization, monitoring 252, 253
detecting 251, 252
network traffic, detecting to

mining pool 253- 256
CVE-2019-11246

about 269
mitigation strategy 270-273

CVE-2019-11247
mitigation strategy 277

CVE-2019-11253
about 275
mitigation strategy 275, 276

CVE-2019-1002100
about 273
mitigation strategy 273, 274

cybersecurity problems
reference link 16

D
DaemonSet

creating 49
Discretionary Access Control (DAC) 67
dnsmasq container 102
Docker 4, 5

Dockerfiles
about 130, 131
example 131
instructions 130, 131

Domain Name System (DNS) 31, 102
DoS issue

in JSON parsing 273
in YAML parsing 275

E
Elastic Kubernetes Service (EKS) 13
end user 50, 79
engress rules 71
Enterprise Edition (EE) 5
environment variables 31
etcd

securing 99
security, configuration settings 99, 100

EventRateLimit admission controller 121
ExternalName 32

F
Falco

challenges 228
engine 230
event sources, for anomaly

detection 228, 230
high-level architecture components 230
Kernel module/Sysdig libraries 230
overview 227
rules 230
used, for detecting anomalies 227
web server 230

Falco rules
about 230
building, with Sysdig filter fields 232

298 Index

creating, for anomaly detection 231
K8s audit rules, creating 234, 235
list element 231
rule element 231
system call rule, creating 231-233

Field-Programmable Gate
Arrays (FPGA) 248

File Integrity Monitoring (FIM) 55
forensics

conducting, with CRIU 235
conducting, with Sysdig Inspect 235

G
General Availability (GA) 16
Google Kubernetes Engine (GKE) 13, 39
Graboid

about 250
attack patterns 250
flaw 250

Grafana
about 199
setting up, with Prometheus 199-204

group ID(GID) 67

H
high availability

enabling, in Kubernetes cluster 216
of cloud infrastructure,

enabling 219, 220
of Kubernetes components,

enabling 217, 218
of Kubernetes workloads, enabling 216

Host Intrusion Detection
System (HIDS) 55

HostIPC 80
host level namespaces

setting, for pods 134, 135
HostNetwork 80
HostPID 80
HyperText Transfer Protocol

(HTTP) 21, 94
HyperText Transfer Protocol

Secure (HTTPS) 32

I
images

scanning, at build stage 166-168
scanning, at deployment stage 168-171
scanning, at runtime stage 172
scanning, with anchore-cli 159-165
scanning, with Anchore Engine 157

image scanning
integrating, into CI/CD pipeline 165

ingress
load balancing 35
name-based virtual hosting 34
simple fanout 33
single-service Ingress 33
Transport Layer Security (TLS) 34
used, for routing external requests 32, 35
variations 33

ingress rules 71
internal attacker 50, 79
Internet od Things (IoT) 12
Internet Protocol (IP) 20
Interprocess Communication (IPC) 23, 70
IP Address Management (IPAM) 36
IP Virtual Server (IPVS) 29

Index 299

J
JavaScript Object Notation (JSON) 234
JSON parsing

DoS issue 273

K
K3s 12
kube-apiserver

securing 94
security, configuration settings 95-98

kube-apiserver, functions
API management 94
internal messaging 94
request, handling 94

kube-apiserver, request
admission controller 95
authentication 94
authorization 95

kube-controller-manager
securing 101
security, configuration settings 101

kubectl cp
path traversal issue 269

Kubedex
reference link 13

kube-dns container 102
kube-hunter

setting up 278, 279
used, for scanning for known

vulnerabilities 278, 279
kubelet

securing 98
security, configuration settings 98

kube-proxy
about 26
iptables proxy mode 28

IPVS proxy mode 29
user space proxy mode 27

Kubernetes
about 13
as service 13-15
security 16-18
version, reference link 268
versus OpenShift 12
workflow, requesting 108

Kubernetes adoption status 6
Kubernetes API server 79
Kubernetes auditing

about 208
stages 208

Kubernetes authentication
about 109
basic authentication 112
Bootstrap tokens 112, 113
client certificates 109-111
proxy 115
service account tokens 113
static tokens 111
user impersonation 115
webhook tokens 114

Kubernetes authorization
ABAC 117
about 116
modes 116
node authorization mode 116
RBAC 118, 119
request attributes 116
webhook 119

Kubernetes cluster
about 6, 7
high availability, enabling 216

Kubernetes cluster provisioning
build, securing 261
deployment, securing 262

300 Index

runtime, securing 263
securing 260

Kubernetes components
about 7, 9
high availability, enabling 217, 218

Kubernetes Dashboard 187-192
Kubernetes entities, using as

security boundaries
about 78
cluster 79
containers 78
end user 79
internal attackers 79
Kubernetes API server 79
namespaces 79
nodes 78
pods 78
privileged attackers 79

Kubernetes interfaces
about 9
container networking interface (CNI) 9
container runtime interface 9
container storage interface 9

Kubernetes master components 77
Kubernetes, master nodes

cloud-controller-manager 8
etcd 7
kube-apiserver 7
kube-controller-manager 8
kube-dns 8
kubelet 8
kube-proxy 8
kube-scheduler 8

Kubernetes network model
about 21-23
overview 20
port-sharing problem 20, 21

Kubernetes objects
about 9, 78
deployments 10
namespaces 10
network policies 11
pod 10
pod security policies 11
replica sets 10
service accounts 11
services 10
volumes 10

Kubernetes Operations (kops) 15, 16, 38
Kubernetes PodSecurityPolicy

Advisor 145-148
Kubernetes service

about 26, 30, 31
ClusterIP 32
discovery 31
ExternalName 32
external requests, routing

with ingress 32, 35
LoadBalancer 32
NodePort 32
service discovery 31
types 32

Kubernetes variations
about 11
K3s 12
Minikube 11
OpenShift 12

Kubernetes worker components 78
Kubernetes workloads

high availability, enabling 216
kube-scheduler

securing 100
security, configuration settings 100

Index 301

L
launched crypto-mining processes

detecting 256
least privilege

for accessing, application resources 72
for accessing, network resources 70, 72
for accessing, system resources 67, 70
for Kubernetes workloads 67
of Kubernetes subjects 62, 66

Lightweight Directory Access
Protocol (LDAP) 62

LimitRanger
using 184, 186

LimitRanger admission
controller 121, 122

Linux capabilities
using, as security boundaries 68, 82, 84

Linux namespaces
about 23
cgroup 23
IPC 23
mount 23
network 23
PID 24
types 23
Unix Time Sharing (UTS) 24
users 24

Linux namespaces, using as
security boundaries

about 80-82
HostIPC 80
HostNetwork 80
HostPID 80
shareProcessNamespace 80

Linux Virtual Server (LVS) 29
LoadBalancer 32

M
Metrics Server 193
microservices

about 4, 5
benefits 5
longer release cycle 4
operation cost 4
scaling 4

Minikube 11
mitigation 44
monolith environments

real-time monitoring and
management 176, 177

mount 23
MutatingAdmissionWebhook

admission controller 123

N
namespaces

about 64, 65, 79
creating 65
default 65
kube-public 65
kube-system 65

National Vulnerability Database
(NVD) 155

network access
without network policy 70

Network Address Translation (NAT) 22
Network Information Service (NIS) 24
network policies

key attributes 86
NodePort 32
NodeRestriction admission controller 122
nodes 78

302 Index

O
Open Policy Agent (OPA)

about 69, 123, 262
example 124, 125
requisites, for policy decision 124

OpenShift
about 12
cost 13
naming 12
security 12
versus Kubernetes 12

OpenShift Origin 13

P
PersistentVolumeClaimResize

admission controller 122
pod

communicating, between 26
communicating inside 23
host level namespaces,,

setting for 134, 135
principal attributes of security

context 137, 138
pod communication

kube-proxy, using 26
Kubernetes service, using 26
Linux namespaces, using 23, 24
network communication 25
pause container, using 23, 24

PodSecurityPolicy
about 68, 141
attributes 68
principal attributes of security

context 141-145

PodSecurityPolicy admission
controller 122

pods, security attributes
configuring 133, 134

Portable Operating System
Interface (POSIX) 23

principal attributes, of security context
for containers 135-137
for pods 138
for PodSecurityPolicy 141-145

principle of least privilege
about 60
authorization models 60, 61
rewards 61

principle of least privilege, for
containers and pods

AllowPrivilegeEscalation 68
AppArmor 68
Discretionary Access Control (DAC) 67
Linux capabilities 68
privileged mode 68
Secure Computing Mode (seccomp) 68
Security Enhanced Linux (SELinux) 68

privileged attacker 50, 79
privileged mode 68
privilege escalation issue

in role parsing 276
Process for Attack Simulation and

Threat Analysis (PASTA) 45
process IDs (PIDs) 24
Prometheus

about 194-197
queries 197
setting up 194, 195

Q
Queries Per Second (QPS) 121

Index 303

R
reduced instruction set

computing (RISC) 12
representational state transfer (REST) 94
representational state transfer

(RESTful) 70
resource limit control 69
resource management

LimitRanger, using 184-186
requests and limits 177-182
resource quotas, for

namespaces 182-184
resources

managing 177
monitoring 187

resources, monitoring
about 187
built-in monitors, using 187
Grafana, using 199-204
Prometheus, using 194-199
third-party tools 193

Role-Based Access Control
(RBAC) 60, 62, 108

Role-Based Access Control
(RBAC), core elements

resources 62
subject 62
verbs 62

RoleBinding object 64
role parsing

privilege escalation issue 276
roles 63, 64

S
scalability 14
Secure Computing Mode (seccomp) 68

Secure Shell (SSH) 24
secure sockets layer (SSL) 14
security advisories and announcements

reference link 278
security boundaries

about 76
versus trust boundaries 77

security boundaries, in network layer
about 84
network policies 85-88

security boundaries, in system layer
about 80
summarizing 84

security context 67
SecurityContextDeny admission

controller 123
security control 44
security domains, Kubernetes

Kubernetes master components 77
Kubernetes objects 78
Kubernetes worker components 78

Security Enhanced Linux (SELinux) 68
security, Kubernetes

reference link 17
Server-Side Request Forgery (SSRF) 17
ServiceAccount admission controller 123
shareProcessNamespace 80
sidecar container 102
software development life cycle (SDLC) 44
Spoofing, Tampering, Repudiation,

Information Disclosure, Denial
of Service, and Escalation of
Privilege (STRIDE) model 45

subject types
about 62, 63
anonymous users 63
regular users 62
service accounts 62

304 Index

Sysdig
using 238-242

Sysdig Inspect
forensics, conducting 235
using 238-242

T
threat actors 44, 50, 51
threat actors, categories

end user 50
internal attacker 50
privileged attacker 50

threat modeling 44, 45
threat modeling application 55, 57
threat modeling, approaches

PASTA 45
STRIDE model 45
VAST 45

threat model, of three-tier web application
about 56
versus threat model of traditional

web application 56
threat model, of traditional

web application
about 55
versus threat model of

three-tier web application 56
threats

about 44
assets, protecting from 52
in Kubernetes clusters 52-55

Transmission Control Protocol (TCP) 29
Transport Layer Security (TLS) 34, 221
trust boundaries

versus security boundaries 77

U
Uniform Resource Identifier (URI) 20
Uniform Resource Locator (URL) 33
user 24
User Datagram Protocol (UDP) 29
user ID (UID) 67

V
ValidatingAdmissionWebhook

admission controller 123
Visual, Agile, and Simple Threat

(VAST) modeling 45
Vault

about 221
secrets, managing 221
secrets, provisioning 224-227
secrets, rotating 224-227
setting up 221-223

Virtual Machines (VMs) 6, 21

W
workflow

requesting, in Kubernetes 108

X
X509 Certificate Authority (CA) 109

Y
YAML Ain’t Markup Language

(YAML) 30, 103
YAML parsing

DoS issue 275

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Foreword
	Preface
	Section 1:
Introduction to Kubernetes
	Chapter 1: Kubernetes Architecture
	The rise of Docker and the trend of microservices
	Kubernetes adoption status
	Kubernetes clusters

	Kubernetes components
	The Kubernetes interfaces

	Kubernetes objects
	Pods
	Deployments
	Services
	Replica sets
	Volumes
	Namespaces
	Service accounts
	Network policies
	Pod security policies

	Kubernetes variations
	Minikube
	K3s
	OpenShift

	Kubernetes and cloud providers
	Kubernetes as a service
	Kops
	Why worry about Kubernetes' security?

	Summary
	Questions
	Further reading

	Chapter 2: Kubernetes Networking
	Overview of the Kubernetes network model
	Port-sharing problems
	Kubernetes network model

	Communicating inside a pod
	Linux namespaces and the pause container
	Beyond network communication

	Communicating between pods
	The Kubernetes service
	kube-proxy

	Introducing the Kubernetes service
	Service discovery
	Service types
	Ingress for routing external requests

	Introducing the CNI and CNI plugins
	CNI specification and plugins
	Calico
	Wrapping up

	Summary
	Questions
	Further reading

	Chapter 3: Threat Modeling
	Introduction to threat modeling
	Component interactions
	Threat actors in Kubernetes environments
	Threats in Kubernetes clusters
	Threat modeling application in Kubernetes
	Summary
	Questions
	Further reading

	Chapter 4: Applying the Principle of Least Privilege in Kubernetes
	The principle of least privilege
	Authorization model
	Rewards of the principle of least privilege

	Least privilege of Kubernetes subjects
	Introduction to RBAC
	Service accounts, users, and groups
	Role
	RoleBinding
	Kubernetes namespaces
	Wrapping up least privilege for Kubernetes subjects

	Least privilege for Kubernetes workloads
	Least privilege for accessing system resources
	Wrapping up least privilege for accessing system resources
	Least privilege for accessing network resources
	Least privilege for accessing application resources

	Summary
	Questions
	Further reading

	Chapter 5: Configuring Kubernetes Security Boundaries
	Introduction to security boundaries
	Security boundaries versus trust boundaries
	Kubernetes security domains
	Kubernetes entities as security boundaries
	Security boundaries in the system layer
	Linux namespaces as security boundaries
	Linux capabilities as security boundaries
	Wrapping up security boundaries in the system layer

	Security boundaries in the network layer
	Network policies

	Summary
	Questions
	Further references

	Section 2:
Securing Kubernetes Deployments and Clusters
	Chapter 6: Securing Cluster Components
	Securing kube-apiserver
	Securing kubelet
	Securing etcd
	Securing kube-scheduler
	Securing kube-controller-manager
	Securing CoreDNS
	Benchmarking a cluster's security configuration
	Summary
	Questions
	Further reading

	Chapter 7: Authentication, Authorization, and Admission Control
	Requesting a workflow in Kubernetes
	Kubernetes authentication
	Client certificates
	Static tokens
	Basic authentication
	Bootstrap tokens
	Service account tokens
	Webhook tokens
	Authentication proxy
	User impersonation

	Kubernetes authorization
	Request attributes
	Authorization modes
	Node
	ABAC
	RBAC
	Webhooks

	Admission controllers
	AlwaysPullImages
	EventRateLimit
	LimitRanger
	NodeRestriction
	PersistentVolumeClaimResize
	PodSecurityPolicy
	SecurityContextDeny
	ServiceAccount
	MutatingAdmissionWebhook and ValidatingAdmissionWebhook

	Introduction to OPA
	Summary
	Questions
	Further reading

	Chapter 8: Securing Kubernetes Pods
	Hardening container images
	Container images and Dockerfiles
	CIS Docker benchmarks

	Configuring the security attributes of pods
	Setting host-level namespaces for pods
	Security context for containers
	Security context for pods
	AppArmor profiles

	The power of PodSecurityPolicy
	Understanding PodSecurityPolicy
	Kubernetes PodSecurityPolicy Advisor

	Summary
	Questions
	Further reading

	Chapter 9: Image Scanning in DevOps Pipelines
	Introducing container images and vulnerabilities
	Container images
	Detecting known vulnerabilities

	Scanning images with Anchore Engine
	Introduction to Anchore Engine
	Scanning images with anchore-cli

	Integrating image scanning into the CI/CD pipeline
	Scanning at the build stage
	Scanning at the deployment stage
	Scanning at the runtime stage

	Summary
	Questions
	Further references

	Chapter 10: Real-Time Monitoring and Resource Management of a Kubernetes Cluster
	Real-time monitoring and management in monolith environments
	Managing resources in Kubernetes
	Resource requests and limits
	Namespace resource quotas
	LimitRanger

	Monitoring resources in Kubernetes
	Built-in monitors
	Third-party monitoring tools
	Prometheus and Grafana

	Summary
	Questions
	Further references

	Chapter 11: Defense in Depth
	Introducing Kubernetes auditing
	Kubernetes audit policy
	Configuring the audit backend

	Enabling high availability in a Kubernetes cluster
	Enabling high availability of Kubernetes workloads
	Enabling high availability of Kubernetes components
	Enabling high availability of a cloud infrastructure

	Managing secrets with Vault
	Setting up Vault
	Provisioning and rotating secrets

	Detecting anomalies with Falco
	An overview of Falco
	Creating Falco rules to detect anomalies

	Conducting forensics with Sysdig Inspect
and CRIU
	Using CRIU to collect data
	Using Sysdig and Sysdig Inspect

	Summary
	Questions
	Further references

	Section 3:
Learning from Mistakes and Pitfalls
	Chapter 12: Analyzing and Detecting Crypto-Mining Attacks
	Analyzing crypto-mining attacks
	An introduction to crypto-mining attacks
	The crypto-mining attack on Tesla's Kubernetes cluster
	Graboid – a crypto-worm attack
	Lessons learned

	Detecting crypto-mining attacks
	Monitoring CPU utilization
	Detecting network traffic to a mining pool
	Detecting launched crypto-mining processes
	Checking the binary signature

	Defending against attacks
	Securing Kubernetes cluster provisioning
	Securing the build
	Securing deployment
	Securing runtime

	Summary
	Questions
	Further reading

	Chapter 13: Learning from Kubernetes CVEs
	The path traversal issue in kubectl
cp – CVE-2019-11246
	Mitigation strategy

	DoS issues in JSON parsing – CVE-2019-1002100
	Mitigation strategy

	A DoS issue in YAML parsing – CVE-2019-11253
	Mitigation strategy

	The Privilege escalation issue in role
parsing – CVE-2019-11247
	Mitigation strategy

	Scanning for known vulnerabilities using kube-hunter
	Summary
	Questions
	Further references

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

